JP2001055925A - Intake controlling device for direct injection type internal combustion engine - Google Patents
Intake controlling device for direct injection type internal combustion engineInfo
- Publication number
- JP2001055925A JP2001055925A JP11228969A JP22896999A JP2001055925A JP 2001055925 A JP2001055925 A JP 2001055925A JP 11228969 A JP11228969 A JP 11228969A JP 22896999 A JP22896999 A JP 22896999A JP 2001055925 A JP2001055925 A JP 2001055925A
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- intake
- tumble
- fuel
- control valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/48—Tumble motion in gas movement in cylinder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車用ガソリン
機関等に代表される4サイクル型の直噴式内燃機関の改
良に関し、特に、各シリンダの吸気ポートに、燃焼室内
に生成する順タンブル流動を調整するタンブル制御弁を
設けた吸気制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a four-cycle type direct injection type internal combustion engine represented by an automobile gasoline engine and the like, and more particularly, to a forward tumble flow generated in a combustion chamber at an intake port of each cylinder. The present invention relates to an intake control device provided with a tumble control valve for adjusting.
【0002】[0002]
【従来の技術】中,高負荷時ではシリンダ内に均質な空
燃比の混合気を形成していわゆる均質燃焼を行うととも
に、低負荷域ではシリンダ内の一部つまり点火プラグ近
傍のみに比較的濃い混合気を形成して、平均的な空燃比
を非常に大きく得るようにした成層燃焼を行い、均質燃
焼による中,高負荷時の出力性能と、成層燃焼による低
負荷時の燃費改善との両立を図る筒内直接噴射式の内燃
機関が、従来から種々提案されている。2. Description of the Related Art At medium and high loads, a homogeneous air-fuel ratio mixture is formed in a cylinder to perform so-called homogeneous combustion, and at a low load region, the mixture is relatively dense only in a part of the cylinder, that is, only near a spark plug. Performs stratified combustion to form an air-fuel mixture and achieves a very high average air-fuel ratio, and achieves both medium- and high-load output performance by homogeneous combustion and improved fuel efficiency at low-load by stratified combustion. Various direct injection type internal combustion engines have been proposed in the past.
【0003】一例として、特開平9−256858号公
報に記載された直噴式内燃機関では、吸気ポートを順タ
ンブルポート部と逆タンブルポート部とに仕切る隔壁
と、順タンブルポート部を絞る制御弁とを有する吸気制
御装置が設けられている。そして、順,逆タンブルポー
ト部の形状や制御弁の作動制御により、均質燃焼時に
は、シリンダ内に流入した吸気流が排気側のシリンダ壁
面に沿って下降した後にピストン頂面,吸気側のシリン
ダ壁面に沿って流れ、シリンダヘッド側へと進む順タン
ブル流を生成する一方、成層燃焼時には、順タンブルポ
ート部を絞ることにより、シリンダ内に流入した吸気流
が吸気側のシリンダ壁面に沿って下降した後にピストン
頂面,排気側のシリンダ壁面に沿って流れ、シリンダヘ
ッド側へと進む逆タンブル流を生成し、混合気の成層化
を行うように構成されている。As an example, in a direct injection type internal combustion engine described in Japanese Patent Application Laid-Open No. 9-256858, a partition partitioning an intake port into a forward tumble port portion and a reverse tumble port portion, and a control valve for narrowing the forward tumble port portion are provided. Is provided. The shape of the forward and reverse tumble ports and the control of the operation of the control valve cause the intake air flowing into the cylinder to descend along the cylinder wall on the exhaust side during homogeneous combustion, and then return to the piston top surface and the cylinder wall on the intake side. Generates a forward tumble flow that flows to the cylinder head side, and at the time of stratified combustion, the intake flow flowing into the cylinder descends along the cylinder wall of the intake side by narrowing the forward tumble port portion. Later, a reverse tumble flow which flows along the top surface of the piston and the cylinder wall surface on the exhaust side and travels toward the cylinder head side is generated, and the mixture is stratified.
【0004】このように順タンブル流,逆タンブル流を
切り替えて生成する吸気制御装置の他の例として、特開
平10−205338号公報に記載されているように、
吸気流の一部を付勢する副吸気パイプを設ける技術、あ
るいは特開平10−212965号公報に記載されてい
るように、吸気ポートの燃焼室側の開口部付近に、通路
の一部を遮蔽するタンブル制御弁を設ける技術が公知で
ある。[0004] As another example of the intake control device that generates the flow by switching between the forward tumble flow and the reverse tumble flow, as described in JP-A-10-205338,
A technique of providing a sub-intake pipe for energizing a part of the intake air flow, or, as described in JP-A-10-212965, a part of a passage is shielded near an opening of an intake port on a combustion chamber side. A technique for providing a tumble control valve is known.
【0005】また、米国特許5878712号に記載さ
れている直噴式内燃機関の吸気制御装置は、吸気ポート
を上側ポート部と下側ポート部に仕切る隔壁と、下側ポ
ート部を絞るタンブル制御弁と、を有し、均質燃焼時に
は吸気ポートの上下両通路による順タンブル流を生成す
るとともに、成層燃焼時には下側ポート部を絞ること
で、より強い順タンブル流を生成するようにしている。The intake control device for a direct injection type internal combustion engine described in US Pat. No. 5,878,712 includes a partition for dividing an intake port into an upper port portion and a lower port portion, and a tumble control valve for restricting the lower port portion. During homogeneous combustion, a forward tumble flow is generated by the upper and lower passages of the intake port, and at the time of stratified combustion, a lower port portion is throttled to generate a stronger forward tumble flow.
【0006】[0006]
【発明が解決しようとする課題】ところで、上述した均
質燃焼を行う運転領域の中でも、全開出力時等の高負荷
時には、理論空燃比近傍の均質理論空燃比燃焼が行われ
る一方、中負荷時には、主に燃費向上の目的で、望まし
くは理論空燃比よりも空燃比を大きした均質希薄燃焼が
行われる。Incidentally, even in the above-described operation region in which the homogeneous combustion is performed, at the time of a high load such as a full-open output, the homogeneous stoichiometric air-fuel ratio combustion near the stoichiometric air-fuel ratio is performed. Mainly for the purpose of improving fuel economy, desirably, homogeneous lean combustion with an air-fuel ratio larger than the stoichiometric air-fuel ratio is performed.
【0007】しかしながら、上述したような従来の直噴
式内燃機関の吸気制御装置では、成層燃焼と均質燃焼と
でタンブル流の回転方向あるいは強度を切り替えている
ものの、均質燃焼における均質希薄燃焼と均質理論空燃
比燃焼との間で、タンブル流の回転方向あるいは強度を
切り換えるように構成されていない。この結果、均質希
薄燃焼時の流動強化と、均質理論空燃比燃焼時の空気量
の確保とを両立することが困難である。However, in the conventional intake control apparatus for a direct injection type internal combustion engine as described above, the rotation direction or intensity of the tumble flow is switched between stratified combustion and homogeneous combustion, but homogeneous lean combustion and homogeneous theory in homogeneous combustion are performed. It is not configured to switch the rotation direction or intensity of the tumble flow between the air-fuel ratio combustion. As a result, it is difficult to achieve both enhancement of flow during homogeneous lean combustion and securing of the amount of air during homogeneous stoichiometric air-fuel ratio combustion.
【0008】この点について詳述すると、図11に示す
ように、吸気ポートの形状すなわち傾斜角θに対するタ
ンブル流の強度(タンブル比)と吸入空気の流量(係
数)とは、一般的に相反する関係となっており、吸入空
気量の増加を図るとタンブル強度が低下する傾向にあ
る。このため、機関高負荷時における最大出力を十分に
確保しようとすると、中負荷時におけるタンブル強度が
不足し易く、均質希薄燃焼時の燃焼が悪化し、充分な燃
費改善が得られない虞がある。To explain this point in detail, as shown in FIG. 11, the shape of the intake port, that is, the intensity (tumble ratio) of the tumble flow and the flow rate (coefficient) of the intake air with respect to the inclination angle θ generally contradict each other. The tumble strength tends to decrease when the intake air amount is increased. For this reason, when trying to sufficiently secure the maximum output at the time of high engine load, the tumble strength at the time of medium load tends to be insufficient, the combustion at the time of homogeneous lean combustion deteriorates, and there is a possibility that sufficient fuel efficiency improvement cannot be obtained. .
【0009】そこで、上述した特開平9−256858
号公報、特開平10−205338号公報、特開平10
−212965号公報のように、順タンブル流と逆タン
ブル流の双方を利用する構成において、均質希薄燃焼時
におけるタンブル流動を強化するために、強いタンブル
流動が得られる成層燃焼時と同一の逆タンブル流を、均
質希薄燃焼時に適用することが考えられる。しかしなが
ら、この場合、吸気側のシリンダ壁面に沿って下降する
逆タンブル流によって、燃料噴霧が吸気側のシリンダ壁
面に沿って下降し、点火時期において可燃混合気が吸気
側へ偏在してしまい、安定した燃焼が得られ難い。Therefore, the above-mentioned Japanese Patent Application Laid-Open No. 9-256858 has been proposed.
JP, JP-A-10-205338, JP-A-10-205338
In the configuration using both the forward tumble flow and the reverse tumble flow as in JP-A-212965, in order to enhance the tumble flow during homogeneous lean combustion, the same reverse tumble flow as during stratified combustion in which a strong tumble flow is obtained. It is conceivable to apply the stream during homogeneous lean burn. However, in this case, due to the reverse tumble flow descending along the cylinder wall surface on the intake side, the fuel spray descends along the cylinder wall surface on the intake side, and the flammable mixture is unevenly distributed toward the intake side at the ignition timing. It is difficult to obtain burnt combustion.
【0010】一方、米国特許5878712号明細書の
ように順タンブル流動の強度を調節する構成において、
均質希薄燃焼時におけるタンブル流動を強化するため
に、強い順タンブル流動が得られる成層燃焼時と同一の
構成すなわち吸気ポートの下側ポート部を閉塞する構成
を、均質希薄燃焼時に適用することが考えられる。しか
しながら、このような構成とした場合、図9の比較例に
模式的に示すように、吸気行程中のシリンダ中心付近を
下降する吸気流により燃料噴射弁から噴射された噴霧も
下降してしまい、前述の逆タンブル流による混合気形成
の場合よりは広い範囲に混合気が拡散するものの、燃焼
室全体に混合気が拡散されるまでには至らない。このた
め、点火時期において図10に模式的に示すように混合
気が吸気側に偏在し、やはり安定した均質希薄燃焼を得
られ難い。On the other hand, in a configuration for adjusting the strength of forward tumbling flow as disclosed in US Pat. No. 5,878,712,
In order to enhance the tumble flow during homogeneous lean combustion, it is conceivable to apply the same configuration as during stratified combustion, in which a strong forward tumble flow is obtained, that is, the configuration that blocks the lower port portion of the intake port during homogeneous lean combustion. Can be However, in the case of such a configuration, as schematically shown in the comparative example of FIG. 9, the spray injected from the fuel injection valve also decreases due to the intake flow descending near the center of the cylinder during the intake stroke, Although the air-fuel mixture is diffused in a wider range than in the case of the air-fuel mixture formation by the reverse tumble flow described above, the air-fuel mixture is not diffused to the entire combustion chamber. For this reason, at the ignition timing, as shown schematically in FIG. 10, the air-fuel mixture is unevenly distributed on the intake side, and it is also difficult to obtain stable homogeneous lean combustion.
【0011】本発明は、このような課題に鑑みてなされ
たものであり、成層燃焼時の成層混合気の生成と、均質
希薄燃焼時の均質希薄混合気の生成と、均質理論空燃比
燃焼時の充分な空気量の確保とを、高いレベルで実現で
き、燃焼性能を著しく改善することのできる新規な直噴
式内燃機関の吸気制御装置を提供することを目的として
いる。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to produce a stratified fuel-air mixture during stratified combustion, a homogeneous lean-fuel mixture during homogeneous lean-burn, and a homogeneous stoichiometric air-fuel ratio combustion. It is an object of the present invention to provide a novel intake control device for a direct-injection type internal combustion engine, which can realize a sufficient amount of air at a high level and can significantly improve combustion performance.
【0012】[0012]
【課題を解決するための手段】本発明に係る直噴式内燃
機関は、各シリンダの燃焼室内に直接燃料を噴射する燃
料噴射弁が吸気ポートの下側に配置され、かつ、機関の
低負荷時に圧縮行程で燃料を噴射する成層燃焼と、中負
荷時に吸気行程で燃料を噴射する均質希薄燃焼と、高負
荷時に吸気行程で燃料を噴射する均質理論空燃比燃焼
と、が行われるように構成されている。In the direct injection type internal combustion engine according to the present invention, a fuel injection valve for directly injecting fuel into the combustion chamber of each cylinder is disposed below the intake port, and when the engine is under a low load. Stratified combustion in which fuel is injected in the compression stroke, homogeneous lean combustion in which fuel is injected in the intake stroke at medium load, and homogeneous stoichiometric air-fuel ratio combustion in which fuel is injected in the intake stroke at high load are performed. ing.
【0013】そして、請求項1の発明に係る吸気制御装
置は、吸気ポートを上側ポート部と下側ポート部に仕切
る隔壁と、燃焼室内に生成される順タンブル流動を調節
するように、上記上,下側ポート部を絞るタンブル制御
弁と、少なくとも機関負荷に応じてタンブル制御弁を作
動制御する制御手段と、を有し、主に成層燃焼時には下
側ポート部を絞るとともに、主に均質希薄燃焼時には上
側ポート部を絞り、かつ、主に均質理論空燃比燃焼時に
は上,下側ポート部のいずれも絞らないように設定した
ことを特徴としている。[0013] The intake control apparatus according to the first aspect of the present invention includes a partition wall for partitioning an intake port into an upper port portion and a lower port portion, and a forward tumble flow generated in the combustion chamber. And a control means for controlling the operation of the tumble control valve in accordance with at least the engine load. The lower port is mainly throttled during stratified charge combustion, and the lower port is mainly homogenously diluted. It is characterized in that the upper port portion is throttled during combustion, and that neither the upper nor lower port portion is throttled mainly during homogeneous stoichiometric air-fuel ratio combustion.
【0014】このような構成により、主に成層燃焼時に
は、下側ポート部が絞られるため、上側ポート部からの
吸気割合が大きくなる。この結果、燃焼室内に生成され
る順タンブル流動が、適宜に強化されるとともに、シリ
ンダの中心部を旋回する小さなものとなり、混合気の成
層化に適したものとなる。より具体的には、ピストン冠
面に沿って流れた後に点火プラグへ向けて上昇する吸気
流(順タンブル流)によって、圧縮行程で噴射された燃
料が直接的に点火プラグの近傍に運ばれ、点火時期に点
火プラグの近傍に可燃混合気が良好に形成される。With this configuration, the lower port portion is throttled mainly during stratified charge combustion, so that the proportion of intake air from the upper port portion increases. As a result, the forward tumble flow generated in the combustion chamber is appropriately strengthened, and becomes a small one that revolves around the center of the cylinder, which is suitable for stratification of the air-fuel mixture. More specifically, the fuel injected during the compression stroke is carried directly to the vicinity of the spark plug by an intake air flow (forward tumble flow) rising toward the spark plug after flowing along the piston crown surface, At the ignition timing, a combustible mixture is favorably formed near the spark plug.
【0015】また、主に均質希薄燃焼時には、上側ポー
ト部が絞られるため、下側ポート部からの吸気割合が大
きくなる。この結果、燃焼室内に生成される順タンブル
流が、適宜に強化されるとともに、シリンダの燃焼室全
体にわたって旋回する形となり、均質希薄混合気の生成
に適したものとなる。より具体的には、吸気行程で噴射
された燃料が、燃料噴射弁に近い下側ポート部から導入
される吸気流(順タンブル流)に乗って、燃焼室全体に
拡散され、点火時期に燃焼室内に良好な均質希薄混合気
が形成される。Also, mainly during homogeneous lean combustion, the upper port portion is throttled, so that the proportion of intake air from the lower port portion increases. As a result, the forward tumble flow generated in the combustion chamber is appropriately strengthened and swirls over the entire combustion chamber of the cylinder, which is suitable for generating a homogeneous lean mixture. More specifically, the fuel injected in the intake stroke rides on the intake flow (forward tumble flow) introduced from the lower port portion near the fuel injection valve, and is diffused throughout the combustion chamber, and burns at the ignition timing. A good homogeneous lean mixture is formed in the room.
【0016】更に、均質理論空燃比燃焼時には、上,下
側ポート部がいずれも絞られていないため、充分な吸入
空気量を確保する事が可能である。言い換えると、吸気
ポートの傾斜角等の形状,寸法は、このような高負荷時
における最大吸入空気量を確保するように設定されてい
る。Further, at the time of homogeneous stoichiometric air-fuel ratio combustion, since neither the upper port nor the lower port is throttled, it is possible to secure a sufficient amount of intake air. In other words, the shape and dimensions of the intake port such as the inclination angle are set so as to ensure the maximum intake air amount under such a high load.
【0017】この結果、本発明によれば、成層燃焼及び
均質希薄燃焼による燃費改善効果の拡大と、均質理論空
撚比燃焼による出力向上と、を高いレベルで両立するこ
とができる。As a result, according to the present invention, it is possible to achieve both a high fuel consumption improvement effect by stratified combustion and homogeneous lean combustion and an increase in output by homogeneous stoichiometric air-twist ratio combustion at a high level.
【0018】上記タンブル制御弁としては、一般的な絞
り弁を用いることが可能であるが、好ましくは請求項2
の発明のように、上記隔壁に軸支され、上側ポート部と
下側ポート部の一方を選択的に絞る位置と隔壁に略沿っ
た中立位置とに保持可能な一つのバタフライ弁とされ
る。この場合、一つのバタフライ弁によって、上側ポー
ト部と下側ポート部との双方を選択的に絞ることができ
るため、構成及び制御の簡素化を図ることができる。As the tumble control valve, a general throttle valve can be used.
As in the invention, one butterfly valve is supported by the partition wall and can be held at a position where one of the upper port portion and the lower port portion is selectively throttled and a neutral position substantially along the partition wall. In this case, both the upper port portion and the lower port portion can be selectively throttled by one butterfly valve, so that the configuration and control can be simplified.
【0019】また、成層燃焼と均質希薄燃焼との過渡期
や均質希薄燃焼と均質理論空燃比燃焼との過渡期で、
上,下側ポート部の絞り量を急激に変化させても良い
が、望ましくは、過渡期におけるタンブル制御弁の動作
遅れによる燃焼性能の低下を抑制するために、請求項3
の発明のように上記の過渡期で上,下側ポート部の絞り
量が比較的緩やかに変化するように設定する。In a transition period between stratified combustion and homogeneous lean combustion or a transition period between homogeneous lean combustion and homogeneous stoichiometric air-fuel ratio combustion,
The throttle amounts of the upper and lower ports may be changed abruptly, but desirably, in order to suppress a decrease in combustion performance due to a delay in the operation of the tumble control valve in the transition period.
As in the invention, the throttle amount of the upper and lower ports is set to change relatively slowly in the transition period.
【0020】また、同じ機関負荷でも、機関回転速度が
相対的に低い場合、吸入空気の流速が低くなり、燃焼室
に生成されるタンブル流動が相対的に弱くなってしま
う。逆に、機関回転速度が高い場合には、吸入空気の流
速が増加し、タンブル流動が相対的に強化される。そこ
で、好ましくは、機関回転速度に応じた適切なタンブル
流動が得られるように、上,下側ポート部の絞り量を機
関回転速度に応じて変化させる。In addition, even if the engine load is the same, when the engine speed is relatively low, the flow velocity of the intake air becomes low, and the tumble flow generated in the combustion chamber becomes relatively weak. Conversely, when the engine speed is high, the flow velocity of the intake air increases, and the tumble flow is relatively enhanced. Therefore, preferably, the throttle amount of the upper and lower ports is changed according to the engine speed so that an appropriate tumble flow according to the engine speed is obtained.
【0021】具体的には、請求項5の発明のように、機
関回転速度の増加に伴って上,下側ポート部の絞り量が
小さくなるように設定する。Specifically, the throttle amount of the upper and lower ports is set to be smaller as the engine speed increases, as in the invention of claim 5.
【0022】同様に、請求項4の発明では、少なくとも
上記成層燃焼と均質希薄燃焼との過渡期及び均質希薄燃
焼と均質理論空燃比燃焼との過渡期で、機関負荷に対す
るタンブル制御弁の角度特性が、機関回転速度の増加に
伴って低負荷側へシフトするように設定している。Similarly, in the invention of claim 4, at least in the transitional period between the stratified combustion and the homogeneous lean combustion and the transitional period between the homogeneous lean combustion and the homogeneous stoichiometric air-fuel ratio combustion, the angular characteristics of the tumble control valve with respect to the engine load are determined. However, it is set to shift to the low load side as the engine speed increases.
【0023】[0023]
【発明の効果】以上のように本発明によれば、タンブル
制御弁を作動制御することによって、燃焼室内に生成さ
れる順タンブル流動を、各燃焼形態に応じて適切に調節
することができ、成層燃焼および均質希薄燃焼による燃
費改善効果の拡大と、高負荷の均質理論空撚燃焼による
出力の向上と、を高いレベルで両立させることができ
る。As described above, according to the present invention, by controlling the operation of the tumble control valve, the forward tumble flow generated in the combustion chamber can be appropriately adjusted according to each combustion mode. It is possible to achieve a high level of both the enhancement of the fuel efficiency improvement effect by the stratified combustion and the homogeneous lean combustion and the improvement of the output by the high-load homogeneous theoretical air-twist combustion.
【0024】[0024]
【発明の実施の形態】以下、直噴式内燃機関である4サ
イクル型の自動車用ガソリン機関に、本発明に係る吸気
制御装置を適用した実施の形態について、添付図面を参
照して詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which an intake control device according to the present invention is applied to a four-cycle type automobile gasoline engine which is a direct injection type internal combustion engine will be described in detail with reference to the accompanying drawings. .
【0025】図2にも示すように、シリンダブロック2
0には、複数のシリンダ13が直列に配置されており、
その上面を覆うように、シリンダヘッド12が固定され
ている。シリンダ13内には、ピストン14が摺動可能
に嵌合しており、このピストン14の上方に、ペントル
ーフ型の燃焼室17が形成されている。ピストン14の
冠面には、浅皿状の凹部14aが凹設されている。As shown in FIG. 2, the cylinder block 2
0, a plurality of cylinders 13 are arranged in series,
The cylinder head 12 is fixed so as to cover the upper surface. A piston 14 is slidably fitted in the cylinder 13, and a pent roof type combustion chamber 17 is formed above the piston 14. A shallow dish-shaped recess 14 a is formed in the crown of the piston 14.
【0026】シリンダヘッド12には、燃焼室17に開
口する吸気ポート15及び排気ポート16が形成される
とともに、各ポート15,16を開閉する吸気弁21及
び排気弁(図示省略)が設けられている。吸気ポート1
5は、図2〜7に示すような時計回りの方向に流れる順
タンブル流動T1〜3を燃焼室17内に生成するよう
に、適宜な形状,寸法に設定されている。The cylinder head 12 is formed with an intake port 15 and an exhaust port 16 that open to the combustion chamber 17, and is provided with an intake valve 21 and an exhaust valve (not shown) that open and close the ports 15, 16. I have. Intake port 1
5 has an appropriate shape and dimensions so as to generate forward tumble flows T1 to T3 flowing in the clockwise direction as shown in FIGS.
【0027】各燃焼室17の頂部には点火プラグ2がシ
リンダ13の略中心位置に配置され、そのプラグ先端が
燃焼室17内に臨んでいる。また、電磁式の燃料噴射弁
1は、吸気ポート15の直ぐ下側に、その中心軸が斜め
下方へ向かった姿勢で配置されており、燃焼室17内に
直接燃料を噴射するように、その先端部が燃焼室17内
に臨んでいる。At the top of each combustion chamber 17, the ignition plug 2 is arranged at a substantially central position of the cylinder 13, and the tip of the plug faces the combustion chamber 17. Further, the electromagnetic fuel injection valve 1 is disposed immediately below the intake port 15 with its central axis directed obliquely downward, so that the fuel is injected directly into the combustion chamber 17. The distal end faces the combustion chamber 17.
【0028】各吸気ポート15には、この吸気ポート1
5を上側ポート部15aと下側ポート部15bとに仕切
る薄板状の隔壁18が設けらるとともに、各隔壁18の
上流側の端部に、上側ポート部15a及び下側ポート部
15bを選択的に絞るバタフライ弁式のタンブル制御弁
19が軸支されており、これら隔壁18及びタンブル制
御弁19が、本実施形態の吸気制御装置の一部を構成し
ている。Each intake port 15 has the intake port 1
5 is divided into an upper port portion 15a and a lower port portion 15b, and a thin plate-shaped partition wall 18 is provided. At the upstream end of each partition wall 18, the upper port portion 15a and the lower port portion 15b are selectively provided. A butterfly valve-type tumble control valve 19 is pivotally supported, and the partition wall 18 and the tumble control valve 19 constitute a part of the intake control device of the present embodiment.
【0029】図1は、この吸気制御装置の概略構成を示
している。エンジンコントロールユニット(ECU)4
には、クランク角センサ5、気筒判別センサ6、スロッ
トルセンサ7、空気量センサ8、燃圧センサ9、空燃比
センサ10、及びタンブル制御弁19の角度を検出する
タンブル制御弁角度センサ11等の、機関の運転状態を
検出する各種センサ類が接続されている。ECU4は、
これらセンサからの信号に基づいて、燃料噴射弁1,点
火プラグ2の他、タンブル制御弁19を駆動するタンブ
ル制御弁駆動装置3を作動制御する。すなわち、ECU
4は、機関回転速度や負荷等に応じて、要求燃料噴射量
を計算し、図示しない燃料ポンプにより要求燃圧を発生
させ、噴射弁駆動信号を出力して燃料噴射を制御すると
ともに、点火信号を出力して図示しない点火コイルを駆
動制御し、点火プラグ2を放電させて点火を制御する。
また、ECU4は、主に機関負荷と機関回転速度に基づ
いてタンブル制御弁19の角度を計算し、タンブル制御
弁駆動装置3を作動制御する。FIG. 1 shows a schematic configuration of the intake control device. Engine control unit (ECU) 4
Includes a tumble control valve angle sensor 11 for detecting the angle of a crank angle sensor 5, a cylinder discrimination sensor 6, a throttle sensor 7, an air amount sensor 8, a fuel pressure sensor 9, an air-fuel ratio sensor 10, and a tumble control valve 19. Various sensors for detecting the operating state of the engine are connected. The ECU 4
Based on signals from these sensors, the operation of the tumble control valve driving device 3 that drives the tumble control valve 19 as well as the fuel injection valve 1 and the spark plug 2 is controlled. That is, the ECU
4 calculates a required fuel injection amount according to an engine speed, a load, and the like, generates a required fuel pressure by a fuel pump (not shown), outputs an injector driving signal, controls fuel injection, and generates an ignition signal. The output is output to drive and control an ignition coil (not shown), and the ignition plug 2 is discharged to control ignition.
Further, the ECU 4 calculates the angle of the tumble control valve 19 based mainly on the engine load and the engine rotation speed, and controls the operation of the tumble control valve driving device 3.
【0030】図7は、全開出力等の高負荷時に行われる
均質理論空燃比燃焼の状態を示している。このような高
負荷時には、充分な吸入空気量を確保するために、タン
ブル制御弁19が隔壁18に沿う中立位置に配置され、
タンブル制御弁19によって上側ポート部15a及び下
側ポート部15bのいずれも絞られていない状態に設定
される。この結果、吸入行程で噴射された燃料が、吸気
ポート15の両ポート部15a,15bから燃焼室17
へ導入された吸気流の順タンブル流動T3によって、燃
焼室17全体に均一に拡散される。言い換えると、吸気
ポート15の傾斜角等の形状,寸法は、このような高負
荷時における最大吸入空気量を確保するように設定され
ている。FIG. 7 shows a state of homogeneous stoichiometric air-fuel ratio combustion performed at a high load such as a full-open output. At the time of such a high load, the tumble control valve 19 is arranged at a neutral position along the partition 18 in order to secure a sufficient intake air amount.
The tumble control valve 19 is set so that neither the upper port portion 15a nor the lower port portion 15b is throttled. As a result, the fuel injected during the intake stroke flows from both ports 15a and 15b of the intake port 15 into the combustion chamber 17.
By the forward tumble flow T3 of the intake flow introduced into the combustion chamber 17, the intake flow is uniformly diffused throughout the combustion chamber 17. In other words, the shape and dimensions of the intake port 15 such as the inclination angle are set so as to ensure the maximum intake air amount under such a high load.
【0031】図2〜4は、機関の低負荷時に行われる成
層燃焼運転の状態を示しており、圧縮行程における燃料
噴射の前後の状態を順に示している。このような成層燃
焼時には、タンブル制御弁19は、下側ポート部15b
の大部分を絞るように、図7に示す中立位置から下側へ
90度回動した状態に設定される。このため、図2に示
すように、吸入空気は主に上側ポート部15aを通って
燃焼室17へ導入されることとなり、図7に示すように
両ポート部15a,15bが絞られていない場合に比し
て、燃焼室17内に生成されるタンブル流動T1が、効
果的に強化されるとともに、シリンダ13の中心部を旋
回する比較的小さなものとなる。従って、図3に示すよ
うに圧縮行程で噴射された燃料は、下降してピストン1
4冠面に沿って流れた後に点火プラグ2へ向けて上昇す
るタンブル流動T1に乗って、点火プラグ2の近傍に直
接的に運ばれ、図4に示すように、点火時期となる圧縮
上死点付近において、点火プラグ周囲に良好な可燃混合
気が層状に形成される。この結果、実質的に凹部14a
内で燃焼が進行し、良好な成層燃焼が実現される。FIGS. 2 to 4 show the state of the stratified charge combustion operation performed when the engine is under a low load, and show the states before and after the fuel injection in the compression stroke in order. During such stratified combustion, the tumble control valve 19 is connected to the lower port portion 15b.
Is set to be turned downward by 90 degrees from the neutral position shown in FIG. For this reason, as shown in FIG. 2, the intake air is mainly introduced into the combustion chamber 17 through the upper port portion 15a, and both ports 15a and 15b are not throttled as shown in FIG. The tumble flow T1 generated in the combustion chamber 17 is effectively strengthened and becomes relatively small in the center of the cylinder 13 as shown in FIG. Therefore, as shown in FIG. 3, the fuel injected in the compression stroke descends and the piston 1
On the tumble flow T1 which rises toward the spark plug 2 after flowing along the four crown surfaces, it is directly carried to the vicinity of the spark plug 2 and, as shown in FIG. Near the point, a good combustible mixture is formed in a layer around the spark plug. As a result, the recess 14a is substantially formed.
The combustion proceeds in the inside, and good stratified combustion is realized.
【0032】図5,6は、機関の中負荷時に行われる均
質希薄燃焼運転の状態を示しており、図5は燃料噴射が
行われる前の吸気行程の状態を、図6は燃料噴射後の圧
縮行程の状態を示している。このような均質希薄燃焼時
には、上記の成層燃焼時の場合とは逆に、タンブル制御
弁19が中立位置より上側に90度回転した位置に設定
され、このタンブル制御弁19によって上側ポート部1
5aの大部分が絞られる。この結果、吸入空気は主に下
側ポート部15bを通って燃焼室17に導入されること
となり、燃焼室17に生成されるタンブル流動T2が、
効果的に強化されるとともに、シリンダ13内の全体に
わたって大きく旋回する形となる。従って、吸気行程で
噴射された燃料は、図6に示すように、このタンブル流
動T2に乗って均一に拡散され、燃焼室17全体に良好
な均質希薄混合気が生成される。FIGS. 5 and 6 show a state of a homogeneous lean burn operation performed at a medium load of the engine. FIG. 5 shows a state of an intake stroke before fuel injection is performed, and FIG. 6 shows a state of the intake stroke after fuel injection. This shows the state of the compression stroke. At the time of such homogeneous lean combustion, the tumble control valve 19 is set at a position rotated 90 degrees above the neutral position, contrary to the case of the above-described stratified combustion, and the tumble control valve 19 causes the upper port 1 to rotate.
Most of 5a is narrowed down. As a result, the intake air is mainly introduced into the combustion chamber 17 through the lower port portion 15b, and the tumble flow T2 generated in the combustion chamber 17 is
The shape is effectively strengthened, and the shape of the cylinder 13 is largely swiveled throughout the cylinder 13. Accordingly, as shown in FIG. 6, the fuel injected during the intake stroke is uniformly dispersed on the tumble flow T2, and a good homogeneous lean mixture is generated in the entire combustion chamber 17.
【0033】ここで、一般的に、図11に示すように、
吸気ポート15の形状つまり傾斜角θに応じて、吸気ポ
ート15による生成されるタンブル流の強度すなわちタ
ンブル比と、吸気ポート15から燃焼室17へ導入され
る吸入空気の流量係数とは、相反するように増減する関
係となっている。従って、上述したように高負荷時の必
要空気量を満たすように吸気ポート15の傾斜角を設定
した場合、特に均質希薄燃焼時にタンブル流成分が不足
する傾向にある。しかしながら本実施形態では、均質希
薄燃焼時には、タンブル制御弁19で上側ポート部15
aを絞ることにより、タンブル流動が効果的に強化され
るため、均質希薄燃焼時におけるタンブル流動の不足を
解消することができる。Here, generally, as shown in FIG.
In accordance with the shape of the intake port 15, that is, the inclination angle θ, the intensity of the tumble flow generated by the intake port 15, that is, the tumble ratio, and the flow coefficient of the intake air introduced into the combustion chamber 17 from the intake port 15 are opposite to each other. The relationship is as follows. Therefore, as described above, when the inclination angle of the intake port 15 is set so as to satisfy the required amount of air at the time of high load, the tumble flow component tends to be insufficient particularly at the time of homogeneous lean combustion. However, in the present embodiment, at the time of homogeneous lean combustion, the tumble control valve 19 controls the upper port portion 15.
Since the tumble flow is effectively strengthened by reducing a, it is possible to eliminate the shortage of the tumble flow during homogeneous lean combustion.
【0034】次に、上側ポート部15aを閉塞した場合
と、下側ポート部15bを閉塞した場合との相違、具体
的には燃焼室17内に形成される順タンブル流動や混合
気の相違について、図8〜10に示す比較例を用いて詳
述する。Next, the difference between the case where the upper port portion 15a is closed and the case where the lower port portion 15b is closed, specifically, the difference in the forward tumble flow and the air-fuel mixture formed in the combustion chamber 17 will be described. This will be described in detail with reference to comparative examples shown in FIGS.
【0035】図8は、図2〜4に示す実施形態とは逆
に、成層燃焼時にタンブル制御弁19で上側ポート部1
5aを絞った例を示している。この場合、吸入空気が主
に下側ポート部15bを通って燃焼室17に流入し、燃
焼室17内全体を旋回するタンブル流動T4が生成され
る。このため、圧縮行程で噴射された燃料は、タンブル
流動T1と比較してより大きく旋回する吸気流(タンブ
ル流動T4)に乗って、排気側へ運ばれることとなる。
この結果、図2〜4に示す本実施形態に比して、混合気
が点火プラグ2付近に滞留する時間すなわち点火可能時
間が短くなってしまい、成層燃焼が不安定となる。FIG. 8 shows the upper port 1 by the tumble control valve 19 during stratified combustion, contrary to the embodiment shown in FIGS.
An example in which 5a is narrowed down is shown. In this case, the intake air mainly flows into the combustion chamber 17 through the lower port portion 15b, and a tumble flow T4 swirling in the entire combustion chamber 17 is generated. For this reason, the fuel injected in the compression stroke rides on the intake flow (the tumble flow T4) that turns more greatly than the tumble flow T1, and is conveyed to the exhaust side.
As a result, as compared with the present embodiment shown in FIGS. 2 to 4, the time during which the air-fuel mixture stays in the vicinity of the spark plug 2, that is, the ignitable time, becomes shorter, and the stratified combustion becomes unstable.
【0036】言い換えると、図2〜4に示す本実施形態
では、タンブル制御弁19で下側ポート部15bを絞
り、燃料噴射弁1から比較的遠い上側ポート部15aに
より、吸入空気を燃焼室17へ導入する構成とすること
により、燃焼室17の中央部に強いタンブル流を生成で
きるとともに、燃料が燃焼室17に入った直後のタンブ
ル流により排気側へ流されることもなく、かつ、ピスト
ン14冠面から点火プラグ2側へ向かうタンブル流動T
1によって、燃料噴霧が直接的に点火プラグ2近傍に運
ばれるため、良好な成層燃焼を実現できる。In other words, in the present embodiment shown in FIGS. 2 to 4, the lower port portion 15b is throttled by the tumble control valve 19, and the intake air is supplied to the combustion chamber 17 by the upper port portion 15a relatively far from the fuel injection valve 1. With this configuration, a strong tumble flow can be generated in the central portion of the combustion chamber 17, the fuel does not flow toward the exhaust side due to the tumble flow immediately after entering the combustion chamber 17, and the piston 14 Tumble flow T from the crown surface to the spark plug 2 side
1, the fuel spray is directly carried to the vicinity of the spark plug 2, so that good stratified combustion can be realized.
【0037】図9,10は、図5,6に示す本実施形態
とは逆に、均質希薄燃焼時にタンブル制御弁19で下側
ポート部15bを絞った比較例を示している。この場
合、燃焼室17に形成される順タンブル流動T5が、シ
リンダ13の中心部を旋回する小さなものとなる。従っ
て、図9に模式的に示すように、吸気行程で噴射された
燃料噴霧が、このタンブル流動T5に乗って下降してし
まう。このため、図10に示すような点火時期におい
て、可燃混合気が吸気側へ偏在してしまい、燃焼室17
全体に良好に拡散されず、均質希薄燃焼が不安定となっ
てしまう。FIGS. 9 and 10 show a comparative example in which the lower port portion 15b is throttled by the tumble control valve 19 during homogeneous lean combustion, contrary to the present embodiment shown in FIGS. In this case, the forward tumble flow T5 formed in the combustion chamber 17 becomes a small one that revolves around the center of the cylinder 13. Therefore, as schematically shown in FIG. 9, the fuel spray injected in the intake stroke falls on the tumble flow T5. Therefore, at the ignition timing shown in FIG. 10, the combustible air-fuel mixture is unevenly distributed to the intake side, and the combustion chamber 17
It does not diffuse well throughout, and the homogeneous lean burn becomes unstable.
【0038】図12〜15は、機関負荷(及び機関回転
速度)に対するタンブル制御弁19の角度を規定したマ
ップデータの実施例を示している。なお、タンブル制御
弁19の角度は、図7に示すような両ポート部15a,
15bが全開状態となる中立位置を基準とし、下側ポー
ト部15bが絞られる下側への回転方向を正方向、上側
ポート部15aが絞られる上側への回転方向を負方向と
している。FIGS. 12 to 15 show examples of map data defining the angle of the tumble control valve 19 with respect to the engine load (and the engine speed). Incidentally, the angle of the tumble control valve 19 is set to the two port portions 15a, as shown in FIG.
With reference to the neutral position where 15b is fully open, the downward rotation direction where the lower port portion 15b is throttled is defined as a positive direction, and the upward rotation direction where the upper port portion 15a is throttled is defined as a negative direction.
【0039】図12に示す第1実施例では、タンブル制
御弁19の角度が、第1基準負荷値22以下の低負荷域
すなわち成層運転領域で確実に+90度となり、第1基
準負荷値22と第2基準負荷値との間の中負荷域すなわ
ち均質希薄燃焼領域で確実に−90度となり、第2基準
負荷値23以上の高負荷域すなわち均質理論空燃比燃焼
領域で確実に0度となるように、第1,第2基準負荷値
22,23で急激に変化するように設定されている。In the first embodiment shown in FIG. 12, the angle of the tumble control valve 19 surely becomes +90 degrees in a low load region below the first reference load value 22, that is, in the stratified operation region. In the middle load region between the second reference load value, that is, in the homogeneous lean burn region, the temperature is reliably -90 degrees, and in the high load region equal to or higher than the second reference load value 23, that is, in the homogeneous stoichiometric air-fuel ratio combustion region, it is reliably 0 degrees. As described above, the setting is made so as to change abruptly at the first and second reference load values 22 and 23.
【0040】図13に示す第2実施例では、各運転領域
間の切り替えが円滑に行われるように、成層燃焼と均質
希薄燃焼との過渡期及び均質希薄燃焼と均質理論空燃比
燃焼との過渡期で、タンブル制御弁19の角度を、図1
2に示す第1実施例よりも緩やかに変化させている。具
体的には、タンブル制御弁19の角度は、極低負荷域で
は+90度に設定され、この極低負荷域から中負荷域へ
向けての負荷の増加にともなって連続的に減少し、上,
下側ポート部15a,15bともに絞り無しとなる0度
の中立位置24を経て、中負荷時には−90度となるよ
うに設定されている。更に、この中負荷域から高負荷域
へ向けての負荷の増大に伴って、タンブル制御弁19の
角度が連続的に増加し、極高負荷時に0度となるように
設定されている。このようにタンブル制御弁19の角度
を緩やかに変化させた場合、過渡期におけるタンブル制
御弁19の動作遅れによる燃焼性能の低下を抑制するこ
とができる。In the second embodiment shown in FIG. 13, the transition period between the stratified combustion and the homogeneous lean combustion and the transition between the homogeneous lean combustion and the homogeneous stoichiometric air-fuel ratio combustion are performed so that the switching between the operation regions is performed smoothly. In FIG. 1, the angle of the tumble control valve 19 is
The change is more gradual than in the first embodiment shown in FIG. Specifically, the angle of the tumble control valve 19 is set to +90 degrees in an extremely low load region, and decreases continuously as the load increases from the extremely low load region to the middle load region. ,
The lower port portions 15a and 15b are both set so as to pass through the neutral position 24 at which the throttle is not throttled and to become -90 degrees at a medium load. Further, the angle of the tumble control valve 19 is continuously increased with an increase in the load from the middle load range to the high load range, and is set so as to become 0 degrees at an extremely high load. When the angle of the tumble control valve 19 is gently changed in this manner, it is possible to suppress a decrease in combustion performance due to an operation delay of the tumble control valve 19 in a transition period.
【0041】なお、この第2実施例では、成層燃焼運転
領域の中でも比較的高負荷時には、タンブル制御弁19
が中立位置24から上側ポート部15aをやや絞る状態
となるが、このような比較的高負荷時には燃料噴射量が
増大して点火プラグ2の近傍に混合気が滞留する時間も
長くなるため、上述した図8に示す比較例のような燃焼
への悪影響を生じる虞はほとんどない。In the second embodiment, when the load is relatively high even in the stratified combustion operation range, the tumble control valve 19
Is slightly narrowed from the neutral position 24 to the upper port portion 15a. However, at such a relatively high load, the fuel injection amount increases and the time for the mixture to stay near the spark plug 2 becomes longer, so that There is almost no possibility of adversely affecting the combustion as in the comparative example shown in FIG.
【0042】また、均質希薄燃焼運転領域の中でも比較
的高負荷時には、タンブル制御弁19の角度が0度に近
くなり、タンブル流動が相対的に弱められるが、このよ
うな比較的高負荷時には吸入空気量が増大し、シリンダ
内流動の乱れが増大して混合気が適宜に拡散されるた
め、燃焼性能への悪影響を生じる虞はない。At a relatively high load even in the homogeneous lean burn operation region, the angle of the tumble control valve 19 becomes close to 0 degrees, and the tumble flow is relatively weakened. Since the air amount increases, the turbulence in the flow in the cylinder increases, and the air-fuel mixture is appropriately diffused, there is no possibility that the air-fuel mixture will adversely affect combustion performance.
【0043】図14,15に示す第3,第4実施例で
は、タンブル制御弁19の角度を、機関負荷だけでな
く、機関回転速度に応じて変化させている。すなわち、
機関回転速度の増大時には吸入空気流速が増大するた
め、低回転時に比して低いタンブル強度でも充分な混合
気形成が図れるため、機関回転速度に応じて最適なタン
ブル強度となるように、タンブル制御弁19の角度を作
動制御している。In the third and fourth embodiments shown in FIGS. 14 and 15, the angle of the tumble control valve 19 is changed according to not only the engine load but also the engine speed. That is,
When the engine speed is increased, the intake air flow rate is increased, so that a sufficient air-fuel mixture can be formed even at a low tumble intensity compared to when the engine speed is low, so that the tumble control is performed so that the optimal tumble intensity is obtained according to the engine speed. The operation of the angle of the valve 19 is controlled.
【0044】つまり、図14に示す第3実施例では、特
に成層燃焼と均質希薄燃焼との過渡期及び均質希薄燃焼
と均質理論空燃比燃焼との過渡期で、タンブル制御弁1
9の角度特性を、機関回転速度の増加にともなって低負
荷側へシフトさせている。より具体的には、所定の高回
転時における角度特性26が、所定の低回転時における
角度特性25よりも低負荷側へシフトした状態に設定さ
れている。That is, in the third embodiment shown in FIG. 14, particularly in the transition period between stratified charge combustion and homogeneous lean combustion and the transition period between homogeneous lean combustion and homogeneous stoichiometric air-fuel ratio combustion, the tumble control valve 1
The angle characteristic of No. 9 is shifted to a lower load side as the engine speed increases. More specifically, the angle characteristic 26 at the time of predetermined high rotation is set to a state shifted to a lower load side than the angle characteristic 25 at the time of predetermined low rotation.
【0045】また、図15に示す第4実施例では、機関
回転速度の増加にともなって タンブル制御弁19の開
度が大きくなるように、つまりタンブル制御弁19の角
度が小さくなるように設定している。より具体的には、
所定の低回転時における角度特性25に対し、所定の高
回転時における角度特性27が小さく設定されている。In the fourth embodiment shown in FIG. 15, the opening of the tumble control valve 19 is set to increase as the engine speed increases, that is, the angle of the tumble control valve 19 is set to decrease. ing. More specifically,
An angle characteristic 27 at a predetermined high rotation is set smaller than an angle characteristic 25 at a predetermined low rotation.
【0046】なお、本発明は上述した例に限定されるも
のではなく、例えばタンブル制御弁として、上記のバタ
フライ弁と異なる形式の一般的な絞り弁を用いることも
できる。The present invention is not limited to the above-described example. For example, a general throttle valve having a different type from the above-mentioned butterfly valve may be used as the tumble control valve.
【図1】本発明の一実施形態に係る吸気制御装置を示す
構成図。FIG. 1 is a configuration diagram showing an intake control device according to an embodiment of the present invention.
【図2】上記吸気制御装置を適用した直噴式内燃機関を
示し、成層燃焼運転における燃料噴射前の状態を示す構
成図。FIG. 2 is a configuration diagram showing a direct injection internal combustion engine to which the intake control device is applied, showing a state before fuel injection in a stratified combustion operation.
【図3】上記内燃機関の成層燃焼運転における燃料噴射
時の状態を示す構成図。FIG. 3 is a configuration diagram showing a state at the time of fuel injection in a stratified combustion operation of the internal combustion engine.
【図4】上記内燃機関の成層燃焼運転における点火時の
状態を示す構成図。FIG. 4 is a configuration diagram showing a state at the time of ignition in a stratified combustion operation of the internal combustion engine.
【図5】上記内燃機関の均質希薄燃焼運転における吸気
行程の状態を示す構成図。FIG. 5 is a configuration diagram showing a state of an intake stroke in a homogeneous lean burn operation of the internal combustion engine.
【図6】上記内燃機関の均質希薄燃焼運転における圧縮
行程の状態を示す構成図。FIG. 6 is a configuration diagram showing a state of a compression stroke in a homogeneous lean burn operation of the internal combustion engine.
【図7】上記内燃機関の均質理論空燃比運転の状態を示
す構成図。FIG. 7 is a configuration diagram showing a state of a homogeneous stoichiometric air-fuel ratio operation of the internal combustion engine.
【図8】比較例に係る内燃機関の成層燃焼運転の状態を
示す構成図。FIG. 8 is a configuration diagram showing a state of a stratified combustion operation of an internal combustion engine according to a comparative example.
【図9】比較例に係る内燃機関の均質希薄燃焼運転にお
ける吸気行程の状態を示す構成図。FIG. 9 is a configuration diagram showing a state of an intake stroke in a homogeneous lean burn operation of an internal combustion engine according to a comparative example.
【図10】比較例に係る内燃機関の均質希薄燃焼運転に
おける圧縮行程の状態を示す構成図。FIG. 10 is a configuration diagram showing a state of a compression stroke in a homogeneous lean burn operation of an internal combustion engine according to a comparative example.
【図11】吸気ポートの傾斜角に対する流量係数とタン
ブル強度との関係を示す特性図。FIG. 11 is a characteristic diagram illustrating a relationship between a flow coefficient and a tumble strength with respect to an inclination angle of an intake port.
【図12】第1実施例に係る機関負荷とタンブル制御弁
の角度との関係を示すマップデータ。FIG. 12 is map data showing the relationship between the engine load and the angle of the tumble control valve according to the first embodiment.
【図13】第2実施例に係る機関負荷とタンブル制御弁
の角度との関係を示すマップデータ。FIG. 13 is map data showing the relationship between the engine load and the angle of the tumble control valve according to the second embodiment.
【図14】第3実施例に係る機関回転速度および機関負
荷とタンブル制御弁の角度との関係を示すマップデー
タ。FIG. 14 is map data showing the relationship between the engine speed and the engine load and the angle of the tumble control valve according to the third embodiment.
【図15】第4実施例に係る機関回転速度および機関負
荷とタンブル制御弁の角度との関係を示すマップデー
タ。FIG. 15 is map data showing the relationship between the engine speed and the engine load and the angle of the tumble control valve according to the fourth embodiment.
1…燃料噴射弁 13…シリンダ 15…吸気ポート 15a…上側ポート部 15b…下側ポート部 17…燃焼室 18…隔壁 19…タンブル制御弁 DESCRIPTION OF SYMBOLS 1 ... Fuel injection valve 13 ... Cylinder 15 ... Intake port 15a ... Upper port part 15b ... Lower port part 17 ... Combustion chamber 18 ... Partition wall 19 ... Tumble control valve
───────────────────────────────────────────────────── フロントページの続き (72)発明者 土田 博文 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 福田 隆 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hirofumi Tsuchida Nissan Motor Co., Ltd. (2) Nissan Motor Co., Ltd. (72) Inventor Takashi Fukuda Takashicho 2 Takaracho, Kanagawa Ward, Yokohama City, Kanagawa Prefecture
Claims (5)
する燃料噴射弁が吸気ポートの下側に配置され、かつ、
機関の低負荷時に圧縮行程で燃料を噴射する成層燃焼
と、中負荷時に吸気行程で燃料を噴射する均質希薄燃焼
と、高負荷時に吸気行程で燃料を噴射する均質理論空燃
比燃焼と、が行われる直噴式内燃機関において、 吸気ポートを上側ポート部と下側ポート部に仕切る隔壁
と、燃焼室内に生成される順タンブル流動を調節するよ
うに、上記上,下側ポート部を絞るタンブル制御弁と、
少なくとも機関負荷に応じてタンブル制御弁を作動制御
する制御手段と、を有し、 主に成層燃焼時には下側ポート部を絞るとともに、主に
均質希薄燃焼時には上側ポート部を絞り、かつ、主に均
質理論空燃比燃焼時には上,下側ポート部のいずれも絞
らないように設定したことを特徴とする直噴式内燃機関
の吸気制御装置。A fuel injection valve for directly injecting fuel into a combustion chamber of each cylinder is disposed below an intake port, and
Stratified combustion in which fuel is injected in the compression stroke at low engine load, homogeneous lean combustion injecting fuel in the intake stroke at medium load, and homogeneous stoichiometric air-fuel combustion injecting fuel in the intake stroke at high load are performed. In a direct injection type internal combustion engine, a partition partitioning an intake port into an upper port portion and a lower port portion, and a tumble control valve for restricting the upper and lower port portions so as to regulate the forward tumble flow generated in the combustion chamber. When,
Control means for controlling the operation of the tumble control valve at least in accordance with the engine load, and throttle the lower port portion mainly during stratified combustion, and throttle the upper port portion mainly during homogeneous lean combustion, and mainly An intake control device for a direct injection internal combustion engine, wherein neither the upper port nor the lower port is set to be throttled during homogeneous stoichiometric air-fuel ratio combustion.
