WO2013146703A1 - Air intake device for internal combustion engine - Google Patents

Air intake device for internal combustion engine Download PDF

Info

Publication number
WO2013146703A1
WO2013146703A1 PCT/JP2013/058632 JP2013058632W WO2013146703A1 WO 2013146703 A1 WO2013146703 A1 WO 2013146703A1 JP 2013058632 W JP2013058632 W JP 2013058632W WO 2013146703 A1 WO2013146703 A1 WO 2013146703A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
valve
passage
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2013/058632
Other languages
French (fr)
Japanese (ja)
Inventor
田邉 和也
良 久保田
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201380008913.1A priority Critical patent/CN104114832B/en
Priority to BR112014019110-7A priority patent/BR112014019110B1/en
Priority to JP2014507873A priority patent/JP5925878B2/en
Publication of WO2013146703A1 publication Critical patent/WO2013146703A1/en
Priority to PH12014502192A priority patent/PH12014502192A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an intake system for an internal combustion engine mounted on a vehicle.
  • the intake port and the exhaust port extend from the intake valve port and the exhaust port on the ceiling surface of the combustion chamber of the cylinder head while curving away from each other, and the intake port guides the intake port to the combustion chamber Among them, the intake air taken into the combustion chamber from the inner edge side close to the cylinder axis of the intake valve port (the central axis line of the cylinder bore) flows down toward the exhaust side and descends the exhaust side of the cylinder bore. By bending the flow and raising the intake side, a longitudinal vortex, so-called tumble, is formed.
  • the shaft portion of the proximal end of the intake control valve provided on the upstream side of the partition wall of the intake port is pivotally connected to the lower wall of the intake port so as to be rotatable.
  • the intake control valve By rotating the intake control valve around the shaft and lowering along the inner surface of the lower wall, the upstream opening of the lower passage opens, and intake flows in both the upper and lower passages, and the intake control valve
  • the intake control valve By pivoting upward so that the end edge contacts the upstream edge of the partition wall, the upstream opening of the lower passage is closed, and the intake air flows only in the upper passage. Therefore, immediately after the start of the engine, the intake control valve closes the upstream opening of the lower passage, and the intake passage flows in the upper passage and enters the combustion chamber to generate a strong vortex tumble to increase the combustion efficiency.
  • the present invention has been made in view of such a point, and the purpose of the present invention is to make it possible to selectively distribute the amount of intake air flowing in the upper and lower passages according to the load condition and adjust the strength of the vortex of the tumble.
  • the point is to provide an intake system of an internal combustion engine capable of optimizing the combustion efficiency.
  • Another object of the present invention is to generate a strong vortex tumble in a low load region, suppress the occurrence of tumble in a medium load region, and maximize cylinder intake capacity in a high load region.
  • the point is to provide an intake system for an internal combustion engine which can optimize the combustion efficiency by adjusting the strength of the vortex of the tumble according to the load condition.
  • a combustion chamber is formed between a top surface of a piston slidably fitted in a cylinder bore of a cylinder block and a ceiling surface of a cylinder head opposite to the top surface.
  • an intake port and an exhaust port are formed extending from the intake valve port and the exhaust valve port opened in the ceiling surface of the cylinder head while being curved away from each other, and an inlet pipe is connected to the intake port to be continuous
  • the inlet pipe is provided with a throttle valve and an intake distribution valve downstream of the throttle valve, and the intake
  • the intake air is divided into the side intake passages and the intake flow control valve controls the intake air flowing through the upper intake passage and the lower intake passage, and the intake control means
  • the intake distribution valve is provided adjacent to the upstream edge of the partition plate, and distributes intake air downstream from the throttle valve up and down and the upper intake passage
  • An intake system for an internal combustion engine is provided, wherein a ratio of intake air
  • the intake distribution valve is pivotally attached at a proximal end thereof to the inlet pipe at a position adjacent to the upstream end edge of the partition plate to raise and lower a tip directed to the intake upstream side. It is a swingable flap valve.
  • a passage cross-sectional area of the upper intake passage is smaller than a passage cross-sectional area of the lower intake passage.
  • downstream end of the divider is within the intake port and adjacent to the intake valve stem.
  • the intake valve port and the exhaust valve port face the combustion chamber one by one at mutually opposite positions with respect to a cylinder axis which is a central axis of a cylinder bore.
  • the intake valve port is formed so as to be offset so as to have a crescent-shaped protruding portion which protrudes outside in the cylinder axial direction from the circular hole of the cylinder bore.
  • the intake control means distributes the intake most to the upper part to flow through the upper intake passage at a low load position Positioning the intake distribution valve at a medium load position so as to suppress the intake air flowing in the upper intake passage by dividing the ratio of the intake air upwards from the lower when the medium load state and when the load state is high Operates to position the intake distribution valve at a high load position so as to distribute the intake air vertically to the ratio divided by the partition plate.
  • an upper injector and a lower injector for injecting fuel into the upper intake passage and the lower intake passage of the inlet pipe, respectively, are provided, and the upper side according to the swing state of the intake distribution valve.
  • the injection amount of the injector and the lower injector is controlled.
  • the intake distribution valve is provided adjacent to the upstream edge of the partition plate, and distributes intake air downstream from the throttle valve up and down to the upper intake passage and the lower intake passage. Since the ratio of intake air flowing is changed, the amount of intake air flowing through the upper and lower passages can be appropriately selectively distributed according to the load state, and the strength of the vortex of the tumble can be adjusted to optimize the combustion efficiency.
  • the intake distribution valve is a flap valve, the proximal end of which is pivotally supported by the inlet pipe at a position adjacent to the upstream end edge of the partition plate so that the tip toward the intake upstream side can swing up and down.
  • the rate at which the intake air is divided up and down can be easily changed according to the swing position of the tip of the valve.
  • the passage cross-sectional area of the upper intake passage is smaller than the passage cross-sectional area of the lower intake passage, so that in a low load state, the intake air flows rapidly through the narrow upper intake passage and is sucked into the combustion chamber. Vortex tumble can be generated to improve combustion efficiency.
  • the downstream end of the partition plate is in the intake port and located in the vicinity of the intake valve stem, the intake air passing through the upper intake passage can be guided to the vicinity of the intake valve port under a low load condition. Tumble can be easily generated.
  • An intake valve port is formed by offsetting one intake valve port formed on the ceiling surface of the cylinder head so as to have a crescent-shaped protruding portion that protrudes outward in a cylinder axial direction from the circular hole of the cylinder bore.
  • the ratio of the opening circumferential length of the protruding part to the entire opening length of the opening can be secured, and the intake to the combustion chamber of the intake from the outer edge side (protruding part side) of the intake valve port is blocked.
  • the intake control means can position the intake flow distribution valve at a low load position to form a strong vortex tumble flow so that the intake air is mostly distributed upward and flows through the upper intake passage.
  • the intake distribution valve In the medium load state, the intake distribution valve is positioned at the medium load position so that the intake flow is distributed to the upper intake passage by reducing the ratio of the upper part lower than the lower part to minimize the vortex vortices of the tumble and prevent rapid combustion.
  • the intake distribution valve is positioned at the high load position to distribute the intake air vertically to the ratio divided by the partition plate so that sufficient intake flows in the upper intake passage, so that the vortex flow is moderate. Tumble can be generated and intake efficiency can be favorably maintained, and the strength of the vortex of the tumble can be adjusted according to the load state of the internal combustion engine to optimize the combustion efficiency. It is possible to reduce the fuel consumption.
  • An upper injector and a lower injector performing fuel injection to the upper intake passage and the lower intake passage of the inlet pipe, respectively, and controlling the injection amount of the upper injector and the lower injector according to the swing state of the intake distribution valve
  • the combustion efficiency is further improved and the air fuel ratio is optimized by optimally controlling the injection amounts of the upper injector and the lower injector according to the swing state of the intake air distribution valve, that is, the vertical distribution state of the intake flow rate.
  • FIG. 1 is a right side view of a motorcycle equipped with an internal combustion engine equipped with an intake system according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional right sectional view of the same internal combustion engine. It is a top view of a cylinder block. It is a bottom view of a cylinder head. It is expansion explanatory drawing of the ceiling surface of a combustion chamber.
  • FIG. 2 is a cross-sectional view of an essential part of the internal combustion engine in a low load state.
  • FIG. 2 is a cross-sectional view of an essential part of the internal combustion engine in a medium load state.
  • FIG. 2 is a cross-sectional view of an essential part of the internal combustion engine in a high load state.
  • FIG. 7 is a cross-sectional view taken along the line XX in FIG. It is a graph which shows control of intake distribution valve-opening degree (phi) with respect to throttle-opening degree (theta), and the change of tumble ratio Rt. It is principal part sectional drawing of an internal combustion engine provided with the intake device which concerns on another embodiment.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII of FIG. 13 is a graph showing control of an intake distribution valve opening degree ⁇ and a fuel injection ratio r with respect to a throttle opening degree ⁇ in the embodiment of FIG. 12;
  • FIG. 1 is an overall side view of a motorcycle 1 equipped with an internal combustion engine 10 equipped with an intake system according to the present embodiment.
  • the body frame 2 of the motorcycle 1 has a pair of left and right main frame pipes 2b, 2b extending rearward from the head pipe 2a, and the main frame pipes 2b, 2b extend rearward and then bend downward.
  • the steep slopes 2ba and 2ba are formed. Lower portions of the steep slopes 2ba and 2ba are bent forward and reach lower ends.
  • a pair of left and right down frame pipes 2c, 2c extend downward from the head pipe 2a at a steep angle, substantially in parallel to the steeply inclined portion 2ba of the main frame pipe 2b in a side view.
  • Seat rails 2d, 2d extend rearward from the upper portions of the steep slopes 2ba, 2ba of the main frame pipes 2b, 2b, and connect the central portions of the seat rails 2d, 2d with the lower portions of the steep slopes 2ba, 2ba
  • Back stays 2e, 2e support the seat rails 2d, 2d.
  • the front fork 3 is pivotally supported by the head pipe 2a, the front wheel 4 is pivotally supported at its lower end, and the pivot plate 2f is fixed to the lower front of the main frame pipes 2b, 2b.
  • a cushion 7 is interposed.
  • a fuel tank 8 is installed on the main frame pipes 2b and 2b, and a seat 9 is supported by seat rails 2d and 2d behind the fuel tank 8.
  • the internal combustion engine 10 mounted on the vehicle body frame 2 is a SOHC type two-valve single-cylinder four-stroke internal combustion engine, with the crankshaft 12 (FIG. 2) oriented in the vehicle width direction with respect to the vehicle It is suspended in the standing posture.
  • a transmission gear is provided between the main shaft 13 and the countershaft 14 disposed behind the crankshaft 12.
  • a mechanism 15 is arranged.
  • the counter shaft 14 is an output shaft, and a chain (not shown) is bridged between the counter shaft 14 and the rotation shaft of the rear wheel 6, and power is transmitted from the output shaft to the rear wheel 6 through the chain.
  • a cylinder block 16 in which a cast iron cylinder liner 16L is cast, and a cylinder head 17 is mounted on the cylinder block 16 via a gasket.
  • the cylinder block 16 and the cylinder head 17 are integrally fastened by stud bolts, and the cylinder head cover 18 covers the upper side of the cylinder head 17.
  • the cylinder block 16, the cylinder head 17, and the cylinder head cover 18, which are stacked on the crankcase 11, extend upward in a posture slightly inclining from the crankcase 11 (see FIGS. 1 and 2).
  • the inlet pipe 20 extends rearward from the cylinder head 16 erected slightly forward of the internal combustion engine 10 mounted on the vehicle body frame in this manner via the connecting pipe 19, and the inlet pipe 20 receives a throttle valve.
  • a butterfly type throttle body 21 having a built-in 22 is provided, an injector 23 is mounted, and an intake air distribution valve 61 described later is provided.
  • the air cleaner 24 connected to the rear end of the inlet pipe 20 is disposed in a space surrounded by the steeply inclined portion 2ba of the main frame 2b, the seat rail 2d and the backstay 2e in a side view. (See Figure 1). Further, an exhaust pipe 27 extending forward from the cylinder head 17 is bent downward and further bent backward so as to be disposed rearward and rightward along the lower surface of the crankcase 11 and disposed on the right side of the rear wheel 6 It is connected to the muffler 26.
  • crankcase 11 is divided into right and left portions and consists of left and right crankcase halves, and the lower end portion of the cylinder liner 16L is fitted into the opening formed in the mating surface of the left and right crankcase halves. Slightly forward and protruding upward.
  • a piston 25 is slidably fitted in a cylinder bore 16b of the cylinder liner 16L in a reciprocating manner, and a connecting rod 26 is connected between a piston pin 25p of the piston 25 and a crank pin 12p of the crankshaft 12 to provide a crank mechanism.
  • a combustion chamber 40 is formed between the top surface 25 t of the piston 25 sliding in the cylinder bore 16 b of the cylinder block 16 and the ceiling surface 41 of the cylinder head 17 opposite to the top surface 25 t.
  • an intake valve port 42 and an exhaust valve port 43 are provided at the ceiling surface 41 one by one at diametrically opposite positions with respect to the cylinder axis C which is the central axis of the cylinder bore 16b.
  • the intake port 44 and the exhaust port 45 extend from the intake valve port 42 and the exhaust valve port 43 while curving in directions away from each other.
