WO2013146779A1 - ラマン散乱分光法による神経検出法 - Google Patents

ラマン散乱分光法による神経検出法 Download PDF

Info

Publication number
WO2013146779A1
WO2013146779A1 PCT/JP2013/058775 JP2013058775W WO2013146779A1 WO 2013146779 A1 WO2013146779 A1 WO 2013146779A1 JP 2013058775 W JP2013058775 W JP 2013058775W WO 2013146779 A1 WO2013146779 A1 WO 2013146779A1
Authority
WO
WIPO (PCT)
Prior art keywords
nerve
intensity ratio
nerves
raman
sample
Prior art date
Application number
PCT/JP2013/058775
Other languages
English (en)
French (fr)
Inventor
哲郎 高松
丈夫 南川
義規 原田
Original Assignee
京都府公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京都府公立大学法人 filed Critical 京都府公立大学法人
Priority to EP13768225.8A priority Critical patent/EP2837335A4/en
Priority to US14/388,035 priority patent/US9700212B2/en
Priority to JP2014507914A priority patent/JP6180404B2/ja
Publication of WO2013146779A1 publication Critical patent/WO2013146779A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to a method for detecting a nerve using a Raman scattering spectrum from a living tissue.
  • the present invention also relates to an apparatus for detecting a nerve using a Raman scattering spectrum.
  • Preserving nerves during surgery plays an important role not only in preserving organ function but also in patient quality of life.
  • staining techniques using pigments have been improved to determine the position of thin nerves, but staining itself is often harmful to humans and is difficult to use for intraoperative observation. Therefore, the main target of nerve preservation is only the thick nerve that can be observed by the operator's eyes and white light imaging with an image sensor, and there is no technique for determining the position of the thin nerve, and the position of the nerve is anatomical knowledge In other words, there are situations where you have to rely on the experience of the surgeon.
  • myelinated nerves since there is a myelin sheath rich in lipids, it can still be detected by Raman scattering spectroscopy.
  • the target of measurement of myelinated nerves is a Raman band derived from lipid (myelin), which is difficult to apply to unmyelinated nerves without myelin sheath, and comprehensive detection of nerves has not been realized.
  • Raman spectroscopy is a form of vibrational spectroscopy that provides direct information on molecular vibrations specific to chemical bonds in the molecule.
  • incident light and molecular vibration interact, and a specific energy change depending on the molecular vibration can be plotted as a spectrum, whereby a substance can be identified without staining.
  • Substance detection methods, imaging methods, and apparatuses using such characteristics of Raman spectroscopy have been developed (Patent Documents 1 and 2).
  • tissues such as diagnosis of cancer (Non-patent Document 1), atherosclerosis (Non-patent Document 2), oxygen saturation of hemoglobin (Non-patent Document 3), etc.
  • the focus has been on diagnosis.
  • Patent Document 3 discloses a method of imaging by distinguishing myocardial tissue, blood vessels, and collagen-rich regions.
  • none of these non-patent and patent literatures attempted to comprehensively detect nerves.
  • an object of the present invention is to provide a method and apparatus for detecting or detecting a nerve.
  • a method for detecting a nerve comprising the following steps 1 to 4: Step 1: Step of irradiating the sample with excitation light Step 2: Step of detecting Raman scattered light from the sample; Step 3: calculating an intensity ratio of wave numbers within a specific range of Raman scattered light detected in Step 2, or extracting a feature of the intensity ratio and performing multivariate analysis and / or statistical analysis, Step 4: A method for detecting a nerve, comprising a step of specifically displaying a nerve including an unmyelinated nerve using the intensity ratio or multivariate analysis and / or statistical analysis result as an index.
  • Item 2 A method for detecting a nerve, comprising a step of specifically displaying a nerve including an unmyelinated nerve using the intensity ratio or multivariate analysis and / or statistical analysis result as an index.
  • the intensity ratio is, 2855Cm -1 or before and after the peak wavenumber range and 2933cm -1 or intensity ratio of the peak wavenumber range around them, or, 2887Cm -1 or before and after the peak wavenumber range thereof and 2933cm -1 or around the Item 2.
  • the detection method according to Item 1 which is an intensity ratio in a peak wavenumber range.
  • Item 3. Item 3.
  • Item 4 The intensity ratio is the intensity ratio of 2855cm -1 and 2933cm -1, or the intensity ratio of 2887cm -1 and 2933cm -1, detection method according to any one of claim 1-3.
  • Item 5. The detection method according to any one of Items 1 to 4, wherein the sample is a patient undergoing surgery or a tissue collected from the patient.
  • Item 6. Item 6. The detection method according to any one of Items 1 to 5, wherein the nerve includes an unmyelinated nerve.
  • Excitation light irradiation means for irradiating the sample with excitation light, Means for detecting Raman scattered light from the sample; A spectroscopic unit that splits the received Raman scattered light into spectral components of each wavelength / wave number; An intensity ratio calculating means for calculating an intensity ratio of specific wavelength / specific wave number of Raman scattered light, or an analyzing means for extracting features of the intensity ratio and performing multivariate analysis and / or statistical analysis; An apparatus for detecting nerves including unmyelinated nerves, comprising means for specifically displaying nerves including unmyelinated nerves using the intensity ratio or multivariate analysis and / or statistical analysis results as an index.
  • the present invention provides an unstained optical nerve detection method and apparatus using Raman scattering spectroscopy, which is a light scattering phenomenon caused by molecular vibrations.
  • the present invention provides a method for detecting unstained nerves including unmyelinated nerves, which has been impossible in the past.
  • the present invention it is possible to specifically display nerves including unmyelinated nerves. Therefore, by using the detection method and apparatus of the present invention, it is possible to accurately grasp the presence or position of a nerve at the time of surgery, and it is possible to suppress a decrease in post-operative QOL due to a neurological disorder.
  • Raman spectra of various nerves include intercostals (myelinated), vagus (unmyelinated), abdominal cavity (myelinated), abdominal cavity (non-myelinated), thigh (myelinated), cerebellar medulla (myelinated), cerebellar cortex (non-myelinated).
  • Raman spectra of various tissues The Raman spectrum of a tissue exhibits a characteristic spectrum derived from the molecules constituting each tissue. Based on these differences, nerve tissue is differentiated. Tissues include intercostal nerve, vagus nerve, fibrous connective tissue, blood vessels (media), muscle tissue, and fat.
  • A connective tissue and myelinated nerve
  • B adipose tissue and myelinated nerve
  • C muscle tissue and myelinated nerve
  • D blood vessel and myelinated nerve
  • E myelinated and unmyelinated nerve
  • F Connected tissue and unmyelinated nerve
  • B Adipose tissue and unmyelinated nerve
  • C Muscle tissue and unmyelinated nerve
  • D P-value when intensity ratio of blood vessel and unmyelinated nerve is calculated.
  • the left axis is the denominator of intensity ratio
  • the lower axis is the numerator of intensity ratio. Nerve detection by intensity ratio of nerve (including myelinated and unmyelinated) and other tissues.
  • A Connective tissue and nerves (including myelinated and unmyelinated nerves), (B) Adipose tissue and nerves (including myelinated and unmyelinated nerves), (C) Muscle tissue and nerves (myelinated and (Including unmyelinated nerves), (D) blood vessels and nerves (including myelinated and unmyelinated nerves), (E) unmyelinated nerves and tissues (including connective tissue, adipose tissue, muscle tissue, blood vessels), (F ) Myelinated nerves and tissues (including connective tissue, adipose tissue, muscle tissue, blood vessels), (G) nerves (including myelinated and unmyelinated nerves) and tissues (connective tissue, adipose tissue, muscle tissue, blood vessels) P value when the intensity ratio is calculated.
  • the left axis is the denominator of intensity ratio, and the lower axis is the numerator of intensity ratio.
  • the present invention provides the following steps (1) to (4): Step 1: Step of irradiating the sample with excitation light Step 2: Step of detecting Raman scattered light from the sample; Step 3: calculating an intensity ratio of wave numbers within a specific range of the Raman scattered light detected in Step 2, or extracting features of the intensity ratio and performing multivariate analysis and / or statistical analysis, Step 4: Providing a nerve detection method characterized by including a step of specifically displaying nerves including unmyelinated nerves using the intensity ratio or multivariate analysis and / or statistical analysis results as an index. is there.
  • Specific indication of nerves including unmyelinated nerves means that the presence of nerves is indicated by sound (warning sound, voice, etc.), light, vibration, heat, etc., and the nerve and surrounding tissues are sounded (warning) Sound, voice, etc.) and images are distinguished and displayed.
  • Perineural tissue includes adipose tissue, fibrous connective tissue, muscle tissue, blood vessels, and the like.
  • the sample is first irradiated with excitation light.
  • the sample include animals having nerves, such as vertebrates, particularly mammals themselves or a part thereof, for example, organs and tissues extracted from a living body.
  • mammals include humans, monkeys, horses, pigs, cows, sheep, dogs, cats, rats, mice and the like, preferably humans.
  • the irradiation site in an animal having a nerve is not particularly limited as long as it is a site that may have a nerve, but a site where the nerve damage during surgery affects the patient's QOL is preferable, for example, the prostate Urinary organs such as bladder, digestive organs such as rectum, esophagus, stomach, small intestine, colon, pancreas, liver, nervous system organs such as spinal cord and brain, retroperitoneum, head and neck, limbs, and surrounding tissues Etc.
  • incontinence of urine, feces, etc. can occur due to disorders of the unmyelinated nerves (parasympathetic nerves), and therefore it is necessary to prevent neurological disorders particularly during surgery.
  • the scope of application of the present invention includes nerve-sparing surgery for cancer removal, such as nerve-sparing prostatectomy, rectal cancer nerve-sparing surgery, various tissue transplantation operations for reconstructing tissue defects after resection of malignant tumors, etc.
  • nerve-sparing surgery for cancer removal such as nerve-sparing prostatectomy, rectal cancer nerve-sparing surgery, various tissue transplantation operations for reconstructing tissue defects after resection of malignant tumors, etc.
  • Microsurgery in surgery such as amputation finger (limb) re-adhesion, emergency trauma surgery, etc., helps identify nerves that were often overlooked, and neuroplasty (neural sutures, nerve transplantation) It is expected that this will lead to improvement of the treatment technology.
  • neuroplasty neural sutures, nerve transplantation
  • the nerve includes both myelinated nerves and unmyelinated nerves, and the present invention can detect both myelinated nerves and unmyelinated nerves.
  • the nerve may be a nerve cell or a nerve bundle.
  • the main subject of detection of the present invention is a nerve bundle, which may be a myelinated nerve or an unmyelinated nerve, and various myelinated and unmyelinated nerves. It may be mixed in proportion.
  • the peripheral nerve can be displayed, but the central nerve can be displayed.
  • the wavelength of the excitation light can theoretically be an electromagnetic wave having any wavelength, but is preferably 350 to 1064 nm, more preferably 400 to 800 nm, and even more preferably 500 to 700 nm.
  • the light source included in the excitation irradiating means can be used without particular limitation as long as it is a means for emitting light normally used in Raman scattering spectroscopy.
  • Preferred light sources include a 532 nm Nd: YAG laser, a 671 nm DSPP laser, and a 780 nm Ti: S laser.
  • the excitation light may be irradiated directly onto the sample from the light source, but it is preferable to irradiate a specific position of the sample (for example, a position to be cut by surgery) with an optical fiber or the like.
  • the Raman scattered light from the sample can be detected by means for detecting the Raman scattered light, such as a light receiving element.
  • the means for detecting the Raman scattered light is not particularly limited as long as it can detect the Raman scattered light and convert it into an analyzable signal, and appropriately select a detection means known in the field. Can be used.
  • a detection means known in the field can be used.
  • the means for detecting the Raman scattered light for example, a light receiving element or an area sensor in which the light receiving elements are arranged on a matrix can be used as the detecting means.
  • a light receiving element such as an avalanche photodiode or a photomultiplier tube, or a two-dimensional CCD camera or CMOS camera in which pixels are arranged in an array can be suitably used as a means for detecting Raman scattered light.
  • the Raman scattered light from the sample is separated into excitation light and scattered light by a dichroic filter or the like prior to the detection (FIG. 1). Further, the separated Raman scattered light is spatially dispersed according to the wavelength / wave number of light by a spectroscope including a diffraction grating and a prism. The spectrally scattered Raman scattered light is converted into a signal representing a Raman spectrum by the detection means as described above and output to an analysis means such as a personal computer.
  • the means for detecting Raman scattered light detects the intensity of light of each wavelength or wave number in the spectrum of Raman scattered light.
  • the light intensity of each wavelength / wave number detected by the means for detecting Raman scattered light is detected, and the data is sent to an analysis means such as a computer for analysis.
  • a step of calculating a specific wavelength / specific wave number or an intensity ratio of a wavelength range / wave number range or a feature of the specific wavelength / specific wave number or wavelength range / wave number range of the intensity ratio to extract multivariate analysis and / or statistics An analysis step, and a step of specifically displaying nerves including unmyelinated nerves using as an index the result of extracting the intensity ratio or the characteristics of the intensity ratio and performing multivariate analysis and / or statistical analysis.
  • the analyzed signal is sent to a display means (e.g., a display, when displaying by sound, a sound or a warning sound when displayed by a speaker, a sound source chip (e.g., a sound source such as a CPU))
  • a display means e.g., a display, when displaying by sound, a sound or a warning sound when displayed by a speaker, a sound source chip (e.g., a sound source such as a CPU)
  • a display means e.g., a display, when displaying by sound, a sound or a warning sound when displayed by a speaker, a sound source chip (e.g., a sound source such as a CPU)
  • the presence of nerves including unmyelinated nerves can be detected and the spatial information can be acquired and imaged as necessary.
  • the position of an instrument such as a scalpel can be displayed on the display means, and surgery can be performed without damaging the nerve, or when there is a nerve, it can be
  • the present invention is characterized by detecting the intensity of light in the wave number range of 0 to 4000 cm ⁇ 1 in Raman scattered light from a sample.
  • the preferred wave number of measuring light intensity 2855cm -1, 2887cm -1, which is 2933cm -1.
  • the intensity is compared mainly in the wave number or wave number range of the Raman scattered light, but the corresponding wavelength of the Raman scattered light can also be used.
  • the intensity ratio for detecting a nerve may be specified as a specific wavelength / specific wave number or a wavelength range / wave number range where a significant difference (for example, P ⁇ 0.05) is obtained with respect to the intensity ratio as shown in FIGS. .
  • a significant difference for example, P ⁇ 0.05
  • the intensity ratio is as shown in FIG. the denominator (figure left) can detect nerve by specifying the particular wave number or wave number range of 2859 ⁇ 3024cm -1, 3068 ⁇ 3100cm -1.
  • the intensity ratio molecule (lower axis in the figure)
  • a specific wave number or wave number range of 2948 to 2999 cm ⁇ 1 or 3005 to 3022 cm ⁇ 1 can be designated as shown in FIG. The same applies when a specific wave number or a wave number range is specified for the numerator of the intensity ratio.
  • a background removal method for example, since the Raman scattered light is superimposed on the autofluorescence from the tissue, it is preferable to acquire autofluorescence in advance and subtract the autofluorescence from the Raman scattering spectrum acquired from the sample.
  • autofluorescence components can be obtained from non-patent literature (Lieber, C. A .; Mahadevan-Jansen, A., Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Appl. Spectrosc. 2003, As shown in FIG.
  • the noise filtering method for example, median filter, singular value decomposition, moving average method, Kalman filter, Savitzky-Golay method and the like are preferably used.
  • nerves can be detected from the shape of the Raman spectrum.
  • multivariate analysis such as principal component analysis, least square method, local least square method, or statistical analysis such as Raman spectrum cross-correlation analysis can be used.
  • the principal component analysis and the local least squares method are one of multivariate analyses, and are analysis methods that create a composite variable (called principal component) that summarizes it from multiple observed variables. Therefore, in the analysis of the Raman spectrum, it can be used for the purpose of extracting spectral features characterizing some components of the sample from a plurality of Raman spectra obtained from the measurement object.
  • the principal component calculation principles are (1) standardize all variables, and (2) set the principal component axis so that the principal component variance is maximized to minimize information loss. Furthermore, the correlation between the principal components is set to 0, (3) the first principal component, the second principal component, and the third principal component are arranged in descending order of the variance of the determined principal components, and (4) the principal component axis.
  • the weighting coefficient corresponding to is calculated using the least square method.
  • the score (principal component score) of each Raman spectrum for the principal component spectrum thus obtained is calculated, and the nerve is detected based on this value.
  • the principal component spectrum may be calculated using a plurality of Raman spectra acquired from the measurement target, or using a principal component spectrum calculated using a Raman spectrum acquired from a nerve tissue or other tissue measured in advance. Also good.
  • nerve detection may be determined from one principal component score, or may be determined from a ratio of a plurality of scores.
  • the principal component spectrum may be specified in advance by a user-defined function, and the principal component score may be calculated using a least square method which is a kind of multivariate analysis.
  • a user-defined function is specified in advance, and the component of the sample is estimated by calculating the cross-correlation between the user-defined function and the measured Raman spectrum.
  • the user-defined function a Raman spectrum obtained by multivariate analysis such as principal component analysis or local least square method may be used, or a Raman spectrum obtained from a sample may be used. Alternatively, an arbitrary Raman spectrum may be specified.
  • the intensity ratio or multivariate analysis and / or statistical analysis results described above may be used to determine the presence or absence of nerves.
  • the combination of two or more intensity ratios or multivariate analysis and / or statistical analysis results The presence or absence may be determined.
  • the display means may determine that the intensity ratio of the Raman scattered light spectrum from the sample or the multivariate analysis and / or statistical analysis results in one or more of the predetermined ranges is a nerve. When the result of multivariate analysis and / or statistical analysis falls within a predetermined range, it may be determined as a nerve.
  • the signal of the part determined as the nerve by the intensity ratio calculation means or the analysis means and the signal determined as the non-nerve are sent to a display device such as a display, a sound source, a light source, a vibration source, and the presence / absence of the nerve is displayed.
  • the nerve can be displayed as an image on the display device. Display and imaging as nerves and other tissues can be performed by a personal computer or the like using software known in the art. For example, it can be displayed using MATLAB (Mathworks).
  • the above-described series of steps of irradiation of the sample with the excitation light, detection of the Raman scattered light from the sample, conversion of the detected Raman scattered light into a Raman spectrum signal, and display / imaging of the Raman spectrum are as follows: For example, it can be performed using the method described in JP-A-2007-147357 or a commercially available Raman spectroscopic detection apparatus (for example, a Raman microscope manufactured by Nanophoton).
  • the excitation light irradiation means and the Raman scattered light detection means of the apparatus of the present invention irradiate the vicinity (sample) of the excision / extraction site at the time of surgery with excitation light (preferably laser light). From the viewpoint of detecting Raman scattered light, it is preferable that both have a shape that allows irradiation of laser light and reception (detection) of Raman scattered light at the tip of an elongated arm such as an optical fiber.
  • the present invention includes an excitation light irradiation means (including a light source) that irradiates a sample with excitation light, a spectroscope that separates Raman scattered light received from the sample into spectral components of each wavelength / wave number, and the sample Raman scattered light detection means for detecting Raman scattered light (particularly Raman scattered light dispersed at each wavelength / wave number by a spectroscope), a specific wavelength / specific wave number of Raman scattered light or an intensity ratio of wavelength range / wave number range
  • Intensity ratio calculating means for calculating or means for extracting characteristics of intensity ratio of specific wavelength / specific wave number or wavelength range / wave number range and performing multivariate analysis and / or statistical analysis, nerves including unmyelinated nerves using the intensity ratio as an index
  • the present invention relates to a device for detecting nerves including unmyelinated nerves, characterized in that it includes means for specifically displaying the image, and means for imaging if necessary.
  • the Raman scattering spectroscopy may be a spectroscopy capable of acquiring a Raman spectrum, and examples thereof include spontaneous Raman scattering spectroscopy, time-resolved Raman scattering spectroscopy, and nonlinear Raman scattering spectroscopy.
  • Nonlinear Raman scattering spectroscopy includes, for example, coherent anti-Stokes Raman scattering spectroscopy and stimulated Raman scattering spectroscopy.
  • the Raman scattered light detection means receives information on the intensity of each position and wave number (wavelength) of the Raman scattered light reflected from the sample, and sends the signal to the analysis means.
  • the Raman scattered light from the sample may be sent to the Raman scattered light detection means as it is, but it is easy to detect each wave number (wavelength) of the Raman spectrum and its intensity via the spectroscopic unit with the Raman scattered light detection means. preferable.
  • Examples of the Raman scattered light detection means or the detector for detecting the Raman spectrum include a light receiving element such as a photomultiplier tube, a CCD camera such as a cooled CCD camera, a CMOS camera, a photodiode array, a photodiode, and a PMT. Is a CCD camera.
  • intensity ratio calculating means such as a computer or means for extracting the characteristics of the intensity ratio
  • the multivariate analysis and / or statistical analysis means Calculation of position intensity ratio or multivariate analysis and / or statistical analysis.
  • the intensity ratio at each position of the sample is calculated or the characteristics of the intensity ratio are extracted and subjected to multivariate analysis and / or statistical analysis.
  • Intensity ratio or multivariate analysis and / or statistical analysis signals are then sent to the display means, and the specific intensity ratio value or multivariate analysis and / or statistical analysis result part is displayed as a nerve or the presence of a nerve If necessary, the part other than the intensity ratio in the specific range is displayed as non-nervous so that the operator can recognize the presence of the nerve.
  • the display include a display by an image such as a display, a display by sound or sound by a speaker, a sound source (including an electronic sound source such as a CPU), a display by light, heat, vibration, or the like. In the case of images, nerves and other tissues can be distinguished and displayed.
  • nerves myelinated nerves + unmyelinated nerves
  • nerves can be specifically detected, and preferably can be displayed separately in two types of nerves and other tissues. It is also possible to distinguish and display three types of nerves, unmyelinated nerves, and other tissues.
  • the present invention enables visualization of nerves.
  • Nerves are divided into peripheral nerves and central nerves.
  • the central nerve functions as a reflex center by stimulation from the periphery, has a function to integrate, or has functions such as memory, emotion, and decision making.
  • Peripheral nerves connect the central nervous system with organs and tissues to control movement, sensation, and autonomous functions.
  • the central and peripheral nerves are roughly classified into myelinated nerves and unmyelinated nerves.
  • the somatic nerve that controls the perception and movement of the body is a myelinated nerve.
  • Autonomic nerves involved in autonomous control of internal organs and blood vessels are premyelinated autonomic nerves and postganglionic autonomic nerves are unmyelinated nerves.
  • myelinated nerves nerve cells' axons are covered with a membrane composed mainly of lipids called the myelin sheath.
  • myelin sheath a membrane composed mainly of lipids
  • unmyelinated nerves differ from myelinated nerves in that there is no myelin sheath. Myelinated nerves could be detected by detecting myelin, which is a characteristic component, but unmyelinated nerves could not be detected.
  • peripheral nerve In the peripheral nerve, several axons gather to form one nerve bundle.
  • the nerve bundle is interspersed with myelinated nerves, unmyelinated nerves, microvessels, fibrous connective tissues (collagen, etc.), and the perineurium covers them.
  • peripheral tissues such as adipose tissue, fibrous connective tissue (collagen, etc.), blood vessels, muscle tissue and the like. Since the present invention can specifically display the nerve bundle, it is possible to remove the perineural tissue without damaging the nerve.
  • the percentage of myelinated and unmyelinated nerves in the nerve bundle varies greatly depending on the site. For example, in the intercostal nerve, sciatic nerve, and femoral nerve, almost myelinated nerves occupy, and in the vagus nerve, almost unmyelinated nerves occupy. Among nerve bundles near organs and tissues, there are some that are almost myelinated nerves, some that are almost unmyelinated nerves, and those that are a mixture of myelinated and unmyelinated nerves. Since the present invention can detect both myelinated nerves and unmyelinated nerves, it can be detected regardless of the proportion of myelinated and unmyelinated nerves in the nerve bundle.
  • These nerve bundles start from the central nervous system such as the thoracic spinal cord, lumbar spine, and sacral spine, and travel to each organ and tissue while branching and joining.
  • nerve-sparing surgery is performed with a neurovascular bundle that can be distinguished by the operator's eye as a landmark, but the surrounding peripheral peripheral nerves often cannot be preserved, and postoperative urinary restraint or erection A failure of ability has been reported. This is because peripheral nerves that cannot be captured by the operator's eyes and camera observation are not preserved.
  • the nerves involved in erectile abilities that run around the prostate and urinary restraints include the autonomic nerves (unmyelinated nerves) such as the hypogastric nerve, pelvic nerve, and cavernous nerve, and somatic nerves such as the pudendal nerve and penile dorsal nerve (myelinated) Nerve). Therefore, measurement of only myelinated nerves is not sufficient, and measurement of both myelinated and unmyelinated nerves is necessary. These issues are also a problem in nerve-sparing surgery for rectal cancer and other parts.
  • microsurgery is performed in which surgery is performed under a microscope in order to perform nerve sutures with a diameter of 1 mm or less.
  • reattachment of amputated fingers breast reconstruction after mastectomy, reconstruction by tissue transplantation for facial nerve palsy, penile reconstruction by forearm flap, urethral reconstruction by appendix transplantation, etc.
  • Example 1 A schematic diagram of an experimental apparatus and a schematic diagram of an experimental method are shown in FIG.
  • Objective lens: UPLSAPO, Olympus, x60, NA 1.2
  • FIG. 2 shows Raman spectra of various nerves
  • FIG. 3 shows Raman spectra of nerves and other tissues.
  • FIG. 4 shows an HE-stained image of the obtained human vagus nerve gastric branch.
  • FIG. 5 shows Raman images of the unmyelinated nerve and surrounding tissue (fibrous connective tissue) according to the intensity ratio.
  • Adipose tissue by using intensity ratio of 2855Cm -1 and 2872Cm -1 are unmyelinated nerve by using the intensity ratio of 2887Cm -1 and 2855Cm -1 is, by using the intensity ratio of 2937 -1 and 2855Cm -1
  • Each of the fibrous connective tissues can be imaged.
  • Fig. 6 shows Raman images of unmyelinated nerve and surrounding tissue (fibrous connective tissue) by cross-correlation analysis.
  • the reference Raman spectrum used for the cross-correlation analysis the Raman spectrum previously obtained from unmyelinated nerves, adipose tissue, and fibrous connective tissue was used.
  • Adipose tissue is cross-correlated with the reference Raman spectrum of adipose tissue
  • non-myelinated nerve is cross-correlated with the reference Raman spectrum of unmyelinated nerve
  • fibrotic connection is cross-correlated with the reference Raman spectrum of fibrous connective tissue.
  • the tissue can be imaged.
  • Fig. 7 shows nerves and nerve detection by principal component analysis.
  • principal component analysis first, a Raman spectrum at each point in a two-dimensional space was acquired and used as analysis data. After that, the first principal component to the fourth principal component were obtained by principal component analysis, and a spatial map of each principal component score was displayed.
  • the negative score map of the second principal component represents adipose tissue
  • the negative score map of the third principal component represents fibrous connective tissue
  • the negative score map of the fourth principal component represents unmyelinated nerves. Consistent with the spatial distribution.
  • FIG. 8 shows a myelinated nerve (rat intercostal nerve)
  • FIG. 9 shows a nonmyelinated nerve (rat vagus nerve)
  • FIG. 10 shows a myelinated + nonmyelinated nerve (rat celiac plexus)
  • FIG. Human periprostatic nerves are shown respectively.
  • the score of each component was calculated according to the following formula.
  • S i , S fat , S connect , S myel , S unmyel are the Raman spectrum of any point (x, y), the Raman spectrum of adipose tissue, the Raman spectrum of fibrous connective tissue, the Raman spectrum of myelinated nerves, respectively. Spectrum, Raman spectrum of unmyelinated nerve.
  • Example 2 Discrimination by intensity ratio of nerves and surrounding tissues Obtained Raman spectra of myelinated nerve, unmyelinated nerve, connective tissue, adipose tissue, muscle tissue (striated muscle), blood vessel (media) It was investigated whether there was a significant difference in the intensity ratio in Raman shift.
  • FIG. 12 and FIG. 13 show plots of P values against the intensity ratio of each Raman shift.
  • P ⁇ 0.05 it can be said that there is a significant difference. Therefore, it can be said that there is a significant difference in the range of the white portion in FIGS. If it is the area of this white part, the tissue discrimination by the intensity ratio is possible. In this white area, the nerve can be specifically displayed in Step 3 and Step 4.
  • 2855Cm -1 or before and after the peak wavenumber range thereof, 2933Cm -1 or before and after the peak wavenumber range thereof, the 2887cm -1 or before and after the peak wavenumber range its “peak wavenumber range around" is the white part of the area 2933Cm -1 range, 2855cm -1, which means that it is possible to change the wave number of 2933cm -1.
  • Example 3 Raman spectrum by 671 nm excitation
  • a Raman spectrum at an excitation light wavelength of 671 nm was measured (FIG. 14).
  • the measurement results at the excitation light wavelength of 532 nm are shown in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Physiology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本発明は、神経の検出方法であって、以下の工程(1)~(4): 工程1:試料に励起光を照射する工程 工程2:試料からのラマン散乱光を検出する工程; 工程3:工程2により検出されたラマン散乱光の特定範囲内の波数の強度比を算出する、あるいは前記強度比の特徴を抽出し多変量解析及び/又は統計解析する工程、 工程4:前記強度比又は多変量解析及び/又は統計解析結果を指標として、無髄神経を含む神経を特異的に表示する工程 を含むことを特徴とする、神経の検出方法を提供する。