され、上側ポート部と下側ポート部の一方を選択的に絞
る位置と隔壁に略沿った中立位置とに保持可能な一つの
バタフライ弁であることを特徴とする請求項1に記載の
直噴式内燃機関の吸気制御装置。2. The butterfly control valve according to claim 1, wherein said tumble control valve is pivotally supported by said partition and is capable of holding one of an upper port portion and a lower port portion selectively at a throttle position and a neutral position substantially along the partition wall. The intake control device for a direct injection internal combustion engine according to claim 1, wherein the intake control device is a valve.
及び均質希薄燃焼と均質理論空燃比燃焼との過渡期で、
上,下側ポート部の絞り量が比較的緩やかに変化するよ
うに設定したことを特徴とする請求項1又は2に記載の
直噴式内燃機関の吸気制御装置。3. In a transition period between the stratified combustion and the homogeneous lean combustion and a transition period between the homogeneous lean combustion and the homogeneous stoichiometric air-fuel ratio combustion,
3. The intake control device for a direct injection internal combustion engine according to claim 1, wherein the throttle amounts of the upper and lower ports are set to change relatively slowly.
との過渡期及び均質希薄燃焼と均質理論空燃比燃焼との
過渡期で、機関負荷に対するタンブル制御弁の角度特性
が、機関回転速度の増加に伴って低負荷側へシフトする
ように設定したことを特徴とする請求項1〜3のいずれ
かに記載の直噴式内燃機関の吸気制御装置。4. At least in the transition period between stratified combustion and homogeneous lean combustion and between transition between homogeneous lean combustion and homogeneous stoichiometric air-fuel ratio combustion, the angular characteristics of the tumble control valve with respect to the engine load are affected by an increase in the engine speed. The intake control device for a direct injection internal combustion engine according to any one of claims 1 to 3, wherein the intake control device is set to shift to a low load side accordingly.
御弁の開度が大きくなるように設定したことを特徴とす
る請求項1〜4のいずれかに記載の直噴式内燃機関の吸
気制御装置。5. The intake control device for a direct injection internal combustion engine according to claim 1, wherein the opening of the tumble control valve is set to increase as the engine speed increases. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22896999A JP3671755B2 (en) | 1999-08-13 | 1999-08-13 | Intake control device for direct injection internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22896999A JP3671755B2 (en) | 1999-08-13 | 1999-08-13 | Intake control device for direct injection internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001055925A true JP2001055925A (en) | 2001-02-27 |
JP3671755B2 JP3671755B2 (en) | 2005-07-13 |
Family
ID=16884714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22896999A Expired - Fee Related JP3671755B2 (en) | 1999-08-13 | 1999-08-13 | Intake control device for direct injection internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3671755B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004124836A (en) * | 2002-10-03 | 2004-04-22 | Nissan Motor Co Ltd | Intake device of internal combustion engine |
JP2007270671A (en) * | 2006-03-30 | 2007-10-18 | Mitsubishi Motors Corp | Intake air control device |
JP2007327487A (en) * | 2006-05-09 | 2007-12-20 | Toyota Motor Corp | Intake control device of internal combustion engine |
JP2011179427A (en) * | 2010-03-02 | 2011-09-15 | Toyota Motor Corp | Combustion control device of internal combustion engine |
WO2013146703A1 (en) * | 2012-03-30 | 2013-10-03 | 本田技研工業株式会社 | Air intake device for internal combustion engine |
US20210381423A1 (en) * | 2020-06-03 | 2021-12-09 | Subaru Corporation | Engine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7707991B2 (en) | 2007-02-09 | 2010-05-04 | Denso Corporation | Intake control device for internal combustion engine |
-
1999
- 1999-08-13 JP JP22896999A patent/JP3671755B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004124836A (en) * | 2002-10-03 | 2004-04-22 | Nissan Motor Co Ltd | Intake device of internal combustion engine |
KR100741234B1 (en) * | 2002-10-03 | 2007-07-19 | 닛산 지도우샤 가부시키가이샤 | Engine intake apparatus |
JP2007270671A (en) * | 2006-03-30 | 2007-10-18 | Mitsubishi Motors Corp | Intake air control device |
JP2007327487A (en) * | 2006-05-09 | 2007-12-20 | Toyota Motor Corp | Intake control device of internal combustion engine |
JP2011179427A (en) * | 2010-03-02 | 2011-09-15 | Toyota Motor Corp | Combustion control device of internal combustion engine |
WO2013146703A1 (en) * | 2012-03-30 | 2013-10-03 | 本田技研工業株式会社 | Air intake device for internal combustion engine |
CN104114832A (en) * | 2012-03-30 | 2014-10-22 | 本田技研工业株式会社 | Air intake device for internal combustion engine |
JPWO2013146703A1 (en) * | 2012-03-30 | 2015-12-14 | 本田技研工業株式会社 | Intake device for internal combustion engine |
US20210381423A1 (en) * | 2020-06-03 | 2021-12-09 | Subaru Corporation | Engine |
US11560828B2 (en) * | 2020-06-03 | 2023-01-24 | Subaru Corporation | Engine |
Also Published As
Publication number | Publication date |
---|---|
JP3671755B2 (en) | 2005-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3852363B2 (en) | Engine control device | |
US6092501A (en) | Direct injection gasoline engine with stratified charge combustion and homogeneous charge combustion | |
US6173690B1 (en) | In-cylinder direct-injection spark-ignition engine | |
US6668792B2 (en) | Control system for in-cylinder direct injection engine | |
EP0848146B1 (en) | Control apparatus for an in-cylinder injection type internal combustion engine | |
JP6562065B2 (en) | Control device for compression ignition engine | |
JPH10299537A (en) | Cylinder injection type spark ignition engine | |
JP3733721B2 (en) | Direct-injection spark ignition internal combustion engine | |
US6668791B2 (en) | Control system for in-cylinder direct injection engine | |
JP2004324428A (en) | Variable valve type internal combustion engine and control method | |
JP4400379B2 (en) | In-cylinder direct injection spark ignition internal combustion engine controller | |
JP3514083B2 (en) | In-cylinder direct injection spark ignition engine | |
JP4140271B2 (en) | Multi-cylinder engine controller | |
JP2001055925A (en) | Intake controlling device for direct injection type internal combustion engine | |
JP2004293483A (en) | Intake device of spark ignition type reciprocal engine | |
KR940011340B1 (en) | Stratified charge internal combustion engine with fuel injection time controlling function | |
JP3721761B2 (en) | Piston for in-cylinder internal combustion engine | |
JP4123974B2 (en) | Direct-injection spark ignition internal combustion engine | |
JP4036021B2 (en) | Engine control device | |
JP3695056B2 (en) | In-cylinder direct fuel injection spark ignition engine | |
JPH06221168A (en) | Operation control device for engine | |
JP4311300B2 (en) | In-cylinder direct injection spark ignition internal combustion engine controller | |
JP3991888B2 (en) | Direct-injection spark ignition internal combustion engine | |
JP4207866B2 (en) | In-cylinder direct injection spark ignition internal combustion engine controller | |
JP3644359B2 (en) | Piston for in-cylinder internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050411 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3671755 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110428 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |