WO2013153010A1 - Injektor eines modularen common-rail-kraftstoffeinspritzsystems mit durchflussbegrenzer - Google Patents

Injektor eines modularen common-rail-kraftstoffeinspritzsystems mit durchflussbegrenzer Download PDF

Info

Publication number
WO2013153010A1
WO2013153010A1 PCT/EP2013/057268 EP2013057268W WO2013153010A1 WO 2013153010 A1 WO2013153010 A1 WO 2013153010A1 EP 2013057268 W EP2013057268 W EP 2013057268W WO 2013153010 A1 WO2013153010 A1 WO 2013153010A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow restrictor
injector
holding body
flow
pressure
Prior art date
Application number
PCT/EP2013/057268
Other languages
English (en)
French (fr)
Inventor
Martin Bernhaupt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2015503898A priority Critical patent/JP5936764B2/ja
Priority to KR1020147028307A priority patent/KR102049218B1/ko
Priority to EP13715200.5A priority patent/EP2836696B1/de
Publication of WO2013153010A1 publication Critical patent/WO2013153010A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0056Throttling valves, e.g. having variable opening positions throttling the flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/40Fuel-injection apparatus with fuel accumulators, e.g. a fuel injector having an integrated fuel accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/803Fuel injection apparatus manufacture, repair or assembly using clamp elements and fastening means; e.g. bolts or screws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8076Fuel injection apparatus manufacture, repair or assembly involving threaded members

Definitions

  • the invention relates to an injector of a modular common rail fuel injection system with a high-pressure accumulator integrated in the injector body, wherein the injector has an injection nozzle with axially displaceably guided, surrounded by a nozzle chamber nozzle needle, a high-pressure accumulator with the nozzle chamber connecting high pressure line and a holding body, the the front side with the component forming the high-pressure accumulator, in particular storage tube is screwed and through which the high-pressure line passes, wherein a flow restrictor for limiting the amount of fuel delivered from the high-pressure accumulator to the injection nozzle is arranged downstream of the high-pressure accumulator.
  • Modular common rail systems are characterized in that part of the storage volume present in the system is present in the injectors themselves. Modular common-rail systems are used on particularly large engines where the individual injectors may be mounted at a considerable distance from each other.
  • the sole use of a common rail for all injectors is not useful in such engines, as it would come to a massive slump in injection pressure due to the long lines during injection, so with prolonged injection duration, the injection rate would noticeably break. In such engines, it is therefore intended to arrange a high-pressure accumulator inside each injector.
  • Such a design is referred to as a modular structure, since each injector has its own high-pressure accumulator and thus can be used as a stand-alone module.
  • a high-pressure accumulator is not to be understood as an ordinary conduit, but rather as a pressure-resistant vessel with an inflow or outflow, the diameter of which compared to the high-pressure accumulator. Pressure lines is significantly increased so that from the high-pressure accumulator a certain amount of injection can be delivered without causing an immediate pressure drop.
  • Common rail systems can leak under unfavorable conditions, be it in the piping system or through defective injectors. Injectors with jamming nozzle needles, which lead to continuous injections into the combustion chamber, can cause considerable damage. These damages can lead to the fire of the vehicle or to the destruction of the engine. In order to avoid these dangers, flow rate limiters with a closing function are known, which close the inlet to the affected injector when a maximum removal quantity from the high-pressure accumulator is exceeded and thus decouple the injection-pump-side high-pressure from the injection-valve side.
  • flow restrictors are usually arranged upstream of the storage volume.
  • top-feed injectors the fuel is supplied via a high-pressure port of the injector at the top of the high-pressure accumulator
  • the flow restrictor is usually attached to the upper end of the injector.
  • side-feed injectors the supply of the fuel takes place via a lance which contacts the injector laterally
  • the flow restrictor is usually arranged in front of the pressure pipe stub in a T-piece.
  • the flow restrictor housing is either pressed into the injector holder body or mounted with a retaining ring in the holding body.
  • Flow restrictors which are arranged in terms of flow in front of the storage volume, inherently have the disadvantage that they are to set much inaccurate. The reasons for this are the dead time and the damping effect of the storage volume and the influence of different fuel parameters such as temperature and viscosity or the fuel type (diesel or heavy oil).
  • a further disadvantage of the flow restrictor arranged in the flow medium in front of the storage volume is that a considerably larger amount can still be injected when closing the flow restrictor due to the expansion volume of the high-pressure accumulator. This property is repeatedly classified as very critical, especially in the very conservative business of large marine engines.
  • the installation of the flow restrictor at the top of Topfeed injectors also increase the mass there and thus worsen the vibration load capacity of the injector. Sidefeed injectors require a complex T-piece. Thus, two different solutions are required for the two injector concepts, which increases the variety of components.
  • Flow restrictors which are built according to the storage volume in terms of electricity, require a press fit in the holding body or complex bore intersections in the case of the pressed-in design. Both constructions are very unfavorable in terms of fatigue strength in the extreme pressure loads prevailing in common rail systems. For example, in systems with a system pressure of 2200 bar pressure loads of up to 2500 bar can be observed.
  • the present invention therefore aims to increase the fatigue strength, wherein in the holding body in particular interference fits and punctures for retaining rings or additional critical Bohrungsverschneidungen should be avoided. Furthermore, the same design concept for topfeed and sidefeed injectors should be used. Overall should be created with the same component cost as in the prior art training with a functionally optimal flow restrictor without the high pressure capacity of the holding body or the high-pressure accumulator is adversely affected.
  • the invention provides in an injector of the type mentioned in essence that the flow restrictor is designed as a separate component, which is inserted between the holding body and the storage tube and is fixed by the screw of the holding body and storage tube.
  • the flow restrictor is inserted between the holding body and the storage tube, the benefits of flow moderately built according to the storage volume flow restrictors are used.
  • the flow restrictor is inserted between the holding body and the storage tube and fixed by the screwing of the holding body and storage tube, eliminates the need for pressing or securing using a locking ring, and there is a very simple construction, which has a high fatigue strength.
  • the flow restrictor is in this case held only by the axial force generated during screwing of the holding body with the storage tube and clamped between these two components without the need for further fasteners as it were. So that when screwing the holding body with the storage tube on the
  • Flow limiting component acting torque does not lead to a rotation of the flow restrictor component, provides a preferred embodiment of the invention that the holding body and the flow restrictor are secured against rotation by means of an axial fixing pin.
  • the flow restrictor has a shoulder with a conical first sealing surface which cooperates with a formed on a shoulder of the storage tube conical sealing surface.
  • Another high-pressure-tight connection is preferably achieved in that the flow restrictor component on the end face facing the holding body has a conical second sealing surface which cooperates with a conical sealing surface formed on an end face of the holding body.
  • the arrangement of an anti-rotation in the form of locking pins can be omitted.
  • Flow restrictor member formed cavity limited.
  • the connection then takes place via the said cavity, which is particularly advantageous if a further parallel to the high-pressure line connected further high-pressure line passes through the holding body, which is on the one hand with the nozzle chamber and on the other hand with the high-pressure accumulator in combination.
  • both the high-pressure line and the further high-pressure line open into the said cavity, so that both lines are supplied with fuel flowing through the flow restrictor.
  • the further high-pressure line is designed as a resonator line, which is connected to the high-pressure accumulator via a resonator throttle.
  • the fluid connection of the flow restrictor to the two high-pressure lines can also take place in such a way that the high-pressure line and the additional high-pressure line are connected to the flow restrictor via a bore intersection formed in the flow restrictor component.
  • This embodiment is particularly advantageous for sidefeed injectors, where it is necessary that when closing the flow restrictor no amount of fuel directly from the side fuel inlet to the injector (bypass of the flow restrictor) can flow.
  • connection of the fuel supply to the high-pressure accumulator is preferably such that the injector has a lateral connection for the fuel supply, which communicates with an inlet bore, whose first section is formed in the holding body and whose second section is the
  • Flow restrictor axially interspersed.
  • a bypass of the flow restrictor is preferably prevented in that the flow restrictor component on the end face facing the holding body has a planar second sealing surface which cooperates with the planar end face of the holding body.
  • the design of the flow restrictor as a separate component increases the flexibility in its structural design.
  • the flow restrictor a housing with a high-pressure accumulator-side housing inlet and a holder body side housing outlet, a longitudinally displaceable in a chamber of the housing between a starting position and an end position and against the flow direction spring-biased closing member, which has at least one throttle having a channel Housing inlet and housing outlet connects hydraulically with each other and further controls a flow connection between the housing inlet and the housing outlet includes.
  • a retaining ring fixed in the flow restrictor component defines the starting position of the closing member.
  • the invention further relates to the flow restrictor for use in the injector according to the invention, comprising a flow restrictor with a high pressure accumulator side inlet and a holder side outlet, a longitudinally displaceable in a chamber between a starting position and an end position and spring biased against the flow direction closing member having at least one throttle having Channel the inlet and outlet which hydraulically connects and which further controls a flow connection between the inlet and the outlet.
  • the flow restrictor member is characterized by having a first inlet side axial portion and a second outlet side axial portion, the second portion having a larger diameter than the first portion, and the second portion having a tapered first sealing surface on a shoulder has on the opposite end face a second sealing surface which is in each case pressable against a mating surface.
  • the arrangement of the sealing surfaces on the enlarged diameter formed second section ensures that the component between the holder body and the storage tube can be inserted and fixed by the screwing of the holding body and storage tube.
  • the first section protrudes into the space of the high-pressure accumulator and is acted upon by the fuel pressure.
  • a preferred development provides in this case that the inner diameter of the first sealing surface is at a radial distance from the outer periphery of the first portion.
  • FIG. 1 shows the schematic structure of an injector of a modular common rail fuel injection system according to the prior art
  • FIG. 2 shows a detailed view of the injector in region II of FIG. 1 in a first embodiment
  • FIG. 3 shows a detailed view of the injector in a second embodiment
  • Fig. 4 is a detail view of the injector in a third embodiment
  • Fig. 5 is a detail view of the injector in a fourth embodiment.
  • an injector 1 having an injection nozzle 2, a throttle plate 3, a valve plate 4, a holding body 5 and a high-pressure accumulator 6, wherein a screwed to the holding body 5 nozzle retaining nut 7, the injection nozzle 2, the throttle plate. 3 and the valve plate 4 holds together.
  • the solenoid valve 13 is closed, so that high-pressure fuel from the high-pressure accumulator 6 via the high-pressure line 8, the cross-connection 9 and the inlet throttle 10 flows into the control chamber 11 of the injection nozzle 2, the outflow from the control chamber 11 via the outlet throttle 12 but at the valve seat of the solenoid valve 13 is blocked.
  • a resonator 20 may be arranged with a high-pressure memory-side resonator choke 21, with which occurring pressure peaks can be lowered more quickly.
  • the fuel supply can take place via a high-pressure port 23 arranged laterally on the injector 1, in particular on the holding body 5, and an inlet bore 24 leading to the high-pressure accumulator 6 (sidefeed injector).
  • FIGS. 2 to 5 show a view of the detail X of FIG. 1 with the flow restrictor arranged between the storage tube 25, the high-pressure accumulator 6 and the holding body 5.
  • the embodiments according to FIGS. 2 to 5 have in common that the flow regulator is formed in a separate flow restrictor component 26.
  • the flow restrictor member 26 has a first axial portion 27 and a second axial portion 28, the second axial portion 28 having a larger outer diameter than the first axial portion 27 axial portion 28, the flow restrictor 26 has a shoulder with a tapered first sealing surface 29 which cooperates with a formed on a shoulder 30 of the storage tube 25 conical mating sealing surface.
  • the shoulder 30 of the storage tube 25 is connected via an annular groove-like recess 31 with a thinner walled, provided with an internal thread 33 portion 32 of the storage tube 25.
  • the flow restrictor 26 is inserted between the holding body 5 and the storage tube 25 and fixed by the screw connection of these two components. In this case, the flow restrictor 26 is secured by means of pins 34 against rotation.
  • the seal to the holding body 5 takes place in the embodiment according to FIGS. 2, 3 and 5 via a flat sealing point, which is formed by a plane formed on the holding body 5 facing end face plane sealing surface, which cooperates with the flat end face of the holding body 5.
  • the flow restrictor member 26 has an inlet 36 and an outlet 37.
  • a displaceably guided in the axial direction piston 39 is arranged, which is pressed by means of the compression spring 40 against the retaining ring 41.
  • the piston 39 has a blind hole 42, which communicates on the one hand with the inlet 36 and on the other hand via a throttle bore 43 with the outlet 37.
  • the amount of injection is removed from the chamber 38.
  • the piston 39 moves against the spring force in the direction of the lower sealing seat 44, without, however, reaching it.
  • the compression spring 40 pushes the piston 39 back to the starting position.
  • the chamber 38 is in this case filled via the throttle 43 again.
  • the piston 39 moves so far that the sealing seat 44 is reached and the injection is terminated.
  • the throttle 43 creates a pressure loss between the present in the blind hole 42 fuel and the chamber 38.
  • a defined throttle flow is exceeded, the piston 39 moves against the spring force in the direction of the lower sealing seat 44 and thus ends the injection.
  • a single high-pressure line 8 is provided, which extends through the holding body 5.
  • the fuel passing through the flow restrictor 26 passes directly into the high-pressure line 8 via a bore section 48.
  • a further high-pressure line 20 which is designed as a resonator line, is arranged parallel to the high-pressure line 8 in the holding body 5 and communicates with the fuel supply via a resonator throttle 21.
  • the two high-pressure lines 8 and 20 are by a in the
  • Flow restrictor 26 can be made to the holding body 5 in Topfeed injectors via a conical seal 46.
  • the pins 34 can be omitted for the rotation.
  • the conical sealing surfaces forming the conical seal 46 delimit a hollow space 47 into which, on the one hand, the outlet 37 and, on the other hand, the high-pressure lines 8 and 20 open.
  • FIG. 5 is a sidefeed injector, wherein the fuel via the inlet bore 24 from the holding body 5 via the
  • Flow restrictor 26 is guided in the high-pressure accumulator 6.
  • the inlet bore 24 opens in this case via a storage throttle 49 in the high-pressure accumulator. 6

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Bei einem Injektor (1) eines modularen Common-Rail-Kraftstoffeinspritzsystems mit einem im Injektorkörper integrierten Hochdruckspeicher (6) umfasst der Injektor (1) eine Einspritzdüse (2) mit darin axial verschieblich geführter, von einem Düsenraum (19) umgebener Düsennadel (15), eine den Hochdruckspeicher (6) mit dem Düsenraum (19) verbindende Hochdruckleitung (8) und einen Haltekörper (5), der stirnseitig mit dem den Hochdruckspeicher (6) bildenden Bauteil, insbesondere Speicherrohr (25) verschraubt ist und durch den die Hochdruckleitung (8) verläuft, wobei strömungsmäßig nach dem Hochdruckspeicher (6) ein Durchflussbegrenzer (26) zum Begrenzen der aus dem Hochdruckspeicher (6) zur Einspritzdüse (2) geförderten Kraftstoffmenge angeordnet ist. Der Durchflussbegrenzer (26) ist als eigenes Bauteil ausgeführt, welches zwischen dem Haltekörper (5) und dem Speicherrohr (25) eingelegt ist und durch die Verschraubung von Haltekörper (5) und Speicherrohr (25) fixiert ist.

Description

Beschreibung
Titel
Injektor eines modularen Common- Rail- Kraftstoffeinspritzsystems mit Durchflussbegrenzer
Die Erfindung betrifft einen Injektor eines modularen Common-Rail- Kraftstoffeinspritzsystems mit einem im Injektorkörper integrierten Hochdruckspeicher, wobei der Injektor eine Einspritzdüse mit darin axial verschieblich geführter, von einem Düsenraum umgebener Düsennadel, eine den Hochdruckspeicher mit dem Düsenraum verbindende Hochdruckleitung und einen Haltekörper aufweist, der stirnseitig mit dem den Hochdruckspeicher bildenden Bauteil, insbesondere Speicherrohr verschraubt ist und durch den die Hochdruckleitung verläuft, wobei strömungsmäßig nach dem Hochdruckspeicher ein Durchflussbegrenzer zum Begrenzen der aus dem Hochdruckspeicher zur Einspritzdüse geförderten Kraftstoffmenge angeordnet ist.
Ein derartiger Injektor ist in der DE 10210282 AI beschrieben.
Modulare Common- Rail-Systeme sind dadurch gekennzeichnet, dass ein Teil des im System vorhandenen Speichervolumens in den Injektoren selbst vorhanden ist. Modulare Common- Rail-Systeme kommen bei besonders großen Motoren zum Einsatz, bei welchen die einzelnen Injektoren unter Umständen in erheblichem Abstand voneinander angebracht sind. Die alleinige Verwendung eines gemeinsamen Rails für alle Injektoren ist bei solchen Motoren nicht sinnvoll, da es aufgrund der langen Leitungen während der Einspritzung zu einem massiven Einbruch im Einspritzdruck kommen würde, sodass bei längerer Spritzdauer die Einspritzrate merklich einbrechen würde. Bei solchen Motoren ist es daher vorgesehen, einen Hochdruckspeicher im Inneren eines jeden Injektors anzuordnen. Eine solche Bauweise wird als modularer Aufbau bezeichnet, da jeder einzelne Injektor über seinen eigenen Hochdruckspeicher verfügt und somit als eigenständiges Modul eingesetzt werden kann. Unter einem Hochdruckspeicher ist hierbei nicht eine gewöhnliche Leitung zu verstehen, sondern es handelt sich um ein druckfestes Gefäß mit einer Zu- bzw. Ableitung, dessen Durchmesser im Vergleich zu den Hoch- druckleitungen deutlich vergrößert ist, damit aus dem Hochdruckspeicher eine gewisse Einspritzmenge abgegeben werden kann, ohne dass es zu einem sofortigen Druckabfall kommt.
Bei Common- Rail-Systemen können unter ungünstigen Umständen Leckagen auftreten, sei es im Leitungssystem oder durch defekte Einspritzventile. Einspritzventile mit klemmenden Düsennadeln, die zu Dauereinspritzungen in den Brennraum führen, können erhebliche Schäden verursachen. Diese Schäden können zum Brand des Fahrzeuges oder zur Zerstörung des Motors führen. Zur Vermeidung dieser Gefahren sind Durch- flussmengenbegrenzer mit Schließfunktion bekannt, die bei Überschreiten einer maximalen Entnahmemenge aus dem Hochdruckspeicher den Zulauf zu dem betroffenen Injektor verschließen und damit den einspritzpumpenseitigen Hochdruck von der Einspritzventilseite abkoppeln.
Durchflussbegrenzer sind bei Injektoren mit integriertem Hochdruckspeicher strommäßig meist vor dem Speichervolumen angeordnet. Bei sogenannten Top-Feed-Injektoren (die Zuführung des Kraftstoffes erfolgt über einen Hochdruckanschluss des Injektors an der Oberseite des Hochdruckspeichers) ist der Durchflussbegrenzer meist am oberen Ende des Injektors angebracht. Bei sogenannten Side-Feed-Injektoren (die Zuführung des Kraftstoffes erfolgt über eine den Injektor seitlich kontaktierende Lanze) ist der Durchflussbegrenzer meist vor dem Druckrohrstutzen in einem T-Stück angeordnet. Weiters gibt es auch Anordnungen, bei denen der Durchflussbegrenzer strommäßig nach dem Speichervolumen angeordnet ist. Hier ist das Durchflussbegrenzer-Gehäuse entweder in den Injektor-Haltekörper eingepresst oder mit einem Sicherungsring im Haltekörper montiert.
Durchflussbegrenzer, welche strommäßig vor dem Speichervolumen angeordnet sind, haben prinzipbedingt den Nachteil, dass diese wesentlich ungenauer einzustellen sind. Die Gründe hierfür liegen in der Totzeit und der Dämpfwirkung des Speichervolumens und am Einfluss von verschiedenen Kraftstoffparametern wie Temperatur und Viskosität oder dem Kraftstofftyp (Diesel oder Schweröl). Ein weiterer Nachteil der strommäßig vor dem Speichervolumen angeordneten Durchflussbegrenzer ist, dass beim Schließen des Durchflussbegrenzers auf Grund des Expansionsvolumens des Hochdruckspeichers eine erheblich größere Menge noch eingespritzt werden kann. Diese Eigenschaft wird speziell im sehr konservativen Geschäft der großen Marinemotoren immer wieder als sehr kritisch eingestuft. Die Montage des Durchflussbegrenzers am oberen Ende von Topfeed-Injektoren erhöht dort außerdem die Masse und verschlechtert dadurch die Vibrationsbelastbarkeit des Injektors. Bei Sidefeed-Injektoren ist ein aufwändiges T- Stück erforderlich. Für die beiden Injektorkonzepte benötigt man somit zwei verschiedene Lösungen, was die Bauteilevielfalt erhöht.
Durchflussbegrenzer, welche strommäßig nach dem Speichervolumen verbaut werden, erfordern bei der eingepressten Bauweise eine Presspassung im Haltekörper oder bei einer Montage mit Sicherungsring komplexe Bohrungsverschneidungen. Beide Konstruktionen sind sehr ungünstig bezüglich Dauerfestigkeit bei den bei Common- Rail- Systemen herrschenden extremen Druckbelastungen. So sind bei Systemen mit einem Systemdruck von 2200 bar Druckbelastungen von bis zu 2500 bar zu beobachten.
Die vorliegende Erfindung zielt daher darauf ab, die Dauerfestigkeit zu erhöhen, wobei im Haltekörper insbesondere Presspassungen und Einstiche für Sicherungsringe oder zusätzliche kritische Bohrungsverschneidungen vermieden werden sollen. Weiters soll ein- und dasselbe Konstruktionskonzept für Topfeed- und für Sidefeed-Injektoren verwendet werden. Insgesamt soll bei gleichem Bauteilaufwand wie im Stand der Technik eine Ausbildung mit einem funktional optimalen Durchflussbegrenzer geschaffen werden, ohne dass die Hochdruck- Belastbarkeit des Haltekörpers oder des Hochdruckspeichers negativ beeinflusst wird.
Zur Lösung dieser Aufgabe sieht die Erfindung bei einem Injektor der eingangs genannten Art im Wesentlichen vor, dass der Durchflussbegrenzer als eigenes Bauteil ausgeführt ist, welches zwischen dem Haltekörper und dem Speicherrohr eingelegt ist und durch die Verschraubung von Haltekörper und Speicherrohr fixiert ist. Dadurch, dass der Durchflussbegrenzer zwischen dem Haltekörper und dem Speicherrohr eingelegt ist, werden die Vorteile von strommäßig nach dem Speichervolumen verbauten Durchflussbegrenzern genützt. Dadurch, dass der Durchflussbegrenzer zwischen dem Haltekörper und dem Speicherrohr eingelegt und durch die Verschraubung von Haltekörper und Speicherrohr fixiert ist, entfällt die Notwendigkeit eines Einpressens oder eines Sicherns mit Hilfe eines Sicherungsrings, und es entsteht eine überaus einfache Konstruktion, die eine hohe Dauerfestigkeit aufweist. Das Durchflussbegrenzerbauteil wird hierbei lediglich durch die beim Verschrauben des Haltkörpers mit dem Speicherrohr erzeugte axiale Kraft gehalten und zwischen diesen beiden Bauteilen ohne die Notwendigkeit weitere Befestigungsmittel gleichsam eingeklemmt. Damit das beim Verschrauben des Haltekörpers mit dem Speicherrohr auf das
Durchflussbegrenzerbauteil wirkende Drehmoment nicht zu einem Verdrehen des Durchflussbegrenzerbauteils führt, sieht eine bevorzugte Weiterbildung der Erfindung vor, dass der Haltekörper und das Durchflussbegrenzerbauteil mittels eines axialen Fixierstiftes verdrehgesichert sind.
Um einerseits ein sicheres Halten des Durchflussbegrenzerbauteils und andererseits eine hochdruckdichte Verbindung zu schaffen, ist bevorzugt vorgesehen, dass das Durchflussbegrenzerbauteil eine Schulter mit einer kegeligen ersten Dichtfläche aufweist, die mit einer an einem Absatz des Speicherrohrs ausgebildeten kegeligen Dichtfläche zusammenwirkt.
Eine weitere hochdruckdichte Verbindung wird bevorzugt dadurch erreicht, dass das Durchflussbegrenzerbauteil an der dem Haltekörper zugewandten Stirnseite eine kegelige zweite Dichtfläche aufweist, die mit einer an einer Stirnseite des Haltekörpers ausgebildeten kegeligen Dichtfläche zusammenwirkt. In diesem Falle kann die Anordnung einer Verdrehsicherung in der Form von Sicherungsstiften entfallen.
Im Falle einer kegeligen Dichtfläche zwischen dem Durchflussbegrenzerbauteil und dem Haltekörper muss bei Topfeed-Injektoren keine unmittelbare Verbindung des Durchflussbegrenzers mit der Hochdruckbohrung des Haltekörpers erfolgen, sondern es kann die Ausbildung so getroffen sein, dass die kegelige zweite Dichtfläche des
Durchflussbegrenzerbauteils einen zwischen Haltekörper und
Durchflussbegrenzerbauteil ausgebildeten Hohlraum begrenzt. Die Verbindung erfolgt dann über den genannten Hohlraum, was von besonderem Vorteil ist, wenn durch den Haltekörper eine parallel zur Hochdruckleitung geschaltene weitere Hochdruckleitung verläuft, die einerseits mit dem Düsenraum und andererseits mit dem Hochdruckspeicher in Verbindung steht. Hierbei münden sowohl die Hochdruckleitung als auch die weitere Hochdruckleitung in den genannten Hohlraum, sodass beide Leitungen mit über den Durchflussbegrenzer fließendem Kraftstoff versorgt werden.
Besonders bevorzugt ist die weitere Hochdruckleitung hierbei als Resonatorleitung ausgebildet, die über eine Resonatordrossel mit dem Hochdruckspeicher in Verbindung steht. Die strömungsmäßige Verbindung des Durchflussbegrenzers mit den beiden Hochdruckleitungen kann alternativ aber auch so erfolgen, dass die Hochdruckleitung und die weitere Hochdruckleitung über eine in dem Durchflussbegrenzerbauteil ausgebildete Bohrungsverschneidung mit dem Durchflussbegrenzer in Verbindung stehen. Diese Ausführung ist insbesondere auch für Sidefeed-Injektoren vorteilhaft, bei denen es erforderlich ist, dass beim Schließen des Durchflussbegrenzers keine Kraftstoffmenge direkt vom seitlichen Kraftstoffzulauf zur Einspritzdüse (Bypass des Durchflussbegrenzers) fließen kann.
Bei Sidefeed-Injektoren erfolgt die Verbindung der Kraftstoffversorgung mit dem Hochdruckspeicher bevorzugt so, dass der Injektor einen seitlichen Anschluss für die Kraftstoffversorgung aufweist, der mit einer Zulaufbohrung in Verbindung steht, deren erster Abschnitt im Haltekörper ausgebildet ist und deren zweiter Abschnitt das
Durchflussbegrenzerbauteil axial durchsetzt. Ein Bypass des Durchflussbegrenzers wird hierbei bevorzugt dadurch verhindert, dass das Durchflussbegrenzerbauteil an der dem Haltekörper zugewandten Stirnseite eine plane zweite Dichtfläche aufweist, die mit der planen Stirnseite des Haltekörpers zusammenwirkt.
Die Ausbildung des Durchflussbegrenzers als eigenes Bauteil erhöht die Flexibilität bei dessen konstruktiver Ausbildung. Bevorzugt ist in diesem Zusammenhang vorgesehen, dass das Durchflussbegrenzerbauteil ein Gehäuse mit einem hochdruckspeicherseitigen Gehäuseeinlass und einem haltekörperseitigen Gehäuseauslass, ein in einer Kammer des Gehäuses zwischen einer Ausgangsstellung und einer Endstellung längsverschiebbares und entgegen der Strömungsrichtung federvorgespanntes Schließglied, welches über wenigstens einen eine Drossel aufweisenden Kanal den Gehäuseeinlass und Gehäuseauslass miteinander hydraulisch verbindet und das weiters eine Strömungsverbindung zwischen dem Gehäuseeinlass und dem Gehäuseauslass steuert, umfasst. Insbesondere kann vorgesehen sein, dass ein in dem Durchflussbegrenzerbauteil fixierter Sicherungsring die Ausgangsstellung des Schließglieds definiert.
Die Erfindung betrifft weiters das Durchflussbegrenzerbauteil zur Verwendung in dem erfindungsgemäßen Injektor, umfassend einen Durchflussbegrenzer mit einem hochdruckspeicherseitigen Einlass und einem haltekörperseitigen Auslass, einem in einer Kammer zwischen einer Ausgangsstellung und einer Endstellung längsverschiebbaren und entgegen der Strömungsrichtung federvorgespannten Schließglied, welches über wenigstens einen eine Drossel aufweisenden Kanal die Einlass und Auslass miteinan- der hydraulisch verbindet und das weiters eine Strömungsverbindung zwischen dem Einlass und dem Auslass steuert. Das Durchflussbegrenzerbauteil zeichnet sich dadurch aus, dass es einen ersten, einlassseitigen axialen Abschnitt und einen zweiten, auslassseitigen axialen Abschnitt aufweist, wobei der zweite Abschnitt einen gegenüber dem ersten Abschnitt vergrößerten Durchmesser aufweist, und dass der zweite Abschnitt an einer Schulter eine kegelige erste Dichtfläche und an der gegenüberliegenden Stirnseite eine zweite Dichtfläche aufweist, die jeweils an eine Gegenfläche anpressbar ist. Die Anordnung der Dichtflächen an dem mit vergrößertem Durchmesser ausgebildeten zweiten Abschnitt stellt sicher, dass das Bauteil zwischen den Haltekörper und das Speicherrohr eingelegt und durch die Verschraubung von Haltekörper und Speicherrohr fixiert werden kann. Der erste Abschnitt ragt hierbei in den Raum des Hochdruckspeichers und wird vom Kraftstoffdruck beaufschlagt.
Eine bevorzugte Weiterbildung sieht hierbei vor, dass der Innendurchmesser der ersten Dichtfläche in radialem Abstand von dem Außenumfang des ersten Abschnitts liegt. Dadurch entsteht bei eingebautem Durchflussbegrenzerbauteil ein Ringspalt zwischen dem ersten axialen Abschnitt und der Innenseite des Hochdruckspeichers, sodass der Kraftstoffdruck nicht nur innen, d.h. in dem Durchflussbegrenzer, sondern auch von außen zur Wirkung gelangt, sodass ein druckausgeglichener Bereich entsteht.
Die Erfindung wird nachfolgend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. In dieser zeigen Fig. 1 den schematischen Aufbau eines Injektors eines modularen Common- Rail- Kraftstoffeinspritzsystems gemäß dem Stand der Technik, Fig. 2 eine Detailansicht des Injektors im Bereich II der Fig. 1 in einer erste Ausbildung, Fig. 3 eine Detailansicht des Injektors in einer zweiten Ausbildung, Fig. 4 eine Detailansicht des Injektors in einer dritten Ausbildung und Fig. 5 eine Detailansicht des Injektors in einer vierten Ausbildung.
In Fig. 1 ist ein Injektor 1 dargestellt, der eine Ein-spritzdüse 2, eine Drosselplatte 3, eine Ventilplatte 4, einen Haltekörper 5 und einen Hochdruckspeicher 6 aufweist, wobei eine mit dem Haltekörper 5 verschraubte Düsenspannmutter 7 die Einspritzdüse 2, die Drosselplatte 3 und die Ventilplatte 4 zusammenhält. Im Ruhezustand ist das Magnetventil 13 geschlossen, sodass Hochdruckkraftstoff aus dem Hochdruckspeicher 6 über die Hochdruckleitung 8, die Querverbindung 9 und die Zulaufdrossel 10 in den Steuerraum 11 der Einspritzdüse 2 strömt, der Abfluss aus dem Steuerraum 11 über die Ablaufdrossel 12 aber am Ventilsitz des Magnetventils 13 blockiert ist. Der im Steuerraum 11 anliegende Systemdruck drückt gemeinsam mit der Kraft der Düsenfeder 14 die Düsennadel 15 in den Düsennadelsitz 16, sodass die Spritzlöcher 17 verschlossen sind. Wird der Elektromagnet des Magnetventils 13 betätigt, gibt es den Durchfluss über den Magnetventilsitz frei, und Kraftstoff strömt aus dem Steuerraum 11 durch die Ablaufdrossel 12, den Magnetventilankerraum und die Niederdruckbohrung 18 zurück in den nicht dargestellten Kraftstofftank. Es stellt sich ein durch die Strömungsquerschnitte von Zulaufdrossel 10 und Ablaufdrossel 12 definierter Gleichgewichtsdruck im Steuerraum 11 ein, der so gering ist, dass der im Düsenraum 19 anliegende Systemdruck die im Düsenkörper längs verschieblich geführte Düsennadel 15 zu öffnen vermag, sodass die Spritzlöcher 17 freigegeben werden und eine Einspritzung erfolgt.
Sobald das Magnetventil 13 geschlossen wird, wird der Ablaufweg des Kraftstoffes durch die Ablaufdrossel 12 gesperrt. Über die Zulaufdrossel 10 wird im Steuerraum 11 wieder Kraftstoffdruck aufgebaut, was eine zusätzliche Schließkraft erzeugt, welche die hydraulische Kraft auf die Druckschulter der Düsennadel 15 vermindert und die Kraft der Düsenfeder 14 übersteigt. Die Düsennadel 15 verschließt den Weg zu den Einspritzöffnungen 17, wodurch der Einspritzvorgang beendet wird.
Parallel zur Hochdruckbohrung 8 kann eine Resonatorleitung 20 mit einer hochdruck- speicherseitigen Resonatordrossel 21 angeordnet sein, mit welcher auftretende Druckspitzen rascher abgesenkt werden können.
Die Zuführung des Hochdruckkraftstoffs von einer nicht näher dargestellten Hochdruckpumpe in den Injektor 1, kann über einen an der Oberseite des Injektors 1 angeordneten Hochdruckanschluss 22 erfolgen (Topfeed-Injektor). Alternativ kann die Kraftstoffzufüh- rung über einen seitlich am Injektor 1, insbesondere an dem Haltekörper 5 angeordneten Hochdruckanschluss 23, sowie eine zum Hochdruckspeicher 6 führende Zulaufboh- rung 24 erfolgen (Sidefeed-Injektor).
Die Figuren 2 bis 5 zeigen eine Ansicht des Details X der Fig. 1 mit dem zwischen dem Speicherrohr 25, dem Hochdruckspeicher 6 und dem Haltekörper 5 angeordneten Durchflussbegrenzer. Den Ausbildungen gemäß den Figuren 2 bis 5 ist gemeinsam, dass der Durchflussbregenzer in einem eigenen Durchflussbegrenzerbauteil 26 ausgebildet ist. Das Durchflussbegrenzerbauteil 26 weist einen ersten axialen Abschnitt 27 und einen zweiten axialen Abschnitt 28 auf, wobei der zweite axiale Abschnitt 28 einen größeren Außendurchmesser aufweist, als der erste axiale Abschnitt 27. Am zweiten axialen Abschnitt 28 weist das Durchflussbegrenzerbauteil 26 eine Schulter mit einer kegeligen ersten Dichtfläche 29 auf, die mit einer an einem Absatz 30 des Speicherrohrs 25 ausgebildeten kegeligen Gegendichtfläche zusammenwirkt. Der Absatz 30 des Speicherrohrs 25 ist über eine ringnutartige Ausnehmung 31 mit einem dünnwandigeren, mit einem Innengewinde 33 versehenen Abschnitt 32 des Speicherrohrs 25 verbunden. Das Durchflussbegrenzerbauteil 26 wird zwischen den Haltekörper 5 und das Speicherrohr 25 eingelegt und durch die Verschraubung dieser beiden Bauteile fixiert. Dabei wird das Durchflussbegrenzerbauteil 26 mittels Stiften 34 gegen das Verdrehen gesichert. Die Abdichtung zum Haltekörper 5 erfolgt bei der Ausbildung gemäß den Fig. 2, 3 und 5 über eine Flachdichtstelle, welche von einer an der dem Haltekörper 5 zugewandten Stirnseite ausgebildeten Plandichtfläche ausgebildet wird, welche mit der planen Stirnseite des Haltekörpers 5 zusammenwirkt.
Das Durchflussbegrenzerbauteil 26 weist einen Einlass 36 und einen Auslass 37 auf. In einer Kammer 38 ist ein in axialer Richtung verschieblich geführter Kolben 39 angeordnet, der mittels der Druckfeder 40 gegen den Sicherungsring 41 gedrückt wird. Der Kolben 39 weist ein Sackloch 42 auf, das einerseits mit dem Einlass 36 und andererseits über eine Drosselbohrung 43 mit dem Auslass 37 in Verbindung steht. Im Betrieb wird die Einspritzmenge aus der Kammer 38 entnommen. Dadurch bewegt sich der Kolben 39 gegen die Federkraft in Richtung zum unteren Dichtsitz 44, ohne diesen allerdings zu erreichen. Während der Nicht- Einspritzzeit drückt die Druckfeder 40 den Kolben 39 in die Ausgangsstellung zurück. Die Kammer 38 wird hierbei über die Drossel 43 wieder befüllt. Falls die Einspritzmenge einen definierten Maximalwert überschreitet, bewegt sich der Kolben 39 so weit, dass der Dichtsitz 44 erreicht wird und die Einspritzung beendet wird. Durch die Drossel 43 entsteht ein Druckverlust zwischen dem im Sackloch 42 vorhandenen Kraftstoff und der Kammer 38. Bei Überschreiten eines definierten Drosseldurchflusses bewegt sich der Kolben 39 gegen die Federkraft in Richtung des unteren Dichtsitzes 44 und beendet damit die Einspritzung.
Bei der Ausbildung gemäß Fig. 2 ist eine einzige Hochdruckleitung 8 vorgesehen, die sich durch den Haltekörper 5 erstreckt. Der den Durchflussbegrenzer 26 passierende Kraftstoff gelangt über einen Bohrungsabschnitt 48 unmittelbar in die Hochdruckleitung 8.
Bei der Ausbildung gemäß Fig. 3 ist im Haltekörper 5 parallel zur Hochdruckleitung 8 eine weitere Hochdruckleitung 20 angeordnet, die als Resonatorleitung ausgebildet ist und über eine Resonatordrossel 21 mit der Kraftstoffversorgung in Verbindung steht. Die beiden Hochdruckleitungen 8 und 20 werden durch eine im
Durchflussbegrenzerbauteil 26 ausgebildete Bohrungsverschneidung 45 mit Kraftstoff versorgt.
Bei der Ausbildung gemäß Fig. 4 ist dargestellt, dass die Abdichtung des
Durchflussbegrenzerbauteils 26 zum Haltekörper 5 bei Topfeed-Injektoren auch über eine Kegeldichtung 46 erfolgen kann. In diesem Fall können die Stifte 34 für die Verdrehsicherung entfallen. Die die Kegeldichtung 46 ausbildenden kegeligen Dichtflächen begrenzen hierbei einen Hohlraum 47, in den einerseits der Auslass 37 und andererseits die Hochdruckleitungen 8 und 20 münden.
Bei der Ausbildung gemäß Fig. 5 handelt es sich um einen Sidefeed-Injektor, bei welchem der Kraftstoff über die Zulaufbohrung 24 vom Haltekörper 5 über das
Durchflussbegrenzerbauteil 26 in den Hochdruckspeicher 6 geführt wird. Die Zulaufbohrung 24 mündet hierbei über eine Speicherdrossel 49 in den Hochdruckspeicher 6.

Claims

Patentansprüche
1. Injektor eines modularen Common- Rail-Kraftstoffeinspritzsystems mit einem im Injektorkörper integrierten Hochdruckspeicher, wobei der Injektor eine Einspritzdüse mit darin axial verschieblich geführter, von einem Düsenraum umgebener Düsennadel, eine den Hochdruckspeicher mit dem Düsenraum verbindende Hochdruckleitung und einen Haltekörper aufweist, der stirnseitig mit dem den Hochdruckspeicher bildenden Bauteil, insbesondere Speicherrohr verschraubt ist und durch den die Hochdruckleitung verläuft, wobei strömungsmäßig nach dem Hochdruckspeicher ein Durchflussbegrenzer zum Begrenzen der aus dem Hochdruckspeicher zur Einspritzdüse geförderten Kraftstoff menge angeordnet ist, dadurch gekennzeichnet, dass der Durchflussbegrenzer (26) als eigenes Bauteil ausgeführt ist, welches zwischen dem Haltekörper (5) und dem Speicherrohr (25) eingelegt ist und durch die Verschraubung von Haltekörper (5) und Speicherrohr (25) fixiert ist.
2. Injektor nach Anspruch 1, dadurch gekennzeichnet, dass der Haltekörper (5) und das Durchflussbegrenzerbauteil (26) mittels eines axialen Stiftes (34)
verdrehgesichert sind.
3. Injektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das
Durchflussbegrenzerbauteil (26) eine Schulter mit einer kegeligen ersten Dichtfläche (29) aufweist, die mit einer an einem Absatz (30) des Speicherrohrs (25) ausgebildeten kegeligen Dichtfläche zusammenwirkt.
4. Injektor nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass das
Durchflussbegrenzerbauteil (26) an der dem Haltekörper (5) zugewandten Stirnseite eine kegelige zweite Dichtfläche aufweist, die mit einer an einer Stirnseite des Haltekörpers (5) ausgebildeten kegeligen Dichtfläche zusammenwirkt.
5. Injektor nach Anspruch 4, dadurch gekennzeichnet, dass die kegelige zweite Dichtfläche des Durchflussbegrenzerbauteils (26) einen zwischen Haltekörper (5) und Durchflussbegrenzerbauteil (26) ausgebildeten Hohlraum (47) begrenzt.
6. Injektor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass durch den Haltekörper (5) eine parallel zur Hochdruckleitung (8) geschaltene weitere Hochdruckleitung (20) verläuft, die einerseits mit dem Düsenraum (19) und andererseits mit dem Hochdruckspeicher (6) in Verbindung steht.
7. Injektor nach Anspruch 6, dadurch gekennzeichnet, dass die weitere Hochdruckleitung (20) als Resonatorleitung ausgebildet ist, die über eine Resonatordrossel (21) mit dem Hochdruckspeicher (6) in Verbindung steht.
8. Injektor nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Hochdruckleitung (8) und die weitere Hochdruckleitung (20) in den Hohlraum (47) münden.
9. Injektor nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Hochdruckleitung (8) und die weitere Hochdruckleitung (20) über eine in dem
Durchflussbegrenzerbauteil (26) ausgebildete Bohrungsverschneidung (45) mit dem Durchflussbegrenzer in Verbindung stehen.
10. Injektor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Injektor (1) einen seitlichen Anschluss (23) für die Kraftstoffversorgung aufweist, der mit einer Zulaufbohrung (24) in Verbindung steht, deren erster Abschnitt im Haltekörper (5) ausgebildet ist und deren zweiter Abschnitt das
Durchflussbegrenzerbauteil (26) axial durchsetzt.
11. Injektor nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Durchflussbegrenzerbauteil (26) an der dem Haltekörper (5) zugewandten Stirnseite eine plane zweite Dichtfläche (35) aufweist, die mit der planen Stirnseite des Haltekörpers (5) zusammenwirkt.
12. Injektor nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Durchflussbegrenzerbauteil (26) ein Gehäuse mit einem hochdruckspeicherseitigen Gehäuseeinlass (36) und einen haltekörperseitigen Gehäuseauslass (37), ein in einer Kammer (38) des Gehäuses zwischen einer Ausgangsstellung und einer End- Stellung längsverschiebbares und entgegen der Strömungsrichtung federvorgespanntes Schließglied (39), welches über wenigstens einen eine Drossel (43) aufweisenden Kanal den Gehäuseeinlass (36) mit dem Gehäuseauslass (37) miteinander hydraulisch verbindet und das weiters eine Strömungsverbindung zwischen dem Gehäuseeinlass (36) und dem Gehäuseauslass (37) steuert, umfasst.
13. Injektor nach Anspruch 12, dadurch gekennzeichnet, dass ein in dem
Durchflussbegrenzerbauteil (26) fixierter Sicherungsring (41) die Ausgangsstellung des Schließglieds (39) definiert.
14. Durchflussbegrenzerbauteil (26) zur Verwendung in einem Injektor (1) nach einem der Ansprüche 1 bis 13, umfassend einen Durchflussbegrenzer mit einem hoch- druckspeicherseitigen Einlass (36) und einem haltekörperseitigen Auslass (37), einem in einer Kammer (38) zwischen einer Ausgangsstellung und einer Endstellung längsverschiebbares und entgegen der Strömungsrichtung federvorgespanntes Schließglied (39), welches über wenigstens einen eine Drossel (43) aufweisenden Kanal den Einlass (36) und den Auslass (37) miteinander hydraulisch verbindet und weiters eine Strömungsverbindung zwischen dem Einlass (36) und dem Auslass (37) steuert, dadurch gekennzeichnet, dass das Durchflussbegrenzerbauteil (26) einen ersten, einlassseitigen axialen Abschnitt (27) und einen zweiten, auslassseiti- gen axialen Abschnitt (28) aufweist, wobei der zweite Abschnitt (28) einen gegenüber dem ersten Abschnitt (27) vergrößerten Durchmesser aufweist, und dass der zweite Abschnitt (28) an einer Schulter eine kegelige erste Dichtfläche (29) und an der gegenüberliegenden Stirnseite eine zweite Dichtfläche (35, 46) aufweist, die jeweils an eine Gegenfläche anpressbar ist.
15. Durchflussbegrenzerbauteil nach Anspruch 14, dadurch gekennzeichnet, dass die zweite Dichtfläche (46) kegelig ausgebildet ist.
16. Durchflussbegrenzerbauteil nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass der Innendurchmesser der ersten Dichtfläche (29) in radialem Abstand von dem Außenumfang des ersten Abschnitts (27) liegt.
17. Durchflussbegrenzerbauteil nach Anspruch 14, 15 oder 16, dadurch gekennzeichnet, dass ein in dem Durchflussbegrenzerbauteil (26) fixierter Sicherungsring (41) die Ausgangsstellung des Schließglieds (39) definiert.
18. Durchflussbegrenzerbauteil nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass der Auslass (37) in eine in dem Durchflussbegrenzerbauteil (26) ausgebildete Bohrungsverschneidung (45) mündet.
19. Durchflussbegrenzerbauteil nach einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, dass der zweite Abschnitt von einer Zulaufbohrung (24) durchsetzt ist.
PCT/EP2013/057268 2012-04-10 2013-04-08 Injektor eines modularen common-rail-kraftstoffeinspritzsystems mit durchflussbegrenzer WO2013153010A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015503898A JP5936764B2 (ja) 2012-04-10 2013-04-08 流量制限器を備えたモジュール式のコモンレール燃料噴射装置のインジェクタ
KR1020147028307A KR102049218B1 (ko) 2012-04-10 2013-04-08 관류 제한기를 구비한 모듈식 커먼 레일 연료 분사 시스템의 분사기
EP13715200.5A EP2836696B1 (de) 2012-04-10 2013-04-08 Injektor eines modularen common-rail-kraftstoffeinspritzsystems mit durchflussbegrenzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA424/2012A AT512277B1 (de) 2012-04-10 2012-04-10 Injektor eines modularen Common-Rail-Kraftstoffeinspritzsystems mit Durchflussbegrenzer
ATA424/2012 2012-04-10

Publications (1)

Publication Number Publication Date
WO2013153010A1 true WO2013153010A1 (de) 2013-10-17

Family

ID=48083160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/057268 WO2013153010A1 (de) 2012-04-10 2013-04-08 Injektor eines modularen common-rail-kraftstoffeinspritzsystems mit durchflussbegrenzer

Country Status (5)

Country Link
EP (1) EP2836696B1 (de)
JP (1) JP5936764B2 (de)
KR (1) KR102049218B1 (de)
AT (1) AT512277B1 (de)
WO (1) WO2013153010A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013013234A1 (de) * 2013-08-08 2015-02-12 Man Diesel & Turbo Se Injektor für eine Kraftstoffversorgungsanlage einer Brennkraftmaschine sowie Kraftstoffversorgungsanlage
CN112761837A (zh) * 2021-01-25 2021-05-07 哈尔滨工程大学 模块化增压式可变喷油的超高压柴油机共轨燃油系统
CN114151248B (zh) * 2021-11-19 2023-10-13 哈尔滨工程大学 液氨直冷-柴油双燃料一体化混合动力系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210282A1 (de) * 2002-03-08 2003-09-25 Bosch Gmbh Robert Vorrichtung zum Einspritzen von Kraftstoff an stationären Verbrennungskraftmaschinen
WO2006114644A1 (en) * 2005-04-28 2006-11-02 Man B & W Diesel Ltd Fuel injector
WO2007059906A1 (de) * 2005-11-23 2007-05-31 L'orange Gmbh Einspritzinjektor
DE102007025050B3 (de) * 2007-05-29 2008-10-16 L'orange Gmbh Hochdruck-Einspritzinjektor für Brennkraftmaschinen mit einer knicklaststeigernden Steuerstangenabstützung über unter Hochdruck stehendem Kraftstoff

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19860476A1 (de) * 1998-12-28 2000-07-06 Bosch Gmbh Robert Kraftstoffeinspritzanlage
ATE530761T1 (de) * 2007-09-13 2011-11-15 Ganser Hydromag Brennstoffeinspritzvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210282A1 (de) * 2002-03-08 2003-09-25 Bosch Gmbh Robert Vorrichtung zum Einspritzen von Kraftstoff an stationären Verbrennungskraftmaschinen
WO2006114644A1 (en) * 2005-04-28 2006-11-02 Man B & W Diesel Ltd Fuel injector
WO2007059906A1 (de) * 2005-11-23 2007-05-31 L'orange Gmbh Einspritzinjektor
DE102007025050B3 (de) * 2007-05-29 2008-10-16 L'orange Gmbh Hochdruck-Einspritzinjektor für Brennkraftmaschinen mit einer knicklaststeigernden Steuerstangenabstützung über unter Hochdruck stehendem Kraftstoff

Also Published As

Publication number Publication date
JP5936764B2 (ja) 2016-06-22
JP2015512493A (ja) 2015-04-27
EP2836696B1 (de) 2016-10-19
KR102049218B1 (ko) 2020-01-08
EP2836696A1 (de) 2015-02-18
KR20140147100A (ko) 2014-12-29
AT512277B1 (de) 2013-07-15
AT512277A4 (de) 2013-07-15

Similar Documents

Publication Publication Date Title
EP1485609B1 (de) Vorrichtung zum einspritzen von kraftstoff an stationären verbrennungskraftmaschinen
EP2635794B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE102014005741B4 (de) Dual-brennstoffeinspritzvorrichtung mit f-, a- und z-zumessöffnungssteuerung
EP3362674B1 (de) Durchflussbegrenzer für einen injektor
DE102011105351A1 (de) Treibstoffsystem das Speicher und Strömungsbegrenzer aufweist
EP2836698B1 (de) Durchflussbegrenzer mit kugel und drossel
EP2798194B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP2836696B1 (de) Injektor eines modularen common-rail-kraftstoffeinspritzsystems mit durchflussbegrenzer
DE102008036819B4 (de) Überdrucksicherungsanordnung und Einspritzanlage für eine Brennkraftmaschine
EP1685323B1 (de) Vorrichtung zum dämpfen von druckstössen
DE102007029969A1 (de) Schnellschaltender Kraftstoffinjektor für hohe Einspritzdrücke
DE19949527A1 (de) Injektor für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit in den Ventilsteuerraum ragender Düsennadel
EP2807367B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
WO2008122521A1 (de) Ventil und einspritzanlage für eine brennkraftmaschine mit ventil
EP1483499A1 (de) Einrichtung zur druckmodulierten formung des einspritzverlaufes
DE102006047935A1 (de) Kraftstoffinjektor für eine Brennkraftmaschine
DE10015740C2 (de) Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine
DE10327181A1 (de) Kraftstoffeinspritzsystem
DE102022211470A1 (de) Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE10300177A1 (de) Kraftstoff-Einspritzvorrichtung
WO2012085186A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102006057844A1 (de) Kraftstoffinjektor für einen Brennkraftmaschine
DE3438308A1 (de) Brennstoffeinspritzvorrichtung an einer brennkraftmaschine
DE102005037548A1 (de) Kraftstoffinjektor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13715200

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013715200

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013715200

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015503898

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147028307

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE