WO2013147165A1 - コハク酸イミド化合物、潤滑油添加剤および潤滑油組成物 - Google Patents

コハク酸イミド化合物、潤滑油添加剤および潤滑油組成物 Download PDF

Info

Publication number
WO2013147165A1
WO2013147165A1 PCT/JP2013/059544 JP2013059544W WO2013147165A1 WO 2013147165 A1 WO2013147165 A1 WO 2013147165A1 JP 2013059544 W JP2013059544 W JP 2013059544W WO 2013147165 A1 WO2013147165 A1 WO 2013147165A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
general formula
formula
succinimide compound
succinimide
Prior art date
Application number
PCT/JP2013/059544
Other languages
English (en)
French (fr)
Inventor
一生 田川
紀子 阿部
美帆 遠藤
龍一 上野
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012076713A external-priority patent/JP2013203724A/ja
Priority claimed from JP2012076625A external-priority patent/JP6049282B2/ja
Priority claimed from JP2012076627A external-priority patent/JP2013203723A/ja
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2013147165A1 publication Critical patent/WO2013147165A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/56Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • C10M139/04Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00 having a silicon-to-carbon bond, e.g. silanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/04Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having a silicon-to-carbon bond, e.g. organo-silanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/052Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/045Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for continuous variable transmission [CVT]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to a novel succinimide compound, and a lubricating oil additive and lubricating oil composition containing the compound.
  • Succinimide compounds are used in the field of lubricating oils for internal combustion engines, such as gasoline engine oils and diesel engine oils, as ashless dispersants that disperse the insoluble matter produced in the oils.
  • succinimide compounds are used as friction modifiers for increasing frictional force in the field of drive system lubricants such as automatic transmissions.
  • a succinimide compound obtained by reaction of a succinic anhydride substituted with a high molecular weight alkenyl or alkyl group and a polyalkylene polyamine is known (Patent Document 1 below).
  • a method for producing a substituted succinimide a method in which a maleimide compound and a silicon enolate are reacted is known (see Patent Document 4 below).
  • the present invention relates to a novel succinimide compound useful for applications such as an ashless dispersant in a lubricating oil for internal combustion engines, a friction modifier in a drive system lubricating oil, and a lubricating oil additive and a lubricating oil composition containing the compound.
  • the purpose is to provide.
  • the present invention provides a succinimide compound represented by any one of the following general formulas (1-A), (1-B) or (1-C).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000;
  • N represents an integer of 1 to 5, n represents 0 or an integer of 1 to 3, and
  • R 2 , R 3 and R 4 may be the same or different, and each of the following general formulas (2) to (4) Represents a monovalent group represented by: —O (CH 2 ) a CH 3 (2) (In the formula (2), a represents an integer of 0 to 3.) -(CH 2 ) b CH 3 (3) (In the formula (3), b represents an integer of 0 to 3.) —OSi (CH 2 ) c CH 3 (4) (In the formula (4), c
  • the present invention also provides a succinimide compound obtained by reacting a compound represented by the following general formula (5-A) with a compound represented by the following general formula (6-A).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000
  • m represents an integer of 1 to 5.
  • R 2 , R 3 and R 4 may be the same or different and each represents a monovalent group represented by any one of the following general formulas (2) to (4) .
  • the present invention also provides a succinimide compound obtained by reacting a compound represented by the following general formula (5-B) with a compound represented by the following general formula (6-B).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000.
  • R 2 , R 3 and R 4 may be the same or different and each represents a monovalent group represented by any one of the following general formulas (2) to (4) .
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000.
  • n represents 0 or an integer of 1 to 3
  • R 2 , R 3 and R 4 may be the same or different, and each of the following general formulas (2) to (4) The monovalent group represented by either is shown.
  • succinimide compound of the present invention has very superior characteristics compared to conventional succinimide compounds, it is suitable for use in ashless dispersants in internal combustion engine lubricants, friction modifiers in drive device lubricants, etc. Useful for applications.
  • the succinimide compound of the present invention is superior in the effect of improving the friction characteristics as compared with the conventional succinimide compound, so that the frictional force inside the automatic transmission is efficiently converted to the driving force.
  • a high coefficient of friction can be achieved, and fuel efficiency can be improved.
  • the present invention also provides a lubricating oil additive containing the succinimide compound of the present invention.
  • the present invention also provides a lubricating oil composition containing a lubricating base oil and the succinimide compound of the present invention.
  • the present invention also provides a lubricating oil composition for a continuously variable transmission, comprising a lubricating base oil and the succinimide compound of the present invention.
  • the lubricating oil composition of the present invention preferably further contains a phosphorus compound.
  • a novel succinimide compound useful for applications such as an ashless dispersant in an internal combustion engine lubricating oil, a friction modifier in a drive system lubricating oil, and a lubricating oil additive and lubricating oil containing the compound It becomes possible to provide a composition.
  • FIG. 3 is an IR chart of the succinimide compound obtained in Example A-1.
  • FIG. 4 is a diagram showing an IR chart of the succinimide compound obtained in Example A-2. It is a figure which shows IR chart of the succinimide compound obtained in Example A-3.
  • FIG. 4 is a diagram showing an IR chart of the succinimide compound obtained in Example A-5.
  • FIG. 4 is a diagram showing an IR chart of the succinimide compound obtained in Example B-1.
  • FIG. 3 is an IR chart of the succinimide compound obtained in Example C-1.
  • the succinimide compound according to the first embodiment of the present invention (hereinafter referred to as “succinimide compound (A1)”) has a structure represented by the following formula (1-A).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000, or an alkenyl group having a number average molecular weight of 500 or more and less than 5000
  • m represents an integer of 1 to 5
  • R 2 , R 3 and R 4 may be the same or different and each represents a monovalent group represented by any one of the following general formulas (2) to (4).
  • R 1 is preferably a polybutenyl group or a polyisobutenyl group.
  • the number average molecular weight is 500 or more and less than 5000, preferably 700 to 4000, more preferably 800 to 3500.
  • m is an integer of 1 to 5, preferably an integer of 2 to 3, more preferably 2. If m is less than the above lower limit value or exceeds the above upper limit value, the intermetallic friction coefficient tends to decrease.
  • Preferable examples of the succinimide compound represented by the general formula (1-A) include the following compounds.
  • A1-1) A compound in which R 2 , R 3 and R 4 in formula (1-A) are all monovalent groups represented by formula (2).
  • A1-2 At least one of R 2 , R 3 or R 4 in the general formula (1-A) is a monovalent group represented by the general formula (2), and at least one of the general formula (3) The compound which is a monovalent group represented by these.
  • A1-3 At least one of R 2 , R 3 and R 4 in the general formula (1-A) is a monovalent group represented by the general formula (3), and at least one of the general formula (4) The compound which is a monovalent group represented by these.
  • succinimide compound (A1-1) examples include a compound represented by the following formula (7).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000.
  • a specific example of the succinimide compound (A1-2) is a compound represented by the following formula (8).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000.
  • a specific example of the succinimide (A1-3) is a compound represented by the following formula (9).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000.
  • the succinimide compound (A1) may be used as it is without being boronated (that is, as a non-boronated succinimide compound) or may be used as a boronated succinimide compound. Further, a boronated succinimide compound and a non-borated succinimide compound may be used in combination.
  • the boronated succinimide compound can be obtained by reacting the succinimide compound (A1) with a boron-containing compound at a temperature of usually 50 to 250 ° C., preferably 100 to 200 ° C.
  • a boron-containing compound examples include boron oxide, boron halide, boric acid, boric anhydride and boric acid ester. These boron-containing compounds may be used alone or in combination of two or more.
  • succinimide compound (A2) includes a compound represented by the following general formula (5-A), 6-A) A succinimide compound obtained by reaction with a compound represented by 6).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000
  • m represents an integer of 1 to 5.
  • R 2 , R 3 and R 4 may be the same or different and each represents a monovalent group represented by any one of the following general formulas (2) to (4) .
  • R 1 in the general formula (5-A) and R 2 , R 3 and R 4 in the general formula (6-A) are respectively R 1 , R 2 , R 3 in the general formula (1-A) and The same definition content as R 4 is shown. These preferred embodiments are also the same as those in the case of the general formula (1-A), and redundant description is omitted here. Further, m in the general formula (1-A) has the same definition content as m in the general formula (1-A). These preferred embodiments are also the same as those in the case of the general formula (1-A), and redundant description is omitted here.
  • Preferable examples of the compound represented by the general formula (6-A) include the following compounds.
  • A2-3) At least one of R 2 , R 3 and R 4 in the general formula (6-A) is a monovalent group represented by the general formula (3), and at least one of the general formula (4) The compound which is a monovalent group represented by these.
  • Specific examples of the compound (A2-1) include 3-glycidyloxypropyltrimethoxysilane represented by the following formula (10-A).
  • compound (A2-2) examples include 1,1,1,3,5,5,5-heptamethyl-3- (3-glycidyloxy represented by the following formula (11-A):
  • An example is propyl) trisiloxane.
  • succinimide compound (A2-3) examples include diethoxy (3-glycidyloxypropyl) methylsilane represented by the following formula (12-A).
  • a succinimide compound represented by the following general formula (13-A) is usually used. Obtained as the main product.
  • the reaction product since there are three reaction sites of the compound represented by the general formula (5-A), the reaction product may be represented by the general formula (5-A) depending on the charging ratio (molar ratio) of the raw material compounds. There may be a by-product in which 2 equivalents or 3 equivalents of the compound represented by the general formula (6-A) are reacted with 1 equivalent of the above compound.
  • the above-mentioned by-product may be removed from the reaction product, and only the succinimide compound represented by the general formula (13-A) may be used as a lubricant additive, or the general formula A mixture of the succinimide compound represented by (13-A) and the above-mentioned by-product may be used as a lubricating oil additive.
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000
  • R 1 , R 2 and R 3 may be the same or different.
  • Each represents a monovalent group represented by any one of the following general formulas (2) to (4).
  • —O (CH 2 ) a CH 3 (2) (In the formula (2), a represents an integer of 0 to 3.) -(CH 2 ) b CH 3 (3) (In the formula (3), b represents an integer of 0 to 3.) —OSi (CH 2 ) c CH 3 (4) (In the formula (4), c represents an integer of 0 to 3)]
  • the charging ratio of the two is generally equal to 1 mol of the compound represented by the general formula (5-A).
  • the compound represented by the formula (6-A) is preferably 1 to 2 mol, more preferably 1 to 1.8 mol, still more preferably 1.1 to 1.6 mol, particularly preferably 1.2 to 1.5 mol. is there.
  • reaction conditions for the compound represented by the general formula (5-A) and the compound represented by the general formula (6-A) are not particularly limited, but the reaction temperature is 90 to 130 ° C, preferably 100 to 200 ° C.
  • the reaction time is 3 to 7 hours, preferably 4 to 6 hours.
  • a reaction solvent can be used as needed.
  • the solvent is preferably a solvent that dissolves the compound represented by the general formula (5-A) and the compound represented by the general formula (6-A).
  • the organic solvent is ethanol, toluene, xylene. Examples can be given.
  • the succinimide compound (A2) may be used as it is without being boronated (that is, as a non-borated succinimide compound) or may be used as a boronated succinimide compound. Further, a boronated succinimide compound and a non-borated succinimide compound may be used in combination.
  • the boronated succinimide compound can be obtained by reacting a boron-containing compound with the succinimide compound (A2) at a temperature of usually 50 to 250 ° C., preferably 100 to 200 ° C.
  • a boron-containing compound examples include boron oxide, boron halide, boric acid, boric anhydride and boric acid ester. These boron-containing compounds may be used alone or in combination of two or more.
  • the succinimide compound according to the third embodiment of the present invention (hereinafter referred to as “succinimide compound (B1)”) has a structure represented by the following general formula (1-B).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000
  • R 2 , R 3 and R 4 may be the same or different.
  • Each represents a monovalent group represented by any one of the following general formulas (2) to (4).
  • R 1 in the general formula (1-B) is preferably a polybutenyl group or a polyisobutenyl group.
  • the number average molecular weight is 500 or more and less than 5000, preferably 700 to 4000, more preferably 800 to 3500.
  • the succinimide compound represented by the general formula (1-B) include the following compounds.
  • (B1-1) A compound in which R 2 , R 3 and R 4 in the general formula (1-B) are all monovalent groups represented by the general formula (2).
  • (B1-2) At least one of R 2 , R 3 or R 4 in the general formula (1-B) is a monovalent group represented by the general formula (2), and at least one of the general formula (3) The compound which is a monovalent group represented by these.
  • B1-3 At least one of R 2 , R 3 and R 4 in the general formula (1-B) is a monovalent group represented by the general formula (3), and at least one of the general formula (4) The compound which is a monovalent group represented by these.
  • succinimide compound (B1-1) examples include compounds represented by the following formula (7-B).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000.
  • succinimide compound (B1-2) examples include a compound represented by the following formula (8-B).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000.
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000.
  • the succinimide compound (B1) may be used as it is without being boronated (that is, as a non-borated succinimide compound) or may be used as a boronated succinimide compound. Further, a boronated succinimide compound and a non-borated succinimide compound may be used in combination.
  • the boronated succinimide compound can be obtained by reacting a boron-containing compound with the succinimide compound (B1) at a temperature of usually 50 to 250 ° C., preferably 100 to 200 ° C.
  • a boron-containing compound examples include boron oxide, boron halide, boric acid, boric anhydride and boric acid ester. These boron-containing compounds may be used alone or in combination of two or more.
  • succinimide compound (B2) includes a compound represented by the following general formula (5-B) and the following general formula ( 6-B) is a succinimide compound obtained by reaction with a compound represented by 6).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000.
  • R 2 , R 3 and R 4 may be the same or different and each represents a monovalent group represented by any one of the following general formulas (2) to (4) .
  • R 1 in the general formula (5-B) and R 2 , R 3 and R 4 in the general formula (6-B) are R 1 , R 2 , R 3 in the general formula (1-B) and The same definition content as R 4 is shown. These preferred embodiments are also the same as those in the case of the general formula (1-B), and redundant description is omitted here.
  • Preferable examples of the compound represented by the general formula (6-B) include the following compounds.
  • B2-3) At least one of R 2 , R 3 and R 4 in the general formula (6-B) is a monovalent group represented by the general formula (3), and at least one of the general formula (4) The compound which is a monovalent group represented by these.
  • Specific examples of the compound (B2-1) include 1- [3- (trimethoxysilyl) propyl] urea represented by the following formula (10-B).
  • Specific examples of the compound (B2-3) include compounds represented by the following formula (12-B).
  • the charging ratio of the compound represented by the general formula (5-B) and the compound represented by the general formula (6-B) can be appropriately selected.
  • the compound represented by the general formula (6-B) is preferably 1 to 2 mol, more preferably 1 to 1.8 mol, still more preferably Is 1.1 to 1.6 mol, particularly preferably 1.2 to 1.5 mol.
  • reaction conditions for the compound represented by the general formula (5-B) and the compound represented by the general formula (6-B) are not particularly limited, but the reaction temperature is 140 to 180 ° C, preferably 155 to 175 ° C.
  • the reaction time is 10 to 48 hours, preferably 20 to 36 hours.
  • a reaction solvent can be used if necessary, and the solvent is preferably a solvent that dissolves the compound represented by the general formula (5-B) and the compound represented by the general formula (6-B).
  • Is an organic solvent and examples thereof include ethanol, toluene, and xylenes.
  • the succinimide compound (B2) may be used as it is without being boronated (that is, as a non-borated succinimide compound) or may be used as a boronated succinimide compound. Further, a boronated succinimide compound and a non-borated succinimide compound may be used in combination.
  • the boronated succinimide compound can be obtained by reacting the succinimide compound (B2) with a boron-containing compound at a temperature of usually 50 to 250 ° C., preferably 100 to 200 ° C.
  • a boron-containing compound examples include boron oxide, boron halide, boric acid, boric anhydride and boric acid ester. These boron-containing compounds may be used alone or in combination of two or more.
  • succinimide compound (C1) has a structure represented by the following formula (1-C).
  • R 1 represents an alkyl group or a number-average molecular weight of 500 to 5000 than the alkenyl groups of less than 5000 number average molecular weight of 500 or more
  • n represents an integer of 0 or 1 ⁇ 3
  • R 2 , R 3 and R 4 may be the same or different and each represents a monovalent group represented by any one of the following general formulas (2) to (4).
  • R 1 in the general formula (1-C) is preferably a polybutenyl group or a polyisobutenyl group.
  • the number average molecular weight is 500 or more and less than 5000, preferably 700 to 4000, more preferably 800 to 3500.
  • n is 0 or an integer of 1 to 3, preferably 0 or an integer of 1 to 2, more preferably 0 or 1.
  • n exceeds the upper limit, the intermetallic friction coefficient tends to decrease.
  • the succinimide compound represented by the general formula (1-C) include the following compounds.
  • (C1-1) A compound in which R 2 , R 3 and R 4 in the general formula (1-C) are all monovalent groups represented by the general formula (2).
  • (C1-2) At least one of R 2 , R 3 or R 4 in the general formula (1-C) is a monovalent group represented by the general formula (2), and at least one of the general formula (3) The compound which is a monovalent group represented by these.
  • C1-3 At least one of R 2 , R 3 and R 4 in the general formula (1-C) is a monovalent group represented by the general formula (3), and at least one of the general formula (4) The compound which is a monovalent group represented by these.
  • succinimide compound (C1-1) examples include a compound represented by the following formula (7-A).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000, and n represents 0 or an integer of 1 to 3.
  • succinimide compound (C1-2) include compounds represented by the following formula (8-C).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000, and n represents 0 or an integer of 1 to 3.
  • succinimide (C1-3) examples include a compound represented by the following formula (9-C).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000, and n represents 0 or an integer of 1 to 3.
  • the succinimide compound (C1) may be used as it is without being boronated (that is, as a non-borated succinimide compound), or may be used as a boronated succinimide compound. Further, a boronated succinimide compound and a non-borated succinimide compound may be used in combination.
  • the boronated succinimide compound can be obtained by reacting the boron-containing compound with the succinimide compound (C1) at a temperature of usually 50 to 250 ° C., preferably 100 to 200 ° C.
  • the boron-containing compound include boron oxide, boron halide, boric acid, boric anhydride and boric acid ester. These boron-containing compounds may be used alone or in combination of two or more.
  • the succinimide compound according to the sixth embodiment of the present invention includes a compound represented by the following general formula (5-C), 6-C) A succinimide compound obtained by reaction with a compound represented by 6).
  • R 1 represents an alkyl group having a number average molecular weight of 500 or more and less than 5000 or an alkenyl group having a number average molecular weight of 500 or more and less than 5000.
  • n 0 or an integer of 1 to 3
  • R 2 , R 3 and R 4 may be the same or different, and each of the following general formulas (2) to (4) The monovalent group represented by either is shown.
  • —O (CH 2 ) a CH 3 (2) (Wherein, a represents an integer of 0 to 3) -(CH 2 ) b CH 3 (3) (In the formula, b represents an integer of 0 to 3.) —OSi (CH 2 ) c CH 3 (4) (Wherein c represents an integer of 0 to 3)]
  • R 1 in the general formula (5-C) and R 2 , R 3 and R 4 in the general formula (6-C) are respectively R 1 , R 2 , R 3 in the general formula (1-C) and The same definition content as R 4 is shown. These preferred embodiments are also the same as those in the case of the general formula (1-C), and redundant description is omitted here.
  • Preferable examples of the compound represented by the general formula (6-C) include the following compounds.
  • C2-3) At least one of R 2 , R 3 and R 4 in the general formula (6-C) is a monovalent group represented by the general formula (3), and at least one of the general formula (4) The compound which is a monovalent group represented by these.
  • Specific examples of the compound (C2-1) include compounds represented by the following formula (10-C).
  • Specific examples of the compound (C2-2) include compounds represented by the following formula (11-C).
  • Specific examples of the compound (C2-3) include compounds represented by the following formula (12-C).
  • the charging ratio of the compound represented by the general formula (5-C) and the compound represented by the general formula (6-C) can be appropriately selected.
  • the compound represented by the general formula (6-C) is preferably 1 to 2 mol, more preferably 1 to 1.8 mol, still more preferably Is 1.1 to 1.6 mol, particularly preferably 1.2 to 1.5 mol.
  • reaction conditions for the compound represented by the general formula (5-C) and the compound represented by the general formula (6-C) are not particularly limited, but the reaction temperature is 145 to 180 ° C, preferably 155 to 175 ° C.
  • the reaction time is 6 to 12, preferably 8 to 10 hours.
  • a reaction solvent can be used as necessary, and the solvent is preferably a solvent that dissolves the compound represented by the general formula (5-C) and the compound represented by the general formula (6-C).
  • Is an organic solvent and examples thereof include ethanol, toluene, and xylenes.
  • the succinimide compound according to this embodiment may be used as it is without being boronated (that is, as a non-boronated succinimide compound) or may be used as a boronated succinimide compound. Further, a boronated succinimide compound and a non-borated succinimide compound may be used in combination.
  • a boronated succinimide compound is obtained by reacting a boron-containing compound with a succinimide compound represented by the formula (1-C) at a temperature of usually 50 to 250 ° C., preferably 100 to 200 ° C. be able to.
  • a boron-containing compound include boron oxide, boron halide, boric acid, boric anhydride and boric acid ester. These boron-containing compounds may be used alone or in combination of two or more.
  • the lubricating oil additive according to this embodiment contains at least one selected from the succinimide compounds according to the first to sixth embodiments.
  • the lubricating oil additive may be composed only of the succinimide compound according to the first embodiment to the sixth embodiment, and the succinimide compound according to the first embodiment to the sixth embodiment and other It may be a mixture with an additive.
  • the lubricating oil additive may further contain a diluent for dissolving the additive.
  • the succinimide compounds according to the first to sixth embodiments are excellent in compatibility with various additives used in the lubricating oil field. Therefore, when the lubricating oil additive according to the present embodiment is a mixture of the succinimide compound according to the first to sixth embodiments and other additives, the types of other additives used in combination are particularly Without limitation, the types of other additives used in combination with the succinimide compounds according to the first to sixth embodiments and the blending amounts thereof are appropriately selected according to the use and purpose of the lubricating oil additive. be able to. Specific examples of other additives used in combination will be described later.
  • the lubricating oil composition according to the eighth embodiment of the present invention contains a lubricating base oil and at least one selected from the succinimide compounds according to the first to sixth embodiments.
  • the aspect containing the lubricating base oil and the lubricating oil additive which concerns on the said 7th Embodiment is included by the said lubricating oil composition.
  • the lubricant base oil is not particularly limited, and both mineral oil and synthetic oil can be used.
  • Various conventionally known oils can be used as the mineral oil, and examples thereof include paraffin-based mineral oil, intermediate-based mineral oil, and naphthene-based mineral oil.
  • light neutral oil, intermediate neutral oil, heavy neutral oil, bright stock, etc. by solvent refining or hydrogen refining can be mentioned.
  • GTL base oil obtained by isomerizing wax may be used, and the effect increases as the degree of purification increases.
  • various conventionally known oils can be used as well.
  • poly ⁇ -olefin including ⁇ -olefin copolymer
  • polybutene polyol ester
  • dibasic acid ester phosphate ester
  • polyphenyl ether alkylbenzene
  • alkylnaphthalene polyoxyalkylene glycol
  • neopentyl glycol silicone Oil, trimethylolpropane, pentaerythritol, hindered ester and the like can be used.
  • lubricating base oils can be used singly or in combination of two or more, and may be used in combination of mineral oil and synthetic oil.
  • the kinematic viscosity of the lubricating base oil can be appropriately selected according to the use and purpose of the lubricating oil composition.
  • the kinematic viscosity at 100 ° C. of the lubricating base oil is preferably 1 to 30 mm 2 / s, more preferably 2 to 20 mm 2 / s. More preferably, it is 3 to 10 mm 2 / s.
  • the kinematic viscosity at 100 ° C. is in the above range, friction at sliding parts such as gear bearings and clutches of the automatic transmission can be sufficiently reduced and the low temperature characteristics are also good.
  • the kinematic viscosity at 100 ° C. exceeds 30 mm 2 / s, the fuel efficiency deteriorates and the low-temperature viscosity tends to be too high. Further, if the kinematic viscosity at 100 ° C. is less than 1 mm 2 / s, the lubrication performance is lowered such as an increase in wear amount in sliding parts such as gear bearings and clutches of the automatic transmission, and the evaporating property is increased, resulting in lubrication. Oil consumption may increase.
  • the% CA of the lubricating base oil is preferably 20 or less, more preferably 10 or less, from the viewpoint of low temperature characteristics.
  • the content of the succinimide compound represented by the formula (1-A) is preferably 0.01 to 30 mass from the viewpoint that the addition effect can be effectively exhibited. %, More preferably 0.05 to 20% by mass, still more preferably 0.1 to 10% by mass.
  • the lubricating oil composition according to the present embodiment may further contain additives other than the succinimide compounds according to the first to sixth embodiments, if necessary, for the purpose of further improving the performance. it can.
  • additives include ashless dispersants and / or friction modifiers other than the succinimide compounds according to the first to sixth embodiments, metal detergents, viscosity index improvers, extreme pressure additives, and antioxidants. Agents, corrosion inhibitors, antifoaming agents, colorants and the like. These additives can be used individually by 1 type or in combination of 2 or more types.
  • Ashless dispersants and / or friction modifiers other than succinimide compounds according to the first to sixth embodiments include fatty acid esters, fatty acid amides, phosphate esters, phosphite esters, thiophosphate esters, and the like.
  • Solid lubricants such as phosphorus compounds, organomolybdenum compounds such as MoDTP, MoDTC, organozinc compounds such as ZnDTP, organoboron compounds such as alkyl mercaptoylborate, graphite, molybdenum disulfide, antimony sulfide, boron compounds, polytetrafluoroethylene System friction modifiers and the like.
  • organoboron compounds such as alkyl mercaptoylborate, graphite, molybdenum disulfide, antimony sulfide, boron compounds, polytetrafluoroethylene System friction modifiers and the like.
  • phosphorus compounds are preferable.
  • antioxidants examples include amine-based antioxidants such as alkylated diphenylamine, phenyl- ⁇ -naphthylamine and alkylated- ⁇ -naphthylamine, 2,6-di-t-butyl-4-methylphenol, 4,4 ′ And phenolic antioxidants such as -methylenebis (2,6-di-t-butylphenol).
  • the content of the antioxidant is usually 0.05 to 5% by mass based on the total amount of the lubricating oil composition.
  • metallic detergents include calcium sulfonate, magnesium sulfonate, barium sulfonate, calcium salicylate, magnesium salicylate, calcium phenate, barium phenate, and the like.
  • the amount is usually 0.1 to 10% by mass based on the total amount of the oil composition.
  • viscosity index improver examples include polymethacrylate, polyisobutene, ethylene-propylene copolymer, and styrene-butadiene hydrogenated copolymer.
  • the content of the viscosity index improver is usually 0.5 to 35% by mass based on the total amount of the lubricating oil composition.
  • the use of the lubricating oil composition according to the present embodiment is not particularly limited, and can be used in a wide range of fields such as a lubricating oil for internal combustion engines and a drive system lubricating oil.
  • the lubricating oil composition according to the present embodiment contains at least one selected from the succinimide compounds according to the first to sixth embodiments, compared with the conventional succinimide compounds, A high static friction coefficient (high wet friction material torque capacity) can be achieved, and it is suitable as an automatic transmission fluid or a continuously variable transmission fluid.
  • it can be used as a lubricating oil for construction machines, agricultural machines, manual transmissions, two-wheeled gasoline engines, diesel engines, gas engines, shock absorber oils, etc., equipped with transmissions having wet clutches and wet brakes.
  • Example A-1 Synthesis of succinimide compound AIa
  • 15 ml of dehydrated ethanol was added to and dissolved in 2.5 g of 3-glycidyloxypropyltrimethoxysilane represented by the formula (10-A).
  • Example A-2 Synthesis of succinimide compound AIb
  • the compound represented by the general formula (5-A) and R 1 having a number average molecular weight of 1000 is used.
  • a succinimide compound was synthesized in the same manner as in Example A-1, except that 60.0 g of a compound having a polyisobutenyl group was used.
  • R 1 is a polyisobutenyl group having a number average molecular weight of 2300 (hereinafter referred to as “succinimide compound AI— b).).
  • SAI— b polyisobutenyl group having a number average molecular weight of 2300
  • Example A-3 Synthesis of succinimide compound A-II-a
  • 15 ml of dehydrated ethanol was added to 3.6 g of 1,1,1,3,5,5-5-heptamethyl-3- (3-glycidyloxypropyl) trisiloxane represented by the formula (11-A) and dissolved. I let you.
  • 30.0 g of the compound represented by the general formula (5-A) R 1 in the formula (5-A): polyisobutenyl group having a number average molecular weight of 1000
  • 100 ml of toluene was added and stirred to dissolve.
  • the solution was heated to 90 ° C., stirred at 350 rpm, and the above 1,1,1,3,5,5,5-heptamethyl-3- (3-glycidyloxypropyl) trisiloxane using a dropping funnel. / Ethanol solution was added dropwise. The dropping was performed over 15 minutes. After completion of dropping, the reaction solution was heated to 111 ° C. and reacted for 5 hours. The reaction solution was brown. The reaction product was distilled under reduced pressure using an evaporator and stripped at 160 ° C. for 3 hours to obtain 32.6 g of a product.
  • the obtained product is represented by the general formula (8-A), and R 1 is a polyisobutenyl group having a number average molecular weight of 1000 (hereinafter referred to as “succinimide compound A—”). II-a ").
  • An IR chart of the product is shown in FIG.
  • Example A-4 Synthesis of succinimide compound A-II-b
  • the compound represented by the general formula (5-A) and R 1 having a number average molecular weight of 2300 is used.
  • a succinimide compound was synthesized in the same manner as in Example A-3 except that 60.0 g of a compound having a polyisobutenyl group was used.
  • R 1 is a polyisobutenyl group having a number average molecular weight of 2300 (hereinafter referred to as “succinimide compound A-II-”). b).).
  • Example A-6 Synthesis of succinimide compound A-III-b
  • the compound represented by the general formula (5-A) and R 1 having a number average molecular weight of 2300 is used.
  • a succinimide compound was synthesized in the same manner as in Example A-5 except that 60.0 g of a compound having a polyisobutenyl group was used.
  • R 1 is a polyisobutenyl group having a number average molecular weight of 2300 (hereinafter referred to as “succinimide compound A-III-”). b).).
  • Examples A-7 to A-24, Comparative Examples A-2 to A-4; Preparation and Evaluation Test of Lubricating Oil Composition In Examples A-7 to A-12, mineral oil of 10 SAE fractions (100 ° C. kinematic viscosity 4.1 mm 2 / s) as a lubricating base oil, succinimide compound AIa or A- A lubricating oil composition having the composition shown in Table 1 was prepared using Ib and the additives shown below. In Examples A-13 to A-18, a mineral oil of SAE 10 fraction (100 ° C.
  • succinimide compound A-II-a or A- A lubricating oil composition having the composition shown in Table 2 was prepared using II-b and the additives shown below.
  • a mineral oil of 10 SAE fractions (100 ° C. kinematic viscosity 4.1 mm 2 / s) as a lubricant base oil, succinimide compound A-III-a or A- A lubricating oil composition having the composition shown in Table 3 was prepared using III-b and the additives shown below.
  • mineral oil of 10 SAE fractions 100 ° C.
  • kinematic viscosity 4.1 mm 2 / s as a lubricant base oil, succinimide compound A-IV, and the following additives were used.
  • a lubricating oil composition having the composition shown in Table 4 was prepared. Further, in Comparative Example 4, a lubricating oil having the composition shown in Table 4 using mineral oil of 10 SAE fractions (100 ° C. kinematic viscosity 4.1 mm 2 / s) as the lubricating base oil and the additives shown below. A composition was prepared.
  • Polymethacrylate weight average molecular weight 20,000
  • Amine-based antioxidant diphenylamine tricresyl phosphanote calcium sulfonate: base number 300 mgKOH / g
  • Ashless oil-based agent glycerol monooleate
  • Example B-1 Synthesis of succinimide compound BIa
  • polyisobutene number average molecular weight 1000
  • maleic anhydride 1.0 mol of maleic anhydride
  • heated to 220 ° C. over 1.5 hours and allowed to react for 4 hours after reaching 220 ° C. It was.
  • n-hexane was added to the obtained product and stirred, and the solution was filtered to remove insoluble matter.
  • maleic anhydride was removed at 220 ° C. under reduced pressure to obtain maleated polyisobutene.
  • a synthesizer was assembled, 1.08 g of 1- [3- (trimethoxysilyl) propyl] urea was weighed into a 100 ml three-necked flask, and the system was purged with nitrogen. 5.00 g of maleated polyisobutene was weighed into a 100 ml eggplant flask, 40 ml of o-xylene was added, the maleated polyisobutene was dissolved in a hot water bath, and placed in the dropping funnel portion. In addition, 40 ml of o-xylene was placed in a 4-neck flask. During this time, the system was maintained in a nitrogen stream. While raising the temperature to 145 ° C.
  • Example B-2 Synthesis of succinimide compound BIb
  • polyisobutene number average molecular weight and 2300
  • maleic anhydride 1.0 mol of maleic anhydride
  • the temperature is raised to 220 ° C. over 1.5 hours, and the reaction is continued for 4 hours after reaching 220 ° C. I let you.
  • n-hexane was added to the obtained product and stirred, and the solution was filtered to remove insoluble matter.
  • maleic anhydride was removed at 220 ° C. under reduced pressure to obtain maleated polyisobutene.
  • a synthesizer was assembled, 1.08 g of 1- [3- (trimethoxysilyl) propyl] urea was weighed into a 100 ml three-necked flask, and the system was purged with nitrogen. 5.00 g of maleated polyisobutene was weighed into a 100 ml eggplant flask, 40 ml of o-xylene was added, the maleated polyisobutene was dissolved in a hot water bath, and placed in the dropping funnel portion. In addition, 40 ml of o-xylene was placed in a 4-neck flask. During this time, the system was maintained in a nitrogen stream. While raising the temperature to 145 ° C.
  • the obtained product is represented by the general formula (7-B), and R 1 is a polyisobutenyl group having a number average molecular weight of 1000 (hereinafter referred to as “succinimide compound B—”). Ib ”).
  • Examples B-3 to B-8 Comparative Examples B-2 to B-4; Preparation and Evaluation Test of Lubricating Oil Composition
  • mineral oil of 10 SAE fractions 100 ° C. kinematic viscosity 4.1 mm 2 / s
  • succinimide compound Ia or Ib succinimide compound Ia or Ib
  • a lubricating oil composition having the composition shown in Table 5 was prepared using the additives shown below.
  • mineral oil of 10 SAE fractions 100 ° C. kinematic viscosity 4.1 mm 2 / s
  • succinimide compound II succinimide compound II
  • a lubricating oil composition having the composition shown in Table 5 was prepared.
  • Comparative Example B-4 has the composition shown in Table 6 using mineral oil of 10 SAE fractions (100 ° C. kinematic viscosity 4.1 mm 2 / s) as a lubricating base oil and the additives shown below.
  • a lubricating oil composition was prepared.
  • Polymethacrylate average molecular weight 20,000
  • Amine-based antioxidant diphenylamine tricresyl phosphanote calcium sulfonate: 300TBN
  • Ashless oil-based agent glycerol monooleate
  • Example C-1 Synthesis of succinimide compound Ia
  • polyisobutene number average molecular weight 1000
  • maleic anhydride 1.0 mol of maleic anhydride
  • heated to 220 ° C. over 1.5 hours and allowed to react for 4 hours after reaching 220 ° C. It was.
  • n-hexane was added to the obtained product and stirred, and the solution was filtered to remove insoluble matter.
  • maleic anhydride was removed at 220 ° C. under reduced pressure to obtain maleated polyisobutene.
  • a synthesizer was assembled, 6.14 g of 3- (2-aminoethylamino) propyldiethoxymethylsilane was weighed into a 300 ml three-necked flask, and the system was purged with nitrogen. In a 200 ml eggplant flask, 30.1 g of maleated polyisobutene was weighed, 80 ml of o-xylene was added and dissolved in a hot water bath, and placed in a dropping funnel portion. In addition, 20 ml of o-xylene was placed in a 4-neck flask. During this time, the system was maintained under a nitrogen stream. While expanding sales at 300 rpm, the temperature was raised to 145 ° C.
  • Example C-2 Synthesis of succinimide compound CIb
  • polyisobutene number average molecular weight 2300
  • maleic anhydride 1.0 mol of maleic anhydride
  • heated to 220 ° C. over 1.5 hours and allowed to react for 4 hours after reaching 220 ° C. It was.
  • n-hexane was added to the obtained product and stirred, and the solution was filtered to remove insoluble matter.
  • maleic anhydride was removed at 220 ° C. under reduced pressure to obtain maleated polyisobutene.
  • a synthesizer was assembled, 6.14 g of 3- (2-aminoethylamino) propyldiethoxymethylsilane was weighed into a 300 ml three-necked flask, and the system was purged with nitrogen. In a 200 ml eggplant flask, 30.02 g of maleated polyisobutene was weighed, 80 ml of o-xylene was added and dissolved in a hot water bath, and placed in the dropping funnel portion. In addition, 20 ml of o-xylene was placed in a 4-neck flask. During this time, the system was maintained under a nitrogen stream. While expanding sales at 300 rpm, the temperature was raised to 145 ° C.
  • Example C-3 Synthesis of succinimide compound C-II-a
  • polyisobutene number average molecular weight 1000
  • maleic anhydride 1.0 mol of maleic anhydride
  • heated to 220 ° C. over 1.5 hours and allowed to react for 4 hours after reaching 220 ° C. It was.
  • n-hexane was added to the obtained product and stirred, and the solution was filtered to remove insoluble matter.
  • maleic anhydride was removed at 220 ° C. under reduced pressure to obtain maleated polyisobutene.
  • a synthesizer was assembled, 5.70 g of 3-aminopropyldiethoxymethylsilane was weighed into a 300 ml four-necked flask, and the system was purged with nitrogen. In a 300 ml eggplant flask, 30.02 g of maleated polyisobutene was weighed, 80 ml of o-xylene was added and dissolved in a hot water bath, and placed in the dropping funnel portion. In addition, 20 ml of o-xylene was placed in a 4-neck flask. During this time, the system was maintained under a nitrogen stream. The temperature was raised to 145 ° C. and titration was started while stirring at 300 rpm.
  • the temperature was raised to 155 ° C., and the temperature was raised to 165 ° C. 1 hour after the start of titration. The dropping was completed in 1 hour and 45 minutes.
  • the reaction solution was transparent yellow. The reaction seemed to progress about half from IR. When the reaction was continued again at 165 ° C. and 300 rpm and IR measurement was performed 8 hours later, it was almost the same as the previous time, and the reaction solution was transparent yellow. When the reaction was carried out again at 145 ° C. and 300 rpm for 6 hours, it appeared that the reaction had progressed about half from IR measurement. The reaction solution was transparent yellow. When the reaction was carried out at 165 ° C. and 300 rpm for 15 hours, the reaction solution became transparent yellow.
  • Example C-4 Synthesis of succinimide compound C-II-b
  • polyisobutene number average molecular weight 2300
  • maleic anhydride 1.0 mol of maleic anhydride
  • n-hexane was added to the obtained product and stirred, and the solution was filtered to remove insoluble matter.
  • maleic anhydride was removed at 220 ° C. under reduced pressure to obtain maleated polyisobutene.
  • a synthesizer was assembled, 5.70 g of 3-aminopropyldiethoxymethylsilane was weighed into a 300 ml four-necked flask, and the system was purged with nitrogen. In a 300 ml eggplant flask, 30.02 g of maleated polyisobutene was weighed, 80 ml of o-xylene was added and dissolved in a hot water bath, and placed in the dropping funnel portion. In addition, 20 ml of o-xylene was placed in a 4-neck flask. During this time, the system was maintained under a nitrogen stream. The temperature was raised to 145 ° C. and titration was started while stirring at 300 rpm.
  • the temperature was raised to 155 ° C., and the temperature was raised to 165 ° C. 1 hour after the start of titration. The dropping was completed in 1 hour and 45 minutes.
  • the reaction solution was transparent yellow. The reaction seemed to progress about half from IR. When the reaction was continued again at 165 ° C. and 300 rpm and IR measurement was performed 8 hours later, it was almost the same as the previous time, and the reaction solution was transparent yellow. When the reaction was carried out again at 145 ° C. and 300 rpm for 6 hours, it appeared that the reaction had progressed about half from IR measurement. The reaction solution was transparent yellow. When the reaction was carried out at 165 ° C. and 300 rpm for 15 hours, the reaction solution became transparent yellow.
  • Examples C-5 to C-16 Comparative Examples C-2 to C-4; Preparation and Evaluation Test of Lubricating Oil Composition
  • mineral oil of SAE 10 fraction 100 ° C. kinematic viscosity 4.1 mm 2 / s
  • succinimide compound CIa or C- A lubricating oil composition having the composition shown in Table 7 was prepared using Ib and the additives shown below.
  • mineral oil of 10 SAE fractions 100 ° C.
  • kinematic viscosity 4.1 mm 2 / s) as a lubricant base oil
  • succinimide compound C-II-a or C- A lubricating oil composition having the composition shown in Table 8 was prepared using II-b and the following additives.
  • mineral oil of 10 SAE fractions 100 ° C. kinematic viscosity 4.1 mm 2 / s
  • succinimide compound C-III and the following additions
  • Lubricating oil compositions having the compositions shown in Table 3 were prepared using the agent.
  • Comparative Example C-4 has the composition shown in Table 9 using mineral oil of 10 SAE fractions (100 ° C.
  • kinematic viscosity 4.1 mm 2 / s as the lubricating base oil and the additives shown below.
  • a lubricating oil composition was prepared.
  • the succinimide compound, lubricating oil additive and lubricating oil composition of the present invention can be used in a wide range of lubricating oil fields, and are particularly suitable as automatic transmission oils and continuously variable transmission oils that require a high coefficient of static friction. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)

Abstract

 下記一般式(1-A)で表されるコハク酸イミド化合物。[式(1-A)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示し、mは1~5の整数を示し、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。 -O(CH)CH (2) (式(2)中、aは0~3の整数を示す。) -(CH)CH (3) (式(3)中、bは0~3の整数を示す。) -OSi(CH)CH (4) (式(4)中、cは0~3の整数を示す。)]

Description

コハク酸イミド化合物、潤滑油添加剤および潤滑油組成物
 本発明は、新規なコハク酸イミド化合物、並びに該化合物を含有した潤滑油添加剤及び潤滑油組成物に関する。
 コハク酸イミド化合物は、ガソリンエンジン油やディーゼルエンジン油などの内燃機関用潤滑油の分野において、生成する不溶解分を油中に分散させる無灰分散剤として用いられている。一方、コハク酸イミド化合物は、自動変速機などの駆動系潤滑油の分野において、摩擦力を高める摩擦調整剤として使用されている。
 従来のコハク酸イミド化合物としては、高分子量のアルケニルもしくはアルキル基で置換されたこはく酸無水物と、ポリアルキレンポリアミンとの反応により得られるコハク酸イミド化合物などが知られている(下記特許文献1~3を参照。)また、置換コハク酸イミドの製造方法として、マレイミド化合物及びケイ素エノラートを反応させる方法が知られている(下記特許文献4を参照。)
特開2005-146148号公報 特開平10-265793号公報 特開平10-219269号公報 特開平2007-238524号公報
 本発明は、内燃機関用潤滑油における無灰分散剤、駆動系潤滑油における摩擦調整剤などの用途に有用な新規なコハク酸イミド化合物、並びに該化合物を含有した潤滑油添加剤及び潤滑油組成物を提供することを目的とする。
 上記課題を解決するために、本発明は、下記一般式(1-A)、(1-B)又は(1-C)のいずれかで表されるコハク酸イミド化合物を提供する。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
[式(1-A)、(1―B)、(1-C)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示し、mは1~5の整数を示し、nは0または1~3の整数を示し、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。
-O(CH)CH  (2)
(式(2)中、aは0~3の整数を示す。)
-(CH)CH  (3)
(式(3)中、bは0~3の整数を示す。)
-OSi(CH)CH  (4)
(式(4)中、cは0~3の整数を示す。)]
 また、本発明は、下記一般式(5-A)で表される化合物と、下記一般式(6-A)で表される化合物との反応により得られるコハク酸イミド化合物を提供する。
Figure JPOXMLDOC01-appb-C000007
[式(5-A)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示し、mは1~5の整数を示す。]
Figure JPOXMLDOC01-appb-C000008
[式(6-A)中、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。
-O(CH)CH  (2)
(式中、aは0~3の整数を示す。)
-(CH)CH  (3)
(式中、bは0~3の整数を示す。)
-OSi(CH)CH  (4)
(式中、cは0~3の整数を示す。)]
 また、本発明は、下記一般式(5-B)で表される化合物と、下記一般式(6-B)で表される化合物との反応により得られるコハク酸イミド化合物を提供する。
Figure JPOXMLDOC01-appb-C000009
[式(5-B)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示す。]
Figure JPOXMLDOC01-appb-C000010
[式(6-B)中、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。
-O(CH)CH  (2)
(式中、aは0~3の整数を示す。)
-(CH)CH  (3)
(式中、bは0~3の整数を示す。)
-OSi(CH)CH  (4)
(式中、cは0~3の整数を示す。)]
 下記一般式(5-A)で表される化合物と、下記一般式(6-A)で表される化合物との反応により得られるコハク酸イミド化合物。
Figure JPOXMLDOC01-appb-C000011
[式(5-C)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示す。]
Figure JPOXMLDOC01-appb-C000012
[式(6-C)中、nは0または1~3の整数を示し、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。
-O(CH)CH  (2)
(式中、aは0~3の整数を示す。)
-(CH)CH  (3)
(式中、bは0~3の整数を示す。)
-OSi(CH)CH  (4)
(式中、cは0~3の整数を示す。)]
 本発明のコハク酸イミド化合物は、従来のコハク酸イミド化合物と比較して、非常に優れた特性を有するため、内燃機関用潤滑油における無灰分散剤、駆動装置用潤滑油における摩擦調整剤などの用途に有用である。
 例えば、近時、駆動系潤滑油では、燃費効率向上の観点から自動変速機内部での摩擦力を効率よく駆動力に転換するために、従来以上の高い摩擦係数が求められている。しかし、上記の特許文献1~3に記載されているような従来のコハク酸イミド化合物を用いた場合には、十分な摩擦特性向上効果を得ることができなかった。なお、この原因としては、従来のコハク酸イミド化合物の場合、コハク酸イミド化合物自体の摩擦特性向上効果が不十分であることに加えて、コハク酸イミドの量を増やすと金属表面への吸着性が変化してその他の添加剤のバランスを崩してしまい、結果として摩擦特性を悪化させてしまうことが考えられる。
 それに対して、本発明のコハク酸イミド化合物は、従来のコハク酸イミド化合物と比較して、摩擦特性向上効果に優れるため、自動変速機内部での摩擦力を効率よく駆動力に転換するための高い摩擦係数を達成することができ、燃費効率を向上させることができる。
 また、本発明は、上記本発明のコハク酸イミド化合物を含有する潤滑油添加剤を提供する。
 また、本発明は、潤滑油基油と、上記本発明のコハク酸イミド化合物とを含有する潤滑油組成物を提供する。
 また、本発明は、潤滑油基油と、上記本発明のコハク酸イミド化合物とを含有する無段変速機用潤滑油組成物を提供する。
 本発明の潤滑油組成物は、リン化合物をさらに含有することが好ましい。
 本発明によれば、内燃機関用潤滑油における無灰分散剤、駆動系潤滑油における摩擦調整剤などの用途に有用な新規なコハク酸イミド化合物、並びに該化合物を含有した潤滑油添加剤及び潤滑油組成物を提供することが可能となる。
実施例A-1で得られたコハク酸イミド化合物のIRチャートを示す図である。 実施例A-2で得られたコハク酸イミド化合物のIRチャートを示す図である。 実施例A-3で得られたコハク酸イミド化合物のIRチャートを示す図である。 実施例A-5で得られたコハク酸イミド化合物のIRチャートを示す図である。 実施例B-1で得られたコハク酸イミド化合物のIRチャートを示す図である。 実施例C-1で得られたコハク酸イミド化合物のIRチャートを示す図である。
 以下、本発明の好適な実施形態について詳細に説明する。
[第1実施形態;コハク酸イミド化合物(A1)]
 本発明の第1実施形態に係るコハク酸イミド化合物(以下、「コハク酸イミド化合物(A1)」と称する。)は、下記式(1-A)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000013
[式(1-A)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示し、mは1~5の整数を示し、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。
-O(CH)CH  (2)
(式(2)中、aは0~3の整数を示す。)
-(CH)CH  (3)
(式(3)中、bは0~3の整数を示す。)
-OSi(CH)CH  (4)
(式(4)中、cは0~3の整数を示す。)]
 一般式(1-A)中のRとしては、ポリブテニル基、ポリイソブテニル基が好ましい。また、数平均分子量は、500以上5000未満であり、好ましくは700~4000、より好ましくは800~3500である。
 また、一般式(1-A)中のmは1~5の整数であり、好ましくは2~3の整数、より好ましくは2である。mが上記下限値未満あるいは上記上限値を超えると金属間摩擦係数が低下する傾向にある。
 一般式(1-A)で表されるコハク酸イミド化合物の好ましい例として、以下の化合物が挙げられる。
(A1-1)一般式(1-A)中のR、R及びRが全て一般式(2)で表される1価の基である化合物。
(A1-2)一般式(1-A)中のR、R又はRの少なくとも1つが一般式(2)で表される1価の基であり、少なくとも1つが一般式(3)で表される1価の基である化合物。
(A1-3)一般式(1-A)中のR、R及びRの少なくとも1つが一般式(3)で表される1価の基であり、少なくとも1つが一般式(4)で表される1価の基である化合物。
 上記コハク酸イミド化合物(A1-1)の具体例としては、下記式(7)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000014
[式(7)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示す。]
 また、上記コハク酸イミド化合物(A1-2)の具体例としては、下記式(8)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000015
[式(8)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示す。]
 また、上記コハク酸イミド(A1-3)の具体例としては、下記式(9)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000016
[式(9)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示す。]
 コハク酸イミド化合物(A1)は、ホウ素化せずにそのまま(すなわち非ホウ素化コハク酸イミド化合物として)用いてもよく、あるいはホウ素化コハク酸イミド化合物として用いてもよい。さらに、ホウ素化コハク酸イミド化合物と非ホウ素化コハク酸イミド化合物とを組み合わせて用いてもよい。
 ホウ素化コハク酸イミド化合物は、コハク酸イミド化合物(A1)に対し、ホウ素含有化合物を、通常50~250℃、好ましくは100~200℃の温度で反応させることにより得ることができる。ホウ素含有化合物としては、酸化ホウ素、ハロゲン化ホウ素、ホウ酸、ホウ酸無水物およびホウ酸エステルなどが挙げられる。これらのホウ素含有化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[第2実施形態:コハク酸イミド化合物(A2)]
 本発明の第2実施形態に係るコハク酸イミド化合物(以下、「コハク酸イミド化合物(A2)」と称する。)は、下記一般式(5-A)で表される化合物と、下記一般式(6-A)で表される化合物との反応により得られるコハク酸イミド化合物である。
Figure JPOXMLDOC01-appb-C000017
[式(5-A)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示し、mは1~5の整数を示す。]
Figure JPOXMLDOC01-appb-C000018
[式(6-A)中、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。
-O(CH)CH  (2)
(式中、aは0~3の整数を示す。)
-(CH)CH  (3)
(式中、bは0~3の整数を示す。)
-OSi(CH)CH  (4)
(式中、cは0~3の整数を示す。)]
 一般式(5-A)中のR並びに一般式(6-A)中のR、R及びRは、それぞれ一般式(1-A)中のR、R、R及びRと同一の定義内容を示す。これらの好ましい態様も一般式(1-A)の場合と同様であり、ここでは重複する説明を省略する。
 また、一般式(1-A)中のmは一般式(1-A)中のmと同一の定義内容を示す。これらの好ましい態様も一般式(1-A)の場合と同様であり、ここでは重複する説明を省略する。
 一般式(6-A)で表される化合物の好ましい例として、以下の化合物を挙げることができる。
(A2-1)一般式(6-A)中のR、R及びRが全て一般式(2)で表される1価の基である化合物。
(A2-2)一般式(6-A)中のR、R又はRの少なくとも1つが一般式(2)で表される1価の基であり、少なくとも1つが一般式(3)で表される1価の基である化合物。
(A2-3)一般式(6-A)中のR、R及びRの少なくとも1つが一般式(3)で表される1価の基であり、少なくとも1つが一般式(4)で表される1価の基である化合物。
 上記化合物(A2-1)の化合物の具体例としては、下記式(10-A)で表される3-グリシジルオキシプロピルトリメトキシシランが例示出来る。
Figure JPOXMLDOC01-appb-C000019
 また、上記(A2-2)の化合物の具体例としては、下記式(11-A)で表される1,1,1,3,5,5,5-ヘプタメチル-3-(3-グリシジルオキシプロピル)トリシロキサンが例示出来る。
Figure JPOXMLDOC01-appb-C000020
 また、上記(A2-3)のコハク酸イミド化合物としては、下記式(12-A)で表されるジエトキシ(3-グリシジルオキシプロピル)メチルシランが例示出来る。
Figure JPOXMLDOC01-appb-C000021
 一般式(5-A)で表される化合物と一般式(6-A)で表される化合物との反応においては、通常、下記一般式(13-A)で表されるコハク酸イミド化合物が主生成物として得られる。また、一般式(5-A)で表される化合物の反応部位は3箇所あるため、原料化合物の仕込み比(モル比)によっては、反応生成物中に一般式(5-A)で表される化合物1当量に対して一般式(6-A)で表される化合物が2当量又は3当量反応した副生成物が存在し得る。本実施形態においては、反応生成物から上記の副生成物を除去し、一般式(13-A)で表されるコハク酸イミド化合物のみを潤滑油添加剤として用いてもよく、あるいは、一般式(13-A)で表されるコハク酸イミド化合物と上記の副生成物との混合物を潤滑油添加剤として用いても良い。
Figure JPOXMLDOC01-appb-C000022
[式(13-A)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示し、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。
-O(CH)CH  (2)
(式(2)中、aは0~3の整数を示す。)
-(CH)CH  (3)
(式(3)中、bは0~3の整数を示す。)
-OSi(CH)CH  (4)
(式(4)中、cは0~3の整数を示す。)]
 また、一般式(5-A)で表される化合物及び一般式(6-A)で表される化合物の仕込み比を適宜選定することによって、反応生成物中の一般式(13-A)で表されるコハク酸イミド化合物の割合を調整することが可能である。一般式(13-A)で表されるコハク酸イミド化合物をより確実に得ることができる点から、両者の仕込み比は、一般式(5-A)で表される化合物1molに対して、一般式(6-A)で表される化合物が、好ましくは1~2mol、より好ましくは1~1.8mol、さらに好ましくは1.1~1.6mol、特に好ましくは1.2~1.5molである。
 一般式(5-A)で表される化合物と一般式(6-A)で表される化合物との反応条件は特に制限されないが、反応温度は90~130℃、好ましくは100~200℃であり、反応時間は3~7時間、好ましくは4~6時間である。
 また、上記の反応においては、必要に応じて反応溶媒を用いることができる。溶媒としては、一般式(5-A)で表される化合物と一般式(6-A)で表される化合物を溶解するものが好ましく、具体的には有機溶媒であり、エタノール、トルエン、キシレン類などが例示できる。
 コハク酸イミド化合物(A2)は、ホウ素化せずにそのまま(すなわち非ホウ素化コハク酸イミド化合物として)用いてもよく、あるいはホウ素化コハク酸イミド化合物として用いてもよい。さらに、ホウ素化コハク酸イミド化合物と非ホウ素化コハク酸イミド化合物とを組み合わせて用いてもよい。
 ホウ素化コハク酸イミド化合物は、コハク酸イミド化合物(A2)に対し、ホウ素含有化合物を、通常50~250℃、好ましくは100~200℃の温度で反応させることにより得ることができる。ホウ素含有化合物としては、酸化ホウ素、ハロゲン化ホウ素、ホウ酸、ホウ酸無水物およびホウ酸エステルなどが挙げられる。これらのホウ素含有化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[第3実施形態:コハク酸イミド化合物(B1)]
 本発明の第3実施形態に係るコハク酸イミド化合物(以下、「コハク酸イミド化合物(B1)」と称する。)は、下記一般式(1-B)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000023
[式(1-B)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示し、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。
-O(CH)CH  (2)
(式(2)中、aは0~3の整数を示す。)
-(CH)CH  (3)
(式(3)中、bは0~3の整数を示す。)
-OSi(CH)CH  (4)
(式(4)中、cは0~3の整数を示す。)]
 一般式(1-B)中のRとしては、ポリブテニル基、ポリイソブテニル基が好ましい。また、数平均分子量は、500以上5000未満であり、好ましくは700~4000、より好ましくは800~3500である。
 一般式(1-B)で表されるコハク酸イミド化合物の好ましい例として、以下の化合物が挙げられる。
(B1-1)一般式(1-B)中のR、R及びRが全て一般式(2)で表される1価の基である化合物。
(B1-2)一般式(1-B)中のR、R又はRの少なくとも1つが一般式(2)で表される1価の基であり、少なくとも1つが一般式(3)で表される1価の基である化合物。
(B1-3)一般式(1-B)中のR、R及びRの少なくとも1つが一般式(3)で表される1価の基であり、少なくとも1つが一般式(4)で表される1価の基である化合物。
 上記コハク酸イミド化合物(B1-1)の具体例としては、下記式(7―B)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000024
[式(7-B)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示す。]
 また、上記コハク酸イミド化合物(B1-2)の具体例としては、下記式(8―B)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000025
[式(8-B)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示す。]
 また、上記コハク酸イミド(B1-3)の具体例としては、下記式(9-B)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000026
[式(9-B)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示す。]
 コハク酸イミド化合物(B1)は、ホウ素化せずにそのまま(すなわち非ホウ素化コハク酸イミド化合物として)用いてもよく、あるいはホウ素化コハク酸イミド化合物として用いてもよい。さらに、ホウ素化コハク酸イミド化合物と非ホウ素化コハク酸イミド化合物とを組み合わせて用いてもよい。
 ホウ素化コハク酸イミド化合物は、コハク酸イミド化合物(B1)に対し、ホウ素含有化合物を、通常50~250℃、好ましくは100~200℃の温度で反応させることにより得ることができる。ホウ素含有化合物としては、酸化ホウ素、ハロゲン化ホウ素、ホウ酸、ホウ酸無水物およびホウ酸エステルなどが挙げられる。これらのホウ素含有化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[第4実施形態:コハク酸イミド化合物]
 本発明の第4実施形態に係るコハク酸イミド化合物(以下、「コハク酸イミド化合物(B2)」と称する。)は、下記一般式(5-B)で表される化合物と、下記一般式(6-B)で表される化合物との反応により得られるコハク酸イミド化合物である。
Figure JPOXMLDOC01-appb-C000027
[式(5-B)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示す。]
Figure JPOXMLDOC01-appb-C000028
[式(6-B)中、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。
-O(CH)CH  (2)
(式中、aは0~3の整数を示す。)
-(CH)CH  (3)
(式中、bは0~3の整数を示す。)
-OSi(CH)CH  (4)
(式中、cは0~3の整数を示す。)]
 一般式(5-B)中のR並びに一般式(6-B)中のR、R及びRは、それぞれ一般式(1-B)中のR、R、R及びRと同一の定義内容を示す。これらの好ましい態様も一般式(1-B)の場合と同様であり、ここでは重複する説明を省略する。
 一般式(6-B)で表される化合物の好ましい例として、以下の化合物を挙げることができる。
(B2-1)一般式(6-B)中のR、R及びRが全て一般式(2)で表される1価の基である化合物。
(B2-2)一般式(6-B)中のR、R又はRの少なくとも1つが一般式(2)で表される1価の基であり、少なくとも1つが一般式(3)で表される1価の基である化合物。
(B2-3)一般式(6-B)中のR、R及びRの少なくとも1つが一般式(3)で表される1価の基であり、少なくとも1つが一般式(4)で表される1価の基である化合物。
 上記化合物(B2-1)の化合物の具体例としては、下記式(10-B)で表される1-[3-(トリメトキシシリル)プロピル]尿素が例示出来る。
Figure JPOXMLDOC01-appb-C000029
 また、上記(B2-2)の化合物の具体例としては、下記式(11-B)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000030
 また、上記(B2-3)の化合物の具体例としては、下記式(12-B)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000031
 また、一般式(5-B)で表される化合物及び一般式(6-B)で表される化合物の仕込み比は適宜選定することができる。例えば、一般式(5-B)で表される化合物1molに対して、一般式(6-B)で表される化合物が、好ましくは1~2mol、より好ましくは1~1.8mol、さらに好ましくは1.1~1.6mol、特に好ましくは1.2~1.5molである。
 一般式(5-B)で表される化合物と一般式(6-B)で表される化合物との反応条件は特に制限されないが、反応温度は140~180℃、好ましくは155~175℃であり、反応時間は10~48時間、好ましくは20~36時間である。
 必要に応じて反応溶媒を用いることが出来、溶媒としては、一般式(5-B)で表される化合物と一般式(6-B)で表される化合物を溶解するものが好ましく、具体的には有機溶媒であり、エタノール、トルエン、キシレン類などが例示できる。
 コハク酸イミド化合物(B2)は、ホウ素化せずにそのまま(すなわち非ホウ素化コハク酸イミド化合物として)用いてもよく、あるいはホウ素化コハク酸イミド化合物として用いてもよい。さらに、ホウ素化コハク酸イミド化合物と非ホウ素化コハク酸イミド化合物とを組み合わせて用いてもよい。
 ホウ素化コハク酸イミド化合物は、コハク酸イミド化合物(B2)に対し、ホウ素含有化合物を、通常50~250℃、好ましくは100~200℃の温度で反応させることにより得ることができる。ホウ素含有化合物としては、酸化ホウ素、ハロゲン化ホウ素、ホウ酸、ホウ酸無水物およびホウ酸エステルなどが挙げられる。これらのホウ素含有化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[第5実施形態:コハク酸イミド化合物(C1)]
 本発明の第5実施形態に係るコハク酸イミド化合物(以下、「コハク酸イミド化合物(C1)」と称する。」)は、下記式(1-C)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000032
[式(1-C)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示し、nは0または1~3の整数を示し、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。
-O(CH)CH  (2)
(式(2)中、aは0~3の整数を示す。)
-(CH)CH  (3)
(式(3)中、bは0~3の整数を示す。)
-OSi(CH)CH  (4)
(式(4)中、cは0~3の整数を示す。)]
 一般式(1-C)中のRとしては、ポリブテニル基、ポリイソブテニル基が好ましい。また、数平均分子量は、500以上5000未満であり、好ましくは700~4000、より好ましくは800~3500である。
 また、一般式(1-C)中のnは0または1~3の整数であり、好ましくは0または1~2の整数、より好ましくは0または1である。nが上記上限値を超えると金属間摩擦係数が低下する傾向にある。
 一般式(1-C)で表されるコハク酸イミド化合物の好ましい例として、以下の化合物が挙げられる。
(C1-1)一般式(1-C)中のR、R及びRが全て一般式(2)で表される1価の基である化合物。
(C1-2)一般式(1-C)中のR、R又はRの少なくとも1つが一般式(2)で表される1価の基であり、少なくとも1つが一般式(3)で表される1価の基である化合物。
(C1-3)一般式(1-C)中のR、R及びRの少なくとも1つが一般式(3)で表される1価の基であり、少なくとも1つが一般式(4)で表される1価の基である化合物。
 上記コハク酸イミド化合物(C1-1)の具体例としては、下記式(7-A)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000033
[式(7-C)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示し、nは0または1~3の整数を示す。]
 また、上記コハク酸イミド化合物(C1-2)の具体例としては、下記式(8-C)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000034
[式(8-C)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示し、nは0または1~3の整数を示す。]
 また、上記コハク酸イミド(C1-3)の具体例としては、下記式(9-C)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000035
[式(9-C)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示し、nは0または1~3の整数を示す。]
 コハク酸イミド化合物(C1)は、ホウ素化せずにそのまま(すなわち非ホウ素化コハク酸イミド化合物として)用いてもよく、あるいはホウ素化コハク酸イミド化合物として用いてもよい。さらに、ホウ素化コハク酸イミド化合物と非ホウ素化コハク酸イミド化合物とを組み合わせて用いてもよい。
 ホウ素化コハク酸イミド化合物は、コハク酸イミド化合物(C1)に対し、ホウ素含有化合物を、通常50~250℃、好ましくは100~200℃の温度で反応させることにより得ることができる。ホウ素含有化合物としては、酸化ホウ素、ハロゲン化ホウ素、ホウ酸、ホウ酸無水物およびホウ酸エステルなどが挙げられる。これらのホウ素含有化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[第6実施形態:コハク酸イミド化合物]
 本発明の第6実施形態に係るコハク酸イミド化合物(以下、「コハク酸イミド化合物(C2)」と称する。)は、下記一般式(5-C)で表される化合物と、下記一般式(6-C)で表される化合物との反応により得られるコハク酸イミド化合物である。
Figure JPOXMLDOC01-appb-C000036
[式(5-C)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示す。]
Figure JPOXMLDOC01-appb-C000037
[式(6-C)中、nは0または1~3の整数を示し、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。
-O(CH)CH  (2)
(式中、aは0~3の整数を示す。)
-(CH)CH  (3)
(式中、bは0~3の整数を示す。)
-OSi(CH)CH  (4)
(式中、cは0~3の整数を示す。)]
 一般式(5-C)中のR並びに一般式(6-C)中のR、R及びRは、それぞれ一般式(1-C)中のR、R、R及びRと同一の定義内容を示す。これらの好ましい態様も一般式(1-C)の場合と同様であり、ここでは重複する説明を省略する。
 一般式(6-C)で表される化合物の好ましい例として、以下の化合物を挙げることができる。
(C2-1)一般式(6-C)中のR、R及びRが全て一般式(2)で表される1価の基である化合物。
(C2-2)一般式(6-C)中のR、R又はRの少なくとも1つが一般式(2)で表される1価の基であり、少なくとも1つが一般式(3)で表される1価の基である化合物。
(C2-3)一般式(6-C)中のR、R及びRの少なくとも1つが一般式(3)で表される1価の基であり、少なくとも1つが一般式(4)で表される1価の基である化合物。
 上記化合物(C2-1)の化合物の具体例としては、下記式(10-C)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000038
 また、上記(C2-2)の化合物の具体例としては、下記式(11-C)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000039
 また、上記(C2-3)の化合物の具体例としては、下記式(12-C)で表される化合物が例示出来る。
Figure JPOXMLDOC01-appb-C000040
 また、一般式(5-C)で表される化合物及び一般式(6-C)で表される化合物の仕込み比は適宜選定可能である。例えば、一般式(5-C)で表される化合物1molに対して、一般式(6-C)で表される化合物が、好ましくは1~2mol、より好ましくは1~1.8mol、さらに好ましくは1.1~1.6mol、特に好ましくは1.2~1.5molである。
 一般式(5-C)で表される化合物と一般式(6-C)で表される化合物との反応条件は特に制限されないが、反応温度は145~180℃、好ましくは155~175℃であり、反応時間は6~12、好ましくは8~10時間である。
 必要に応じて反応溶媒を用いることが出来、溶媒としては、一般式(5-C)で表される化合物と一般式(6-C)で表される化合物を溶解するものが好ましく、具体的には有機溶媒であり、エタノール、トルエン、キシレン類などが例示できる。
 本実施形態に係るコハク酸イミド化合物は、ホウ素化せずにそのまま(すなわち非ホウ素化コハク酸イミド化合物として)用いてもよく、あるいはホウ素化コハク酸イミド化合物として用いてもよい。さらに、ホウ素化コハク酸イミド化合物と非ホウ素化コハク酸イミド化合物とを組み合わせて用いてもよい。
 ホウ素化コハク酸イミド化合物は、式(1-C)で表されるコハク酸イミド化合物に対し、ホウ素含有化合物を、通常50~250℃、好ましくは100~200℃の温度で反応させることにより得ることができる。ホウ素含有化合物としては、酸化ホウ素、ハロゲン化ホウ素、ホウ酸、ホウ酸無水物およびホウ酸エステルなどが挙げられる。これらのホウ素含有化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[第7実施形態:潤滑油添加剤]
 本実施形態に係る潤滑油添加剤は、上記の第1実施形態~第6実施形態に係るコハク酸イミド化合物から選択される少なくとも1種を含有する。当該潤滑油添加剤は、第1実施形態~第6実施形態に係るコハク酸イミド化合物のみからなるものであってもよく、第1実施形態~第6実施形態に係るコハク酸イミド化合物と他の添加剤との混合物であってもよい。また、当該潤滑油添加剤は、添加剤を溶解するための希釈剤をさらに含有してもよい。
 第1実施形態~第6実施形態に係るコハク酸イミド化合物は、潤滑油分野に用いられる各種添加剤との適合性に優れている。そのため、本実施形態に係る潤滑油添加剤が第1実施形態~第6実施形態に係るコハク酸イミド化合物と他の添加剤との混合物である場合、併用される他の添加剤の種類は特に制限されず、第1実施形態~第6実施形態に係るコハク酸イミド化合物と併用される他の添加剤の種類並びに両者の配合量は、潤滑油添加剤の用途・目的に応じて適宜選定することができる。併用される他の添加剤の具体例は後述する。
[第8実施形態:潤滑油組成物]
 本発明の第8実施形態に係る潤滑油組成物は、潤滑油基油と、上記第1実施形態~第6実施形態に係るコハク酸イミド化合物から選ばれる少なくとも1種とを含有する。なお、当該潤滑油組成物には、潤滑油基油と、上記第7実施形態に係る潤滑油添加剤とを含有する態様が包含される。
 潤滑油基油としては特に制限されず、鉱油および合成油のいずれも使用することができる。鉱油としては、従来公知の種々のものが使用可能であり、例えば、パラフィン基系鉱油、中間基系鉱油、ナフテン基系鉱油などが挙げられる。具体的には、溶剤精製または水素精製による軽質ニュートラル油、中間ニュートラル油、重質ニュートラル油またはブライトストックなどを挙げることができる。また、ワックスを異性化したGTL基油などを用いてもよく、精製度が上がるほどその効果は高くなる。
 また、合成油としては、同様に従来公知の種々のものが使用可能である。例えば、ポリα―オレフィン(α―オレフィン共重合体を含む)、ポリブテン、ポリオールエステル、二塩基酸エステル、リン酸エステル、ポリフェニルエーテル、アルキルベンゼン、アルキルナフタレン、ポリオキシアルキレングリコール、ネオペンチルグリコール、シリコーンオイル、トリメチロールプロパン、ペンタエリスリトール、さらにはヒンダードエステルなどを用いることができる。
 これらの潤滑油基油は、1種を単独で、あるいは2種以上を組み合わせて使用することができ、鉱油と合成油とを組み合わせて使用してもよい。
 潤滑油基油の動粘度は、潤滑油組成物の用途・目的に応じて適宜選定することができる。例えば、本実施形態に係る潤滑油組成物を駆動系潤滑油として用いる場合、潤滑油基油の100℃における動粘度は、好ましくは1~30mm/s、より好ましくは2~20mm/s、さらに好ましくは3~10mm/sである。100℃における動粘度が上記範囲にあると、自動変速機のギア軸受けやクラッチなどの摺動部における摩擦を十分に低減し得ると共に低温特性も良好となる。一方、100℃における動粘度が30mm/sを超えると、燃費が悪化し、また低温粘度が高くなりすぎる傾向にある。また、100℃における動粘度が1mm/s未満であると、自動変速機のギア軸受けやクラッチ等の摺動部において摩耗量が増加するなど潤滑性能が低下したり、蒸発性が高くなり潤滑油消費量が多くなるおそれがある。
 また、潤滑油基油の%CAは、低温特性の点から、20以下であるものが好ましく、特に10以下であることがより好ましい。
 本実施形態に係る潤滑油組成物において、式(1-A)で表されるコハク酸イミド化合物の含有量は、その添加効果を有効に発揮し得る点から、好ましくは0.01~30質量%、より好ましくは0.05~20質量%、さらに好ましくは0.1~10質量%である。
 本実施形態に係る潤滑油組成物は、その性能をさらに向上させる目的で、必要に応じて、第1実施形態~第6実施形態に係るコハク酸イミド化合物以外の添加剤をさらに含有することができる。当該添加剤としては、第1実施形態~第6実施形態に係るコハク酸イミド化合物以外の無灰分散剤及び/又は摩擦調整剤、金属系清浄剤、粘度指数向上剤、極圧添加剤、酸化防止剤、腐食防止剤、消泡剤、着色剤等が挙げられる。これらの添加剤は、1種を単独で、または2種以上を組み合わせて用いることができる。
 第1実施形態~第6実施形態に係るコハク酸イミド化合物以外の無灰分散剤及び/摩擦調整剤としては、脂肪酸エステル、脂肪酸アミド、または、リン酸エステル、亜リン酸エステル、チオリン酸エステルなどのリン化合物、MoDTP、MoDTCなどの有機モリブデン化合物、ZnDTPなどの有機亜鉛化合物、アルキルメルカプチルボレートなどの有機ホウ素化合物、グラファイト、二硫化モリブデン、硫化アンチモン、ホウ素化合物、ポリテトラフルオロエチレンなどの固体潤滑剤系摩擦調整剤などが挙げられ、これら中でも、リン化合物が好ましい。無灰分散剤及び/又は摩擦調整剤の含有量は、潤滑油組成物全量を基準として、通常0.1~10質量%である。
 酸化防止剤としては、例えばアルキル化ジフェニルアミン、フェニル-α-ナフチルアミン、アルキル化-α-ナフチルアミンなどのアミン系酸化防止剤、2,6-ジ-t-ブチル-4-メチルフェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)などのフェノール系酸化防止剤などが挙げられる。酸化防止剤の含有量は、潤滑油組成物全量を基準として、通常0.05~5質量%である。
 金属系清浄剤としては、例えば、カルシウムスルホネート、マグネシウムスルホネート、バリウムスルホネート、カルシウムサリチレート、マグネシウムサリチレート、カルシウムフェネート、バリウムフェネートなどが挙げられ、金属系清浄剤の含有量は、潤滑油組成物全量を基準として、通常0.1~10質量%である。
 粘度指数向上剤としては、例えばポリメタクリレート系、ポリイソブテン系、エチレン-プロピレン共重合体系、スチレン-ブタジエン水添共重合体系のものなどが挙げられる。粘度指数向上剤の含有量は、潤滑油組成物全量を基準として、通常0.5~35質量%である。
 本実施形態に係る潤滑油組成物の用途は特に制限されず、内燃機関用潤滑油、駆動系潤滑油等の幅広い分野で使用することができる。例えば、本実施形態に係る潤滑油組成物は、第1実施形態~第6実施形態に係るコハク酸イミド化合物から選ばれる少なくとも1種を含有するため、従来のコハク酸イミド化合物と比較して、高い静摩擦係数(高い湿式摩擦材トルク容量)を達成することができ、自動変速機油や無段変速機油として好適である。また湿式クラッチ、湿式ブレーキを有する変速機を備えた建設機械や農機、手動変速機、二輪車ガソリンエンジン、ディーゼルエンジン、ガスエンジン、ショックアブソーバー油等の潤滑油として用いることができる。
 以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
[実施例A-1;コハク酸イミド化合物A-I-aの合成]
 まず、式(10-A)で表される3-グリシジルオキシプロピルトリメトキシシラン2.5gに脱水エタノール15mlを加えて溶解させた。
 一方、500mlの4口フラスコに一般式(5-A)で表され、Rが数平均分子量1000のポリイソブテニル基である化合物の30.0gを加え、合成装置を組んだ。これに100mlのトルエンを加えて攪拌し、溶解させた。この溶液を90℃に昇温し、350rpmで攪拌しながら、滴下ロートを用いて上記の3-グリシジルオキシプロピルトリメトキシシラン/エタノール溶液を滴下した。滴下は15分かけて行った。滴下終了後、反応液を111℃へ昇温し、5時間反応させた。反応液はオレンジ色を呈した。
 反応生成物をエバポレータにて減圧蒸留し、120℃において3時間ストリッピングして、生成物32.8gを得た。IR及びGPC分析により、得られた生成物が、一般式(7-A)で表され、Rが数平均分子量1000のポリイソブテニル基であるコハク酸イミド化合物(以下、「コハク酸イミド化合物A-I-a」という。)であることを確認した。生成物のIRチャートを図1に示す。
[実施例A-2;コハク酸イミド化合物A-I-bの合成]
 一般式(5-A)で表され、Rが数平均分子量1000のポリイソブテニル基である化合物30.0gに代えて、一般式(5-A)で表され、Rが数平均分子量2300のポリイソブテニル基である化合物60.0gを用いたこと以外は実施例A-1と同様にして、コハク酸イミド化合物の合成を行った。
 IR及びGPC分析により、得られた生成物が、一般式(7)で表され、Rが数平均分子量2300のポリイソブテニル基であるコハク酸イミド化合物(以下、「コハク酸イミド化合物A-I-b」という。)であることを確認した。生成物のIRチャートを図2に示す。
[実施例A-3;コハク酸イミド化合物A-II-aの合成]
 まず、式(11-A)で表される1,1,1,3,5,5,5-ヘプタメチル-3-(3-グリシジルオキシプロピル)トリシロキサン3.6gに脱水エタノール15mlを加えて溶解させた。
 一方、300mlの4口フラスコに一般式(5-A)で表される化合物(式(5-A)中のR:数平均分子量1000のポリイソブテニル基)の30.0gを加え、合成装置を組んだ。これに100mlのトルエンを加えて攪拌し、溶解させた。この溶液を90℃に昇温し、350rpmで攪拌しながら、滴下ロートを用いて上記の1,1,1,3,5,5,5-ヘプタメチル-3-(3-グリシジルオキシプロピル)トリシロキサン/エタノール溶液を滴下した。滴下は15分かけて行った。滴下終了後、反応液を111℃へ昇温し、5時間反応させた。反応液は茶色を呈した。
 反応生成物をエバポレータにて減圧蒸留し、160℃において3時間ストリッピングして、生成物32.6gを得た。IR及びGPC分析により、得られた生成物が、一般式(8-A)で表され、Rが数平均分子量1000のポリイソブテニル基であるコハク酸イミド化合物(以下、「コハク酸イミド化合物A-II-a」という。)であることを確認した。生成物のIRチャートを図3に示す。
[実施例A-4;コハク酸イミド化合物A-II-bの合成]
 一般式(5-A)で表され、Rが数平均分子量1000のポリイソブテニル基である化合物30.0gに代えて、一般式(5-A)で表され、Rが数平均分子量2300のポリイソブテニル基である化合物60.0gを用いたこと以外は実施例A-3と同様にして、コハク酸イミド化合物の合成を行った。
 IR及びGPC分析により、得られた生成物が、一般式(8)で表され、Rが数平均分子量2300のポリイソブテニル基であるコハク酸イミド化合物(以下、「コハク酸イミド化合物A-II-b」という。)であることを確認した。
[実施例A-5;コハク酸イミド化合物A-III-aの合成]
 まず、式(12-A)で表されるジエトキシ(3-グリシジルオキシプロピル)メチルシラン2.4gに脱水エタノール15mlを加えて溶解させた。
 一方、300mlの4口フラスコに一般式(5-A)で表される化合物(式(5-A)中のR:数平均分子量1000のポリイソブテニル基)の30.0gを加え、合成装置を組んだ。これに100mlのトルエンを加えて攪拌し、溶解させた。この溶液を90℃に昇温し、350rpmで攪拌しながら、滴下ロートを用いて上記のジエトキシ(3-グリシジルオキシプロピル)メチルシラン/エタノール溶液を滴下した。滴下は20分かけて行った。滴下終了後、反応液を111℃へ昇温し、7時間30分反応させた。反応液は茶色を呈した。
 反応生成物をエバポレータにて減圧蒸留し、165℃において3時間ストリッピングして、生成物31.7gを得た。IR及びGPC分析により、得られた生成物が、一般式(9)で表され、Rが数平均分子量1000のポリイソブテニル基であるコハク酸イミド化合物(以下、「コハク酸イミド化合物A-III-a」という。)であることを確認した。生成物のIRチャートを図4に示す。
[実施例A-6;コハク酸イミド化合物A-III-bの合成]
 一般式(5-A)で表され、Rが数平均分子量1000のポリイソブテニル基である化合物30.0gに代えて、一般式(5-A)で表され、Rが数平均分子量2300のポリイソブテニル基である化合物60.0gを用いたこと以外は実施例A-5と同様にして、コハク酸イミド化合物の合成を行った。
 IR及びGPC分析により、得られた生成物が、一般式(9)で表され、Rが数平均分子量2300のポリイソブテニル基であるコハク酸イミド化合物(以下、「コハク酸イミド化合物A-III-b」という。)であることを確認した。
[比較例A-1;コハク酸イミド化合物A-IVの合成]
 2000mLのオートクレーブに、ポリイソブテン(数平均分子量1000)1.0molと、無水マレイン酸1.0molとを入れ、1.5時間かけて220℃まで昇温させ、220℃に達してから4時間反応させた。反応終了後、得られた生成物にn-ヘキサンを加え攪拌し、その液をろ過してスラッジを取り除いた。ろ液を常圧蒸留でn-ヘキサンを除去後、減圧下220℃で無水マレイン酸を除去し、マレイン化ポリイソブテンを得た。
 2Lセパラブルフラスコに、ジエチレントリアミン1.7mol、キシレンを入れた。次に、キシレンに溶解させた得られたマレイン化ポリブテン0.17molを滴下させながら、145~155℃で11時間反応させた。反応終了後、常圧蒸留で溶媒を除去し、減圧蒸留で残留ジエチレントリアミンを除去し、コハク酸イミド化合物A-IVを得た。
[実施例A-7~A-24、比較例A-2~A-4;潤滑油組成物の調製及び評価試験]
 実施例A-7~A-12においては、それぞれ、潤滑油基油としてのSAE10留分(100℃動粘度4.1mm/s)の鉱油、コハク酸イミド化合物A-I-a又はA-I-b並びに以下に示す添加剤を用いて、表1に示す組成を有する潤滑油組成物を調製した。
 実施例A-13~A-18においては、それぞれ、潤滑油基油としてのSAE10留分(100℃動粘度4.1mm/s)の鉱油、コハク酸イミド化合物A-II-a又はA-II-b並びに以下に示す添加剤を用いて、表2に示す組成を有する潤滑油組成物を調製した。
 実施例A-19~A-24においては、それぞれ、潤滑油基油としてのSAE10留分(100℃動粘度4.1mm/s)の鉱油、コハク酸イミド化合物A-III-a又はA-III-b並びに以下に示す添加剤を用いて、表3に示す組成を有する潤滑油組成物を調製した。
 比較例2、3においては、それぞれ、潤滑油基油としてのSAE10留分(100℃動粘度4.1mm/s)の鉱油、コハク酸イミド化合物A-IV並びに以下に示す添加剤を用いて、表4に示す組成を有する潤滑油組成物を調製した。また、比較例4においては、潤滑油基油としてのSAE10留分(100℃動粘度4.1mm/s)の鉱油及び以下に示す添加剤を用いて、表4に示す組成を有する潤滑油組成物を調製した。
ポリメタクリレート:重量平均分子量20,000
アミン系酸化防止剤:ジフェニルアミン
トリクレジルホスフェノート
カルシウムスルホネート:塩基価300mgKOH/g
無灰系油性剤:グリセリンモノオレート
 次に、実施例7~24及び比較例2~4の潤滑油組成物について、LFW-1試験機を用いて金属間摩擦係数を評価した。試験条件は面圧0.8GPa、すべり速度0.2m/s、試験温度80℃で、試験時間1時間とし、時間内の摩擦係数を平均化した平均摩擦係数で評価した。得られた結果を表1~4に示す。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
[実施例B-1;コハク酸イミド化合物B-I-aの合成]
 2000mLのオートクレーブに、ポリイソブテン(数平均分子量1000)1.0molと、無水マレイン酸1.0molとを入れ、1.5時間かけて220℃まで昇温させ、220℃に達してから4時間反応させた。反応終了後、得られた生成物にn-ヘキサンを加え攪拌し、その液をろ過して不溶解分を取り除いた。ろ液を常圧蒸留でn-ヘキサンを除去後、減圧下220℃で無水マレイン酸を除去し、マレイン化ポリイソブテンを得た。
 合成装置を組み、100mlの3口フラスコに1-[3-(トリメトキシシリル)プロピル]尿素1.08gをはかりとり、系を窒素置換した。100mlナスフラスコにマレイン化ポリイソブテン5.00gをはかりとり、40mlのo-キシレンを加え、湯浴でマレイン化ポリイソブテンを溶解し、滴下ロート部分に入れた。また、4口フラスコに40mlのo-キシレンを入れた。この間、系は窒素気流中に維持した。
 145℃に昇温し、300rpmで拡販しながら、滴下を開始し、155℃に昇温した。1時間後に165℃に温度を上げ、1時間後に滴下を終了した。反応液は濁ったうすい黄色であった。さらに165℃、300rpmにて28時間反応を継続した。反応液は黄色であった。
 吸引ろ過を行い、生成物をエバポレータにて減圧蒸留した。収量は33.7gであった。
 IR及びGPC分析により、得られた生成物が、一般式(7-B)で表され、Rが数平均分子量1000のポリイソブテニル基であるコハク酸イミド化合物(以下、「コハク酸イミド化合物B-I-a」という。)であることを確認した。生成物のIRチャートを図5に示す。
[実施例B-2;コハク酸イミド化合物B-I-bの合成]
 2000mLのオートクレーブに、ポリイソブテン(数平均分子量および2300)1.0molと、無水マレイン酸1.0molとを入れ、1.5時間かけて220℃まで昇温させ、220℃に達してから4時間反応させた。反応終了後、得られた生成物にn-ヘキサンを加え攪拌し、その液をろ過して不溶解分を取り除いた。ろ液を常圧蒸留でn-ヘキサンを除去後、減圧下220℃で無水マレイン酸を除去し、マレイン化ポリイソブテンを得た。
 合成装置を組み、100mlの3口フラスコに1-[3-(トリメトキシシリル)プロピル]尿素1.08gをはかりとり、系を窒素置換した。100mlナスフラスコにマレイン化ポリイソブテン5.00gをはかりとり、40mlのo-キシレンを加え、湯浴でマレイン化ポリイソブテンを溶解し、滴下ロート部分に入れた。また、4口フラスコに40mlのo-キシレンを入れた。この間、系は窒素気流中に維持した。
145℃に昇温し、300rpmで拡販しながら、滴下を開始し、155℃に昇温した。1時間後に165℃に温度を上げ、1時間後に滴下を終了した。反応液は濁ったうすい黄色であった。さらに165℃、300rpmにて28時間反応を継続した。反応液は黄色であった。
 吸引ろ過を行い、生成物をエバポレータにて減圧蒸留した。収量は33.7gであった。IR及びGPC分析により、得られた生成物が、一般式(7-B)で表され、Rが数平均分子量1000のポリイソブテニル基であるコハク酸イミド化合物(以下、「コハク酸イミド化合物B-I-b」という。)であることを確認した。
[比較例B-1;コハク酸イミド化合物B-IIの合成]
 2000mLのオートクレーブに、ポリイソブテン(数平均分子量1000)1.0molと、無水マレイン酸1.0molとを入れ、1.5時間かけて220℃まで昇温させ、220℃に達してから4時間反応させた。反応終了後、得られた生成物にn-ヘキサンを加え攪拌し、その液をろ過してスラッジを取り除いた。ろ液を常圧蒸留でn-ヘキサンを除去後、減圧下220℃で無水マレイン酸を除去し、マレイン化ポリイソブテンを得た。
 2Lセパラブルフラスコに、ジエチレントリアミン1.7mol、キシレンを入れた。次に、キシレンに溶解させた得られたマレイン化ポリブテン0.17molを滴下させながら、145~155℃で11時間反応させた。反応終了後、常圧蒸留で溶媒を除去し、減圧蒸留で残留ジエチレントリアミンを除去し、コハク酸イミド化合物B-IIを得た。
[実施例B-3~B-8、比較例B-2~B-4;潤滑油組成物の調製及び評価試験]
 実施例B-3~B-8においては、それぞれ、潤滑油基油としてのSAE10留分(100℃動粘度4.1mm/s)の鉱油、コハク酸イミド化合物I-a又はI-b並びに以下に示す添加剤を用いて、表5に示す組成を有する潤滑油組成物を調製した。
 比較例B-2、3においては、それぞれ、潤滑油基油としてのSAE10留分(100℃動粘度4.1mm/s)の鉱油、コハク酸イミド化合物II並びに以下に示す添加剤を用いて、表5に示す組成を有する潤滑油組成物を調製した。また、比較例B-4においては、潤滑油基油としてのSAE10留分(100℃動粘度4.1mm/s)の鉱油及び以下に示す添加剤を用いて、表6に示す組成を有する潤滑油組成物を調製した。
ポリメタクリレート:平均分子量20,000
アミン系酸化防止剤:ジフェニルアミン
トリクレジルホスフェノート
カルシウムスルホネート:300TBN
無灰系油性剤:グリセリンモノオレート
 次に、実施例B-3~B-8及び比較例B-2~B-4の潤滑油組成物について、LFW-1試験機を用いて金属間摩擦係数を評価した。試験条件は面圧0.8GPa、すべり速度0.2m/s、試験温度80℃で、試験時間1時間とし、時間内の摩擦係数を平均化した平均摩擦係数で評価した。得られた結果を表5~6に示す。
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
[実施例C-1;コハク酸イミド化合物I-aの合成]
 2000mLのオートクレーブに、ポリイソブテン(数平均分子量1000)1.0molと、無水マレイン酸1.0molとを入れ、1.5時間かけて220℃まで昇温させ、220℃に達してから4時間反応させた。反応終了後、得られた生成物にn-ヘキサンを加え攪拌し、その液をろ過して不溶解分を取り除いた。ろ液を常圧蒸留でn-ヘキサンを除去後、減圧下220℃で無水マレイン酸を除去し、マレイン化ポリイソブテンを得た。
 合成装置を組み、300 mlの3口フラスコに3-(2-アミノエチルアミノ)プロピルジエトキシメチルシラン6.14gをはかりとり、系を窒素置換した。200mlナスフラスコにマレイン化ポリイソブテンの30.1gをはかりとり、80mlのo-キシレンを加えて湯浴で溶かし、滴下ロート部分に入れた。また、4口フラスコに20mlのo-キシレンを入れた。この間、系は窒素気流下に維持した。
 300rpmで拡販しながら25分で145℃まで昇温し、滴定を開始した。5分後に155℃に温度を上げ、更に10分後に165℃に温度を上げた。滴定開始2時間で滴下を終了した。
 IR測定により反応が進行していることを確認し、滴定開始8時間30分後に反応を終了した。反応液は茶色であった。生成物をエバポレータにて減圧蒸留した。収量は33.7gであった。
 IR及びGPC分析により、得られた生成物が、一般式(8-C)で表され、Rが数平均分子量1000のポリイソブテニル基であり、m=1であるコハク酸イミド化合物(以下、「コハク酸イミド化合物C-I-a」という。)であることを確認した。生成物のIRチャートを図6に示す。
[実施例C-2;コハク酸イミド化合物C-I-bの合成]
 2000mLのオートクレーブに、ポリイソブテン(数平均分子量2300)1.0molと、無水マレイン酸1.0molとを入れ、1.5時間かけて220℃まで昇温させ、220℃に達してから4時間反応させた。反応終了後、得られた生成物にn-ヘキサンを加え攪拌し、その液をろ過して不溶解分を取り除いた。ろ液を常圧蒸留でn-ヘキサンを除去後、減圧下220℃で無水マレイン酸を除去し、マレイン化ポリイソブテンを得た。
 合成装置を組み、300 mlの3口フラスコに3-(2-アミノエチルアミノ)プロピルジエトキシメチルシラン6.14gをはかりとり、系を窒素置換した。200mlナスフラスコにマレイン化ポリイソブテンの30.02gをはかりとり、80mlのo-キシレンを加えて湯浴で溶かし、滴下ロート部分に入れた。また、4口フラスコに20mlのo-キシレンを入れた。この間、系は窒素気流下に維持した。
 300rpmで拡販しながら25分で145℃まで昇温し、滴定を開始した。5分後に155℃に温度を上げ、更に10分後に165℃に温度を上げた。滴定開始2時間で滴下を終了した。      IR測定により反応が進行していることを確認し、滴定開始8時間30分後に反応を終了した。反応液は茶色であった。生成物をエバポレータにて減圧蒸留した。収量は33.73gであった。
 IR及びGPC分析により、得られた生成物が、一般式(8-C)で表され、Rが数平均分子量2300のポリイソブテニル基であり、m=1であるコハク酸イミド化合物(以下、「コハク酸イミド化合物C-I-b」という。)であることを確認した。
[実施例C-3;コハク酸イミド化合物C-II-aの合成]
 2000mLのオートクレーブに、ポリイソブテン(数平均分子量1000)1.0molと、無水マレイン酸1.0molとを入れ、1.5時間かけて220℃まで昇温させ、220℃に達してから4時間反応させた。反応終了後、得られた生成物にn-ヘキサンを加え攪拌し、その液をろ過して不溶解分を取り除いた。ろ液を常圧蒸留でn-ヘキサンを除去後、減圧下220℃で無水マレイン酸を除去し、マレイン化ポリイソブテンを得た。
 合成装置を組み、300mlの4口フラスコに3-アミノプロピルジエトキシメチルシラン5.70gをはかりとり、系を窒素置換した。300mlナスフラスコにマレイン化ポリイソブテンを30.02gはかりとり、80mlのo-キシレンを加えて湯浴で溶かし、滴下ロート部分に入れた。また、4口フラスコに20mlのo-キシレンを入れた。この間、系は窒素気流下に維持した。
 145℃に昇温し、300rpmで攪拌しながら、滴定を開始した。155℃に温度を上げ、滴定開始1時間後に165℃に温度を上げた。1時間45分で滴下を終了した。反応液は透明な黄色であった。IRから反応が半分程度進行している模様であった。再び165℃、300rpmにて反応を継続し、8時間後にIR測定したところ、前回とほとんど同様であり、反応液は透明な黄色であった。再度145℃、300rpmにて6時間反応を行ったところ、IR測定から反応が半分程度進行している模様であった。反応液は透明な黄色であった。165℃、300rpmにて15時間反応を行ったところ、反応液は透明な黄色となった。生成物をエバポレータにて減圧蒸留した。収量は30.58gであった。IR及びGPC分析により、得られた生成物が、一般式(8-C)で表され、Rが数平均分子量1000のポリイソブテニル基であり、m=0であるコハク酸イミド化合物(以下、「コハク酸イミド化合物C-II-a」という。)であることを確認した。
[実施例C-4;コハク酸イミド化合物C-II-bの合成]
 2000mLのオートクレーブに、ポリイソブテン(数平均分子量2300)1.0molと、無水マレイン酸1.0molとを入れ、1.5時間かけて220℃まで昇温させ、220℃に達してから4時間反応させた。反応終了後、得られた生成物にn-ヘキサンを加え攪拌し、その液をろ過して不溶解分を取り除いた。ろ液を常圧蒸留でn-ヘキサンを除去後、減圧下220℃で無水マレイン酸を除去し、マレイン化ポリイソブテンを得た。
合成装置を組み、300mlの4口フラスコに3-アミノプロピルジエトキシメチルシラン5.70gをはかりとり、系を窒素置換した。300mlナスフラスコにマレイン化ポリイソブテンを30.02gはかりとり、80mlのo-キシレンを加えて湯浴で溶かし、滴下ロート部分に入れた。また、4口フラスコに20mlのo-キシレンを入れた。この間、系は窒素気流下に維持した。
 145℃に昇温し、300rpmで攪拌しながら、滴定を開始した。155℃に温度を上げ、滴定開始1時間後に165℃に温度を上げた。1時間45分で滴下を終了した。反応液は透明な黄色であった。IRから反応が半分程度進行している模様であった。再び165℃、300rpmにて反応を継続し、8時間後にIR測定したところ、前回とほとんど同様であり、反応液は透明な黄色であった。再度145℃、300rpmにて6時間反応を行ったところ、IR測定から反応が半分程度進行している模様であった。反応液は透明な黄色であった。165℃、300rpmにて15時間反応を行ったところ、反応液は透明な黄色となった。生成物をエバポレータにて減圧蒸留した。収量は30.58gであった。IR及びGPC分析により、得られた生成物が、一般式(8-C)で表され、Rが数平均分子量2300のポリイソブテニル基であり、m=0であるコハク酸イミド化合物(以下、「コハク酸イミド化合物C-II-b」という。)であることを確認した。
[比較例C-1;コハク酸イミド化合物C-IIIの合成]
 2000mLのオートクレーブに、ポリイソブテン(数平均分子量1000)1.0molと、無水マレイン酸1.0molとを入れ、1.5時間かけて220℃まで昇温させ、220℃に達してから4時間反応させた。反応終了後、得られた生成物にn-ヘキサンを加え攪拌し、その液をろ過してスラッジを取り除いた。ろ液を常圧蒸留でn-ヘキサンを除去後、減圧下220℃で無水マレイン酸を除去し、マレイン化ポリイソブテンを得た。
 2Lセパラブルフラスコに、ジエチレントリアミン1.7mol、キシレンを入れた。次に、キシレンに溶解させた得られたマレイン化ポリブテン0.17molを滴下させながら、145~155℃で11時間反応させた。反応終了後、常圧蒸留で溶媒を除去し、減圧蒸留で残留ジエチレントリアミンを除去し、コハク酸イミド化合物C-IIIを得た。
[実施例C-5~C-16、比較例C-2~C-4;潤滑油組成物の調製及び評価試験]
 実施例C-5~C-10においては、それぞれ、潤滑油基油としてのSAE10留分(100℃動粘度4.1mm/s)の鉱油、コハク酸イミド化合物C-I-a又はC-I-b並びに以下に示す添加剤を用いて、表7に示す組成を有する潤滑油組成物を調製した。
 実施例C-11~C-16においては、それぞれ、潤滑油基油としてのSAE10留分(100℃動粘度4.1mm/s)の鉱油、コハク酸イミド化合物C-II-a又はC-II-b並びに以下に示す添加剤を用いて、表8に示す組成を有する潤滑油組成物を調製した。
 比較例C-2、C-3においては、それぞれ、潤滑油基油としてのSAE10留分(100℃動粘度4.1mm/s)の鉱油、コハク酸イミド化合物C-III並びに以下に示す添加剤を用いて、表3に示す組成を有する潤滑油組成物を調製した。また、比較例C-4においては、潤滑油基油としてのSAE10留分(100℃動粘度4.1mm/s)の鉱油及び以下に示す添加剤を用いて、表9に示す組成を有する潤滑油組成物を調製した。
ポリメタクリレート:平均分子量20,000
アミン系酸化防止剤:ジフェニルアミン
トリクレジルホスフェノート
カルシウムスルホネート:300TBN
無灰系油性剤:グリセリンモノオレート
 次に、実施例C-5~C-16及び比較例C-2~C-4の潤滑油組成物について、LFW-1試験機を用いて金属間摩擦係数を評価した。試験条件は面圧0.8GPa、すべり速度0.2m/s、試験温度80℃で、試験時間1時間とし、時間内の摩擦係数を平均化した平均摩擦係数で評価した。得られた結果を表7~9に示す。
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
 本発明のコハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物は、幅広い潤滑油分野で使用可能であり、特に、高い静摩擦係数が必要とされる自動変速機油や無段変速機油として好適である。

Claims (4)

  1.  下記一般式(1-A)、(1-B)又は(1-C)のいずれかで表されるコハク酸イミド化合物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [式(1-A)、(1―B)、(1-C)中、Rは数平均分子量500以上5000未満のアルキル基又は数平均分子量500以上5000未満のアルケニル基を示し、mは1~5の整数を示し、nは0または1~3の整数を示し、R、R及びRは同一でも異なっていてもよく、それぞれ下記一般式(2)~(4)のいずれかで表される1価の基を示す。
    -O(CH)CH  (2)
    (式(2)中、aは0~3の整数を示す。)
    -(CH)CH  (3)
    (式(3)中、bは0~3の整数を示す。)
    -OSi(CH)CH  (4)
    (式(4)中、cは0~3の整数を示す。)]
  2.  請求項1に記載のコハク酸イミド化合物を含有する潤滑油添加剤。
  3.  潤滑油基油と、請求項1に記載のコハク酸イミド化合物とを含有する潤滑油組成物。
  4.  潤滑油基油と、請求項1に記載のコハク酸イミド化合物とを含有する無段変速機用潤滑油組成物。
PCT/JP2013/059544 2012-03-29 2013-03-29 コハク酸イミド化合物、潤滑油添加剤および潤滑油組成物 WO2013147165A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-076627 2012-03-29
JP2012-076713 2012-03-29
JP2012-076625 2012-03-29
JP2012076713A JP2013203724A (ja) 2012-03-29 2012-03-29 コハク酸イミド化合物、潤滑油添加剤および潤滑油組成物
JP2012076625A JP6049282B2 (ja) 2012-03-29 2012-03-29 コハク酸イミド化合物、潤滑油添加剤および潤滑油組成物
JP2012076627A JP2013203723A (ja) 2012-03-29 2012-03-29 コハク酸イミド化合物、潤滑油添加剤および潤滑油組成物

Publications (1)

Publication Number Publication Date
WO2013147165A1 true WO2013147165A1 (ja) 2013-10-03

Family

ID=49260407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059544 WO2013147165A1 (ja) 2012-03-29 2013-03-29 コハク酸イミド化合物、潤滑油添加剤および潤滑油組成物

Country Status (1)

Country Link
WO (1) WO2013147165A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035701A1 (ja) * 2003-10-09 2005-04-21 Idemitsu Kosan Co., Ltd. 潤滑油添加剤及び潤滑油組成物
JP2008509236A (ja) * 2004-08-06 2008-03-27 ビーエーエスエフ ソシエタス・ヨーロピア 燃料及び潤滑剤用のポリアミン添加剤
JP2012504173A (ja) * 2008-09-30 2012-02-16 シェブロン・オロナイト・カンパニー・エルエルシー 潤滑油組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035701A1 (ja) * 2003-10-09 2005-04-21 Idemitsu Kosan Co., Ltd. 潤滑油添加剤及び潤滑油組成物
JP2008509236A (ja) * 2004-08-06 2008-03-27 ビーエーエスエフ ソシエタス・ヨーロピア 燃料及び潤滑剤用のポリアミン添加剤
JP2012504173A (ja) * 2008-09-30 2012-02-16 シェブロン・オロナイト・カンパニー・エルエルシー 潤滑油組成物

Similar Documents

Publication Publication Date Title
JP5504036B2 (ja) コハク酸イミド化合物を含有する摩擦調整剤、潤滑油添加剤及び潤滑油組成物
JP5315285B2 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP5504033B2 (ja) コハク酸イミド化合物を含有する摩擦調整剤、潤滑油添加剤及び潤滑油組成物
WO2011122637A1 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP5315284B2 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP5476192B2 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP5543256B2 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
WO2013147165A1 (ja) コハク酸イミド化合物、潤滑油添加剤および潤滑油組成物
JP2013203724A (ja) コハク酸イミド化合物、潤滑油添加剤および潤滑油組成物
JP5546316B2 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP5504038B2 (ja) コハク酸イミド化合物を含有する摩擦調整剤、潤滑油添加剤及び潤滑油組成物
WO2013147182A1 (ja) コハク酸イミド化合物、潤滑油添加剤および潤滑油組成物
WO2014007377A1 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
WO2014007376A1 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
WO2014007379A1 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP5876779B2 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP5889134B2 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP5952659B2 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP6049282B2 (ja) コハク酸イミド化合物、潤滑油添加剤および潤滑油組成物
WO2014007378A1 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
WO2014007375A1 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP5952657B2 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP2014015495A (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP5952660B2 (ja) コハク酸イミド化合物、潤滑油添加剤及び潤滑油組成物
JP5504037B2 (ja) コハク酸イミド化合物を含有する摩擦調整剤、潤滑油添加剤及び潤滑油組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769469

Country of ref document: EP

Kind code of ref document: A1