Description

ラマン散乱分光法による神経検出法
 本発明は、生体組織からのラマン散乱スペクトルを利用して神経を検出する方法に関する。また本発明は、ラマン散乱スペクトルを利用した神経を検出するための装置に関する。
 手術において神経を温存することは,器官機能の温存だけでなく,患者のQOLにおいて重要な役割を担う。従来,細い神経の位置を判断するために,色素を用いた染色技術が改良されてきたが,染色自体がヒトに対して有害であることが多く,術中観察に使用することは困難である。そのため,神経温存の主たる対象は術者の眼やイメージセンサーによる白色光イメージングで観察可能な太い神経のみであり,細い神経の位置を判断する技術は存在せず,神経の位置は解剖学的知識,つまり術者の経験に頼らざるを得ない状況がある。
 有髄神経においては,脂質が豊富に存在するミエリン鞘があるため,現在でもラマン散乱分光法で検出することが可能である。有髄神経の計測対象は脂質(ミエリン)に由来するラマンバンドであり,ミエリン鞘が存在しない無髄神経に適用することは困難であり,神経の包括的な検出は実現されて来なかった。
 一方、ラマン分光法は振動分光法の一形態であり、分子中の化学結合に特異的な分子振動の直接の情報を提供する。ラマン分光法では、入射光と分子振動が相互作用し,分子振動に依存した特異的なエネルギー変化をスペクトルとしてプロットすることができ、これによって無染色で物質を特定することができる。このようなラマン分光法の特性を利用した物質検出方法やイメージング方法、装置が開発されている(特許文献1及び2)。医療分野におけるラマン分光法を使った最近の研究では、がん(非特許文献1)、アテローム性動脈硬化症(非特許文献2)、ヘモグロビンの酸素飽和(非特許文献3)の診断などの組織診断に焦点があてられてきた。 特許文献3は、心筋組織と血管、コラーゲンリッチ領域を区別してイメージングする方法を開示している。しかし、これらの非特許文献および特許文献において神経の包括的な検出を試みたものはない。
特開2000-55809号公報 特開2007-147350号公報 WO/2010/103661
Haka, A.S. et al. (2006)., Cancer Res. Vol. 66, 3317-22. Motz, J.T. et al. (2006)., J. Biomed. Opt. vol. 11, 021003. Torres Filho, I.P., et al., (2008)., J. Appl. Physiol. 104, 1809-17.
 かかる現状の下、本発明は、神経を検出あるいは検出する方法及び装置を提供することを目的とする。
 本発明者は、以下の神経の検出方法及び装置を提供するものである。
項1. 神経の検出方法であって、以下の工程1~工程4:
工程1:試料に励起光を照射する工程
工程2:試料からのラマン散乱光を検出する工程;
工程3:工程2により検出されたラマン散乱光の特定範囲内の波数の強度比を算出する、あるいは前記強度比の特徴を抽出し多変量解析及び/又は統計解析する工程、
工程4:前記強度比又は多変量解析及び/又は統計解析結果を指標として、無髄神経を含む神経を特異的に表示する工程
を含むことを特徴とする、神経の検出方法。
項2. 前記強度比が、2855cm-1又はその前後のピーク波数範囲と2933cm-1又はその前後のピーク波数範囲の強度比、あるいは、2887cm-1又はその前後のピーク波数範囲と2933cm-1又はその前後のピーク波数範囲の強度比である、項1に記載の検出方法。
項3. 前記強度比の分子と分母の組み合わせが以下の(i)~(iii)のいずれかである、項2に記載の検出方法:
(i) 分子が2855 cm-1のとき、分母は2859~3024cm-1、3068~3100cm-1の波数範囲のいずれかの波数
(ii) 分子が2887 cm-1のとき、分母は2899~3024cm-1の波数範囲のいずれかの波数、
(iii) 分子が2933 cm-1のとき、分母は2813~2912cm-1、2940~3021cm-1、3073~3089cm-1の波数範囲のいずれかの波数。
項4. 前記強度比が、2855cm-1と2933cm-1の強度比、あるいは2887cm-1と2933cm-1の強度比である、項1~3のいずれかに記載の検出方法。
項5. 試料が手術を受けている患者あるいは患者から採取した組織である、項1~4のいずれかに記載の検出方法。
項6. 神経が無髄神経を含む、項1~5のいずれかに記載の検出方法。
項7. 試料に励起光を照射する励起光照射手段、
試料からのラマン散乱光を検出する手段、
受光したラマン散乱光を各波長/波数のスペクトル成分に分光する分光部と、
ラマン散乱光の特定波長/特定波数の強度比を算出する強度比算出手段または前記強度比の特徴を抽出し多変量解析及び/又は統計解析する解析手段と、
前記強度比又は多変量解析及び/又は統計解析結果を指標として、無髄神経を含む神経を特異的に表示する手段
を含むことを特徴とする、無髄神経を含む神経の検出装置。
項8. 前記光源がレーザ光源である、項7に記載の検出装置。
項9. ラマンスペクトルを検出する検出器を備えている、項7又は8に記載の検出装置。
 本発明は,分子振動による光散乱現象であるラマン散乱分光法を用い,無染色光学的神経検出法及び装置を提供するものである。特に,本発明は、従来不可能であった無髄神経を含む神経の無染色検出法を提供する。
 本発明によれば、無髄神経を含む神経を特異的に表示することが可能である。よって、本発明の検出方法及び装置を用いることにより、手術時に神経の存在ないし位置を正確に把握することができ、神経障害による術後のQOLの低下を抑えることができる。
スリット走査型ラマン散乱顕微鏡。 様々な神経のラマンスペクトル。神経には肋間(有髄)、迷走(無髄)、腹腔(有髄)、腹腔(無髄)、大腿(有髄)、小脳髄質(有髄)、小脳皮質(無髄)が含まれる。 様々な組織のラマンスペクトル。組織のラマンスペクトルは,各組織を構成する分子に由来した特徴的なスペクトルを呈する。これらの違いにより,神経組織を鑑別する。組織には、肋間神経、迷走神経、線維性結合組織、血管(中膜)、筋組織、脂肪が含まれる。 迷走神経胃枝のHE染色像 強度比による無髄神経、脂肪組織、線維性結合組織の検出(ヒト迷走神経胃枝を含む組織) 相互相関解析による無髄神経、脂肪組織、線維性結合組織の検出(ヒト迷走神経胃枝を含む組織) 主成分分析による無髄神経、脂肪組織、線維性結合組織の検出(ヒト迷走神経胃枝を含む組織) 最小二乗法による有髄神経のラマン検出(ラット肋間神経) 最小二乗法による無髄神経のラマン検出(ラット迷走神経) 最小二乗法による無髄神経と有髄神経を含む神経のラマンイメージ(ラット腹腔神経叢) 最小二乗法による無髄神経と有髄神経を含む神経のラマンイメージ(ヒト前立腺周囲組織) 有髄神経、無髄神経、その他組織の強度比による神経検出。(A)結合組織と有髄神経、(B)脂肪組織と有髄神経、(C)筋組織と有髄神経、(D)血管と有髄神経、(E)有髄神経と無髄神経、(F)結合組織と無髄神経、(B)脂肪組織と無髄神経、(C)筋組織と無髄神経、(D)血管と無髄神経の強度比を算出した場合の、P値。左軸は強度比の分母、下軸は強度比の分子。 神経(有髄神経と無髄神経を含む)とその他組織の強度比による神経検出。(A)結合組織と神経(有髄神経と無髄神経を含む)、(B)脂肪組織と神経(有髄神経と無髄神経を含む)、(C)筋組織と神経(有髄神経と無髄神経を含む)、(D)血管と神経(有髄神経と無髄神経を含む)、(E)無髄神経と組織(結合組織、脂肪組織、筋組織、血管を含む)、(F)有髄神経と組織(結合組織、脂肪組織、筋組織、血管を含む)、(G)神経(有髄神経と無髄神経を含む)と組織(結合組織、脂肪組織、筋組織、血管を含む)の強度比を算出した場合の、P値。左軸は強度比の分母、下軸は強度比の分子。 671nm励起による各組織のラマンスペクトルIntercostal nerve:肋間神経(有髄神経)Vagus nerve:迷走神経(無髄神経)Fibrous connective tissue:線維性結合組織Blood vessel:血管(中膜)Skeletal muscle:骨格筋Fat tissue:脂肪組織 532nm励起による各組織のラマンスペクトルIntercostal nerve:肋間神経(有髄神経)Vagus nerve:迷走神経(無髄神経)Fibrous connective tissue:線維性結合組織Blood vessel:血管(中膜)Skeletal muscle:骨格筋Fat tissue:脂肪組織
 以下、本発明を詳細に説明するが、本発明は、以下に説明される特定の実施形態に限定されるものではない。また当業者であれば、以下に説明する実施形態の各要素を本発明の範囲内において容易に変更することが可能である。
 一実施形態において、本発明は、以下の工程(1)~(4):
工程1:試料に励起光を照射する工程
工程2:試料からのラマン散乱光を検出する工程;
