WO2013151394A1 - 무선통신 시스템에서 반송파 집성 방법 및 장치 - Google Patents

무선통신 시스템에서 반송파 집성 방법 및 장치 Download PDF

Info

Publication number
WO2013151394A1
WO2013151394A1 PCT/KR2013/002887 KR2013002887W WO2013151394A1 WO 2013151394 A1 WO2013151394 A1 WO 2013151394A1 KR 2013002887 W KR2013002887 W KR 2013002887W WO 2013151394 A1 WO2013151394 A1 WO 2013151394A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
subframe
downlink
configuration
cell
Prior art date
Application number
PCT/KR2013/002887
Other languages
English (en)
French (fr)
Inventor
서동연
김봉회
안준기
양석철
서한별
이승민
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020147027692A priority Critical patent/KR101633209B1/ko
Priority to EP13771907.6A priority patent/EP2835918B1/en
Priority to JP2015504506A priority patent/JP6308995B2/ja
Priority to US14/390,315 priority patent/US9462587B2/en
Priority to CN201380017523.0A priority patent/CN104205688B/zh
Priority to EP19184039.6A priority patent/EP3567762B1/en
Publication of WO2013151394A1 publication Critical patent/WO2013151394A1/ko
Priority to US15/258,659 priority patent/US9743409B2/en
Priority to US15/658,082 priority patent/US10039106B2/en
Priority to US16/023,044 priority patent/US10448402B2/en
Priority to US16/563,373 priority patent/US10887883B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2612Arrangements for wireless medium access control, e.g. by allocating physical layer transmission capacity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2621Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for aggregation of carriers of different frequency bands in a wireless communication system.
  • the carrier aggregation system refers to a system that configures a broadband by collecting one or more component carriers (CCs) having a bandwidth smaller than a target broadband when the wireless communication system attempts to support the broadband.
  • the term serving cell may be used instead of the term component carrier.
  • the serving cell is composed of a pair of two component carriers, such as a downlink component carrier (DL CC) and an uplink component carrier (UL CC) or DL DL only.
  • DL CC downlink component carrier
  • UL CC uplink component carrier
  • the carrier aggregation system is a system in which a plurality of serving cells are configured in one terminal.
  • the carrier aggregation system only the component carriers of the same type have been considered. That is, it is considered to aggregate component carriers operating in a frequency division duplex (FDD) scheme or aggregate component carriers operating in a time division duplex (TDD) scheme.
  • FDD frequency division duplex
  • TDD time division duplex
  • aggregated component carriers use the same UL-DL configuration.
  • the UL-DL configuration indicates whether each subframe is used as an uplink (UL) subframe or a downlink (DL) subframe within a frame composed of a plurality of subframes.
  • An object of the present invention is to provide a carrier aggregation method and apparatus in a wireless communication system.
  • a method of aggregation of carriers may include setting a first carrier and setting a second carrier in addition to the first carrier, wherein the first carrier is an uplink subframe and a downlink within a frame.
  • the link subframes are time division duplex (TDD) carriers located at different times, and the second carrier is a downlink-oriented carrier configured only with a downlink subframe.
  • TDD time division duplex
  • an apparatus for aggregation of carriers in a wireless communication system includes a radio frequency (RF) unit for transmitting and receiving a radio signal; And a processor connected to the RF unit, wherein the processor sets a first carrier and sets a second carrier in addition to the first carrier, wherein the first carrier is an uplink subframe and a downlink within a frame.
  • the link subframes are time division duplex (TDD) carriers located at different times, and the second carrier is a downlink-oriented carrier configured only with a downlink subframe.
  • TDD time division duplex
  • carrier aggregation may be efficiently performed even when a new type of carrier having no backward compatibility with previously defined carriers is introduced.
  • HARQ-ACK timing according to carrier aggregation may be provided.
  • 1 shows a structure of an FDD radio frame.
  • FIG. 2 shows a structure of a TDD radio frame.
  • FIG 3 shows an example of a resource grid for one downlink slot.
  • 5 shows a structure of an uplink subframe.
  • FIG. 6 shows a frame structure for transmission of a synchronization signal in a conventional FDD frame.
  • FIG. 8 shows an example of a frame structure for transmitting a synchronization signal in a conventional TDD frame.
  • 9 is a comparative example of a single carrier system and a carrier aggregation system.
  • FIG. 10 illustrates a DL dedicated carrier.
  • 11 is another example of configuring a DL dedicated carrier.
  • FIG. 13 shows HARQ-ACK timing when combining Method 1 and Method 4.
  • FIG. 14 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
  • the user equipment may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). It may be called other terms such as digital assistant, wireless modem, handheld device.
  • MS mobile station
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • a base station generally refers to a fixed station communicating with a terminal, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point an access point
  • the communication from the base station to the terminal is called downlink (DL), and the communication from the terminal to the base station is called uplink (UL).
  • the wireless communication system including the base station and the terminal may be a time division duplex (TDD) system or a frequency division duplex (FDD) system.
  • TDD system is a wireless communication system that performs uplink and downlink transmission and reception using different times in the same frequency band.
  • the FDD system is a wireless communication system capable of transmitting and receiving uplink and downlink simultaneously using different frequency bands.
  • the wireless communication system can perform communication using a radio frame.
  • 1 shows a structure of an FDD radio frame.
  • An FDD radio frame (hereinafter, abbreviated as FDD frame) includes 10 subframes, and one subframe includes two consecutive slots. Slots included in the FDD frame may be indexed from 0 to 19.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI), and the TTI may be a minimum scheduling unit.
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • T f 307 200
  • T s 10 ms (mili-second).
  • FIG. 2 shows a structure of a TDD radio frame.
  • a TDD radio frame (hereinafter referred to as a TDD frame) also includes 10 subframes.
  • the TDD frame includes an uplink (UL) subframe, a downlink (DL) subframe, and a special subframe (S subframe).
  • the subframe having the indexes # 1 and # 6 may be a special subframe, and the special subframe may be a downlink pilot time slot.
  • DwPTS DwPTS
  • Guard Period GP
  • UpPTS Uplink Pilot Time Slot
  • DwPTS is used for initial cell search, synchronization, or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • GP and UpPTS serve as a time gap.
  • a downlink (DL) subframe and an uplink (UL) subframe coexist in a TDD frame.
  • Table 1 shows an example of an UL-DL configuration of a TDD frame.
  • 'D' represents a DL subframe
  • 'U' represents a UL subframe
  • 'S' represents a special subframe.
  • the UE may know whether each subframe is a DL subframe (or an S subframe) or an UL subframe in a TDD frame.
  • FIG 3 shows an example of a resource grid for one downlink slot.
  • the downlink slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and NRB resource blocks (RBs) in the frequency domain.
  • the RB includes one slot in the time domain and a plurality of consecutive subcarriers in the frequency domain in resource allocation units.
  • the number N RB of resource blocks included in the downlink slot depends on a downlink transmission bandwidth set in a cell. For example, in the LTE system, N RB may be any one of 6 to 110.
  • the structure of the uplink slot may also be the same as that of the downlink slot.
  • Each element on the resource grid is called a resource element (RE).
  • one resource block includes 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain to include 7 ⁇ 12 resource elements, but the number of OFDM symbols and the number of subcarriers in the resource block is exemplarily described. It is not limited to this.
  • the number of OFDM symbols and the number of subcarriers can be variously changed according to the length of the CP, frequency spacing, and the like. For example, when the length of a cyclic prefix (CP) is an extended CP, the resource block includes 6 OFDM symbols.
  • the number of subcarriers in one OFDM symbol may be selected and used among 128, 256, 512, 1024, 1536 and 2048.
  • a downlink (DL) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols (up to four in some cases) of the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a physical downlink shared channel (PDSCH) and a physical broadcast channel (PBCH) may be allocated to the data region.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • the Physical Control Format Indicator Channel (PCFICH) transmitted in the first OFDM symbol of a subframe indicates a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • Carry The terminal first receives the CFI on the PCFICH, and then monitors the PDCCH. Unlike the PDCCH, the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the Physical Hybrid-ARQ Indicator Channel (PHICH) is transmitted in the control region and carries an ACK (acknowledgement) / NACK (not-acknowledgement) signal for an uplink hybrid automatic repeat request (HARQ).
  • HARQ uplink hybrid automatic repeat request
  • the ACK / NACK signal for UL (uplink) data on the PUSCH transmitted by the UE is transmitted on the PHICH.
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches a cyclic redundancy check (CRC) to the DCI, and unique identifier according to the owner or purpose of the PDCCH (this is called a Radio Network Temporary Identifier) Mask to the CRC.
  • CRC cyclic redundancy check
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI)
  • P-RNTI P-RNTI
  • SI-RNTI system information-RNTI
  • RA-RNTI random access-RNTI
  • the PDCCH carries control information for the corresponding specific UE (called UE-specific control information), and if another RNTI is used, the PDCCH is shared by all or a plurality of terminals in the cell. (common) carries control information.
  • the base station encodes the DCI added with the CRC to generate coded data.
  • the encoding includes channel encoding and rate matching. Thereafter, the base station modulates the encoded data to generate modulation symbols, and transmits modulation symbols by mapping them to a physical resource element (RE).
  • RE physical resource element
  • the PDSCH transmitted in the data region is a downlink data channel.
  • System information, data, etc. may be transmitted through the PDSCH.
  • the PBCH carries system information necessary for the terminal to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • 5 shows a structure of an uplink subframe.
  • the uplink subframe includes a control region in which a physical uplink control channel (PUCCH) carrying uplink control information is allocated in a frequency domain, and a physical uplink shared (PUSCH) carrying user data and / or control information. Channel) can be divided into data areas to which they are allocated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared
  • PUCCH is allocated to an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the first slot and the second slot.
  • FIG. 6 shows a frame structure for transmission of a synchronization signal in a conventional FDD frame. Slot numbers and subframe numbers start at zero.
  • a synchronization signal is a signal used when performing cell search, and there are a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the synchronization signal may be transmitted in subframe 0 and subframe 5, respectively, considering the global system for mobile communication (GSM) frame length 4.6 ms for ease of inter-RAT measurement between radio access technologies (RATs).
  • GSM global system for mobile communication
  • the boundary for the frame can be detected through the SSS. More specifically, in the FDD system, the PSS is transmitted in the last OFDM symbol of the 0th slot and the 10th slot, and the SSS is transmitted in the OFDM symbol immediately before the PSS.
  • the synchronization signal may transmit any one of a total of 504 physical cell IDs through a combination of three PSSs and 168 SSSs.
  • a physical broadcast channel (PBCH) is transmitted in the first four OFDM symbols of the first slot.
  • PBCH physical broadcast channel
  • the synchronization signal and the PBCH are transmitted within 6 RBs within the system bandwidth, so that the terminal can detect or decode the data regardless of the transmission bandwidth.
  • the physical channel through which the PSS is transmitted is called P-SCH, and the physical channel through which the SSS is transmitted is called S-SCH.
  • the transmission diversity scheme of the synchronization signal uses only a single antenna port and is not defined in the standard. That is, a single antenna transmission or a transparent transmission scheme (for example, precoding vector switching (PVS), time switched transmit diversity (TSTD), and cyclic delay diversity (CDD)) may be used.
  • PVS precoding vector switching
  • TSTD time switched transmit diversity
  • CDD cyclic delay diversity
  • a ZDoff (Cadoff-Chu) sequence of length 63 is defined in the frequency domain and used as the sequence of PSS.
  • Nzc 63.
  • the sequence used for SSS uses two m-sequences of length 31 interleaved.
  • the SSS may transmit any one of a total of 168 cell group IDs by combining two sequences.
  • the m-sequence used as the sequence of SSS is robust in the frequency selective environment, and the amount of computation can be reduced by the fast m-sequence transformation using the fast Hadamard transform.
  • configuring the SSS with two short codes, that is, two m-sequences has been proposed to reduce the amount of computation of the UE.
  • the two m-sequences used for generating the SSS code are defined as S1 and S2, respectively, if the SSS of subframe 0 transmits a cell group identifier in two combinations of (S1, S2), the sub The SSS of frame 5 is swapped to (S2, S1) and transmitted, whereby a 10ms frame boundary can be distinguished.
  • the used SSS code uses a generation polynomial of x 5 + x 2 + 1, and a total of 31 codes can be generated through different cyclic shifts.
  • the PSS-based scrambling code is defined as six cyclic shift versions according to the PSS index in the m-sequence generated from the generated polynomial of x 5 + x 3 + 1, and the S1-based scrambling code is x 5 + x 4 + x 2
  • eight cyclic shift versions can be defined according to the index of S1.
  • FIG. 8 shows an example of a frame structure for transmitting a synchronization signal in a conventional TDD frame.
  • the PSS is transmitted in the third OFDM symbol of the third slot and the thirteenth slot.
  • the SSS is transmitted before three OFDM symbols in the OFDM symbol in which the PSS is transmitted.
  • the PBCH is transmitted in the first 4 OFDM symbols of the second slot of the first subframe.
  • 9 is a comparative example of a single carrier system and a carrier aggregation system.
  • a single carrier only one carrier is supported to the UE in uplink and downlink.
  • the bandwidth of the carrier may vary, but only one carrier is allocated to the terminal.
  • a carrier aggregation (CA) system a plurality of CCs (DL CC A to C, UL CC A to C) may be allocated to the UE. For example, three 20 MHz component carriers may be allocated to allocate a 60 MHz bandwidth to the terminal.
  • the carrier aggregation system may be classified into a contiguous carrier aggregation system in which each carrier is continuous and a non-contiguous carrier aggregation system in which each carrier is separated from each other.
  • a carrier aggregation system simply referred to as a carrier aggregation system, it should be understood to include both the case where the component carrier is continuous and the case where it is discontinuous.
  • the target carrier may use the bandwidth used by the existing system as it is for backward compatibility with the existing system.
  • the 3GPP LTE system supports bandwidths of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, and the 3GPP LTE-A system may configure a bandwidth of 20 MHz or more using only the bandwidth of the 3GPP LTE system.
  • broadband can be configured by defining new bandwidth without using the bandwidth of the existing system.
  • the system frequency band of a wireless communication system is divided into a plurality of carrier frequencies.
  • the carrier frequency means a center frequency of a cell.
  • a cell may mean a downlink frequency resource and an uplink frequency resource.
  • the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource.
  • CA carrier aggregation
  • the terminal In order to transmit and receive packet data through a specific cell, the terminal must first complete configuration for a specific cell.
  • the configuration refers to a state in which reception of system information necessary for data transmission and reception for a corresponding cell is completed.
  • the configuration may include an overall process of receiving common physical layer parameters required for data transmission and reception, or MAC layer parameters, or parameters required for a specific operation in the RRC layer.
  • the cell in the configuration complete state may exist in an activation or deactivation state.
  • activation means that data is transmitted or received or is in a ready state.
  • the UE may monitor or receive a control channel (PDCCH) and a data channel (PDSCH) of an activated cell in order to identify resources (which may be frequency, time, etc.) allocated thereto.
  • PDCCH control channel
  • PDSCH data channel
  • Deactivation means that transmission or reception of traffic data is impossible, and measurement or transmission of minimum information is possible.
  • the terminal may receive system information (SI) required for packet reception from the deactivated cell.
  • SI system information
  • the terminal does not monitor or receive the control channel (PDCCH) and data channel (PDSCH) of the deactivated cell in order to check the resources (may be frequency, time, etc.) allocated to them.
  • PDCH control channel
  • PDSCH data channel
  • the cell may be divided into a primary cell, a secondary cell, and a serving cell.
  • the terminal has only one RRC connection with the network.
  • one cell provides non-access stratum (NAS) mobility information and security input.
  • NAS non-access stratum
  • Such cells are called primary cells.
  • the primary cell refers to a cell in which the UE performs an initial connection establishment procedure or a connection reestablishment procedure with a base station, or a cell indicated as a primary cell in a handover process.
  • the secondary cell refers to a cell that is configured to provide additional radio resources once the RRC connection through the primary cell is established.
  • the serving cell is configured as a primary cell when the carrier aggregation is not set or the terminal cannot provide carrier aggregation.
  • the term serving cell indicates a cell configured for the terminal and may be configured in plural.
  • the plurality of serving cells may be configured as a set consisting of one or a plurality of primary cells and all secondary cells.
  • a primary component carrier means a CC corresponding to a primary cell.
  • the PCC is a CC in which the terminal initially makes a connection (connection or RRC connection) with the base station among several CCs.
  • the PCC is a special CC that manages a connection (Connection or RRC Connection) for signaling regarding a plurality of CCs and manages UE context, which is connection information related to a terminal.
  • the PCC is connected to the terminal and always exists in the active state in the RRC connected mode.
  • the downlink component carrier corresponding to the primary cell is called a downlink primary component carrier (DL PCC), and the uplink component carrier corresponding to the primary cell is called an uplink major component carrier (UL PCC).
  • DL PCC downlink primary component carrier
  • U PCC uplink major component carrier
  • Secondary component carrier refers to a CC corresponding to the secondary cell. That is, the SCC is a CC allocated to the terminal other than the PCC, and the SCC is an extended carrier for the additional resource allocation other than the PCC and may be divided into an activated or deactivated state.
  • the downlink component carrier corresponding to the secondary cell is referred to as a DL secondary CC (DL SCC), and the uplink component carrier corresponding to the secondary cell is referred to as an uplink secondary component carrier (UL SCC).
  • DL SCC DL secondary CC
  • UL SCC uplink secondary component carrier
  • the primary cell and the secondary cell have the following characteristics.
  • the primary cell is used for transmission of the PUCCH.
  • the primary cell is always activated, while the secondary cell is a carrier that is activated / deactivated according to specific conditions.
  • RLF Radio Link Failure
  • the primary cell may be changed by a security key change or a handover procedure accompanying a RACH (Random Access CHannel) procedure.
  • NAS non-access stratum
  • the primary cell is always configured with a pair of DL PCC and UL PCC.
  • a different CC may be configured as a primary cell for each UE.
  • the primary cell can be replaced only through a handover, cell selection / cell reselection process.
  • RRC signaling may be used to transmit system information of a dedicated secondary cell.
  • a downlink component carrier may configure one serving cell, and a downlink component carrier and an uplink component carrier may be connected to each other to configure one serving cell.
  • the serving cell is not configured with only one uplink component carrier.
  • the activation / deactivation of the component carrier is equivalent to the concept of activation / deactivation of the serving cell.
  • activation of serving cell 1 means activation of DL CC1.
  • serving cell 2 assumes that DL CC2 and UL CC2 are connected and configured, activation of serving cell 2 means activation of DL CC2 and UL CC2.
  • each component carrier may correspond to a cell.
  • the number of component carriers aggregated between the downlink and the uplink may be set differently.
  • the case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
  • the size (ie bandwidth) of the CCs may be different. For example, assuming that 5 CCs are used for a 70 MHz band configuration, 5 MHz CC (carrier # 0) + 20 MHz CC (carrier # 1) + 20 MHz CC (carrier # 2) + 20 MHz CC (carrier # 3) It may be configured as + 5MHz CC (carrier # 4).
  • a carrier aggregation system may support a plurality of serving cells, that is, a plurality of component carriers (CCs).
  • CCs component carriers
  • one terminal may transmit and receive data / control information using a plurality of cells.
  • the terminal uses one cell initially connected as a primary cell and uses a cell additionally configured through the primary cell as a secondary cell.
  • the primary cell is used for an operation for maintaining a connection between the base station and the terminal.
  • operations such as radio link management (RLM), radio resource management (RRM), system information reception, physical random access channel (PRACH) transmission, and uplink control channel (PUCCH) transmission may be performed.
  • RLM radio link management
  • RRM radio resource management
  • PRACH physical random access channel
  • PUCCH uplink control channel
  • the secondary cell is mainly used for transmission of scheduling information or data channel for the data channel.
  • the primary cell and the secondary cell are UE-specific.
  • each cell may be used as a primary cell or a secondary cell, and each terminal uses one of the plurality of cells as the primary cell. That is, any cell can be used as the primary cell or the secondary cell.
  • all cells are configured to perform the operation of the primary cell.
  • all the cells implement the transmission of the synchronization signal, the transmission of the broadcast channel, the transmission of the CRS, and the setting of the PDCCH region.
  • a cell may be referred to as a legacy carrier type (LCT) in terms of a backward compatible cell or a carrier side.
  • LCT legacy carrier type
  • a cell in which some or all unnecessary information is removed when used as a secondary cell, the introduction of a cell in which some or all unnecessary information is removed is considered.
  • a cell may be expressed as not having backward compatibility and may be referred to as a new carrier type or extension carrier (NCT) in preparation for LCT.
  • NCT new carrier type or extension carrier
  • the CRS is transmitted only in some time periods and frequency intervals without transmitting every subframe, or the DL control channel region such as the existing PDCCH is eliminated or reduced to some time intervals and frequency intervals, and the DL is specialized for each terminal.
  • New control channel area can be set.
  • Such an NCT may carry a carrier file only for downlink transmission.
  • a carrier capable of only downlink transmission will be referred to as a DL dedicated carrier for convenience.
  • FIG. 10 illustrates a DL dedicated carrier.
  • the DL dedicated carrier may be configured by various methods.
  • a DL dedicated carrier in FDD may be a cell in which only DL CC exists. That is, as shown in FIG. 10A, the DL dedicated carrier may be a DL CC in which a corresponding UL CC does not exist.
  • a DL dedicated carrier may be configured by setting only the DL CC without using the UL CC even if the DL CC having the UL CC linked by the system information block (SIB) exists.
  • SIB system information block
  • the DL dedicated carrier may be generated by applying the UL-DL configuration of Table 1 but using only DL subframes according to the corresponding UL-DL configuration.
  • a UL subframe / DL subframe is time-divided and included in one frame according to the UL-DL configuration defined in Table 1, but the DL-only carrier includes only DL subframes as shown in FIG. There is.
  • this method does not use a subframe to be configured as a UL subframe according to the UL-DL configuration, resulting in resource waste.
  • an additional UL-DL configuration may be added to the existing UL-DL configuration as shown in Table 1.
  • Table 1 shows an example of UL-DL configuration according to the present invention.
  • UL-DL configuration 0 to 6 are the same as the existing UL-DL configuration, and additionally, UL-DL configuration 7 is added.
  • UL-DL configuration 7 indicates that all subframes in a frame are configured as DL subframes.
  • the UL-DL configuration 7 may be limited to being used only for the secondary cell and not used for the primary cell.
  • the DL dedicated carrier may be limited to being used only for the existing TDD primary cell and a different frequency band (secondary cell) to avoid interference between frequency bands.
  • the method may be referred to as a method of defining UL-DL configuration 7 and directly informing the terminal of a DL dedicated carrier.
  • 11 is another example of configuring a DL dedicated carrier.
  • the base station transmits UL-DL configuration and switching information (S101).
  • the UL-DL configuration may be any one of the existing UL-DL configuration 0 to 6 of Table 1.
  • the switching information may be information indicating whether to switch the UL subframe and the special subframe to the DL subframe in the corresponding UL-DL configuration. According to the switching information, all UL subframes (or S subframes) in the frame may be converted to DL subframes, or only some UL subframes (or S subframes) may be converted to DL subframes.
  • the conversion information can be implemented in various ways. For example, the switching information indicates whether the UL subframe (or S subframe) is used, but the non-use of the UL subframe (or S subframe) indicates that the UL subframe (or S subframe) is a DL subframe. It can be used as.
  • the configuration of the DL dedicated carrier stops using the UL subframe (for example, stops only the channel transmitted from the first SC-FDMA symbol in the UL subframe such as PUSCH, PUCCH, etc. Transmission in a symbol may be used) or a method of converting a configuration of an UL subframe into a DL subframe and using the same.
  • switching the S subframe to the DL subframe is possible because the UL subframe is not used. If the UL subframe is not converted into the DL subframe and only the S subframe is converted into the DL subframe without the GP and the UpPTS, unnecessary GP and UpPTS can be used for the downlink and DL in the existing UL-DL configuration.
  • the time relationship such as control channel transmission, data channel transmission, and HARQ-ACK transmission of the / UL HARQ process can be applied as it is without change in the existing UL-DL configuration.
  • only UL-DL configuration 5 having the smallest number of UL subframes may be specified.
  • the terminal switches the UL subframe (or S subframe) in the UL-DL configuration to the DL subframe (S102).
  • the switching information can be transmitted by corresponding cell-specific signaling or UE-speciific signaling.
  • an FDD terminal and a TDD terminal can share the DL dedicated carrier in common with a secondary cell.
  • a carrier configured with DL dedicated carriers and capable of aggregation is not limited to NCT but may be applied to LCT.
  • the DL dedicated carrier may have two formats. That is, it may have an FDD format and a TDD format.
  • a DL dedicated carrier (hereinafter, referred to as an FDD DL dedicated carrier) in the FDD format is a DL dedicated carrier in which a synchronization signal, a PBCH, a user-specific reference signal (URS), and the like are transmitted by the FDD scheme (see FIG. 6).
  • a DL dedicated carrier (hereinafter, abbreviated to TDD DL dedicated carrier) in a TDD format is a DL dedicated carrier in which a synchronization signal, PBCH, URS, and the like are transmitted by a TDD scheme (see FIG. 8).
  • the URS may be a reference used for demodulation of a data / control signal as a terminal specific reference signal.
  • Both types of DL dedicated carriers are common in that all subframes within a frame are DL subframes, but are different in that they have different structures such as a synchronization signal and a PBCH.
  • the primary cell When the secondary cell is added to the primary cell, the primary cell may be a cell operating in TDD or a cell operating in FDD, and when the secondary cell is a DL dedicated carrier file, the DL dedicated carrier is a TDD DL dedicated carrier or an FDD DL dedicated carrier. Can file. Thus, a total of four combinations are possible.
  • the base station may inform whether the added DL dedicated carrier is a TDD DL dedicated carrier or an FDD DL dedicated carrier. Or, when the base station commands the measurement of a specific carrier to the terminal, it can inform any of the above-described TDD DL dedicated carrier or FDD DL dedicated carrier.
  • the information indicating the format of the carrier is called frame structure indication information.
  • the frame structure indication information may facilitate PSS / SSS detection and cell ID detection of the secondary cell.
  • the format of the secondary cell may be recognized through a process of detecting the PSS / SSS of the secondary cell to which the terminal is added, without explicit signaling of the base station such as frame structure message information.
  • the base station may transmit the frame structure indication information only when the frame boundaries of the primary cell and the secondary cell do not match or may be transmitted to the terminal only when the measurement instruction of the secondary cell is performed. This may be equally applicable to not only DL dedicated carriers but also aggregation of TDD primary cells and FDD secondary cells and aggregation of FDD primary cells and TDD secondary cells.
  • a DL dedicated carrier may be applied to the TDD secondary cell.
  • the DL subframe that is the CSI detection target in the TDD secondary cell may be limited to the DL subframe on the UL-DL configuration. This is because another UE may be configured to use the UL subframe for uplink transmission even though the corresponding UE does not use the UL subframe on the UL-DL configuration.
  • the FDD secondary cell When a primary cell operating in TDD (TDD primary cell) aggregates a secondary cell operating in FDD (FDD secondary cell), the FDD secondary cell may be applied as a DL dedicated carrier.
  • the DL subframe that is the CSI detection target may be limited to the DL subframe on the UL-DL configuration. It is useful when the secondary cell is used only for downlink in such a manner that only the corresponding DL subframe is used by applying the existing UL-DL configuration to the secondary cell, that is, the UL subframe on the corresponding UL-DL configuration is not used.
  • the NCT may carry a carrier file only for uplink transmission.
  • a carrier capable of only uplink transmission will be referred to as a UL dedicated carrier for convenience.
  • the UL dedicated carrier may be configured by various methods.
  • a UL dedicated carrier in FDD may be a cell in which only UL CC exists. That is, as shown in FIG. 12A, the UL dedicated carrier may be a UL CC in which a corresponding DL CC does not exist.
  • a UL dedicated carrier may be configured by setting only the UL CC without using the DL CC even if the UL CC in which the DL CC linked by the SIB (system information block) exists in FDD exists.
  • SIB system information block
  • the UL dedicated carrier may be generated by applying the UL-DL configuration of Table 1 but using only the UL subframe without using the DL subframe according to the corresponding UL-DL configuration.
  • a UL subframe / DL subframe is time-divided and included in one frame according to the UL-DL configuration defined in Table 1, but the UL dedicated carrier includes only a UL subframe as shown in FIG. 12 (b).
  • this method does not use subframes (eg, 101 and 102) to be set as DL subframes according to the UL-DL configuration, resulting in resource waste.
  • an additional UL-DL configuration may be added to the existing UL-DL configuration as shown in Table 1.
  • Table 1 shows an example of UL-DL configuration according to the present invention.
  • UL-DL configuration 0 to 6 are the same as the existing UL-DL configuration, and additionally, UL-DL configuration 7 is added.
  • UL-DL configuration 7 indicates that all subframes in a frame are configured as UL subframes.
  • the UL-DL configuration 7 may not be used for the primary cell but may be used only for the secondary cell.
  • the UL dedicated carrier may be used as a secondary cell in a different frequency band from the existing TDD primary cell so as to avoid interference between frequency bands.
  • the above method may be referred to as a method of defining UL-DL configuration 7 and directly informing the terminal of the UL dedicated carrier.
  • the UL-DL configuration 7 of Table 2 may be added to Table 3 above. That is, a total of nine UL-DL configurations may be included in Table 3, and UL-DL configuration 7 of Table 2 may be added as UL-DL configuration 8 to Table 3.
  • the base station may use only the existing UL-DL configuration 0-6, but additionally use a scheme of transmitting information indicating a DL dedicated carrier or a UL dedicated carrier.
  • a DL dedicated carrier assumes that all subframes in a frame are composed of DL subframes as shown in FIG. 10 (a), and DL HARQ-ACK (hereinafter abbreviated as HARQ-ACK) when a DL dedicated carrier is aggregated into a secondary cell. ) Timing will be described.
  • the UE has HARQ-ACK timing of transmitting ACK / NACK for a data unit (for example, a transport block, a codeword, etc.) received in subframe n-4 in subframe n.
  • TDD has HARQ-ACK timing as shown in the following table.
  • Table 4 shows a correspondence of DL subframe nk m corresponding to UL subframe n in each UL-DL configuration with a k m value. That is, ACK / NACK for PDSCH transmitted in subframe nk m is transmitted in UL subframe n.
  • TDD DL dedicated carrier when used as the secondary cell, setting of the DL HARQ timing of the secondary cell may be problematic. That is, it is necessary to set the ACK / NACK response timing through the primary cell for the PDSCH received by the secondary cell.
  • Method 1 is a method in which the HARQ-ACK timing for the secondary cell follows the DL HARQ-ACK timing configured according to the UL-DL configuration set in the primary cell. For example, if the primary cell is a TDD cell and uses the UL-DL configuration 1 and the secondary cell is a DL dedicated carrier, ACK / NACK for the data unit received in subframe 0 of the secondary cell is the subframe of the primary cell. In step 7, subframe 7 is a subframe configured to transmit ACK / NACK for the data unit received in subframe 0 of the primary cell.
  • the DL subframe may use DL HARQ-ACK timing according to more UL-DL configuration as the HARQ-ACK reference timing of the secondary cell.
  • UL subframes according to the UL-DL configuration of the secondary cell should be a subset of UL subframes according to the UL-DL configuration of the primary cell.
  • the HARQ-ACK timing according to the UL-DL configuration 2,5 may be used as the HARQ-ACK reference timing of the secondary cell.
  • the HARQ-ACK timing according to the UL-DL configuration 5 may be used as the HARQ-ACK reference timing of the secondary cell.
  • HARQ-ACK timing is determined for the DL subframe of the secondary cell overlapping with the DL subframe of the primary cell.
  • the HARQ-ACK timing is not determined for the DL subframe of the secondary cell overlapping with the UL subframe of the primary cell.
  • HARQ-ACK timing for the DL subframe of the secondary cell overlapping the UL subframe of the primary cell may use one of the following methods. That is, the methods 1, 2 and 3 to 7 described later may be used in combination.
  • Method 4 equalizes the number of DL subframes of the secondary cell corresponding to each UL subframe of the primary cell as much as possible, so that the number of ACK / NACKs transmitted in each UL subframe is not biased to a specific UL subframe. It is a method to arrange the subframes as evenly as possible.
  • the UL subframe of the primary cell to transmit ACK / NACK for the data unit received in each subframe of the secondary cell is determined based on the largest k m value determined in each subframe. For example, a maximum ACK / NACK bit that can be transmitted in one UL subframe is determined, and when the maximum ACK / NACK bit is exceeded, an UL subframe to transmit an excess ACK / NACK bit is transmitted to the next UL subframe or the previous UL subframe. You can change it to a frame. At this time, the UL subframe is changed so that the ACK / NACK for the preceding PDSCH is not transmitted later than the ACK / NACK for the subsequent PDSCH.
  • the maximum ACK / NACK bit may vary depending on the UL-DL configuration.
  • HARQ-ACK timing As shown in the following table can be derived. Table 5 may be added to Table 4.
  • FIG. 13 shows HARQ-ACK timing when combining Method 1 and Method 4.
  • a primary cell is a TDD cell according to UL-DL configuration 1, and a secondary cell uses a DL dedicated carrier.
  • all of the secondary cells consist of DL subframes only.
  • ACK / NACK for the PDSCH (or transport block) received in the DL subframe of the secondary cell follows the HARQ-ACK timing of the primary cell.
  • the ACK / NACK for the PDSCH received in the DL subframe 141 of the secondary cell is the ACK for the PDSCH received in the DL subframe 142 of the primary cell corresponding to the DL subframe 141. Same as / NACK transmission timing. Therefore, it is transmitted in the UL subframe 143 of the primary cell. Arrows indicated by solid lines in FIG. 13 indicate ACK / NACK transmission of the secondary cell according to the HARQ-ACK timing of the primary cell.
  • the HARQ-ACK timing of the DL subframe of the secondary cell overlapping with the UL subframe of the primary cell is based on Method 4, which is the HARQ-ACK timing according to the arrow indicated by a dotted line in FIG. 13.
  • the ACK / NACK for the data unit received in the subframe 144 is located after the 4th subframe and is transmitted in the fastest UL subframe 143.
  • the ACK / NACK for the data unit received in subframe 146 is located after 4 subframes and is transmitted in the next UL subframe 147 instead of the fastest UL subframe 143.
  • the maximum ACK / NACK bit that can be transmitted in one UL subframe may be 3 bits.
  • a method of restricting PDSCH scheduling for a specific DL subframe of a secondary cell For example, it is to limit PDSCH scheduling for the DL subframe of the secondary cell overlapping with the UL subframe of the primary cell.
  • PDSCH transmission without an ACK / NACK response may be allowed in a DL subframe of the secondary cell. For example, there may be a transmission of the SIB transmitted to the PDSCH.
  • Method 5 may be configured even if the UL-DL configuration does not introduce a UL-DL configuration consisting of DL subframes as shown in UL-DL configuration 7 of Table 2.
  • the existing UL-DL configuration 0-6 may be allocated to the DL dedicated carrier, but the entire special subframe may be used in the same structure as other DL subframes. This is because DwPTS, guard period (GP), and UwPTS need not be set in the special subframe since the UL subframe is not used.
  • signaling indicating that the DL dedicated carriers may be needed together with UL-DL configuration information (0 to 6). For example, information indicating whether to use a UL subframe in a corresponding UL-DL configuration or whether to use a special subframe as a complete DL subframe may be signaled.
  • Method 6 is a method for signaling a relationship between a DL subframe in which a PDSCH is transmitted in a secondary cell and a UL subframe in a primary cell in which ACK / NACK is transmitted thereto, with radio resource control (RRC).
  • RRC radio resource control
  • Method 6 may be applied not only to the DL subframe of the secondary cell overlapping with the UL subframe of the primary cell but also to the entire DL subframe of the secondary cell, and may be common or partially in case of aggregation between carriers having different UL-DL configurations. Applicable to
  • UL-DL configuration 5 When UL-DL configuration 5 is used among UL-DL configurations 0 to 6 as a reference configuration for HARQ-ACK timing of a secondary cell, it is a method for transmitting all ACK / NACKs in subframe 2 of the primary cell.
  • subframe 2 is a UL subframe in all UL-DL configurations.
  • subframe 2 fixed to UL subframes in all UL-DL configurations may be excluded from the timing configuration for PDSCH transmission.
  • set K Scell in the standard UL-DL setting is different from the set of K Pcell of the fryer of the head cell UL-DL Set Can be.
  • the primary cell may schedule the secondary cell.
  • the PUCCH resource selection corresponding to the k m 'value (for example, a value shown in Table 5) used in addition to the existing K Pcell may be applied as follows.
  • Method 8 configures a separate K 'from the existing K Pcell and implicit PUCCH resources in the case of PUCCH format 1a / 1b corresponding to DL subframe n-k m ' indicated by k m 'of newly added K'. It is a method of using an explicit PUCCH resource (a resource directly indicated by RRC, and additionally, one of a plurality of RRC resources can be selected by ARI). That is, a separate K 'is added without changing the existing M Pcell value. This method can support new HARQ-ACK timing without changing the rules of the implicit resources used previously.
  • two HARQ-ACK timings may occur in one UL subframe.
  • two or more explicit PUCCH resources may be allocated for a plurality of timings.
  • a method of allocating only one explicit PUCCH resource and scheduling only one DL subframe among two corresponding DL subframes may also be applied.
  • K Pcell and extra K 'to the configuration K is new' DL subframe n- k m 'For PUCCH format 1a / 1b existing set of K Pcell corresponding to k m to the instructions of the It is a method for configuring an implicit mapping from the next (toward the center of the band) of the corresponding implicit PUCCH resource. That is, the correspondence of m values can be set after the existing values. This method does not change the existing M Pcell value.
  • Methods 9 and 10 can optionally be applied depending on the situation.
  • the method 9 may be applied in a situation in which a special subframe may be used for DL subframe scheduling, and the method 10 may be applied in the other case.
  • channel selection may be used for ACK / NACK transmission.
  • Channel selection allocates a plurality of PUCCH resources, selects one PUCCH resource, and transmits a modulation symbol from the selected resource. Details of the ACK / NACK are distinguished by the selected PUCCH resource and the modulation symbol. Channel selection can transmit up to four ACK / NACK bits.
  • the entirety may be limited in scheduling.
  • information on this may be signaled, and indirect information may be utilized, such as a method of limiting a subframe set to an almost blank subframe (ABS) in consideration of inter-cell interference coordination (ICIC).
  • the limit order may be determined according to a predetermined rule (for example, the long order or the short order of the ACK / NACK response time).
  • the present invention exemplifies a case where a data unit is scheduled by PDCCH, but may also be applied to a case where E-PDCCH (enhanced-PDCCH) is scheduled.
  • E-PDCCH is a control channel transmitted to the UE in the PDSCH region separately from the PDCCH.
  • the E-PDCCH may be a control channel decoded by the URS rather than the CRS.
  • the DL dedicated carrier or UL dedicated carrier is a DL carrier selected from a cell defined as a pair of a UL carrier and a DL carrier. Or UL carrier file.
  • the base station informs the terminal of the cell ID of the cell defined as a pair of UL carrier and DL carrier as the cell ID of the secondary cell, and whether the UL carrier and the DL carrier are aggregated simultaneously in the cell defined as the pair of UL carrier and DL carrier.
  • information indicating whether only one is aggregated may be signaled to the terminal.
  • the information may be configured as a 2-bit bitmap, and each bit of the bitmap may correspond to a UL carrier and a DL carrier of a cell defined as a pair of the UL carrier and the DL carrier, respectively. According to each bit value of the bitmap, it can be informed which of the UL carrier and the DL carrier are aggregated into the secondary cell.
  • the information may be performed dynamically by L2 / L1 signaling.
  • L2 signaling may be directly indicated by including information indicating the DL carrier and the UL carrier in a MAC message.
  • there may be an indirect method for example, a method of separately informing the activation / deactivation that is commonly applied to the DL carrier / UL carrier on a cell basis for each DL carrier / UL carrier.
  • L1 signaling may be informed by using a dedicated control channel for configuring a carrier or by using a DL / UL scheduling control channel.
  • DL / UL scheduling control channel When using a DL / UL scheduling control channel, DL / UL scheduling can be set to be ignored.
  • a cell ID of a cell defined for TDD that is, a cell composed of carriers in which DL / UL subframes are mixed
  • the cells corresponding to the cell ID may be aggregated into secondary cells.
  • information indicating whether to use only the DL subframe or only the UL subframe may be additionally signaled to the UE in the cell defined for the TDD.
  • FIG. 14 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
  • the base station 100 includes a processor 110, a memory 120, and an RF unit 130.
  • the processor 110 implements the proposed functions, processes and / or methods. For example, the processor 110 sets a plurality of carriers (serving cells) to the terminal, transmits a data unit, and receives ACK / NACK for the data unit according to HARQ-ACK timing. In case of configuring the DL dedicated carrier as the secondary cell, it may be set only through UL-DL configuration as shown in Table 2 or may be set through UL-DL configuration and switching information.
  • the memory 120 is connected to the processor 110 and stores various information for driving the processor 110.
  • the RF unit 130 is connected to the processor 110 and transmits and / or receives a radio signal.
  • the terminal 200 includes a processor 210, a memory 220, and an RF unit 230.
  • the processor 210 implements the proposed functions, processes and / or methods.
  • the processor 210 may configure the DL dedicated carrier as the secondary cell by using the UL-DL configuration and / or switching information.
  • the ACK / NACK for the data unit received through the secondary cell is transmitted through the primary cell, and the above-described methods 1 to 9 may be referred to for the HARQ-ACK timing and resources.
  • the memory 220 is connected to the processor 210 and stores various information for driving the processor 210.
  • the RF unit 230 is connected to the processor 210 to transmit and / or receive a radio signal.
  • Processors 110 and 210 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • the memory 120, 220 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 130 and 230 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 120 and 220 and executed by the processors 110 and 210.
  • the memories 120 and 220 may be inside or outside the processors 110 and 210, and may be connected to the processors 110 and 210 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선통신 시스템에서 반송파들을 집성하는 방법 및 장치를 제공한다. 상기 방법은 제1 반송파를 설정하고, 및 상기 제1 반송파에 추가하여 제2 반송파를 설정하되, 상기 제1 반송파는 프레임 내에 상향링크 서브프레임 및 하향링크 서브프레임이 서로 다른 시간에 위치하는 TDD(time division duplex) 반송파이고, 상기 제2 반송파는 하향링크 서브프레임으로만 구성되는 하향링크 전용 반송파인 것을 특징으로 한다.

Description

무선통신 시스템에서 반송파 집성 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선통신 시스템에서 서로 다른 주파수 대역의 반송파들을 집성하는 방법 및 장치에 관한 것이다.
최근, 반송파 집성 시스템(carrier aggregation system)이 주목받고 있다. 반송파 집성 시스템은 무선 통신 시스템이 광대역을 지원하려고 할 때 목표로 하는 광대역보다 작은 대역폭을 가지는 1개 이상의 요소 반송파(component carrier: CC)를 모아서 광대역을 구성하는 시스템을 의미한다. 반송파 집성 시스템에서 요소 반송파라는 용어 대신 서빙 셀(serving cell)이라는 용어를 사용하기도 한다. 여기서, 서빙 셀은 하향링크 요소 반송파(downlink component carrier : DL CC) 및 상향링크 요소 반송파(uplink component carrier: UL CC)와 같은 2개의 요소 반송파의 쌍(pair)로 구성되거나 또는 DL CC만으로 구성된다. 반송파 집성 시스템은 복수의 서빙 셀이 하나의 단말에게 설정되는 시스템이다.
종래, 반송파 집성 시스템에서는 동일한 방식의 요소 반송파만을 집성하는 것을 고려하였다. 즉, FDD(frequency division duplex) 방식으로 동작하는 요소 반송파들을 집성하거나, TDD(time division duplex) 방식으로 동작하는 요소 반송파들을 집성하는 것을 고려하였다. 특히 TDD의 경우, 집성되는 요소 반송파들은 동일한 UL-DL 설정(uplink-downlink configuration)을 사용하는 것을 가정하였다. UL-DL 설정은 복수의 서브프레임들로 구성되는 프레임 내에서 각 서브프레임들이 UL(uplink) 서브프레임, DL(downlink) 서브프레임 중 어느 것으로 사용되는지를 알려주는 것이다.
그런데, 장래의 무선통신 시스템에서는 상기 고려사항을 제한할 필요가 없을 수 있다.
본 발명이 이루고자 하는 기술적 과제는 무선통신 시스템에서 반송파 집성 방법 및 장치를 제공하는 데 있다.
일 측면에서 제공되는 무선통신 시스템에서 반송파들을 집성하는 방법은 제1 반송파를 설정하고, 및 상기 제1 반송파에 추가하여 제2 반송파를 설정하되, 상기 제1 반송파는 프레임 내에 상향링크 서브프레임 및 하향링크 서브프레임이 서로 다른 시간에 위치하는 TDD(time division duplex) 반송파이고, 상기 제2 반송파는 하향링크 서브프레임으로만 구성되는 하향링크 전용 반송파인 것을 특징으로 한다.
다른 측면에서 제공되는 무선통신 시스템에서 반송파들을 집성하는 장치는 무선 신호를 송신 및 수신하는 RF(radio frequency)부; 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 제1 반송파를 설정하고, 및 상기 제1 반송파에 추가하여 제2 반송파를 설정하되, 상기 제1 반송파는 프레임 내에 상향링크 서브프레임 및 하향링크 서브프레임이 서로 다른 시간에 위치하는 TDD(time division duplex) 반송파이고, 상기 제2 반송파는 하향링크 서브프레임으로만 구성되는 하향링크 전용 반송파인 것을 특징으로 한다.
무선통신 시스템에서 기존에 정의된 반송파들과 역호환성을 가지지 않는 새로운 타입의 반송파를 도입하는 경우에도 반송파 집성을 효율적으로 수행할 수 있다. 또한, 반송파 집성에 따른 HARQ-ACK 타이밍을 제공할 수 있다.
도 1은 FDD 무선 프레임의 구조를 나타낸다.
도 2는 TDD 무선 프레임의 구조를 나타낸다.
도 3는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 하향링크(DL) 서브프레임 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
도 6은 종래 FDD 프레임 내에서 동기화 신호 전송을 위한 프레임 구조를 나타낸다.
도 7은 논리 영역에서의 두 개의 시퀀스가 물리 영역에서 인터리빙되어 매핑되는 것을 나타낸다.
도 8은 종래 TDD 프레임에서 동기화 신호를 전송하는 프레임 구조의 예를 나타낸다.
도 9는 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 10은 DL 전용 반송파를 예시한다.
도 11은 DL 전용 반송파를 설정하는 다른 예이다.
도 12는 UL 전용 반송파를 예시한다.
도 13은 방법 1 및 방법 4를 결합한 경우, HARQ-ACK 타이밍을 나타낸다.
도 14는 본 발명의 실시예가 구현되는 무선 기기를 나타낸 블록도이다.
단말(User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국에서 단말로의 통신을 하향링크(downlink: DL), 단말에서 기지국으로의 통신을 상향링크(uplink: UL)라 칭한다. 기지국 및 단말을 포함하는 무선 통신 시스템은 TDD(time division duplex) 시스템 또는 FDD(frequency division duplex) 시스템일 수 있다. TDD 시스템은 동일 주파수 대역에서 서로 다른 시간을 사용하여 상향링크 및 하향링크 송수신을 수행하는 무선 통신 시스템이다. FDD 시스템은 서로 다른 주파수 대역을 사용하여 동시에 상향링크 및 하향링크 송수신이 가능한 무선 통신 시스템이다. 무선 통신 시스템은 무선 프레임을 사용하여 통신을 수행할 수 있다.
도 1은 FDD 무선 프레임의 구조를 나타낸다.
FDD 무선 프레임(FDD radio frame: 이하 FDD 프레임으로 약칭)은 10개의 서브프레임을 포함하며, 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯(slot)을 포함한다. FDD 프레임 내에 포함되는 슬롯들은 0~19의 인덱스가 매겨질 수 있다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하며 TTI는 최소 스케줄링 단위(minimum scheduling unit)일 수 있다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 무선 프레임의 길이를 Tf라 하면, Tf = 307200Ts = 10 ms(mili-second)일 수 있다.
도 2는 TDD 무선 프레임의 구조를 나타낸다.
도 2를 참조하면, TDD 무선 프레임(이하 TDD 프레임)도 10개의 서브프레임을 포함한다. TDD 프레임은 UL(uplink) 서브프레임, DL(downlink) 서브프레임 및 특수 서브프레임(special subframe: S 서브프레임)을 포함한다. TDD 프레임의 서브프레임들에 대해 인덱스가 0부터 매겨진다고 할 때, 인덱스 #1과 인덱스 #6을 갖는 서브프레임은 특수 서브프레임일 수 있는데, 특수 서브프레임은 하향링크 파일럿 시간 슬롯 (Downlink Pilot Time Slot: DwPTS), 보호 구간 (Guard Period: GP) 및 상향링크 파일럿 시간 슬롯 (Uplink Pilot Time Slot: UpPTS)을 포함한다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. GP은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. GP 및 UpPTS는 시간 갭(time gap) 역할을 수행한다.
전술한 바와 같이 TDD 프레임에는 DL(downlink) 서브프레임과 UL(Uplink) 서브프레임이 공존한다. 표 1은 TDD 프레임의 UL-DL 설정(UL-DL configuration)의 일 예를 나타낸다.
[표 1]
Figure PCTKR2013002887-appb-I000001
표 1에서 'D'는 DL 서브프레임, 'U'는 UL 서브프레임, 'S'는 특수 서브프레임을 나타낸다. 기지국으로부터 UL-DL 설정을 수신하면, 단말은 TDD 프레임에서 각 서브프레임이 DL 서브프레임(또는 S 서브프레임) 또는 UL 서브프레임인지를 알 수 있다.
도 3는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참조하면, 하향링크 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 NRB개의 자원블록(RB; Resource Block)을 포함한다. 자원블록은 자원 할당 단위로 시간 영역에서 하나의 슬롯, 주파수 영역에서 복수의 연속하는 부반송파(subcarrier)를 포함한다. 하향링크 슬롯에 포함되는 자원블록의 수 NRB은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 예를 들어, LTE 시스템에서 NRB은 6 내지 110 중 어느 하나일 수 있다. 상향링크 슬롯의 구조도 상기 하향링크 슬롯의 구조와 동일할 수 있다.
자원 그리드 상의 각 요소(element)를 자원 요소(resource element, RE)라 한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair) (k,l)에 의해 식별될 수 있다. 여기서, k(k=0,...,NRB×12-1)는 주파수 영역 내 부반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 OFDM 심벌 인덱스이다.
도 3에서는 하나의 자원블록이 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되어 7×12 자원 요소들을 포함하는 것을 예시적으로 기술하나, 자원블록 내 OFDM 심벌의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심벌의 수와 부반송파의 수는 CP의 길이, 주파수 간격(frequency spacing) 등에 따라 다양하게 변경될 수 있다. 예를 들어, CP(cyclic prefix)의 길이가 확장 CP(extended CP)인 경우, 자원 블록은 6 OFDM 심벌을 포함한다. 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 4는 하향링크(DL) 서브프레임 구조를 나타낸다.
도 4를 참조하면, DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개(경우에 따라 최대 4개)의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(physical downlink control channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH(physical downlink shared channel), PBCH(Physical Broadcast Channel)가 할당될 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH(Physical Control Format Indicator Channel)는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다. PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH(Physical Hybrid-ARQ Indicator Channel)는 제어 영역에서 전송되며, 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(acknowledgement)/NACK(not-acknowledgement) 신호를 나른다. 단말에 의해 전송되는 PUSCH상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC(Cyclic Redundancy Check)를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다.
특정 단말을 위한 PDCCH라면 단말의 고유 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information-RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다. C-RNTI가 사용되면 PDCCH는 해당하는 특정 단말을 위한 제어정보(이를 단말 특정(UE-specific) 제어정보라 함)를 나르고, 다른 RNTI가 사용되면 PDCCH는 셀내 모든 또는 복수의 단말이 수신하는 공용(common) 제어정보를 나른다.
기지국은 CRC가 부가된 DCI를 인코딩하여 부호화된 데이터(coded data)를 생성한다. 상기 인코딩은 채널 인코딩과 레이트 매칭(rate matching)을 포함한다. 그 후, 기지국은 부호화된 데이터를 변조하여 변조 심벌들을 생성하고, 변조심벌들을 물리적인 RE(resource element)에 맵핑하여 전송한다.
데이터 영역에서 전송되는 PDSCH는 하향링크 데이터 채널이다. PDSCH를 통해 시스템 정보, 데이터 등이 전송될 수 있다. 그리고, PBCH는 단말이 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
도 5를 참조하면, 상향링크 서브프레임은 주파수 영역에서 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역(region)과 사용자 데이터 및/또는 제어 정보를 나르는 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터영역으로 나눌 수 있다.
PUCCH는 서브프레임에서 RB 쌍(pair)으로 할당된다. RB 쌍에 속하는 RB들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다.
도 6은 종래 FDD 프레임 내에서 동기화 신호 전송을 위한 프레임 구조를 나타낸다. 슬롯 번호 및 서브프레임 번호는 0부터 시작된다.
동기화 신호(synchronization signal)는 셀 탐색을 수행할 때 사용되는 신호로 PSS(primary synchronization signal)과 SSS(secondary synchronization signal)이 있다.
동기화 신호는 RAT(radio access technology)간의 측정(inter-RAT measurement)의 용이함을 위해 GSM(global system for mobile communication) 프레임 길이인 4.6ms를 고려하여 서브프레임 0번과 서브프레임 5번에서 각각 전송될 수 있으며, 프레임에 대한 경계는 SSS를 통해 검출 가능하다. 보다 구체적으로, FDD 시스템에서는 PSS는 0번째 슬롯, 10번째 슬롯의 맨 마지막 OFDM 심볼에서 전송되고, SSS는 PSS 바로 앞 OFDM 심볼에서 전송된다. 동기화 신호는 3개의 PSS와 168개의 SSS의 조합을 통해 총 504개의 물리계층 셀 식별자(physical cell ID) 중 어느 하나를 전송할 수가 있다. PBCH(physical broadcast channel)는 1번째 슬롯의 최초 4개의 OFDM 심벌에서 전송된다. 동기화 신호 및 PBCH는 시스템 대역폭 내의 가운데 6 RB 내에서 전송되어, 전송 대역폭에 관계없이 단말이 검출 혹은 복호할 수 있도록 한다. PSS가 전송되는 물리 채널을 P-SCH, SSS가 전송되는 물리 채널을 S-SCH라 칭한다.
동기화 신호의 전송 다이버시티 방식은 단일 안테나 포트 (single antenna port)만을 사용하고, 표준에서는 따로 정의하지 않는다. 즉, 단일 안테나 전송 혹은 단말에 투명한(transparent) 전송 방식 (예를 들어 PVS(precoding vector switching), TSTD(time switched transmit diversity), CDD(cyclic delay diversity)) 을 사용할 수가 있다.
PSS에 있어, 길이 63의 ZC (Zadoff-Chu) 시퀀스를 주파수 영역에서 정의하여 PSS의 시퀀스로 사용한다. ZC 시퀀스는 식 1에 의해 정의되며, DC 부반송파에 해당되는 시퀀스 요소(element), 즉, n=31은 천공 (puncturing)한다. 식 1에서 Nzc=63이다.
[식 1]
Figure PCTKR2013002887-appb-I000002
6 RB (=72 부반송파) 중 9(=72-63)개의 남는 부반송파는 항상 0의 값으로 전송하며, 동기 수행을 위한 필터 설계에 용이함을 가져다 준다. 총 3개의 PSS를 정의하기 위해 식 1에서 u=25, 29, 그리고 34의 값을 사용한다. 이 때, 29와 34는 켤레대칭(conjugate symmetry) 관계를 가지고 있어서, 2개의 상관 (correlation)을 동시에 수행할 수가 있다. 여기서, 켤레대칭은 다음 식 2의 관계를 의미하며 이 특성을 이용하여 u=29와 34에 대한 원샷 상관기 (one-shot correlator)의 구현이 가능하여, 전체적인 연산량을 약 33.3% 감소시킬 수 있다.
[식 2]
Figure PCTKR2013002887-appb-I000003
SSS를 위해 사용되는 시퀀스는 길이 31인 두 개의 m-시퀀스를 인터리빙하여 사용한다. SSS는 두 개의 시퀀스를 조합하여 총 168 셀 그룹 식별자 (cell group ID) 중 어느 하나를 전송할 수 있다. SSS의 시퀀스로서 사용되는 m-시퀀스는 주파수 선택적 환경에서 강건하고, 고속 하다마드 변환 (Fast Hadamard Transform)을 이용한 고속 m-시퀀스 변환으로 연산량을 줄일 수가 있다. 또한, 두 개의 짧은 부호(short code) 즉, 2개의 m-시퀀스로 SSS를 구성하는 것은 단말의 연산량을 줄이기 위해 제안되었다.
도 7은 논리 영역에서의 두 개의 시퀀스가 물리 영역에서 인터리빙되어 매핑되는 것을 나타낸다.
도 7을 참조하면, SSS부호 생성을 위해 사용되는 두 개의 m-시퀀스를 각각 S1, S2라고 정의할 때, 서브프레임 0의 SSS가 (S1, S2) 두 조합으로 셀 그룹 식별자를 전송한다면, 서브프레임 5의 SSS는 (S2,S1)으로 교환(swapping)하여 전송함으로써, 10ms 프레임 경계를 구분할 수 있게 된다. 이 때, 사용되는 SSS 부호는 x5 + x2 + 1 의 생성다항식을 사용하며, 서로 다른 순환 천이 (circular shift)를 통해 총 31개의 부호를 생성할 수가 있다.
수신 성능을 향상시키기 위하여, PSS 기반 (PSS-based)의 서로 다른 두 개의 시퀀스를 정의하여, SSS에 스크램블링 하되 S1과 S2에 서로 다른 시퀀스로 스크램블링 한다. 그 후, S1 기반 (S1-based)의 스크램블링 부호를 정의하여, S2에 스크램블링을 수행한다. 이 때, SSS의 부호는 5ms 단위로 교환되지만 PSS 기반의 스크램블링 부호는 교환되지 않는다. PSS 기반의 스크램블링 부호는 x5 + x3 + 1 의 생성 다항식으로부터 생성된 m-시퀀스에서 PSS 인덱스에 따라 6개의 순환 천이 버전으로 정의하고, S1 기반의 스크램블링 부호는 x5 + x4 + x2 + x1 + 1의 다항식으로부터 생성된 m-시퀀스에서 S1의 인덱스에 따라 8개의 순환 천이 버전으로 정의할 수 있다.
도 8은 종래 TDD 프레임에서 동기화 신호를 전송하는 프레임 구조의 예를 나타낸다.
TDD 프레임에서는 PSS가 세번째 슬롯 및 13번째 슬롯의 세번째 OFDM 심벌에서 전송된다. SSS는 PSS가 전송되는 OFDM 심벌에서 3개의 OFDM 심벌 전에 전송된다. PBCH는 첫번째 서브프레임의 두번째 슬롯의 최초 4 OFDM 심벌에서 전송된다.
이제 반송파 집성 시스템에 대해 설명한다.
도 9는 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 9를 참조하면, 단일 반송파 시스템에서는 상향링크와 하향링크에 하나의 반송파만을 단말에게 지원한다. 반송파의 대역폭은 다양할 수 있으나, 단말에게 할당되는 반송파는 하나이다. 반면, 반송파 집성(carrier aggregation, CA) 시스템에서는 단말에게 복수의 요소 반송파(DL CC A 내지 C, UL CC A 내지 C)가 할당될 수 있다. 예를 들어, 단말에게 60MHz의 대역폭을 할당하기 위해 3개의 20MHz의 요소 반송파가 할당될 수 있다.
반송파 집성 시스템은 각 반송파가 연속한 연속(contiguous) 반송파 집성 시스템과 각 반송파가 서로 떨어져 있는 불연속(non-contiguous) 반송파 집성 시스템으로 구분될 수 있다. 이하에서 단순히 반송파 집성 시스템이라 할 때, 이는 요소 반송파가 연속인 경우와 불연속인 경우를 모두 포함하는 것으로 이해되어야 한다.
1개 이상의 요소 반송파를 집성할 때 대상이 되는 요소 반송파는 기존 시스템과의 하위 호환성(backward compatibility)을 위하여 기존 시스템에서 사용하는 대역폭을 그대로 사용할 수 있다. 예를 들어 3GPP LTE 시스템에서는 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz 및 20MHz의 대역폭을 지원하며, 3GPP LTE-A 시스템에서는 상기 3GPP LTE 시스템의 대역폭만을 이용하여 20MHz 이상의 광대역을 구성할 수 있다. 또는 기존 시스템의 대역폭을 그대로 사용하지 않고 새로운 대역폭을 정의하여 광대역을 구성할 수도 있다.
무선 통신 시스템의 시스템 주파수 대역은 복수의 반송파 주파수(Carrier-frequency)로 구분된다. 여기서, 반송파 주파수는 셀의 중심 주파수(Center frequency of a cell)를 의미한다. 이하에서 셀(cell)은 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다. 또한, 일반적으로 반송파 집성(CA)을 고려하지 않은 경우, 하나의 셀(cell)은 상향 및 하향링크 주파수 자원이 항상 쌍으로 존재할 수 있다.
특정 셀을 통하여 패킷 데이터의 송수신이 이루어지기 위해서는, 단말은 먼저 특정 셀에 대해 설정(configuration)을 완료해야 한다. 여기서, 설정(configuration)이란 해당 셀에 대한 데이터 송수신에 필요한 시스템 정보 수신을 완료한 상태를 의미한다. 예를 들어, 설정(configuration)은 데이터 송수신에 필요한 공통 물리계층 파라미터들, 또는 MAC 계층 파라미터들, 또는 RRC 계층에서 특정 동작에 필요한 파라미터들을 수신하는 전반의 과정을 포함할 수 있다. 설정 완료된 셀은, 패킷 데이터가 전송될 수 있다는 정보만 수신하면, 즉시 패킷의 송수신이 가능해지는 상태이다.
설정완료 상태의 셀은 활성화(Activation) 혹은 비활성화(Deactivation) 상태로 존재할 수 있다. 여기서, 활성화는 데이터의 송신 또는 수신이 행해지거나 준비 상태(ready state)에 있는 것을 말한다. 단말은 자신에게 할당된 자원(주파수, 시간 등일 수 있음)을 확인하기 위하여 활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신할 수 있다.
비활성화는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능한 것을 말한다. 단말은 비활성화 셀로부터 패킷 수신을 위해 필요한 시스템 정보(SI)를 수신할 수 있다. 반면, 단말은 자신에게 할당된 자원(주파수, 시간 등일 수도 있음)을 확인하기 위하여 비활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신하지 않는다.
셀은 프라이머리 셀(primary cell)과 세컨더리 셀(secondary cell), 서빙 셀(serving cell)로 구분될 수 있다.
반송파 집성이 설정되면, 단말은 네트워크와 하나의 RRC 연결만을 가진다. RRC 연결 확립/재확립/핸드오버 과정에서 하나의 셀이 NAS(non-access stratum) 이동(mobility) 정보 및 보안 입력(security input)을 제공한다. 이러한 셀을 프라이머리 셀이라 칭한다. 다시 말해, 프라이머리 셀은 단말이 기지국과의 최초 연결 확립 과정(initial connection establishment procedure) 또는 연결 재확립 과정을 수행하는 셀, 또는 핸드오버 과정에서 프라이머리 셀로 지시된 셀을 의미한다.
세컨더리 셀은 일단 프라이머리 셀을 통한 RRC 연결이 확립된 후 추가적인 무선 자원을 제공하기 위해 설정되는 셀을 의미한다.
서빙 셀은 반송파 집성이 설정되지 않거나 반송파 집성을 제공할 수 없는 단말인 경우에는 프라이머리 셀로 구성된다. 반송파 집성이 설정된 경우 서빙 셀이라는 용어는 단말에게 설정된 셀을 나타내며 복수로 구성될 수 있다. 복수의 서빙 셀은 프라이머리 셀 및 모든 세컨더리 셀들 중 하나 또는 복수로 구성된 집합으로 구성될 수 있다.
PCC(primary component carrier)는 프라이머리 셀에 대응하는 CC를 의미한다. PCC는 단말이 여러 CC 중에 초기에 기지국과 접속(Connection 혹은 RRC Connection)을 이루게 되는 CC이다. PCC는 다수의 CC에 관한 시그널링을 위한 연결(Connection 혹은 RRC Connection)을 담당하고, 단말과 관련된 연결정보인 단말문맥정보(UE Context)를 관리하는 특별한 CC이다. 또한, PCC는 단말과 접속을 이루게 되어 RRC 연결상태(RRC Connected Mode)일 경우에는 항상 활성화 상태로 존재한다. 프라이머리 셀에 대응하는 하향링크 요소 반송파를 하향링크 주요소 반송파(DownLink Primary Component Carrier, DL PCC)라 하고, 프라이머리 셀에 대응하는 상향링크 요소 반송파를 상향링크 주요소 반송파(UL PCC)라 한다.
SCC(secondary component carrier)는 세컨더리 셀에 대응하는 CC를 의미한다. 즉, SCC는 PCC 이외에 단말에 할당된 CC로서, SCC는 단말이 PCC 이외에 추가적인 자원할당 등을 위하여 확장된 반송파(Extended Carrier)이며 활성화 혹은 비활성화 상태로 나뉠 수 있다. 세컨더리 셀에 대응하는 하향링크 요소 반송파를 하향링크 부요소 반송파(DL Secondary CC, DL SCC)라 하고, 세컨더리 셀에 대응하는 상향링크 요소 반송파를 상향링크 부요소 반송파(UL SCC)라 한다.
각 단말 관점에서 프라이머리 셀과 세컨더리 셀은 다음과 같은 특징을 가진다.
첫째, 프라이머리 셀은 PUCCH의 전송을 위해 사용된다. 둘째, 프라이머리 셀은 항상 활성화되어 있는 반면, 세컨더리 셀은 특정 조건에 따라 활성화/비활성화되는 반송파이다. 셋째, 프라이머리 셀이 무선링크실패(Radio Link Failure; 이하 RLF)를 경험할 때, RRC 재연결이 트리거링(triggering)된다. 넷째, 프리이머리 셀은 보안키(security key) 변경이나 RACH(Random Access CHannel) 절차와 동반하는 핸드오버 절차에 의해서 변경될 수 있다. 다섯째, NAS(non-access stratum) 정보는 프라이머리 셀을 통해서 수신한다. 여섯째, FDD 시스템의 경우 언제나 프라이머리 셀은 DL PCC와 UL PCC가 쌍(pair)으로 구성된다. 일곱째, 각 단말마다 다른 요소 반송파(CC)가 프라이머리 셀로 설정될 수 있다. 여덟째, 프라이머리 셀은 핸드오버, 셀 선택/셀 재선택 과정을 통해서만 교체될 수 있다. 신규 세컨더리 셀의 추가에 있어서, 전용(dedicated) 세컨더리 셀의 시스템 정보를 전송하는데 RRC 시그널링이 사용될 수 있다.
서빙셀을 구성하는 요소 반송파는, 하향링크 요소 반송파가 하나의 서빙셀을 구성할 수도 있고, 하향링크 요소 반송파와 상향링크 요소 반송파가 연결 설정되어 하나의 서빙셀을 구성할 수 있다. 그러나, 하나의 상향링크 요소 반송파만으로는 서빙셀이 구성되지 않는다.
요소 반송파의 활성화/비활성화는 곧 서빙셀의 활성화/비활성화의 개념과 동등하다. 예를 들어, 서빙셀1이 DL CC1으로 구성되어 있다고 가정할 때, 서빙셀1의 활성화는 DL CC1의 활성화를 의미한다. 만약, 서빙셀2가 DL CC2와 UL CC2가 연결설정되어 구성되어 있다고 가정할 때, 서빙셀2의 활성화는 DL CC2와 UL CC2의 활성화를 의미한다. 이러한 의미에서, 각 요소 반송파는 셀(cell)에 대응될 수 있다.
하향링크와 상향링크 간에 집성되는 요소 반송파들의 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다. 또한, CC들의 크기(즉 대역폭)는 서로 다를 수 있다. 예를 들어, 70MHz 대역의 구성을 위해 5개의 CC들이 사용된다고 할 때, 5MHz CC(carrier #0) + 20MHz CC(carrier #1) + 20MHz CC(carrier #2) + 20MHz CC(carrier #3) + 5MHz CC(carrier #4)과 같이 구성될 수도 있다.
상술한 바와 같이 반송파 집성 시스템에서는 단일 반송파 시스템과 달리 복수의 서빙셀 즉, 복수의 요소 반송파(component carrier, CC)를 지원할 수 있다.
이제 본 발명에 대해 설명한다.
반송파 집성 시스템에서는 하나의 단말이 복수의 셀을 이용하여 데이터/제어 정보를 송수신 할 수 있다. 단말은 초기접속한 하나의 셀을 프라이머리 셀로 사용하고, 프라이머리 셀을 통해서 추가로 설정되는 셀을 세컨더리 셀로 사용한다.
전술한 바와 같이 프라이머리 셀은 기지국과 단말 간의 연결을 유지하기 위한 동작에 사용된다. 예를 들어, 프라이머리 셀에서는 RLM(radio link management), RRM(radio resource management), 시스템 정보의 수신, PRACH(physical random access channel) 전송, 상향링크 제어채널(PUCCH) 전송 등의 동작이 수행될 수 있다. 반면, 세컨더리 셀은 주로 데이터 채널에 대한 스케줄링 정보 또는 데이터 채널의 전송을 위해 사용된다.
프라이머리 셀과 세컨더리 셀은 단말 특정적(UE-specific)이다. 시스템 상에 복수의 셀들이 있을 때, 각 셀들은 프라이머리 셀 또는 세컨더리 셀로 사용될 수 있으며, 각 단말은 복수의 셀들 중 하나를 프라이머리 셀로 사용하게 된다. 즉, 임의의 셀이 프라이머리 셀 또는 세컨더리 셀로 사용될 수 있다. 따라서, 모든 셀은 프라이머리 셀의 동작을 수행할 수 있도록 구성된다.
다시 말해, 모든 셀은 동기화 신호의 전송, 브로드캐스트 채널의 전송, CRS의 전송, PDCCH 영역의 설정 등을 모두 구현하게 된다. 이러한 셀을 역호환 셀(backward compatible cell) 또는 반송파 측면에서 LCT(Legacy carrier type)라 칭할 수 있다.
한편, 장래의 무선통신 시스템에서는 세컨더리 셀로 사용된다면 불필요한 정보의 일부 또는 전부를 제거한 셀의 도입을 고려하고 있다. 이러한 셀은 역호환성을 가지지 않는다고 표현할 수 있으며 LCT에 대비하여 NCT(new carrier type or extension carrier)라 칭할 수 있다.
예를 들어 NCT에서는 CRS를 매 서브프레임에 전송하지 않고 일부 시구간, 주파수 구간에서만 전송하거나, 기존의 PDCCH와 같은 DL 제어채널영역을 없애거나 일부 시구간, 주파수 구간으로 줄이고, 단말 별로 특화시킨 DL 제어채널영역을 새로이 설정할 수 있다.
이러한 NCT는 하향링크 전송만이 가능한 반송파일 수 있다. 이하 하향링크 전송만이 가능한 반송파를 편의상 DL 전용 반송파라 약칭한다.
도 10은 DL 전용 반송파를 예시한다.
DL 전용 반송파는 다양한 방법에 의해 구성될 수 있다. 예를 들어, FDD에서 DL 전용 반송파는 DL CC만 존재하는 셀일 수 있다. 즉, 도 10(a)와 같이 FDD에서 DL 전용 반송파는 대응되는 UL CC가 존재하지 않는 DL CC일 수 있다. 또는 SIB(system information block)에 의해 링크된 UL CC가 존재하는 DL CC라도 그 UL CC를 사용하지 않고 DL CC만 사용하도록 설정하여 DL 전용 반송파를 구성할 수도 있다.
TDD에서 DL 전용 반송파는 표 1의 UL-DL 설정을 적용하되 해당 UL-DL 설정에 따른 DL 서브프레임만을 사용하도록 설정하여 생성할 수 있다. LCT는 표 1에 정의된 UL-DL 설정에 따라 하나의 프레임에 UL 서브프레임/DL 서브프레임이 시분할되어 포함되나, DL 전용 반송파는 도 10 (b)에 나타낸 바와 같이 DL 서브프레임만 포함되는 차이가 있다. 그러나, 이러한 방법은 UL-DL 설정에 의하면 UL 서브프레임으로 설정될 서브프레임을 사용하지 않는 것이 되어 자원 낭비가 발생한다.
따라서 TDD에서 DL 전용 반송파를 사용할 경우 프레임 내의 모든 서브프레임들이 DL 서브프레임으로만 구성되도록 하는 것이 바람직하다.
이를 위해, 표 1과 같은 기존 UL-DL 설정에 추가적인 UL-DL 설정을 추가할 수 있다. 다음 표는 본 발명에 따른 UL-DL 설정의 예를 나타낸다.
[표 2]
Figure PCTKR2013002887-appb-I000004
표 2에서 UL-DL 설정 0 ~ 6은 기존 UL-DL 설정과 동일하고, 추가적으로 UL-DL 설정 7을 추가한 것이다. UL-DL 설정 7은 프레임 내의 모든 서브프레임들이 DL 서브프레임으로 설정됨을 나타낸다. UL-DL 설정 7은 프라이머리 셀에는 사용되지 않고 세컨더리 셀에만 사용되는 것으로 제한될 수 있다. 다시 말해, DL 전용 반송파는 주파수 대역 간의 간섭을 피할 수 있도록 기존 TDD 프라이머리 셀과 서로 다른 주파수 대역(세컨더리 셀)에 한해 사용되는 것으로 제한될 수 있다.
상기 방법은 DL 전용 반송파를 설정하기 위해 UL-DL 설정 7을 정의하고 이를 직접 단말에게 알려주는 방법이라 할 수 있다.
도 11은 DL 전용 반송파를 설정하는 다른 예이다.
도 11을 참조하면, 기지국은 UL-DL 설정 및 전환 정보를 전송한다(S101).
UL-DL 설정은 표 1의 기존 UL-DL 설정 0 ~ 6 중 어느 하나일 수 있다.
전환 정보는 해당 UL-DL 설정에서 UL 서브프레임, 특수 서브프레임의 DL 서브프레임으로의 전환 여부를 나타내는 정보일 수 있다. 전환 정보에 따라 프레임 내의 모든 UL 서브프레임들(또는 S 서브프레임)이 DL 서브프레임으로 변환될 수도 있고, 또는 일부 UL 서브프레임(또는 S 서브프레임)만이 DL 서브프레임으로 변환될 수도 있다. 전환 정보는 다양한 방법으로 구현될 수 있다. 예를 들어, 전환 정보는 UL 서브프레임(또는 S 서브프레임)의 사용 여부를 나타내되, UL서브프레임(또는 S 서브프레임)의 비사용은 그 UL 서브프레임(또는 S 서브프레임)을 DL 서브프레임으로 사용함을 나타낼 수 있다.
DL 전용 반송파의 구성은 UL 서브프레임의 사용중지(예를, 들어 PUSCH, PUCCH 등 UL 서브프레임에서 첫번째 SC-FDMA 심볼부터 전송되는 채널만 사용 중지하고, SRS와 같이 UL 서브프레임의 마지막 SC-FDMA 심볼에서의 전송은 사용할 수 있다)하는 방법 또는 UL 서브프레임의 설정을 DL 서브프레임으로 전환하여 사용하는 방법을 적용할 수 있다.
여기서 S 서브프레임을 DL 서브프레임으로 전환하는 것은 UL 서브프레임을 사용하지 않기 때문에 가능하다. UL 서브프레임을 DL 서브프레임으로 전환하지 않고 S 서브프레임만 GP와 UpPTS가 없는 DL 서브프레임으로 전환하여 사용하는 경우, 불필요한 GP, UpPTS를 하향링크에 사용할 수 있으며 기존의 UL-DL 설정에서의 DL/UL HARQ 프로세스의 제어채널 전송, 데이터채널 전송, HARQ-ACK의 전송 등의 시간관계를 기존 UL-DL 설정에 정의된 것을 변화없이 그대로 적용할 수 있는 장점이 있다. 또한, DL 서브프레임만 남기고 UL 서브프레임의 사용을 하지 않으면서 기존의 TDD UL-DL 설정을 활용할 경우 UL 서브프레임수가 가장 적은 UL-DL 설정 5만을 사용하도록 지정할 수 있다.
단말은 전환정보가 검출되면 UL-DL 설정에서의 UL 서브프레임(또는 S 서브프레임)을 DL 서브프레임으로 전환한다(S102). 전환정보는 해당 셀 특정적 시그널링 (Cell-specific signaling) 또는 단말 특정적 시그널링 (UE-speciific signaling) 으로 전송될 수 있다.
DL 전용 반송파가 반송파 집성에 사용되면, FDD 단말과 TDD 단말이 공통으로 상기 DL 전용 반송파를 세컨더리 셀로 공유할 수 있는 장점이 있다.
DL 전용 반송파로 구성되어 집성이 가능한 반송파는 NCT에 한정되지 않으며 LCT에도 적용될 수 있다.
한편, DL 전용 반송파는 2가지 포맷을 가질 수 있다. 즉, FDD 포맷과 TDD 포맷을 가질 수 있다. FDD 포맷에 의한 DL 전용 반송파(이하 FDD DL 전용 반송파라 약칭)는 동기화 신호, PBCH, URS(user-specific reference signal) 등이 FDD 방식(도 6 참조)에 의해 전송되는 DL 전용 반송파이다. TDD 포맷에 의한 DL 전용 반송파(이하 TDD DL 전용 반송파로 약칭)는 동기화 신호, PBCH, URS 등이 TDD 방식(도 8 참조)에 의해 전송되는 DL 전용 반송파이다. URS는 단말 특정적 참조 신호로 데이터/제어 신호의 복조를 위해 사용되는 참조일 수 있다. 2가지 포맷의 DL 전용 반송파는 모두 프레임 내의 모든 서브프레임들이 DL 서브프레임이라는 점에서는 공통되나, 동기화 신호 및 PBCH 등의 구조가 상이하다는 점에서 구분된다.
프라이머리 셀에 세컨더리 셀을 추가하는 경우, 프라이머리 셀은 TDD로 동작하는 셀 또는 FDD로 동작하는 셀일 수 있고 세컨더리 셀이 DL 전용 반송파일 때 상기 DL 전용 반송파는 TDD DL 전용 반송파 또는 FDD DL 전용 반송파일 수 있다. 따라서, 총 4가지 조합이 가능하다.
기지국은 단말에게 DL 전용 반송파를 세컨더리 셀로 추가 설정할 때, 추가되는 DL 전용 반송파가 TDD DL 전용 반송파 또는 FDD DL 전용 반송파 중 어느 것인지를 알려줄 수 있다. 또는 기지국은 단말에게 특정 반송파의 측정을 명령할 때, 상술한 TDD DL 전용 반송파 또는 FDD DL 전용 반송파 중 어느 것인지를 알려줄 수 있다. 이처럼 반송파의 포맷을 알려주는 정보를 프레임 구조 지시 정보라 칭한다. 프레임 구조 지시 정보는 세컨더리 셀의 PSS/SSS 검출 및 셀 ID 검출을 용이하게 할 수 있다.
또는, 프레임 구조 시지 정보와 같은 기지국의 명시적인 시그널링이 없이, 단말이 추가되는 세컨더리 셀의 PSS/SSS를 검출하는 과정을 통해 세컨더리 셀의 포맷을 인지할 수도 있다.
프라이머리 셀과 세컨더리 셀의 프레임 경계를 일치시키는 경우, PSS의 검출 위치(즉, PSS가 검출되는 서브프레임 번호 및 OFDM 심볼)만으로도 프레임 구조를 알 수 있다. 따라서, 기지국은 프레임 구조 지시 정보를 프라이머리 셀과 세컨더리 셀의 프레임 경계를 일치시키지 않는 경우에만 전송하거나, 세컨더리 셀의 측정 지시를 할 때에만 단말에게 전송할 수도 있다. 이는 DL 전용 반송파 뿐만이 아니라, TDD 프라이머리 셀과 FDD 세컨더리 셀의 집성, FDD 프라이머리 셀과 TDD 세컨더리 셀의 집성 상황에서도 동일하게 적용될 수 있다.
한편, FDD로 동작하는 프라이머리 셀(FDD 프라이머리 셀)이 TDD로 동작하는 세컨더리 셀(TDD 세컨더리 셀)을 집성하는 경우, 상기 TDD 세컨더리 셀로 DL 전용 반송파를 적용할 수 있다. 이 경우, TDD 세컨더리 셀에서 CSI 검출 대상이 되는 DL 서브프레임은 UL-DL 설정 상에서의 DL 서브프레임으로 한정해야할 경우가 있다. 이는, 해당 단말이 UL-DL 설정 상의 UL 서브프레임을 사용하지 않더라도, 다른 단말이 해당 UL 서브프레임을 상향링크 전송에 사용하도록 설정될 수 있기 때문이다.
TDD로 동작하는 프라이머리 셀(TDD 프라이머리 셀)이 FDD로 동작하는 세컨더리 셀(FDD 세컨더리 셀)을 집성하는 경우, 상기 FDD 세컨더리 셀로 DL 전용 반송파로 적용할 수 있다. 이 경우, CSI 검출 대상이 되는 DL 서브프레임은 UL-DL 설정 상에서의 DL 서브프레임으로 한정할 수 있다. 기존 UL-DL 설정을 세컨더리 셀에 적용하여 해당 DL 서브프레임만 사용할 때, 즉, 해당 UL-DL 설정상에서의 UL 서브프레임은 사용하지 않는 방식으로 세컨더리 셀이 하향링크에만 사용하는 경우 유용하다.
또는 NCT는 상향링크 전송만이 가능한 반송파일 수 있다. 이하, 상향링크 전송만이 가능한 반송파를 편의상 UL 전용 반송파라 약칭한다.
도 12는 UL 전용 반송파를 예시한다.
UL 전용 반송파는 다양한 방법에 의해 구성될 수 있다. 예를 들어, FDD에서 UL 전용 반송파는 UL CC만 존재하는 셀일 수 있다. 즉, 도 12(a)와 같이 FDD에서 UL 전용 반송파는 대응되는 DL CC가 존재하지 않는 UL CC일 수 있다. 또는 FDD에서 SIB(system information block)에 의해 링크된 DL CC가 존재하는 UL CC라도 그 DL CC를 사용하지 않고 UL CC만 사용하도록 설정하여 UL 전용 반송파를 구성할 수도 있다.
TDD에서 UL 전용 반송파는 표 1의 UL-DL 설정을 적용하되 해당 UL-DL 설정에 따른 DL 서브프레임은 사용하지 않고 UL 서브프레임만을 사용하도록 설정하여 생성할 수 있다. LCT는 표 1에 정의된 UL-DL 설정에 따라 하나의 프레임에 UL 서브프레임/DL 서브프레임이 시분할되어 포함되나, UL 전용 반송파는 도 12 (b)에 나타낸 바와 같이 UL 서브프레임만 포함되는 차이가 있다. 그러나, 이러한 방법은 UL-DL 설정에 의하면 DL 서브프레임으로 설정될 서브프레임(예컨대, 101, 102)을 사용하지 않는 것이 되어 자원 낭비가 발생한다.
따라서 TDD에서 UL 전용 반송파를 반송파 집성에 사용할 경우 프레임 내의 모든 서브프레임들이 UL 서브프레임으로만 구성되도록 하는 것이 바람직하다.
이를 위해, 표 1과 같은 기존 UL-DL 설정에 추가적인 UL-DL 설정을 추가할 수 있다. 다음 표는 본 발명에 따른 UL-DL 설정의 예를 나타낸다.
[표 3]
Figure PCTKR2013002887-appb-I000005
표 3에서 UL-DL 설정 0 ~ 6은 기존 UL-DL 설정과 동일하고, 추가적으로 UL-DL 설정 7을 추가한 것이다. UL-DL 설정 7은 프레임 내의 모든 서브프레임들이 UL 서브프레임으로 설정됨을 나타낸다. UL-DL 설정 7은 프라이머리 셀에는 사용되지 않고 세컨더리 셀에만 사용될 수 있다. 다시 말해, UL 전용 반송파는 주파수 대역 간의 간섭을 피할 수 있도록 기존 TDD 프라이머리 셀과 서로 다른 주파수 대역에서 세컨더리 셀로 사용될 수 있다. 상기 방법은 UL 전용 반송파를 설정하기 위해 UL-DL 설정 7을 정의하고 이를 직접 단말에게 알려주는 방법이라 할 수 있다.
한편, 기지국이 DL 전용 반송파와 UL 전용 반송파 중에서 하나를 선택하여 세컨더리 셀로 집성하는 경우, 상기 표 3에 표 2의 UL-DL 설정 7을 추가할 수 있다. 즉, 표 3에 총 9개의 UL-DL 설정이 포함될 수 있으며 표 2의 UL-DL 설정 7이 표 3에 UL-DL 설정 8로 추가될 수도 있다.
또는 기지국은 기존 UL-DL 설정 0-6만을 사용하되 추가적으로 DL 전용 반송파 또는 UL 전용 반송파를 지시하는 정보를 전송하는 방식을 사용할 수도 있다.
이하에서, DL 전용 반송파는 도 10 (a)와 같이 프레임 내의 모든 서브프레임들이 DL 서브프레임들로 구성된다고 가정하며, DL 전용 반송파가 세컨더리 셀로 집성되는 경우 DL HARQ-ACK(이하 HARQ-ACK으로 약칭) 타이밍에 대해 설명한다.
종래 FDD에서는 단말이 서브프레임 n-4에서 수신한 데이터 유닛(예를 들어, 전송 블록, 코드워드 등)에 대한 ACK/NACK을 서브프레임 n에서 전송하는 HARQ-ACK 타이밍을 가진다. TDD에서는 다음 표와 같은 HARQ-ACK 타이밍을 가진다. 표 4에서 각 값을 집합 K로 표시할 수 있으며, K = {k0, k1, …,kM-1}의 요소(element)를 가진다. 예를 들어, UL-DL 설정 1에서 서브프레임 2에 대한 K={7,6}이며, M=2이다. k0, k1, …,kM-1는 km(m = 0, 1, …, 또는 M-1)으로 표시할 수 있다.
[표 4]
Figure PCTKR2013002887-appb-I000006
상기 표 4는 각 UL-DL 설정에서 UL 서브프레임 n에 대응되는 DL 서브프레임 n-km의 대응관계를 km 값으로 표시한 것이다. 즉, 서브프레임 n-km에서 전송되는 PDSCH에 대한 ACK/NACK이 UL 서브프레임 n 에서 전송됨을 의미한다.
그런데, TDD DL 전용 반송파를 세컨더리 셀로 사용하는 경우, 세컨더리 셀의 DL HARQ 타이밍의 설정이 문제될 수 있다. 즉, 세컨더리 셀에서 수신한 PDSCH에 대한 프라이머리 셀을 통한 ACK/NACK 응답 타이밍의 설정이 필요하다.
방법 1.
방법 1은 세컨더리 셀에 대한 HARQ-ACK 타이밍은 프라이머리 셀에 설정된 UL-DL 설정에 따라 구성된 DL HARQ-ACK 타이밍을 따르는 방법이다. 예를 들어, 프라이머리 셀이 TDD 셀이며 UL-DL 설정 1을 사용하고 세컨더리 셀이 DL 전용 반송파인 경우 세컨더리 셀의 서브프레임 0에서 수신한 데이터 유닛에 대한 ACK/NACK은 프라이머리 셀의 서브프레임 7에서 전송되는데, 이 때 서브프레임 7은 프라이머리 셀의 서브프레임 0에서 수신한 데이터 유닛에 대한 ACK/NACK을 전송하도록 설정된 서브프레임이다.
방법 2.
UL-DL 설정 중에는 프레임 내에 UL 서브프레임보다 DL 서브프레임이 많은 설정이 있다. 예를 들어, UL-DL 설정 2, 4, 5 등은 UL 서브프레임보다 DL 서브프레임이 더 많다. 이처럼, DL 서브프레임이 더 많은 UL-DL 설정에 따른 DL HARQ-ACK 타이밍을 세컨더리 셀의 HARQ-ACK 기준 타이밍으로 사용할 수 있다. 단, 세컨더리 셀의 UL-DL 설정에 따른 UL 서브프레임들은 프라이머리 셀의 UL-DL 설정에 따른 UL 서브프레임들의 부분집합이 되어야 한다.
예를 들어, 프라이머리 셀의 UL-DL 설정이 0,1,2인 경우, UL-DL 설정 2,5에 따른 HARQ-ACK 타이밍을 세컨더리 셀의 HARQ-ACK 기준 타이밍으로 사용할 수 있다. 프라이머리 셀의 UL-DL 설정이 3,4,5,6인 경우 UL-DL 설정 5에 따른 HARQ-ACK 타이밍을 세컨더리 셀의 HARQ-ACK 기준 타이밍으로 사용할 수 있다.
상기 방법 1 또는 2에 의할 때, 프라이머리 셀의 DL 서브프레임과 겹치는 세컨더리 셀의 DL 서브프레임에 대해서는 HARQ-ACK 타이밍이 결정된다. 그러나, 프라이머리 셀의 UL 서브프레임과 겹치는 세컨더리 셀의 DL 서브프레임에 대해서는 HARQ-ACK 타이밍이 결정되지 않는다. 프라이머리 셀의 UL 서브프레임과 겹치는 세컨더리 셀의 DL 서브프레임에 대한 HARQ-ACK 타이밍은 다음과 같은 방법들 중 하나를 사용할 수 있다. 즉, 방법 1,2와 후술하는 방법 3 내지 7은 결합되어 사용될 수 있다.
방법 3.
세컨더리 셀의 서브프레임에서 데이터 유닛을 수신한 후 ACK/NACK을 전송할 수 있는 최소 필요시간(예를 들어, km = 4)을 만족하는 가장 빠른 프라이머리 셀의 서브프레임을 선택하는 방법이다.
방법 4.
방법 4는 프라이머리 셀의 각 UL 서브프레임에 대응하는 세컨더리 셀의 DL 서브프레임의 개수를 가급적 균등하게 하여, 각 UL 서브프레임에서 전송되는 ACK/NACK 수가 특정 UL 서브프레임에 치우치지 않고 복수의 UL 서브프레임들에 가급적 균등하게 배치되도록 하는 방법이다.
방법 4는 먼저, 세컨더리 셀의 각 서브프레임에서 데이터 유닛을 수신한 후 ACK/NACK을 전송할 수 있는 최소 필요시간(예컨대, km = 4)를 만족하는 가장 빠른 프라이머리 셀의 서브프레임을 선택한다. 상기 각 서브프레임에서 결정된 가장 큰 km 값을 기준 타이밍으로 하여, 세컨더리 셀의 각 서브프레임에서 수신한 데이터 유닛에 대한 ACK/NACK을 전송할 프라이머리 셀의 UL 서브프레임을 결정한다. 일 예로, 하나의 UL 서브프레임에서 전송될 수 있는 최대 ACK/NACK 비트를 정하고, 최대 ACK/NACK 비트를 초과하는 경우 초과하는 ACK/NACK 비트를 전송할 UL 서브프레임을 다음 UL 서브프레임 또는 이전 UL 서브프레임으로 변경할 수 있다. 이 때, 선행 PDSCH에 대한 ACK/NACK이 후행 PDSCH에 대한 ACK/NACK보다 늦게 전송되지 않도록 UL 서브프레임을 변경한다.
최대 ACK/NACK 비트는 UL-DL 설정에 따라 달라질 수 있다.
ACK/NACK을 전송하는 프라이머리 셀의 UL 서브프레임을 균등 분배할 때, 기존의 UL-DL 설정에서의 타이밍을 포함하여 균등 분배를 하거나, 새로운 타이밍 즉, 세컨더리 셀을 DL 전용 반송파로 사용하는 경우에 추가되는 타이밍만을 대상으로 균등 분배를 하는 방법을 고려할 수 있다.
기존의 UL-DL 설정에서의 타이밍을 고려한 균등 분배를 수행할 경우, 다음 표와 같은 HARQ-ACK 타이밍이 도출될 수 있다. 표 5는 표 4에 추가될 수 있다.
[표 5]
Figure PCTKR2013002887-appb-I000007
새로운 타이밍만을 대상으로 균등 분배를 하는 방법에 의하면, 다음 표 6을 표 4에 추가할 수 있다.
[표 6]
Figure PCTKR2013002887-appb-I000008
도 13은 방법 1 및 방법 4를 결합한 경우, HARQ-ACK 타이밍을 나타낸다.
도 13을 참조하면, 프라이머리 셀은 UL-DL 설정 1에 따른 TDD 셀이고, 세컨더리 셀은 DL 전용 반송파를 사용한다. 이 경우, 세컨더리 셀은 모두 DL 서브프레임으로만 구성된다. 세컨더리 셀의 DL 서브프레임에서 수신한 PDSCH(또는 전송 블록)에 대한 ACK/NACK은 프라이머리 셀의 HARQ-ACK 타이밍을 따른다.
예를 들어, 세컨더리 셀의 DL 서브프레임(141)에서 수신한 PDSCH에 대한 ACK/NACK은 상기 DL 서브프레임(141)에 대응되는 프라이머리 셀의 DL 서브프레임(142)에서 수신한 PDSCH에 대한 ACK/NACK 전송 타이밍과 동일하다. 따라서, 프라이머리 셀의 UL 서브프레임(143)에서 전송된다. 도 13에서 실선으로 표시된 화살표는 프라이머리 셀의 HARQ-ACK 타이밍에 따른 세컨더리 셀의 ACK/NACK 전송을 나타낸다.
한편, 프라이머리 셀의 UL 서브프레임과 겹치는 세컨더리 셀의 DL 서브프레임의 HARQ-ACK 타이밍은 방법 4에 의하는데, 도 13에서 점선으로 표시된 화살표에 따른 HARQ-ACK 타이밍이 된다. 예를 들어, 서브프레임(144)에서 수신한 데이터 유닛에 대한 ACK/NACK은 4 서브프레임 이후에 위치하면서 가장 빠른 UL 서브프레임(143)에서 전송된다. 서브프레임(146)에서 수신한 데이터 유닛에 대한 ACK/NACK은 4 서브프레임 이후에 위치하면서 가장 빠른 UL 서브프레임(143)이 아니라 그 다음 UL 서브프레임(147)에서 전송된다. 균등 분배를 위해서이다. 이 경우, 하나의 UL 서브프레임에서 전송될 수 있는 최대 ACK/NACK 비트는 3비트일 수 있다.
이러한 방법에 의하면, 하나의 UL 서브프레임에서 전송해야 하는 ACK/NACK 비트수를 균일하게 할 수 있으므로, 부하를 분산하는 효과가 있다.
방법 5.
세컨더리 셀의 특정 DL 서브프레임에 대한 PDSCH 스케줄링을 제한하는 방법이다. 예를 들어, 프라이머리 셀의 UL 서브프레임과 겹치는 세컨더리 셀의 DL 서브프레임에 대한 PDSCH 스케줄링을 제한하는 것이다.
예외적으로, 세컨더리 셀의 DL 서브프레임에서 ACK/NACK 응답이 필요 없는 PDSCH 전송은 허용할 수 있다. 예를 들어, PDSCH로 전송되는 SIB의 전송 등이 있을 수 있다.
방법 5는 UL-DL 설정에 표 2의 UL-DL 설정 7과 같이 DL 서브프레임들로만 구성된 UL-DL 설정을 도입하지 않더라고 구성이 가능하다. 예를 들어, DL 전용 반송파에 기존의 UL-DL 설정 0-6을 할당하되, 특수 서브프레임 전체를 다른 DL 서브프레임과 동일한 구조로 사용하도록 할 수 있다. UL 서브프레임이 사용되지 않으므로 특수 서브프레임에 DwPTS, 보호 구간(GP), UwPTS의 설정이 필요없기 때문이다. 이 경우, DL 전용 반송파를 세컨더리 셀로 집성할 때, UL-DL 설정 정보(0~6)와 함께 DL 전용 반송파 임을 알려주는 시그널링이 필요할 수 있다. 예컨대, 해당 UL-DL 설정에서의 UL 서브프레임 사용 여부 또는 특수 서브프레임을 완전한 DL 서브프레임으로 사용할 것인지를 알려주는 정보를 시그널링할 수 있다.
방법 6.
방법 6은 세컨더리 셀에서 PDSCH가 전송되는 DL 서브프레임과 이에 대한 ACK/NACK이 전송되는 프라이머리 셀의 UL 서브프레임 간의 관계를 RRC(radio resource control)로 시그널링하는 방법이다. 방법 6은 프라이머리 셀의 UL 서브프레임과 겹치는 세컨더리 셀의 DL 서브프레임 뿐 아니라 세컨더리 셀의 전체 DL 서브프레임에도 적용될 수 있으며, 서로 다른 UL-DL 설정을 가지는 반송파 간의 집성인 경우에도 공통적으로 또는 일부에 적용이 가능하다.
방법 7.
세컨더리 셀의 HARQ-ACK 타이밍을 위한 기준 설정으로 UL-DL 설정 0~6 중에서 UL-DL 설정 5가 사용되는 경우, 프라이머리 셀의 서브프레임 2에서 모든 ACK/NACK을 전송하는 방법이다.
이는 세컨더리 셀에서 수신한 데이터 유닛에 대한 ACK/NACK을 전송하는 프라이머리 셀의 서브프레임을 UL-DL 설정들 모두에서 공통적으로 UL 서브프레임인 서브프레임으로 제한하는 것이라 할 수 있다. 예를 들어, UL-DL 설정 0~6을 참조하면, 서브프레임 2는 모든 UL-DL 설정들에서 UL 서브프레임임을 알 수 있다.
방법 3 내지 6에서 모든 UL-DL 설정에서 UL 서브프레임으로 고정되는 서브프레임 2는 PDSCH전송을 위한 타이밍 설정에서 제외될 수도 있다.
한편, TDD에서 세컨더리 셀에 HARQ-ACK 타이밍을 위한 기준 UL-DL 설정이 적용되었을 때, 상기 기준 UL-DL 설정에서의 집합 KScell이 프라이머리 셀의 UL-DL 설정에서의 집합 KPcell과 다를 수 있다.
이 때 스케줄링 정보와 스케줄링 받는 PDSCH가 서로 다른 반송파에서 전송되는 교차 반송파 스케줄링이 적용된다면, 프라이머리 셀이 세컨더리 셀을 스케줄링할 수 있다. 세컨더리 셀의 HARQ-ACK 타이밍은 집합 KScell에 따라서 적용하게 되는데, 프라이머리 셀과 세컨더리 셀의 동일한 UL 서브프레임에서 KPcell의 요소(kPcell m)와 동일한 값을 갖는 KScell의 요소(kScell n)에 대해서는 프라이머리 셀의 묵시적 PUCCH 자원 매핑시(예를 들어, 기본 안테나 포트의 경우 n(1,p) PUCCH = (M m - 1)·Nc +m·Nc+1 + nCCE,m + N(1) PUCCH ), kPcell m의 m을 적용한다.
일 예로, 프라이머리 셀이 UL-DL 설정 2를 사용하고 세컨더리 셀의 기준 UL-DL 설정이 UL-DL 설정 1인 경우, UL 서브프레임 2에서 kScell 0 = 7, kPcell 1 =7 이 되어 m=1이 적용된다.
표 4의 집합 K 내의 요소 km 에 있어서, DL 스케줄링의 가능성이 적거나 DL 스케줄링이 제한될 수 있는 특수 서브프레임을 지칭하는 km(예를 들어, UL-DL 설정 3,4,5에서 서브프레임 2 또는 7에 대응되는 집합 K에서 km =11, 6 또는 서브프레임 3에 대응되는 집합 K에서 km =7) 예외적으로 K의 마지막 요소로 배치되어 있다. 이는 다른 UL-DL 설정과의 통일성을 위해서이다.
이는 서브프레임 n- km 에 대응되는 묵시적 PUCCH 자원(즉, PDCCH가 점유하는 CCE에 대응하는 PUCCH 포맷 1a/1b 자원) 활용의 효율성을 위한 것으로 시스템 대역의 양쪽 끝에서부터 순차적으로 PUCCH 자원을 매핑하여 PUSCH로 사용될 중앙부분과의 영역충돌을 줄이기 위함이다.
따라서, 기존의 KPcell에 추가적으로 사용되는 km' 값(예를 들면, 표 5에 표시된 값)에 대응하는 PUCCH 자원 선택은 다음과 같은 방법을 적용할 수 있다.
방법 8.
방법 8은 기존의 KPcell과 별도의 K'를 구성하고, 새로 추가되는 K'의 km'이 지시하는 DL 서브프레임 n- km'에 대응하는 PUCCH 포맷 1a/1b의 경우 묵시적 PUCCH 자원이 아닌 명시적 PUCCH 자원(RRC로 직접 지시되는 자원, 추가적으로 ARI로 복수의 RRC 자원중의 하나를 선택할 수 있다)을 사용하도록 하는 방법이다. 즉, 기존 MPcell값에 변화를 주지 않고 별도의 K'를 추가하는 것이다. 이 방법은 기존에 사용되는 묵시적 자원의 규칙의 변화없이 새로운 HARQ-ACK 타이밍을 지원할 수 있다.
한편, 표 5에서의 UL-DL 설정 0의 경우 하나의 UL 서브프레임에 두 개의 HARQ-ACK 타이밍이 생기는 경우가 있다. 이와 같이 복수의 타이밍을 위해서 둘 이상의 명시적 PUCCH 자원을 할당할 수 있다. 그러나 이와 같은 방법은 PUCCH 자원 효용성에 있어서 비효율적일 수 있다. 따라서, 하나의 명시적 PUCCH 자원만을 할당하고, 대응되는 두 개의 DL 서브프레임들 중에 하나의 DL 서브프레임만을 스케줄링하는 방법도 적용할 수 있다.
방법 9.
방법 9는 기존의 KPcell과 별도의 K'를 구성하여, 새로 추가되는 K'의 km 이 지시하는 DL 서브프레임 n- km'에 대응하는 PUCCH 포맷 1a/1b의 경우 기존 집합 KPcell이 대응 되는 묵시적 PUCCH 자원의 다음부터(대역의 중심쪽으로) 묵시적 맵핑이 대응되도록 구성하는 방법이다. 즉, m값의 대응을 기존 값 이후에 설정할 수 있다. 이 방법도 기존 MPcell값에 변화를 주지 않는다.
방법 10.
기존의 KPcell와 별도의 K'를 구성하여, 새로 추가되는 K'의 km'이 지시하는 DL 서브프레임 n- km'에 대응하는 PUCCH 포맷 1a/1b의 경우 기존 집합 K에서 특수 서브프레임에 대응되는 묵시적 PUCCH 자원의 맵핑이 대응되도록 하는 방법이다. 이는 특수 서브프레임에 대한 스케줄링은 빈번하지 않아서 해당 자원을 공유하기 위함이다. 이 방법도 기존 MPcell값에 변화를 주지 않는다.
방법 9 및 10은 상황에 따라 선택적으로 적용될 수 있다. 예를 들어 특수 서브프레임이 DL 서브프레임 스케줄링으로 사용될 수 있는 상황에서는 방법 9를 적용하고, 아닌 경우는 방법 10을 적용할 수 있다.
한편, ACK/NACK 전송을 위해 채널 선택을 사용할 수 있다. 채널 선택은 복수의 PUCCH 자원을 할당한 후 하나의 PUCCH 자원을 선택하고 그 선택된 자원에서 변조 심벌을 전송한다. ACK/NACK의 구체적인 내용은 선택된 PUCCH 자원과 변조 심벌에 의해 구분된다. 채널 선택은 최대 4개의 ACK/NACK 비트를 전송할 수 있다.
채널 선택이 사용되고, ACK/NACK을 전송하는 하나의 UL 서브프레임에 대응되는 DL 서브프레임의 개수(M)가 4보다 큰 경우, 프라이머리 셀의 UL 서브프레임과 겹치는 세컨더리 셀의 DL 서브프레임들의 일부 또는 전체를 우선적으로 스케줄링시 제한할 수 있다. 일부가 제한될 때, 이에 대한 정보는 시그널링 될 수 있으며, ICIC(inter-cell interference coordination)를 고려하여 ABS(almost blank subframe)로 설정된 서브프레임을 제한하는 방법과 같이 간접적인 정보를 활용할 수도 있다. 또는 미리 정해진 규칙(예를 들어, ACK/NACK 응답시간이 긴순서 또는 짧은 순서)에 따라 제한 순서가 결정될 수 있다.
본 발명은 데이터 유닛이 PDCCH에 의해 스케줄링되는 경우를 예시하나, E-PDCCH(enhanced-PDCCH)로 스케줄링되는 경우에도 적용될 수 있다. E-PDCCH(enhanced-PDCCH)는 PDCCH와 별개로 종래의 PDSCH 영역 내에서 단말에게 전송되는 제어채널이다. E-PDCCH는 CRS가 아니라 URS에 의해 디코딩되는 제어채널일 수 있다.
한편, TDD 또는 FDD로 동작하는 프라이머리 셀에 DL 전용 반송파 또는 UL 전용 반송파를 세컨더리 셀로 집성하는 경우, 상기 DL 전용 반송파 또는 UL 전용 반송파는 UL 반송파와 DL 반송파의 쌍으로 정의된 셀에서 선택된 DL 반송파 또는 UL 반송파일 수 있다.
기지국은 UL 반송파와 DL 반송파의 쌍으로 정의된 셀의 셀 ID를 세컨더리 셀의 셀 ID로 단말에게 알려주되, 상기 UL 반송파와 DL 반송파의 쌍으로 정의된 셀에서 UL 반송파와 DL 반송파가 동시에 집성되는지 아니면 어느 하나만 집성되는지를 알려주는 정보를 단말에게 시그널링할 수 있다. 상기 정보는 예를 들어 2비트의 비트맵으로 구성될 수 있으며, 비트맵의 각 비트는 상기 UL 반송파와 DL 반송파의 쌍으로 정의된 셀의 UL 반송파, DL 반송파에 각각 대응될 수 있다. 비트맵의 각 비트값에 따라 상기 UL 반송파, DL 반송파 중 어느 것이 세컨더리 셀로 집성되는지를 알려줄 수 있다.
상기 정보는 L2/L1 시그널링으로 동적으로 수행될 수도 있다. L2 시그널링의 예로는 MAC 메시지에 상기 DL 반송파, UL 반송파를 지시하는 정보를 포함하여 직접 지시할 수 있다. 또는 간접적인 방법으로 예를 들어, 기존에 셀 단위로 DL 반송파/UL 반송파에 공통 적용되는 활성화/비활성화를 DL 반송파/UL 반송파 별로 분리하여 알려주는 방법도 있을 수 있다.
L1 시그널링으로는 반송파를 설정하는 전용 제어채널을 사용하거나, DL/UL 스케줄링 제어채널을 사용해서 알려줄 수 있다. DL/UL 스케줄링 제어채널을 사용할 경우, DL/UL 스케줄링은 무시하도록 설정할 수 있다.
또한 TDD 또는 FDD로 동작하는 프라이머리 셀에 DL 전용 반송파 또는 UL 전용 반송파를 집성하는 경우, TDD 용으로 정의된 셀(즉, DL/UL 서브프레임이 혼재하는 반송파로 구성된 셀)의 셀 ID를 알려주어 상기 셀 ID에 해당하는 셀을 세컨더리 셀로 집성할 수 있다. 이 경우 상기 TDD용으로 정의된 셀에서 DL 서브프레임만을 사용할 지 아니면 UL 서브프레임만을 사용할지를 지시하는 정보를 추가적으로 단말에게 시그널링할 수 있다.
도 14는 본 발명의 실시예가 구현되는 무선 기기를 나타낸 블록도이다.
기지국(100)은 프로세서(processor, 110), 메모리(memory, 120) 및 RF부(RF(radio frequency) unit, 130)를 포함한다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(110)는 단말에게 복수의 반송파(서빙 셀)를 설정하고, 데이터 유닛을 전송하며 HARQ-ACK 타이밍에 따라 데이터 유닛에 대한 ACK/NACK을 수신한다. 세컨더리 셀로 DL 전용 반송파를 설정하는 경우, 표 2와 같은 UL-DL 설정만을 통해 설정할 수도 있고, UL-DL 설정과 전환 정보를 토해 설정할 수도 있다. 메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)를 구동하기 위한 다양한 정보를 저장한다. RF부(130)는 프로세서(110)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(200)은 프로세서(210), 메모리(220) 및 RF부(230)를 포함한다. 프로세서(210)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(210)는 UL-DL 설정 및/또는 전환 정보를 이용하여 DL 전용 반송파를 세컨더리 셀로 설정할 수 있다. 세컨더리 셀을 통해 수신한 데이터 유닛에 대한 ACK/NACK은 프라이머리 셀을 통해 전송하며, 그 HARQ-ACK 타이밍 및 자원에 대해서는 전술한 방법 1 내지 9를 참조할 수 있다. 메모리(220)는 프로세서(210)와 연결되어, 프로세서(210)를 구동하기 위한 다양한 정보를 저장한다. RF부(230)는 프로세서(210)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(110,210)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(120,220)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(130,230)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(120,220)에 저장되고, 프로세서(110,210)에 의해 실행될 수 있다. 메모리(120,220)는 프로세서(110,210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(110,210)와 연결될 수 있다.

Claims (16)

  1. 무선통신 시스템에서 반송파들을 집성하는 방법에 있어서,
    제1 반송파를 설정하고, 및
    상기 제1 반송파에 추가하여 제2 반송파를 설정하되,
    상기 제1 반송파는 프레임 내에 상향링크 서브프레임 및 하향링크 서브프레임이 서로 다른 시간에 위치하는 TDD(time division duplex) 반송파이고,
    상기 제2 반송파는 하향링크 서브프레임으로만 구성되는 하향링크 전용 반송파인 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서, 상기 제1 반송파 및 상기 제2 반송파 각각에 대한 상향링크-하향링크 설정(uplink-downlink configuration: UL-DL 설정)을 수신하되, 상기 UL-DL 설정은 프레임 내에 포함되는 서브프레임들 각각이 하향링크 서브프레임인지 상향링크 서브프레임인지를 지시하는 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서, 상기 제2 반송파에 대한 UL-DL 설정은 프레임 내의 모든 서브프레임들이 하향링크 서브프레임임을 지시하는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서, 상기 제2 반송파에 대한 상향링크-하향링크 설정(uplink-downlink configuration: UL-DL 설정) 및 전환 정보를 수신하되, 상기 UL-DL 설정은 상기 제2 반송파의 프레임 내에 포함되는 서브프레임들 각각이 하향링크 서브프레임인지 상향링크 서브프레임인지를 지시하고, 상기 전환 정보는 상기 프레임 내의 상향링크 서브프레임들을 하향링크 서브프레임으로 전환함을 지시하는 정보인 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서, 상기 제2 반송파는 TDD(time division duplex) 포맷 또는 FDD(frequency division duplex) 포맷 중 어느 하나를 사용하는 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서, 상기 TDD 포맷은 상기 TDD 반송파와 동일한 위치에서 동기화 신호 및 브로드캐스트(broadcast) 채널을 전송하는 포맷인 것을 특징으로 하는 방법.
  7. 제 5 항에 있어서, 상기 FDD 포맷은 하향링크 서브프레임들과 상향링크 서브프레임들이 서로 다른 주파수 대역에 위치하는 FDD(frequency division duplex) 반송파와 동일한 위치에서 동기화 신호 및 브로드캐스트(broadcast) 채널을 전송하는 포맷인 것을 특징으로 하는 방법.
  8. 제 5 항에 있어서, 프레임 구조 지시 정보를 수신하되,
    상기 프레임 구조 지시 정보는 상기 제2 반송파가 TDD 포맷 및 FDD 포맷 중 어느 포맷을 사용하는지를 알려주는 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서, 상기 제2 반송파의 하향링크 서브프레임에서 수신한 데이터 유닛에 대한 ACK/NACK(acknowledgement/not-acknowledgement)는 상기 제1 반송파의 상향링크 서브프레임에서 전송되는 것을 특징으로 하는 방법.
  10. 제 9 항에 있어서, 상기 제2 반송파의 하향링크 서브프레임 n에서 수신한 데이터 유닛에 대한 ACK/NACK은 상기 제1 반송파의 하향링크 서브프레임 n에서 수신한 데이터 유닛에 대한 ACK/NACK이 전송되는 상향링크 서브프레임에서 전송되는 것을 특징으로 하는 방법.
  11. 제 9 항에 있어서, 상기 제2 반송파의 하향링크 서브프레임들 중 상기 제1 반송파의 상향링크 서브프레임과 겹치는 제1 하향링크 서브프레임에서 수신한 데이터 유닛에 대한 ACK/NACK은 상기 제1 하향링크 서브프레임에서 4 서브프레임 이후에 위치하는 제1 반송파의 상향링크 서브프레임들 중 가장 먼저 위치하는 제1 상향링크 서브프레임 또는 그 다음에 위치하는 제2 상향링크 서브프레임에서 전송되는 것을 특징으로 하는 방법.
  12. 제 11항에 있어서, 상기 제1 상향링크 서브프레임에서 전송되는 ACK/NACK의 비트 수가 허용되는 최대 값보다 큰 경우 상기 제2 상향링크 서브프레임에서 전송되는 것을 특징으로 하는 방법.
  13. 제 1 항에 있어서, 상기 제 1 반송파는 기지국과의 최초 연결 확립 과정 또는 연결 재확립 과정을 수행하는 프라이머리 셀(primary cell)에 포함되는 것을 특징으로 하는 방법.
  14. 제 13 항에 있어서, 상기 제 2 반송파는 상기 프라이머리 셀에 추가되는 세컨더리 셀(secondary cell)인 것을 특징으로 하는 방법.
  15. 제 1 항에 있어서, 상기 제2 반송파의 주파수 대역은 상기 제1 반송파의 주파수 대역으로 사용되지 않는 주파수 대역인 것을 특징으로 하는 방법.
  16. 무선통신 시스템에서 반송파들을 집성하는 장치에 있어서,
    무선 신호를 송신 및 수신하는 RF(radio frequency)부; 및
    상기 RF부와 연결되는 프로세서를 포함하되,
    상기 프로세서는 제1 반송파를 설정하고, 및 상기 제1 반송파에 추가하여 제2 반송파를 설정하되, 상기 제1 반송파는 프레임 내에 상향링크 서브프레임 및 하향링크 서브프레임이 서로 다른 시간에 위치하는 TDD(time division duplex) 반송파이고,
    상기 제2 반송파는 하향링크 서브프레임으로만 구성되는 하향링크 전용 반송파인 것을 특징으로 하는 장치.
PCT/KR2013/002887 2012-04-05 2013-04-05 무선통신 시스템에서 반송파 집성 방법 및 장치 WO2013151394A1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020147027692A KR101633209B1 (ko) 2012-04-05 2013-04-05 무선통신 시스템에서 반송파 집성 방법 및 장치
EP13771907.6A EP2835918B1 (en) 2012-04-05 2013-04-05 Method and apparatus for aggregating carriers in wireless communication systems
JP2015504506A JP6308995B2 (ja) 2012-04-05 2013-04-05 無線通信システムにおける搬送波集成方法及び装置
US14/390,315 US9462587B2 (en) 2012-04-05 2013-04-05 Method and apparatus for aggregating carriers in wireless communication systems
CN201380017523.0A CN104205688B (zh) 2012-04-05 2013-04-05 用于在无线通信系统中聚合载波的方法和设备
EP19184039.6A EP3567762B1 (en) 2012-04-05 2013-04-05 Method and apparatus for aggregating carriers in wireless communication systems
US15/258,659 US9743409B2 (en) 2012-04-05 2016-09-07 Method and apparatus for aggregating carriers in wireless communication systems
US15/658,082 US10039106B2 (en) 2012-04-05 2017-07-24 Method and apparatus for aggregating carriers in wireless communication systems
US16/023,044 US10448402B2 (en) 2012-04-05 2018-06-29 Method and apparatus for aggregating carriers in wireless communication systems
US16/563,373 US10887883B2 (en) 2012-04-05 2019-09-06 Method and apparatus for aggregating carriers in wireless communication systems

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201261620449P 2012-04-05 2012-04-05
US61/620,449 2012-04-05
US201261636740P 2012-04-23 2012-04-23
US61/636,740 2012-04-23
US201261667947P 2012-07-04 2012-07-04
US61/667,947 2012-07-04
US201261702214P 2012-09-17 2012-09-17
US61/702,214 2012-09-17
US201261738401P 2012-12-18 2012-12-18
US61/738,401 2012-12-18
US201361750316P 2013-01-08 2013-01-08
US61/750,316 2013-01-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/390,315 A-371-Of-International US9462587B2 (en) 2012-04-05 2013-04-05 Method and apparatus for aggregating carriers in wireless communication systems
US15/258,659 Continuation US9743409B2 (en) 2012-04-05 2016-09-07 Method and apparatus for aggregating carriers in wireless communication systems

Publications (1)

Publication Number Publication Date
WO2013151394A1 true WO2013151394A1 (ko) 2013-10-10

Family

ID=49300802

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2013/002887 WO2013151394A1 (ko) 2012-04-05 2013-04-05 무선통신 시스템에서 반송파 집성 방법 및 장치
PCT/KR2013/002889 WO2013151396A1 (ko) 2012-04-05 2013-04-05 무선통신 시스템에서 반송파 집성 방법 및 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002889 WO2013151396A1 (ko) 2012-04-05 2013-04-05 무선통신 시스템에서 반송파 집성 방법 및 장치

Country Status (6)

Country Link
US (6) US9462587B2 (ko)
EP (3) EP2835920B1 (ko)
JP (1) JP6308995B2 (ko)
KR (2) KR101633209B1 (ko)
CN (3) CN104205688B (ko)
WO (2) WO2013151394A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581984A (zh) * 2013-10-28 2015-04-29 财团法人工业技术研究院 处理上行链路传送的方法及其通信装置
WO2015105353A1 (en) * 2014-01-08 2015-07-16 Lg Electronics Inc. A method and an apparatus of wireless communication
JP2015149684A (ja) * 2014-02-07 2015-08-20 株式会社Nttドコモ 移動局、基地局及び通信方法
WO2016002441A1 (ja) * 2014-07-04 2016-01-07 シャープ株式会社 移動局装置、および基地局装置
JP2017517230A (ja) * 2014-05-30 2017-06-22 華為技術有限公司Huawei Technologies Co.,Ltd. ダウンリンク制御情報送信方法及び装置、並びに、ダウンリンク制御情報受信方法及び装置
JP2018509807A (ja) * 2015-01-30 2018-04-05 華為技術有限公司Huawei Technologies Co.,Ltd. ユーザ機器、ネットワークデバイス、および確認応答情報伝送方法
WO2019050315A1 (ko) * 2017-09-08 2019-03-14 삼성전자주식회사 무선 통신 시스템에서 상향링크 제어 신호를 전송하기 위한 장치 및 방법
JP2019068460A (ja) * 2013-11-26 2019-04-25 株式会社Nttドコモ ユーザ端末

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024570A1 (ja) * 2011-08-12 2013-02-21 パナソニック株式会社 通信装置及び再送制御方法
KR101633209B1 (ko) * 2012-04-05 2016-07-01 엘지전자 주식회사 무선통신 시스템에서 반송파 집성 방법 및 장치
KR20130125695A (ko) * 2012-05-09 2013-11-19 주식회사 팬택 인터밴드 tdd 전송 방식에서 채널 셀렉션 전송을 위한 harq-ack 인덱스 매핑 및 업링크 자원 할당을 제어하는 방법 및 장치
EP2870718A1 (en) * 2012-07-04 2015-05-13 Nokia Solutions and Networks Oy Method and apparatus for signalling of harq timing at ul/dl subframe reconfiguration
US9407302B2 (en) * 2012-12-03 2016-08-02 Intel Corporation Communication device, mobile terminal, method for requesting information and method for providing information
KR102025385B1 (ko) * 2013-02-26 2019-11-27 삼성전자주식회사 셀 내의 캐리어 집적 시스템에서 단말의 능력에 따른 제어 채널 전송 방법 및 장치
US9538503B2 (en) * 2013-03-28 2017-01-03 Samsung Electronics Co., Ltd. Aggregation of FDD and TDD cells
US20160095077A1 (en) * 2013-04-30 2016-03-31 Intellectual Discovery Co., Ltd. New tdd frame structure for uplink centralized transmission
US9713026B2 (en) * 2013-05-17 2017-07-18 Qualcomm Incorporated Channel state information (CSI) measurement and reporting for enhanced interference management for traffic adaptation (eIMTA) in LTE
EP3024158A4 (en) * 2013-07-16 2017-06-14 Electronics and Telecommunications Research Institute Communication method in wireless communication system on basis of carrier aggregation
CN105659687B (zh) * 2013-08-07 2020-01-21 交互数字专利控股公司 在上行链路/下行链路解耦情形中的低成本mtc设备的覆盖增强
US9853720B2 (en) * 2013-08-20 2017-12-26 Lg Electronics Inc. Method and user equipment for simultaneously accessing plurality of cells
JP5739027B1 (ja) * 2014-01-22 2015-06-24 株式会社Nttドコモ ユーザ端末、無線基地局および無線通信方法
JP2015149683A (ja) * 2014-02-07 2015-08-20 株式会社Nttドコモ ユーザ装置、基地局及び通信方法
US10177884B2 (en) 2014-02-07 2019-01-08 Lg Electronics Inc. Method and device for performing HARQ for multi cells
WO2015123834A1 (en) * 2014-02-20 2015-08-27 Qualcomm Incorporated TIME DOMAIN DUPLEXING CONFIGURATION FOR eIMTA
KR102218702B1 (ko) * 2014-03-26 2021-02-22 삼성전자주식회사 무선 통신 시스템에서 시간 분할 복신 및 주파수 복신 반송파 집성을 위한 장치 및 방법
KR102310991B1 (ko) 2014-03-26 2021-10-13 삼성전자주식회사 무선 통신 시스템에서 시간 분할 복신 및 주파수 복신 반송파 집성을 위한 신호 교환 장치 및 방법
KR20150111798A (ko) 2014-03-26 2015-10-06 삼성전자주식회사 반송파 결합을 지원하는 무선 통신 시스템에서 동기 획득 방법 및 장치
JP6516265B2 (ja) * 2014-06-13 2019-05-22 シャープ株式会社 基地局装置、端末装置、および通信方法
WO2016019577A1 (en) * 2014-08-08 2016-02-11 Sony Corporation Selectable configuration for uplink acknowledgement resources
CN105376035B (zh) * 2014-08-28 2018-10-02 成都鼎桥通信技术有限公司 非对称上行载波聚合中辅载波的控制方法及装置
EP3038285B1 (en) * 2014-12-22 2022-04-27 Industrial Technology Research Institute Method of handling communication operation in communication system and related apparatus
CN105848292B (zh) * 2015-01-16 2021-08-17 中兴通讯股份有限公司 一种辅服务小区的资源的管理方法和装置
JP2018050087A (ja) * 2015-01-29 2018-03-29 シャープ株式会社 端末装置、基地局装置、および通信方法
EP3247162B1 (en) * 2015-02-09 2019-04-10 Huawei Technologies Co., Ltd. Method for retransmitting rlc data packet and base station
US20180042052A1 (en) * 2015-02-17 2018-02-08 Nokia Solutions And Networks Oy Communication efficiency
US10412749B2 (en) * 2015-05-21 2019-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling in license assisted access
EP3304995B1 (en) 2015-06-05 2020-03-18 Telefonaktiebolaget LM Ericsson (PUBL) First communication device, second communication device and methods therein for sending and decoding, respectively, downlink information
US10594433B2 (en) 2015-06-05 2020-03-17 Telefonaktiebolaget Lm Ericsson (Publ) Sending a configuration message and reporting channel information on PUCCH in PCELL and in SCELL
CN106559204B (zh) * 2015-09-29 2020-05-26 电信科学技术研究院 一种导频的配置方法及装置
WO2017074522A1 (en) * 2015-10-30 2017-05-04 Intel IP Corporation Latency reduction for wireless data transmission
CN106998591B (zh) 2016-01-24 2018-03-23 上海朗帛通信技术有限公司 一种调度方法和装置
JP2019054308A (ja) 2016-01-26 2019-04-04 シャープ株式会社 基地局装置、端末装置および通信方法
US11296837B2 (en) * 2016-01-28 2022-04-05 Qualcomm Incorporated Physical broadcast channel (PBCH) transmission and reception on a shared communication medium
US11452091B2 (en) * 2016-02-04 2022-09-20 Acer Incorporated Device and method of handling hybrid automatic repeat request transmission
EP3860167A1 (en) 2016-04-01 2021-08-04 Huawei Technologies Co., Ltd. Method and system for transmitting uplink signal between plurality of carriers, user equipment, and base station
JP7318668B2 (ja) * 2016-05-12 2023-08-01 富士通株式会社 基地局および端末
JP7048487B2 (ja) 2016-05-12 2022-04-05 富士通株式会社 基地局および端末
US10660114B2 (en) * 2017-06-15 2020-05-19 Apple Inc. FDM transmission for inter-RAT dual connectivity UE
US11792630B2 (en) 2017-08-10 2023-10-17 Apple Inc. Uplink transmission in TDD supporting feNB-IoT operation
CN111133718B (zh) * 2017-08-10 2023-04-04 苹果公司 在支持feNB-IOT操作的TDD中的上行链路传输
US10608805B2 (en) 2018-04-20 2020-03-31 At&T Intellectual Property I, L.P. Supplementary uplink with LTE coexistence adjacent to frequency division duplex spectrum for radio networks
CN115804039B (zh) * 2020-07-13 2024-05-31 高通股份有限公司 用于两个时分双工载波的上行链路载波聚合的帧结构
KR20230165300A (ko) * 2021-04-05 2023-12-05 애플 인크. 무선 네트워크들에서의 제어 채널 및 기준 신호 송신

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080025236A1 (en) * 2003-05-28 2008-01-31 Ipwireless Inc Method, Base Station and Mobile Station for Tdd Operation in a Communication System
WO2009120701A2 (en) * 2008-03-24 2009-10-01 Zte U.S.A., Inc. Dynamic adjustment and signaling of downlink/uplink allocation ratio in lte/tdd systems
WO2011109190A2 (en) * 2010-03-05 2011-09-09 Intel Corporation Techniques for providing uplink feedback for downlink-only rf carriers in a multicarrier system

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969749B1 (ko) * 2004-10-11 2010-07-13 삼성전자주식회사 개선된 하이브리드 이중화 방식 기반의 셀룰러 통신 시스템에서의 자원 할당 방법
CN101431362B (zh) * 2007-11-08 2012-10-03 电信科学技术研究院 时分双工系统的子帧分配方法及装置
US9118468B2 (en) * 2009-07-23 2015-08-25 Qualcomm Incorporated Asynchronous time division duplex operation in a wireless network
EP2481182B1 (en) * 2009-09-25 2016-01-13 BlackBerry Limited System and method for multi-carrier network operation
KR101750371B1 (ko) * 2009-12-24 2017-07-03 삼성전자 주식회사 크로스 캐리어 스케쥴링을 지원하는 tdd 통신시스템에서 물리채널의 송수신 타이밍을 정의하는 방법
US9083501B2 (en) 2010-04-05 2015-07-14 Qualcomm Incorporated Feedback of control information for multiple carriers
WO2012015216A2 (ko) 2010-07-26 2012-02-02 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
JP5606836B2 (ja) * 2010-08-31 2014-10-15 株式会社Nttドコモ 無線通信システム及び移動端末装置
WO2012051756A1 (en) * 2010-10-20 2012-04-26 Nokia Corporation Shortened subframe format for fdd
EP2451222A1 (en) * 2010-11-08 2012-05-09 HTC Corporation Method of handling power headroom reporting for activated serving cell with configured uplink
WO2012064154A2 (ko) * 2010-11-11 2012-05-18 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어정보 송수신 방법 및 장치
EP2673972A2 (en) * 2011-02-07 2013-12-18 Interdigital Patent Holdings, Inc. Method and apparatus for operating supplementary cells in licensed exempt spectrum
CN106059656B (zh) * 2011-03-24 2019-06-25 Lg电子株式会社 用于发送/接收信号的方法及其装置
WO2012139301A1 (en) * 2011-04-15 2012-10-18 Renesas Mobile Corporation Lte carrier aggregation configuration on tv white space bands
CN103503537B (zh) * 2011-04-29 2018-02-06 小米香港有限公司 用于重新调整针对具有不同时分双工子帧配置的分量载波的下行链路(dl)关联集合大小的方法和装置
WO2012148443A1 (en) * 2011-04-29 2012-11-01 Intel Corporation System and method of rank adaptation in mimo communication system
EP3379755A1 (en) * 2011-06-14 2018-09-26 Interdigital Patent Holdings, Inc. Methods, systems and apparatus for defining and using phich resources for carrier aggregation
CN102255718B (zh) * 2011-07-11 2013-09-11 电信科学技术研究院 一种载波聚合系统中的数据传输方法及装置
US9326283B2 (en) * 2011-08-12 2016-04-26 Interdigital Patent Holding, Inc. Reference signal configuration for extension carriers and carrier segments
KR102094890B1 (ko) * 2011-08-19 2020-04-14 엘지전자 주식회사 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
JP2013062433A (ja) 2011-09-14 2013-04-04 Toshiba Corp パターン生成方法、パターン形成方法およびパターン生成プログラム
KR20150052838A (ko) * 2011-09-26 2015-05-14 인터디지탈 패튼 홀딩스, 인크 대역간 반송파 집성
US9113494B2 (en) * 2011-09-29 2015-08-18 Industrial Technology Research Institute Method and wireless communication system for providing downlink control signalling for communication apparatus
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
US20140071860A1 (en) * 2012-01-30 2014-03-13 Telefonaktiebolaget Lm Ericsson (Publ) Setting Timers when Using Radio Carrier Aggregation
US9439189B2 (en) * 2012-02-20 2016-09-06 Lg Electronics Inc. Method and device for transmitting ACK/NACK in carrier aggregating system
CN103312470B (zh) 2012-03-09 2016-05-11 电信科学技术研究院 一种harq反馈的实现方法及装置
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
CN103368707B (zh) * 2012-03-26 2016-07-20 电信科学技术研究院 一种harq反馈的实现方法、上行子帧分配方法及装置
JP6180502B2 (ja) 2012-04-02 2017-08-16 ノキア ソリューションズ アンド ネットワークス オサケユキチュア 通信におけるハイブリッド自動再送要求
KR101633209B1 (ko) * 2012-04-05 2016-07-01 엘지전자 주식회사 무선통신 시스템에서 반송파 집성 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080025236A1 (en) * 2003-05-28 2008-01-31 Ipwireless Inc Method, Base Station and Mobile Station for Tdd Operation in a Communication System
WO2009120701A2 (en) * 2008-03-24 2009-10-01 Zte U.S.A., Inc. Dynamic adjustment and signaling of downlink/uplink allocation ratio in lte/tdd systems
WO2011109190A2 (en) * 2010-03-05 2011-09-09 Intel Corporation Techniques for providing uplink feedback for downlink-only rf carriers in a multicarrier system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA SIEMENS NETWORKS ET AL.: "Views on inter-band CA with different TDD configurations on different bands", R1-114309, 3GPP TSG RAN WG1 MEETING #67, 14 November 2011 (2011-11-14), SAN FRANCISCO, USA, XP050562182 *
QUALCOMM INCORPORATED: "Support of CA for different TDD UL-DL configurations", R1-121793, 3GPP TSG RAN WG1 MEETING #68-BIS, 26 March 2012 (2012-03-26), JEJU, KOREA, XP050600077 *
See also references of EP2835918A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581984A (zh) * 2013-10-28 2015-04-29 财团法人工业技术研究院 处理上行链路传送的方法及其通信装置
JP2015089127A (ja) * 2013-10-28 2015-05-07 財團法人工業技術研究院Industrial Technology Research Institute アップリンク伝送を扱う方法および関連する通信デバイス
CN104581984B (zh) * 2013-10-28 2019-02-19 财团法人工业技术研究院 处理上行链路传送的方法及其通信装置
US9450809B2 (en) 2013-10-28 2016-09-20 Industrial Technology Research Institute Method of handling uplink transmission and related communication device
JP2019068460A (ja) * 2013-11-26 2019-04-25 株式会社Nttドコモ ユーザ端末
WO2015105353A1 (en) * 2014-01-08 2015-07-16 Lg Electronics Inc. A method and an apparatus of wireless communication
US10117170B2 (en) 2014-01-08 2018-10-30 Lg Electronics Inc. Method and an apparatus of wireless communication
JP2015149684A (ja) * 2014-02-07 2015-08-20 株式会社Nttドコモ 移動局、基地局及び通信方法
JP2017517230A (ja) * 2014-05-30 2017-06-22 華為技術有限公司Huawei Technologies Co.,Ltd. ダウンリンク制御情報送信方法及び装置、並びに、ダウンリンク制御情報受信方法及び装置
US10616915B2 (en) 2014-05-30 2020-04-07 Huawei Technologies Co., Ltd. Downlink control information sending method and device, and downlink control information receiving method and device
US10244552B2 (en) 2014-05-30 2019-03-26 Huawei Technologies Co., Ltd. Downlink control information sending method and device, and downlink control information receiving method and device
CN106664548A (zh) * 2014-07-04 2017-05-10 夏普株式会社 移动台装置以及基站装置
US10165503B2 (en) 2014-07-04 2018-12-25 Sharp Kabushiki Kaisha Mobile station device and base station device
WO2016002441A1 (ja) * 2014-07-04 2016-01-07 シャープ株式会社 移動局装置、および基地局装置
JP2018509807A (ja) * 2015-01-30 2018-04-05 華為技術有限公司Huawei Technologies Co.,Ltd. ユーザ機器、ネットワークデバイス、および確認応答情報伝送方法
WO2019050315A1 (ko) * 2017-09-08 2019-03-14 삼성전자주식회사 무선 통신 시스템에서 상향링크 제어 신호를 전송하기 위한 장치 및 방법
US11641648B2 (en) 2017-09-08 2023-05-02 Samsung Electronics Co., Ltd. Device and method for transmitting uplink control signal in wireless communication system

Also Published As

Publication number Publication date
US10039106B2 (en) 2018-07-31
CN104205688B (zh) 2018-01-09
CN107959560B (zh) 2020-11-27
US9743409B2 (en) 2017-08-22
KR20150001743A (ko) 2015-01-06
US20190394780A1 (en) 2019-12-26
US20170325234A1 (en) 2017-11-09
US9462586B2 (en) 2016-10-04
EP2835918A1 (en) 2015-02-11
US20150078221A1 (en) 2015-03-19
CN107959560A (zh) 2018-04-24
EP2835920A1 (en) 2015-02-11
KR101633209B1 (ko) 2016-07-01
JP6308995B2 (ja) 2018-04-11
EP2835920B1 (en) 2020-03-11
EP2835918B1 (en) 2019-08-07
US20160381689A1 (en) 2016-12-29
US9462587B2 (en) 2016-10-04
US10448402B2 (en) 2019-10-15
KR101643073B1 (ko) 2016-08-10
KR20150001742A (ko) 2015-01-06
EP2835918A4 (en) 2015-12-30
CN104205687A (zh) 2014-12-10
CN104205688A (zh) 2014-12-10
US10887883B2 (en) 2021-01-05
EP3567762A1 (en) 2019-11-13
EP2835920A4 (en) 2016-04-27
EP3567762B1 (en) 2020-12-09
WO2013151396A1 (ko) 2013-10-10
JP2015518679A (ja) 2015-07-02
CN104205687B (zh) 2018-06-05
US20150055521A1 (en) 2015-02-26
US20180310315A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
WO2013151394A1 (ko) 무선통신 시스템에서 반송파 집성 방법 및 장치
WO2017069474A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2017039373A1 (en) Method and apparatus for indicating center frequency offset for narrowband ue in wireless communication system
WO2016159740A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2017010798A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2016018046A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2014185660A1 (ko) 셀 커버리지 확장 영역 위치한 mtc 기기의 정보 수신 방법
WO2013129884A1 (ko) 하향링크 데이터 전송 방법 및 장치
WO2011046334A2 (en) Apparatus and method for transmitting and receiving control information in wireless communication system
WO2014185673A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
WO2014163302A1 (ko) 소규모 셀에서의 수신 방법 및 사용자 장치
WO2011145823A2 (ko) 다중 캐리어를 위한 캐리어 지시 필드의 구성 방법 및 장치
WO2013176531A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2014062041A1 (ko) 무선 통신 시스템에서 하향링크 제어채널을 모니터링하는 방법 및 장치
WO2013147532A1 (ko) 무선 통신 시스템에서 트래킹 참조 신호를 이용한 채널 측정 방법 및 이를 이용하는 장치
WO2016204590A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2012144801A2 (ko) 무선통신시스템에서 신호 전송 방법 및 장치
WO2010062061A2 (ko) 다중 반송파 시스템에서 통신방법 및 장치
WO2019066318A1 (ko) 통신 시스템에서 프리엠션의 지시 방법
WO2014017746A1 (ko) Harq 수행 방법 및 단말
WO2017119791A2 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013169003A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2019031927A1 (ko) 무선 통신 시스템에서 사이드링크 전송과 관련된 그랜트를 전송하는 방법 및 이를 위한 장치
WO2013129865A1 (ko) 반송파 결합을 지원하는 무선통신시스템에서 서로 다른 타입의 반송파를 사용하여 통신을 수행하는 방법 및 장치
WO2013151327A1 (ko) 무선통신 시스템에서 사운딩 참조 신호 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13771907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147027692

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015504506

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14390315

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013771907

Country of ref document: EP