  • the intake port 44 extends from the intake valve port 42 to the rear of the two-wheeled vehicle and communicates with the inlet pipe 20 via the connection pipe 19, and the exhaust port 45 is connected to the exhaust pipe 27 (FIG. 1).
  • An intake valve 46 and an exhaust valve 47 slidably supported by valve guides 34 i and 34 e integrally fitted to the cylinder head 16 are driven by a valve mechanism 30 provided on the cylinder head 13,
  • the intake valve port 42 of the intake port 44 and the exhaust valve port 43 of the exhaust port 45 are opened and closed in synchronization with the rotation of the crankshaft 12.
  • the valve operating mechanism 30 is a valve operating mechanism of the SOHC type internal combustion engine in which one cam shaft 31 is axially supported on the cylinder head 17 in the left-right direction.
  • Rocker arm shafts 32e and 32i are supported diagonally front and rear of cam shaft 31, and intake rocker arm 33i is pivotally pivotally supported at the rear by rocker arm shaft 32i at the center, and exhaust rocker arm 33e is freely pivotable at front rocker arm shaft 32e.
  • the center is centrally supported.
  • One end of the intake rocker arm 33i is in contact with the intake cam lobe of the camshaft 31, and the other end is in contact with the upper end of the valve stem 46s of the intake valve 46 biased by a spring via an adjustment screw, and one end of the exhaust rocker arm 33e is a cam The other end is in contact with the upper end of the valve stem 47s of the exhaust valve 47, which is in contact with the exhaust cam lobe of the shaft 31 by a spring, via an adjustment screw, and the intake rocker arm 33i and the exhaust rocker arm 33e swing by rotation of the camshaft 31 Then, the intake valve 46 and the exhaust valve 47 are driven to open and close.
  • FIG. 3 is a top view of the cylinder block 16.
  • a circular hole of the cylinder bore 16b and a rectangular hole of a chain chamber 16c for inserting a chain for transmitting power to the valve mechanism 30 are bored in the mating face 16f with the cylinder head 17. It is done.
  • FIG. 4 is a bottom view of the cylinder head 17 superimposed on the cylinder block 16.
  • the ceiling surface 41 of the combustion chamber 40 is recessed corresponding to the cylinder bore 16b in the mating surface 17f opposite to the mating surface 16f in the cylinder block 16.
  • a chain chamber 17c communicating with the chain chamber 16c.
  • a large-diameter intake valve port 42 opens on the rear side of the ceiling surface 41, and an exhaust valve port 43 having a diameter slightly smaller than that of the intake valve port 42 opens on the front side of the ceiling surface 41.
  • a plug hole 48 is formed in which a spark plug (not shown) projects a tip end.
  • FIG. 5 is a view of the combustion chamber 40 of the cylinder head 17 in the axial direction of the cylinder axis C, ie, in the cylinder axial direction.
  • the intake valve port 42 is a combustion chamber A part of the intake valve port peripheral portion protrudes outward and is offset from the circular ceiling surface opening edge 41s corresponding to the circular hole of the cylinder bore 16b of the ceiling surface 41 of 40, and the intake valve port 42 It has a crescent-like protruding portion 42a (portion indicated by a scattering point in FIG. 5) protruding from the ceiling surface opening edge 41s.
  • the masking ratio Rm by the offset of the main intake valve port 42 is about 20 to 50%.
  • the ceiling surface 41 is formed with a dome-shaped concave portion 51 having an elliptical cross-sectional shape surrounding the intake valve port 42 and the exhaust valve port 43 on both sides in the major axis direction,
  • squish 52, 52 is formed on a pair of left and right crescent-shaped portions outside the dome-shaped recess 51, respectively.
  • a pair of guide wall surfaces 53, 53 curved along the opening edge 42s of the intake valve port 42 from both ends of the crescent-shaped protruding portion 42a of the intake valve port 42, They are formed so as to face each other and gradually expand toward the exhaust valve port 43 side.
  • the cylinder bore 16b of the cylinder block 16 corresponds to the cylinder of the cylinder bore 16b as shown in FIGS.
  • the rear end of the opening edge on the head 17 side facing the protruding portion 42a of the intake valve port 42 is cut out along the periphery of the bulk portion 46p of the intake valve 46 in the moving direction of the intake valve 46 to the maximum valve lift position A circular curved surface 55 is formed.
  • the notched circular curved surface 55 covers the upper end surface of the flangeless cylinder liner 16L of the aluminum alloy cylinder block 16 into which the cast iron cylinder liner 16L is cast. It is cut out and formed in a part at an angle.
  • the intake valve opening 42 moves while the intake valve 46 opens and moves to the maximum valve lift position.
  • the intake air from the outer edge side (protruding part 42a side) of the valve must pass through a very narrow gap between the rim 46p edge of the intake valve 46 and the notched circular curved surface 55, and the intake to the combustion chamber 40 is blocked substantially.
  • the maximum valve lift position of the intake valve 46 may be slightly beyond the notch circular curved surface 55.
  • a portion of the peripheral portion of the top surface 25t of the piston 25 facing the protruding portion 42a of the intake valve port 42 is cut out parallel to the end face of the peripheral portion 46pf of the intake valve 46 to cut the piston
  • the notch surface 56 is formed (see FIG. 6), and when the intake valve 46 is opened and lifted as the piston 25 descends in the intake stroke, the inflow direction of the intake air from the outer edge side of the intake valve port 42 Since the notch surface (56) is vertical, the intake of the intake air is not prompted from the outer edge side of the intake valve port 42 to the combustion chamber 40, and the occurrence of reverse tumble is further suppressed.
  • the intake passage P from the inlet pipe 20 to the intake port 44 via the connection pipe 19 passes from the downstream portion of the inlet pipe 20 to the curved portion of the intake port 44 by the partition plate 60 to the upper intake passage Up and down. It is divided into the side intake passage Lp.
  • the partition plate 60 is integrally formed with the inlet pipe 20, and the upstream end of the partition plate 60 is provided inside the inlet pipe 20 so as to divide the upper and lower portions, and the extension portion greatly projecting downstream is the intake port 44. Is inserted in the As shown in FIG. 9, both side edges of the strip-like extending portion of the partition plate 60 extend along the inner peripheral surface of the intake port 44.
  • the partition plate 60 moves the intake passage P upward, and the passage cross-sectional area of the upper intake passage Up is smaller than the passage cross-sectional area of the lower intake passage Lp (see FIG. 9).
  • the elongated extension of the partition plate 60 is bent along the curved shape of the intake port 44, and as shown in FIG. 10, the downstream end 60 e of the tip is an intake valve located at the curved portion of the intake port 44.
  • the intake valve stem 46s reaches 46 and the downstream end 60e is formed with a recess 60u which is recessed in a U-shape from the tip edge, and the intake valve stem 46s penetrates the U-shaped recess 60u .
  • the downstream end 60 e is a flat, non-curved plate and is linearly inserted into the curved portion of the intake port 44, and the left and right sides of the downstream end 60 e are opposed to the left and right of the curved portion of the intake port 44. It is inserted into the formed left and right recessed grooves 44v and 44v and fixedly supported.
  • an intake air distribution valve 61 is provided upstream of the partition plate 60 downstream of the throttle valve 22.
  • the pivot shaft 61a at the base end is pivoted on the inlet pipe 20 in the vicinity of the upstream edge of the partition plate 60 and directed to the intake upstream side. It is a flap valve in which the tip end is pivotable up and down, and is pivoted by the motor drive mechanism 62.
  • the intake air distribution valve 61 swings its tip toward the upstream throttle valve 22 to distribute the intake air downstream of the throttle valve 22 up and down and change the ratio of intake air flowing through the upper intake passage Up and the lower intake passage Lp. can do.
  • the ECU (electronic control unit) 65 (FIG. 2) for controlling the internal combustion engine 10 is provided with an intake control means 66, analyzes the operating state of the internal combustion engine 10 and uses the intake control means 66 to The injector 23 is driven and controlled, but the intake distribution valve 61 is also driven and controlled by the intake control means 66.
  • the throttle opening degree ⁇ of the throttle valve 22 is fully open when it is rotated from the fully closed position and becomes parallel to the intake passage, and indicates the load state of the internal combustion engine 10.
  • the intake distribution valve 61 is controlled to swing according to the load state of the internal combustion engine 10, and the intake distribution valve opening degree ⁇ , which is the swing angle of the intake distribution valve 61, corresponds to the intake distribution in the low load state shown in FIG.
  • the swing angle increases clockwise in FIG. 6 with the low load position of the valve 61 as the reference 0 degree.
  • the state of the tumble can be represented by a tumble ratio Rt which is the number of revolutions of the tumble per revolution of the crankshaft 12.
  • Tumble Ratio Rt Tumble Rotational Angular Velocity / Crankshaft Angular Velocity If the tumble ratio Rt is large, strong vortex tumble occurs.
  • FIG. 11 shows a change in the intake distribution valve opening degree ⁇ and a change in the tumble ratio Rt that perform swing control of the intake distribution valve 61 according to the throttle opening degree ⁇ .
  • the swing control of the intake air distribution valve 61 and the tumble ratio Rt according to the load state of the internal combustion engine 10 will be considered with reference to FIG.
  • the intake air passing through the slightly open opening of the throttle valve 22 is guided and flowed to the relatively narrow upper intake passage Up mostly by the intake distribution valve 61, and the intake port 44 is further curved. Is guided to a position close to the intake valve port 42 by the partition plate 60 extending to the intake valve stem 46s located in the lower part, so most of the intake air is from the inner edge side (cylinder axis C side) of the intake valve port 42 As shown in FIG. 6, a strong vortex tumble occurs (the tumble ratio Rt increases).
  • the intake valve port 42 is offset so as to have a crescent-shaped protruding portion 42a that protrudes outward in a cylinder axial direction from the circular hole of the cylinder bore 16b, and the outer edge side (protruding portion 42a side) of the intake valve port 42 is masked. And, since there is almost no intake air passing through the lower intake passage Lp, there is no intake air to be taken into the combustion chamber 40 from the outer edge side of the intake valve port 42, and no reverse tumble that interferes with tumble occurs, which makes the tumble stronger. The tumble ratio Rt becomes high, and the combustion efficiency at low load can be improved.
  • the suppressed intake air flowing through the upper intake passage Up enters the combustion chamber 40 from the inner edge side of the intake valve port 42, the suppressed intake air is weak and only a weak swirl of tumble flow is generated. Since there is some intake air sucked into the combustion chamber 40 from the outer edge side of 42 and a reverse tumble is generated to suppress the tumble, the tumble is suppressed as much as possible and the tumble ratio Rt is reduced.
  • the intake system of the internal combustion engine 10 can optimize the combustion efficiency by adjusting the strength of the vortex of the tumble according to the load state of the internal combustion engine.
  • the intake distribution valve 61 is a flap valve in which a pivot shaft 61a at the base end is axially supported by the inlet pipe 20 in the vicinity of the upstream end edge of the partition plate 60 so that the tip toward the intake upstream side can swing up and down. Because of this, it is possible to easily change the rate at which the intake air is divided up and down depending on the swing position of the tip.
  • the injectors 23 are attached only to the upper intake passage Up among the upper intake passage Up and the lower intake passage Lp divided into upper and lower portions in the partition plate 60, but the lower intake passage Lp
  • An embodiment equipped with an injector is also shown in FIG. 12 and FIG.
  • the upper injector 71 is attached to the upper intake passage Up
  • the lower injector 72 is attached to the lower intake passage Lp.
  • the other members are the same as those in the above embodiment, and the same reference numerals are used.
  • the fuel injection ratio r (lower injection amount / upper injection amount) of the upper injector 71 and the lower injector 72 is shown in FIG.
  • the intake air distribution valve opening degree ⁇ is simply raised from 0 degree in the low load state to ⁇ degree in the high load state.
  • the fuel injection ratio r is 0% and the lower injector 72 does not inject fuel but injects only the upper injector 71.
  • the amount of fuel injection of the lower injector 72 is increased as the proportion of intake air flowing through the lower intake passage Lp to the upper intake passage Up is increased by increasing the intake distribution valve opening ⁇ .
  • Increase the fuel injection ratio r is made substantially equal to the ratio (the ratio of the intake air flowing in the lower intake passage Lp to the upper intake passage Up) with which the partition plate 60 divides the intake passage P up and down.
  • the injection amount (fuel injection ratio r) of the upper injector 71 and the lower injector 72 is optimally controlled according to the swing state of the intake air distribution valve 61, that is, the upper and lower distribution state (intake distribution valve opening degree ⁇ ) of the intake flow rate.
  • the combustion efficiency can be further improved, and the air-fuel ratio (A / F) can be optimized.
  • Reference Signs List 20 inlet pipe, 21: throttle body, 22: throttle valve, 23: injector, 24: air cleaner, 25: piston, 26: connecting rod, Reference Signs List 30 valve operating mechanism 31 cam shaft 32 e 32 i rocker arm shaft 33 i intake rocker arm 33 e exhaust rocker arm 34 i 34 e valve guide 40 combustion chamber 41 ceiling surface 42 intake valve port 42a protruding part 43 exhaust valve port 44 intake port 45 exhaust port 46 intake valve 46pf bulkhead 46s intake Valve stem, 47 ... exhaust valve, 48 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

An air intake device for an internal combustion engine wherein a throttle valve (22) and an air intake distribution valve (61) are provided in an air intake passage (P). The air intake passage is separated into an upper air intake passage (Up) and a lower air intake passage (Lp) by means of a partition plate (60) downstream from the air intake distribution valve (61). The air intake distribution valve (61) is pivotally mounted at a position (61a) near the upstream edge of the partition plate (60) and extends in the upstream direction. The rocking of the distribution valve (61) divides the intake air downstream from the air intake distribution valve into an upper flow and a lower flow and thus changes the ratio of the intake air flowing in the upper air intake passage (Up) and the lower air intake passage (Lp). The amounts of intake air flowing in the upper and lower passages can be allocated selectively and appropriately in response to the load state, and the strength of the eddy flow of the tumble can be adjusted, thereby achieving optimal combustion efficiency.

Description

内燃機関の吸気装置Intake device for internal combustion engine
 本発明は、車両に搭載される内燃機関の吸気装置に関する。 The present invention relates to an intake system for an internal combustion engine mounted on a vehicle.
 内燃機関の低負荷領域において、燃費の向上を図るために、燃焼室内で吸入された吸気にタンブルを発生させ、燃焼室上部の点火プラグの周りに燃料を送り成層化して燃焼効率の向上を図る吸気装置が知られている。 In the low load region of the internal combustion engine, in order to improve fuel efficiency, tumble is generated in the intake air taken in the combustion chamber, fuel is fed around the spark plug in the upper portion of the combustion chamber, and combustion efficiency is improved. Inspiratory devices are known.
 この吸気装置では、シリンダヘッドの燃焼室の天井面の吸気弁口と排気弁口から吸気ポートと排気ポートが互いに離れる方向に湾曲しながら延出しており、この吸気ポートが燃焼室に案内する吸気のうちで、吸気弁口のシリンダ軸線(シリンダボアの中心軸線)に近い内側縁側から燃焼室に吸入される吸気が、排気側に向け流入しながらシリンダボアの排気側を下降した後にピストン頂面に沿って流れを曲げて吸気側を上昇することで、縦渦いわゆるタンブルが形成される。 In this intake system, the intake port and the exhaust port extend from the intake valve port and the exhaust port on the ceiling surface of the combustion chamber of the cylinder head while curving away from each other, and the intake port guides the intake port to the combustion chamber Among them, the intake air taken into the combustion chamber from the inner edge side close to the cylinder axis of the intake valve port (the central axis line of the cylinder bore) flows down toward the exhaust side and descends the exhaust side of the cylinder bore. By bending the flow and raising the intake side, a longitudinal vortex, so-called tumble, is formed.
 そこで、吸気弁口のシリンダ軸線に近い内側縁側から吸入される吸気の割合を大きくするために、吸気ポートの内部を仕切壁により上下の通路に仕切り、仕切壁の上流側に下方の通路の開閉を行う吸気制御弁を設け、機関始動直後に下方の通路を閉じることで、吸気ポートの上方の通路を流れる吸気が上方の通路の延長である吸気弁口の内側縁側から燃焼室に吸入されるようにして、強い渦流のタンブルを発生させる吸気装置が提案されている(特許文献1参照)。 Therefore, in order to increase the ratio of intake air taken in from the inner edge side closer to the cylinder axis of the intake valve port, the inside of the intake port is divided by upper and lower passages by the partition wall, and the lower passage is opened and closed upstream of the partition wall Intake control valves are installed to close the lower passage immediately after engine start, so that the intake air flowing through the passage above the intake port is taken into the combustion chamber from the inner edge side of the intake valve port, which is an extension of the upper passage. Thus, an intake device that generates a strong vortex tumble has been proposed (see Patent Document 1).
特開2008-151078号公報JP, 2008-151078, A
 特許文献1に記載の吸気装置では、吸気ポートの仕切壁の上流側に設けられる吸気制御弁は、その基端の軸部が吸気ポートの下壁に枢着されて回動可能とされる。吸気制御弁を軸部周りで回動してその下側の壁の内面に沿うように伏せることで、下方の通路の上流側開口が開き、上下双方の通路を吸気が流れ、吸気制御弁を上方に回動してその先端縁が仕切壁の上流端縁に接するようにすることで下方の通路の上流側開口が閉じられ、上方の通路のみを吸気が流れる。
 したがって、機関始動直後は吸気制御弁が下方の通路の上流側開口を閉じ、上方の通路を吸気が流れ燃焼室に入ることで、強い渦流のタンブルを発生させ燃焼効率を上げている。
In the intake system described in Patent Document 1, the shaft portion of the proximal end of the intake control valve provided on the upstream side of the partition wall of the intake port is pivotally connected to the lower wall of the intake port so as to be rotatable. By rotating the intake control valve around the shaft and lowering along the inner surface of the lower wall, the upstream opening of the lower passage opens, and intake flows in both the upper and lower passages, and the intake control valve By pivoting upward so that the end edge contacts the upstream edge of the partition wall, the upstream opening of the lower passage is closed, and the intake air flows only in the upper passage.
Therefore, immediately after the start of the engine, the intake control valve closes the upstream opening of the lower passage, and the intake passage flows in the upper passage and enters the combustion chamber to generate a strong vortex tumble to increase the combustion efficiency.
 内燃機関の中負荷領域においては、タンブルの渦流が強すぎると、急速燃焼により燃費の低減が妨げられ、また急速燃焼を原因としたクランク打音が発生することがある。
 そこで、中負荷領域では、吸気ポートの上方の通路を流れる吸気を抑制することが望まれるが、特許文献1に記載の吸気制御弁による吸気制御では、上方の通路の上流側開口のみを部分的に閉じて上方の通路を流れる吸気を抑制することはできない。
In the medium load region of the internal combustion engine, if the vortex of the tumble is too strong, rapid combustion may prevent reduction in fuel consumption, and crank noise may occur due to rapid combustion.
Therefore, in the medium load region, it is desirable to suppress intake air flowing in the passage above the intake port, but in intake control by the intake control valve described in Patent Document 1, only the upstream side opening of the upper passage is partially It can not be closed to suppress intake air flowing in the upper passage.
 本発明は、かかる点に鑑みなされたもので、その目的とする処は、負荷状態に応じて上下通路に流れる吸気量を適宜選択的に振分け可能にし、タンブルの渦流の強さを調整して燃焼効率の最適化を図ることができる内燃機関の吸気装置を供する点にある。
 また、本発明の他の目的は、低負荷領域で強い渦流のタンブルを発生させ、中負荷領域ではタンブルの発生を抑制し、高負荷領域ではシリンダ吸気量を最大とするように、内燃機関の負荷状態に応じてタンブルの渦流の強さを調整して燃焼効率の最適化を図ることができる内燃機関の吸気装置を供する点にある。
The present invention has been made in view of such a point, and the purpose of the present invention is to make it possible to selectively distribute the amount of intake air flowing in the upper and lower passages according to the load condition and adjust the strength of the vortex of the tumble. The point is to provide an intake system of an internal combustion engine capable of optimizing the combustion efficiency.
Another object of the present invention is to generate a strong vortex tumble in a low load region, suppress the occurrence of tumble in a medium load region, and maximize cylinder intake capacity in a high load region. The point is to provide an intake system for an internal combustion engine which can optimize the combustion efficiency by adjusting the strength of the vortex of the tumble according to the load condition.
 上記目的を達成するために、本発明は、シリンダブロックのシリンダボア内に摺動自在に嵌合されるピストンの頂面と同頂面が対向するシリンダヘッドの天井面との間に燃焼室が構成され、前記シリンダヘッドの前記天井面に開口した吸気弁口と排気弁口からそれぞれ吸気ポートと排気ポートが互いに離れる方向に湾曲しながら延出して形成され、吸気ポートにインレットパイプが接続されて連続した吸気通路が構成され、前記インレットパイプに、スロットル弁とそれより下流で吸気振分け弁とが設けられ、前記吸気通路が、吸気振分け弁より下流側で部分的に仕切板により上側吸気通路と下側吸気通路に仕切られ、前記吸気振分け弁により前記上側吸気通路と前記下側吸気通路を流れる吸気が制御され、吸気制御手段により前記吸気振分け弁が駆動制御される内燃機関の吸気装置において、前記吸気振分け弁は、前記仕切板の上流端縁に隣接して設けられ、前記スロットル弁より下流の吸気を上下に振り分け前記上側吸気通路と前記下側吸気通路を流れる吸気の割合を変更することを特徴とする内燃機関の吸気装置を提供する。 In order to achieve the above object, according to the present invention, a combustion chamber is formed between a top surface of a piston slidably fitted in a cylinder bore of a cylinder block and a ceiling surface of a cylinder head opposite to the top surface. And an intake port and an exhaust port are formed extending from the intake valve port and the exhaust valve port opened in the ceiling surface of the cylinder head while being curved away from each other, and an inlet pipe is connected to the intake port to be continuous The inlet pipe is provided with a throttle valve and an intake distribution valve downstream of the throttle valve, and the intake The intake air is divided into the side intake passages and the intake flow control valve controls the intake air flowing through the upper intake passage and the lower intake passage, and the intake control means In the intake system of an internal combustion engine in which a vent valve is drive-controlled, the intake distribution valve is provided adjacent to the upstream edge of the partition plate, and distributes intake air downstream from the throttle valve up and down and the upper intake passage An intake system for an internal combustion engine is provided, wherein a ratio of intake air flowing through the lower intake passage is changed.
 本発明の好適な実施形態によれば、前記吸気振分け弁は、基端が前記インレットパイプに前記仕切板の上流端縁に隣接する位置で枢着されて吸気上流側に向けた先端を上下に揺動自在としたフラップバルブである。 According to a preferred embodiment of the present invention, the intake distribution valve is pivotally attached at a proximal end thereof to the inlet pipe at a position adjacent to the upstream end edge of the partition plate to raise and lower a tip directed to the intake upstream side. It is a swingable flap valve.
 本発明の好適な実施形態では、前記上側吸気通路の通路断面積が、前記下側吸気通路の通路断面積より小さい。 In a preferred embodiment of the present invention, a passage cross-sectional area of the upper intake passage is smaller than a passage cross-sectional area of the lower intake passage.
 好適には、前記仕切板の下流端部は、前記吸気ポート内にあって吸気バルブステムに隣接する位置にある。 Preferably, the downstream end of the divider is within the intake port and adjacent to the intake valve stem.
 本発明の好適な実施形態によれば、前記シリンダヘッドの前記天井面にシリンダボアの中心軸であるシリンダ軸に関して互いに反対位置に1つずつ前記吸気弁口と前記排気弁口が前記燃焼室に臨んで開口され、前記吸気弁口がシリンダボアの円孔よりシリンダ軸方向視で外側にはみ出した三日月状のはみ出し部を有するようにオフセットして形成される。 According to a preferred embodiment of the present invention, in the ceiling surface of the cylinder head, the intake valve port and the exhaust valve port face the combustion chamber one by one at mutually opposite positions with respect to a cylinder axis which is a central axis of a cylinder bore. The intake valve port is formed so as to be offset so as to have a crescent-shaped protruding portion which protrudes outside in the cylinder axial direction from the circular hole of the cylinder bore.
 本発明による内燃機関の吸気装置においては、前記吸気制御手段は、内燃機関が低負荷状態のときは吸気を大部分上方に振り分けて前記上側吸気通路を流れるように前記吸気振分け弁を低負荷位置に位置決めし、中負荷状態のときは吸気を下方より上方の割合を小さく振り分けて前記上側吸気通路を流れる吸気を抑制するように前記吸気振分け弁を中負荷位置に位置決めし、高負荷状態のときは前記仕切板に仕切られた割合に吸気を上下に振り分けるように前記吸気振分け弁を高負荷位置に位置決めするように働く。 In the intake system of the internal combustion engine according to the present invention, when the internal combustion engine is in a low load state, the intake control means distributes the intake most to the upper part to flow through the upper intake passage at a low load position Positioning the intake distribution valve at a medium load position so as to suppress the intake air flowing in the upper intake passage by dividing the ratio of the intake air upwards from the lower when the medium load state and when the load state is high Operates to position the intake distribution valve at a high load position so as to distribute the intake air vertically to the ratio divided by the partition plate.
 本発明の好ましい実施形態は、前記インレットパイプの前記上側吸気通路と前記下側吸気通路にそれぞれ燃料噴射を行う上側インジェクタと下側インジェクタを備え、前記吸気振分け弁の揺動状態に応じて前記上側インジェクタと前記下側インジェクタの噴射量が制御される。 In a preferred embodiment of the present invention, an upper injector and a lower injector for injecting fuel into the upper intake passage and the lower intake passage of the inlet pipe, respectively, are provided, and the upper side according to the swing state of the intake distribution valve. The injection amount of the injector and the lower injector is controlled.
 本発明の内燃機関の吸気装置によれば、吸気振分け弁は、前記仕切板の上流端縁に隣接して設けられ、スロットル弁より下流の吸気を上下に振り分け上側吸気通路と下側吸気通路を流れる吸気の割合を変更するので、負荷状態に応じて上下通路に流れる吸気量を適宜選択的に振分け可能にし、タンブルの渦流の強さを調整して燃焼効率の最適化を図ることができる。 According to the intake system of the internal combustion engine of the present invention, the intake distribution valve is provided adjacent to the upstream edge of the partition plate, and distributes intake air downstream from the throttle valve up and down to the upper intake passage and the lower intake passage. Since the ratio of intake air flowing is changed, the amount of intake air flowing through the upper and lower passages can be appropriately selectively distributed according to the load state, and the strength of the vortex of the tumble can be adjusted to optimize the combustion efficiency.
 前記吸気振分け弁が、基端がインレットパイプに仕切板の上流端縁に隣接する位置で枢支されて吸気上流側に向けた先端を上下に揺動自在としたフラップバルブであることにより、フラップバルブの先端の揺動位置によって吸気を上下に振り分ける割合を容易に変更することができる。 Since the intake distribution valve is a flap valve, the proximal end of which is pivotally supported by the inlet pipe at a position adjacent to the upstream end edge of the partition plate so that the tip toward the intake upstream side can swing up and down. The rate at which the intake air is divided up and down can be easily changed according to the swing position of the tip of the valve.
 上側吸気通路の通路断面積が、下側吸気通路の通路断面積より小さいことで、低負荷状態で吸気が狭い上側吸気通路を通ることにより高速となって、燃焼室に吸入されるため、強い渦流のタンブルを発生させ燃焼効率を向上させることができる。 The passage cross-sectional area of the upper intake passage is smaller than the passage cross-sectional area of the lower intake passage, so that in a low load state, the intake air flows rapidly through the narrow upper intake passage and is sucked into the combustion chamber. Vortex tumble can be generated to improve combustion efficiency.
 前記仕切板の下流端部が、吸気ポート内にあって吸気バルブステムの近傍に位置することで、低負荷状態で上側吸気通路を通る吸気を吸気弁口近くまで案内することができ、強い渦流のタンブルを容易に発生させることができる。 Since the downstream end of the partition plate is in the intake port and located in the vicinity of the intake valve stem, the intake air passing through the upper intake passage can be guided to the vicinity of the intake valve port under a low load condition. Tumble can be easily generated.
 シリンダヘッドの天井面に1つ形成された吸気弁口がシリンダボアの円孔よりシリンダ軸方向視で外側にはみ出した三日月状のはみ出し部を有するようにオフセットして形成されることにより、吸気弁口の開口全周長に対するはみ出し部の開口周長の割合を大きく確保でき、吸気弁口の外側縁側(はみ出し部側)から吸気の燃焼室への吸入が妨げられて、吸気弁口の内側縁側から吸入されて発生するタンブルを抑えるような逆タンブルの発生が抑制されることで、強い渦流のタンブルの発生を促すことができる。 An intake valve port is formed by offsetting one intake valve port formed on the ceiling surface of the cylinder head so as to have a crescent-shaped protruding portion that protrudes outward in a cylinder axial direction from the circular hole of the cylinder bore The ratio of the opening circumferential length of the protruding part to the entire opening length of the opening can be secured, and the intake to the combustion chamber of the intake from the outer edge side (protruding part side) of the intake valve port is blocked. By suppressing the generation of the reverse tumble which suppresses the tumble generated due to the inhalation, the generation of the strong vortex tumble can be promoted.
 吸気制御手段は、内燃機関が低負荷状態のときは吸気を大部分上方に振り分けて上側吸気通路を流れるように吸気振分け弁を低負荷位置に位置決めして強い渦流のタンブルを形成することができ、中負荷状態のときは吸気を下方より上方の割合を小さく振り分けて上側吸気通路を流れる吸気を抑制するように吸気振分け弁を中負荷位置に位置決めしてタンブルの渦流を極力抑え急速燃焼を防止し、高負荷状態のときは仕切板に仕切られた割合に吸気を上下に振り分けるように吸気振分け弁を高負荷位置に位置決めして上側吸気通路を十分な吸気が流れるようにして適度な渦流のタンブルを発生し、かつ吸気効率を良好に維持することができ、内燃機関の負荷状態に応じてタンブルの渦流の強さを調整して燃焼効率の最適化を図ることができ、燃費を低減することができる。 When the internal combustion engine is in a low load state, the intake control means can position the intake flow distribution valve at a low load position to form a strong vortex tumble flow so that the intake air is mostly distributed upward and flows through the upper intake passage. In the medium load state, the intake distribution valve is positioned at the medium load position so that the intake flow is distributed to the upper intake passage by reducing the ratio of the upper part lower than the lower part to minimize the vortex vortices of the tumble and prevent rapid combustion. When the load is high, the intake distribution valve is positioned at the high load position to distribute the intake air vertically to the ratio divided by the partition plate so that sufficient intake flows in the upper intake passage, so that the vortex flow is moderate. Tumble can be generated and intake efficiency can be favorably maintained, and the strength of the vortex of the tumble can be adjusted according to the load state of the internal combustion engine to optimize the combustion efficiency. It is possible to reduce the fuel consumption.
 前記インレットパイプの上側吸気通路と下側吸気通路にそれぞれ燃料噴射を行う上側インジェクタと下側インジェクタを備え、吸気振分け弁の揺動状態に応じて上側インジェクタと下側インジェクタの噴射量を制御することにより、吸気振分け弁の揺動状態すなわち吸気流量の上下振り分け状態に応じて上側インジェクタと下側インジェクタの噴射量を最適制御することで、燃焼効率を一層向上させるとともに、空燃比を最適化することができる。 An upper injector and a lower injector performing fuel injection to the upper intake passage and the lower intake passage of the inlet pipe, respectively, and controlling the injection amount of the upper injector and the lower injector according to the swing state of the intake distribution valve Thus, the combustion efficiency is further improved and the air fuel ratio is optimized by optimally controlling the injection amounts of the upper injector and the lower injector according to the swing state of the intake air distribution valve, that is, the vertical distribution state of the intake flow rate. Can.
本発明の一実施の形態に係る吸気装置を備える内燃機関を搭載した自動二輪車の右側面図である。FIG. 1 is a right side view of a motorcycle equipped with an internal combustion engine equipped with an intake system according to an embodiment of the present invention. 同内燃機関の一部断面右側断面図である。FIG. 2 is a partial cross-sectional right sectional view of the same internal combustion engine. シリンダブロックの上面図である。It is a top view of a cylinder block. シリンダヘッドの下面図である。It is a bottom view of a cylinder head. 燃焼室の天井面の拡大説明図である。It is expansion explanatory drawing of the ceiling surface of a combustion chamber. 低負荷状態における内燃機関の要部断面図である。FIG. 2 is a cross-sectional view of an essential part of the internal combustion engine in a low load state. 中負荷状態における内燃機関の要部断面図である。FIG. 2 is a cross-sectional view of an essential part of the internal combustion engine in a medium load state. 高負荷状態における内燃機関の要部断面図である。FIG. 2 is a cross-sectional view of an essential part of the internal combustion engine in a high load state. 図6のIX-IX線断面図である。It is the IX-IX sectional view taken on the line of FIG. 図6のX-X線断面図である。FIG. 7 is a cross-sectional view taken along the line XX in FIG. スロットル開度θに対する吸気振分け弁開度φの制御とタンブル比Rtの変化を示すグラフである。It is a graph which shows control of intake distribution valve-opening degree (phi) with respect to throttle-opening degree (theta), and the change of tumble ratio Rt. 別の実施の形態に係る吸気装置を備える内燃機関の要部断面図である。It is principal part sectional drawing of an internal combustion engine provided with the intake device which concerns on another embodiment. 図12のXIII-XIII線断面図である。FIG. 13 is a cross-sectional view taken along line XIII-XIII of FIG. 図12の実施形態における、スロットル開度θに対する吸気振分け弁開度φと燃料噴射比率rの制御を示すグラフである。13 is a graph showing control of an intake distribution valve opening degree φ and a fuel injection ratio r with respect to a throttle opening degree θ in the embodiment of FIG. 12;
 以下、本発明に係る一実施の形態について図1ないし図11に基づいて説明する。
 図1は、本実施の形態に係る吸気装置を備える内燃機関10を搭載した自動二輪車1の全体側面図である。
Hereinafter, an embodiment according to the present invention will be described based on FIGS. 1 to 11.
FIG. 1 is an overall side view of a motorcycle 1 equipped with an internal combustion engine 10 equipped with an intake system according to the present embodiment.
 本自動二輪車1の車体フレーム2は、ヘッドパイプ2aから後方へ延出する左右一対のメインフレームパイプ2b,2bを有し、メインフレームパイプ2b,2bは後方へ延出した後に下方に屈曲して急傾斜部2ba,2baを形成している。急傾斜部2ba,2baの下部は、前方に屈曲させて下端部に至っている。
 また、ヘッドパイプ2aから斜め急角度に下方へ左右一対のダウンフレームパイプ2c,2cが、側面視でメインフレームパイプ2bの急傾斜部2baに略平行に延出している。
The body frame 2 of the motorcycle 1 has a pair of left and right main frame pipes 2b, 2b extending rearward from the head pipe 2a, and the main frame pipes 2b, 2b extend rearward and then bend downward. The steep slopes 2ba and 2ba are formed. Lower portions of the steep slopes 2ba and 2ba are bent forward and reach lower ends.
Further, a pair of left and right down frame pipes 2c, 2c extend downward from the head pipe 2a at a steep angle, substantially in parallel to the steeply inclined portion 2ba of the main frame pipe 2b in a side view.
 メインフレームパイプ2b,2bの急傾斜部2ba,2baの上部からはシートレール2d,2dが後方に延出し、同シートレール2d,2dの中央部と急傾斜部2ba,2baの下部とを連結したバックステー2e,2eがシートレール2d,2dを支持している。 Seat rails 2d, 2d extend rearward from the upper portions of the steep slopes 2ba, 2ba of the main frame pipes 2b, 2b, and connect the central portions of the seat rails 2d, 2d with the lower portions of the steep slopes 2ba, 2ba Back stays 2e, 2e support the seat rails 2d, 2d.
 以上のような車体フレーム2において、ヘッドパイプ2aにはフロントフォーク3が枢支され、その下端に前輪4が軸支され、メインフレームパイプ2b,2bの下部前方にはピボットプレート2fが固定され、このピボットプレート2fに前端を枢支されたリヤフォーク5が後方へ延出し、その後端に後輪6が軸支され、リヤフォーク5の後部とシートレール2d,2dの中央部との間にリヤクッション7が介装されている。
 メインフレームパイプ2b,2bには燃料タンク8が架設され、燃料タンク8の後方にシート9がシートレール2d,2dに支持されて設けられている。
In the vehicle body frame 2 as described above, the front fork 3 is pivotally supported by the head pipe 2a, the front wheel 4 is pivotally supported at its lower end, and the pivot plate 2f is fixed to the lower front of the main frame pipes 2b, 2b. A rear fork 5, whose front end is pivotally supported by the pivot plate 2f, extends rearward, a rear wheel 6 is pivotally supported at the rear end, and a rear is interposed between the rear of the rear fork 5 and the central portions of the seat rails 2d, 2d. A cushion 7 is interposed.
A fuel tank 8 is installed on the main frame pipes 2b and 2b, and a seat 9 is supported by seat rails 2d and 2d behind the fuel tank 8.
 車体フレーム2に搭載される内燃機関10は、SOHC型2バルブの単気筒4ストローク内燃機関であり、車体に対してクランク軸12(図2)を車体幅方向に指向させ、気筒を若干前傾させて起立した姿勢で懸架される。 The internal combustion engine 10 mounted on the vehicle body frame 2 is a SOHC type two-valve single-cylinder four-stroke internal combustion engine, with the crankshaft 12 (FIG. 2) oriented in the vehicle width direction with respect to the vehicle It is suspended in the standing posture.
 図2に示すように、内燃機関10のクランク軸12を回転自在に軸支するクランクケース11内には、クランク軸12の後方に配設されるメイン軸13とカウンタ軸14の間に変速歯車機構15が配置されている。カウンタ軸14は出力軸であり、後輪6の回転軸との間にチェーン(図示せず)が架渡され、出力軸からチェーンを介して動力が後輪6に伝達される。 As shown in FIG. 2, in the crankcase 11 rotatably supporting the crankshaft 12 of the internal combustion engine 10, a transmission gear is provided between the main shaft 13 and the countershaft 14 disposed behind the crankshaft 12. A mechanism 15 is arranged. The counter shaft 14 is an output shaft, and a chain (not shown) is bridged between the counter shaft 14 and the rotation shaft of the rear wheel 6, and power is transmitted from the output shaft to the rear wheel 6 through the chain.
 図2を参照して、クランクケース11の上には、1本の鋳鉄製のシリンダライナ16Lが鋳込まれたシリンダブロック16が取り付けられ、シリンダブロック16の上にガスケットを介してシリンダヘッド17が重ねられ、シリンダブロック16とシリンダヘッド17はスタッドボルトにより一体に締結され、シリンダヘッド17の上方をシリンダヘッドカバー18が覆っている。
 クランクケース11の上に重ねられるシリンダブロック16,シリンダヘッド17,シリンダヘッドカバー18は、クランクケース11から若干前傾した姿勢で上方に延出している(図1,図2参照)。
Referring to FIG. 2, on the crankcase 11 is mounted a cylinder block 16 in which a cast iron cylinder liner 16L is cast, and a cylinder head 17 is mounted on the cylinder block 16 via a gasket. The cylinder block 16 and the cylinder head 17 are integrally fastened by stud bolts, and the cylinder head cover 18 covers the upper side of the cylinder head 17.
The cylinder block 16, the cylinder head 17, and the cylinder head cover 18, which are stacked on the crankcase 11, extend upward in a posture slightly inclining from the crankcase 11 (see FIGS. 1 and 2).
 このように車体フレームに搭載された内燃機関10の若干前傾して立設されたシリンダヘッド16から後方に、連結管19を介してインレットパイプ20が延出し、インレットパイプ20には、スロットル弁22を内蔵するバタフライ型のスロットルボディ21が設けられるとともに、インジェクタ23が装着され、さらに後記する吸気振分け弁61が設けられている。 The inlet pipe 20 extends rearward from the cylinder head 16 erected slightly forward of the internal combustion engine 10 mounted on the vehicle body frame in this manner via the connecting pipe 19, and the inlet pipe 20 receives a throttle valve. A butterfly type throttle body 21 having a built-in 22 is provided, an injector 23 is mounted, and an intake air distribution valve 61 described later is provided.
 図1に示すように、このインレットパイプ20の後端に連結されるエアクリーナ24が、側面視で、メインフレーム2bの急傾斜部2baとシートレール2dとバックステー2eに囲まれた空間に配設される(図1参照)。
 また、シリンダヘッド17から前方に延出した排気管27は、下方に屈曲し、さらに後方に屈曲してクランクケース11の下面に沿って後方にかつ右側に寄って後輪6の右側に配置されたマフラー26に連結している。
As shown in FIG. 1, the air cleaner 24 connected to the rear end of the inlet pipe 20 is disposed in a space surrounded by the steeply inclined portion 2ba of the main frame 2b, the seat rail 2d and the backstay 2e in a side view. (See Figure 1).
Further, an exhaust pipe 27 extending forward from the cylinder head 17 is bent downward and further bent backward so as to be disposed rearward and rightward along the lower surface of the crankcase 11 and disposed on the right side of the rear wheel 6 It is connected to the muffler 26.
 図2を参照して、クランクケース11は左右割りで左右クランクケース半体からなり、左右クランクケース半体の合せ面に形成された開口にシリンダライナ16Lの下端部が嵌入してシリンダブロック16が若干前傾して上方に突出している。そして、同シリンダライナ16Lの内部のシリンダボア16bにピストン25が往復摺動自在に嵌合され、ピストン25のピストンピン25pとクランク軸12のクランクピン12pとの間をコンロッド26が連接してクランク機構を構成している。 Referring to FIG. 2, the crankcase 11 is divided into right and left portions and consists of left and right crankcase halves, and the lower end portion of the cylinder liner 16L is fitted into the opening formed in the mating surface of the left and right crankcase halves. Slightly forward and protruding upward. A piston 25 is slidably fitted in a cylinder bore 16b of the cylinder liner 16L in a reciprocating manner, and a connecting rod 26 is connected between a piston pin 25p of the piston 25 and a crank pin 12p of the crankshaft 12 to provide a crank mechanism. Are configured.
 シリンダブロック16のシリンダボア16b内を摺動するピストン25の頂面25tと同頂面25tが対向するシリンダヘッド17の天井面41との間に燃焼室40が構成される。
 シリンダヘッド17には、天井面41にシリンダボア16bの中心軸線であるシリンダ軸線Cに関して互いに直径方向の反対位置に1つずつ吸気弁口42と排気弁口43(図4、図6)が燃焼室40に臨んで開口されるとともに、吸気弁口42と排気弁口43から各々吸気ポート44と排気ポート45が互いに離れる方向に湾曲しながら延出して形成されている。
A combustion chamber 40 is formed between the top surface 25 t of the piston 25 sliding in the cylinder bore 16 b of the cylinder block 16 and the ceiling surface 41 of the cylinder head 17 opposite to the top surface 25 t.
In the cylinder head 17, an intake valve port 42 and an exhaust valve port 43 (FIG. 4, FIG. 6) are provided at the ceiling surface 41 one by one at diametrically opposite positions with respect to the cylinder axis C which is the central axis of the cylinder bore 16b. The intake port 44 and the exhaust port 45 extend from the intake valve port 42 and the exhaust valve port 43 while curving in directions away from each other.
 図2において、吸気ポート44は、吸気弁口42から二輪車の後方に延出し、連結管19を介してインレットパイプ20に連通し、排気ポート45は排気管27(図1)に連結される。
 シリンダヘッド16に一体に嵌着された弁ガイド34i,34eにそれぞれ摺動可能に支持される吸気弁46および排気弁47は、シリンダヘッド13の上に設けられる動弁機構30により駆動されて、吸気ポート44の吸気弁口42および排気ポート45の排気弁口43をクランク軸12の回転に同期して開閉する。
In FIG. 2, the intake port 44 extends from the intake valve port 42 to the rear of the two-wheeled vehicle and communicates with the inlet pipe 20 via the connection pipe 19, and the exhaust port 45 is connected to the exhaust pipe 27 (FIG. 1).
An intake valve 46 and an exhaust valve 47 slidably supported by valve guides 34 i and 34 e integrally fitted to the cylinder head 16 are driven by a valve mechanism 30 provided on the cylinder head 13, The intake valve port 42 of the intake port 44 and the exhaust valve port 43 of the exhaust port 45 are opened and closed in synchronization with the rotation of the crankshaft 12.
 動弁機構30は、シリンダヘッド17の上に1本のカム軸31が左右方向に指向して軸支されたSOHC型内燃機関の動弁機構である。カム軸31の斜め前後上方にロッカアームシャフト32e,32iが支持され、後方のロッカアームシャフト32iに吸気ロッカアーム33iが揺動自在に中央を軸支され、前方のロッカアームシャフト32eに排気ロッカアーム33eが揺動自在に中央を軸支されている。 The valve operating mechanism 30 is a valve operating mechanism of the SOHC type internal combustion engine in which one cam shaft 31 is axially supported on the cylinder head 17 in the left-right direction. Rocker arm shafts 32e and 32i are supported diagonally front and rear of cam shaft 31, and intake rocker arm 33i is pivotally pivotally supported at the rear by rocker arm shaft 32i at the center, and exhaust rocker arm 33e is freely pivotable at front rocker arm shaft 32e. The center is centrally supported.
 吸気ロッカアーム33iの一端は、カム軸31の吸気カムローブに接し、他端がスプリングで付勢された吸気弁46のバルブステム46sの上端に調整ねじを介して接し、排気ロッカアーム33eの一端は、カム軸31の排気カムローブに接し、他端がスプリングで付勢された排気弁47のバルブステム47sの上端に調整ねじを介して接し、カム軸31の回転により吸気ロッカアーム33iと排気ロッカアーム33eが揺動して吸気弁46と排気弁47を開閉駆動する。 One end of the intake rocker arm 33i is in contact with the intake cam lobe of the camshaft 31, and the other end is in contact with the upper end of the valve stem 46s of the intake valve 46 biased by a spring via an adjustment screw, and one end of the exhaust rocker arm 33e is a cam The other end is in contact with the upper end of the valve stem 47s of the exhaust valve 47, which is in contact with the exhaust cam lobe of the shaft 31 by a spring, via an adjustment screw, and the intake rocker arm 33i and the exhaust rocker arm 33e swing by rotation of the camshaft 31 Then, the intake valve 46 and the exhaust valve 47 are driven to open and close.
 図3は、シリンダブロック16の上面図であり、シリンダヘッド17との合せ面16fにシリンダボア16bの円孔と動弁機構30に動力を伝達するチェーンを挿通するチェーン室16cの矩形孔が穿設されている。
 図4は、シリンダブロック16に重ね合わされるシリンダヘッド17の下面図であり、シリンダブロック16に合せ面16fに対向する合せ面17fに、シリンダボア16bに対応して燃焼室40の天井面41が凹んで形成されるとともに、チェーン室16cに対応して連通するチェーン室17cが穿設されている。
FIG. 3 is a top view of the cylinder block 16. A circular hole of the cylinder bore 16b and a rectangular hole of a chain chamber 16c for inserting a chain for transmitting power to the valve mechanism 30 are bored in the mating face 16f with the cylinder head 17. It is done.
FIG. 4 is a bottom view of the cylinder head 17 superimposed on the cylinder block 16. The ceiling surface 41 of the combustion chamber 40 is recessed corresponding to the cylinder bore 16b in the mating surface 17f opposite to the mating surface 16f in the cylinder block 16. And a chain chamber 17c communicating with the chain chamber 16c.
 シリンダヘッド17の合せ面17fにおける燃焼室40の天井面41の円形開口縁41sがシリンダボア16bの円孔に一致する。
 天井面41の後側に大径の吸気弁口42が開口し、天井面41の前側に吸気弁口42より幾らか小径の排気弁口43が開口している。
 また、天井面41には点火プラグ(図示せず)が先端を突出させるプラグ孔48が穿設されている。
The circular opening edge 41s of the ceiling surface 41 of the combustion chamber 40 at the mating surface 17f of the cylinder head 17 coincides with the circular hole of the cylinder bore 16b.
A large-diameter intake valve port 42 opens on the rear side of the ceiling surface 41, and an exhaust valve port 43 having a diameter slightly smaller than that of the intake valve port 42 opens on the front side of the ceiling surface 41.
Further, in the ceiling surface 41, a plug hole 48 is formed in which a spark plug (not shown) projects a tip end.
 図5は、シリンダヘッド17の燃焼室40をシリンダ軸Cの軸方向に視た、すなわちシリンダ軸方向視で示した図であり、同図5を参照して、吸気弁口42が、燃焼室40の天井面41のシリンダボア16bの円孔に対応する円形の天井面開口縁41sよりシリンダ軸方向視で吸気弁口周囲部の一部が外側にはみ出してオフセットしており、吸気弁口42は天井面開口縁41sからはみ出した三日月状のはみ出し部42a(図5の散点で示した部分)を有する。 FIG. 5 is a view of the combustion chamber 40 of the cylinder head 17 in the axial direction of the cylinder axis C, ie, in the cylinder axial direction. Referring to FIG. 5, the intake valve port 42 is a combustion chamber A part of the intake valve port peripheral portion protrudes outward and is offset from the circular ceiling surface opening edge 41s corresponding to the circular hole of the cylinder bore 16b of the ceiling surface 41 of 40, and the intake valve port 42 It has a crescent-like protruding portion 42a (portion indicated by a scattering point in FIG. 5) protruding from the ceiling surface opening edge 41s.
 吸気弁口42の開口縁42sの開口全周長に対するはみ出し部42aの開口周長の割合をマスキング割合Rmとすると、本吸気弁口42のオフセットによるマスキング割合Rmは20~50%程度である。 Assuming that the ratio of the opening circumferential length of the protruding portion 42a to the entire circumferential length of the opening edge 42s of the intake valve port 42 is a masking ratio Rm, the masking ratio Rm by the offset of the main intake valve port 42 is about 20 to 50%.
 また、図5を参照して、天井面41には、吸気弁口42と排気弁口43を長径方向両側に囲む楕円状の横断面形状を有してドーム状凹部51が形成されており、天井面41のうちドーム状凹部51の外側の左右1対の三日月状部分にそれぞれスキッシュ52,52が形成されている。 Further, referring to FIG. 5, the ceiling surface 41 is formed with a dome-shaped concave portion 51 having an elliptical cross-sectional shape surrounding the intake valve port 42 and the exhaust valve port 43 on both sides in the major axis direction, In the ceiling surface 41, squish 52, 52 is formed on a pair of left and right crescent-shaped portions outside the dome-shaped recess 51, respectively.
 そして、吸気弁口42の外周囲に、吸気弁口42の三日月状のはみ出し部42aの両端部辺りから吸気弁口42の開口縁42sに沿って湾曲した1対のガイド壁面53,53が、互いに対向して前記排気弁口43側に向けて徐々に拡開して形成されている。 Then, around the outer periphery of the intake valve port 42, a pair of guide wall surfaces 53, 53 curved along the opening edge 42s of the intake valve port 42 from both ends of the crescent-shaped protruding portion 42a of the intake valve port 42, They are formed so as to face each other and gradually expand toward the exhaust valve port 43 side.
 以上のように形成されたシリンダヘッド17の燃焼室40の天井面41に対して、シリンダブロック16のシリンダボア16bは、図3および図6,図7,図8に示すように、シリンダボア16bのシリンダヘッド17側の開口縁における吸気弁口42のはみ出し部42aに対向する後側部分を吸気弁46の移動方向に吸気弁46のかさ部46p周縁に沿って最大バルブリフト位置まで切り欠いた切欠き円曲面55が形成されている。 With respect to the ceiling surface 41 of the combustion chamber 40 of the cylinder head 17 formed as described above, the cylinder bore 16b of the cylinder block 16 corresponds to the cylinder of the cylinder bore 16b as shown in FIGS. The rear end of the opening edge on the head 17 side facing the protruding portion 42a of the intake valve port 42 is cut out along the periphery of the bulk portion 46p of the intake valve 46 in the moving direction of the intake valve 46 to the maximum valve lift position A circular curved surface 55 is formed.
 図7,図8,図9に示すように、切欠き円曲面55は、鋳鉄製のシリンダライナ16Lが鋳込まれたアルミ合金製のシリンダブロック16のフランジレスのシリンダライナ16Lの上端面を覆う部分に斜めに切り欠かれて形成されている。 As shown in FIGS. 7, 8 and 9, the notched circular curved surface 55 covers the upper end surface of the flangeless cylinder liner 16L of the aluminum alloy cylinder block 16 into which the cast iron cylinder liner 16L is cast. It is cut out and formed in a part at an angle.
 この切欠き円曲面55に沿って切欠き円曲面55に近接して吸気弁46のかさ部46p周縁が移動するので、吸気弁46が開いて最大バルブリフト位置まで移動する間、吸気弁口42の外側縁側(はみ出し部42a側)からの吸気は、吸気弁46のかさ部46p周縁と切欠き円曲面55との極めて狭い隙間を通らなければならず燃焼室40への吸入が殆ど妨げられマスキングされた状態にある。 Since the periphery of the bulk portion 46p of the intake valve 46 moves close to the notch circular curved surface 55 along the notch circular curved surface 55, the intake valve opening 42 moves while the intake valve 46 opens and moves to the maximum valve lift position. The intake air from the outer edge side (protruding part 42a side) of the valve must pass through a very narrow gap between the rim 46p edge of the intake valve 46 and the notched circular curved surface 55, and the intake to the combustion chamber 40 is blocked substantially. In a state of being
 したがって、吸気弁口42の外側縁側からはマスキングされて燃焼室40には吸気が僅かに吸入されるだけで、吸気弁口42の内側縁側からの吸入が主になり、よって、燃焼室内にタンブルが発生し易い構造となっている。
 なお、吸気弁46の最大バルブリフト位置が、切欠き円曲面55をいくらか越えた位置にあってもよい。
Therefore, masking is performed from the outer edge side of the intake valve port 42, and only a small amount of intake air is drawn into the combustion chamber 40, and the intake from the inner edge side of the intake valve port 42 becomes main. Has a structure that is easy to occur.
The maximum valve lift position of the intake valve 46 may be slightly beyond the notch circular curved surface 55.
 図6に示すように、ピストン25の頂面25tの周縁部の吸気弁口42のはみ出し部42aに対向する部分が吸気弁46のかさ部46pfの外周部端面と平行に切り欠かれてピストン切欠き面56が形成されており(図6参照)、吸気行程でピストン25の下降とともに吸気弁46が開弁しリフトするときに、吸気弁口42の外側縁側からの吸気の流入方向とピストン切欠き面(56)が垂直となるため、吸気弁口42の外側縁側から燃焼室40に吸気の吸入が促されることはなく、逆タンブルの発生がより抑えられている。 As shown in FIG. 6, a portion of the peripheral portion of the top surface 25t of the piston 25 facing the protruding portion 42a of the intake valve port 42 is cut out parallel to the end face of the peripheral portion 46pf of the intake valve 46 to cut the piston The notch surface 56 is formed (see FIG. 6), and when the intake valve 46 is opened and lifted as the piston 25 descends in the intake stroke, the inflow direction of the intake air from the outer edge side of the intake valve port 42 Since the notch surface (56) is vertical, the intake of the intake air is not prompted from the outer edge side of the intake valve port 42 to the combustion chamber 40, and the occurrence of reverse tumble is further suppressed.
 そして、吸気系において、インレットパイプ20から連結管19を介して吸気ポート44に至る吸気通路Pが、インレットパイプ20の下流部から吸気ポート44の湾曲部まで仕切板60により上側吸気通路Upと下側吸気通路Lpに仕切られている。 Then, in the intake system, the intake passage P from the inlet pipe 20 to the intake port 44 via the connection pipe 19 passes from the downstream portion of the inlet pipe 20 to the curved portion of the intake port 44 by the partition plate 60 to the upper intake passage Up and down. It is divided into the side intake passage Lp.
 仕切板60は、インレットパイプ20と一体に形成されており、仕切板60の上流端部がインレットパイプ20の内側に上下を仕切って設けられ、下流側に大きく飛び出した延出部分が吸気ポート44に挿入されている。
 図9に示すように、仕切板60の帯状の延出部分は、その両側縁が吸気ポート44の内周面に沿って延びている。
 仕切板60は、吸気通路Pを上方に寄っており、上側吸気通路Upの通路断面積が下側吸気通路Lpの通路断面積より小さい(図9参照)。
The partition plate 60 is integrally formed with the inlet pipe 20, and the upstream end of the partition plate 60 is provided inside the inlet pipe 20 so as to divide the upper and lower portions, and the extension portion greatly projecting downstream is the intake port 44. Is inserted in the
As shown in FIG. 9, both side edges of the strip-like extending portion of the partition plate 60 extend along the inner peripheral surface of the intake port 44.
The partition plate 60 moves the intake passage P upward, and the passage cross-sectional area of the upper intake passage Up is smaller than the passage cross-sectional area of the lower intake passage Lp (see FIG. 9).
 仕切板60の長尺の延出部は、吸気ポート44の湾曲形状に沿って曲がっており、図10に示すように、先端の下流端部60eは吸気ポート44の湾曲部に位置する吸気弁46の吸気バルブステム46sに達しており、下流端部60eには先端縁からU字状に凹んだ凹部60uが形成されていて、このU字状凹部60uを吸気バルブステム46sが貫通している。 The elongated extension of the partition plate 60 is bent along the curved shape of the intake port 44, and as shown in FIG. 10, the downstream end 60 e of the tip is an intake valve located at the curved portion of the intake port 44. The intake valve stem 46s reaches 46 and the downstream end 60e is formed with a recess 60u which is recessed in a U-shape from the tip edge, and the intake valve stem 46s penetrates the U-shaped recess 60u .
 そして、下流端部60eは、湾曲していない平板状で吸気ポート44の湾曲部に直線的に挿入され、その下流端部60eの左右側部が吸気ポート44の湾曲部に左右に対向して形成された左右凹溝44v,44vに嵌入されて固定支持される。 The downstream end 60 e is a flat, non-curved plate and is linearly inserted into the curved portion of the intake port 44, and the left and right sides of the downstream end 60 e are opposed to the left and right of the curved portion of the intake port 44. It is inserted into the formed left and right recessed grooves 44v and 44v and fixedly supported.
 インレットパイプ20内において、スロットル弁22よりも下流で仕切板60の上流に吸気振分け弁61が設けられている。
 図6,図7,図8を参照して、吸気振分け弁61は、基端の回動軸61aがインレットパイプ20に仕切板60の上流端縁の近傍で枢支されて吸気上流側に向けた先端を上下に揺動自在としたフラップバルブであり、モータ駆動機構62により揺動させられる。
In the inlet pipe 20, an intake air distribution valve 61 is provided upstream of the partition plate 60 downstream of the throttle valve 22.
Referring to FIGS. 6, 7 and 8, in the intake air distribution valve 61, the pivot shaft 61a at the base end is pivoted on the inlet pipe 20 in the vicinity of the upstream edge of the partition plate 60 and directed to the intake upstream side. It is a flap valve in which the tip end is pivotable up and down, and is pivoted by the motor drive mechanism 62.
 吸気振分け弁61は、上流のスロットル弁22に先端を向けて揺動することで、スロットル弁22より下流の吸気を上下に振り分け上側吸気通路Upと下側吸気通路Lpを流れる吸気の割合を変更することができる。 The intake air distribution valve 61 swings its tip toward the upstream throttle valve 22 to distribute the intake air downstream of the throttle valve 22 up and down and change the ratio of intake air flowing through the upper intake passage Up and the lower intake passage Lp. can do.
 内燃機関10を制御するECU(電子制御ユニット)65 (図2)は、吸気制御手段66を備えており、内燃機関10の運転状態を解析して吸気制御手段66により吸気系のスロットル弁21やインジェクタ23が駆動制御されるが、吸気振分け弁61も吸気制御手段66により駆動制御される。 The ECU (electronic control unit) 65 (FIG. 2) for controlling the internal combustion engine 10 is provided with an intake control means 66, analyzes the operating state of the internal combustion engine 10 and uses the intake control means 66 to The injector 23 is driven and controlled, but the intake distribution valve 61 is also driven and controlled by the intake control means 66.
 図6を参照して、スロットル弁22のスロットル開度θは、全閉時から回動して吸気通路に平行になったときが全開状態であり、内燃機関10の負荷状態を示す。
 吸気振分け弁61は、内燃機関10の負荷状態に応じて揺動制御され、吸気振分け弁61の揺動角である吸気振分け弁開度φは、図6に示す低負荷状態のときの吸気振分け弁61の低負荷位置を基準0度として図6で時計回りに揺動角度が増加する。
Referring to FIG. 6, the throttle opening degree θ of the throttle valve 22 is fully open when it is rotated from the fully closed position and becomes parallel to the intake passage, and indicates the load state of the internal combustion engine 10.
The intake distribution valve 61 is controlled to swing according to the load state of the internal combustion engine 10, and the intake distribution valve opening degree φ, which is the swing angle of the intake distribution valve 61, corresponds to the intake distribution in the low load state shown in FIG. The swing angle increases clockwise in FIG. 6 with the low load position of the valve 61 as the reference 0 degree.
 タンブルの状態は、クランク軸12の1回転当りのタンブルの回転数であるタンブル比Rtで表わすことができる。
 タンブル比Rt=タンブル回転角速度/クランク軸角速度
 タンブル比Rtが大きければ、強い渦流のタンブルが発生している。
The state of the tumble can be represented by a tumble ratio Rt which is the number of revolutions of the tumble per revolution of the crankshaft 12.
Tumble Ratio Rt = Tumble Rotational Angular Velocity / Crankshaft Angular Velocity If the tumble ratio Rt is large, strong vortex tumble occurs.
 図11には、スロットル開度θに応じて吸気振分け弁61を揺動制御する吸気振分け弁開度φの変化とタンブル比Rtの変化を示している。
 以下、図11を参照しつつ、内燃機関10の負荷状態による吸気振分け弁61の揺動制御とタンブル比Rtを考察する。
FIG. 11 shows a change in the intake distribution valve opening degree φ and a change in the tumble ratio Rt that perform swing control of the intake distribution valve 61 according to the throttle opening degree θ.
Hereinafter, the swing control of the intake air distribution valve 61 and the tumble ratio Rt according to the load state of the internal combustion engine 10 will be considered with reference to FIG.
 内燃機関10が低負荷運転状態のときは、図6に示すように、スロットル弁22は小さく開いており(スロットル開度θ:小)、吸気振分け弁61は先端縁が吸気通路Pの下側周面に接した低負荷位置(吸気振分け弁開度φ=0度)に位置決めされているので、吸気振分け弁61は吸気を大部分上方に振り分け、吸気は上側吸気通路Upを流れる。 When the internal combustion engine 10 is in a low load operation state, as shown in FIG. 6, the throttle valve 22 is opened small (throttle opening degree θ: small), and the leading edge of the intake distribution valve 61 is on the lower side of the intake passage P. Because the intake distribution valve 61 is positioned at a low load position (intake distribution valve opening degree φ = 0 degree) in contact with the circumferential surface, the intake distribution valve 61 distributes the intake air mostly to the upper side, and the intake flows through the upper intake passage Up.
 したがって、スロットル弁22の僅かに開いた開口を通った吸気は、大部分吸気振分け弁61により大部分上方の比較的狭い上側吸気通路Upに案内され流れるために高速となり、さらに吸気ポート44の湾曲部に位置する吸気バルブステム46sまで延出した仕切板60により吸気弁口42の近くまで案内されるので、大部分の吸気が吸気弁口42の内側縁側(シリンダ軸C側)から燃焼室40に高速で吸入されることになり、図6に示すように、強い渦流のタンブルが発生する(タンブル比Rtが上昇)。 Therefore, the intake air passing through the slightly open opening of the throttle valve 22 is guided and flowed to the relatively narrow upper intake passage Up mostly by the intake distribution valve 61, and the intake port 44 is further curved. Is guided to a position close to the intake valve port 42 by the partition plate 60 extending to the intake valve stem 46s located in the lower part, so most of the intake air is from the inner edge side (cylinder axis C side) of the intake valve port 42 As shown in FIG. 6, a strong vortex tumble occurs (the tumble ratio Rt increases).
 吸気弁口42がシリンダボア16bの円孔よりシリンダ軸方向視で外側にはみ出した三日月状のはみ出し部42aを有するようにオフセットして、吸気弁口42の外側縁側(はみ出し部42a側)はマスキングされ、かつ下側吸気通路Lpを通る吸気は殆どないため、吸気弁口42の外側縁側から燃焼室40に吸入する吸気はなく、タンブルを妨げる逆タンブルも発生せず、タンブルをより強く発生させ、タンブル比Rtは高くなり、低負荷時の燃焼効率を向上させることができる。 The intake valve port 42 is offset so as to have a crescent-shaped protruding portion 42a that protrudes outward in a cylinder axial direction from the circular hole of the cylinder bore 16b, and the outer edge side (protruding portion 42a side) of the intake valve port 42 is masked. And, since there is almost no intake air passing through the lower intake passage Lp, there is no intake air to be taken into the combustion chamber 40 from the outer edge side of the intake valve port 42, and no reverse tumble that interferes with tumble occurs, which makes the tumble stronger. The tumble ratio Rt becomes high, and the combustion efficiency at low load can be improved.
 内燃機関10が中負荷運転状態のときは、図7に示すように、スロットル弁21は中開度に開き(スロットル開度θ:中)、吸気振分け弁61は先端縁が吸気通路Pの上側周面に近づいた中負荷位置(吸気振分け弁開度φ=β度)に位置決めされる。このため、吸気振分け弁61は吸気を下方より上方の割合を小さく振り分けている。
 したがって、図7に矢印で示すように、下側吸気通路Lpは十分な吸気が流れるが、上側吸気通路Upを流れる吸気は抑制される。
When the internal combustion engine 10 is in a medium load operation state, as shown in FIG. 7, the throttle valve 21 opens to the middle opening degree (throttle opening degree θ: middle), and the intake distribution valve 61 has a tip edge at the upper side of the intake passage P. It is positioned at a middle load position (intake distribution valve opening degree φ = β degree) approaching the circumferential surface. Therefore, the intake air distribution valve 61 distributes the intake air at a lower rate than the lower side.
Therefore, as indicated by the arrows in FIG. 7, sufficient intake air flows through the lower intake passage Lp, but intake air flowing through the upper intake passage Up is suppressed.
 そのため、上側吸気通路Upを流れる抑制された吸気は、吸気弁口42の内側縁側から燃焼室40に入っても、抑制された吸気は弱いから弱い渦流のタンブルしか発生せず、さらに吸気弁口42の外側縁側から燃焼室40に吸入される吸気が幾らかはあって逆タンブルを生じてタンブルを抑えるので、タンブルは極力抑えられ、タンブル比Rtが低下する。 Therefore, even if the suppressed intake air flowing through the upper intake passage Up enters the combustion chamber 40 from the inner edge side of the intake valve port 42, the suppressed intake air is weak and only a weak swirl of tumble flow is generated. Since there is some intake air sucked into the combustion chamber 40 from the outer edge side of 42 and a reverse tumble is generated to suppress the tumble, the tumble is suppressed as much as possible and the tumble ratio Rt is reduced.
 内燃機関10が高負荷運転状態のときは、図8に示すように、スロットル弁21は全開となり(スロットル開度θ:全開)、吸気振分け弁61は仕切板60と同一平面をなす高負荷位置(吸気振分け弁開度φ=α度)に位置決めされる。このため、吸気振分け弁61は吸気を仕切板(60)に仕切られた割合に吸気を上下に振り分けている。 When the internal combustion engine 10 is in a high load operation state, as shown in FIG. 8, the throttle valve 21 is fully opened (throttle opening degree θ: fully open) and the intake distribution valve 61 is in a high load position flush with the partition plate 60. It is positioned at (intake distribution valve opening degree φ = α degree). For this reason, the intake air distribution valve 61 distributes the intake air vertically to a ratio at which the intake air is divided by the partition plate (60).
 したがって、図8に矢印で示すように、上側吸気通路Upと下側吸気通路Lpを十分な吸気が流れ、上側吸気通路Upを流れた吸気は、吸気弁口42の内側縁側から燃焼室40に吸入されてタンブルが発生し、下側吸気通路Lpを流れた吸気は、マスキングされつつも吸気弁口42の外側縁側から燃焼室40に入って幾らか逆タンブルを生じるが、上側吸気通路Upから十分な吸気量が吸入されることから、タンブル比Rtが比較的高い適度な渦流のタンブルを発生するとともに、十分な吸気により吸気効率を良好に維持することができる。 Therefore, as indicated by arrows in FIG. 8, sufficient intake air flows through the upper intake passage Up and the lower intake passage Lp, and intake air flowing through the upper intake passage Up flows from the inner edge side of the intake valve port 42 to the combustion chamber 40. A tumble is generated by suction, and the intake air flowing through the lower intake passage Lp enters the combustion chamber 40 from the outer edge side of the intake valve port 42 and causes some reverse tumble while being masked, but from the upper intake passage Up Since a sufficient intake amount is inhaled, it is possible to generate moderate tumble flow tumbles having a relatively high tumble ratio Rt, and to maintain good intake efficiency with sufficient intake.
 以上のように、本内燃機関10の吸気装置は、内燃機関の負荷状態に応じてタンブルの渦流の強さを調整して燃焼効率の最適化を図ることができる。 As described above, the intake system of the internal combustion engine 10 can optimize the combustion efficiency by adjusting the strength of the vortex of the tumble according to the load state of the internal combustion engine.
 本吸気振分け弁61は、基端の回動軸61aがインレットパイプ20に仕切板60の上流端縁の近傍で軸支されて吸気上流側に向けた先端を上下に揺動自在としたフラップバルブであるので、その先端の揺動位置によって吸気を上下に振り分ける割合を容易に変更することができる。 The intake distribution valve 61 is a flap valve in which a pivot shaft 61a at the base end is axially supported by the inlet pipe 20 in the vicinity of the upstream end edge of the partition plate 60 so that the tip toward the intake upstream side can swing up and down. Because of this, it is possible to easily change the rate at which the intake air is divided up and down depending on the swing position of the tip.
 以上の実施の形態に係る吸気装置は、仕切板60に上下に仕切られた上側吸気通路Upと下側吸気通路Lpのうち上側吸気通路Upにのみインジェクタ23を装着したが、下側吸気通路Lpにもインジェクタを装着した実施の形態を図12および図13に示す。
 上側吸気通路Upに上側インジェクタ71が装着され、下側吸気通路Lpに下側インジェクタ72が装着されている。なお、その他の部材は前記実施の形態と同じであり、同じ符号を使用する。
In the intake system according to the above-described embodiment, the injectors 23 are attached only to the upper intake passage Up among the upper intake passage Up and the lower intake passage Lp divided into upper and lower portions in the partition plate 60, but the lower intake passage Lp An embodiment equipped with an injector is also shown in FIG. 12 and FIG.
The upper injector 71 is attached to the upper intake passage Up, and the lower injector 72 is attached to the lower intake passage Lp. The other members are the same as those in the above embodiment, and the same reference numerals are used.
 上側インジェクタ71と下側インジェクタ72の燃料噴射比率r(下側噴射量/上側噴射量)を図14に示す。
 スロットル開度θが大きくなるに従い、吸気振分け弁開度φは、低負荷状態の0度の状態から高負荷状態のα度まで単純に上昇させている。
The fuel injection ratio r (lower injection amount / upper injection amount) of the upper injector 71 and the lower injector 72 is shown in FIG.
As the throttle opening degree θ increases, the intake air distribution valve opening degree φ is simply raised from 0 degree in the low load state to α degree in the high load state.
 低負荷状態のとき、すなわち吸気が上側吸気通路Upのみ流れているときは、燃料噴射比率rは0%で下側インジェクタ72は燃料を噴射せず上側インジェクタ71のみ燃料噴射する。
 スロットル開度θが大きくなり、負荷が増加すると、吸気振分け弁開度φを大きくし、上側吸気通路Upに対する下側吸気通路Lpを流れる吸気の割合を大きくするにつれて下側インジェクタ72の燃料噴射量を増やし燃料噴射比率rを上げていく。
 そして、高負荷状態となると、燃料噴射比率rを仕切板60が吸気通路Pを上下に仕切る割合(上側吸気通路Upに対する下側吸気通路Lpを流れる吸気の割合)と略一致させる。
In the low load state, that is, when the intake air flows only in the upper intake passage Up, the fuel injection ratio r is 0% and the lower injector 72 does not inject fuel but injects only the upper injector 71.
As the throttle opening degree θ increases and the load increases, the amount of fuel injection of the lower injector 72 is increased as the proportion of intake air flowing through the lower intake passage Lp to the upper intake passage Up is increased by increasing the intake distribution valve opening φ. Increase the fuel injection ratio r.
Then, in the high load state, the fuel injection ratio r is made substantially equal to the ratio (the ratio of the intake air flowing in the lower intake passage Lp to the upper intake passage Up) with which the partition plate 60 divides the intake passage P up and down.
 このように、吸気振分け弁61の揺動状態すなわち吸気流量の上下振り分け状態(吸気振分け弁開度φ)に応じて上側インジェクタ71と下側インジェクタ72の噴射量(燃料噴射比率r)を最適制御することで、燃焼効率を一層向上させるとともに、空燃比(A/F)を最適化することができる。 As described above, the injection amount (fuel injection ratio r) of the upper injector 71 and the lower injector 72 is optimally controlled according to the swing state of the intake air distribution valve 61, that is, the upper and lower distribution state (intake distribution valve opening degree φ) of the intake flow rate. Thus, the combustion efficiency can be further improved, and the air-fuel ratio (A / F) can be optimized.
 1…自動二輪車、2…車体フレーム、10…内燃機関、11…クランクケース、12…クランク軸、13…メイン軸、14…カウンタ軸、16…シリンダブロック、16b…シリンダボア、17…シリンダヘッド、18…シリンダヘッドカバー、19…連結管、
20…インレットパイプ、21…スロットルボディ、22…スロットル弁、23…インジェクタ、24…エアクリーナ、25…ピストン、26…コンロッド、
 30…動弁機構、31…カム軸、32e,32i…ロッカアームシャフト、33i…吸気ロッカアーム、33e…排気ロッカアーム、34i,34e…弁ガイド、
 40…燃焼室、41…天井面、42…吸気弁口、42a…はみ出し部、43…排気弁口、44…吸気ポート、45…排気ポート、46…吸気弁、46pf…かさ部、46s…吸気バルブステム、47…排気弁、48…プラグ孔、
 51…ドーム状凹部、52…スキッシュ、53…ガイド壁面、55…切欠き円曲面、56…ピストン切欠き面、
 60…仕切板、61…吸気振分け弁、62…モータ駆動機構、65…ECU、66…吸気制御手段、71…上側インジェクタ、72…下側インジェクタ。
 Up…上側吸気通路、Lp…下側吸気通路、P…吸気通路。
DESCRIPTION OF SYMBOLS 1 ... Motorcycle, 2 ... Body frame, 10 ... Internal combustion engine, 11 ... Crank case, 12 ... Crankshaft, 13 ... Main axis, 14 ... Counter axis, 16 ... Cylinder block, 16b ... Cylinder bore, 17 ... Cylinder head, 18 ... Cylinder head cover, 19 ... Coupling pipe,
Reference Signs List 20: inlet pipe, 21: throttle body, 22: throttle valve, 23: injector, 24: air cleaner, 25: piston, 26: connecting rod,
Reference Signs List 30 valve operating mechanism 31 cam shaft 32 e 32 i rocker arm shaft 33 i intake rocker arm 33 e exhaust rocker arm 34 i 34 e valve guide
40 combustion chamber 41 ceiling surface 42 intake valve port 42a protruding part 43 exhaust valve port 44 intake port 45 exhaust port 46 intake valve 46pf bulkhead 46s intake Valve stem, 47 ... exhaust valve, 48 ... plug hole,
51: dome-shaped concave portion, 52: squish, 53: guide wall surface, 55: notched circular curved surface, 56: piston notched surface,
DESCRIPTION OF SYMBOLS 60 ... Partition plate, 61 ... Intake distribution valve 62 ... Motor drive mechanism, 65 ... ECU, 66 ... Intake control means, 71 ... Upper injector, 72 ... Lower injector.
Up ... upper intake passage, Lp ... lower intake passage, P ... intake passage.

Claims (7)

  1.  シリンダブロック(16)のシリンダボア(16b)内に摺動自在に嵌合されるピストン(25)の頂面と同頂面が対向するシリンダヘッド(17)の天井面(41)との間に燃焼室(40)が構成され、
     前記シリンダヘッド(17)の前記天井面(41)に開口した吸気弁口(42)と排気弁口(43)からそれぞれ吸気ポート(44)と排気ポート(45)が互いに離れる方向に湾曲しながら延出して形成され、
     吸気ポート(44)にインレットパイプ(20)が接続されて連続した吸気通路(P)が構成され、
     前記インレットパイプ(20)に、スロットル弁(22)とそれより下流で吸気振分け弁(61)とが設けられ、
     前記吸気通路(P)が、吸気振分け弁(61)より下流側で部分的に仕切板(60)により上側吸気通路(Up)と下側吸気通路(Lp)に仕切られ、前記吸気振分け弁(61)により前記上側吸気通路(Up)と前記下側吸気通路(Lp)を流れる吸気が制御され、
     吸気制御手段(66)により前記吸気振分け弁(61)が駆動制御される内燃機関の吸気装置において、
     前記吸気振分け弁(61)は、前記仕切板(60)の上流端縁に隣接して設けられ、前記スロットル弁(22)より下流の吸気を上下に振り分け前記上側吸気通路(Up)と前記下側吸気通路(Lp)を流れる吸気の割合を変更することを特徴とする内燃機関の吸気装置。
    Combustion occurs between the top surface of the piston (25) slidably fitted in the cylinder bore (16b) of the cylinder block (16) and the ceiling surface (41) of the cylinder head (17) opposite to the top surface A room (40) is constructed,
    While the intake port (44) and the exhaust port (45) are curved away from each other from the intake valve port (42) and the exhaust valve port (43) opened in the ceiling surface (41) of the cylinder head (17) Extended out,
    An inlet pipe (20) is connected to the intake port (44) to form a continuous intake passage (P),
    The inlet pipe (20) is provided with a throttle valve (22) and an intake air distribution valve (61) downstream thereof.
    The intake passage (P) is divided into an upper intake passage (Up) and a lower intake passage (Lp) partially by a partition plate (60) downstream of the intake distribution valve (61), and the intake distribution valve (P) 61) controls the intake air flowing through the upper intake passage (Up) and the lower intake passage (Lp),
    In an intake system of an internal combustion engine in which the intake distribution valve (61) is drive-controlled by an intake control means (66),
    The intake distribution valve (61) is provided adjacent to the upstream end edge of the partition plate (60), and distributes intake air downstream from the throttle valve (22) up and down and the upper intake passage (Up) and the lower portion. An intake system for an internal combustion engine, wherein a ratio of intake air flowing through a side intake passage (Lp) is changed.
  2.  前記吸気振分け弁(61)は、基端が前記インレットパイプ(20)に前記仕切板(60)の上流端縁に隣接する位置で枢着されて吸気上流側に向けた先端を上下に揺動自在としたフラップバルブであることを特徴とする請求項1記載の内燃機関の吸気装置。 The intake distribution valve (61) is pivotally attached at a base end thereof to the inlet pipe (20) at a position adjacent to the upstream end edge of the partition plate (60) and swings the tip directed to the intake upstream side up and down 2. An intake system for an internal combustion engine according to claim 1, wherein said intake valve is a flexible flap valve.
  3.  前記上側吸気通路(Up)の通路断面積が、前記下側吸気通路(Lp)の通路断面積より小さいことを特徴とする請求項1または請求項2記載の内燃機関の吸気装置。 The intake system for an internal combustion engine according to claim 1 or 2, wherein a passage sectional area of the upper intake passage (Up) is smaller than a passage sectional area of the lower intake passage (Lp).
  4.  前記仕切板(60)の下流端部(60e)は、前記吸気ポート(44)内にあって吸気バルブステム(46s)に隣接する位置にあることを特徴とする請求項1ないし請求項3のいずれか1項記載の内燃機関の吸気装置。 The downstream end (60e) of the partition (60) is located in the intake port (44) and adjacent to the intake valve stem (46s). An intake system for an internal combustion engine according to any one of the above.
  5.  前記シリンダヘッド(17)の前記天井面(41)にシリンダボア(16b)の中心軸であるシリンダ軸(C)に関して互いに反対位置に1つずつ前記吸気弁口(42)と前記排気弁口(43)が前記燃焼室(40)に臨んで開口され
     前記吸気弁口(42)がシリンダボア(16b)の円孔よりシリンダ軸方向視で外側にはみ出した三日月状のはみ出し部(42a)を有するようにオフセットして形成されることを特徴とする請求項1ないし請求項4のいずれか1項記載の内燃機関の吸気装置。
    In the ceiling surface (41) of the cylinder head (17), the intake valve port (42) and the exhaust valve port (43) are disposed opposite to each other with respect to a cylinder axis (C) which is a central axis of the cylinder bore (16b). ) Is opened toward the combustion chamber (40), and the intake valve port (42) has a crescent-shaped protruding portion (42a) protruding outward from the circular hole of the cylinder bore (16b) in the cylinder axial direction. The intake system for an internal combustion engine according to any one of claims 1 to 4, which is formed offset.
  6.  前記吸気制御手段(66)は、内燃機関が低負荷状態のときは吸気を大部分上方に振り分けて前記上側吸気通路(Up)を流れるように前記吸気振分け弁(61)を低負荷位置に位置決めし、中負荷状態のときは吸気を下方より上方の割合を小さく振り分けて前記上側吸気通路(Up)を流れる吸気を抑制するように前記吸気振分け弁(61)を中負荷位置に位置決めし、高負荷状態のときは前記仕切板(60)に仕切られた割合に吸気を上下に振り分けるように前記吸気振分け弁(61)を高負荷位置に位置決めすることを特徴とする請求項5記載の内燃機関の吸気装置。 When the internal combustion engine is in a low load state, the intake control means (66) positions the intake distribution valve (61) at a low load position so as to distribute intake mostly to the upper part and to flow through the upper intake passage (Up). When the medium load condition, the intake distribution valve (61) is positioned at the medium load position so that the ratio of the intake to the upper part of the lower part is small and the intake air flowing through the upper intake passage (Up) is suppressed. The internal combustion engine according to claim 5, characterized in that the intake air distribution valve (61) is positioned at a high load position so as to distribute the intake air vertically at a ratio divided by the partition plate (60) in the loaded state. Inspiratory system.
  7.  前記インレットパイプ(20)の前記上側吸気通路(Up)と前記下側吸気通路(Lp)にそれぞれ燃料噴射を行う上側インジェクタ(71)と下側インジェクタ(72)を備え、
     前記吸気制御手段(66)は、前記吸気振分け弁(61)の揺動状態に応じて前記上側インジェクタ(71)と前記下側インジェクタ(72)の噴射量を制御することを特徴とする請求項1ないし請求項6のいずれか1項記載の内燃機関の吸気装置。
    An upper injector (71) and a lower injector (72) for injecting fuel into the upper intake passage (Up) and the lower intake passage (Lp) of the inlet pipe (20);
    The intake control means (66) controls the injection amount of the upper injector (71) and the lower injector (72) according to the swing state of the intake distribution valve (61). An intake system for an internal combustion engine according to any one of claims 1 to 6.
PCT/JP2013/058632 2012-03-30 2013-03-25 Air intake device for internal combustion engine WO2013146703A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380008913.1A CN104114832B (en) 2012-03-30 2013-03-25 The getter device of internal combustion engine
BR112014019110-7A BR112014019110B1 (en) 2012-03-30 2013-03-25 INTERNAL COMBUSTION ENGINE INLET SYSTEM
JP2014507873A JP5925878B2 (en) 2012-03-30 2013-03-25 Intake device for internal combustion engine
PH12014502192A PH12014502192A1 (en) 2012-03-30 2014-09-29 Air intake device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-082788 2012-03-30
JP2012082788 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146703A1 true WO2013146703A1 (en) 2013-10-03

Family

ID=49259954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058632 WO2013146703A1 (en) 2012-03-30 2013-03-25 Air intake device for internal combustion engine

Country Status (8)

Country Link
JP (1) JP5925878B2 (en)
CN (1) CN104114832B (en)
AR (1) AR094131A1 (en)
BR (1) BR112014019110B1 (en)
CO (1) CO7141440A2 (en)
PE (1) PE20142191A1 (en)
PH (1) PH12014502192A1 (en)
WO (1) WO2013146703A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190373A (en) * 2014-03-28 2015-11-02 本田技研工業株式会社 Internal combustion engine intake structure
JP2016070206A (en) * 2014-09-30 2016-05-09 本田技研工業株式会社 Intake device of internal combustion engine
JP2016070205A (en) * 2014-09-30 2016-05-09 本田技研工業株式会社 Intake device of internal combustion engine
ITUB20153744A1 (en) * 2015-09-18 2017-03-18 Maserati Spa VARIABLE GEOMETRY SUCTION DUCT FOR AN INTERNAL COMBUSTION ENGINE.
WO2019008900A1 (en) 2017-07-05 2019-01-10 本田技研工業株式会社 Air intake structure for internal combustion engine
JP2020122413A (en) * 2019-01-29 2020-08-13 ダイハツ工業株式会社 cylinder head

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105986879A (en) * 2015-02-09 2016-10-05 苏州英特模汽车科技有限公司 Internal combustion engine intake tumble automatic regulating system
CN106286042A (en) * 2015-06-18 2017-01-04 上海银轮热系统科技有限公司 A Novel section-variable and tumble flow gas handling system
JP7027862B2 (en) * 2017-12-14 2022-03-02 トヨタ紡織株式会社 Intake pipe connection structure
JP6994998B2 (en) * 2018-03-29 2022-01-14 本田技研工業株式会社 engine
CN115013142A (en) * 2022-04-28 2022-09-06 一汽解放汽车有限公司 Engine combustion system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223040A (en) * 1992-02-07 1993-08-31 Mazda Motor Corp Intake device for engine
JP2001055925A (en) * 1999-08-13 2001-02-27 Nissan Motor Co Ltd Intake controlling device for direct injection type internal combustion engine
JP2001263067A (en) * 2000-03-14 2001-09-26 Nissan Motor Co Ltd Compressed self-ignition type gasoline engine
JP2003239750A (en) * 2002-02-13 2003-08-27 Nissan Motor Co Ltd Intake system for internal combustion engine
JP2005180247A (en) * 2003-12-17 2005-07-07 Nissan Motor Co Ltd Intake air control device of in-cylinder direct injection type internal combustion engine
JP2009264158A (en) * 2008-04-23 2009-11-12 Toyota Motor Corp Intake system for internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412118B2 (en) * 2004-09-06 2010-02-10 日産自動車株式会社 Intake device for internal combustion engine
JP4728195B2 (en) * 2006-09-20 2011-07-20 ヤマハ発動機株式会社 Engine intake control device
JP2008151078A (en) * 2006-12-20 2008-07-03 Suzuki Motor Corp Engine air-intake device
JP2008155925A (en) * 2006-12-21 2008-07-10 Fuji Seal International Inc Article packaging case

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223040A (en) * 1992-02-07 1993-08-31 Mazda Motor Corp Intake device for engine
JP2001055925A (en) * 1999-08-13 2001-02-27 Nissan Motor Co Ltd Intake controlling device for direct injection type internal combustion engine
JP2001263067A (en) * 2000-03-14 2001-09-26 Nissan Motor Co Ltd Compressed self-ignition type gasoline engine
JP2003239750A (en) * 2002-02-13 2003-08-27 Nissan Motor Co Ltd Intake system for internal combustion engine
JP2005180247A (en) * 2003-12-17 2005-07-07 Nissan Motor Co Ltd Intake air control device of in-cylinder direct injection type internal combustion engine
JP2009264158A (en) * 2008-04-23 2009-11-12 Toyota Motor Corp Intake system for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190373A (en) * 2014-03-28 2015-11-02 本田技研工業株式会社 Internal combustion engine intake structure
JP2016070206A (en) * 2014-09-30 2016-05-09 本田技研工業株式会社 Intake device of internal combustion engine
JP2016070205A (en) * 2014-09-30 2016-05-09 本田技研工業株式会社 Intake device of internal combustion engine
ITUB20153744A1 (en) * 2015-09-18 2017-03-18 Maserati Spa VARIABLE GEOMETRY SUCTION DUCT FOR AN INTERNAL COMBUSTION ENGINE.
WO2019008900A1 (en) 2017-07-05 2019-01-10 本田技研工業株式会社 Air intake structure for internal combustion engine
JP2020122413A (en) * 2019-01-29 2020-08-13 ダイハツ工業株式会社 cylinder head
JP7306832B2 (en) 2019-01-29 2023-07-11 ダイハツ工業株式会社 cylinder head

Also Published As

Publication number Publication date
PH12014502192A1 (en) 2014-12-10
BR112014019110A8 (en) 2017-07-11
CO7141440A2 (en) 2014-12-12
PE20142191A1 (en) 2014-12-27
CN104114832B (en) 2016-09-07
BR112014019110A2 (en) 2017-06-20
JPWO2013146703A1 (en) 2015-12-14
BR112014019110B1 (en) 2021-11-09
CN104114832A (en) 2014-10-22
JP5925878B2 (en) 2016-05-25
AR094131A1 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
WO2013146703A1 (en) Air intake device for internal combustion engine
JP6000785B2 (en) Intake device for internal combustion engine
US7802555B2 (en) Intake control device for an engine
US7409944B2 (en) Intake structure for internal combustion engine
WO2006018950A1 (en) High-output engine and vehicle
JPS5932656B2 (en) engine intake system
JP5145133B2 (en) General-purpose engine exhaust gas recirculation structure
JP5841985B2 (en) Combustion chamber structure of internal combustion engine
JP6005465B2 (en) Intake device for internal combustion engine
JP2013227966A (en) Internal combustion engine
JP4290147B2 (en) Internal combustion engine
JP6215807B2 (en) Intake device for internal combustion engine
JP5908321B2 (en) Internal combustion engine
JP2013213409A (en) Intake device for internal combustion engine
JP2004003424A (en) Intake device for engine
JP6241988B2 (en) Internal combustion engine
JP7575615B2 (en) Intake structure of an internal combustion engine
WO2023188249A1 (en) Air intake structure for internal combustion engine
WO2023053308A1 (en) Air intake device for internal combustion engine
JP3320775B2 (en) Engine intake control device
JP2887877B2 (en) Engine intake control device
JP2024105739A (en) Intake system for internal combustion engine
JP6186299B2 (en) Air intake structure for saddle-ride type vehicles
JP4711141B2 (en) Intake device
JPH051549A (en) Engine intake controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507873

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014019110

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14215166

Country of ref document: CO

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 001504-2014

Country of ref document: PE

122 Ep: pct application non-entry in european phase

Ref document number: 13767881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014019110

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140801