工程3:工程2により検出されたラマン散乱光の特定範囲内の波数の強度比を算出する、あるいは前記強度比の特徴を抽出し多変量解析及び/又は統計解析する工程、
工程4:前記強度比又は多変量解析及び/又は統計解析結果を指標として、無髄神経を含む神経を特異的に表示する工程
を含むことを特徴とする、神経の検出方法を提供するものである。
 「無髄神経を含む神経を特異的に表示する」とは、神経の存在を音(警告音、音声など)、光、振動、熱などにより表示すること、神経と神経周囲組織を音(警告音、音声など)、画像などにより区別して表示することの両方を包含する。神経周囲組織は、脂肪組織、線維性結合組織、筋組織、血管などを含む。
 本発明では、先ず試料に励起光を照射する。試料としては、神経を有する動物、例えば脊椎動物、特に哺乳動物自体あるいはその一部、例えば生体から摘出した臓器、組織などが挙げられる。哺乳動物としては、ヒト、サル、ウマ、ブタ、ウシ、ヒツジ、イヌ、ネコ、ラット、マウスなどが挙げられ、好ましくはヒトである。神経を有する動物における照射部位としては、神経を有する可能性のある部位であれば特に限定されないが、手術時に神経を障害することが患者のQOLに影響するような部位が好ましく例示され、例えば前立腺、膀胱などの泌尿器系臓器、直腸、食道、胃、小腸、結腸、膵臓、肝臓などの消化器系臓器、脊髄、脳などの神経系臓器、後腹膜、頭頸部、四肢、あるいはそれらの周囲組織などが挙げられる。前立腺、膀胱、直腸などは、無髄神経(副交感神経)の障害により尿、便などの失禁が生じ得るので、特に手術時の神経障害を防止することが必要とされている。
 本発明の応用範囲としては、癌摘除術のための神経温存術、たとえば神経温存前立腺全摘術、直腸癌神経温存手術、悪性腫瘍切除後の組織欠損などを再建する各種組織移植手術など、あるいは形成外科におけるマイクロサージェリー、たとえば切断指(四肢)再接着術、救急外傷手術などが挙げられ、従来見逃されることの多かった神経の同定に役立ち、かつ、神経形成術(神経縫合術,神経移植術,神経剥離術)の治療技術の向上につながることが期待される。また、有髄/無髄神経の有無や量比を定量判定可能であることから、脱髄性疾患などの神経診断にも応用が可能である。
 本明細書において、神経とは、有髄神経、無髄神経の両方を含み、本発明は有髄神経と無髄神経の両方を検出することができる。また、神経は、神経細胞であってもよく、神経束であってもよい。1つの実施形態において、本発明の検出の主な対象は神経束であり、この神経束は有髄神経であっても無髄神経であってもよく、有髄神経と無髄神経が様々な割合で混在していてもよい。本発明により、特に末梢神経が表示できるが中枢神経を表示できることは言うまでもない。
 励起光の波長は、理論的にはあらゆる波長を持った電磁波を用いることができるが、好ましくは350~1064nm、より好ましくは400~800nm、さらにより好ましくは500~700nmである。励起照射手段に含まれる光源は、ラマン散乱分光法において通常用いられる光を発する手段であれば特に制限なく使用することができる。好ましい光源は、532nmのNd:YAGレーザ、671nmのDSPPレーザ、780nmのTi:Sレーザなどが挙げられる。励起光は、光源の光を直接試料に照射してもよいが、光ファイバーなどで試料の特定の位置(例えば手術で切断しようとする位置)に照射するのが好ましい。
 試料からのラマン散乱光は、ラマン散乱光を検出する手段、たとえば受光素子などにより検出することができる。ラマン散乱光を検出する手段は、ラマン散乱光を検出し、それを解析可能な信号に変換することが可能なものであれば特に制限されず、当該分野において公知の検出手段を適宜選択して使用することができる。ラマン散乱光の検出手段は、例えば、受光素子、もしくは受光素子がマトリクス上に配列されたエリアセンサを検出手段として使用することができる。より具体的には、アバランシェフォトダイオード、光電子増倍管などの受光素子、もしくは画素がアレイ状に配置された二次元CCDカメラやCMOSカメラをラマン散乱光の検出手段として好適に使用することができる。好ましい実施形態においては、試料からのラマン散乱光は、その検出に先立って、ダイクロイックフィルタ等により励起光と散乱光とに分離される(図1)。さらに、分離されたラマン散乱光は、回折格子やプリズムから成る分光器によって光の波長/波数に応じて空間的に分光される。分光されたラマン散乱光は上述のような検出手段においてラマンスペクトルを表す信号に変換され、パーソナルコンピュータ等の解析手段に出力される。
 ラマン散乱光を検出する手段では、ラマン散乱光のスペクトルにおける各波長もしくは波数の光の強度を検出する。ラマン散乱光を検出する手段で検出された各波長/波数の光の強度を検出し、そのデータをコンピュータなどの解析手段に送り、解析する。この解析には、特定波長/特定波数または波長範囲/波数範囲の強度比を算出する工程あるいは特定波長/特定波数または波長範囲/波数範囲の強度比の特徴を抽出し多変量解析及び/又は統計解析する工程、当該強度比あるいは強度比の特徴を抽出し多変量解析及び/又は統計解析した結果を指標として無髄神経を含む神経を特異的に表示する工程を含む。解析された信号は、表示手段(例えば画像により示す場合にはディスプレイ、音声または警告音などの音により表示する場合にはスピーカー、音源チップ(例えばCPUなどの音源) に送られて無髄神経を含む神経が特異的に検出され、無髄神経を含む神経の存在或いは位置を把握することができる。必要に応じて、空間情報を取得し画像化することもできる。神経の位置は、手術中にメスなどの器具の位置とともに表示手段に表示することができ、神経を障害することなく手術を行うことができる。或いは神経がある場合に音声または警告音などにより術者に示すことができる。神経がある場合のみ術者に認識させればよいので、画像、音声/音、光、振動などにより神経が存在することを「表示」してもよい。
 本発明は、試料からのラマン散乱光において、0~4000cm-1の波数範囲の光の強度を検出することが特徴である。光強度を測定する好ましい波数は、2855cm-1、2887cm-1、2933cm-1である。これら3つの波数/波数範囲の波数の強度を相互に比較することで、無髄神経を含む神経を特異的に表示することができる。無髄神経の場合、神経と周辺組織において有髄神経のミエリンのような特徴的なラマンスペクトルを有する成分の差はないため、これらを特異的に表示することは困難であると考えられていたが、本発明者は特定波数/特定波長の強度比を算出することにより、神経と周辺組織を画像、音声/音などにより特異的に表示することに初めて成功した。
 なお、本明細書では主にラマン散乱光の波数又は波数範囲で強度を比較することが記載されているが、ラマン散乱光の対応する波長を用いることもできる。
 神経を検出するための強度比は、図12、13に示すような、強度比について有意差(例えば、P<0.05)が得られる特定波長/特定波数または波長範囲/波数範囲を指定すればよい。例えば、有髄神経と結合組織の識別において、有意水準をP<0.05とし、強度比の分子(図中下軸)を例えば2855 cm-1とした場合、図12(A)のように強度比の分母(図中左軸)は、2859~3024cm-1、3068~3100cm-1の特定波数あるいは波数範囲を指定することで神経を検出することができる。2887 cm-1とした場合は2899~3024cm-1、2933 cm-1とした場合は2813~2912cm-1、2940~3021cm-1、3073~3089cm-1の特定波数あるいは波数範囲を指定することで神経を検出することができる。また、強度比の分子をその他の特定波数あるいは波数範囲を指定した場合も同様である。
 また、組織中(線維性結合組織、脂肪組織、筋組織、血管を含む)の神経(有髄神経と無髄神経を含む)の検出には、強度比の分子(図中下軸)を例えば2850 cm-1とした場合、図13(G)のように、2948~2999 cm-1、または3005~3022 cm-1の特定波数または波数範囲を指定することができる。強度比の分子をその他の特定波数あるいは波数範囲を指定した場合も同様である。
 さらに,強度比の算出において,必要あればバックグラウンド除去法,ノイズフィルタリング法等を適用することが好ましい。例えば,ラマン散乱光は組織からの自家蛍光と重畳するため,事前に自家蛍光を取得し,試料から取得したラマン散乱スペクトルから自家蛍光を差分することが好ましい。あるいは,自家蛍光成分を非特許文献(Lieber, C. A.; Mahadevan-Jansen, A., Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Appl. Spectrosc. 2003, 57 (11), 1363-1367.)のように,多項式などによって推定し差分しても良い。ノイズフィルタリング法では,例えばメディアンフィルター,特異値分解,移動平均法,カルマンフィルター,Savitzky-Golay法などを用いることが好ましい。
 また、ラマンスペクトルの形状から神経を検出することもできる。例えば、主成分分析、最小二乗法、局所最小二乗法などの多変量解析や、ラマンスペクトルの相互相関解析などの統計解析を用いることができる。
 主成分分析、局所最小二乗法は多変量解析の一つであり、複数の観測変数から、それを要約する合成変数(主成分と呼ぶ)を作り出す分析法である。従って、ラマンスペクトルの解析においては、測定対象から得られる複数のラマンスペクトルから、その試料のいくつかの成分を特徴づけるスペクトル形体を抽出する目的で使用することができる。主成分の計算原理としては、(1)全ての変数を標準化する、(2)情報のロスを最小限にするために、主成分の分散値が最大になるように、主成分の軸を設定し、さらに主成分同士の相関を0にする、(3)決定された主成分の分散が大きい順に第1主成分、第2主成分、第3主成分とする、(4)主成分の軸に対応する重み係数を最小二乗法を用いて計算する。このようにして得られた主成分スペクトルに対する、個々のラマンスペクトルの得点(主成分スコア)を計算し、この値により神経を検出する。この時、主成分スペクトルは、測定対象から取得した複数のラマンスペクトルにより計算してもよいし、あるいは事前に計測した神経組織、その他組織より取得したラマンスペクトルを用いて計算した主成分スペクトル用いてもよい。また、神経の検出には、主成分スコア1つから判断してもよいし、複数のスコアの比などから判断してもよい。また、主成分スペクトルは、あらかじめユーザー定義関数により指定して、多変量解析の一種である最小二乗法を用いて主成分スコアを計算してもよい。
 相互相関解析は、ユーザー定義関数をあらかじめ指定し、ユーザー定義関数と測定ラマンスペクトルの相互相関度を計算することで、試料の成分を推定する。この時、ユーザー定義関数は、主成分分析、局所最小二乗法等の多変量解析により求めたラマンスペクトルを用いてもよいし、試料から得られたラマンスペクトルを用いてもよい。あるいは、任意のラマンスペクトルを指定してもよい。 
 上記の強度比または多変量解析及び/又は統計解析結果は、1つのみで神経の有無を判断してもよく、2以上の強度比または多変量解析及び/又は統計解析結果を組み合わせて神経の有無を判断してもよい。表示手段は、試料からのラマン散乱光スペクトルの強度比または多変量解析及び/又は統計解析結果が、1つでも所定範囲に入った場合に神経と判断してもよく、2以上の強度比または多変量解析及び/又は統計解析結果が所定範囲に入った場合に神経と判断してもよい。
 強度比算出手段又は解析手段が神経と判断した部位の信号、非神経と判断した信号は、ディスプレイ、音源、光源、振動源などの表示装置に送られ、神経の存在の有無が表示される。また、神経は表示装置において画像として表示することができる。神経およびそれ以外の組織として表示および画像化は、当該技術分野に公知のソフトウェアを用いてパーソナルコンピュータ等によって実行できる。例えば、MATLAB(Mathworks社)を用いて表示できる。
 神経細胞に特徴的なラマンスペクトルの一例は、図2、3に示される。 
 以上に説明した、試料への励起光の照射、試料からのラマン散乱光の検出、検出されたラマン散乱光のラマンスペクトル信号への変換、及びラマンスペクトルの表示/画像化の一連の工程は、例えば、特開2007-147357に記載される方法や市販されているラマン分光検出装置(例えば、ナノフォトン社製のラマン顕微鏡)を用いて行うことができる。
 本発明の装置の励起光照射手段及びラマン散乱光検出手段は、外科手術時に切除/摘出部位の付近(試料)に対して励起光(好ましくはレーザ光)を照射し、試料の照射部位からのラマン散乱光を検出するという観点から、いずれも光ファイバーなどの細長いアームの先端でレーザ光の照射及びラマン散乱光の受光(検出)ができる形状を有するのが好ましい。
 他の好ましい実施形態において、本発明は、試料に励起光を照射する励起光照射手段(光源を含む)、試料から受光したラマン散乱光を各波長/波数のスペクトル成分に分光する分光器、試料からのラマン散乱光(特に分光器により各波長/波数に分光されたラマン散乱光)を検出するラマン散乱光検出手段、ラマン散乱光の特定波長/特定波数または波長範囲/波数範囲の強度比を算出する強度比算出手段あるいは特定波長/特定波数または波長範囲/波数範囲の強度比の特徴を抽出し多変量解析及び/又は統計解析する手段、前記強度比を指標とする無髄神経を含む神経を特異的に表示する手段、必要であれば画像化する手段を含むことを特徴とする、無髄神経を含む神経の検出装置に関する。
 本明細書において、ラマン散乱分光法とは、ラマンスペクトルを取得可能な分光法であれば良く、例えば自発ラマン散乱分光法、時間分解ラマン散乱分光法、非線形ラマン散乱分光法などがある。非線形ラマン散乱分光法には、例えばコヒーレント反ストークスラマン散乱分光法、誘導ラマン散乱分光法などがある。
 ラマン散乱光検出手段は、試料から反射されるラマン散乱光の各位置と各波数(波長)の強度の情報を受けて、その信号を解析手段に送る。試料からのラマン散乱光は、そのままラマン散乱光検出手段に送ってもよいが、分光部を介してラマンスペクトルの各波数(波長)とその強度をラマン散乱光検出手段で検出しやすくするのが好ましい。ラマン散乱光検出手段あるいはラマンスペクトルを検出する検出器としては、光電子増倍管などの受光素子、冷却CCDカメラなどのCCDカメラ、CMOSカメラ,フォトダイオードアレイ,フォトダイオード,PMTなどが挙げられ、好ましくはCCDカメラが挙げられる。
 ラマン散乱光検出手段で検出した試料からのラマン散乱光の情報はコンピュータなどの強度比算出手段あるいは強度比の特徴を抽出し多変量解析及び/又は統計解析する手段に送られて、試料の各位置の強度比の計算あるいは多変量解析及び/又は統計解析される。次に、試料の各位置の強度比が計算されるか強度比の特徴を抽出し多変量解析及び/又は統計解析される。強度比又は多変量解析及び/又は統計解析の信号は次に表示手段に送られ、特定の強度比の値又は多変量解析及び/又は統計解析結果の部分は神経として表示あるいは神経の存在を表示され、必要に応じて特定範囲の強度比以外の部分は非神経として表示され、神経の存在を術者が認識できるようにする。表示はディスプレイなどの画像による表示、スピーカー、音源(CPUなどの電子音源を含む)などによる音声ないし音による表示、光、熱、振動などによる表示が挙げられる。画像による場合には、神経とその他の組織を区別して表示することができ、音声/音、光、熱、振動などの場合には、神経が表面近くにあるほど、神経が太いほど大きな音、強い光、振動、熱などを発生させて表示してもよい。必要であればラマン散乱光計測位置と合わせることで画像化、音声/音などにより表示する。非特許文献(P. Matousek, Deep non-invasive Raman spectroscopy of living tissue and powders, Chem Soc Rev, 36 (8), 1292-304 (2007).)に記載のように空間オフセット検出法によって、励起位置と検出位置を空間的にずらすことにより深部(たとえば20mm程度)を検出することもできる。あるいは、ノイズ除去フィルターや信号変調/回復理論等の適用によって検出感度を高めることによる、深部の検出をすることもできる。
 本発明の方法及び装置により、神経(有髄神経+無髄神経)を特異的に検出することができ、好ましくは神経とそれ以外の組織の2つに区別して表示することができ、有髄神経、無髄神経、それ以外の組織の3つに区別して表示することもできる。
 本発明は、神経の可視化を可能にする。神経は、末梢神経と中枢神経に分けられる。中枢神経は、末梢からの刺激による反射中枢として働いたり、統合する機能を持ち、あるいは記憶、情動、意志決定などの機能を持っている。末梢神経は,中枢神経と各器官,組織をつなぎ,運動,感覚,自律機能等を制御している。中枢神経、末梢神経は,大きく有髄神経,無髄神経に大別される。体の知覚・運動を制御する体性神経は有髄神経である。内臓・血管などの自律制御に関わる自律神経は,神経節前自律神経は有髄神経であり,神経節後自律神経は無髄神経である。有髄神経は,神経細胞の軸索をミエリン鞘と呼ばれる主として脂質で構成された膜で覆われている。一方,無髄神経は,ミエリン鞘が存在していないという点で有髄神経と異なる。有髄神経は特徴的な成分であるミエリンを検出することにより従来より検出できたが、無髄神経は検出できていなかった。
 末梢神経は,幾らかの軸索が集まり一つの神経束を形成する。神経束には,有髄神経,無髄神経,微小血管,線維性結合組織(コラーゲン等)等が介在し,それを神経周膜が覆っている。神経束の周囲は,脂肪組織,線維性結合組織(コラーゲン等)、血管、筋組織等の神経周囲組織が存在している。本発明は神経束を特異的に表示できるため、神経を傷つけることなく神経周囲組織を除くことができる。
 神経束中の有髄神経と無髄神経の存在割合は部位により大きく異なる。例えば肋間神経,坐骨神経,大腿神経などではほぼ有髄神経が占め,迷走神経などはほぼ無髄神経が占める。器官や組織近くの神経束では,ほぼ有髄神経が占めるもの,ほぼ無髄神経が占めるもの,有髄神経と無髄神経が混在しているものが存在している。本発明は有髄神経と無髄神経をともに検出できるので、神経束中の有髄神経と無髄神経の存在割合にかかわらず検出することができる。
 これらの神経束は,胸髄,腰椎,仙髄などの中枢神経系を起点とし,分岐や合流を行いながら各器官,組織に走行する。
 外科的手術を行う際,神経束として存在する神経を温存しながら手術を遂行することは術後の回復,後遺症の回避などの点で重要である。しかし,現実では,組織に存在する神経を温存できず,後遺症を残す症例が数多く報告されている。
 例えば,前立腺全摘術では,術者の眼で鑑別可能な神経血管束を目印として神経温存手術が行われているが,周囲の細い末梢神経は温存できないことが多く,術後の尿禁制や勃起能の障害が報告されている。これは,術者の眼やカメラ観察では捉えられない末梢神経が温存されていないためである。前立腺周囲に走行する勃起能,尿禁制に関わる神経には,下腹神経,骨盤神経,海綿体神経などの自律神経(無髄神経),および陰部神経,陰茎背神経などの体性神経(有髄神経)がある。そのため,有髄神経のみの計測では不十分であり,有髄・無髄神経の両方の計測が必要である。これらのことは,直腸癌神経温存手術や,その他部位の神経温存手術でも同様に問題となっている。
 また,形成外科では,直径1mm以下の神経縫合を行うため,顕微鏡下で手術を行うマイクロサージェリーが行われている。例えば,切断指の再接着,乳房切除術後の乳房再建術,顔面神経麻痺などに対する組織移植による再建,前腕皮弁による陰茎再建,虫垂移植による尿道再建などがある。しかし,顕微鏡下であっても,神経の同定が難しいことがあり,神経を特異的に表示する手法が求められる。
 以上のことから,術者自身の目では観察困難な細い神経を可視化する技術が求められている。神経には,前述のとおり有髄神経と無髄神経の両方が混在しており,その両者を計測することが必要である。
 以下、実施例を参照して本発明を更に具体的に説明するが、本発明は以下の特定の実施例に限定されるものではない。
実施例1:実験装置の概要図と実験方法
実験装置の概要図を図1に示す。
スリット走査型ラマン散乱顕微鏡:RAMAN-11, Nanophoton社
冷却CCDカメラ:Pixis 400BR, Princeton Instruments社, -70度, 1340x400 pixels
対物レンズ:UPLSAPO,Olympus社,x60, NA = 1.2
実験方法
(1)組織試料
ラット組織
健常Wistarラットを麻酔薬過剰投与による安楽死後,各組織を取得した。
 肋間神経を含む胸部組織,迷走神経を含む食道付近の組織,大腿神経およびその周囲組織,腹腔神経叢,小脳
種類:Wistarラット
年齢:Young-adult(8~10週齢)
ヒト組織
前立腺全摘除術を受けた患者の前立腺周囲組織を取得した。胃癌摘除術を受けた患者の迷走神経胃枝を含む組織を取得した。
(2)試料切片作成
取得した組織は,Frozen Section Compound(FSC22, Leica)に包埋し,ドライアイス-アセトンにより急速凍結した。測定時まで,-80度のディープフリーザーで保存した。
凍結組織を5μmの厚さで切片にし,スライドガラスとカバーガラスで挟み,計測を行った。
(3)スペクトル解析
生体組織のラマンスペクトルには,自家蛍光が重畳する。そこで,自家蛍光の影響を除外するため,Nanophoton社製ラマン顕微鏡用ソフトウェアにより自家蛍光スペクトルを推定し,自家蛍光の影響を除算した。具体的には,modified least-squares fifth-order polynomial curve fitting (Lieber CA, Mahadevan-Jansen A (2003) Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Appl Spectrosc 57 (11):1363-1367)を適用し,これを10回繰り返すことで自家蛍光を推定した。
また,ラマンシフトが既知のエタノールのラマンスペクトルを用いて,分光器の波長較正を行った。
実験結果
様々な神経のラマンスペクトルを図2に、神経、その他組織のラマンスペクトルを図3に示す。
 次に無髄神経(ヒト迷走神経胃枝)を含む組織を用いた神経検出を示す。取得したヒト迷走神経胃枝のHE染色像を図4に示す。
 図5に強度比による無髄神経および周囲組織(線維性結合組織)のラマンイメージを示す。2855cm-1と2872cm-1の強度比用いることで脂肪組織が、2887cm-1と2855cm-1の強度比を用いることで無髄神経が、2937-1と2855cm-1の強度比を用いることで線維性結合組織をそれぞれイメージングすることができている。
 図6に相互相関解析による無髄神経および周囲組織(線維性結合組織)のラマンイメージを示す。相互相関解析に用いた参照ラマンスペクトルは、事前に無髄神経、脂肪組織、線維性結合組織から取得したラマンスペクトルを用いた。それぞれ、脂肪組織の参照ラマンスペクトルとの相互相関では脂肪組織を、無髄神経の参照ラマンスペクトルとの相互相関では無髄神経を、線維性結合組織の参照ラマンスペクトルとの相互相関では線維性結合組織をイメージングすることができている。
 図7に主成分分析による神経および神経検出を示す。主成分分析においては、初めに2次元空間における各点でのラマンスペクトルを取得し、解析データとした。その後主成分分析により第1主成分から第4主成分まで取得し、それぞれの主成分スコアの空間マップを表示した。その結果、第2主成分の負値のスコアマップが脂肪組織を、第3主成分の負値のスコアマップが線維性結合組織を、第4主成分の負値のスコアマップが無髄神経の空間分布と一致した。
 次に、最小二乗法を用いて神経の検出を行った結果を示す。図8に有髄神経(ラット肋間神経)、図9に無髄神経(ラット迷走神経)、図10に有髄+無髄神経(ラット腹腔神経叢)、図11に有髄+無髄神経(ヒト前立腺周囲神経)を各々示す。最小二乗法では、以下の式に従って各成分のスコアの算出を行った。
Figure JPOXMLDOC01-appb-M000001
 ただし、Si、Sfat、Sconnect、Smyel、Sunmyelは、それぞれ任意の点(x、y)のラマンスペクトル、脂肪組織のラマンスペクトル、線維性結合組織のラマンスペクトル、有髄神経のラマンスペクトル、無髄神経のラマンスペクトルを示す。
実施例2:神経,およびその周囲組織の強度比による識別
有髄神経,無髄神経,結合組織,脂肪組織,筋組織(横紋筋),血管(中膜)のラマンスペクトルを取得し,各ラマンシフトにおける強度比に有意差があるかどうかを調査した。
 ・強度比の計算方法
Figure JPOXMLDOC01-appb-M000002
・有意差の計算方法
上式によって計算した強度比を2種の組織(図の上に記述した“結合組織 vs 有髄神経”など))において複数点計測し,その2種の計測群に対してt検定による統計解析を行い,P値を算出した。
例)解析対象:有髄神経と脂肪組織
ω1:2850 cm-1, ω2:2933 cm-1に対して
強度比計算
Figure JPOXMLDOC01-appb-M000003
これら2つの強度比計測群に対してt検定を実行し,P値を算出。
図12、図13中,左軸2850 cm-1 (ω1),下軸2933 cm-1 (ω2)に対応する点にP値をプロット。
ω1やω2をずらして同様のこと(強度比計算,t検定)を繰り返す。
・結果の解釈
 各ラマンシフトの強度比に対するP値をプロットしたものを図12、図13に示す。通常,P<0.05であれば有意差があると言える。故に,図12,13中において白い部分の範囲であれば有意差があると言える。この白い部分の領域であれば,強度比による組織鑑別が可能である。この白い部分の領域であれば、工程3,工程4で神経を特異的に表示することができる。本発明の好ましい実施形態では、2855cm-1又はその前後のピーク波数範囲と2933cm-1又はその前後のピーク波数範囲の強度比、あるいは、2887cm-1又はその前後のピーク波数範囲と2933cm-1又はその前後のピーク波数範囲の強度比を用いることができる。ここで、2855cm-1又はその前後のピーク波数範囲、2933cm-1又はその前後のピーク波数範囲、2887cm-1又はその前後のピーク波数範囲の「前後のピーク波数範囲」は、白い部分の領域の範囲で2933cm-1、2855cm-1、2933cm-1の波数を変更できることを意味する。
 実施例3:671nm励起によるラマンスペクトル
様々な波長においても神経検出が可能であることを示すために,励起光波長671nmにおけるラマンスペクトルを計測した(図14).参考として,励起光波長532nmでの計測結果を図15に示す。
 各スペクトルにおいても,532nmとほぼ同じラマンスペクトルを取得することができた。このことから,様々な波長においても同様に神経検出が可能であると考えられる。

Claims (9)

  1. 神経の検出方法であって、以下の工程1~工程4:
    工程1:試料に励起光を照射する工程
    工程2:試料からのラマン散乱光を検出する工程;
    工程3:工程2により検出されたラマン散乱光の特定範囲内の波数の強度比を算出する、あるいは前記強度比の特徴を抽出し多変量解析及び/又は統計解析する工程、
    工程4:前記強度比又は多変量解析及び/又は統計解析結果を指標として、無髄神経を含む神経を特異的に表示する工程
    を含むことを特徴とする、神経の検出方法。
  2. 前記強度比が、2855cm-1又はその前後のピーク波数範囲と2933cm-1又はその前後のピーク波数範囲の強度比、あるいは、2887cm-1又はその前後のピーク波数範囲と2933cm-1又はその前後のピーク波数範囲の強度比である、請求項1に記載の検出方法。
  3. 前記強度比の分子と分母の組み合わせが以下の(i)~(iii)のいずれかである、請求項2に記載の検出方法:
    (i) 分子が2855 cm-1のとき、分母は2859~3024cm-1、3068~3100cm-1の波数範囲のいずれかの波数
    (ii) 分子が2887 cm-1のとき、分母は2899~3024cm-1の波数範囲のいずれかの波数、
    (iii) 分子が2933 cm-1のとき、分母は2813~2912cm-1、2940~3021cm-1、3073~3089cm-1の波数範囲のいずれかの波数。
  4. 前記強度比が、2855cm-1と2933cm-1の強度比、あるいは2887cm-1と2933cm-1の強度比である、請求項1~3のいずれかに記載の検出方法。
  5. 試料が手術を受けている患者あるいは患者から採取した組織である、請求項1~4のいずれかに記載の検出方法。
  6. 神経が無髄神経を含む、請求項1~5のいずれかに記載の検出方法。
  7. 試料に励起光を照射する励起光照射手段、
    試料からのラマン散乱光を検出する手段、
    受光したラマン散乱光を各波長/波数のスペクトル成分に分光する分光部と、
    ラマン散乱光の特定波長/特定波数の強度比を算出する強度比算出手段または前記強度比の特徴を抽出し多変量解析及び/又は統計解析する解析手段と、
    前記強度比を指標として無髄神経を含む神経を特異的に表示する手段
    を含むことを特徴とする、無髄神経を含む神経の検出装置。
  8. 前記光源がレーザ光源である、請求項7に記載の検出装置。
  9. ラマンスペクトルを検出する検出器を備えている、請求項7又は8に記載の検出装置。
PCT/JP2013/058775 2012-03-30 2013-03-26 ラマン散乱分光法による神経検出法 WO2013146779A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13768225.8A EP2837335A4 (en) 2012-03-30 2013-03-26 METHOD FOR NERVOUS DETECTION BY SPECTROSCOPY OF RAMAN DIFFUSION
US14/388,035 US9700212B2 (en) 2012-03-30 2013-03-26 Method for nerve detection by raman scattering spectroscopy
JP2014507914A JP6180404B2 (ja) 2012-03-30 2013-03-26 ラマン散乱分光法による神経検出法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012079742 2012-03-30
JP2012-079742 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146779A1 true WO2013146779A1 (ja) 2013-10-03

Family

ID=49260030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058775 WO2013146779A1 (ja) 2012-03-30 2013-03-26 ラマン散乱分光法による神経検出法

Country Status (4)

Country Link
US (1) US9700212B2 (ja)
EP (1) EP2837335A4 (ja)
JP (1) JP6180404B2 (ja)
WO (1) WO2013146779A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038044A (ja) * 2012-08-17 2014-02-27 Olympus Corp 分光スペクトル解析方法
JP2014224724A (ja) * 2013-05-15 2014-12-04 京都府公立大学法人 ラマン散乱を用いた心臓組織の識別方法及び装置
WO2015128946A1 (ja) * 2014-02-25 2015-09-03 オリンパス株式会社 分光スペクトル解析方法
WO2019004099A1 (ja) * 2017-06-26 2019-01-03 株式会社ニコン 測定方法および測定装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11446055B1 (en) 2018-10-18 2022-09-20 Lumoptik, Inc. Light assisted needle placement system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055809A (ja) 1998-08-13 2000-02-25 Nikon Corp 顕微ラマン分光装置及び顕微ラマン分光測定方法
JP2007108154A (ja) * 2005-09-14 2007-04-26 Olympus Corp 生体試料の長期間ないし連続的検出方法
JP2007147357A (ja) 2005-11-25 2007-06-14 Nano Photon Kk ラマン顕微鏡及びラマンスペクトルイメージの表示方法
JP2007147350A (ja) 2005-11-25 2007-06-14 Hitachi Ltd 無線通信測位システム
WO2010103661A1 (ja) 2009-03-13 2010-09-16 京都府公立大学法人 ラマン散乱を用いた生体組織イメージング

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1744662B1 (en) * 2004-05-06 2011-08-24 Koninklijke Philips Electronics N.V. Protection mechanism for spectroscopic analysis of biological tissue
US20140118733A1 (en) * 2012-10-30 2014-05-01 Mustard Tree Instruments, Llc Multiple-Vial, Rotating Sample Container Assembly for Raman Spectroscopy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055809A (ja) 1998-08-13 2000-02-25 Nikon Corp 顕微ラマン分光装置及び顕微ラマン分光測定方法
JP2007108154A (ja) * 2005-09-14 2007-04-26 Olympus Corp 生体試料の長期間ないし連続的検出方法
JP2007147357A (ja) 2005-11-25 2007-06-14 Nano Photon Kk ラマン顕微鏡及びラマンスペクトルイメージの表示方法
JP2007147350A (ja) 2005-11-25 2007-06-14 Hitachi Ltd 無線通信測位システム
WO2010103661A1 (ja) 2009-03-13 2010-09-16 京都府公立大学法人 ラマン散乱を用いた生体組織イメージング

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HAKA, A.S. ET AL., CANCER RES., vol. 66, 2006, pages 3317 - 22
LIEBER CA; MAHADEVAN-JANSEN A: "Automated Method for Subtraction of Fluorescence from Biological Raman Spectra.", APPL SPECTROSC, vol. 57, no. 11, 2003, pages 1363 - 1367
LIEBER, C.A.; MAHADEVAN-JANSEN, A.: "Automated Method for Subtraction of Fluorescence from Biological Raman Spectra.", APPL. SPECTROSC., vol. 57, no. 11, 2003, pages 1363 - 1367
MINAMIKAWA TAKEO: "Label-free detection of nerve tissues by spontaneous Raman microspectroscopy", ANNUAL CONFERENCE OF JAPANESE SOCIETY FOR MEDICAL AND BIOLOGICAL ENGINEERING PROGRAM-RONBUNSHU (CD-ROM), 2012, XP035156651 *
MOTZ, J.T. ET AL., J. BIOMED. OPT., vol. 11, 2006, pages 021003
P. MATOUSEK: "Deep non-invasive Raman spectroscopy of living tissue and powders", CHEM SOC REV, vol. 36, no. 8, 2007, pages 1292 - 304
See also references of EP2837335A4
TORRES FILHO, I.P. ET AL., J. APPL. PHYSIOL, vol. 104, 2008, pages 1809 - 17

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038044A (ja) * 2012-08-17 2014-02-27 Olympus Corp 分光スペクトル解析方法
JP2014224724A (ja) * 2013-05-15 2014-12-04 京都府公立大学法人 ラマン散乱を用いた心臓組織の識別方法及び装置
WO2015128946A1 (ja) * 2014-02-25 2015-09-03 オリンパス株式会社 分光スペクトル解析方法
US10048210B2 (en) 2014-02-25 2018-08-14 Olypmus Corporation Spectroscopic analysis method
WO2019004099A1 (ja) * 2017-06-26 2019-01-03 株式会社ニコン 測定方法および測定装置

Also Published As

Publication number Publication date
JP6180404B2 (ja) 2017-08-16
US20150297087A1 (en) 2015-10-22
JPWO2013146779A1 (ja) 2015-12-14
EP2837335A4 (en) 2016-01-06
EP2837335A1 (en) 2015-02-18
US9700212B2 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
US11656448B2 (en) Method and apparatus for quantitative hyperspectral fluorescence and reflectance imaging for surgical guidance
Kirsch et al. Raman spectroscopic imaging for in vivo detection of cerebral brain metastases
US8649849B2 (en) Optical methods to intraoperatively detect positive prostate and kidney cancer margins
JP6180404B2 (ja) ラマン散乱分光法による神経検出法及び装置
Kalkanis et al. Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections
González-Solís et al. Cervical cancer detection based on serum sample Raman spectroscopy
Chen et al. Bio-Raman spectroscopy: a potential clinical analytical method assisting in disease diagnosis
Dochow et al. Combined fiber probe for fluorescence lifetime and Raman spectroscopy
Devpura et al. Vision 20/20: the role of Raman spectroscopy in early stage cancer detection and feasibility for application in radiation therapy response assessment
CN107209118A (zh) 在自体荧光存在下生物材料中目标荧光团的成像
EP2133023A1 (en) Vital tissue discrimination device and method
Litvinova et al. Non-invasive biomedical research and diagnostics enabled by innovative compact lasers
JPWO2012132571A1 (ja) 診断システム
JP2014230647A (ja) 表示装置、表示方法および表示プログラム
Sato et al. Raman spectroscopy and its use for live cell and tissue analysis
Anand et al. Multimodal fiber‐probe spectroscopy allows detecting epileptogenic focal cortical dysplasia in children
Bahreini Role of optical spectroscopic methods in neuro-oncological sciences
JP2016137217A (ja) 共鳴ラマン分光法を利用した生体組織内好酸球の検出方法、組織内好酸球浸潤性疾患の検査方法、及び生体組織内好酸球の検出装置
CN101313838A (zh) 在体超光谱成像诊断仪
Medeiros-Neto et al. In vivo Raman spectroscopic characterization of papillary thyroid carcinoma
Al-Rifai et al. Subcutaneous and transcutaneous monitoring of murine hindlimb ischemia by in vivo Raman spectroscopy
Uckermann et al. Optical biochemical imaging: potential new applications in neuro-oncology
Baria et al. In vivo detection of murine glioblastoma through Raman and reflectance fiber-probe spectroscopies
Chiu et al. Micro‐Raman spectroscopy identification of urinary stone composition from ureteroscopic lithotripsy urine powder
Throckmorton et al. Label-free intraoperative nerve detection and visualization using ratiometric diffuse reflectance spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507914

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14388035

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013768225

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE