WO2016018046A1 - 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2016018046A1
WO2016018046A1 PCT/KR2015/007879 KR2015007879W WO2016018046A1 WO 2016018046 A1 WO2016018046 A1 WO 2016018046A1 KR 2015007879 W KR2015007879 W KR 2015007879W WO 2016018046 A1 WO2016018046 A1 WO 2016018046A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrp
ucell
scell
terminal
base station
Prior art date
Application number
PCT/KR2015/007879
Other languages
English (en)
French (fr)
Inventor
양석철
안준기
이승민
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP15826780.7A priority Critical patent/EP3176962B1/en
Priority to KR1020167036289A priority patent/KR102295822B1/ko
Priority to KR1020227041725A priority patent/KR102544449B1/ko
Priority to US15/329,572 priority patent/US10219263B2/en
Priority to CN201580041569.5A priority patent/CN106576343B/zh
Priority to CN202010071099.XA priority patent/CN111278134B/zh
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP20196217.2A priority patent/EP3771115B1/en
Priority to KR1020217026903A priority patent/KR102475628B1/ko
Publication of WO2016018046A1 publication Critical patent/WO2016018046A1/ko
Priority to US16/248,400 priority patent/US10743302B2/en
Priority to US16/932,474 priority patent/US11445493B2/en
Priority to US17/881,245 priority patent/US11963194B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • the present invention relates to a wireless communication system, and more particularly to a method and apparatus for transmitting and receiving wireless signals.
  • the wireless communication system includes a carrier aggregation (CA) -based wireless communication system.
  • CA carrier aggregation
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and an apparatus therefor for efficiently performing a wireless signal transmission and reception process.
  • a method for a terminal to perform communication in a wireless communication system comprising: configuring a PCell (Primary Cell) of a licensed band and a SCell (Secondary Cell) of an unlicensed band for a base station; Receiving resource configuration information about the SCell through a physical downlink control channel (PDCCH) of the PCell; Constructing a subframe set within a temporary time period on the SCell based on the resource configuration information; And communicating with the base station using the set of subframes temporarily configured on the SCell.
  • PCell Primary Cell
  • SCell Secondary Cell
  • a terminal configured to perform communication in a wireless communication system
  • the terminal comprising: a radio frequency (RF) module; And a processor, wherein the processor is configured to configure a PCell (Primary Cell) of a licensed band and a SCell (Secondary Cell) of an unlicensed band to a base station, and the PCell relates to the SCell through a PDCCH (Physical Downlink Control Channel) of the PCell.
  • Receive resource configuration information configure a subframe set within a temporary time period on the SCell, and communicate with the base station using the subframe set temporarily configured on the SCell;
  • a terminal configured to perform is provided.
  • the subframe set may consist only of downlink subframes or only uplink subframes.
  • the subframe set may be composed of one or more uplink subframes and one or more downlink subframes disposed thereafter.
  • a specific signal may be transmitted for a predetermined time after an end point of the at least one uplink subframe.
  • the length of the time period may be indicated in advance through a Radio Resource Control (RRC) message, and the subframe pattern in the subframe set may be indicated using resource configuration information about the SCell.
  • RRC Radio Resource Control
  • FIG. 1 illustrates physical channels used in a 3GPP LTE (-A) system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • -A 3GPP LTE
  • FIG. 2 illustrates a structure of a radio frame.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • EDCCH Enhanced Physical Downlink Control Channel
  • FIG. 6 illustrates a structure of an uplink subframe.
  • FIG. 8 illustrates a block diagram of a transmitter and a receiver for OFDMA and SC-FDMA.
  • CA 9 illustrates a Carrier Aggregation (CA) communication system.
  • 11 illustrates carrier merging of a licensed band and an unlicensed band.
  • 12-13 illustrate a method of occupying resources in an unlicensed band.
  • FIG. 14 illustrates a method of performing communication according to an embodiment of the present invention.
  • FIG. 15 illustrates a base station and a terminal that can be applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced) is an evolved version of 3GPP LTE.
  • 3GPP LTE / LTE-A the technical spirit of the present invention is not limited thereto.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP LTE (-A) system and a general signal transmission method using the same.
  • the terminal which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and provides information such as a cell identity. Acquire.
  • the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell discovery, the UE receives a physical downlink control channel (PDSCH) according to physical downlink control channel (PDCCH) and physical downlink control channel information in step S102 to be more specific.
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • System information can be obtained.
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104).
  • contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106). ) Can be performed.
  • the UE After performing the above-described procedure, the UE performs a general downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel (PUSCH) / as a general uplink / downlink signal transmission procedure.
  • Physical uplink control channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel State Information (CSI), and the like.
  • HARQ ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK
  • SR Scheduling Request
  • CSI Channel State Information
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • the uplink / downlink data packet transmission is performed in subframe units, and the subframe is defined as a time interval including a plurality of symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in the slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP when an OFDM symbol is configured by a normal CP, the number of OFDM symbols included in one slot may be seven.
  • extended CP since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six.
  • an extended CP may be used to further reduce intersymbol interference.
  • the subframe includes 14 OFDM symbols.
  • First up to three OFDM symbols of a subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 (b) illustrates the structure of a type 2 radio frame.
  • Type 2 radio frames consist of two half frames.
  • the half frame includes 4 (5) normal subframes and 1 (0) special subframes.
  • the general subframe is used for uplink or downlink according to the UL-Downlink configuration.
  • the subframe consists of two slots.
  • Table 1 illustrates a subframe configuration in a radio frame according to the UL-DL configuration.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • the special subframe includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the structure of the radio frame is merely an example, and the number of subframes, the number of slots, and the number of symbols in the radio frame may be variously changed.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes 7 OFDM symbols and one resource block (RB) is illustrated as including 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12x7 REs.
  • the number NDL of RBs included in the downlink slot depends on the downlink transmission band.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 4 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located in front of the first slot in a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbol corresponds to a data region to which a physical downlink shared chance (PDSCH) is allocated, and a basic resource unit of the data region is RB.
  • Examples of downlink control channels used in LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information on the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH is a response to uplink transmission and carries an HARQ ACK / NACK (acknowledgment / negative-acknowledgment) signal.
  • Control information transmitted on the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain group of terminals.
  • DCI downlink control information
  • the DCI format has formats 0, 3, 3A, 4 for uplink, formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, etc. defined for downlink.
  • the type of the information field, the number of information fields, the number of bits of each information field, etc. vary according to the DCI format.
  • the DCI format may include a hopping flag, an RB assignment, a modulation coding scheme (MCS), a redundancy version (RV), a new data indicator (NDI), a transmit power control (TPC), It optionally includes information such as a HARQ process number and a precoding matrix indicator (PMI) confirmation.
  • MCS modulation coding scheme
  • RV redundancy version
  • NDI new data indicator
  • TPC transmit power control
  • PMI precoding matrix indicator
  • any DCI format may be used for transmitting two or more kinds of control information.
  • DCI format 0 / 1A is used to carry DCI format 0 or DCI format 1, which are distinguished by a flag field.
  • the PDCCH includes a transmission format and resource allocation of a downlink shared channel (DL-SCH), resource allocation information for an uplink shared channel (UL-SCH), paging information for a paging channel (PCH), and system information on the DL-SCH. ), Resource allocation information of a higher-layer control message such as a random access response transmitted on a PDSCH, transmission power control commands for individual terminals in an arbitrary terminal group, activation of voice over IP (VoIP), and the like. .
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive CCEs (consecutive control channel elements).
  • the CCE is a logical allocation unit used to provide a PDCCH of a predetermined coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of bits of the available PDCCH are determined according to the correlation between the number of CCEs and the code rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with a unique identifier (referred to as a radio network temporary identifier (RNTI)) depending on the owner of the PDCCH or the intended use.
  • RNTI radio network temporary identifier
  • a unique identifier (eg, C-RNTI (cell-RNTI)) of the terminal is masked on the CRC.
  • C-RNTI cell-RNTI
  • a paging indication identifier eg, p-RNTI (p-RNTI)
  • SIB system information block
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • the PDCCH carries a message known as Downlink Control Information (DCI), and the DCI includes resource allocation and other control information for one terminal or a group of terminals.
  • DCI Downlink Control Information
  • a plurality of PDCCHs may be transmitted in one subframe.
  • Each PDCCH is transmitted using one or more Control Channel Elements (CCEs), and each CCE corresponds to nine sets of four resource elements.
  • CCEs Control Channel Elements
  • the four resource elements are referred to as resource element groups (REGs).
  • Four QPSK symbols are mapped to one REG.
  • the resource element allocated to the reference signal is not included in the REG, so that the total number of REGs within a given OFDM symbol depends on the presence of a cell-specific reference signal.
  • REG is also used for other downlink control channels (PCFICH and PHICH). That is, REG is used as a basic resource unit of the control region.
  • PCFICH downlink control channels
  • PHICH PHICH
  • a PDCCH with a format consisting of n CCEs can only start with a CCE having the same number as a multiple of n.
  • the number of CCEs used for transmission of a specific PDCCH is determined by the base station according to channel conditions. For example, if the PDCCH is for a terminal having a good downlink channel (eg, close to a base station), one CCE may be sufficient. However, in case of a terminal having a bad channel (eg, close to a cell boundary), eight CCEs may be used to obtain sufficient robustness.
  • the power level of the PDCCH may be adjusted according to channel conditions.
  • the approach introduced in LTE is to define a limited set of CCE locations where the PDCCH can be located for each terminal.
  • the limited set of CCE locations where the UE can find its own PDCCH may be referred to as a search space (SS).
  • the search space has a different size according to each PDCCH format.
  • UE-specific and common search spaces are defined separately.
  • the UE-Specific Search Space (USS) is set individually for each terminal, and the range of the Common Search Space (CSS) is known to all terminals.
  • UE-specific and common search spaces may overlap for a given terminal.
  • the base station may not find CCE resources for transmitting the PDCCH to all possible UEs.
  • the UE-specific hopping sequence is applied to the start position of the UE-specific search space in order to minimize the possibility of the above blocking leading to the next subframe.
  • Table 3 shows the sizes of common and UE-specific search spaces.
  • the terminal In order to keep the computational load according to the total number of blind decoding (BD) under control, the terminal is not required to simultaneously search all defined DCI formats.
  • the terminal In general, within a UE-specific search space, the terminal always searches for formats 0 and 1A. Formats 0 and 1A have the same size and are distinguished by flags in the message.
  • the terminal may be required to receive the additional format (eg, 1, 1B or 2 depending on the PDSCH transmission mode set by the base station).
  • the UE searches for formats 1A and 1C.
  • the terminal may be configured to search for format 3 or 3A.
  • Formats 3 and 3A have the same size as formats 0 and 1A and can be distinguished by scrambled CRCs with different (common) identifiers, rather than terminal-specific identifiers.
  • PDSCH transmission schemes according to transmission modes and information contents of DCI formats are listed below.
  • Transmission mode 1 Transmission from a single base station antenna port
  • Transmission mode 4 closed-loop spatial multiplexing
  • Transmission Mode 7 Single-antenna Port (Port 5) Transmission
  • ⁇ Transmission Mode 8 Double Layer Transmission (Ports 7 and 8) or Single-Antenna Port (Ports 7 or 8) Transmission
  • ⁇ Transfer Mode 9 Up to eight layer transfers (ports 7 to 14) or single-antenna ports (ports 7 or 8)
  • Format 1B Compact resource allocation for PDSCH (mode 6) using rank-1 closed-loop precoding
  • Format 1D compact resource allocation for PDSCH (mode 5) using multi-user MIMO
  • EPDCCH is a channel further introduced in LTE-A.
  • a control region (see FIG. 4) of a subframe may be allocated a PDCCH (Legacy PDCCH, L-PDCCH) according to the existing LTE.
  • the L-PDCCH region means a region to which an L-PDCCH can be allocated.
  • a PDCCH may be additionally allocated in a data region (eg, a resource region for PDSCH).
  • the PDCCH allocated to the data region is called an EPDCCH.
  • the EPDCCH carries a DCI.
  • the EPDCCH may carry downlink scheduling information and uplink scheduling information.
  • the terminal may receive an EPDCCH and receive data / control information through a PDSCH corresponding to the EPDCCH.
  • the terminal may receive the EPDCCH and transmit data / control information through a PUSCH corresponding to the EPDCCH.
  • the EPDCCH / PDSCH may be allocated from the first OFDM symbol of the subframe according to the cell type.
  • the PDCCH herein includes both L-PDCCH and EPDCCH.
  • FIG. 6 illustrates a structure of an uplink subframe.
  • an uplink subframe includes a plurality of slots (eg, two).
  • the slot may include different numbers of SC-FDMA symbols according to the CP length. For example, in case of a normal CP, a slot may include 7 SC-FDMA symbols.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit a data signal such as voice.
  • the control region includes a PUCCH and is used to transmit control information.
  • the control information includes HARQ ACK / NACK, Channel Quality Information (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), and the like.
  • CQI Channel Quality Information
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • the transmission of the uplink radio frame i starts before (N TA + N TAoffset ) * T s seconds before the downlink radio frame.
  • N TAoffset 0 in FDD
  • N TAoffset 624 in TDD.
  • the N TAoffset value is a value previously recognized by the base station and the terminal. If N TA is indicated through a timing advance command in the random access procedure, the UE adjusts a transmission timing of a UL signal (eg, PUCCH / PUSCH / SRS) through the above equation.
  • the UL transmission timing is set in multiples of 16T s .
  • the timing advance command indicates a change in the UL timing based on the current UL timing.
  • the timing advance command received in subframe n is applied from subframe n + 6.
  • the transmission time of UL subframe n is advanced based on the start time of DL subframe n.
  • TDD the transmission time of the UL subframe n is advanced based on the end time of the DL subframe n + 1 (not shown).
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • a transmitter may be part of a base station and a receiver may be part of a terminal.
  • an OFDMA transmitter includes a serial to parallel converter (202), a sub-carrier mapping module 206, an M-point IDFT module 208, and a pure prefix CP (Cyclic Prefix) additional module 210, Parallel to Serial converter (212) and Radio Frequency (RF) / Digital to Analog Converter (DAC) module 214.
  • serial to parallel converter 202
  • sub-carrier mapping module 206 a sub-carrier mapping module 206
  • M-point IDFT module 208 an M-point IDFT module 208
  • CP Cyclic Prefix
  • RF Radio Frequency
  • DAC Digital to Analog Converter
  • Signal processing in the OFDMA transmitter is as follows. First, a bit stream is modulated into a data symbol sequence.
  • the bit stream may be obtained by performing various signal processing such as channel encoding, interleaving, scrambling, etc. on the data block received from the medium access control (MAC) layer.
  • the bit stream is sometimes referred to as a codeword and is equivalent to a block of data received from the MAC layer.
  • the data block received from the MAC layer is also called a transport block.
  • the modulation scheme may include, but is not limited to, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), and Quadrature Amplitude Modulation (n-QAM).
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • n-QAM Quadrature Amplitude Modulation
  • the N data symbols are mapped to the allocated N subcarriers among the total M subcarriers, and the remaining M-N carriers are padded with zeros (206).
  • Data symbols mapped to the frequency domain are converted to time domain sequences through M-point IDFT processing (208). Thereafter, in order to reduce inter-symbol interference (ISI) and inter-carrier interference (ICI), an OFDMA symbol is generated by adding a cyclic prefix to the time-domain sequence.
  • the generated OFDMA symbols are converted 212 in parallel to serial. Thereafter, the OFDMA symbol is transmitted to the receiver through the process of digital-to-analog conversion, frequency upconversion, etc. (214).
  • the other user is allocated an available subcarrier among the remaining M-N subcarriers.
  • the OFDMA receiver includes an RF / ADC (Analog to Digital Converter) module 216, a serial / parallel converter 218, a remove CP module 220, an M-point DFT module 224, and a subcarrier D.
  • the signal processing of the OFDMA receiver consists of the inverse of the OFDMA transmitter.
  • the SC-FDMA transmitter further includes an N-point DFT module 204 before the subcarrier mapping module 206 as compared to the OFDMA transmitter.
  • SC-FDMA transmitter can significantly reduce the PAPR of the transmission signal compared to the OFDMA scheme by spreading a plurality of data in the frequency domain through the DFT prior to IDFT processing.
  • the SC-FDMA receiver further includes an N-point IDFT module 228 after the subcarrier demapping module 226 as compared to the OFDMA receiver.
  • the signal processing of the SC-FDMA receiver consists of the inverse of the SC-FDMA transmitter.
  • CA 9 illustrates a Carrier Aggregation (CA) communication system.
  • a plurality of uplink / downlink component carriers may be collected to support a wider uplink / downlink bandwidth.
  • Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain.
  • the bandwidth of each component carrier can be determined independently. It is also possible to merge asymmetric carriers in which the number of UL CCs and the number of DL CCs are different.
  • the control information may be set to be transmitted and received only through a specific CC. This particular CC may be referred to as the primary CC and the remaining CCs may be referred to as the secondary CC.
  • the PDCCH for downlink allocation may be transmitted in DL CC # 0, and the corresponding PDSCH may be transmitted in DL CC # 2.
  • component carrier may be replaced with other equivalent terms (eg, carrier, cell, etc.).
  • a carrier indicator field (CIF) is used.
  • Configuration for the presence or absence of CIF in the PDCCH may be semi-statically enabled by higher layer signaling (eg, RRC signaling) to be UE-specific (or UE group-specific).
  • RRC signaling e.g., RRC signaling
  • ⁇ CIF disabled The PDCCH on the DL CC allocates PDSCH resources on the same DL CC and PUSCH resources on a single linked UL CC.
  • a PDCCH on a DL CC may allocate a PDSCH or PUSCH resource on one DL / UL CC among a plurality of merged DL / UL CCs using the CIF.
  • the base station may allocate a monitoring DL CC (set) to reduce the BD complexity at the terminal side.
  • the UE may perform detection / decoding of the PDCCH only in the corresponding DL CC.
  • the base station may transmit the PDCCH only through the monitoring DL CC (set).
  • the monitoring DL CC set may be set in a terminal-specific, terminal-group-specific or cell-specific manner.
  • DL CC A is set to PDCCH CC.
  • DL CC A to C may be referred to as a serving CC, a serving carrier, a serving cell, and the like.
  • each DL CC can transmit only PDCCH scheduling its PDSCH without CIF according to the LTE PDCCH rule (non-cross-CC scheduling).
  • a specific CC eg, DL CC A
  • PDCCH is not transmitted in DL CC B / C.
  • Embodiment Signal Transmission / Reception in LTE-U
  • the frequency spectrum is divided into a licensed band and an unlicensed band.
  • License bands include frequency bands occupied for a particular use.
  • licensed bands include government-assigned frequency bands for cellular communication (eg, LTE frequency bands).
  • An unlicensed band is a frequency band occupied for public use and is also referred to as a license-free band.
  • Unlicensed bands can be used by anyone without permission or notification if they meet the conditions for radio regulations.
  • Unlicensed bands are distributed or designated for use by anyone in a specific area or in close proximity of buildings within the output range that does not impede the communication of other wireless stations, and are used in various ways such as wireless remote control, wireless power transmission, and wireless LAN (WiFi). have.
  • LTE systems are also considering ways to utilize unlicensed bands (eg, 2.4GHz and 5GHz bands) used by existing WiFi systems for traffic offloading.
  • the unlicensed band assumes a method of wireless transmission and reception through competition between communication nodes, so that each communication node performs channel sensing (CS) before transmitting signals so that other communication nodes do not transmit signals. Asking for confirmation.
  • This is called a clear channel assessment (CCA)
  • a base station or a terminal of an LTE system may need to perform a CCA for signal transmission in an unlicensed band.
  • the unlicensed band used in the LTE-A system is referred to as LTE-U band / band.
  • the CCA threshold is defined as -62 dBm for non-WiFi signals and -82 dBm for WiFi signals. Therefore, when a signal other than WiFi is received with a power of -62 dBm or more, the STA (Station) / AP (Access Point) does not transmit a signal in order not to cause interference.
  • the STA / AP may perform CCA and perform signal transmission unless it detects a signal higher than the CCA threshold more than 4 us.
  • LTE-A band a licensed band
  • LTE-U band an unlicensed band
  • the base station may transmit a signal to the terminal or the terminal may transmit a signal to the base station.
  • the central carrier or frequency resource of the licensed band may be interpreted as PCC or PCell
  • the central carrier or frequency resource of the unlicensed band may be interpreted as SCC or SCell.
  • the base station and the terminal In order for the base station and the terminal to communicate in the LTE-U band, the base station and the terminal should be able to occupy / secure the corresponding band for a specific time period through competition with other communication (eg, WiFi) systems irrelevant to the LTE-A.
  • the time period occupied / obtained for cellular communication in the LTE-U band is called a reserved resource period (RPP).
  • RRP reserved resource period
  • the base station may continuously transmit RS and data signals within the RRP interval in order to continuously transmit a signal above a specific power level during the RRP interval. If the base station has previously determined the RRP interval to be occupied on the LTE-U band, the base station may inform the terminal in advance so that the terminal may maintain the communication transmission / reception link for the indicated RRP interval. As a method of informing the terminal of the RRP interval information, it is possible to transmit the RRP time interval information through another CC (eg, LTE-A band) connected in the form of carrier aggregation.
  • another CC eg, LTE-A band
  • an RRP interval consisting of M consecutive SFs may be set.
  • one RRP interval may be set to a discontinuously existing SF set (not shown).
  • the base station may inform the UE of M values and M SF uses in advance through an upper layer (eg, RRC or MAC) signaling (PCell) or a physical control / data channel.
  • the start time of the RRP interval may be periodically set by higher layer (eg, RRC or MAC) signaling.
  • the start point of the RRP interval may be designated through physical layer signaling (eg, (E) PDCCH) in SF #n or SF # (nk). . k is a positive integer (eg 4).
  • the RRP may be configured such that the SF boundary and the SF number / index are configured to match the PCell (hereinafter, aligned-RRP) (FIG. 12), or the SF boundary or SF number / index is not supported to the PCell.
  • aligned-RRP floating-RRP
  • the coincidence between SF boundaries between cells may mean that the interval between SF boundaries of two different cells is equal to or less than a specific time (eg, CP length, or X us (X ⁇ 0)).
  • the PCell may refer to a cell that is referred to to determine the SF (and / or symbol) boundary of the UCell in terms of time (and / or frequency) synchronization.
  • the base station may perform carrier sensing before transmitting and receiving data. If it is determined that the current channel state of the SCell is busy or idle and is determined to be idle, then the base station transmits a scheduling grant (eg, (E) through the PCell (LTE-A band) or SCell (LTE-U band). PDCCH), and may attempt to transmit and receive data on the SCell.
  • a scheduling grant eg, (E) through the PCell (LTE-A band) or SCell (LTE-U band).
  • PDCCH may attempt to transmit and receive data on the SCell.
  • a method of setting a resource interval in a cell / carrier where an available resource interval is secured / configured aperiodically or discontinuously and a base station / terminal operation accompanying it are proposed.
  • the present invention can be applied to an LTE-U system that operates opportunistically in an unlicensed band based on carrier sensing.
  • the CA situation between the PCell operating in the existing license band and the SCell operating in the LTE-U method is considered.
  • the LTE-U based cell eg, SCell
  • the resource interval secured / configured aperiodically in UCell is defined as RRP.
  • the center frequency of UCell is defined as (DL / UL) UCC.
  • the cell (eg, PCell, SCell) operating in the existing license band is defined as LCell, and the center frequency of the LCell is defined as (DL / UL) LCC.
  • RRP-cfg DCI DCI
  • RRP-cfg DCI DCI
  • the SF configuration of the RRP and the UE operation method according to the RRP-cfg DCI transmission will be described.
  • the case where the UCell is scheduled from the same cell and the case where the UCell is scheduled from another cell (eg, PCell) are called self-CC scheduling and cross-CC scheduling, respectively.
  • the proposed schemes of the present invention can be applied even in a case where a plurality of licensed bands and a plurality of unlicensed bands are used as a carrier aggregation technique.
  • the present invention may be applied to a case where signal transmission and reception between the base station and the terminal is performed using only an unlicensed band.
  • the proposed schemes of the present invention can be extended to not only 3GPP LTE system but also other system.
  • the base station is used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRP refers to a resource configured discontinuously / aperiodically depending on a carrier sensing result.
  • RRP may be defined as follows.
  • a synchronization signal for example, PSS and SSS
  • a reference signal for example, a cell-specific reference signal (CRS) and a channel state information reference signal (CSI-RS)
  • the DCI or information / parameter (e.g. RRP-cfg DCI) transmitted for RRP configuration is transmitted in the form of PDCCH using CSS resources on the PCell, or a specific signal (e.g., radio channel occupancy signal or preamble signal configured on the UCell). Can be sent via).
  • the following two RRP-cfg DCI detection schemes may be considered (from a terminal perspective) according to the resource usage frequency and / or scheduling plan of the base station for the UCell.
  • Alt D1 Performs RRP-cfg DCI detection on all DL SFs
  • the UE may perform a detection operation for the RRP-cfg DCI in all DL SFs of the PCell.
  • One RRP-cfg DCI may consist of a single PDCCH transmitted through one DL SF or may consist of a plurality of PDCCHs repeatedly transmitted through R (> 1) DL SFs.
  • Alt D2 Performs RRP-cfg DCI detection every N SF cycles
  • the UE may perform a detection operation on the RRP-cfg DCI for one or M (> 1) SFs every N (> 1) SF periods.
  • One RRP-cfg DCI may be transmitted (repeated) through one or R (> 1) SFs.
  • M may be set to the same value as R or a multiple of R.
  • One R SF sections constituting one RRP-cfg DCI may be set to belong to only one M SF sections in which RRP-cfg DCI detection is performed (that is, not configured over a plurality of M SF sections). Can be.
  • one RRP-cfg DCI may include RRP interval setting information for a plurality of UCells.
  • each of a plurality of fields (for convenience, R-fields) configured in the RRP-cfg DCI may signal RRP configuration information for one UCell individually / independently.
  • the RRP-cfg DCI may be transmitted in the form of UE-common RNTI based PDCCH. That is, RRP configuration information for a specific UCell may be signaled through a combination of a specific RNTI and an R-field. For a UCell having no RRP section set, information corresponding to “no RRP configuration” may be signaled through a corresponding R-field.
  • one RRP-cfg DCI may include RRP interval configuration information (on a specific UCell) for a plurality of terminals.
  • each of a plurality of fields (for convenience, R-fields) configured in the RRP-cfg DCI may signal RRP configuration information for one terminal that is separate / independent.
  • the RRP-cfg DCI may be transmitted in the form of UE-common RNTI based PDCCH. That is, the RRP configuration information for a specific terminal may be signaled through a combination of a specific RNTI and an R-field. For a terminal having no RRP section configured, information corresponding to “no RRP configuration” may be signaled through a corresponding R-field.
  • a terminal set to a specific transmission mode may assume / refer that only a reference signal corresponding to the TM is transmitted in the interval set to RRP. Can be.
  • TM transmission mode
  • only the CRS transmission may operate in the assumed / regarded state.
  • CSI-RS and / or CSI-IM (Interference Measurement) transmission may operate in the assumed / regarded state.
  • the information signaled via the RRP-cfg DCI may include RRP-cfg DCI transmission / detection SF configuration (e.g. Alt D1 or Alt D2), SF resource configuration on UCell (e.g. aligned-RRP or floating-RRP). According to the following information may be included.
  • the RRP-cfg DCI may be signaled for indicating the total time of the RRP interval (eg, the total number of SFs in the RRP interval) and the SF usage constituting the RRP (eg, DL and UL).
  • the RRP section is determined to be idle due to carrier sensing of another system
  • SF in one RRP section is composed of only two cases in which all DLs or all ULs (without the DL / UL switching interval) are included. Can be.
  • SF in the RRP interval can be configured in such a manner that consecutive ULs are arranged first and subsequent DLs are arranged.
  • the SFs in the RRP may be configured of UL / DL / DL / DL, UL / UL / DL / DL, and UL / UL / UL / DL.
  • the proposed DL / UL combination is called "UL-DL mixed RRP".
  • the SF in the RRP interval may include 1) (i) both DL, (ii) two proposed DL / UL combinations, or 2) (i) both UL and (ii) the proposed DL / UL combination. It may consist of only two, or 3) (i) all DL, (ii) all UL, and (iii) the proposed DL / UL combination.
  • the RRP interval length may be indicated through the RRP-cfg DCI only for the RRP configuration SF use in a state of being preset through higher layer (eg, RRC) signaling.
  • RRC higher layer
  • only the RRP interval length may be indicated through the RRP-cfg DCI in a preset state through a higher layer signal.
  • HARQ timing eg, UL grant / PUSCH / PHICH transmission timing
  • the UCell is considered to be the same as the FDD SCell ( Depending on whether it is TDD), the following UL HARQ timing applied to the FDD SCell may be applied to the UCell.
  • a PCell may refer to a cell configured to schedule a (cross-CC) UCell.
  • UL grant scheduling PUSCH transmission of SF #n is transmitted / received through SF # (n-4), and PHICH corresponding to PUSCH transmission of SF #n is SF # (n + 6).
  • Transmit / receive through or use the UL HARQ timing defined in the PCell's UL / DL configuration
  • a UE that transmits or is configured / scheduled to transmit or transmit a UL channel / signal (eg, PUSCH or SRS) on the last UL SF (just before the first DL SF) of the UL-DL mixed RRP is UL (without carrier sensing).
  • a UL channel / signal eg, PUSCH or SRS
  • the post-occupation signal may be configured in the form of a cyclic prefix (or a portion thereof) or in the form of a cyclic postfix.
  • the cyclic postfix consists of a copy of the original portion of the time domain signal that has undergone the IFFT process (IDFT of FIG. 8). Transmission related information (eg, timing, interval) of the post-occupancy signal may be set from the base station.
  • the UE designates to perform only post-occupancy signal transmission (from the end of the last UL SF without carrier sensing) even if the UL channel / signal transmission is not set / scheduled in a given UL-DL mixed RRP (or the last UL SF in the RRP). / Can be indicated.
  • a specific terminal eg, a terminal having a very small TA value applied to UL transmission
  • the terminal own UL-to-DL that is, TX Due to the -to-RX switching operation (the accompanying gap)
  • TX Due to the -to-RX switching operation
  • post-occupation signal transmission is limited to performing only a terminal whose TA value is above a certain threshold value, or 2) UE-specifically informs whether to perform post-occupation signal transmission through RRC or UL grant, or 3)
  • an operation eg, puncturing the first DL OFDMA symbol
  • UE-common signals / resources (eg, synchronization / reference signals and / or measurement signals / resources, etc.) transmitted through the first (or all) DL SFs in the UL-DL mixed RRP may be It may consist of only OFDAM symbols that exist after the first OFDMA symbol of the DL SF.
  • terminal-common signals / resources (eg, synchronization / reference signals and / or measurement signals / resources, etc.) may also be present in the first OFDMA symbol.
  • the proposed method is not limited to UL-DL mixed RRP, but can be applied to any RRP including UL-to-DL switching.
  • the last UL SF in the UL-DL mixed RRP each include a UL SF located immediately before the DL SFs; It may be replaced / considered by a DL SF located immediately after the UL SF.
  • This information relates to the number of remaining SFs in the remaining RRP intervals (or, in the RRP intervals, for example, RRP intervals) from the time when the RRP-cfg DCI is detected (or a specific SF offset is added thereto). It may be signaled for the purpose of notifying the time SF, etc.). This information may be useful in situations where RRP-cfg DCI transmission / detection is set to be performed for all DL SFs, such as in Alt D1.
  • This information may be signaled for indicating an SF number / index (or a parameter capable of inferring this) of the start SF of the RRP interval.
  • This information provides information on the situation where the UC boundary's SF boundary (or SF number / index) does not match the PCell (e.g. Floating-RRP) or the RRP starting point on the UCell (or specific preamble, sync signal, reference signal that can identify it). Etc.) may be useful in a situation in which the terminal directly detects the same.
  • This information is the interval between the starting OFDMA symbols of PCell SF and UCell SF having the same SF number / index or information that can be inferred, and / or the relative between the starting OFDMA symbols of PCell SF and UCell SF having the same SF number / index. It may be signaled for indicating a location relationship. For example, the information may indicate how much (eg, the number of OFDMA symbols) the starting OFDMA symbol of the UCell SF is separated from the starting OFDMA symbol of the PCell SF having the same SF number / index.
  • the information may indicate whether the start OFDMA symbol of the UCell SF is located before or after time before the start OFDMA symbol of the PCell SF having the same SF number / index. This information may be useful in situations where the UC boundary (or SF number / index) of the UCell does not match the PCell (eg, Floating-RRP).
  • This information may be signaled for the purpose of indicating the index (or number) (eg, relative to RRP) for the RRP.
  • the first RRP configured / set in UCell is RRP index 0
  • the second configured / set RRP is RRP index 1
  • the third configured / set RRP is RRP index 2,. In this way, the RRP index can be determined.
  • the UL channel / signal transmission related information and / or DL channel / signal transmission related information in the UCell may be set / defined based on the RRP index and / or the SF index / number in the RRP.
  • the UL channel / signal transmission related information includes a PRACH preamble transmission timing, an SRS transmission timing / period, a PUSCH retransmission timing interval, and the like.
  • the DL channel / signal transmission related information may include, for example, a synchronization signal (eg, PSS / SSS) transmission timing / cycle, a measurement / tracking RS (eg, CRS, discovery RS) transmission timing / cycle, CSI-RS transmission timing / Period, interference measurement resource (ie, CSI-IM or zero-power CSI-RS) configuration timing / period, and the like.
  • a synchronization signal eg, PSS / SSS
  • a measurement / tracking RS eg, CRS, discovery RS
  • CSI-RS transmission timing / Period
  • interference measurement resource ie, CSI-IM or zero-power CSI-RS
  • Alt S1 RRP start SF is determined when a specific signal is detected on UCell.
  • a specific signal hereinafter, UCell preamble
  • the UE may directly perform a detection operation on the UCell preamble.
  • the UE may determine the time point at which the UCell preamble is detected as the start point (eg, SF) of the RRP interval.
  • the UCell preamble may be in the form of a preamble, a synchronization signal (eg, PSS and / or SSS), a reference signal (eg, CRS), or the like.
  • Alt S2 implicitly determines the RRP start SF from a specific SF point in PCell
  • a specific (SF) time point on the PCell for example, an SF where the RRP-cfg DCI is detected (or a time point when a specific SF offset is added) may be determined as a start point (eg, SF) of the RRP interval.
  • the UE may operate in the state (assuming at least) that the SF boundary of the UCell coincides with the PCell. This method may be useful in a situation in which there is no separate signal configuration indicating a starting point in the RRP interval.
  • the following method may be considered to determine the SF number / index (constituting the RRP) on the UCell.
  • ⁇ SF number / index is determined by detecting UCell preamble signal property
  • the mapping relationship between the property of the UCell preamble signal and the SF number / index may be set in advance so that the property of the UCell preamble signal may be classified according to the SF number / index. Accordingly, the UE may determine the SF number / index of the SF including the UCell preamble signal in the RRP by detecting the signal property of the UCell preamble. For the remaining SFs in the RRP, the corresponding SF number / index may be determined in consideration of a relative time relationship with the corresponding preamble SF.
  • the attributes of the UCell preamble signal include, for example, a sequence (pattern or type) constituting the preamble signal, a resource (eg, an OFDMA / SC-FDMA symbol or RE) to which the preamble signal is transmitted.
  • a sequence pattern or type
  • a resource eg, an OFDMA / SC-FDMA symbol or RE
  • the preamble sequence (pattern) # 0 is mapped to SF (number / index) # 0 so that sequence # 1 is mapped to correspond to SF # 1, that is, sequence #n is mapped to correspond to SF #n.
  • SF number / index
  • one RRP interval (length) is configured with three SFs and a structure in which the UCell preamble is configured / transmitted in the RRP start SF.
  • SF numbers / indexes corresponding to three SFs constituting the RRP may be determined as SF # 5, # 6, and # 7 in time order.
  • ⁇ SF number / index is determined according to SF overlap portion between UCell and PCell.
  • the SF number / index corresponding to the PCell SF that overlaps more may be determined as the SF number / index of the corresponding UCell SF according to how much SF (number / index) of the UCell SF overlaps.
  • an SF number / index corresponding to the corresponding UCell SF may be determined according to which slot in the PCell SF that the start time of the UCell SF overlaps.
  • the SF number / index of the UCell SF is SF #n if it is located in the first slot of PCell SF (eg SF #n) where the start point of UCell SF overlaps, and SF # is located in the second slot. can be determined as (n + 1).
  • the Opt 1 scheme may be applied when all SFs in an RRP interval are configured by DL
  • the Opt 2 scheme may be applied when all SFs in an RRP interval are configured by UL.
  • Two cases may be considered in which a transmission structure of RRP-cfg DCI (eg, Alt D1 or D2) and an RRP start SF determination method (eg, Alt S1 or S2) are combined and applied.
  • the following UE operation may be considered according to the RRP-cfg DCI detection result.
  • the UE may operate in the state assuming only a predetermined minimum RRP interval.
  • the present method may be useful in a situation in which UCell preamble detection is attempted based on (Opt 1) or always (Opt 2) based on a time point of performing RRP-cfg DCI detection operation regardless of whether RRP-cfg DCI detection is successful or not.
  • the UE configures SF resources on the UCell based only on the presence or absence of the DL / UL grant DCI scheduling data transmission in the UCell, and only through the UCell.
  • DL / UL transmission / reception may be performed. This method may be useful in a situation in which the SF boundaries of the UCell and the PCell operate in a matched state.
  • the RRP on the UCell may be configured in floating-RRP form while including the DL SF.
  • the decoding of the PDSCH transmitted through the UCell is completed according to the posterior relationship of the relative position between the UCell SF and the PCell SF having the same SF number / index (particularly, when the PCell SF is ahead of the UCell SF by a predetermined interval or more).
  • the time interval between HARQ-ACK feedback transmission time points in the PCell corresponding to the time points becomes very shorter than before.
  • the processing speed / capability of the terminal may need to be improved accordingly. This can greatly increase the complexity of the terminal compared to the conventional.
  • the UE may determine / generate and transmit a HARQ-ACK response as “NACK” or may not transmit a HARQ-ACK signal regardless of the PDSCH decoding result.
  • the UE decodes the last partial OFDMA symbol (s) of the entire PDSCH received signal (eg, punctures the corresponding OFDMA symbol (s)) and decodes the result of the remaining OFDMA symbol (s) ( For example, ACK or NACK) may be fed back as a HARQ-ACK response to a corresponding PDSCH reception.
  • the time interval between (i) the time of reception (completion) of the PDSCH signal (in UCell) and (ii) the time of transmission (start) of the corresponding HARQ-ACK signal transmission (in the PCell) becomes less than a certain value, or (i When the time interval between PDSCH decoding completion time and (ii) corresponding HARQ-ACK signal generation time becomes smaller than a specific value (that is, PDSCH decoding is not completed until the HARQ-ACK response should be determined).
  • the UE may omit / abandon the PUSCH transmission corresponding to the DCI or exclude the first some SC-FDMA symbol (s) of the (scheduled) total PUSCH signals (eg, the corresponding symbol (s)). Only the remaining SC-FDMA symbol (s) may be transmitted.
  • the time interval between (i) the time of receipt (complete) of the UL grant DCI (at the PCell) and (ii) the time of transmission (start) of the corresponding PUSCH signal transmission (at the UCell) is less than a certain threshold value, or (i 1) when the time interval between the UL grant DCI decoding completion time and (ii) the corresponding PUSCH signal generation time becomes smaller than a specific threshold value (i.e., the UL grant DCI decoding is not completed until the time when the PUSCH signal generation should be started).
  • the DL signal transmission power allocation in the existing DL SF may be determined by the following parameters.
  • ⁇ P_A ratio of PDSCH RE transmit power in transmission symbols that do not transmit CRS to CRS RE transmit power ([dB])
  • ⁇ P_B ratio of PDSCH RE transmit power ([dB]) in transmission symbols transmitting CRS to CRS RE transmit power
  • ⁇ P_C Ratio of PDSCH RE transmit power (in [dB]) to CSI-RS RE transmit power (in transmit symbols that do not transmit CRS).
  • the base station determines the DL transmission power for each RE.
  • the UE assumes that the CRS RS Energy Per Resource Element (EPRE) (that is, P_R) is constant over the entire DL BW and is constant over all subframes until new CRS power information is received.
  • the CRS RS EPRE may be inferred based on a parameter (eg referenceSignalPower) provided by higher layer (eg RRC) signaling.
  • the ratio of PDSCH EPRE to CRS RS EPRE ie, PDSCH EPRE / CRS RS EPRE
  • one of P_A and P_B may be determined by inference based on parameters provided by higher layer (eg, RRC) signaling, and the other of P_A and P_B may be determined using their ratio.
  • P_A / P_B may have various values such as 1, 4/5, 3/5, and 2/5 according to the CRS distribution (eg, the number of antenna ports).
  • DL signal transmission power allocation in the UCell RRP interval may be performed based on the above scheme.
  • the definition / setting of P_R in UCell may be omitted.
  • the DL signal transmission power in the UCell RRP section is replaced by the parameter of Method 1/2 with the parameter of the method 1/2. Allocation can be performed. Even in this case, if path-loss measurement through the CSI-RS reception power in the UCell is not required, the definition / setting of P_R in the UCell may be omitted.
  • ⁇ P_A PDSCH RE transmit power in symbols that do not transmit CSI-RS compared to CSI-RS RE transmit power
  • P_B PDSCH RE transmit power in a symbol transmitting CSI-RS compared to CSI-RS RE transmit power
  • P_A PDSCH RE transmit power (in any symbol) compared to CSI-RS RE transmit power
  • channel 0 and interference effects may vary due to the nature of unlicensed bands (due to attempts to transmit signals from other systems (eg, WiFi)).
  • a method of independently setting P_R, P_A, P_B, and P_C in units of RRP (or RRP group) or a specific time interval may be considered.
  • These power allocation parameters may be signaled UE-commonly via a PDCCH configured / transmitted on the PCell's CSS or a preamble signal configured / transmitted on the UCell, or a DL grant or (aperiodic CSI report) scheduling the data transmission in the UCell. May be terminal-specific signaled via a UL grant).
  • the combination of a plurality of possible power allocation parameters (e.g., P_R, P_A, P_B, P_C) is set in advance through a higher layer signal (e.g., RRC signaling, etc.). Whether to apply to an assignment may be dynamically indicated via the specific signal (eg, PDCCH or preamble or DL / UL grant).
  • a higher layer signal e.g., RRC signaling, etc.
  • the existing general SCell is UE-specifically configured, but the SCell (ie, UCell) operating in the unlicensed band may be UE-common. Therefore, a method of transmitting all or a part of system information on the UCell through a specific broadcast signal (eg, System Information Block (SIB)) in the PCell is possible.
  • SIB System Information Block
  • the proposed methods of the present invention are not limited to only cells of a type that operate based on an aperiodic RRP configuration such as LTE-U, and similarly to general cells that operate based on a transmission resource configuration as in LTE. Can be applied.
  • FIG. 14 illustrates a method of performing communication according to an embodiment of the present invention.
  • the terminal may configure the PCell of the licensed band and the SCell of the unlicensed band with respect to the base station (S1402). Thereafter, the terminal may receive resource configuration information (eg, see RRP-cfg DCI) regarding the SCell (ie, UCell) through the PDCCH of the PCell (ie, LCell) (S1404). Thereafter, the UE may configure a subframe set (eg, see RRP) within a temporary time period of the SCell (ie, UCell) based on resource configuration information (eg, see RRP-cfg DCI) (S1406). ).
  • resource configuration information eg, see RRP-cfg DCI
  • the terminal may perform communication with the base station using a subframe set (eg, RRP) temporarily configured on the SCell (ie, UCell).
  • RRP subframe set
  • SCell ie, UCell
  • the matters related to RRP-cfg DCI and RRP, and terminal / base station operations (eg, HARQ feedback operation, power control operation, etc.) according to the above may be referred to the above description.
  • FIG. 15 illustrates a base station and a terminal that can be applied to the present invention.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • BS base station
  • UE terminal
  • the wireless communication system includes a relay
  • the base station or the terminal may be replaced with a relay.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and a radio frequency unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a terminal, base station, or other equipment of a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 면허 밴드의 PCell과 비면허 밴드의 SCell을 기지국에 대해 구성하는 단계; 상기 PCell의 PDCCH(Physical Downlink Control Channel)를 통해 상기 SCell에 관한 자원 설정 정보를 수신하는 단계; 상기 자원 설정 정보에 기초해, 상기 SCell 상의 한시적(temporary) 시구간 내에 서브프레임 세트를 구성하는 단계; 및 상기 SCell 상에 한시적으로 구성된 상기 서브프레임 세트를 이용하여 상기 기지국과 통신을 수행하는 단계를 포함하는 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 신호 송수신 방법 및 장치에 관한 것이다. 무선 통신 시스템은 CA(Carrier Aggregation)-기반 무선 통신 시스템을 포함한다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 무선 통신 시스템에서 단말이 통신을 수행하는 방법에 있어서, 면허 밴드의 PCell(Primary Cell)과 비면허 밴드의 SCell(Secondary Cell)을 기지국에 대해 구성하는 단계; 상기 PCell의 PDCCH(Physical Downlink Control Channel)를 통해 상기 SCell에 관한 자원 설정 정보를 수신하는 단계; 상기 자원 설정 정보에 기초해, 상기 SCell 상의 한시적(temporary) 시구간 내에 서브프레임 세트를 구성하는 단계; 및 상기 SCell 상에 한시적으로 구성된 상기 서브프레임 세트를 이용하여 상기 기지국과 통신을 수행하는 단계를 포함하는 방법이 제공된다.
본 발명으로 다른 양상으로, 무선 통신 시스템에서 통신을 수행하도록 구성된 단말에 있어서, RF(Radio Frequency) 모듈; 및 프로세서를 포함하고, 상기 프로세서는, 면허 밴드의 PCell(Primary Cell)과 비면허 밴드의 SCell(Secondary Cell)을 기지국에 대해 구성하고, 상기 PCell의 PDCCH(Physical Downlink Control Channel)를 통해 상기 SCell에 관한 자원 설정 정보를 수신하며, 상기 자원 설정 정보에 기초해, 상기 SCell 상의 한시적(temporary) 시구간 내에 서브프레임 세트를 구성하고, 상기 SCell 상에 한시적으로 구성된 상기 서브프레임 세트를 이용하여 상기 기지국과 통신을 수행하도록 구성된 단말이 제공된다.
바람직하게, 상기 서브프레임 세트는 하향링크 서브프레임으로만 구성되거나, 상향링크 서브프레임으로만 구성될 수 있다.
바람직하게, 상기 서브프레임 세트는 하나 이상의 상향링크 서브프레임과 그 이후에 배치되는 하나 이상의 하향링크 서브프레임으로 구성될 수 있다.
바람직하게, 상기 하나 이상의 상향링크 서브프레임의 종료 시점 이후에 일정 시간 동안 특정 신호를 전송할 수 있다.
바람직하게, 상기 한시적 시구간의 길이는 RRC(Radio Resource Control) 메세지를 통해 사전에 지시되고, 상기 서브프레임 세트 내의 서브프레임 패턴은 상기 SCell에 관한 자원 설정 정보를 이용하여 지시될 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP LTE(-A) 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 하향링크 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 EPDCCH(enhanced Physical Downlink Control Channel)를 예시한다.
도 6은 상향링크 서브프레임의 구조를 예시한다.
도 7은 상향링크-하향링크 프레임 타이밍을 예시한다.
도 8은 OFDMA 및 SC-FDMA를 위한 송신기 및 수신기의 블록도를 예시한다.
도 9는 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다.
도 10은 크로스-캐리어 스케줄링(cross-carrier scheduling)을 예시한다.
도 11은 면허 밴드(licensed band)와 비면허 밴드(unlicensed band)의 캐리어 병합을 예시한다.
도 12~13은 비면허 밴드 내에서 자원을 점유하는 방법을 예시한다.
도 14는 본 발명의 실시예에 따른 통신 수행 방법을 예시한다.
도 15는 본 발명에 적용될 수 있는 기지국 및 단말을 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP LTE(-A) 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID(cell identity)등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)을 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. 상향/하향링크 데이터 패킷 전송은 서브프레임 단위로 이루어지며, 서브프레임은 다수의 심볼을 포함하는 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임은 10개의 서브프레임으로 구성되고, 하나의 서브프레임은 시간 도메인(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDM을 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 지칭될 수 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장 CP(extended CP)와 노멀 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 노멀 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 노멀 CP인 경우보다 적다. 예를 들어, 확장 CP의 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장 CP가 사용될 수 있다.
노멀 CP가 사용되는 경우, 슬롯은 7개의 OFDM 심볼을 포함하므로, 서브프레임은 14개의 OFDM 심볼을 포함한다. 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 2(b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성된다. 하프 프레임은 4(5)개의 일반 서브프레임과 1(0)개의 스페셜 서브프레임을 포함한다. 일반 서브프레임은 UL-DL 구성(Uplink-Downlink Configuration)에 따라 상향링크 또는 하향링크에 사용된다. 서브프레임은 2개의 슬롯으로 구성된다.
표 1은 UL-DL 구성에 따른 무선 프레임 내 서브프레임 구성을 예시한다.
표 1
Uplink-downlink configuration Downlink-to-Uplink Switch point periodicity Subframe number
0 1 2 3 4 5 6 7 8 9
0 5ms D S U U U D S U U U
1 5ms D S U U D D S U U D
2 5ms D S U D D D S U D D
3 10ms D S U U U D D D D D
4 10ms D S U U D D D D D D
5 10ms D S U D D D D D D D
6 5ms D S U U U D S U U D
표에서 D는 하향링크 서브프레임을, U는 상향링크 서브프레임을, S는 스페셜(special) 서브프레임을 나타낸다. 스페셜 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)를 포함한다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호 구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
도 3은 하향링크 슬롯의 자원 그리드를 예시한다.
도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함한다. 여기에서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 도메인에서 12개의 부반송파를 포함하는 것으로 예시되었다. 그러나, 본 발명이 이로 제한되는 것은 아니다. 자원 그리드 상에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭된다. 하나의 RB는 12×7 RE들을 포함한다. 하향링크 슬롯에 포함된 RB의 개수 NDL는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4는 하향링크 서브프레임의 구조를 예시한다.
도 4를 참조하면, 서브프레임 내에서 첫 번째 슬롯의 앞에 위치한 최대 3(4)개의 OFDM 심볼이 제어 채널이 할당되는 제어 영역에 해당한다. 남은 OFDM 심볼은 PDSCH(physical downlink shared chancel)가 할당되는 데이터 영역에 해당하며, 데이터 영역의 기본 자원 단위는 RB이다. LTE 에서 사용되는 하향링크 제어 채널의 예는 PCFICH(physical control format indicator channel), PDCCH(physical downlink control channel), PHICH(physical hybrid ARQ indicator channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되며 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답이고 HARQ ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보는 DCI(downlink control information)라고 지칭된다. DCI는 상향링크 또는 하향링크 스케줄링 정보 또는 임의의 단말 그룹을 위한 상향링크 전송 전력 제어 명령(Transmit Power Control Command)를 포함한다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 한다. DCI 포맷(format)은 상향링크용으로 포맷 0, 3, 3A, 4, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C 등의 포맷이 정의되어 있다. DCI 포맷에 따라 정보 필드의 종류, 정보 필드의 개수, 각 정보 필드의 비트 수 등이 달라진다. 예를 들어, DCI 포맷은 용도에 따라 호핑 플래그(hopping flag), RB 할당(assignment), MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), HARQ 프로세스 번호, PMI(precoding matrix indicator) 확인(confirmation) 등의 정보를 선택적으로 포함한다. 따라서, DCI 포맷에 따라 DCI 포맷에 정합되는 제어 정보의 사이즈(size)가 달라진다. 한편, 임의의 DCI 포맷은 두 종류 이상의 제어 정보 전송에 사용될 수 있다. 예를 들어, DCI 포맷 0/1A는 DCI 포맷 0 또는 DCI 포맷 1을 나르는데 사용되며, 이들은 플래그 필드(flag field)에 의해 구분된다.
PDCCH는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보(system information), PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 임의의 단말 그룹 내에서 개별 단말에 대한 전송 전력 제어 명령, VoIP(voice over IP)의 활성화(activation) 등을 나른다. 제어 영역 내에서 복수의 PDCCH가 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 CCE(consecutive control channel element)의 집합(aggregation) 상에서 전송된다. CCE는 무선 채널의 상태에 따라 소정 부호율 (coding rate)의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 REG(resource element group)에 대응한다. PDCCH의 포맷 및 가용한 PDCCH의 비트 수는 CCE의 개수와 CCE에 의해 제공되는 부호율 사이의 상관 관계에 따라 결정된다. 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, CRC(cyclic redundancy check)를 제어 정보에 부가한다. CRC는 PDCCH의 소유자 또는 사용 용도에 따라 유일 식별자(RNTI(radio network temporary identifier)로 지칭됨)로 마스킹 된다. PDCCH가 특정 단말을 위한 것이면, 해당 단말의 유일 식별자(예, C-RNTI (cell-RNTI))가 CRC에 마스킹 된다. 다른 예로, PDCCH가 페이징 메시지를 위한 것이면, 페이징 지시 식별자(예, P-RNTI(paging-RNTI))가 CRC에 마스킹 된다. PDCCH가 시스템 정보 (보다 구체적으로, 후술하는 SIB(system information block))에 관한 것이면, 시스템 정보 식별자(예, SI-RNTI(system information RNTI))가 CRC에 마스킹 된다. 단말의 랜덤 접속 프리앰블의 전송에 대한 응답인, 랜덤 접속 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹 된다.
PDCCH는 DCI(Downlink Control Information)로 알려진 메시지를 나르고, DCI는 하나의 단말 또는 단말 그룹을 위한 자원 할당 및 다른 제어 정보를 포함한다. 일반적으로, 복수의 PDCCH가 하나의 서브프레임 내에서 전송될 수 있다. 각각의 PDCCH는 하나 이상의 CCE(Control Channel Element)를 이용해 전송되고, 각각의 CCE는 9세트의 4개 자원요소에 대응한다. 4개 자원요소는 REG(Resource Element Group)로 지칭된다. 4개의 QPSK 심볼이 한 REG에 맵핑된다. 참조 신호에 할당된 자원요소는 REG에 포함되지 않으며, 이로 인해 주어진 OFDM 심볼 내에서 REG의 총 개수는 셀-특정(cell-specific) 참조 신호의 존재 여부에 따라 달라진다. REG 개념(즉, 그룹 단위 맵핑, 각 그룹은 4개의 자원요소를 포함)은 다른 하향링크 제어 채널 (PCFICH 및 PHICH)에도 사용된다. 즉, REG는 제어 영역의 기본 자원 단위로 사용된다. 4개의 PDCCH 포맷이 표 2에 나열된 바와 같이 지원된다.
표 2
PDCCH format Number of CCEs (n) Number of REGs Number of PDCCH bits
0 1 9 72
1 2 8 144
2 4 36 288
3 5 72 576
CCE들은 연속적으로 번호가 매겨지어 사용되고, 디코딩 프로세스를 단순화 하기 위해, n CCEs로 구성된 포맷을 갖는 PDCCH는 n의 배수와 동일한 수를 갖는 CCE에서만 시작될 수 있다. 특정 PDCCH의 전송을 위해 사용되는 CCE의 개수는 채널 조건에 따라 기지국에 의해 결정된다. 예를 들어, PDCCH가 좋은 하향링크 채널(예, 기지국에 가까움)를 갖는 단말을 위한 것인 경우, 하나의 CCE로도 충분할 수 있다. 그러나, 나쁜 채널(예, 셀 경계에 가까움)을 갖는 단말의 경우, 충분한 로버스트(robustness)를 얻기 위해 8개의 CCE가 사용될 수 있다. 또한, PDCCH의 파워 레벨이 채널 조건에 맞춰 조절될 수 있다.
LTE에 도입된 방안은 각각의 단말을 위해 PDCCH가 위치할 수 있는 제한된 세트의 CCE 위치를 정의하는 것이다. 단말이 자신의 PDCCH를 찾을 수 있는 제한된 세트의 CCE 위치는 검색 공간(Search Space, SS)으로 지칭될 수 있다. LTE에서, 검색 공간은 각각의 PDCCH 포맷에 따라 다른 사이즈를 갖는다. 또한, UE-특정(UE-specific) 및 공통(common) 검색 공간이 별도로 정의된다. UE-특정 검색 공간(UE-Specific Search Space, USS)은 각 단말을 위해 개별적으로 설정되고, 공통 검색 공간(Common Search Space, CSS)의 범위는 모든 단말에게 알려진다. UE-특정 및 공통 검색 공간은 주어진 단말에 대해 오버랩 될 수 있다. 상당히 작은 검색 공간을 가진 경우, 특정 단말을 위한 검색 공간에서 일부 CCE 위치가 할당된 경우 남는 CCE가 없기 때문에, 주어진 서브프레임 내에서 기지국은 가능한 모든 단말에게 PDCCH를 전송할 CCE 자원들을 찾지 못할 수 있다. 위와 같은 블록킹이 다음 서브프레임으로 이어질 가능성을 최소화하기 위하여 UE-특정 검색 공간의 시작 위치에 단말-특정 호핑 시퀀스가 적용된다.
표 3은 공통 및 UE-특정 검색 공간의 사이즈를 나타낸다.
표 3
PDCCH format Number of CCEs (n) Number of candidates in common search space Number of candidates in dedicated search space
0 1 - 6
1 2 - 6
2 4 4 2
3 8 2 2
블라인드 디코딩(Blind Decoding, BD)의 총 회수에 따른 계산 부하를 통제 하에 두기 위해, 단말은 정의된 모든 DCI 포맷을 동시에 검색하도록 요구되지 않는다. 일반적으로, UE-특정 검색 공간 내에서 단말은 항상 포맷 0과 1A를 검색한다. 포맷 0과 1A는 동일 사이즈를 가지며 메시지 내의 플래그에 의해 구분된다. 또한, 단말은 추가 포맷을 수신하도록 요구될 수 있다 (예, 기지국에 의해 설정된 PDSCH 전송모드에 따라 1, 1B 또는 2). 공통 검색 공간에서 단말은 포맷 1A 및 1C를 서치한다. 또한, 단말은 포맷 3 또는 3A를 서치하도록 설정될 수 있다. 포맷 3 및 3A는 포맷 0 및 1A와 동일한 사이즈를 가지며, 단말-특정 식별자 보다는, 서로 다른 (공통) 식별자로 CRC를 스크램블함으로써 구분될 수 있다. 전송모드에 따른 PDSCH 전송 기법과, DCI 포맷들의 정보 컨텐츠를 아래에 나열하였다.
전송모드(Transmission Mode, TM)
● 전송모드 1: 단일 기지국 안테나포트로부터의 전송
● 전송모드 2: 전송 다이버시티
● 전송모드 3: 개-루프 공간 다중화
● 전송모드 4: 폐-루프 공간 다중화
● 전송모드 5: 다중-사용자 MIMO
● 전송모드 6: 폐-루프 랭크-1 프리코딩
● 전송모드 7: 단일-안테나 포트(포트 5) 전송
● 전송모드 8: 이중 레이어 전송(포트 7 및 8) 또는 단일-안테나 포트(포트 7 또는 8) 전송
● 전송모드 9: 최대 8개의 레이어 전송(포트 7 ~14) 또는 단일-안테나 포트(포트 7 또는 8) 전송
DCI 포맷
● 포맷 0: PUSCH 전송 (상향링크)을 위한 자원 그랜트
● 포맷 1: 단일 코드워드 PDSCH 전송 (전송모드 1, 2 및 7)을 위한 자원 할당
● 포맷 1A: 단일 코드워드 PDSCH (모든 모드)를 위한 자원 할당의 콤팩트 시그널링
● 포맷 1B: 랭크-1 폐-루프 프리코딩을 이용하는 PDSCH (모드 6)를 위한 콤팩트 자원 할당
● 포맷 1C: PDSCH (예, 페이징/브로드캐스트 시스템 정보)를 위한 매우 콤팩트한 자원 할당
● 포맷 1D: 다중-사용자 MIMO를 이용하는 PDSCH (모드 5)를 위한 콤팩트 자원 할당
● 포맷 2: 폐-루트 MIMO 동작의 PDSCH (모드 4)를 위한 자원 할당
● 포맷 2A: 개-루프 MIMO 동작의 PDSCH (모드 3)를 위한 자원 할당
● 포맷 3/3A: PUCCH 및 PUSCH를 위해 2-비트/1-비트 파워 조정 값을 갖는 파워 콘트롤 커맨드
도 5는 EPDCCH를 예시한다. EPDCCH는 LTE-A에서 추가로 도입된 채널이다.
도 5를 참조하면, 서브프레임의 제어 영역(도 4 참조)에는 기존 LTE에 따른 PDCCH(편의상, Legacy PDCCH, L-PDCCH)가 할당될 수 있다. 도면에서 L-PDCCH 영역은 L-PDCCH가 할당될 수 있는 영역을 의미한다. 한편, 데이터 영역(예, PDSCH를 위한 자원 영역) 내에 PDCCH가 추가로 할당될 수 있다. 데이터 영역에 할당된 PDCCH를 EPDCCH라고 지칭한다. 도시된 바와 같이, EPDCCH를 통해 제어 채널 자원을 추가 확보함으로써, L-PDCCH 영역의 제한된 제어 채널 자원으로 인한 스케줄링 제약을 완화할 수 있다. L-PDCCH와 마찬가지로, EPDCCH는 DCI를 나른다. 예를 들어, EPDCCH는 하향링크 스케줄링 정보, 상향링크 스케줄링 정보를 나를 수 있다. 예를 들어, 단말은 EPDCCH를 수신하고 EPDCCH에 대응되는 PDSCH를 통해 데이터/제어 정보를 수신할 수 있다. 또한, 단말은 EPDCCH를 수신하고 EPDCCH에 대응되는 PUSCH를 통해 데이터/제어 정보를 송신할 수 있다. 셀 타입에 따라 EPDCCH/PDSCH는 서브프레임의 첫 번째 OFDM 심볼부터 할당될 수 있다. 특별히 구별하지 않는 한, 본 명세서에서 PDCCH는 L-PDCCH와 EPDCCH를 모두 포함한다.
도 6은 상향링크 서브프레임의 구조를 예시한다.
도 6을 참조하면, 상향링크 서브프레임은 복수(예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 일 예로, 보통(normal) CP의 경우 슬롯은 7개의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH를 포함하고 제어 정보를 전송하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍(RB pair)(예, m=0,1,2,3)을 포함하며 슬롯을 경계로 호핑한다. 제어 정보는 HARQ ACK/NACK, CQI(Channel Quality Information), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다.
도 7은 상향링크-하향링크 프레임 타이밍 관계를 예시한다.
도 7을 참조하면, 상향링크 무선 프레임 i의 전송은 해당 하향링크 무선 프레임보다 (NTA+NTAoffset)*Ts초 이전에 시작된다. LTE 시스템의 경우, 0≤NTA≤20512이고, FDD에서 NTAoffset=0이며, TDD에서 NTAoffset=624이다. NTAoffset 값은 기지국과 단말이 사전에 인지하고 있는 값이다. 랜덤 접속 과정에서 타이밍 어드밴스 명령을 통해 NTA이 지시되면, 단말은 UL 신호(예, PUCCH/PUSCH/SRS)의 전송 타이밍을 위의 수식을 통해 조정한다. UL 전송 타이밍은 16Ts의 배수로 설정된다. 타이밍 어드밴스 명령은 현 UL 타이밍을 기준으로 UL 타이밍의 변화를 지시한다. 랜덤 접속 응답 내의 타이밍 어드밴스 명령(TA)은 11-비트로서 TA는 0,1,2,…,1282의 값을 나타내고 타이밍 조정 값(NTA)은 NTA=TA*16으로 주어진다. 그 외의 경우, 타이밍 어드밴스 명령(TA)은 6-비트로서 TA는 0,1,2,…,63의 값을 나타내고 타이밍 조정 값(NTA)은 NTA,new=NTA,old+(TA-31)*16으로 주어진다. 서브프레임 n에서 수신된 타이밍 어드밴스 명령은 서브프레임 n+6부터 적용된다. FDD의 경우, 도시된 바와 같이, UL 서브프레임 n의 전송 시점은 DL 서브프레임 n의 시작 시점을 기준으로 앞당겨진다. 반면, TDD의 경우, UL 서브프레임 n의 전송 시점은 DL 서브프레임 n+1의 종료 시점을 기준으로 앞당겨진다(미도시).
도 8은 OFDMA 및 SC-FDMA를 위한 송신기 및 수신기의 블록도를 예시한다. 상향링크에서 송신기는 단말의 일부일 수 있고 수신기는 기지국의 일부일 수 있다. 하향링크에서 송신기는 기지국의 일부일 수 있고 수신기는 단말의 일부일 수 있다.
도 8을 참조하면, OFDMA 송신기는 직/병렬 변환기(Serial to Parallel converter, 202), 부반송파 매핑(sub-carrier mapping) 모듈(206), M-포인트(point) IDFT 모듈(208), 순한전치(Cyclic prefix; CP) 부가 모듈(210), 병/직렬 변환기(Parallel to Serial converter, 212) 및 RF(Radio Frequency)/DAC(Digital to Analog Converter) 모듈(214)을 포함한다.
OFDMA 송신기에서 신호 처리 과정은 다음과 같다. 먼저, 비트 스트림(bit stream)이 데이터 심볼 시퀀스(data symbol sequence)로 변조된다. 비트 스트림은 매체접속제어(Medium Access Control; MAC) 계층으로부터 전달받은 데이터 블록에 채널 부호화(channel encoding), 인터리빙(interleaving), 스크램블링(scrambling) 등과 같은 다양한 신호 처리를 하여 얻어질 수 있다. 비트 스트림은 부호어(codeword)로 지칭되기도 하며 MAC 계층으로부터 받는 데이터 블록과 등가이다. MAC 계층으로부터 받는 데이터 블록은 전송 블록으로 지칭되기도 한다. 변조 방식은 이로 제한되는 것은 아니지만 BPSK(Binary Phase Shift Keying), QPSK(Quadrature Phase Shift Keying), n-QAM(Quadrature Amplitude Modulation)을 포함할 수 있다. 그 후, 직렬의 데이터 심볼 시퀀스는 N개씩 병렬로 변환된다(202). N개의 데이터 심볼은 전체 M개의 부반송파 중에서 할당받은 N개의 부반송파에 매핑(mapping)되고 남은 M-N개의 반송파는 0으로 패딩된다(206). 주파수 영역에 매핑된 데이터 심볼은 M-포인트 IDFT 처리를 통해 시간 영역 시퀀스로 변환된다(208). 그 후, 심볼간 간섭(Inter-Symbol Interference; ISI)과 반송파간 간섭(Inter-Carrier Interference; ICI)을 줄이기 위해서, 상기 시간 영역 시퀀스에 순환전치를 더하여 OFDMA 심볼을 생성한다(210). 생성된 OFDMA 심볼은 병렬에서 직렬로 변환된다(212). 그 후, OFDMA 심볼은 디지털-대-아날로그 변환, 주파수 상향변환 등의 과정을 거쳐 수신기로 전송된다(214). 다른 사용자는 남은 M-N개의 부반송파 중에서 가용한 부반송파를 할당받는다. 반면, OFDMA 수신기는 RF/ADC(Analog to Digital Converter) 모듈(216), 직/병렬 변환기(218), 순환전치 제거(Remove CP) 모듈(220), M-포인트 DFT 모듈(224), 부반송파 디매핑(demapping)/등화(equalization) 모듈(226), 병/직렬 변환기(228) 및 검출(detection) 모듈(230)을 포함한다. OFDMA 수신기의 신호 처리 과정은 OFDMA 송신기의 역으로 구성된다.
한편, SC-FDMA 송신기는 OFDMA 송신기와 비교하여 부반송파 매핑 모듈(206) 이전에 N-포인트 DFT 모듈(204)을 추가로 포함한다. SC-FDMA 송신기는 IDFT 처리 이전에 DFT를 통해 복수의 데이터를 주파수 영역에 확산시켜 송신 신호의 PAPR을 OFDMA 방식에 비해 크게 줄일 수 있다. SC-FDMA 수신기는 OFDMA 수신기와 비교하여 부반송파 디매핑 모듈(226) 이후에 N-포인트 IDFT 모듈(228)을 추가로 포함한다. SC-FDMA 수신기의 신호 처리 과정은 SC-FDMA 송신기의 역으로 구성된다.
도 9는 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다.
도 9를 참조하면, 복수의 상/하향링크 콤포넌트 캐리어(Component Carrier, CC)들을 모아서 더 넓은 상/하향링크 대역폭을 지원할 수 있다. 각각의 CC들은 주파수 영역에서 서로 인접하거나 비-인접할 수 있다. 각 콤포넌트 캐리어의 대역폭은 독립적으로 정해질 수 있다. UL CC의 개수와 DL CC의 개수가 다른 비대칭 캐리어 병합도 가능하다. 한편, 제어 정보는 특정 CC를 통해서만 송수신 되도록 설정될 수 있다. 이러한 특정 CC를 프라이머리 CC로 지칭하고, 나머지 CC를 세컨더리 CC로 지칭할 수 있다. 일 예로, 크로스-캐리어 스케줄링(cross-carrier scheduling) (또는 크로스-CC 스케줄링)이 적용될 경우, 하향링크 할당을 위한 PDCCH는 DL CC#0으로 전송되고, 해당 PDSCH는 DL CC#2로 전송될 수 있다. 용어 “콤포넌트 캐리어”는 등가의 다른 용어(예, 캐리어, 셀 등)로 대체될 수 있다.
크로스-CC 스케줄링을 위해, CIF(carrier indicator field)가 사용된다. PDCCH 내에 CIF의 존재 또는 부재를 위한 설정이 반-정적으로 단말-특정 (또는 단말 그룹-특정)하게 상위 계층 시그널링(예, RRC 시그널링)에 의해 이네이블(enable) 될 수 있다. PDCCH 전송의 기본 사항이 아래와 같이 정리될 수 있다.
■ CIF 디스에이블드(disabled): DL CC 상의 PDCCH는 동일 DL CC 상의 PDSCH 자원 및 단일의 링크된 UL CC 상에서의 PUSCH 자원을 할당한다.
● No CIF
■ CIF 이네이블드(enabled): DL CC 상의 PDCCH는 CIF를 이용하여 복수의 병합된 DL/UL CC들 중 한 DL/UL CC 상의 PDSCH 또는 PUSCH 자원을 할당할 수 있다.
● CIF를 갖도록 확장된 LTE DCI 포맷
- CIF (설정될 경우)는 고정된 x-비트 필드 (예, x=3)
- CIF (설정될 경우) 위치는 DCI 포맷 사이즈와 관계 없이 고정됨
CIF 존재 시, 기지국은 단말 측에서의 BD 복잡도를 낮추기 위해 모니터링 DL CC (세트)를 할당할 수 있다. PDSCH/PUSCH 스케줄링 위해, 단말은 해당 DL CC에서만 PDCCH의 검출/디코딩을 수행할 수 있다. 또한, 기지국은 모니터링 DL CC (세트)를 통해서만 PDCCH를 전송할 수 있다. 모니터링 DL CC 세트는 단말-특정, 단말-그룹-특정 또는 셀-특정 방식으로 세팅될 수 있다.
도 10은 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다. 3개의 DL CC가 병합되었다고 가정한다. DL CC A가 PDCCH CC로 설정되었다고 가정한다. DL CC A~C는 서빙 CC, 서빙 캐리어, 서빙 셀 등으로 지칭될 수 있다. CIF가 디스에이블 되면, 각각의 DL CC는 LTE PDCCH 규칙에 따라 CIF 없이 자신의 PDSCH를 스케줄링 하는 PDCCH만을 전송할 수 있다(논-크로스-CC 스케줄링). 반면, 단말-특정 (또는 단말-그룹-특정 또는 셀-특정) 상위 계층 시그널링에 의해 CIF가 이네이블 되면, 특정 CC(예, DL CC A)는 CIF를 이용하여 DL CC A의 PDSCH를 스케줄링 하는 PDCCH뿐만 아니라 다른 CC의 PDSCH를 스케줄링 하는 PDCCH도 전송할 수 있다(크로스-CC 스케줄링). 반면, DL CC B/C에서는 PDCCH가 전송되지 않는다.
실시예: LTE-U에서의 신호 송수신
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 차기 무선 통신 시스템에서 제한된 주파수 대역의 효율적 활용은 점점 더 중요한 요구가 되고 있다. 기본적으로 주파수 스펙트럼은 면허 밴드(licensed band)와 비면허 밴드(unlicensed band)로 나뉜다. 면허 밴드는 특정 용도를 위해 점유된 주파수 밴드를 포함한다. 예를 들어, 면허 밴드는 셀룰러 통신(예, LTE 주파수 밴드)을 위해 정부가 할당한 주파수 밴드를 포함한다. 비면허 밴드는 공공 용도를 위해 점유된 주파수 밴드이며 라이센스-프리 밴드라고도 지칭된다. 비면허 밴드는 전파 규제에 대한 조건을 만족하면 허가나 신고 없이 누구나 사용할 수 있다. 비면허 밴드는 다른 무선국의 통신을 저해하지 아니하는 출력 범위에서 특정 구역이나 건물 내 등의 가까운 거리에서 누구나 사용할 목적으로 분배 또는 지정되었으며, 무선 리모컨, 무선 전력 전송, 무선랜(WiFi) 등에 다양하게 사용되고 있다.
LTE 시스템과 같은 셀룰라 통신 시스템도 기존의 WiFi 시스템이 사용하는 비면허 대역(예, 2.4GHz, 5GHz 대역)을 트래픽 오프로딩에 활용하는 방안을 검토 중이다. 기본적으로 비면허 대역은 각 통신 노드 간의 경쟁을 통해 무선 송수신을 하는 방식을 가정하므로 각 통신 노드가 신호를 전송하기 전에 채널 센싱(Channel Sensing, CS)을 수행하여 다른 통신 노드가 신호 전송을 하지 않음을 확인할 것을 요구하고 있다. 이를 CCA(Clear Channel Assessment)라고 부르며, LTE 시스템의 기지국이나 단말도 비면허 대역에서의 신호 전송을 위해서는 CCA를 수행해야 할 수 있다. 편의상, LTE-A 시스템에 사용되는 비면허 대역을 LTE-U 밴드/대역이라고 지칭한다. 또한, LTE-A 시스템의 기지국이나 단말이 신호를 전송할 때에 WiFi 등 다른 통신 노드들도 CCA를 수행하여 간섭을 일으키지 않아야 한다. 예를 들어, WiFi 표준(801.11ac)에서 CCA 임계치는 non-WiFi 신호에 대하여 -62dBm, WiFi 신호에 대하여 -82dBm으로 규정되어 있다. 따라서, WiFi 이외의 신호가 -62dBm 이상의 전력으로 수신되면, STA(Station)/AP(Access Point)는 간섭을 일으키지 않기 위해 신호 전송을 하지 않는다. WiFi 시스템에서 STA/AP는 CCA 임계치 이상의 신호를 4us 이상 검출하지 않으면 CCA를 수행하고 신호 전송을 수행할 수 있다.
도 11은 면허 밴드와 비면허 밴드의 캐리어 병합을 예시한다. 도 11을 참조하면, 면허 밴드 (이하, LTE-A 밴드)와 비면허 밴드 (이하, LTE-U 밴드)의 반송파 집성 상황 하에서 기지국이 단말에게 신호를 송신하거나 단말이 기지국으로 신호를 송신할 수 있다. 여기서, 면허 대역의 중심 반송파 혹은 주파수 자원은 PCC 혹은 PCell로 해석되고, 비면허 대역의 중심 반송파 혹은 주파수 자원은 SCC 혹은 SCell로 해석될 수 있다.
도 12~13은 비면허 밴드 내에서 자원을 점유하는 방법을 예시한다. LTE-U 밴드에서 기지국과 단말이 통신을 수행하기 위해서는, LTE-A와 무관한 다른 통신(예, WiFi) 시스템과의 경쟁을 통해서 해당 대역을 특정 시간 구간 동안 점유/확보할 수 있어야 한다. 편의상, LTE-U 밴드에서 셀룰러 통신을 위해 점유/확보된 시간 구간을 RRP(Reserved Resource Period)라고 칭한다. RRP 구간을 확보하기 위해 여러 방법이 존재할 수 있다. 일 예로, WiFi 등 다른 통신 시스템 장치들이 무선 채널이 비지(busy)하다고 인식할 수 있도록 RRP 구간 내에서 특정 점유 신호를 전송할 수 있다. 예를 들어, RRP 구간 동안 특정 전력 레벨 이상의 신호가 끊임없이 전송되도록 하기 위해, 기지국은 RRP 구간 내에서 RS 및 데이터 신호를 지속적으로 전송할 수 있다. 기지국이 LTE-U 밴드 상에서 점유하고자 하는 RRP 구간을 미리 결정하였다면, 기지국은 단말한테 이를 미리 알려줌으로써 단말로 하여금 지시된 RRP 구간 동안 통신 송/수신 링크를 유지하도록 할 수 있다. 단말에게 RRP 구간 정보를 알려주는 방식으로는 반송파 집성 형태로 연결되어 있는 다른 CC (예, LTE-A 밴드)를 통해서 RRP 시간 구간 정보를 전달해주는 방식이 가능하다.
일 예로, M개의 연속된 SF로 구성된 RRP 구간을 설정할 수 있다. 이와 달리, 하나의 RRP 구간은 불연속적으로 존재하는 SF 세트로 설정될 수도 있다(미도시). 여기서, M 값 및 M개의 SF 용도를 사전에 기지국이 단말에게 상위 계층(예, RRC 또는 MAC) 시그널링 (using PCell)이나 물리 제어/데이타 채널을 통해 알려줄 수 있다. RRP 구간의 시작 시점은 상위 계층(예, RRC 또는 MAC) 시그널링에 의해 주기적으로 설정될 수 있다. 또한, RRP 시작 지점을 SF #n 으로 설정고하고자 할 때, SF #n에서 혹은 SF #(n-k)에서 물리 계층 시그널링(예, (E)PDCCH)을 통해 RRP 구간의 시작 지점이 지정될 수 있다. k는 양의 정수(예, 4)이다.
RRP는 SF 바운더리 및 SF 번호/인덱스가 PCell과 일치되게 구성되거나(이하, aligned-RRP)(도 12), SF 바운더리 또는 SF 번호/인덱스가 PCell과 일치되지 않은 형태까지 지원되도록 구성될 수 있다(이하, 플로팅(floating)-RRP)(도 13). 본 발명에서 셀간 SF 바운더리가 일치된다는 것은, 서로 다른 2개 셀의 SF 바운더리간 간격이 특정 시간(예, CP 길이, 혹은 X us (X≥0)) 이하인 것을 의미할 수 있다. 또한, 본 발명에서 PCell은 시간 (및/또는 주파수) 동기 관점에서 UCell의 SF (및/또는 심볼) 바운더리를 결정하기 위해 참조하는 셀을 의미할 수 있다.
경쟁 기반의 임의 접속 방식으로 동작하는 비면허 대역에서의 다른 동작 예로, 기지국은 데이타 송수신 전에 먼저 캐리어 센싱을 수행할 수 있다. SCell의 현재 채널 상태가 비지(busy)인지 아이들(idle)인지를 체크하고 아이들이라고 판단되면, 기지국은 PCell (LTE-A 밴드) 혹은 SCell (LTE-U 밴드)을 통해 스케줄링 그랜트(예, (E)PDCCH)를 전송하고, SCell 상에서 데이터 송수신을 시도할 수 있다.
이하, 가용 자원 구간이 비주기적 혹은 불연속적으로 확보/구성되는 셀/캐리어에서의 자원 구간 설정 방법 및 이에 수반되는 기지국/단말 동작을 제안한다. 본 발명은 캐리어 센싱을 기반으로 비면허 밴드에서 기회적으로 동작하는 LTE-U 시스템에 적용될 수 있다. 편의상, 이하에서는 기존 면허 밴드에서 동작하는 PCell과 LTE-U 방식으로 동작하는 SCell간의 CA 상황을 고려한다. 편의상, LTE-U 기반 셀(예, SCell)을 UCell로 정의하고, UCell에서 비주기적으로 확보/구성되는 자원 구간을 RRP로 정의한다. UCell의 중심 주파수를 (DL/UL) UCC라고 정의한다. 한편, 또한, 기존 면허 밴드에서 동작하는 셀(예, PCell, SCell)을 LCell로 정의하고, LCell의 중심 주파수를 (DL/UL) LCC라고 정의한다.
이하, RRP 기반의 UCell이 포함된 CA 상황에서 RRP 설정 용도로 시그널링 되는 DCI(이하, RRP-cfg DCI)의 전송 주기 및 정보 구성, UCell에서의 RRP 시작 SF (번호/인덱스)을 결정하는 방법, RRP의 SF 구성과 RRP-cfg DCI 전송에 따른 단말 동작 방식 등에 대해 설명한다. 편의상, UCell이 동일 셀로부터 스케줄링 되는 경우와 UCell이 다른 셀(예, PCell)로부터 스케줄링 되는 경우를 각각 셀프-CC 스케줄링과 크로스-CC 스케줄링으로 칭한다.
설명의 편의상, 이하에서는 단말에게 1개의 면허 대역과 1개의 비면허 대역이 병합되고, 이를 통해 무선 통신을 수행하도록 설정된 상황을 가정한다. 하지만, 본 발명의 제안 방식들은 다수의 면허 대역과 다수의 비면허 대역들이 반송파 집성 기법으로 이용되는 상황에서도 적용될 수 있다. 또한, 비면허 대역만으로 기지국과 단말 사이의 신호 송수신이 이루어지는 경우에도 적용될 수 있다. 또한, 본 발명의 제안 방식들은 3GPP LTE 시스템뿐만 아니라 다른 특성의 시스템 상에서도 확장 적용이 가능하다. 또한, 이하에서 기지국은 RRH(Remote Radio Head), eNB, TP(Transmission Point), RP(Reception Point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용된다.
(0) UCell 상에서 RRP의 정의
RRP는 캐리어 센싱 결과에 의존하여 불연속적/비주기적으로 구성되는 자원을 의미한다. 단말 동작 및 가정 관점에서 RRP는 다음과 같이 정의될 수 있다.
1) 단말이 UCell에 대한 (시간/주파수) 동기화 동작을 수행하는 구간, 혹은 (기지국으로부터) 이를 위한 동기 신호(예, PSS, SSS)가 전송된다고 가정하는 구간,
2) 단말이 UCell에 대한 채널 상태 측정 동작을 수행하는 구간, 혹은 (기지국으로부터) 이를 위한 참조 신호(예, CRS(Cell-specific Reference Signal), CSI-RS(Channel State Information Reference Signal)가 전송된다고 가정하는 구간,
3) 단말이 UCell에서 또는 UCell에 대한 (DL/UL 그랜트) DCI 검출 동작을 수행하는 구간,
4) 단말이 UCell에서 수신되는 신호에 대해 (임시) 버퍼링 동작을 수행하는 구간을 고려했을 때, UCell에서 RRP는 이러한 동작/가정들 전부 혹은 이중 특정 일부를 수행하는 구간.
(1) RRP 설정 DCI의 전송 및 구성
RRP 설정을 위해 전송되는 DCI 또는 정보/파라미터(예, RRP-cfg DCI)는 PCell상의 CSS 자원을 사용하는 PDCCH 형태로 전송되거나, UCell 상에 구성되는 특정 신호(예, 무선 채널 점유 신호 또는 프리앰블 신호)를 통해 전송될 수 있다. UCell에 대한 기지국의 자원 사용 빈도 및/또는 스케줄링 계획 등에 따라 (단말 관점에서) 다음과 같은 2가지 RRP-cfg DCI 검출 방식이 고려될 수 있다.
■ Alt D1: 모든 DL SF에서 RRP-cfg DCI 검출을 수행
단말은 PCell의 모든 DL SF에서 RRP-cfg DCI에 대한 검출 동작을 수행할 수 있다. 하나의 RRP-cfg DCI는 하나의 DL SF를 통해 전송되는 단일 PDCCH로 구성되거나, R (> 1)개의 DL SF를 통해 반복 전송되는 복수 PDCCH로 구성될 수 있다.
■ Alt D2: N개 SF 주기마다 RRP-cfg DCI 검출을 수행
단말은 N (> 1)개의 SF 주기마다 하나 혹은 M (> 1)개의 SF 동안 RRP-cfg DCI에 대한 검출 동작을 수행할 수 있다. 하나의 RRP-cfg DCI는 하나 혹은 R (> 1)개의 SF를 통해 (반복) 전송될 수 있다. 여기서, M은 R과 동일한 값 혹은 R의 배수로 설정될 수 있다. 하나의 RRP-cfg DCI를 구성하는 하나의 R개 SF 구간은 RRP-cfg DCI 검출이 수행되는 하나의 M개 SF 구간에만 속하도록 (즉, 복수의 M개 SF 구간에 걸쳐 구성되지 않도록) 설정될 수 있다.
한편, 하나의 RRP-cfg DCI는 복수의 UCell에 대한 RRP 구간 설정 정보를 포함할 수 있다. 구체적으로, RRP-cfg DCI에 구성된 복수의 필드(편의상, R-필드) 각각이 개별/독립적인 하나의 UCell에 대한 RRP 설정 정보를 시그널링 할 수 있다. 이 경우, RRP-cfg DCI는 단말-공통 RNTI 기반의 PDCCH 형태로 전송될 수 있다. 즉, 특정 UCell에 대한 RRP 설정 정보는 특정 RNTI와 R-필드의 조합을 통해 시그널링 될 수 있다. RRP 구간이 설정되지 않은 UCell에 대해서는 대응되는 R-필드를 통해 “RRP 구성 없음”에 해당하는 정보가 시그널링 될 수 있다.
다른 방법으로, 하나의 RRP-cfg DCI는 복수의 단말에 대한 (특정 UCell 상의) RRP 구간 설정 정보를 포함할 수 있다. 구체적으로, RRP-cfg DCI에 구성된 복수의 필드(편의상, R-필드) 각각이 개별/독립적인 하나의 단말에 대한 RRP 설정 정보를 시그널링 할 수 있다. 이 경우, RRP-cfg DCI는 단말-공통 RNTI 기반의 PDCCH 형태로 전송될 수 있다. 즉, 특정 단말에 대한 RRP 설정 정보는 특정 RNTI와 R-필드의 조합을 통해 시그널링 될 수 있다. RRP 구간이 설정되지 않은 단말에 대해서는 대응되는 R-필드를 통해 “RRP 구성 없음”에 해당하는 정보가 시그널링 될 수 있다.
RRP를 UCell 상의 유효한(valid) CSI (참조/측정) 자원 구간으로 정의할 경우, 특정 TM(Transmission Mode)으로 설정된 단말은 RRP로 설정된 구간에는 해당 TM에 상응하는 참조 신호 전송만 있다고 가정/간주할 수 있다. 예를 들어, TM 2 혹은 4로 설정된 단말의 경우에는 CRS 전송만 가정/간주한 상태에서 동작할 수 있다. 또한, TM 9 혹은 10으로 설정된 단말의 경우에는 CSI-RS 및/또는 CSI-IM(Interference Measurement) 전송만 가정/간주한 상태에서 동작할 수 있다.
RRP-cfg DCI를 통해 시그널링 되는 정보는, RRP-cfg DCI 전송/검출 SF 구성(예, Alt D1 또는 Alt D2), UCell 상의 SF 자원 구성(예, 정렬된(aligned)-RRP 또는 플로팅-RRP)에 따라 다음과 같은 정보를 포함할 수 있다.
■ RRP 구간 길이 및 SF 용도
RRP-cfg DCI는, RRP 구간의 전체 시간(예, RRP 구간 내의 총 SF 개수) 및 RRP를 구성하는 SF 용도(예, DL, UL)를 알려주는 용도로 시그널링 될 수 있다. RRP 구간이 타 시스템의 캐리어 센싱에 의해 아이들(idle) 상태로 판단되는 경우를 방지하기 위해 하나의 RRP 구간 내 SF는 (DL/UL간 전환 구간 없이) 모두 DL이거나 모두 UL인 2가지 경우만으로 구성될 수 있다. 다른 방법으로, DL=>UL 전환의 경우 (TDD 스페셜 SF에서처럼) 가드 구간이 존재하여 상기와 같은 문제가 발생될 수 있는 반면, UL=>DL 전환의 경우에는 기지국이 단말로부터의 UL 신호 수신 이후 바로 이어서 DL 신호 전송을 수행할 수 있으므로, RRP 구간 내 SF를 연속된 UL이 먼저 배치되고 다음 연속된 DL이 배치되는 형태로 구성할 수 있다. 예를 들어, 하나의 RRP 구간이 4개 SF로 구성되는 경우, RRP 내의 SF는 UL/DL/DL/DL, UL/UL/DL/DL, UL/UL/UL/DL로 구성될 수 있다. 편의상, 제안한 DL/UL 조합을 “UL-DL mixed RRP”라고 칭한다. 이를 기반으로, RRP 구간 내 SF는, 1) (i) 모두 DL, (ii) 제안한 DL/UL 조합의 2가지만으로 구성되거나, 2) (i) 모두 UL, (ii) 제안한 DL/UL 조합의 2가지만으로 구성되거나, 3) (i) 모두 DL, (ii) 모두 UL, (iii) 제안한 DL/UL 조합의 3가지로 구성될 수 있다.
다른 방법으로, RRP 구간 길이는 상위 계층(예, RRC) 시그널링을 통해 미리 설정된 상태에서, RRP 구성 SF 용도만 RRP-cfg DCI를 통해 지시될 수 있다. 반대로, RRP 구성 SF 용도는 상위 계층 신호를 통해 미리 설정된 상태에서 RRP 구간 길이만 RRP-cfg DCI를 통해 지시될 수 있다.
한편, RRP 구간 내의 SF가 모두 UL로 구성되거나, 이러한 구성을 포함하는 경우 UCell에 대해서는 크로스-CC 스케줄링만 허용될 수 있다. UCell의 UL 데이타 전송/스케줄링에 수반되는 UL HARQ 과정/동작을 위한 HARQ 타이밍(예, UL 그랜트/PUSCH/PHICH 전송 타이밍)의 경우, UCell을 FDD SCell과 동일하게 간주한 상태에서 (PCell이 FDD인지 TDD인지에 따라) FDD SCell에 적용되는 아래의 UL HARQ 타이밍을 UCell에 적용할 수 있다. UL HARQ 타이밍 관점에서 PCell은 UCell을 (크로스-CC) 스케줄링 하도록 설정된 셀을 의미할 수 있다.
- FDD PCell인 경우: SF #n의 PUSCH 전송을 스케줄링 하는 UL 그랜트는 SF #(n-4)를 통해 전송/수신, SF #n의 PUSCH 전송에 대응되는 PHICH는 SF #(n+4)를 통해 전송/수신
- TDD PCell인 경우: SF #n의 PUSCH 전송을 스케줄링 하는 UL 그랜트는 SF #(n-4)를 통해 전송/수신, SF #n의 PUSCH 전송에 대응되는 PHICH는 SF #(n+6)를 통해 전송/수신 (혹은, PCell의 UL/DL 구성에 정의된 UL HARQ 타이밍을 그대로 적용)
한편, UL-DL mixed RRP의 경우에도 UL-to-DL 스위칭 구간(즉, 기지국에서의 RX-to-TX 스위칭 갭)이 존재할 수 있다. 따라서, UL-DL mixed RRP에서의 안정적인 DL 전송/스케줄링을 수행하기 위해서는 RX-to-TX 스위칭 갭 동안에도 UCell 상의 무선 채널을 (LTE-U 시스템이) 연속적으로 점유하는 것이 필요할 수 있다. 이를 위해, UL-DL mixed RRP의 (최초 DL SF 바로 이전) 마지막 UL SF를 통해 UL 채널/신호(예, PUSCH 또는 SRS)를 전송하는 혹은 전송하도록 설정/스케줄링된 단말은 (캐리어 센싱 없이) UL SF 종료 시점부터 이후 특정 시점까지 짧은 구간(duration)을 가지는 특정 신호(이하, 포스트-점유(post-reservation) 신호)을 전송하도록 지정/지시될 수 있다. 포스트-점유 신호는 사이클릭 프리픽스 (혹은 이의 일부분)의 형태로 구성되거나, 사이클릭 포스트픽스의 형태로 구성될 수 있다. 사이클릭 포스트픽스는 IFFT 과정(도 8의 IDFT)을 거친 시간 영역 신호의 최초 부분을 그대로 복사한 부분으로 구성된다. 포스트-점유 신호의 전송 관련 정보(예, 타이밍, 구간)는 기지국으로부터 설정될 수 있다. 또한, 단말은 주어진 UL-DL mixed RRP (혹은 RRP 내 마지막 UL SF)에서 UL 채널/신호 전송이 설정/스케줄링 되지 않더라도, (캐리어 센싱 없이 마지막 UL SF 종료 시점부터) 포스트 점유 신호 전송만을 수행하도록 지정/지시될 수 있다.
한편, 특정 단말(예, UL 전송에 적용되는 TA 값이 매우 작게 설정된 단말)가 UL-DL mixed RRP 내 마지막 UL SF 이후까지 포스트 점유 신호를 전송할 경우, 단말 자신의 UL-to-DL, 즉 TX-to-RX 스위칭 동작 (이에 수반되는 갭)으로 인해 최초 DL SF 내의 첫 번째 OFDMA 심볼을 제대로 수신하지 못하는 상황이 발생될 수 있다. 이를 고려하여, 1) 포스트-점유 신호 전송은 TA 값이 특정 임계치 이상인 단말만 수행하도록 제한하거나, 2) 포스트-점유 신호 전송 수행 여부를 RRC 혹은 UL 그랜트를 통해 단말-특정하게 알려주거나, 3) 상기와 같은 문제 상황이 발생된 단말의 경우 최초 DL OFDMA 심볼을 수신 신호에서 제외하는 동작(예, 최초 DL OFDMA 심볼을 펑처링)을 허용할 수 있다. 또한, 상기와 같은 문제 상황을 고려하여 UL-DL mixed RRP 내의 최초 (혹은 모든) DL SF를 통해 전송되는 단말-공통 신호/자원 (예, 동기/참조 신호 및/또는 측정 신호/자원 등)은 해당 DL SF의 첫 번째 OFDMA 심볼 이후에 존재하는 OFDAM 심볼들로만 구성될 수 있다. 그 외의 경우, 단말-공통 신호/자원 (예, 동기/참조 신호 및/또는 측정 신호/자원 등)은 첫 번째 OFDMA 심볼에도 존재할 수 있다. 한편, 제안 방법은 UL-DL mixed RRP에만 국한되지 않고 UL-to-DL 스위칭을 포함하는 임의의 RRP에 적용 가능하다. 이 경우, UL-DL mixed RRP에서 마지막 UL SF; 최초 DL SF는 각각 DL SF 바로 이전에 위치하는 UL SF; UL SF 바로 이후에 위치하는 DL SF로 대체/고려될 수 있다.
■ RRP 구간 내의 잔여 SF 수
본 정보는 RRP-cfg DCI가 검출된 시점 (또는, 여기에 특정 SF 오프셋이 더해진 시점)부터 남아있는 RRP 구간 내의 잔여 SF 수 (또는, 이를 유추할 수 있는 파라미터, 예를 들어 RRP 구간 내에서 해당 시점이 몇 번째 SF인지 등)를 알려주는 용도로 시그널링 될 수 있다. 본 정보는 Alt D1에서와 같이 RRP-cfg DCI 전송/검출이 모든 DL SF에 대해 수행되도록 설정된 상황에서 유용할 수 있다.
■ RRP 시작 SF 번호/인덱스
본 정보는 RRP 구간의 시작 SF가 가지는 SF 번호/인덱스 (또는 이를 유추할 수 있는 파라미터)를 알려주는 용도로 시그널링 될 수 있다. 본 정보는 UCell의 SF 바운더리 (또는, SF 번호/인덱스)가 PCell과 일치되지 않는 상황(예, 플로팅-RRP) 또는 UCell 상의 RRP 시작 지점 (또는, 이를 파악할 수 있는 특정 프리앰블, 동기 신호, 참조 신호 등)을 단말이 직접 검출하는 상황에서 유용할 수 있다.
■ UCell SF의 시작 심볼 위치 정보
본 정보는 동일 SF 번호/인덱스를 갖는 PCell SF와 UCell SF의 시작 OFDMA 심볼간 간격 혹은 이를 유추할 수 있는 정보, 및/또는 동일 SF 번호/인덱스를 갖는 PCell SF와 UCell SF의 시작 OFDMA 심볼간 상대적인 위치 관계를 알려주는 용도로 시그널링 될 수 있다. 예를 들어, 본 정보는 UCell SF의 시작 OFDMA 심볼이 동일한 SF 번호/인덱스를 갖는 PCell SF의 시작 OFDMA 심볼과 얼마만큼(예, OFDMA 심볼 개수) 이격되어 있는지 알려줄 수 있다. 또한, 본 정보는 UCell SF의 시작 OFDMA 심볼이 동일한 SF 번호/인덱스를 갖는 PCell SF의 시작 OFDMA 심볼보다 시간 상으로 이전에 위치하는지 이후에 위치하는지를 알려줄 수 있다. 본 정보는 UCell의 SF 바운더리 (또는, SF 번호/인덱스)가 PCell과 일치되지 않는 상황(예, 플로팅-RRP)에서 유용할 수 있다.
■ RRP 인덱스/번호
본 정보는 RRP에 대한 (예, RRP간 상대적인) 인덱스 (또는 번호)를 알려주는 용도로 시그널링 될 수 있다. 일 예로, 시간 순서 상, UCell에 최초로 구성/설정된 RRP는 RRP 인덱스 0, 두 번째로 구성/설정된 RRP는 RRP 인덱스 1, 세 번째로 구성/설정된 RRP는 RRP 인덱스 2, … 이러한 방식으로 RRP 인덱스가 결정될 수 있다.
RRP 인덱스가 주어진 경우, UCell에서의 UL 채널/신호 전송 관련 정보 및/또는 DL 채널/신호 전송 관련 정보는 RRP 인덱스 및/또는 RRP 내의 SF 인덱스/번호를 기반으로 설정/정의될 수 있다. 여기서, UL 채널/신호 전송 관련 정보는 예를 들어 PRACH 프리앰블 전송 타이밍, SRS 전송 타이밍/주기, PUSCH 재전송 타이밍 간격 등을 포함한다. 또한, DL 채널/신호 전송 관련 정보는 예를 들어 동기 신호 (예, PSS/SSS) 전송 타이밍/주기, 측정/트랙킹 RS (예, CRS, 디스커버리 RS) 전송 타이밍/주기, CSI-RS 전송 타이밍/주기, 간섭 측정 자원 (즉, CSI-IM 또는 제로-파워 CSI-RS) 구성 타이밍/주기 등을 포함한다.
(2) UCell에서의 RRP 시작 SF 결정
UCell 상에 비주기적으로 구성되는 RRP 구간의 시작 지점(예, SF)을 (단말 관점에서) 결정하는 방법으로 다음과 같은 2가지 방식이 고려될 수 있다.
■ Alt S1: UCell 상에서 특정 신호가 검출된 시점을 RRP 시작 SF로 결정
RRP 구간 내에서 시작 부분(예, SF)을 통해서만 특정 신호(이하, UCell 프리앰블)가 전송되도록 구성된 상태에서, 단말이 직접 UCell 프리앰블에 대한 검출 동작을 수행할 수 있다. 단말은 UCell 프리앰블이 검출된 시점을 RRP 구간의 시작 지점(예, SF)으로 결정할 수 있다. UCell 프리앰블은 예를 들어 프리앰블, 동기 신호(예, PSS 및/또는 SSS), 참조 신호(예, CRS) 등의 형태가 될 수 있다.
■ Alt S2: PCell의 특정 SF 시점으로부터 RRP 시작 SF를 묵시적(implicit)으로 결정
PCell 상의 특정 (SF) 시점, 예를 들어 RRP-cfg DCI가 검출된 SF (또는, 여기에 특정 SF 오프셋이 더해진 시점)이 RRP 구간의 시작 지점(예, SF)으로 결정될 수 있다. 본 방식에서 단말은 (적어도) UCell의 SF 바운더리가 PCell과 일치된다고 가정/간주한 상태에서 동작할 수 있다. 본 방식은 RRP 구간 내에 시작 지점을 지시하는 별도의 신호 구성이 없는 상황에서 유용할 수 있다.
한편, 상기 방식 혹은 다른 방식에 기반하여 RRP 구간의 시작 지점, UCell의 SF 바운더리가 결정된 경우, UCell 상의 (RRP를 구성하는) SF 번호/인덱스를 결정하기 위해 다음과 같은 방법을 고려할 수 있다.
■ UCell 프리앰블 신호 속성의 검출을 통해 SF 번호/인덱스를 결정
UCell 프리앰블 신호의 속성이 SF 번호/인덱스에 따라 구분될 수 있도록 UCell 프리앰블 신호의 속성과 SF 번호/인덱스의 매핑 관계를 미리 설정할 수 있다. 이에 따라, 단말이 UCell 프리앰블의 신호 속성을 검출함으로써 RRP 내에서 UCell 프리앰블 신호가 포함된 SF의 SF 번호/인덱스를 결정할 수 있다. RRP 내 나머지 SF에 대해서는 해당 프리앰블 SF와의 상대적인 시간 관계를 고려하여 대응되는 SF 번호/인덱스가 결정될 수 있다. UCell 프리앰블 신호의 속성은 예를 들어 프리앰블 신호를 구성하는 시퀀스 (패턴 또는 종류), 프리앰블 신호가 전송되는 자원(예, OFDMA/SC-FDMA 심볼 또는 RE) 등을 포함한다.
일 예로, 프리앰블 시퀀스 (패턴) #0가 SF (번호/인덱스) #0에, 시퀀스 #1이 SF #1에 각각 대응되도록 매핑되는, 즉 시퀀스 #n이 SF #n에 대응되도록 매핑되는 형태로 설정되고, 하나의 RRP 구간 (길이)은 3개 SF로 구성되며 RRP 시작 SF에서 UCell 프리앰블이 구성/전송되는 구조를 가정할 수 있다. 이 경우, UCell 프리앰블 신호를 통해 시퀀스 #5가 검출되면, 해당 RRP를 구성하는 3개 SF에 대응되는 SF 번호/인덱스는 시간 순서에 맞추어 각각 SF #5, #6, #7로 결정될 수 있다.
■ UCell과 PCell간 SF 오버랩 포션(portion)에 따라 SF 번호/인덱스를 결정
UCell SF의 구간이 PCell 상의 어느 SF (번호/인덱스)에 얼마만큼 오버랩 되어 있는지에 따라 더 많이 오버랩 되어 있는 PCell SF에 대응되는 SF 번호/인덱스를 해당 UCell SF의 SF 번호/인덱스로 결정할 수 있다. 등가적으로, UCell SF의 시작 시점이 오버랩 되는 PCell SF 내의 어느 슬롯에 위치하는지에 따라 해당 UCell SF에 대응되는 SF 번호/인덱스가 결정될 수 있다. 예를 들어, UCell SF의 SF 번호/인덱스는 UCell SF의 시작 시점이 오버랩 되는 PCell SF (예, SF #n)의 첫 번째 슬롯에 위치하는 경우 SF #n, 두 번째 슬롯에 위치하는 경우 SF #(n+1)로 결정될 수 있다.
다른 방법으로, Opt 1) UCell SF의 종료 시점에 오버랩 되어 있는 PCell SF에 대응되는 SF 번호/인덱스, Opt 2) UCell SF의 시작 시점에 오버랩 되어 있는 PCell SF에 대응되는 SF 번호/인덱스를 해당 UCell SF의 SF 번호/인덱스로 결정할 수 있다. 크로스-CC 스케줄링 상황에서 UCell에 스케줄링된 PDSCH에 대한 디코딩 레이턴시, PDSCH 수신과 HARQ-ACK 전송간에 소요되는 프로세싱 시간, UCell을 통해 전송되는 PUSCH와 이를 스케줄링 하는 UL 그랜트 DCI 전송간에 소요되는 프로세싱 시간 등을 고려하여, RRP 구간 내의 SF가 모두 DL로 구성되는 경우에는 Opt 1 방식을, RRP 구간 내의 SF가 모두 UL로 구성되는 경우에는 Opt 2 방식을 각각 적용할 수 있다.
Opt 1의 경우, 1) UCell SF의 종료 시점과 오버랩 되어 있는 PCell SF 및 2) UCell SF의 종료 시점으로부터 특정 시간 오프셋(예, X us)만큼 이전/이후 시점과 오버랩 되어 있는 PCell SF 중에서, 해당 UCell SF가 더 많이 오버랩 되어 있는 PCell SF에 대응되는 SF 번호/인덱스를 해당 UCell SF의 SF 번호/인덱스로 결정할 수 있다. 유사하게 Opt 2의 경우, 1) UCell SF의 시작 시점과 오버랩 되어 있는 PCell SF 및 2) UCell SF의 시작 시점으로부터 특정 시간 오프셋(예, X us)만큼 이후/이전 시점과 오버랩 되어 있는 PCell SF 중에서, 해당 UCell SF이 더 많이 오버랩 되어 있는 PCell SF에 대응되는 SF 번호/인덱스를 해당 UCell SF의 SF 번호/인덱스로 결정할 수 있다.
(3) RRP 구성/설정에 따른 단말 동작
RRP-cfg DCI의 전송 구조(예, Alt D1 또는 D2)와 RRP 시작 SF 결정 방식(예, Alt S1 또는 S2)이 결합 적용되는 2가지 케이스를 고려할 수 있다. 각 케이스별로 RRP-cfg DCI 검출 결과에 따라 다음과 같은 단말 동작을 고려할 수 있다.
■ 케이스 1: Alt D1 또는 D2 + Alt S1
단말은 Opt 1) RRP-cfg DCI 검출에 성공한 시점(특히, Alt D1의 경우) 또는 RRP-cfg DCI 검출 동작을 수행하는 시점(특히, Alt D2의 경우)을 기준으로 k개 (k = 0, …) SF 이후부터 UCell 프리앰블 검출을 시도하거나, Opt 2) RRP-cfg DCI 검출 성공 유무 또는 검출 수행 주기에 관계없이 항상 UCell 프리앰블에 대한 검출 동작을 수행할 수 있다.
이때, RRP-cfg DCI 검출에는 실패했지만 UCell 프리앰블 검출에는 성공한 경우 단말은 사전에 설정된 최소 길이의 RRP 구간만을 가정한 상태에서 동작할 수 있다. 본 방식은 RRP-cfg DCI 검출 성공 유무에 관계없이 RRP-cfg DCI 검출 동작 수행 시점을 기준으로(Opt 1) 혹은 항상(Opt 2) UCell 프리앰블 검출을 시도하는 상황에서 유용할 수 있다. 반대로, RRP-cfg DCI 검출에는 성공했으나 UCell 프리앰블 검출에는 실패한 경우, 단말은 UCell에서의 데이타 전송을 스케줄링 하는 DL/UL 그랜트 DCI의 검출 유무에만 의존하여 UCell 상의 SF 자원을 구성하고 이를 통해서만 UCell에서의 DL/UL 송수신 동작을 수행할 수 있다. 본 방식은 UCell과 PCell의 SF 바운더리가 일치된 상태로 동작하는 상황에서 유용할 수 있다.
■ 케이스 2: Alt D1 또는 D2 + Alt S2
단말은 RRP-cfg DCI 검출 시점을 기준으로 k개(k=1,…) SF 이후부터 UCell 상에 RRP 구간이 시작된다고 가정한 상태에서 동작할 수 있다. RRP-cfg DCI 검출에 실패한 경우, 단말은 UCell에서의 데이타 전송을 스케줄링 하는 DL/UL 그랜트 DCI의 검출 유무에만 의존하여 UCell상의 SF 자원을 구성하고 이를 통해서만 UCell에서의 DL/UL 송수신 동작을 수행할 수 있다.
(4) 플로팅-RRP 구성에 따른 단말 동작
UCell 상의 RRP가 DL SF를 포함하면서 플로팅-RRP 형태로 구성될 수 있다. 이 경우, 동일한 SF 번호/인덱스를 갖는 UCell SF과 PCell SF간 상대적 위치의 선후 관계에 따라 (특히, PCell SF가 UCell SF보다 일정 간격 이상으로 앞서 위치하는 경우) UCell을 통해 전송된 PDSCH의 디코딩 완료 시점과 대응되는 PCell에서의 HARQ-ACK 피드백 전송 시점간 시간 간격이 기존보다 매우 짧아질 가능성이 있다. 이런 상황에서 PDSCH 신호 및 HARQ-ACK 신호를 짧아진 시간 간격 내에 처리 가능하도록 하기 위해, 단말의 프로세싱 속도/능력이 그에 상응하도록 향상되어야 할 수 있다. 이는 기존에 비해 단말 복잡도를 크게 증가시킬 수 있다.
따라서, 다음의 상황/조건에서 단말은 PDSCH 디코딩 결과에 관계없이 HARQ-ACK 응답을 “NACK”으로 결정/생성하여 전송하거나, HARQ-ACK 신호를 전송하지 않을 수 있다. 다른 방법으로, 동일한 상황/조건에서 단말은 전체 PDSCH 수신 신호 중 마지막 일부 OFDMA 심볼(들)을 제외(예, 해당 OFDMA 심볼(들)을 펑처링)한 나머지 OFDMA 심볼(들)에 대한 디코딩 결과(예, ACK 또는 NACK)를 해당 PDSCH 수신에 대한 HARQ-ACK 응답으로 피드백 할 수 있다.
- (i) 동일한 SF 번호/인덱스를 갖는 UCell SF와 (ii) PCell SF간 시간 간격이 특정 값보다 커지는 경우(특히, PCell SF이 UCell SF보다 앞서 위치하는 경우),
- (UCell에서의) (i) PDSCH 신호 수신 (완료) 시점과 (ii) 대응되는 (PCell에서의) HARQ-ACK 신호 전송 (시작) 시점간의 시간 간격이 특정 값보다 작아지는 경우, 또는 (i) PDSCH 디코딩 완료 시점과 (ii) 대응되는 HARQ-ACK 신호 생성 시점간의 시간 간격이 특정 값보다 작아지는 경우(즉, HARQ-ACK 응답이 결정되어야 할 시점까지 PDSCH 디코딩이 완료되지 않는 경우).
유사하게, 다음의 상황/조건에서 단말은 DCI에 대응되는 PUSCH 전송을 생략/포기하거나, (스케줄링된) 전체 PUSCH 신호 중 처음 일부 SC-FDMA 심볼(들)을 제외 (예, 해당 심볼(들)에 대해 펑처링을 적용)한 나머지 SC-FDMA 심볼(들)만을 전송할 수 있다.
- (i) 동일한 SF 번호/인덱스를 갖는 UCell SF와 (ii) PCell SF간의 시간 간격 간격이 특정 값보다 커지는 경우(특히, UCell SF이 PCell SF보다 앞서 위치하는 경우),
- (i) (PCell에서의) UL 그랜트 DCI 수신 (완료) 시점과 (ii) 대응되는 (UCell에서의) PUSCH 신호 전송 (시작) 시점간의 시간 간격이 특정 임계 값보다 작아지는 경우, 또는 (i) UL 그랜트 DCI 디코딩 완료 시점과 (ii) 대응되는 PUSCH 신호 생성 시점간의 시간 간격이 특정 임계 값보다 작아지는 경우(즉, PUSCH 신호 생성이 시작되어야 할 시점까지 UL 그랜트 DCI 디코딩이 완료되지 않는 경우).
(5) RRP를 위한 DL 전력 할당 방법
기존 LTE 시스템의 경우, 기존 DL SF에서의 DL 신호 전송 전력 할당은 다음 파라미터들에 의해 결정될 수 있다.
■ P_R: CRS RE 전송 전력(linear average in [W])
■ P_A: CRS RE 전송 전력 대비 CRS를 전송하지 않는 전송 심볼에서의 PDSCH RE 전송 전력의 비([dB])
■ P_B: CRS RE 전송 전력 대비 CRS를 전송하는 전송 심볼에서의 PDSCH RE 전송 전력의 비([dB])
■ P_C: CSI-RS RE 전송 전력 대비 (CRS를 전송하지 않는 전송 심볼에서의) PDSCH RE 전송 전력의 비([dB])
구체적으로, 기지국은 RE 별로 DL 전송 전력을 결정한다. 단말은 CRS RS EPRE(Energy Per Resource Element)(즉, P_R)가 DL 전체 BW에 걸쳐 일정하고, 새로운 CRS 전력 정보가 수신되기 전까지는 모든 서브프레임에 걸쳐 일정하다고 가정한다. CRS RS EPRE는 상위계층(예, RRC) 시그널링에 의해 제공되는 파라미터(예, referenceSignalPower)에 기초하여 유추될 수 있다. CRS RS EPRE 대비 PDSCH EPRE의 비(즉, PDSCH EPRE/CRS RS EPRE)는 CRS 분포를 고려하여 다르게 설정된다. 예를 들어, P_A 및 P_B 중 어느 하나는 상위계층(예, RRC) 시그널링에 의해 제공되는 파라미터에 기초하여 유추하여 결정되고, P_A 및 P_B 중 다른 하나는 이들의 비를 이용하여 결정될 수 있다. 예를 들어, P_A/P_B는 CRS 분포(예, 안테나 포트 개수)에 따라 1, 4/5, 3/5, 2/5와 같은 다양한 값을 가질 수 있다.
UCell 상에 구성되는 RRP 구간이 CRS 전송을 포함하는 경우에는 위의 방식에 기반하여 UCell RRP 구간에서의 DL 신호 전송 전력 할당이 수행될 수 있다. 여기서, UCell에서의 CRS 수신 전력을 통한 경로-손실 측정이 요구되지 않을 경우, UCell에서의 P_R에 대한 정의/설정을 생략할 수 있다.
UCell 상에 구성되는 RRP 구간이 CRS 전송을 포함하지 않거나 CSI-RS만을 단말-공통 RS로 사용하는 경우, 기존 방식의 파라미터를 Method 1/2의 파라미터로 대체하여 UCell RRP 구간에서의 DL 신호 전송 전력 할당이 수행될 수 있다. 이 경우에도, UCell에서의 CSI-RS 수신 전력을 통한 경로-손실 측정이 요구되지 않을 경우, UCell에서의 P_R에 대한 정의/설정을 생략할 수 있다.
Method 1
■ P_R: CSI-RS RE 전송 전력
■ P_A: CSI-RS RE 전송 전력 대비 CSI-RS를 전송하지 않는 심볼에서의 PDSCH RE 전송 전력
■ P_B: CSI-RS RE 전송 전력 대비 CSI-RS를 전송하는 심볼에서의 PDSCH RE 전송 전력
Method 2
■ P_R: CSI-RS RE 전송 전력
■ P_A: CSI-RS RE 전송 전력 대비 (임의의 심볼에서의) PDSCH RE 전송 전력
UCell 상에 구성되는 RRP의 경우, 비면허 밴드 특성상 (다른 시스템 (예, WiFi)으로부터의 신호 전송 시도 등으로 인해) 채널 환경 및 간섭 영향이 시변할 수 있음을 감안하여, Method 0/1/2의 P_R, P_A, P_B, P_C를 RRP (또는 RRP 그룹) 단위 혹은 특정 시간 구간 단위로 독립적으로 설정하는 방법을 고려할 수 있다. 이러한 전력 할당 파라미터는 PCell의 CSS상에 구성/전송되는 PDCCH 또는 UCell상에 구성/전송되는 프리앰블 신호를 통해 단말-공통적으로 시그널링되거나, UCell에서의 데이터 전송을 스케줄링하는 DL 그랜트 또는 (비주기적 CSI 보고를 요청/지시하는) UL 그랜트를 통해 단말-특정적으로 시그널링될 수 있다. 또한, 가능한 복수의 전력 할당 파라미터(예, P_R, P_A, P_B, P_C) 조합을 상위계층 신호(예, RRC 시그널링 등)를 통해 미리 설정해놓은 상태에서, 해당 복수의 조합 중 어떤 파라미터 조합을 UCell 전력 할당에 적용할 것인지가 상기 특정 신호 (예, PDCCH 또는 프리앰블 또는 DL/UL 그랜트)를 통해 동적으로 지시될 수 있다.
한편, 기존의 일반 SCell은 단말-특정하게 설정되지만, 비면허 밴드에서 동작하는 SCell (즉, UCell)은 단말-공통하게 설정될 수 있다. 따라서, UCell에 대한 시스템 정보 전체 혹은 특정 일부를 PCell에서의 특정 브로드캐스트 신호(예, SIB(System Information Block))을 통해 전송하는 방식도 가능하다.
본 발명의 제안 방법들은, LTE-U와 같은 비주기적인 RRP 구성을 기반으로 동작하는 형태의 셀에만 한정적으로 적용되지 않으며, 기존 LTE에서와 같은 전송 자원 구성을 기반으로 동작하는 일반 셀에도 유사하게 적용될 수 있다.
도 14는 본 발명의 실시예에 따른 통신 수행 방법을 예시한다.
도 14를 참조하면, 단말은 면허 밴드의 PCell과 비면허 밴드의 SCell을 기지국에 대해 구성할 수 있다(S1402). 이후, 단말은 PCell (즉, LCell)의 PDCCH를 통해 SCell (즉, UCell)에 관한 자원 설정 정보(예, RRP-cfg DCI 참조)를 수신할 수 있다(S1404). 이후, 단말은 자원 설정 정보(예, RRP-cfg DCI 참조)에 기초해, SCell (즉, UCell)의 한시적(temporary) 시구간 내에 서브프레임 세트(예, RRP 참조)를 구성할 수 있다(S1406). 이후, 단말은 SCell (즉, UCell) 상에 한시적으로 구성된 서브프레임 세트(예, RRP)를 이용하여 기지국과 통신을 수행할 수 있다. 여기서, RRP-cfg DCI 및 RRP에 관한 사항과 그에 따른 단말/기지국 동작(예, HARQ 피드백 동작, 전력 제어 동작 등)은 앞에서 설명한 내용을 참조할 수 있다.
도 15는 본 발명에 적용될 수 있는 기지국 및 단말을 예시한다.
도 15를 참조하면, 무선 통신 시스템은 기지국(BS, 110) 및 단말(UE, 120)을 포함한다. 무선 통신 시스템이 릴레이를 포함하는 경우, 기지국 또는 단말은 릴레이로 대체될 수 있다.
기지국(110)은 프로세서(112), 메모리(114) 및 무선 주파수(Radio Frequency: RF) 유닛(116)을 포함한다. 프로세서(112)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. 단말(120)은 프로세서(122), 메모리(124) 및 무선 주파수 유닛(126)을 포함한다. 프로세서(122)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 신호 송수신 관계를 중심으로 설명되었다. 이러한 송수신 관계는 단말과 릴레이 또는 기지국과 릴레이간의 신호 송수신에도 동일/유사하게 확장된다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, 단말은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (10)

  1. 무선 통신 시스템에서 단말이 통신을 수행하는 방법에 있어서,
    면허 밴드의 PCell(Primary Cell)과 비면허 밴드의 SCell(Secondary Cell)을 기지국에 대해 구성하는 단계;
    상기 PCell의 PDCCH(Physical Downlink Control Channel)를 통해 상기 SCell에 관한 자원 설정 정보를 수신하는 단계;
    상기 자원 설정 정보에 기초해, 상기 SCell 상의 한시적(temporary) 시구간 내에 서브프레임 세트를 구성하는 단계; 및
    상기 SCell 상에 한시적으로 구성된 상기 서브프레임 세트를 이용하여 상기 기지국과 통신을 수행하는 단계를 포함하는 방법.
  2. 제1항에 있어서,
    상기 서브프레임 세트는 하향링크 서브프레임으로만 구성되거나, 상향링크 서브프레임으로만 구성되는 방법.
  3. 제1항에 있어서,
    상기 서브프레임 세트는 하나 이상의 상향링크 서브프레임과 그 이후에 배치되는 하나 이상의 하향링크 서브프레임으로 구성되는 방법.
  4. 제3항에 있어서,
    상기 하나 이상의 상향링크 서브프레임의 종료 시점 이후에 일정 시간 동안 특정 신호를 전송하는 방법.
  5. 제1항에 있어서,
    상기 한시적 시구간의 길이는 RRC(Radio Resource Control) 메세지를 통해 사전에 지시되고, 상기 서브프레임 세트 내의 서브프레임 패턴은 상기 SCell에 관한 자원 설정 정보를 이용하여 지시되는 방법.
  6. 무선 통신 시스템에서 통신을 수행하도록 구성된 단말에 있어서,
    RF(Radio Frequency) 모듈; 및
    프로세서를 포함하고, 상기 프로세서는,
    면허 밴드의 PCell(Primary Cell)과 비면허 밴드의 SCell(Secondary Cell)을 기지국에 대해 구성하고,
    상기 PCell의 PDCCH(Physical Downlink Control Channel)를 통해 상기 SCell에 관한 자원 설정 정보를 수신하며,
    상기 자원 설정 정보에 기초해, 상기 SCell 상의 한시적(temporary) 시구간 내에 서브프레임 세트를 구성하고,
    상기 SCell 상에 한시적으로 구성된 상기 서브프레임 세트를 이용하여 상기 기지국과 통신을 수행하도록 구성된 단말.
  7. 제6항에 있어서,
    상기 서브프레임 세트는 하향링크 서브프레임으로만 구성되거나, 상향링크 서브프레임으로만 구성되는 단말.
  8. 제6항에 있어서,
    상기 서브프레임 세트는 하나 이상의 상향링크 서브프레임과 그 이후에 배치되는 하나 이상의 하향링크 서브프레임으로 구성되는 단말.
  9. 제8항에 있어서,
    상기 하나 이상의 상향링크 서브프레임의 종료 시점 이후에 일정 시간 동안 특정 신호를 전송하는 단말.
  10. 제6항에 있어서,
    상기 한시적 시구간의 길이는 RRC(Radio Resource Control) 메세지를 통해 사전에 지시되고, 상기 서브프레임 세트 내의 서브프레임 패턴은 상기 SCell에 관한 자원 설정 정보를 이용하여 지시되는 단말.
PCT/KR2015/007879 2014-07-28 2015-07-28 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 WO2016018046A1 (ko)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020167036289A KR102295822B1 (ko) 2014-07-28 2015-07-28 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
KR1020227041725A KR102544449B1 (ko) 2014-07-28 2015-07-28 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US15/329,572 US10219263B2 (en) 2014-07-28 2015-07-28 Method and apparatus for transceiving wireless signal in wireless communication system
CN201580041569.5A CN106576343B (zh) 2014-07-28 2015-07-28 在无线通信系统中收发无线信号的方法及其设备
CN202010071099.XA CN111278134B (zh) 2014-07-28 2015-07-28 在无线通信系统中收发无线信号的方法及其设备
EP15826780.7A EP3176962B1 (en) 2014-07-28 2015-07-28 Method and apparatus for transceiving wireless signal in wireless communication system
EP20196217.2A EP3771115B1 (en) 2014-07-28 2015-07-28 Method and apparatus for transceiving wireless signal in wireless communication system
KR1020217026903A KR102475628B1 (ko) 2014-07-28 2015-07-28 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US16/248,400 US10743302B2 (en) 2014-07-28 2019-01-15 Method and apparatus for transceiving wireless signal in wireless communication system
US16/932,474 US11445493B2 (en) 2014-07-31 2020-07-17 Method and apparatus for transceiving wireless signal in wireless communication system
US17/881,245 US11963194B2 (en) 2014-07-28 2022-08-04 Method and apparatus for transceiving wireless signal in wireless communication system

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201462029578P 2014-07-28 2014-07-28
US62/029,578 2014-07-28
US201462031838P 2014-07-31 2014-07-31
US62/031,838 2014-07-31
US201462033661P 2014-08-06 2014-08-06
US62/033,661 2014-08-06
US201462058682P 2014-10-02 2014-10-02
US62/058,682 2014-10-02
US201462082064P 2014-11-19 2014-11-19
US62/082,064 2014-11-19
US201562160620P 2015-05-13 2015-05-13
US62/160,620 2015-05-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/329,572 A-371-Of-International US10219263B2 (en) 2014-07-28 2015-07-28 Method and apparatus for transceiving wireless signal in wireless communication system
US16/248,400 Continuation US10743302B2 (en) 2014-07-28 2019-01-15 Method and apparatus for transceiving wireless signal in wireless communication system

Publications (1)

Publication Number Publication Date
WO2016018046A1 true WO2016018046A1 (ko) 2016-02-04

Family

ID=55217846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007879 WO2016018046A1 (ko) 2014-07-28 2015-07-28 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Country Status (5)

Country Link
US (3) US10219263B2 (ko)
EP (2) EP3176962B1 (ko)
KR (3) KR102475628B1 (ko)
CN (2) CN111278134B (ko)
WO (1) WO2016018046A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017206663A1 (zh) * 2016-06-03 2017-12-07 华为技术有限公司 免授权传输方法和装置
CN109479317A (zh) * 2016-07-13 2019-03-15 三星电子株式会社 用于在无线蜂窝通信系统中发送和接收随机接入前导码的方法和设备
RU2732723C1 (ru) * 2016-12-23 2020-09-22 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ передачи информации, сетевое устройство и оконечное устройство

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3176962B1 (en) 2014-07-28 2020-10-14 LG Electronics Inc. Method and apparatus for transceiving wireless signal in wireless communication system
US11445493B2 (en) 2014-07-31 2022-09-13 Lg Electronics Inc. Method and apparatus for transceiving wireless signal in wireless communication system
JP6619742B2 (ja) * 2014-09-26 2019-12-11 京セラ株式会社 基地局及びユーザ端末
US9820264B2 (en) 2015-03-09 2017-11-14 Ofinno Technologies, Llc Data and multicast signals in a wireless device and wireless network
US10700845B2 (en) 2015-03-09 2020-06-30 Comcast Cable Communications, Llc Secondary cell deactivation in a wireless device and a base station
US10327236B2 (en) 2015-03-09 2019-06-18 Comcast Cable Communications, Llc Secondary cell in a wireless device and wireless network
US9820298B2 (en) 2015-03-09 2017-11-14 Ofinno Technologies, Llc Scheduling request in a wireless device and wireless network
US10182406B2 (en) 2015-03-09 2019-01-15 Comcast Cable Communications, Llc Power headroom report for a wireless device and a base station
US9877334B2 (en) * 2015-04-05 2018-01-23 Ofinno Technologies, Llc Cell configuration in a wireless device and wireless network
US11641255B2 (en) 2015-04-05 2023-05-02 Comcast Cable Communications, Llc Uplink control information transmission in a wireless network
US9894681B2 (en) 2015-06-12 2018-02-13 Ofinno Technologies, Llc Uplink scheduling in a wireless device and wireless network
US10200177B2 (en) 2015-06-12 2019-02-05 Comcast Cable Communications, Llc Scheduling request on a secondary cell of a wireless device
US9948487B2 (en) 2015-06-15 2018-04-17 Ofinno Technologies, Llc Uplink resource allocation in a wireless network
US10172124B2 (en) 2015-09-22 2019-01-01 Comcast Cable Communications, Llc Carrier selection in a multi-carrier wireless network
US10200164B2 (en) 2015-09-22 2019-02-05 Comcast Cable Communications, Llc Carrier activation in a multi-carrier wireless network
CN108476101B (zh) 2015-10-17 2021-07-16 康卡斯特有线通信有限责任公司 局部子帧和全子帧中的控制信道配置
US11296837B2 (en) * 2016-01-28 2022-04-05 Qualcomm Incorporated Physical broadcast channel (PBCH) transmission and reception on a shared communication medium
US10548121B2 (en) 2016-02-03 2020-01-28 Comcast Cable Communications, Llc Downlink and uplink channel transmission and monitoring in a wireless network
RU2018127523A (ru) * 2016-02-03 2020-01-27 Сони Корпорейшн Устройство терминала, устройство базовой станции и способ связи
US10880921B2 (en) 2016-02-04 2020-12-29 Comcast Cable Communications, Llc Detection threshold for a wireless network
US10820318B2 (en) * 2016-02-29 2020-10-27 Ntt Docomo, Inc. User terminal, radio base station and radio communication method based upon downlink control in current subframe
US10582401B2 (en) * 2016-03-08 2020-03-03 Aurora Insight Inc. Large scale radio frequency signal information processing and analysis system
US10779179B2 (en) 2016-03-08 2020-09-15 Aurora Insight Inc. System and method for large-scale radio frequency signal collection and processing
US10412755B2 (en) * 2016-03-25 2019-09-10 Qualcomm Incorporated Techniques for configuring uplink transmissions in a shared radio frequency spectrum band
US10200992B2 (en) 2016-05-06 2019-02-05 Comcast Cable Communications, Llc Uplink signal starting position in a wireless device and wireless network
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
US11147062B2 (en) 2016-10-14 2021-10-12 Comcast Cable Communications, Llc Dual connectivity power control for wireless network and wireless device
US20180124831A1 (en) 2016-10-29 2018-05-03 Ofinno Technologies, Llc Dual connectivity scheduling request for wireless network and wireless device
US10848977B2 (en) 2016-11-02 2020-11-24 Comcast Cable Communications, Llc Dual connectivity with licensed assisted access
US10743329B2 (en) * 2016-12-06 2020-08-11 Qualcomm Incorporated Hearability improvements for interference management signals
US11601820B2 (en) * 2017-01-27 2023-03-07 Qualcomm Incorporated Broadcast control channel for shared spectrum
US11950117B2 (en) 2017-05-02 2024-04-02 Aurora Insight Inc. Large scale radio frequency signal information processing and analysis system
CN108882267A (zh) * 2017-05-11 2018-11-23 深圳市金立通信设备有限公司 免授权频段信道的接入方法和装置
US20180338254A1 (en) * 2017-05-22 2018-11-22 Industrial Technology Research Institute Beam tracking method in multi-cell group of millimeter wave communication system and related apparatuses using the same
US10911997B2 (en) 2017-06-16 2021-02-02 Mediatek Inc. Radio resource management (RRM) measurement for new radio (NR) network
CN110234164B (zh) * 2018-03-06 2023-02-03 华为技术有限公司 一种确定控制信道位置方法设备和处理器可读存储介质
CN110784905B (zh) * 2018-07-25 2021-11-16 财团法人工业技术研究院 网络接入方法和使用网络接入方法的用户设备
JP2021182654A (ja) * 2018-08-09 2021-11-25 ソニーグループ株式会社 無線通信装置、無線通信方法及びコンピュータプログラム
CN112335315B (zh) * 2018-08-09 2023-05-30 Lg电子株式会社 终端在免许可频带中发送物理上行链路共享信道的方法以及使用该方法的装置
CN110933761B (zh) * 2018-09-20 2022-02-15 成都华为技术有限公司 资源调度方法及设备
CN110943799B (zh) * 2018-09-21 2021-08-13 华为技术有限公司 一种通信方法及装置
US11363465B2 (en) * 2018-09-26 2022-06-14 Qualcomm Incorporated Licensed supplemental uplink as fallback with unlicensed uplink and downlink
EP3911000B1 (en) * 2019-01-09 2023-11-01 Panasonic Intellectual Property Corporation of America Base station, terminal, and communication method
JP2020113884A (ja) * 2019-01-10 2020-07-27 シャープ株式会社 端末装置、基地局装置、および、通信方法
EP3927050A4 (en) * 2019-02-14 2022-09-07 Ntt Docomo, Inc. USER TERMINAL
KR20210010240A (ko) * 2019-07-19 2021-01-27 삼성전자주식회사 무선 통신 시스템에서 단말 전력 소모 감소 방법 및 장치
US11382131B2 (en) * 2020-05-05 2022-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Data signaling for high frequency networks
EP4018734A4 (en) * 2020-05-07 2022-09-07 ZTE Corporation SYSTEM AND METHOD FOR UPLINK COMPENSATION GAP
CN111862643B (zh) * 2020-07-20 2022-01-14 南京木马牛智能科技有限公司 在复杂环境下发送危险预警语音信息的方法及智能眼镜
CN116209082A (zh) * 2021-11-29 2023-06-02 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130121605A (ko) * 2012-04-27 2013-11-06 주식회사 팬택 단말 및 단말의 상향링크 제어 채널 전송 자원 설정 방법
US20130322307A1 (en) * 2011-03-13 2013-12-05 Lg Electronics Inc. Method for transmitting/receiving signal and device therefor
US20140036881A1 (en) * 2011-04-13 2014-02-06 Lg Electronics Inc. Method and apparatus for transmitting control information in a wireless communication system
US20140044000A1 (en) * 2011-04-15 2014-02-13 Renesas Mobile Corporation LTE Carrier Aggregation Configuration on TV White Space Bands
EP2723122A1 (en) * 2011-06-20 2014-04-23 Huawei Technologies Co., Ltd Time division duplex communication method, enb, ue

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8145251B2 (en) * 2006-01-23 2012-03-27 Motorola Mobility, Inc. Power control in schedulable wireless communication terminal
US8014416B2 (en) * 2006-02-14 2011-09-06 Sibeam, Inc. HD physical layer of a wireless communication device
KR101386198B1 (ko) * 2007-10-15 2014-04-18 삼성전자주식회사 비승인 대역을 이용한 무선 자원 할당 시스템 및 그 방법
CN101489258B (zh) * 2008-01-16 2010-12-08 大唐移动通信设备有限公司 一种实现上行调度信息发送的方法、装置和终端
US8472539B2 (en) * 2009-04-07 2013-06-25 Lg Electronics Inc. Method of transmitting power information in wireless communication system
US8374201B2 (en) * 2009-09-16 2013-02-12 Samsung Electronics Co., Ltd. Preamble design for supporting multiple topologies with visible light communication
CN102036380B (zh) * 2009-09-27 2013-07-31 电信科学技术研究院 一种接收下行反馈信息的方法、系统和装置
US8954065B2 (en) * 2010-11-24 2015-02-10 Lg Electronics Inc. Method of communicating data based on an unlicensed band in a wireless communication system
KR20220021002A (ko) * 2010-12-06 2022-02-21 인터디지탈 패튼 홀딩스, 인크 허가 면제 스펙트럼에서의 무선 동작을 가능케 하는 방법
KR101967413B1 (ko) * 2011-02-08 2019-04-10 마벨 월드 트레이드 리미티드 사용되지 않는 tv 주파수에서의 wlan 채널 할당
KR101600487B1 (ko) * 2011-04-18 2016-03-21 엘지전자 주식회사 무선통신시스템에서 신호 전송 방법 및 장치
US9344946B2 (en) * 2011-05-06 2016-05-17 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in a network node
US20140269550A1 (en) * 2011-06-13 2014-09-18 Neul Ltd. Assigning licensed and unlicensed bandwidth
US9854446B2 (en) * 2011-07-07 2017-12-26 Lg Electronics Inc. Method and apparatus for transmitting a signal in a wireless communication system
WO2013006988A1 (en) * 2011-07-14 2013-01-17 Renesas Mobile Corporation Methods and apparatuses for provision of a flexible time sharing scheme on an unlicensed band of a system
EP2761927A4 (en) * 2011-09-30 2015-08-12 Intel Corp METHODS OF SIMULTANEOUSLY TRANSPORTING INTERNET TRAFFIC ON MULTIPLE WIRELESS NETWORKS
KR20130061586A (ko) 2011-12-01 2013-06-11 주식회사 팬택 참조 신호 전송 방법 및 장치와 이를 이용한 상향링크 전송 방법 및 장치
CN104012159A (zh) 2011-12-22 2014-08-27 交互数字专利控股公司 Lte载波聚合中的控制信令
US9363829B2 (en) * 2012-02-24 2016-06-07 Interdigital Patent Holdings, Inc. Random access in dynamic and shared spectrums
US9198181B2 (en) * 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels
US9019924B2 (en) * 2012-04-04 2015-04-28 Samsung Electronics Co., Ltd. High-order multiple-user multiple-input multiple-output operation for wireless communication systems
TWI620459B (zh) * 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
US20140301492A1 (en) * 2013-03-08 2014-10-09 Samsung Electronics Co., Ltd. Precoding matrix codebook design for advanced wireless communications systems
US9538439B2 (en) * 2013-05-10 2017-01-03 Qualcomm Incorporated Method and apparatus for estimating an achievable link throughput based on assistance information
EP2984888B1 (en) * 2013-05-10 2020-10-28 Huawei Technologies Co., Ltd. Systems and methods for network adaptation support in wireless network
US9763151B2 (en) * 2013-07-04 2017-09-12 Electronics And Telecommunications Research Institute Control method for supporting multiple connections in mobile communication system and apparatus for supporting multiple connections
US10375711B2 (en) * 2013-11-12 2019-08-06 Qualcomm Incorporated Methods for LTE channel selection in unlicensed bands
US9554283B2 (en) * 2013-12-03 2017-01-24 Apple Inc. Carrier aggregation using unlicensed frequency bands
WO2015106883A1 (en) * 2014-01-15 2015-07-23 Sony Corporation Communications device
JP6388780B2 (ja) * 2014-03-19 2018-09-12 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US20150305041A1 (en) * 2014-04-16 2015-10-22 Electronics And Telecommunications Research Institute Method and apparatus for providing service using radio resource aggregation
JP2017108195A (ja) * 2014-04-24 2017-06-15 シャープ株式会社 端末装置、基地局装置、処理装置および処理方法
US9560651B2 (en) * 2014-05-27 2017-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Radio resource allocation of unlicensed frequency bands
CN105207754B (zh) 2014-05-30 2019-09-10 中兴通讯股份有限公司 信息发送方法、信息接收方法、装置及系统
US9693235B2 (en) * 2014-07-03 2017-06-27 Sony Corporation Methods and devices for securing radio resources for an LTE-U data transmission
EP3176962B1 (en) 2014-07-28 2020-10-14 LG Electronics Inc. Method and apparatus for transceiving wireless signal in wireless communication system
US11445493B2 (en) 2014-07-31 2022-09-13 Lg Electronics Inc. Method and apparatus for transceiving wireless signal in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130322307A1 (en) * 2011-03-13 2013-12-05 Lg Electronics Inc. Method for transmitting/receiving signal and device therefor
US20140036881A1 (en) * 2011-04-13 2014-02-06 Lg Electronics Inc. Method and apparatus for transmitting control information in a wireless communication system
US20140044000A1 (en) * 2011-04-15 2014-02-13 Renesas Mobile Corporation LTE Carrier Aggregation Configuration on TV White Space Bands
EP2723122A1 (en) * 2011-06-20 2014-04-23 Huawei Technologies Co., Ltd Time division duplex communication method, enb, ue
KR20130121605A (ko) * 2012-04-27 2013-11-06 주식회사 팬택 단말 및 단말의 상향링크 제어 채널 전송 자원 설정 방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017206663A1 (zh) * 2016-06-03 2017-12-07 华为技术有限公司 免授权传输方法和装置
US10797827B2 (en) 2016-06-03 2020-10-06 Huawei Technologies Co., Ltd. Grant-free transmission method and apparatus
CN109479317A (zh) * 2016-07-13 2019-03-15 三星电子株式会社 用于在无线蜂窝通信系统中发送和接收随机接入前导码的方法和设备
CN109479317B (zh) * 2016-07-13 2023-06-23 三星电子株式会社 无线通信系统中发送和接收随机接入前导码的方法和设备
RU2732723C1 (ru) * 2016-12-23 2020-09-22 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ передачи информации, сетевое устройство и оконечное устройство
US11777684B2 (en) 2016-12-23 2023-10-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method, network device and terminal device

Also Published As

Publication number Publication date
EP3771115B1 (en) 2022-09-07
US10219263B2 (en) 2019-02-26
EP3176962A1 (en) 2017-06-07
KR102295822B1 (ko) 2021-08-31
EP3176962A4 (en) 2018-04-11
KR102475628B1 (ko) 2022-12-08
KR20170040128A (ko) 2017-04-12
US11963194B2 (en) 2024-04-16
EP3176962B1 (en) 2020-10-14
CN111278134B (zh) 2023-09-26
CN106576343B (zh) 2020-02-28
US20190150130A1 (en) 2019-05-16
KR20210110394A (ko) 2021-09-07
KR20220165805A (ko) 2022-12-15
KR102544449B1 (ko) 2023-06-16
CN111278134A (zh) 2020-06-12
US20220394685A1 (en) 2022-12-08
US10743302B2 (en) 2020-08-11
CN106576343A (zh) 2017-04-19
EP3771115A1 (en) 2021-01-27
US20170251454A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
WO2016018046A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016028103A1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2017135713A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2019160364A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2018203681A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2016021958A1 (ko) 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
WO2016114593A1 (ko) 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
WO2017217797A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2017119791A2 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2015012666A1 (ko) Mtc를 위한 신호 전송 방법 및 이를 위한 장치
WO2016018056A1 (ko) 하향링크 제어 정보 수신 방법 및 사용자기기와, 하향링크 제어 정보 전송 방법 및 기지국
WO2016021957A1 (ko) Ack/nack 피드백 방법 및 사용자기기
WO2016108674A1 (ko) 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
WO2013109109A1 (ko) 제어 정보 송수신 방법 및 이를 위한 장치
WO2016163802A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 cca를 수행하는 방법 및 이를 지원하는 장치
WO2013176531A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2015012665A1 (ko) Mtc를 위한 신호 전송 방법 및 이를 위한 장치
WO2013095004A1 (ko) 무선 통신 시스템에서 랜덤 접속 과정의 수행 방법 및 장치
WO2016056876A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016018054A1 (ko) 무선 통신 시스템에서 채널 상태 보고 방법 및 장치
WO2016093618A1 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2016048100A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2016053047A1 (ko) 상향링크 신호를 전송하는 방법 및 사용자기기와, 상향링크 신호를 수신하는 방법 및 사용자기기
WO2016153290A1 (ko) 상향링크 데이터 전송 방법 및 사용자기기와, 상향링크 데이터 수신 방법 및 기지국
WO2017043916A1 (ko) 무선 통신 시스템에서 신호의 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167036289

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015826780

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15329572

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE