JP3991888B2 - Direct-injection spark ignition internal combustion engine - Google Patents

Direct-injection spark ignition internal combustion engine Download PDF

Info

Publication number
JP3991888B2
JP3991888B2 JP2003057009A JP2003057009A JP3991888B2 JP 3991888 B2 JP3991888 B2 JP 3991888B2 JP 2003057009 A JP2003057009 A JP 2003057009A JP 2003057009 A JP2003057009 A JP 2003057009A JP 3991888 B2 JP3991888 B2 JP 3991888B2
Authority
JP
Japan
Prior art keywords
valve
engine
stop
intake
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003057009A
Other languages
Japanese (ja)
Other versions
JP2004263659A (en
Inventor
慎一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003057009A priority Critical patent/JP3991888B2/en
Publication of JP2004263659A publication Critical patent/JP2004263659A/en
Application granted granted Critical
Publication of JP3991888B2 publication Critical patent/JP3991888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直噴火花点火式内燃機関に関する。
【0002】
【従来の技術】
従来より、直噴火花点火式内燃機関では、特許文献1に示されるように、燃焼室の側部に配置される燃料噴射弁から2つの吸気弁の間を経由し燃焼室中心部側へ燃料を噴射している。
【0003】
【特許文献1】
特開平11−294208号公報
【0004】
【発明が解決しようとする課題】
しかしながら、圧縮行程にて燃料噴射を行う成層運転モードに対し、吸気行程にて燃料噴射を行う均質運転モードでは、吸気弁がリフトしているため、噴射された燃料の一部が吸気弁と干渉することで、筒内での混合気形成を阻害する結果、機関の冷機・暖機状態に関わらず、筒内に液状燃料が多く存在するようになり、機関から排出される未燃燃料(HC)が多くなるという問題点があった。
【0005】
本発明は、このような従来の問題点に鑑み、吸気行程噴射時に吸気弁と干渉する燃料噴霧を減らして、未燃燃料の排出量を低減することを目的とする。
【0006】
【課題を解決するための手段】
このため、本発明は、片方の吸気弁を閉弁状態で停止可能な可変動弁装置を用い、吸気行程にて燃料噴射を行う運転モードの時に、片方の吸気弁を閉弁状態で停止させる片弁停止を行う構成とする。
【0007】
また、吸気通路にて通路断面積の一部を開閉して筒内流動を制御するエアモーションバルブを用い、機関の冷機時は、前記片弁停止を行う時に、エアモーションバルブを閉じ、機関の暖機後は、前記片弁停止を行う時に、エアモーションバルブを開く構成とする。
【0008】
更に、前記片弁停止を行う条件にて、前記片弁停止を実行できないフェイルセーフ時は、前記片弁停止を禁止すると共に、機関の冷機・暖機状態に関わらず、前記エアモーションバルブを強制的に閉じる構成とする。
【0009】
【発明の効果】
本発明によれば、吸気行程噴射時に、機関の冷機・暖機状態に関わらず、片弁停止を行うことで、その片方の吸気弁には燃料噴霧が干渉しないため、燃料噴霧が干渉する吸気弁が1つとなり、吸気弁と干渉する燃料噴霧を約1/2にすることができるので、未燃燃料の排出量を大幅に低減可能となる。
【0010】
また、機関の冷機時は、片弁停止を行う時に、エアモーションバルブを閉じることにより、開弁動作中の吸気弁から筒内に流入するガス流動を強化し、これにより燃料噴霧を片弁停止中の吸気弁の側に偏向させて、燃料噴霧と開弁動作中の吸気弁との干渉も防止でき、未燃燃料の排出量を更に大幅に低減可能となる。
【0011】
その一方、機関の暖機後は、吸気弁温度が高く、気化性が良好なため、開弁動作中の吸気弁に燃料噴霧が付着しても、ある程度は気化させることができるので、片弁停止を行う時に、エアモーションバルブを開くことにより、開弁動作中の吸気弁から筒内に流入するガス流動を弱めて、燃料噴霧の偏向を抑え、燃料噴霧の偏向により多少なりとも犠牲にしていたミキシングの改善を図って、燃焼性能向上による未燃燃料の排出量低減を図る。
【0012】
更に、片弁停止を行う条件にて、片弁停止を実行できないフェイルセーフ時は、機関の冷機・暖機状態に関わらず、エアモーションバルブを強制的に閉じることにより、筒内流動を確保し、最低限、燃焼を改善して、未燃燃料の排出量低減を図る。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示す内燃機関の平面レイアウト図、図2は同上内燃機関の要部断面図及びそのA矢視図ある。
【0014】
内燃機関の燃焼室1には、その上面(シリンダヘッド)側の略中央部に点火プラグ2が配置されている。そして、点火プラグ2を囲むように、2本ずつ吸気ポート3A、3B及び排気ポート4A、4Bが開口し、それぞれに吸気弁5A、5B及び排気弁6A、6Bが装着されている。
【0015】
燃料噴射弁7は、燃焼室1の吸気弁5A、5B側の側部に斜め下向きに(シリンダ軸に対して垂直な平面に対して所定角度θだけ傾斜して)配置され、2つの吸気弁5A、5Bの間を経由し燃焼室1中心部側へ燃料を噴射するようになっている。
【0016】
また、吸気ポート3A、3Bは、仕切板8により上下の分割ポートに分割されており、下側の分割ポートの上流側に、これを閉止可能で、閉止時に筒内流動を強化可能なエアモーションバルブ9が設けられている。本実施形態では、特にタンブル流動を強化するようになっているので、エアモーションバルブ9を、タンブル制御弁(TCV)9と称する。
【0017】
この内燃機関での運転モードには、成層運転モードと均質運転モードとがあり、成層運転モードでは、圧縮行程にて燃料噴射を行い、点火プラグ2の周囲に成層化された混合気塊を形成することで、全体としては極めてリーンな空燃比で成層燃焼を行わせる。これに対し、均質運転モードでは、吸気行程にて燃料噴射を行い、燃焼室1の全体に均質な混合気を形成することで、ストイキ又はリーン空燃比での均質燃焼を行わせる。
【0018】
ここで、圧縮行程噴射の場合は、吸気弁5A、5Bは閉じているため、燃料噴霧と吸気弁5A、5Bとの干渉は問題とならないが、吸気行程噴射の場合は、吸気弁5A、5Bがリフトしているため、燃料噴霧と吸気弁5A、5Bとの干渉が問題となる。
【0019】
そこで、本発明では、吸気行程にて燃料噴射を行う運転モード(均質運転モード)の時に、図2に示すように、片方の吸気弁5Aを閉弁状態(0リフト又は微小リフト)で停止させる片弁停止を行い、他方の吸気弁5Bのみの開閉動作により、機関を運転する。
【0020】
これにより、吸気行程噴射時に、燃料噴霧は吸気弁5Aとは干渉せず、吸気弁5Bのみと干渉し、吸気弁5Bのみに噴霧の付着が生じるようになる(図2参照)。従って、これだけで、燃料噴霧の干渉量(付着量)は単純に1/2となり、未燃燃料(HC)の排出量を大幅に低減することができる。
【0021】
但し、片弁停止を行うと、吸入可能な最大空気量が制約されるので、片弁停止は、必要空気量が比較的少ない低回転・低負荷領域のときに行う(図3参照)。
また、片弁停止だけでは、開弁動作する吸気弁5Bへの噴霧の付着を生じるが、片弁停止時に、タンブル制御弁9を閉じることで、図4に示すように、開弁動作中の吸気弁5Bから筒内に流入するガス流動を強化することができ、このガス流動により、燃料噴射弁7からの燃料噴霧が、片弁停止中の吸気弁5Aの側に偏向される。これにより、燃料のミキシングは多少犠牲になるものの、両吸気弁5A、5Bへの燃料噴霧の干渉(付着)を防止して、未燃燃料(HC)の排出量を更に大幅に低減することができる。
【0022】
但し、機関の冷機時と暖機後とを比較すると、暖機後は、吸気弁温度が高く、気化性が良好なため、燃料噴射弁7からの燃料噴霧が、開弁動作する吸気弁5Bに付着しても、ある程度は気化させることができるので、暖機後は、片弁停止を行う時に、タンブル制御弁9を開いて、開弁動作中の吸気弁5Bから筒内に流入するガス流動を弱くすることで、燃料噴射弁7からの燃料噴霧が偏向するのを防止する。すなわち、暖機後は、片弁停止だけで燃料噴霧の干渉量(付着量)を抑制し、燃料噴霧の偏向により犠牲にしていたミキシングを改善し、より均質な混合気形成を図ることで、燃焼性能の向上による未燃燃料(HC)の排出量低減を図るのである。
【0023】
また、暖機後にタンブル制御弁9を開くと、開弁動作する吸気弁5Bの弁傘部全体に空気流を吹き付けることができ、空気流が当たらない部分に燃料が残るのを防止できるという効果も得られる。
【0024】
上記の制御を実現するため、吸気弁5A、5B(少なくとも片方の吸気弁5A)は、可変動弁装置(図5中の10)により、閉弁状態で停止可能としてある。この場合の可変動弁装置としては、カム駆動式で油圧によりカムを切換えることで0リフト(又は微小リフト)を得ることができるもの、偏心カムを用い油圧によりリフト量を任意に変化させることができるもの、あるいは、電磁駆動式で任意のリフト特性を得ることができるものを用いることができる。
【0025】
図5は制御系の構成図であり、点火プラグ2、燃料噴射弁7、タンブル制御弁(TCV)9などと共に、可変動弁装置10の作動を制御するエンジンコントロールユニット(ECU)11に、エンジン回転数Nを検出可能な回転数センサ12、負荷(例えばアクセル開度)Lを検出可能な負荷センサ13、エンジン冷却水温Twを検出可能な水温センサ14の信号を入力してある。
【0026】
ここで、可変動弁装置10への制御用油圧が得られないなどの理由で、片弁停止を実行できないフェイルセーフ時の場合は、片弁停止を禁止して、両弁運転を行うことになるが、このときは、機関の冷機・暖機状態に関わらず、タンブル制御弁9を閉じることで、筒内流動を確保する。燃料噴霧と吸気弁との干渉を防止できないばかりか、片弁停止できないことで筒内流動が弱くなりすぎてしまうので、タンブル制御弁9を閉じて、筒内流動を確保することにより、燃焼を改善し、未燃HCの低減を図るためである。
【0027】
図6はECU11にて実行される制御フローであり、均質運転モードにて片弁停止制御及びTCV制御のために実行される。
S1では、各種センサより、エンジン回転数N、負荷L、水温Twなどを読込む。
【0028】
S2では、水温Twを所定値と比較することで、冷機時(Tw≦所定値)か、暖機後(Tw>所定値)かを判別する。
冷機時(Tw≦所定値)の場合は、S3へ進み、片弁停止領域を決定するエンジン回転数及び負荷のしきい値Ns、Lsを、基準値N1、L1に設定する。ここで定められるN1以下、L1以下の領域は、片弁停止状態において吸入可能な最大空気量内で運転可能な領域(の一部)である。
【0029】
暖機後(Tw>所定値)の場合は、S4へ進み、片弁停止領域を決定するエンジン回転数及び負荷のしきい値Ns、Lsを、前記基準値N1、L1より大きいN2、L2に設定する。当然に、N2>N1、L2>L1である。暖機後は、冷機時に対し、片弁停止領域を、より高回転・高負荷側の領域に拡大するためである。ここで定められるN2以下、L2以下の領域は、片弁停止状態において吸入可能な最大空気量内で運転可能な領域をほぼ全て含む領域である。
【0030】
S5では、エンジン回転数Nがしきい値Ns以下で、かつ負荷Lがしきい値Ls以下の低回転・低負荷領域か否かを判定する。
低回転・低負荷領域でない場合は、S6へ進む。
【0031】
S6では、片弁停止を行わず、通常運転(両弁運転)を行う。尚、通常運転時のタンブル制御弁(TCV)の制御はエンジン性能の要求により決める。
低回転・低負荷領域の場合は、S7へ進む。
【0032】
S7では、片弁停止不能状態、すなわち、可変動弁装置への制御用油圧が得られないなどの理由で、片弁停止を実行できないフェイルセーフ時か否かを、フェイルセーフ判断部でのフラグの値に基づいて、判定する。
【0033】
片弁停止不能状態でない場合は、S8へ進む。
S8では、片弁停止を行う条件であり、かつ片弁停止可能であるため、片弁停止を行う。燃料噴霧と吸気弁との干渉を抑制して、HC排出量を低減するためである。
【0034】
S8にて片弁停止を行う場合は、S9以降で片弁停止状態に見合ったタンブル制御弁(TCV)の制御を行う。
S9では、S2と同様、冷機時(Tw≦所定値)か、暖機後(Tw>所定値)かを判別する。もちろん、S2での判別結果を記憶保持しておいて、それに従えばよい。
【0035】
冷機時の場合は、S10へ進み、タンブル制御弁(TCV)を閉じる。詳しくは、タンブル制御弁が閉じているか否かを判定し、閉じていない場合にタンブル制御弁を閉じる。冷機時は、燃料噴霧の付着防止を重視し、開弁動作中の吸気弁から筒内に流入するガス流動を強化し、これにより燃料噴霧を片弁停止中の吸気弁の側に偏向させて、燃料噴霧と開弁動作中の吸気弁との干渉を防止するためである。
【0036】
暖機後の場合は、S11へ進み、タンブル制御弁(TCV)を開く。詳しくは、タンブル制御弁が開いているか否かを判定し、開いていない場合にタンブル制御弁を開く。暖機後は、ミキシングの改善を重視し、開弁動作中の吸気弁から筒内に流入するガス流動を弱めて、燃料噴霧の偏向を抑えるためであり、また、開弁動作している吸気弁の弁傘部全体に空気流を吹き付けるためでもある。
【0037】
S7での判定で、片弁停止不能状態、すなわち、可変動弁装置への制御用油圧が得られないなどの理由で、片弁停止を実行できないフェイルセーフ時の場合は、S12へ進み、片弁停止を禁止して、両弁運転を行う。そして、このときは、更に、S13へ進み、機関の冷機・暖機状態に関わらず、タンブル制御弁(TCV)を閉じることで、筒内流動を強化する。燃料噴霧と吸気弁との干渉を防止できないので、筒内流動を強化することにより、燃焼を改善し、未燃HCの低減を図るためである。また、筒内に流入するガス流動を強化することで、吸気弁の弁傘部に衝突する空気流速を増大させ、付着した噴霧を吹き飛ばして混合気形成に利用できるようにもなる。
【0038】
本実施形態では、機関の暖機後は、冷機時に対し、片弁停止を行う領域を、より高回転・高負荷側の領域に拡大しているが、これは、暖機後は、冷機時と比較して、ミキシングが良好であるため、燃料噴霧と吸気弁との干渉(付着)低減を行う領域を拡大し、言い換えれば、片弁停止状態で吸入できる最大空気量内で運転可能な均質運転領域のすべてを片弁停止領域として、HC低減を図るためである。
【0039】
尚、図7には、制御例として、始動→ファーストアイドル→冷機時/低回転・低負荷運転→冷機時/高回転・高負荷運転→暖機後/低回転・低負荷運転→暖機後/高回転・高負荷運転と経過した場合の、片弁停止制御及びTCV制御の様子を示している。尚、この例では油圧式の可変動弁装置を用いることを前提としているため、始動後(油圧上昇後)より片弁停止を開始しているが、電磁式の可変動弁装置であれば、片弁停止を即開始可能である。
【0040】
また、図7中の点線は、油圧の低下により、片弁停止不能になった場合であり、両弁運転を行う一方、タンブル制御弁(TCV)を強制的に閉じて、筒内流動を確保する場合について示している。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示す内燃機関の平面レイアウト図
【図2】 同上内燃機関の要部断面図及びそのA矢視図
【図3】 均質運転モードでの領域別の設定を示す図
【図4】 燃料噴霧偏向についての説明図
【図5】 制御系の構成図
【図6】 制御フローチャート
【図7】 制御タイムチャート
【符号の説明】
1 燃焼室
2 点火プラグ
3A、3B 吸気ポート
4A、4B 排気ポート
5A、5B 吸気弁
6A、6B 排気弁
7 燃料噴射弁
8 仕切板
9 タンブル制御弁(TCV)
10 可変動弁装置
11 エンジンコントロールユニット(ECU)
12 回転数センサ
13 負荷センサ
14 水温センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct injection spark ignition internal combustion engine.
[0002]
[Prior art]
Conventionally, in a direct-injection spark-ignition internal combustion engine, as shown in Patent Document 1, a fuel is injected from a fuel injection valve disposed at a side portion of a combustion chamber to a combustion chamber center side through two intake valves. Is sprayed.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-294208
[Problems to be solved by the invention]
However, in the stratified operation mode in which fuel injection is performed in the compression stroke, in the homogeneous operation mode in which fuel injection is performed in the intake stroke, since the intake valve is lifted, a part of the injected fuel interferes with the intake valve. As a result, the mixture formation in the cylinder is inhibited. As a result, a large amount of liquid fuel is present in the cylinder regardless of whether the engine is cold or warm. The unburned fuel (HC) discharged from the engine ) Has increased.
[0005]
The present invention has been made in view of such conventional problems, and an object of the present invention is to reduce the amount of unburned fuel by reducing fuel spray that interferes with the intake valve during intake stroke injection.
[0006]
[Means for Solving the Problems]
For this reason, the present invention uses a variable valve system that can stop one intake valve in the closed state, and stops one intake valve in the closed state in the operation mode in which fuel injection is performed in the intake stroke. It is set as the structure which performs single valve stop.
[0007]
In addition, an air motion valve that controls the in-cylinder flow by opening and closing a part of the passage cross-sectional area in the intake passage is used, and when the engine is cold, the air motion valve is closed when the one-valve stop is performed. After warming up, the air motion valve is opened when the one-valve stop is performed.
[0008]
Further, when the one-valve stop cannot be executed under the condition of stopping the one-valve, the one-valve stop is prohibited and the air motion valve is forced regardless of whether the engine is cold or warm. It is set as the structure which closes automatically.
[0009]
【The invention's effect】
According to the present invention, during the intake stroke injection, regardless of whether the engine is cold or warm, the one-valve stop is performed so that the fuel spray does not interfere with one of the intake valves. Since there is only one valve and the fuel spray that interferes with the intake valve can be halved, the amount of unburned fuel discharged can be greatly reduced.
[0010]
Also, when the engine is cold, when the single valve is stopped, the air motion valve is closed to strengthen the gas flow that flows into the cylinder from the intake valve during the valve opening operation, thereby stopping the fuel spray from one valve By deflecting toward the intake valve side, interference between the fuel spray and the intake valve during the valve opening operation can be prevented, and the discharge amount of unburned fuel can be further greatly reduced.
[0011]
On the other hand, after the engine is warmed up, the intake valve temperature is high and vaporization is good, so even if fuel spray adheres to the intake valve during valve opening operation, it can be vaporized to some extent. When stopping, the air motion valve is opened to weaken the gas flow flowing into the cylinder from the intake valve during the valve opening operation, thereby suppressing the deflection of the fuel spray, and at the expense of the deflection of the fuel spray. In order to improve mixing, we will reduce unburned fuel emissions by improving combustion performance.
[0012]
Furthermore, when fail-safe is not possible under the condition of single valve stop, the in-cylinder flow is secured by forcibly closing the air motion valve regardless of whether the engine is cold or warm. Minimize combustion and reduce unburned fuel emissions.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a plan layout view of an internal combustion engine showing an embodiment of the present invention, and FIG.
[0014]
In the combustion chamber 1 of the internal combustion engine, a spark plug 2 is disposed at a substantially central portion on the upper surface (cylinder head) side. Then, two intake ports 3A and 3B and two exhaust ports 4A and 4B are opened so as to surround the spark plug 2, and the intake valves 5A and 5B and the exhaust valves 6A and 6B are mounted respectively.
[0015]
The fuel injection valve 7 is disposed obliquely downward (inclined by a predetermined angle θ with respect to a plane perpendicular to the cylinder axis) on the side of the combustion chamber 1 on the side of the intake valves 5A and 5B. Fuel is injected into the center of the combustion chamber 1 through the space between 5A and 5B.
[0016]
In addition, the intake ports 3A and 3B are divided into upper and lower divided ports by a partition plate 8, and can be closed upstream of the lower divided port, and air motion that can enhance in-cylinder flow when closed A valve 9 is provided. In this embodiment, since the tumble flow is particularly strengthened, the air motion valve 9 is referred to as a tumble control valve (TCV) 9.
[0017]
The operation mode of the internal combustion engine includes a stratified operation mode and a homogeneous operation mode. In the stratified operation mode, fuel injection is performed in the compression stroke, and a stratified mixture is formed around the spark plug 2. As a result, stratified combustion is performed at a very lean air-fuel ratio as a whole. On the other hand, in the homogeneous operation mode, fuel injection is performed in the intake stroke, and a homogeneous air-fuel mixture is formed in the entire combustion chamber 1, thereby performing homogeneous combustion at a stoichiometric or lean air-fuel ratio.
[0018]
Here, in the case of the compression stroke injection, since the intake valves 5A and 5B are closed, the interference between the fuel spray and the intake valves 5A and 5B does not matter. However, in the case of the intake stroke injection, the intake valves 5A and 5B Therefore, the interference between the fuel spray and the intake valves 5A and 5B becomes a problem.
[0019]
Therefore, in the present invention, during the operation mode (homogeneous operation mode) in which fuel injection is performed in the intake stroke, as shown in FIG. 2, one intake valve 5A is stopped in a closed state (0 lift or minute lift). The single valve is stopped, and the engine is operated by the opening / closing operation of only the other intake valve 5B.
[0020]
Thus, during the intake stroke injection, the fuel spray does not interfere with the intake valve 5A but interferes with only the intake valve 5B, and the spray adheres only to the intake valve 5B (see FIG. 2). Therefore, only by this, the amount of fuel spray interference (attachment amount) is simply halved, and the amount of unburned fuel (HC) discharged can be greatly reduced.
[0021]
However, if the single valve is stopped, the maximum amount of air that can be sucked is restricted, so the single valve is stopped when the required air amount is relatively low and in a low rotation / low load region (see FIG. 3).
Further, when only one valve is stopped, the spray adheres to the intake valve 5B that is opened, but when the one valve is stopped, the tumble control valve 9 is closed, as shown in FIG. The gas flow flowing into the cylinder from the intake valve 5B can be strengthened, and this gas flow deflects the fuel spray from the fuel injection valve 7 toward the intake valve 5A when the one-valve is stopped. As a result, although mixing of the fuel is somewhat sacrificed, it is possible to prevent the fuel spray interference (attachment) to both the intake valves 5A and 5B and to further greatly reduce the amount of unburned fuel (HC) discharged. it can.
[0022]
However, when the engine is cold and after warming up, the intake valve temperature is high and the vaporization is good after warming up. Therefore, the fuel spray from the fuel injection valve 7 opens the intake valve 5B. Since the gas can be vaporized to some extent even after adhering to the gas, the gas that flows into the cylinder from the intake valve 5B during the valve opening operation by opening the tumble control valve 9 when the one-valve stop is performed after warming up. By weakening the flow, the fuel spray from the fuel injection valve 7 is prevented from being deflected. In other words, after warming up, the amount of fuel spray interference (attachment amount) is suppressed by stopping only one valve, the mixing sacrificed by the deflection of fuel spray is improved, and a more homogeneous mixture is formed. This is to reduce the amount of unburned fuel (HC) emitted by improving the combustion performance.
[0023]
Further, when the tumble control valve 9 is opened after warming up, an air flow can be blown over the entire valve head portion of the intake valve 5B that opens, and fuel can be prevented from remaining in a portion where the air flow does not hit. Can also be obtained.
[0024]
In order to realize the above control, the intake valves 5A and 5B (at least one of the intake valves 5A) can be stopped in a closed state by a variable valve operating apparatus (10 in FIG. 5). As the variable valve device in this case, a cam-driven type that can obtain 0 lift (or minute lift) by switching the cam by hydraulic pressure, or using an eccentric cam to arbitrarily change the lift amount by hydraulic pressure. What can be used, or what can obtain arbitrary lift characteristics with an electromagnetic drive type can be used.
[0025]
FIG. 5 is a block diagram of the control system. The engine control unit (ECU) 11 that controls the operation of the variable valve gear 10 together with the spark plug 2, the fuel injection valve 7, the tumble control valve (TCV) 9, and the like is connected to the engine. Signals of a rotation speed sensor 12 capable of detecting the rotation speed N, a load sensor 13 capable of detecting a load (for example, accelerator opening) L, and a water temperature sensor 14 capable of detecting the engine cooling water temperature Tw are input.
[0026]
Here, in the case of fail-safe when the one-valve stop cannot be executed because the control hydraulic pressure to the variable valve operating apparatus 10 cannot be obtained, the one-valve stop is prohibited and the two-valve operation is performed. In this case, however, the in-cylinder flow is ensured by closing the tumble control valve 9 regardless of whether the engine is cold or warm. Not only can the interference between the fuel spray and the intake valve be prevented, but also the in-cylinder flow becomes too weak because the one-valve cannot be stopped. Therefore, by closing the tumble control valve 9 and ensuring the in-cylinder flow, This is to improve and reduce unburned HC.
[0027]
FIG. 6 is a control flow executed by the ECU 11 and is executed for the one-valve stop control and the TCV control in the homogeneous operation mode.
In S1, engine speed N, load L, water temperature Tw, etc. are read from various sensors.
[0028]
In S2, the water temperature Tw is compared with a predetermined value to determine whether it is cold (Tw ≦ predetermined value) or after warming up (Tw> predetermined value).
When the engine is cold (Tw ≦ predetermined value), the process proceeds to S3, and the engine speed and load threshold values Ns and Ls for determining the one-valve stop region are set to the reference values N1 and L1. The regions N1 or less and L1 or less determined here are (part of) a region that can be operated within the maximum amount of air that can be sucked in the one-valve stop state.
[0029]
After warm-up (Tw> predetermined value), the process proceeds to S4, and the engine speed and load threshold values Ns and Ls for determining the one-valve stop region are set to N2 and L2 larger than the reference values N1 and L1. Set. Naturally, N2> N1 and L2> L1. This is because after the warm-up, the one-valve stop region is expanded to a region on the higher rotation / high load side than during the cool-down. The region of N2 or less and L2 or less determined here is a region that includes substantially all the region that can be operated within the maximum amount of air that can be sucked in the one-valve stop state.
[0030]
In S5, it is determined whether or not the engine speed N is a low rotation / low load region where the engine speed N is equal to or less than the threshold value Ns and the load L is equal to or less than the threshold value Ls.
If it is not the low rotation / low load region, the process proceeds to S6.
[0031]
In S6, the single operation is not stopped and the normal operation (both valve operation) is performed. The control of the tumble control valve (TCV) during normal operation is determined according to the engine performance requirements.
In the case of the low rotation / low load region, the process proceeds to S7.
[0032]
In S7, a flag at the fail-safe determination unit indicates whether or not the one-valve stop is not possible, that is, because the control hydraulic pressure to the variable valve operating device cannot be obtained or the fail-safe time cannot be executed. The determination is made based on the value of.
[0033]
If the one-valve stop is not possible, the process proceeds to S8.
In S8, the one-valve stop condition is satisfied and the one-valve stop is possible, so the one-valve stop is performed. This is to reduce the HC emission amount by suppressing the interference between the fuel spray and the intake valve.
[0034]
When the single valve is stopped in S8, the tumble control valve (TCV) corresponding to the single valve stopped state is controlled in S9 and thereafter.
In S9, as in S2, it is determined whether the engine is cold (Tw ≦ predetermined value) or after warming up (Tw> predetermined value). Of course, the determination result at S2 may be stored and retained.
[0035]
If it is cold, proceed to S10 and close the tumble control valve (TCV). Specifically, it is determined whether or not the tumble control valve is closed. If the tumble control valve is not closed, the tumble control valve is closed. When cold, attach great importance to preventing fuel spray from adhering, strengthening the gas flow that flows into the cylinder from the intake valve during valve opening, and deflecting the fuel spray toward the intake valve when one valve is stopped. This is to prevent interference between the fuel spray and the intake valve during the valve opening operation.
[0036]
If the engine has been warmed up, the process proceeds to S11 and the tumble control valve (TCV) is opened. Specifically, it is determined whether or not the tumble control valve is open. If the tumble control valve is not open, the tumble control valve is opened. After warming up, the importance of improving mixing is to weaken the flow of gas flowing into the cylinder from the intake valve during the valve opening operation, and to suppress the deflection of fuel spray. This is also for blowing an air flow over the entire valve head portion of the valve.
[0037]
If it is determined in S7 that the one-valve cannot be stopped because the one-valve cannot be stopped, that is, the control hydraulic pressure to the variable valve operating device cannot be obtained, the process proceeds to S12. Prohibit valve stop and perform double valve operation. At this time, the process further proceeds to S13, and the in-cylinder flow is strengthened by closing the tumble control valve (TCV) regardless of whether the engine is cold or warm. This is because interference between the fuel spray and the intake valve cannot be prevented, so that in-cylinder flow is enhanced to improve combustion and reduce unburned HC. Further, by strengthening the gas flow flowing into the cylinder, the flow velocity of the air that collides with the valve head portion of the intake valve can be increased, and the adhered spray can be blown off and used for the mixture formation.
[0038]
In this embodiment, after warming up the engine, the area where the single valve is stopped is expanded to the area on the higher rotation / high load side than when the engine is cold. Compared to the above, the mixing is good, so the area for reducing the interference (adhesion) between the fuel spray and the intake valve is expanded, in other words, it can be operated within the maximum amount of air that can be inhaled when the single valve is stopped. This is for reducing the HC by setting the entire operation region as the one-valve stop region.
[0039]
In FIG. 7, as a control example, start → first idle → cooling / low rotation / low load operation → cold / high rotation / high load operation → after warming up / low rotation / low load operation → after warming up / The state of single valve stop control and TCV control when high rotation / high load operation has elapsed is shown. In this example, since it is assumed that a hydraulic variable valve device is used, the one-valve stop is started after the start (after the hydraulic pressure is increased), but if it is an electromagnetic variable valve device, Single valve stop can be started immediately.
[0040]
The dotted line in FIG. 7 shows a case where the single valve cannot be stopped due to a decrease in hydraulic pressure, and both valves are operated while the tumble control valve (TCV) is forcibly closed to ensure in-cylinder flow. Shows when to do.
[Brief description of the drawings]
FIG. 1 is a plan layout view of an internal combustion engine showing an embodiment of the present invention. FIG. 2 is a cross-sectional view of an essential part of the internal combustion engine and a view taken along arrow A. FIG. Figure [Figure 4] Explanation of fuel spray deflection [Figure 5] Configuration diagram of control system [Figure 6] Control flow chart [Figure 7] Control time chart [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Spark plug 3A, 3B Intake port 4A, 4B Exhaust port 5A, 5B Intake valve 6A, 6B Exhaust valve 7 Fuel injection valve 8 Partition plate 9 Tumble control valve (TCV)
10 Variable valve gear 11 Engine control unit (ECU)
12 Rotational speed sensor 13 Load sensor 14 Water temperature sensor

Claims (4)

燃焼室の側部に配置される燃料噴射弁から2つの吸気弁の間を経由し燃焼室中心部側へ燃料を噴射する直噴火花点火式内燃機関において、
片方の吸気弁を閉弁状態で停止可能な可変動弁装置を備え、吸気行程にて燃料噴射を行う運転モードの時に、片方の吸気弁を閉弁状態で停止させる片弁停止を行う一方、
機関の冷機・暖機状態を判別する手段と、吸気通路にて通路断面積の一部を開閉して筒内流動を制御するエアモーションバルブとを備え、機関の冷機時は、前記片弁停止を行う時に、エアモーションバルブを閉じ、機関の暖機後は、前記片弁停止を行う時に、エアモーションバルブを開き、
前記片弁停止を行う条件にて、前記片弁停止を実行できないフェイルセーフ時は、前記片弁停止を禁止すると共に、機関の冷機・暖機状態に関わらず、前記エアモーションバルブを強制的に閉じることを特徴とする直噴火花点火式内燃機関。
In a direct-injection spark-ignition internal combustion engine that injects fuel from a fuel injection valve arranged on the side of the combustion chamber to the center of the combustion chamber via two intake valves,
While equipped with a variable valve system that can stop one intake valve in the closed state, and in the operation mode in which fuel injection is performed in the intake stroke, while performing one valve stop to stop one intake valve in the closed state,
Means for determining whether the engine is cold or warm, and an air motion valve that controls the in-cylinder flow by opening and closing a part of the cross-sectional area of the passage in the intake passage. When the engine is warmed up, after the engine is warmed up, when the one-valve stop is performed, the air motion valve is opened,
In the case of fail-safe when the one-valve stop cannot be executed under the condition for performing the one-valve stop, the one-valve stop is prohibited and the air motion valve is forcibly set regardless of whether the engine is cold or warm. A direct-injection spark-ignition internal combustion engine characterized by closing.
前記片弁停止は、所定の低回転・低負荷領域の時にのみ行うことを特徴とする請求項1記載の直噴火花点火式内燃機関。The direct injection spark ignition type internal combustion engine according to claim 1, wherein the one-valve stop is performed only in a predetermined low rotation / low load region. 前記片弁停止を行う領域は、前記片弁停止状態で吸入できる最大空気量内で運転可能な領域であることを特徴とする請求項2記載の直噴火花点火式内燃機関。3. The direct injection spark ignition internal combustion engine according to claim 2, wherein the region where the one valve is stopped is a region which can be operated within a maximum amount of air which can be sucked in the one valve stopped state. 機関の暖機後は、冷機時に対し、前記片弁停止を行う領域を、より高回転・高負荷側の領域に拡大することを特徴とする請求項2又は請求項3記載の直噴火花点火式内燃機関。4. The direct-injection spark ignition according to claim 2, wherein after the engine is warmed up, the region where the one-valve stop is performed is expanded to a region on the higher rotation / high load side when the engine is cold. Internal combustion engine.
JP2003057009A 2003-03-04 2003-03-04 Direct-injection spark ignition internal combustion engine Expired - Fee Related JP3991888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057009A JP3991888B2 (en) 2003-03-04 2003-03-04 Direct-injection spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057009A JP3991888B2 (en) 2003-03-04 2003-03-04 Direct-injection spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004263659A JP2004263659A (en) 2004-09-24
JP3991888B2 true JP3991888B2 (en) 2007-10-17

Family

ID=33120529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057009A Expired - Fee Related JP3991888B2 (en) 2003-03-04 2003-03-04 Direct-injection spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP3991888B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6015565B2 (en) 2013-06-06 2016-10-26 トヨタ自動車株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JP2004263659A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP3903657B2 (en) In-cylinder injection spark ignition internal combustion engine
US6173690B1 (en) In-cylinder direct-injection spark-ignition engine
JP3733721B2 (en) Direct-injection spark ignition internal combustion engine
JP3514083B2 (en) In-cylinder direct injection spark ignition engine
JPH10299539A (en) Cylinder injection type spark ignition engine
JP4258275B2 (en) Control device for internal combustion engine
JP4123974B2 (en) Direct-injection spark ignition internal combustion engine
JP3991888B2 (en) Direct-injection spark ignition internal combustion engine
JP3671755B2 (en) Intake control device for direct injection internal combustion engine
JP4316719B2 (en) In-cylinder injection control device
JP4052148B2 (en) Direct-injection spark ignition internal combustion engine
JP2004108161A (en) Cylinder injection type internal combustion engine
JP2004245204A (en) Fuel injection apparatus for internal combustion engine
JP4092482B2 (en) Direct-injection spark ignition internal combustion engine
JP3695145B2 (en) Intake control device for in-cylinder injection spark ignition engine
JP4192633B2 (en) Direct-injection spark ignition internal combustion engine
JP5472628B2 (en) Internal combustion engine
JP2004316449A (en) Direct injection spark ignition type internal combustion engine
JP3724045B2 (en) Engine intake system
JP4207481B2 (en) In-cylinder injection spark ignition internal combustion engine
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP3695056B2 (en) In-cylinder direct fuel injection spark ignition engine
JP4010092B2 (en) In-cylinder internal combustion engine
JP3639048B2 (en) In-cylinder fuel injection engine
JP3969156B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees