JP2887877B2 - Engine intake control device - Google Patents

Engine intake control device

Info

Publication number
JP2887877B2
JP2887877B2 JP3334091A JP33409191A JP2887877B2 JP 2887877 B2 JP2887877 B2 JP 2887877B2 JP 3334091 A JP3334091 A JP 3334091A JP 33409191 A JP33409191 A JP 33409191A JP 2887877 B2 JP2887877 B2 JP 2887877B2
Authority
JP
Japan
Prior art keywords
intake
valve
exhaust
control valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3334091A
Other languages
Japanese (ja)
Other versions
JPH0518250A (en
Inventor
義治 井坂
明 横尾
正博 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Publication of JPH0518250A publication Critical patent/JPH0518250A/en
Application granted granted Critical
Publication of JP2887877B2 publication Critical patent/JP2887877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、エンジンの低速回転時
等に吸気通路断面積を減少させる吸気制御弁を備えた吸
気制御装置に関し、特に上記吸気通路断面積を吸気弁開
口側(下流側)ほど徐々に狭小化できるようにした吸気
制御弁の形状及び配置構造の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake control device provided with an intake control valve for reducing the sectional area of an intake passage when the engine is rotating at a low speed or the like. The present invention relates to an improvement in the shape and arrangement of the intake control valve, which can be gradually narrowed.

【0002】[0002]

【従来の技術】エンジンの吸気制御装置は、低速回転時
又は低負荷運転時等の吸気量の少ない場合でも流速を高
めることにより、吸気を方向性をもって燃焼室内に吹き
込み、希薄空燃比燃焼を安定化し、もって燃料消費率
(以下燃費と記す)を改善するための装置である。この
ような吸気制御装置として、従来、例えば特公昭59-576
7 号公報に開示されているように、吸気通路の吸気弁開
口近傍に吸気制御板を起伏可能に配置し、低速回転又は
低負荷運転時に上記制御板を起立させて吸気通路面積を
絞るようにしたものがある。
2. Description of the Related Art An intake control system for an engine increases the flow velocity even when the intake air amount is small, such as during low-speed rotation or low-load operation, so that intake air is blown into the combustion chamber in a directional manner to stabilize lean air-fuel ratio combustion. This is a device for improving the fuel consumption rate (hereinafter referred to as fuel efficiency). Conventionally, as such an intake control device, for example, Japanese Patent Publication No. 59-576
As disclosed in Japanese Patent Application Publication No. 7, the intake control plate is arranged to be able to undulate near the intake valve opening of the intake passage, and the control plate is raised during low-speed rotation or low-load operation so as to reduce the intake passage area. There is something.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の吸気制御装置では、制御板を起伏させるという構造
上、全開時においても制御板が吸気通路内に残留するこ
ととなり、その分だけ高速回転時等の吸気量の多い状態
での吸気抵抗が大きくなるという問題がある。また上記
従来装置では、吸気通路の一部のみを絞る構造であるか
ら吸気通路断面積が急激に変化することとなり、低速ト
ルク,低速時の燃費を向上させるうえで不利であるとい
う問題もある。
However, in the above-mentioned conventional intake control device, the control plate remains in the intake passage even when it is fully opened due to the structure of raising and lowering the control plate. However, there is a problem that the intake resistance increases when the intake air amount is large. Further, in the above-described conventional apparatus, since the structure is such that only a part of the intake passage is narrowed, the sectional area of the intake passage changes rapidly, which is disadvantageous in improving low-speed torque and low-speed fuel consumption.

【0004】本発明は、上記従来の問題点に鑑みてなさ
れたもので、高速運転時等における吸気抵抗の問題を回
避でき、かつ吸気通路断面積の急激な変化を回避して低
速トルク及び低速時の燃費を向上できるエンジンの吸気
制御装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and can avoid the problem of the intake resistance at the time of high-speed operation and the like, and can avoid the rapid change of the cross-sectional area of the intake passage so that the low-speed torque and the low-speed It is an object of the present invention to provide an intake control device for an engine that can improve the fuel efficiency at the time.

【0005】[0005]

【課題を解決するための手段】本発明は、吸気弁開口を
シリンダ外壁に導出する吸気通路内に、低速回転時又は
低負荷運転時に通路断面積を減少させる吸気制御弁を備
えたエンジンの吸気制御装置において、上記制御弁を、
横断面円形の棒体に軸方向に延びる吸気凹部を形成して
なるものとするとともに、上記吸気通路のシリンダブロ
ックとの合面側の壁面部分に該吸気通路と略平行にかつ
軸線回りに回動可能に配置し、該制御弁を閉位置に回動
させたとき通路断面積が吸気弁開口側ほど狭小化し、全
開位置に回動させたとき上記吸気凹部が吸気通路の壁面
と略連続面をなすことを特徴としている。
According to the present invention, there is provided an intake system for an engine having an intake control valve for reducing the cross-sectional area of the intake passage at the time of low speed rotation or low load operation in an intake passage for leading an intake valve opening to an outer wall of a cylinder. In the control device, the control valve includes:
An intake recess extending in the axial direction is formed in a rod having a circular cross-section, and the intake passage is turned around an axial line substantially in parallel with the intake passage on a wall surface on the mating side with the cylinder block of the intake passage. When the control valve is turned to the closed position, the passage cross-sectional area becomes narrower toward the intake valve opening side, and when the control valve is turned to the fully open position, the intake recess is substantially continuous with the wall surface of the intake passage. It is characterized by doing.

【0006】[0006]

【作用】本発明に係る吸気制御装置によれば、低速回転
時等のように吸気量の少ない場合は、吸気制御弁が閉位
置に回動し、これにより吸気通路断面積は吸気弁開口側
ほど徐々に狭小化される。従ってそれだけ等価管長が長
くなり、低速回転時等における充填効率が向上し、低速
トルクが向上する。また吸気量が少ない場合でも、吸気
はその流速が高められた状態で燃焼室内に吹き込まれる
ので、希薄空燃比燃焼が安定化し、低速回転時等におけ
る燃費が向上する。また高速回転時等のように吸気量が
多い場合は、吸気制御弁が開位置に回動し、これの吸気
凹部が吸気通路の壁面と略面一となり、吸気制御弁を設
けたことにより高速回転時等における吸気抵抗が増大す
るのを回避できる。
According to the intake control apparatus of the present invention, when the amount of intake air is small, such as during low-speed rotation, the intake control valve is rotated to the closed position, whereby the cross-sectional area of the intake passage becomes closer to the intake valve opening side. The more narrow it becomes. Therefore, the equivalent pipe length becomes longer, the filling efficiency at the time of low-speed rotation and the like is improved, and the low-speed torque is improved. Even when the amount of intake air is small, the intake air is blown into the combustion chamber with its flow velocity increased, so that lean air-fuel ratio combustion is stabilized, and fuel efficiency at low speed rotation and the like is improved. In addition, when the intake air amount is large, such as during high-speed rotation, the intake control valve rotates to the open position, and the intake concave portion thereof is substantially flush with the wall surface of the intake passage. It is possible to avoid an increase in intake resistance during rotation or the like.

【0007】[0007]

【実施例】以下、本発明の実施例を図について説明す
る。図1ないし図8は本発明の一実施例による4バルブ
エンジンの吸気制御装置を説明するための図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to 8 are views for explaining an intake control device for a four-valve engine according to one embodiment of the present invention.

【0008】図において、1は水冷式4サイクル並列4
気筒4バルブエンジンであり、これはクランクケース2
上にシリンダブロック3,シリンダヘッド4を前傾状態
に積層してヘッドボルトで結合し、該シリンダヘッド4
の上側合面にヘッドカバー5を被せた構造のものであ
る。上記シリンダブロック3に形成された4つのシリン
ダボア3a内にはそれぞれピストン7が摺動自在に挿入
されており、該各ピストン7はコンロッド8でクランク
軸(図示せず)に連結されている。
In the figure, 1 is a water-cooled 4-cycle parallel 4
It is a four-cylinder cylinder engine,
The cylinder block 3 and the cylinder head 4 are stacked on the upper side in a forwardly inclined state and connected with a head bolt.
And a structure in which a head cover 5 is put on the upper mating surface of the head. A piston 7 is slidably inserted into each of the four cylinder bores 3a formed in the cylinder block 3, and each piston 7 is connected to a crankshaft (not shown) by a connecting rod 8.

【0009】上記シリンダヘッド4のシリンダブロック
3側の下側合面4aには燃焼室を構成する燃焼凹部4b
が凹設されている。該燃焼凹部4bの中央には点火プラ
グ9が螺挿されており、また該プラグ9の周囲には吸気
弁開口4c,排気弁開口4dがそれぞれ2つづつ開口し
ている。この各排気弁開口4dには排気弁10の弁板1
0aが、吸気弁開口4cには吸気弁11の弁板11aが
それぞれ各開口4d,4cを開閉可能に配置されてい
る。該排気,吸気弁10,11の弁軸10b,11bは
カム軸方向に見ると所定の挟み角をなすように気筒軸方
向に斜めに延びており、その上端には排気,吸気リフタ
12,13がそれぞれ装着されている。該各リフタ1
2,13上には、これを駆動する排気,吸気カム軸1
4,15が気筒軸と直角方向に向けて、かつ相互に平行
に配設されている。なお、図示していないが上記排気,
吸気カム軸14,15とクランク軸とを接続するカムチ
ェンは上記4つのシリンダボア3aの中央に形成された
チェン室内に配置されている。
A lower surface 4a of the cylinder head 4 on the side of the cylinder block 3 has a combustion recess 4b forming a combustion chamber.
Is recessed. An ignition plug 9 is screwed into the center of the combustion recess 4b, and two intake valve openings 4c and two exhaust valve openings 4d are opened around the plug 9. The valve plate 1 of the exhaust valve 10 is provided in each exhaust valve opening 4d.
In the intake valve opening 4c, a valve plate 11a of the intake valve 11 is disposed so as to open and close the openings 4d and 4c, respectively. The valve shafts 10b, 11b of the exhaust and intake valves 10, 11 extend obliquely in the cylinder axis direction so as to form a predetermined angle when viewed in the cam axis direction, and have exhaust and intake lifters 12, 13 at their upper ends. Are attached. Each lifter 1
Exhaust and intake camshafts 1 for driving them are provided on 2 and 13.
4 and 15 are arranged in a direction perpendicular to the cylinder axis and parallel to each other. Although not shown, the above exhaust,
A cam chain connecting the intake camshafts 14, 15 and the crankshaft is arranged in a chain chamber formed at the center of the four cylinder bores 3a.

【0010】上記2つの排気弁開口4dは二叉状の排気
通路16でシリンダヘッド4の前壁4f側に導出されて
おり、該排気通路16の壁面開口16aには排気装置2
7の排気マニホールド27fが接続されている。図5に
示すように、上記排気マニホールド27fの合流部27
aには、排気通路断面積を制御するための排気制御弁2
7cが配設されており、該排気制御弁27cの一端には
駆動プーリ27bが固定されている。
The two exhaust valve openings 4d are led out to the front wall 4f side of the cylinder head 4 through a bifurcated exhaust passage 16, and the exhaust device 2 is inserted into a wall opening 16a of the exhaust passage 16.
7 are connected to the exhaust manifold 27f. As shown in FIG. 5, the junction 27 of the exhaust manifold 27f
a has an exhaust control valve 2 for controlling the cross-sectional area of the exhaust passage;
A drive pulley 27b is fixed to one end of the exhaust control valve 27c.

【0011】また上記2つの吸気弁開口4cは二叉状の
吸気通路17,17でシリンダヘッド4の後壁4g側に
導出されている。該各吸気通路17は気筒軸方向に見る
と、カム軸と直角な線に対してわずかに内方に斜めに延
びており、またカム軸方向に見ると、上記吸気弁開口4
cからシリンダ後壁4g側に円弧状に屈曲した後、略直
線状に延びている。そしてこの吸気通路17の壁面開口
17aには吸気マニホールド18を介して気化器19が
接続されている。この吸気マニホールド18は、後述の
吸気制御弁駆動機構を保持するための保持ブラケット1
8aとキャブジョイント18bとを一体化したものであ
り、保持ブラケット18aが上記壁面開口17aに接続
固定され、キャブジョイント18bに上記気化器19の
吐出口が接続固定されている。この気化器19はスロッ
トル操作によって開閉するバタフライ式スロットルバル
ブ19aと、エンジンの吸気負圧で自動的に開閉するピ
ストンバルブ19bとを有する自動可変ベンチュリ式の
ものである。またこの気化器19の吸込口19cにはエ
アクリーナ20が接続されている。
The two intake valve openings 4c are led to the rear wall 4g of the cylinder head 4 through forked intake passages 17,17. Each intake passage 17 extends obliquely slightly inward with respect to a line perpendicular to the camshaft when viewed in the cylinder axis direction, and when viewed in the camshaft direction, the intake valve opening 4.
After being bent in an arc shape from c to the cylinder rear wall 4g side, it extends substantially linearly. A carburetor 19 is connected to a wall opening 17 a of the intake passage 17 via an intake manifold 18. This intake manifold 18 is provided with a holding bracket 1 for holding an intake control valve driving mechanism described later.
The holding bracket 18a is connected and fixed to the wall opening 17a, and the discharge port of the vaporizer 19 is connected and fixed to the cab joint 18b. The carburetor 19 is of an automatic variable venturi type having a butterfly type throttle valve 19a which opens and closes by a throttle operation, and a piston valve 19b which automatically opens and closes by negative pressure of the intake air of the engine. An air cleaner 20 is connected to a suction port 19 c of the vaporizer 19.

【0012】そして上記各吸気通路17の底壁部分には
弁穴17cが該底壁面に開口するように形成されてい
る。この弁穴17cは、気筒軸方向に見ると、上記各吸
気通路17が外側ほど内側に位置するように僅かに内側
に斜めになっているのに対して、気筒軸同士を結ぶ直線
と直角になっている(図2参照)。一方、カム軸方向に
見ると、吸気通路17に対して吸気弁開口4c側ほど吸
気通路内方に位置するように僅かに斜めになっている。
A valve hole 17c is formed in a bottom wall portion of each of the intake passages 17 so as to open to the bottom wall surface. When viewed in the cylinder axis direction, the valve holes 17c are slightly inclined inward so that the intake passages 17 are located more inward toward the outside, but at right angles to the straight line connecting the cylinder axes. (See FIG. 2). On the other hand, when viewed in the camshaft direction, it is slightly oblique to the intake passage 17 so that the intake valve opening 4c is located closer to the intake passage inside.

【0013】上記各弁穴17c内には、吸気通路17の
通路断面積を変化させるための吸気制御弁21がその軸
回りに回動可能に配設されている。この吸気制御弁21
は丸棒にU溝状の吸気凹部21aをその全長に渡って切
り欠き形成するとともに、その先端に傾斜面21cを、
後端にピニオン21bをそれぞれ形成してなるものであ
る。上記吸気凹部21aは、該制御弁21を全開位置に
回動させると上記吸気通路17の内壁面と連続面をなす
ようになっている(図6,図7参照)。また上記制御弁
21を全閉位置に回動させると、上述のように弁穴17
cが吸気通路17に対して斜めになっていることから、
吸気通路17の通路断面積を下流側ほど徐々に狭くする
ようになっている(図1,図3,図4参照)。
An intake control valve 21 for changing the cross-sectional area of the intake passage 17 is provided in each of the valve holes 17c so as to be rotatable around its axis. This intake control valve 21
Is formed by notching a U-groove-shaped intake concave portion 21a in a round bar over the entire length thereof, and an inclined surface 21c at a tip thereof.
The pinion 21b is formed at the rear end. The intake recess 21a forms a continuous surface with the inner wall surface of the intake passage 17 when the control valve 21 is rotated to the fully open position (see FIGS. 6 and 7). When the control valve 21 is rotated to the fully closed position, the valve hole 17 is rotated as described above.
Since c is oblique to the intake passage 17,
The passage cross-sectional area of the intake passage 17 is gradually reduced toward the downstream side (see FIGS. 1, 3, and 4).

【0014】また上記吸気マニホールド18の保持ブラ
ケット18a内には、スライド穴18cが、上記各制御
弁21と直角方向に貫通形成されており、該スライド穴
18cの先端開口にはプラグ18dがねじ込まれてい
る。そしてこのスライド穴18c内にはラック22aを
有する駆動軸22がスライド可能に挿入されており、こ
のラック22aに上記制御弁21のピニオン21bが噛
合している。また上記駆動軸22の外端部には上記保持
ブラケット18aで軸支された駆動アーム22bの一端
が連結さており、該駆動アーム22bの他端には駆動ケ
ーブル25aが接続されている。
A slide hole 18c is formed in the holding bracket 18a of the intake manifold 18 in a direction perpendicular to each of the control valves 21, and a plug 18d is screwed into a leading end opening of the slide hole 18c. ing. A drive shaft 22 having a rack 22a is slidably inserted into the slide hole 18c, and the pinion 21b of the control valve 21 is engaged with the rack 22a. One end of a drive arm 22b pivotally supported by the holding bracket 18a is connected to an outer end of the drive shaft 22, and a drive cable 25a is connected to the other end of the drive arm 22b.

【0015】上記吸気制御弁21用駆動ケーブル25a
及び上記排気制御弁27cの駆動プーリ27bに接続さ
れた駆動ケーブル25bは、駆動モータ23aに接続さ
れており、この駆動モータ23aは、コントロールユニ
ット23bでその駆動が制御される。なお23cはメイ
ンスイッチ、23dはバッテリである。
Drive cable 25a for intake control valve 21
The drive cable 25b connected to the drive pulley 27b of the exhaust control valve 27c is connected to a drive motor 23a, and the drive of the drive motor 23a is controlled by a control unit 23b. 23c is a main switch, and 23d is a battery.

【0016】次に本実施例の作用効果について説明す
る。エンジンの低速回転,又は低負荷運転時のように吸
気量が少ない場合は、図1,図3,図4に示すように、
上記吸気制御弁21は全閉位置に回動される。そのため
吸気通路17はその底壁面側から絞られ、天壁面側のみ
が開口することとなる。この場合、カム軸方向に見て吸
気制御弁21が吸気通路17に対して通路内方に斜めに
なっていることから、吸気弁開口4c側ほど徐々に大き
く絞られる。また気筒軸方向に見た場合、気筒軸同士を
結ぶ線に対して、吸気通路17は斜めになっているのに
対し、吸気制御弁21は直角になっており、この点から
も吸気通路面積が徐々に絞られる。これらにより吸気通
路17の等価管長が長くなり、低速回転時における体積
効率が向上し(図8参照)、それだけ低速トルクが増大
する。また吸気は上記吸気制御弁21によって流速が徐
々に高められ、燃焼室内に高速で方向性をもって吹き込
まれ、図1に矢印で示すように縦スワールが発生する。
その結果、空燃比を希薄にしても燃焼を安定化でき、燃
費の向上を図ることができる。また、各吸気制御弁21
を互いに平行に配置したので、多気筒エンジンにおいて
も構造をそれほど複雑化することなく対応できる。さら
にまた低速回転時等においては、排気マニホールド27
fの集合部27a内に配設された排気制御弁27cが上
記吸気制御弁21と連動して回動して排気通路面積を絞
る。これにより排気効率が向上し、この点からも上記充
填効率を向上させて低速トルクの向上を図ることができ
る。
Next, the operation and effect of this embodiment will be described. When the intake air amount is small as in the case of low-speed rotation of the engine or low-load operation, as shown in FIGS.
The intake control valve 21 is turned to the fully closed position. Therefore, the intake passage 17 is narrowed from the bottom wall side, and only the top wall side is opened. In this case, since the intake control valve 21 is inclined inward of the intake passage 17 with respect to the intake passage 17 when viewed in the camshaft direction, the intake control valve 21 is gradually narrowed toward the intake valve opening 4c. Also, when viewed in the cylinder axis direction, the intake passage 17 is oblique to the line connecting the cylinder axes, while the intake control valve 21 is at a right angle. Is gradually squeezed. As a result, the equivalent pipe length of the intake passage 17 is increased, the volume efficiency at the time of low-speed rotation is improved (see FIG. 8), and the low-speed torque is accordingly increased. Further, the flow rate of the intake air is gradually increased by the intake control valve 21 and is blown into the combustion chamber at a high speed and direction, thereby generating a vertical swirl as shown by an arrow in FIG.
As a result, even if the air-fuel ratio is made lean, combustion can be stabilized, and fuel efficiency can be improved. In addition, each intake control valve 21
Are arranged in parallel with each other, so that even in a multi-cylinder engine, it is possible to cope with the structure without significantly complicating the structure. Furthermore, at low speed rotation, etc., the exhaust manifold 27
The exhaust control valve 27c disposed in the collecting portion 27a of the valve f rotates in conjunction with the intake control valve 21 to reduce the exhaust passage area. As a result, the exhaust efficiency is improved, and from this point as well, the charging efficiency can be improved and the low-speed torque can be improved.

【0017】そしてエンジンの高速回転時,又は高負荷
運転時のように吸気量が多い場合は、上記吸気制御弁2
1は全開位置に回動され、これにより吸気凹部21aが
吸気通路17の壁面と連続面をなし(図6,図7参
照)、吸気制御弁21が吸気抵抗となることはない。
When the intake air amount is large, such as when the engine is rotating at a high speed or during a high-load operation, the intake control valve 2 is used.
1 is rotated to the fully open position, whereby the intake recess 21a forms a continuous surface with the wall surface of the intake passage 17 (see FIGS. 6 and 7), and the intake control valve 21 does not become an intake resistance.

【0018】図9,図10は、上記吸気制御弁の吸気凹
部部分の変形例を示し、図中、図3,図4と同一符号は
同一又は相当部分を示す。この変形例では、吸気制御弁
21の吸気凹部21aの裏側部分に、傾斜面21dを形
成している。この傾斜面21dは、吸気通路方向に見る
と、隣接する吸気通路17,17の境界部分、つまり気
筒中心部分が低くなるように形成されている。これによ
り、吸気制御弁21を全閉位置に回動させた場合に、吸
気通路の気筒中央に対応する部分がより大きく開口し、
従って燃焼室中央により多くの吸気が流入することとな
る。
FIGS. 9 and 10 show modifications of the intake concave portion of the intake control valve. In the drawings, the same reference numerals as those in FIGS. 3 and 4 denote the same or corresponding parts. In this modification, an inclined surface 21d is formed in the intake control valve 21 on the back side of the intake concave portion 21a. The inclined surface 21d is formed such that the boundary portion between the adjacent intake passages 17, 17, that is, the center portion of the cylinder, becomes lower when viewed in the intake passage direction. As a result, when the intake control valve 21 is rotated to the fully closed position, a portion corresponding to the center of the cylinder of the intake passage opens larger,
Therefore, more intake air flows into the center of the combustion chamber.

【0019】図11,及び図12は本発明を燃料噴射式
エンジンに適用した実施例であり、図中、図1と同一符
号は同一又は相当部分を示す。本実施例では、吸気通路
17の天壁部分に燃料噴射弁26が装着されており、こ
れの噴射ノズルは、噴射孔26aを介して吸気制御弁2
1の先端部、つまり吸気通路面積の最も絞られた部分か
ら吸気弁11の弁板11aの裏面に渡る部分に向いてい
る。また吸気通路17の後壁開口17aには吸気マニホ
ールド18を介してスロットルボディ24が接続されて
おり、該ボディ24内にはスロットル弁24aが回動可
能に配設されている。なお、図示していないが、上記ス
ロットル弁24aは上記駆動軸22と連動して駆動制御
される。本実施例では、上記燃料噴射弁26から噴射さ
れた燃料が、吸気制御弁21にも当たるので、該制御弁
21を冷却できる。また、吸気通路面積の最も絞られた
部分に燃料を噴射するので、燃料の移送遅れが小さく、
かつ霧化が良好となる。
FIGS. 11 and 12 show an embodiment in which the present invention is applied to a fuel injection engine. In the drawings, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. In the present embodiment, a fuel injection valve 26 is mounted on a top wall portion of the intake passage 17, and the injection nozzle of the fuel injection valve 26 is connected to the intake control valve 2 via an injection hole 26a.
1, that is, a portion extending from the most narrowed portion of the intake passage area to the back surface of the valve plate 11 a of the intake valve 11. A throttle body 24 is connected to a rear wall opening 17a of the intake passage 17 via an intake manifold 18, and a throttle valve 24a is rotatably disposed in the body 24. Although not shown, the drive of the throttle valve 24a is controlled in conjunction with the drive shaft 22. In the present embodiment, the fuel injected from the fuel injection valve 26 also hits the intake control valve 21, so that the control valve 21 can be cooled. In addition, since fuel is injected into the narrowest part of the intake passage area, fuel transfer delay is small,
And atomization becomes good.

【0020】ところで本発明では、吸気通路面積を制御
する吸気制御弁を設けたので、希薄空燃比燃焼を安定化
でき、COの低減と燃費の向上を図ることができるもの
の、排気温度が低下し、触媒によるHCの処理が行い難
くくなる懸念がある。特に高速型エンジンの場合、排気
の抵抗を低減するために触媒をエンジンからできるだけ
離して配置することから、排気温度がさらに低下し、上
記問題がより顕著になると考えられる。一方、単に排気
管を短くすることにより触媒をエンジンに近接させた場
合は、低速回転時に排気効率が悪化してエンジン性能が
低下する懸念がある。
In the present invention, since the intake control valve for controlling the area of the intake passage is provided, the lean air-fuel ratio combustion can be stabilized, the CO can be reduced and the fuel efficiency can be improved, but the exhaust gas temperature decreases. In addition, there is a concern that the treatment of HC by the catalyst becomes difficult. In particular, in the case of a high-speed type engine, since the catalyst is arranged as far away from the engine as possible to reduce the resistance of the exhaust gas, the exhaust gas temperature is further lowered, and the above problem is considered to be more remarkable. On the other hand, if the catalyst is brought closer to the engine simply by shortening the exhaust pipe, there is a concern that the exhaust efficiency will deteriorate at low speed rotation and engine performance will decrease.

【0021】図13,図14は上記排気温度低下による
問題を解消するために、触媒をエンジンにできるだけ近
接させて配置できるようにした触媒配置構造である。図
中、27は排気装置であり、これは、各気筒の排気口に
接続された排気マニホールド(図1の符号27f参照)
を、これに接続された各排気管27gで1つの集合部2
7aに集合させ、該集合部27aに触媒チャンバ27e
を一体形成するとともに、該チャンバ27eに消音器2
7dを接続した構造となっている。上記集合部27a内
には、上記各排気管27gの集合部内開口27hの面
積、つまり排気通路面積を制御する排気制御弁27cが
配設されており、また上記集合部27aに続く上記触媒
チャンバ27e内には触媒ユニット28が配設されてい
る。なお、上記排気制御弁27cは、プーリ27bに巻
回されたワイヤケーブル(図示せず)を介して、上記吸
気制御弁と連動して制御される。
FIGS. 13 and 14 show a catalyst arrangement structure in which the catalyst can be arranged as close as possible to the engine in order to solve the problem caused by the decrease in the exhaust gas temperature. In the figure, reference numeral 27 denotes an exhaust device, which is an exhaust manifold connected to the exhaust port of each cylinder (see reference numeral 27f in FIG. 1).
Is connected to one collecting portion 2 by each exhaust pipe 27g connected thereto.
7a, and the catalyst chamber 27e is
And a silencer 2 is provided in the chamber 27e.
7d are connected. An exhaust control valve 27c for controlling the area of the opening 27h in the collecting section of each exhaust pipe 27g, that is, an exhaust passage area, is provided in the collecting section 27a, and the catalyst chamber 27e connected to the collecting section 27a. Inside, a catalyst unit 28 is provided. The exhaust control valve 27c is controlled in conjunction with the intake control valve via a wire cable (not shown) wound around a pulley 27b.

【0022】本配置構造では、エンジンの低速回転時に
排気通路面積を絞る排気制御弁27cを設けたので、排
気管長を短くしても低速回転時の運転を安定化できる。
上述のように、排気管長を短くすると、高速回転時には
排気の負圧波が排気弁開口に作用して排気効率を向上で
きるものの、低速回転時には排気の正圧波が排気弁開口
に作用することから排気効率が低下する。しかし本実施
例では排気制御弁27cによって上記排気の正圧波を打
ち消すことができ、上述の安定化が可能となる。従って
排気制御弁を設けない場合に比較して触媒28をエンジ
ンの排気口に近接させることができ、それだけ排気温度
の低下を抑制でき、HCの処理上有利となる。また排気
管長を短くした分だけ排気管の熱容量が小さくなり、エ
ンジン始動時の活性開始までの時間が短くなる。
In this arrangement, the exhaust control valve 27c for reducing the exhaust passage area when the engine is running at a low speed is provided, so that the operation at a low speed can be stabilized even if the length of the exhaust pipe is shortened.
As described above, when the length of the exhaust pipe is reduced, the negative pressure wave of the exhaust acts on the exhaust valve opening during high-speed rotation to improve the exhaust efficiency. Efficiency decreases. However, in this embodiment, the positive pressure wave of the exhaust gas can be canceled by the exhaust control valve 27c, and the above-described stabilization can be achieved. Therefore, as compared with the case where the exhaust control valve is not provided, the catalyst 28 can be brought closer to the exhaust port of the engine, and the decrease in the exhaust gas temperature can be suppressed accordingly, which is advantageous in the treatment of HC. In addition, the heat capacity of the exhaust pipe is reduced by the shortened length of the exhaust pipe, and the time until activation is started when the engine is started is shortened.

【0023】このように、排気制御弁27cを設け、こ
れの下流側直近に触媒28を配設するという本配置構造
は、上記実施例の如く吸気通路面積を制御することによ
り希薄燃焼を安定化できるようにしたエンジンに有効で
ある。
As described above, this arrangement in which the exhaust control valve 27c is provided and the catalyst 28 is disposed immediately downstream of the exhaust control valve 27c stabilizes the lean combustion by controlling the intake passage area as in the above embodiment. It is effective for engines that can be used.

【0024】図15ないし図18は、排気管長を、エン
ジンの低中速回転時には長く、高回転時には短くでき、
かつ排気温度の低下を抑制できるようにした別の触媒配
置構造であり、図中、図13,図14と同一符号は同一
又は相当部分を示す。本配置構造では、各排気管を前部
排気管27gと後部排気管27iとに分離し、その間に
弁室27jと触媒チャンバ27eとを介設している。こ
の触媒チャンバ27e内には、触媒28が配設されてい
る。この触媒28は、格子状をなす多数の通路28aが
上流側が下流側に貫通したモノリス型のものである。な
お、上記後部排気管27iは図示左方において集合して
おり、また上記弁室27jは上方に膨出した形状になっ
ている。
FIGS. 15 to 18 show that the length of the exhaust pipe can be increased when the engine is running at low and medium speeds and shortened when the engine is running at high speed.
This is another catalyst arrangement structure capable of suppressing a decrease in exhaust gas temperature. In the drawings, the same reference numerals as those in FIGS. 13 and 14 indicate the same or corresponding parts. In this arrangement, each exhaust pipe is divided into a front exhaust pipe 27g and a rear exhaust pipe 27i, and a valve chamber 27j and a catalyst chamber 27e are interposed therebetween. A catalyst 28 is provided in the catalyst chamber 27e. The catalyst 28 is of a monolith type in which a large number of passages 28a in a lattice shape have an upstream side passing through a downstream side. The rear exhaust pipe 27i is gathered on the left side in the figure, and the valve chamber 27j has a shape bulging upward.

【0025】そして上記弁室27j内には仕切弁30
が、上記膨出部内に位置する待機位置と各前部排気管2
7gの延長上に位置する仕切位置との間で上下方向に回
動可能に配設されている。この仕切弁30は、弁軸30
aに5枚の弁板30bを固定するとともに、該各弁板3
0bの上面をカバー板30dで覆った構造のものであ
る。また上記仕切弁30は、上記弁軸30aの外方突出
端部に装着された駆動プーリ30c,及びこれに巻回さ
れた駆動ケーブル30eを介して図示しない制御モータ
によって開閉制御される。
A gate valve 30 is provided in the valve chamber 27j.
Are located at the standby position located in the bulging portion and each front exhaust pipe 2.
It is disposed so as to be vertically rotatable with respect to a partition position located on an extension of 7 g. This gate valve 30 is provided with a valve shaft 30.
a, five valve plates 30b are fixed to each of the valve plates 30b.
0b is covered with a cover plate 30d. The gate valve 30 is opened and closed by a control motor (not shown) via a drive pulley 30c mounted on an outwardly projecting end of the valve shaft 30a and a drive cable 30e wound therearound.

【0026】低速回転時には、上記仕切弁30が仕切位
置に回動し、これにより上記前部排気管27gは、仕切
板30b,カバー板30d及び弁室27jの底面で構成
される通路と、触媒28で構成される通路とを介して後
部排気管27iと連通する。また、高速回転時には、上
記仕切弁30が待機位置に回動し、これにより上記各前
部排気管27gは弁室27jによって集合し、従って排
気管長が上記低速回転時より短くなる。
At the time of low-speed rotation, the gate valve 30 rotates to the partition position, whereby the front exhaust pipe 27g is connected to the passage formed by the partition plate 30b, the cover plate 30d and the bottom surface of the valve chamber 27j, and the catalyst. 28 and a rear exhaust pipe 27i. Further, at the time of high-speed rotation, the gate valve 30 rotates to the standby position, whereby the front exhaust pipes 27g are gathered by the valve chamber 27j, and thus the length of the exhaust pipe is shorter than at the time of low-speed rotation.

【0027】このように本配置構造では、各排気管を
前,後に分離し、その間に触媒28を配置したので、該
触媒28は排気口に近くなり、それだけ排気ガスの温度
低下を抑制できる。また低速回転時には、仕切弁30,
及び触媒28によって前,後の排気管を接続することに
より排気管長を長くでき、かつ高速回転時には前部排気
管27gを弁室27jで集合させることにより排気管長
を短くできる。その結果、低速回転時,高速回転時の両
方において出力向上を図ることができる。
As described above, in this arrangement, each exhaust pipe is separated before and after, and the catalyst 28 is disposed between them, so that the catalyst 28 is closer to the exhaust port, and the temperature of the exhaust gas can be reduced accordingly. Also, at low speed rotation, the gate valve 30,
The exhaust pipe length can be increased by connecting the front and rear exhaust pipes with the catalyst 28, and the exhaust pipe length can be shortened by gathering the front exhaust pipe 27g in the valve chamber 27j during high-speed rotation. As a result, the output can be improved both at low speed rotation and at high speed rotation.

【発明の効果】以上のように本発明に係るエンジンの吸
気制御装置によれば、吸気制御弁を棒状体とし、吸気通
路の底壁面部分に該通路方向に配置したので、低速回転
時等には吸気通路断面積を下流側ほど徐々に狭小化で
き、そのため低速回転時等における等価管長が長くな
り、充填効率を向上して低速トルクを改善できる効果が
あり、また吸気量が少ない場合にも吸気を流速を高めて
燃焼室内に吹き込むことができ、希薄空燃比燃焼を安定
化でき、低速燃費を向上できる効果がある。さらにま
た、高速回転時等には、吸気制御弁の吸気凹部が吸気通
路の壁面と略連続面をなすので、吸気抵抗が大きくなる
こともない。
As described above, according to the intake control system for an engine according to the present invention, the intake control valve is formed in a rod shape and is disposed on the bottom wall portion of the intake passage in the direction of the passage. Can reduce the intake passage cross-sectional area gradually toward the downstream side, so that the equivalent pipe length at the time of low-speed rotation, etc. becomes longer, which has the effect of improving the charging efficiency and improving the low-speed torque. The intake air can be blown into the combustion chamber at an increased flow velocity, so that lean air-fuel ratio combustion can be stabilized and low-speed fuel efficiency can be improved. Furthermore, at the time of high-speed rotation or the like, the intake recess of the intake control valve forms a substantially continuous surface with the wall surface of the intake passage, so that the intake resistance does not increase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例によるエンジンの吸気制御装
置の断面側面図である。
FIG. 1 is a sectional side view of an intake control device for an engine according to an embodiment of the present invention.

【図2】図1のII-II 線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】図1のIII-III 線断面図である。FIG. 3 is a sectional view taken along line III-III of FIG. 1;

【図4】図1のIV-IV 線断面図である。FIG. 4 is a sectional view taken along line IV-IV of FIG. 1;

【図5】図1のV-V 線断面図である。FIG. 5 is a sectional view taken along line VV of FIG. 1;

【図6】上記実施例の吸気制御弁の高速回転時等の状態
を示す断面図である。
FIG. 6 is a cross-sectional view showing a state at the time of high-speed rotation of the intake control valve of the embodiment.

【図7】上記実施例の吸気制御弁の高速回転時等の状態
を示す断面図である。
FIG. 7 is a cross-sectional view showing a state at the time of high-speed rotation of the intake control valve of the embodiment.

【図8】上記実施例の作用効果を説明するためのエンジ
ン回転数−体積効率特性図である。
FIG. 8 is an engine speed-volume efficiency characteristic diagram for explaining the operation and effect of the embodiment.

【図9】上記実施例の吸気制御弁部分の変形例を示す断
面図である。
FIG. 9 is a sectional view showing a modified example of the intake control valve portion of the embodiment.

【図10】上記実施例の吸気制御弁部分の変形例を示す
断面図である。
FIG. 10 is a sectional view showing a modified example of the intake control valve portion of the embodiment.

【図11】本発明を燃焼噴射式エンジンに適用した場合
の実施例を示す断面側面図である。
FIG. 11 is a sectional side view showing an embodiment when the present invention is applied to a combustion injection type engine.

【図12】図11のXII-XII 線断面図である。12 is a sectional view taken along line XII-XII of FIG.

【図13】上記実施例の吸気制御装置を備えたエンジン
に好適な触媒配置構造を示す断面平面図である。
FIG. 13 is a sectional plan view showing a catalyst arrangement structure suitable for an engine including the intake control device of the embodiment.

【図14】上記触媒配置構造の断面側面図である。FIG. 14 is a sectional side view of the catalyst arrangement structure.

【図15】上記実施例の吸気制御装置を備えたエンジン
に好適の別の触媒配置構造を示す断面側面図である。
FIG. 15 is a cross-sectional side view showing another catalyst arrangement structure suitable for an engine including the intake control device of the embodiment.

【図16】上記別の触媒配置構造の断面平面図である。FIG. 16 is a cross-sectional plan view of another catalyst arrangement structure.

【図17】図16のXVII-XVII 線断面図である。FIG. 17 is a sectional view taken along line XVII-XVII in FIG. 16;

【図18】図16のXVIII-XVIII 線断面図である。18 is a sectional view taken along line XVIII-XVIII in FIG.

【符号の説明】[Explanation of symbols]

1 エンジン 4a 合面 4c 吸気弁開口 4g シリンダ外壁 17 吸気通路 21 吸気制御弁 21a 吸気凹部 Reference Signs List 1 engine 4a mating surface 4c intake valve opening 4g cylinder outer wall 17 intake passage 21 intake control valve 21a intake recess

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F02B 27/02 F02B 29/02 F02B 31/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) F02B 27/02 F02B 29/02 F02B 31/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 吸気弁開口をシリンダ外壁に導出する吸
気通路内に、低速回転時又は低負荷運転時に通路断面積
を減少させる吸気制御弁を備えたエンジンの吸気制御装
置において、上記制御弁を、横断面円形の棒体に軸方向
に延びる吸気凹部を形成してなるものとするとともに、
上記吸気通路のシリンダブロックとの合面側の壁面部分
に該吸気通路と略平行にかつ軸線回りに回動可能に配置
し、該制御弁を閉位置に回動させたとき通路断面積が吸
気弁開口側ほど狭小化し、全開位置に回動させたとき上
記吸気凹部が吸気通路の壁面と略連続面をなすことを特
徴とするエンジンの吸気制御装置。
1. An intake control system for an engine having an intake control valve for reducing a passage cross-sectional area during a low-speed rotation or a low-load operation in an intake passage that leads an intake valve opening to an outer wall of a cylinder. , While forming a suction recess extending in the axial direction in a rod having a circular cross section,
The intake passage is disposed on a wall surface on the side of the mating surface with the cylinder block so as to be rotatable substantially in parallel with the intake passage and around an axis. An intake control device for an engine, wherein the intake concave portion forms a substantially continuous surface with a wall surface of an intake passage when the valve is narrowed toward a valve opening side and rotated to a fully open position.
JP3334091A 1991-04-15 1991-11-22 Engine intake control device Expired - Fee Related JP2887877B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11118491 1991-04-15
JP3-111184 1991-04-15

Publications (2)

Publication Number Publication Date
JPH0518250A JPH0518250A (en) 1993-01-26
JP2887877B2 true JP2887877B2 (en) 1999-05-10

Family

ID=14554628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3334091A Expired - Fee Related JP2887877B2 (en) 1991-04-15 1991-11-22 Engine intake control device

Country Status (1)

Country Link
JP (1) JP2887877B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885464B1 (en) * 2008-05-14 2009-02-25 송광재 Intake and exhaust device of 4-stroke internal combustion engine

Also Published As

Publication number Publication date
JPH0518250A (en) 1993-01-26

Similar Documents

Publication Publication Date Title
JP2639721B2 (en) Combustion chamber of internal combustion engine
JP5925878B2 (en) Intake device for internal combustion engine
JP3451589B2 (en) Intake device for internal combustion engine
JP2009097335A (en) Supercharging device of engine
JPH03138416A (en) Intake device for engine provided with supercharger
JPS62228622A (en) Suction device for engine
US5762042A (en) Internal combustion engine
JPS5932656B2 (en) engine intake system
JP2887877B2 (en) Engine intake control device
JP3384579B2 (en) Engine with turbocharger
JP2721965B2 (en) V-type engine
JP3320775B2 (en) Engine intake control device
JP3318357B2 (en) Engine intake control device
JPH051549A (en) Engine intake controller
JP3506769B2 (en) Engine intake control device
JP2994784B2 (en) Engine combustion chamber structure
JP3012023B2 (en) Engine intake control device
JP3244908B2 (en) Engine intake control device
JP3012040B2 (en) Engine intake control device
JP3012024B2 (en) Engine intake control device
JP2004003424A (en) Intake device for engine
JP3329405B2 (en) Intake control structure for two-valve engine
JP3012039B2 (en) Engine intake control device
JPS60147534A (en) Suction device for internal-combustion engine
JP3264749B2 (en) Intake control structure for two-valve engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990126

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees