WO2013146676A1 - 線材及びこれを用いた鋼線 - Google Patents

線材及びこれを用いた鋼線 Download PDF

Info

Publication number
WO2013146676A1
WO2013146676A1 PCT/JP2013/058566 JP2013058566W WO2013146676A1 WO 2013146676 A1 WO2013146676 A1 WO 2013146676A1 JP 2013058566 W JP2013058566 W JP 2013058566W WO 2013146676 A1 WO2013146676 A1 WO 2013146676A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
less
aln
wire
steel
Prior art date
Application number
PCT/JP2013/058566
Other languages
English (en)
French (fr)
Inventor
友信 石田
吉原 直
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to ES13767810T priority Critical patent/ES2743735T3/es
Priority to CN201380016256.5A priority patent/CN104204255B/zh
Priority to EP13767810.8A priority patent/EP2832878B1/en
Priority to KR1020147026390A priority patent/KR101624447B1/ko
Priority to MX2014011471A priority patent/MX2014011471A/es
Publication of WO2013146676A1 publication Critical patent/WO2013146676A1/ja
Priority to ZA2014/06891A priority patent/ZA201406891B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/08Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Definitions

  • the present invention relates to a wire used for a PC steel wire, a wire rope, and the like, and a steel wire using the same.
  • PC prestressed concrete
  • the steel wire used for PC that is, the PC steel wire, can contribute to higher strength and lighter weight of PC as the strength is higher.
  • JIS G3536 for example, 7 strands of ⁇ 15.2mm
  • the one having a maximum test force of about 261 kN is known.
  • Delayed fracture means that when steel is used for a long time with stress applied, hydrogen that has penetrated into the steel concentrates on fine scratches on the surface of the steel, embrittles the structure around the scratch, and causes brittle fracture. It is a phenomenon that causes Since the PC steel wire is always used in a tensioned state, there is a possibility of causing delayed fracture, and strict standards are provided. In particular, it is well known that delayed fracture is likely to occur as the strength increases, and there is a demand for the development of a steel material that can suppress delayed fracture even when the strength is increased.
  • Patent Document 1 in a PC steel wire having a carbon content of 0.6 to 1.1%, the plate-like cementite on the surface of the wire is spheroidized by performing blueing at a temperature of 450 ° C. or higher after wire drawing, A technique for improving delayed fracture resistance is disclosed.
  • Patent Document 1 has a problem that the strength of the steel wire decreases due to the spheroidization of the plate-like cementite, and there is a limit to the improvement of the strength.
  • Patent Document 2 discloses a technique for improving delayed fracture resistance by using a processed pearlite structure in which a compressive residual stress is applied to the surface layer of a PC steel wire having a carbon content of 0.6 to 1.3%. ing.
  • Patent Document 2 is a technology for wire strength up to about 1600 MPa, and this technology sufficiently secures delayed fracture resistance due to hydrogen diffusion in a higher region where the wire strength is, for example, 2000 MPa or more. It seems difficult to do.
  • Patent Document 3 discloses that in a bearing steel having a carbon content of 0.65 to 1.20%, 50 to 300 nm of Ti-based or Al-based nitride or the like is dispersed for a predetermined amount or more to trap hydrogen.
  • a technique for improving delayed fracture resistance in a tempered martensite structure is disclosed.
  • the diffusion behavior of hydrogen is different for different structures and the size and amount of precipitates suitable as trap sites are different, it is not possible to apply this technology as it is to PC steel wires whose main phase is a pearlite structure. Can not.
  • the manufacturing process of bearing steel that performs quenching and tempering after the wire drawing process and the manufacturing process of PC steel wire that performs the wire drawing process after the patenting process are greatly different. Different.
  • the present invention provides a high-strength PC steel wire, wire rope, etc. that has a delayed fracture resistance property that conforms to building standards, in a wire rod whose main phase is a pearlite structure, suppressing a decrease in the delayed fracture resistance property with increasing strength. It aims at providing the wire which can be used.
  • the present inventors examined inclusions having a hydrogen trap effect in a wire having a pearlite structure as a main phase. As a result, the AlN content was ensured to be a predetermined amount or more, and AlN having a size of 10 to 20 ⁇ m was also selected from AlN. We found that it is important to secure the above.
  • the wire of the present invention has C: 0.8 to 1.2% (meaning mass%, hereinafter the same for the component composition), Si: 0.1 to 2.0%, Mn: 0.1 to 2.0%, N: 0.002 to 0.010%, Al: 0.04 to 0.15%, P: 0.02% or less (including 0%), S: 0.02% or less (0 And the balance is iron and inevitable impurities, the amount of Al and the amount of N satisfy the relationship of the following formula (1), [Al] ⁇ ⁇ 2.1 ⁇ 10 ⁇ [N] +0.255 (1) (However, in the formula (1), [Al] and [N] are the contents (mass%) of Al and N, respectively.) More than 95 area% of the structure is a pearlite structure, the AlN amount is 0.005% or more, and the diameter d of AlN expressed by the geometric mean (ab) 1/2 of the length a and the thickness b In the maximum value extreme value distribution of GM , the ratio of AlN having d GM of 10 to 20 ⁇ m is
  • the present invention further includes (a) Cr: 1.0% or less (excluding 0%), Ni: 1.0% or less (not including 0%), Co: 1.0% or less (0% At least one selected from the group consisting of Mo: 1.0% or less (not including 0%) and Cu: 0.5% or less (not including 0%), (b) B : Selected from the group consisting of 0.005% or less (not including 0%), Nb: 0.5% or less (not including 0%), and V: 0.5% or less (not including 0%) It is also preferable to contain at least one kind.
  • the present invention also includes a steel wire obtained from the above wire.
  • the amount of Al and the amount of N are appropriately adjusted, and the total amount of AlN and AlN having a predetermined size (d GM is 10 to 20 ⁇ m) are appropriately present.
  • Wire can be provided.
  • the twist characteristic of a steel wire can be improved by adjusting the amount of solute N below predetermined.
  • the amount of AlN is set to 0.005% or more because the hydrogen trap effect increases as the amount increases.
  • the amount of AlN is preferably 0.006% or more, more preferably 0.007% or more (particularly 0.01% or more).
  • the upper limit of the amount of AlN is not particularly limited, but is usually about 0.04%.
  • the maximum value extreme value distribution is used as an index for securing the number of AlN having a size of 10 to 20 ⁇ m.
  • a geometric average (ab) 1/2 of the length a and the thickness b of AlN is used, and this is expressed as d GM ( ⁇ m).
  • d GM ⁇ m
  • the length “a” of AlN means the length of AlN in the longitudinal direction of the wire
  • the thickness “b” of AlN means the length of AlN in the direction perpendicular to the longitudinal direction of the wire.
  • d GM The maximum extreme value distribution, to measure the maximum value d GM (max) of d GM of AlN present in a given area, which is repeated for multiple viewing, measured more d GM (max) It means the thing which statistically processed about.
  • the ratio of AlN having d GM (max) of 10 to 20 ⁇ m is set to 50% or more on the number basis.
  • the ratio of AlN having d GM (max) of 10 to 20 ⁇ m is set to 50% or more on the number basis.
  • 95% by area or more of the main phase structure is a pearlite structure.
  • the area ratio of the pearlite structure is preferably 97% or more, and more preferably 100%.
  • C 0.8-1.2% C is an element effective for increasing the strength, and the strength of the wire rod and the steel wire after cold working is improved as the C content increases. Therefore, the C amount is set to 0.8% or more.
  • the amount of C is preferably 0.85% or more, more preferably 0.90% or more.
  • the C amount is set to 1.2% or less.
  • the amount of C is preferably 1.1% or less, more preferably 1.05% or less.
  • Si 0.1-2.0%
  • Si has an action of a deoxidizer, but is an effective element because it has an action of improving the strength of the wire and an action of improving relaxation characteristics.
  • Si when hot dip galvanization is used, Si also has an action of suppressing strength reduction that occurs during plating. In order to exhibit these effects effectively, the Si amount was determined to be 0.1% or more.
  • the amount of Si is preferably 0.2% or more, and more preferably 0.4% or more.
  • the Si amount is set to 2.0% or less.
  • the amount of Si is preferably 1.8% or less, and more preferably 1.5% or less.
  • Mn 0.1 to 2.0% Mn has a deoxidizing action similar to Si, but has an effect of increasing the toughness and ductility of steel by fixing S in steel as MnS.
  • the amount of Mn is set to 0.1% or more.
  • the amount of Mn is preferably 0.15% or more, more preferably 0.2% or more.
  • Mn is an element that easily segregates, and if added excessively, the hardenability of the Mn segregated part is excessively increased, and a supercooled structure such as martensite may be generated. Therefore, the amount of Mn is set to 2.0% or less.
  • the amount of Mn is preferably 1.8% or less, more preferably 1.5% or less.
  • N 0.002 to 0.010%
  • the amount of N is preferably 0.0025% or more, more preferably 0.0030% or more (particularly 0.0040% or more).
  • N dissolves in steel as an interstitial element in the same manner as C and causes embrittlement due to strain aging. Therefore, when added excessively, the twisting characteristic is reduced due to an increase in the amount of dissolved N. Therefore, the N amount is determined to be 0.010% or less.
  • the amount of N is preferably 0.0090% or less, and more preferably 0.0080% or less.
  • Solid solution N amount 0.003% or less As described above, since the solid solution N causes a decrease in twisting characteristics, the smaller the amount, the better. Therefore, the amount of solute N is preferably 0.003% or less.
  • the amount of solute N is more preferably 0.002% or less, and further preferably 0.001% or less.
  • the amount of solute N can be controlled by adjusting the amount of nitride-forming elements such as Al, B, and Nb and the amount of N.
  • Al 0.04-0.15% and [Al] ⁇ ⁇ 2.1 ⁇ 10 ⁇ [N] +0.255
  • Al is an important element for bonding with N to form AlN and trapping hydrogen to improve delayed fracture resistance in the present invention.
  • the AlN also has an effect of refining crystal grains by a pinning effect.
  • the amount of Al is made 0.04% or more.
  • the amount of Al is preferably 0.05% or more, more preferably 0.055% or more.
  • the upper limit of the Al amount is set to 0.15% and satisfies the relationship of the following formula (1).
  • Expression (1) is an expression derived from a number of experimental examples in which the delayed fracture resistance characteristics when the N content and the Al content are changed in various ways.
  • the upper limit of the Al amount is more strictly controlled in a region where the N amount is large, and formation of coarse AlN can be suppressed.
  • the upper limit of the amount of Al is preferably 0.14% or less, and more preferably 0.12% or less.
  • P 0.02% or less (including 0%) P segregates at the prior austenite grain boundaries, embrittles the grain boundaries, and lowers fatigue characteristics. Therefore, the smaller the content, the better. Therefore, the P content is 0.02% or less.
  • the amount of P is preferably 0.015% or less, more preferably 0.010% or less.
  • S 0.02% or less (including 0%) S, like P, segregates at the prior austenite grain boundaries, embrittles the grain boundaries, and lowers fatigue characteristics. Therefore, the smaller the content, the better. Therefore, the S amount is 0.02% or less.
  • the amount of S is preferably 0.015% or less, more preferably 0.010% or less.
  • the basic components of the wire rod of the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel. Furthermore, the wire rod of the present invention may further contain the following elements as necessary in order to further improve properties such as strength, toughness and ductility.
  • the Cr content is preferably 0.05% or more.
  • the amount of Cr is more preferably 0.1% or more, and further preferably 0.2% or more.
  • the Cr amount is preferably 1.0% or less.
  • the amount of Cr is more preferably 0.6% or less, and further preferably 0.5% or less.
  • Ni is an element that increases the toughness of the steel wire after wire drawing.
  • the Ni content is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.2% or more.
  • the Ni content is preferably 1.0% or less, more preferably 0.7% or less, and still more preferably 0.6% or less.
  • Co has the effect of reducing proeutectoid cementite (especially when the amount of C is high) and making it easy to control the structure to a uniform pearlite structure.
  • the Co content is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.2% or more.
  • the Co content is preferably 1.0% or less, more preferably 0.8% or less, and still more preferably 0.6% or less.
  • Mo is an element that improves the corrosion resistance of steel wires.
  • the Mo amount is preferably 0.05% or more, more preferably 0.1% or more.
  • the Mo amount is preferably 1.0% or less, more preferably 0.5% or less, and still more preferably 0.3% or less.
  • Cu is an element that improves the corrosion resistance of steel wires.
  • the amount of Cu is preferably 0.05% or more, more preferably 0.08% or more.
  • the amount of Cu when the amount of Cu becomes excessive, it reacts with S to segregate CuS at the grain boundary part and generate soot in the wire manufacturing process.
  • the amount of Cu is preferably 0.5% or less, more preferably 0.2% or less, and further preferably 0.18% or less.
  • At least one type B has an effect of preventing the formation of pro-eutectoid ferrite and pro-eutectoid cementite and making it easy to control the structure to a uniform pearlite structure. Moreover, by fixing the excess solid solution N after precipitation of AlN with BN, the strain aging due to the solid solution N can be suppressed and the toughness can be improved, and the solid solution B itself also has the effect of improving the toughness.
  • the amount of B is preferably 0.0003% or more, more preferably 0.0005% or more, and further preferably 0.001% or more.
  • a Fe—B compound for example, FeB 2
  • the amount of B is preferably 0.005% or less.
  • the amount of B is more preferably 0.004% or less, and still more preferably 0.003% or less.
  • Nb forms an excessive solid solution N and nitride after AlN is precipitated and contributes to refinement of crystal grains, and also has an effect of suppressing aging embrittlement by fixing the solid solution N.
  • the Nb content is preferably 0.01% or more, more preferably 0.03% or more, and still more preferably 0.05% or more.
  • the Nb amount is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.2%. % Or less.
  • V like Nb, forms excess solid solution N and nitride after AlN is precipitated and contributes to refinement of crystal grains, and also has an effect of suppressing aging embrittlement by fixing solid solution N.
  • the V amount is preferably 0.01% or more, more preferably 0.02% or more, and further preferably 0.03% or more.
  • the amount of V is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.2%. % Or less.
  • Wire rods are usually obtained by melting, split-rolling, and hot-rolling (and patenting as necessary) steel with appropriately controlled chemical components.
  • AlN starts to precipitate in steel at about 1300 ° C. or less, and the precipitation amount increases as the temperature decreases, and it completely precipitates at about 900 ° C. Therefore, it is necessary to appropriately control the conditions of the block rolling and the hot rolling, in which the steel is exposed to these temperature ranges in the production process and greatly affects the precipitation behavior of AlN. Usually, since the cooling rate after the block rolling is slow, the precipitated AlN tends to be coarsened. On the other hand, the cooling rate after the hot rolling is relatively fast, so that the precipitated AlN can be made fine.
  • the heating temperature in the batch rolling is set to 1230 to 1280 ° C.
  • the cooling rate is set to 0.2 ° C./second or more. Precipitation and coarsening of AlN can be prevented by heating at a high temperature during block rolling and increasing the cooling rate. Therefore, the batch rolling temperature is preferably 1230 ° C or higher, more preferably 1240 ° C or higher.
  • the upper limit is preferably 1280 ° C. or less, more preferably 1270 ° C. or less.
  • the cooling rate is preferably 0.2 ° C./second or more, more preferably 0.4 ° C./second or more, and further preferably 0.5 ° C./second or more.
  • the upper limit of a cooling rate is not specifically limited, For example, it is 1.5 degrees C / sec or less (preferably 1.2 degrees C / sec or less).
  • the billet obtained by the block rolling is hot-rolled, then cooled to 850 to 950 ° C. by water cooling or the like, and placed in a coil shape.
  • the mounting temperature is preferably 850 ° C. or higher, more preferably 870 ° C. or higher, and further preferably 890 ° C. or higher.
  • the reheating temperature during the patenting treatment is preferably 880 to 1000 ° C.
  • the patenting temperature is preferably 530 to 620 ° C.
  • the precipitation amount can be increased by setting the reheating temperature lower (for example, about 880 to 940 ° C.).
  • the reheating temperature is set high (for example, 940 to 1000 ° C.), and the coarsened AlN is once dissolved in steel and then precipitated again. Just do it.
  • wire rod of the present invention sufficiently secures AlN that can effectively act as a hydrogen trap site, steel wires such as wire rope and PC steel wire using this have excellent delayed fracture resistance and are useful. It is.
  • the present invention also includes such a steel wire.
  • the steel ingots having the components shown in Table 1 were subjected to split rolling and hot rolling under the conditions shown in Table 2 to be processed into wire coils, and in some cases, patenting was further performed.
  • the total amount of AlN was evaluated from the extraction residue measurement of the collected samples, and the distribution state of AlN was evaluated from observation of the cross-sectional area. The results are shown in Table 2.
  • the total area (two locations) from the surface layer to D / 4 (D is the diameter of the wire) is 140 mm 2 in the cross section including the axis of the wire and parallel to the longitudinal direction.
  • the maximum AlN size was measured in the field of view and this was done for any 20 fields of view.
  • the D-based and DS-based inclusions defined in JIS G0551 are regarded as AlN, and the size of AlN is the geometric mean (ab) 1 of the length (a) and thickness (b) of AlN. / 2 was adopted.
  • the obtained wire coil was drawn to produce a steel wire, and the tensile strength (strand strength) of the steel wire was measured. Furthermore, twisted wire processing and hot stretch treatment were performed to form a twisted wire having a twisted wire diameter and a twisted wire structure as shown in Table 2, and the rope strength, delayed fracture resistance, and twisting properties of the twisted wire were measured. . The results are shown in Table 3.
  • Rope strength was measured according to JIS G3536 by measuring the maximum test force of a tensile test.
  • Delayed Fracture Resistance are 0.8 p.p. based on the description in Reference 1 (fib Bulletin No. 30: Acceptance of stay cable systems using prestressing steels, January. 2005). Under a load of u (0.8 p.u means 80% of the breaking load), it was immersed in an ammonium thiocyanate solution at 20% by mass and 50 ° C., and the time until breaking of 12 samples was measured. A case where the minimum breaking time was 2 hours or more and the median breaking time was 5 hours or more was regarded as acceptable.
  • test no. Nos. 4, 6 to 8, 11, 12, 21 to 27 are examples in which any of the requirements of the present invention was not satisfied or the manufacturing conditions necessary for obtaining the steel material of the present invention were not satisfied. is there.
  • No. No. 4 was the same because No. 4 was heated at the time of ingot rolling.
  • No. 6 had a slow cooling rate after the partial rolling, so that coarse AlN precipitated in all cases, the AlN particle size distribution did not satisfy the requirements of the present invention, and the delayed fracture resistance deteriorated.
  • No. No. 11 caused a burning crack because the heating temperature at the time of the block rolling was too high.
  • No. No. 12 had a patenting treatment temperature that was too low, resulting in a mixed structure (P + B) of bainite (B) and pearlite (P), and the drawability was reduced.
  • the fraction of bainite was about 20 area%.
  • No. No. 21 is an example in which the amount of C was large, aging embrittlement during wire drawing was remarkable, and wire breakage occurred frequently.
  • No. No. 22 is an example in which the amount of C was small, and the strength of the type B strand specified in JIS G3536 could not be achieved.
  • No. No. 23 is an example in which the amount of Al was small, and since the amount of AlN could not be secured sufficiently, the delayed fracture resistance was deteriorated.
  • No. No. 24 is an example in which the N content is within the range of the present invention, but less, and the Al content is large. A large amount of Al-based oxide was generated, and breakage during wire drawing occurred frequently.
  • No. No. 25 was an example in which the amount of N was small, and a sufficient amount of AlN could not be secured, and the particle size distribution of AlN could not satisfy the requirements of the present invention, and the delayed fracture resistance was deteriorated.
  • No. No. 26 is an example in which the amount of N was large, and the delayed fracture resistance deteriorated because coarse AlN precipitated.
  • No. No. 27 is an example in which the amount of N is larger than the range specified in the present invention, and the amount of Al does not satisfy the requirement of formula (1), and is large. Delayed fracture characteristics deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

 線材は、所定量のC、Si、Mn、N、Al、P、Sを含み、残部が鉄及び不可避不純物であり、Al量とN量が下記式(1)の関係を満足し、 [Al]≦-2.1×10×[N]+0.255 ・・・(1) (但し、式(1)において[Al]、[N]は、それぞれAl、Nの含有量(質量%)である。) 組織の95面積%以上がパーライト組織であるとともに、AlN量が0.005%以上であり、且つ、長さaと厚さbの相乗平均(ab)1/2で表されるAlNの径dGMの最大値極値分布において、dGMが10~20μmであるAlNの割合が、個数基準で50%以上である。 線材は、高強度化に伴う耐遅れ破壊特性の低下を抑制し、建築基準に適合する耐遅れ破壊特性を有する高強度PC鋼線、ワイヤーロープ等に用いることができる。

Description

線材及びこれを用いた鋼線
 本発明は、PC鋼線やワイヤーロープ等に用いられる線材及びこれを用いた鋼線に関する。
 土木・建築分野では、コンクリート部材の高強度化及び軽量化のニーズが強く、コンクリート部材の強化方法として、鋼線を用いてコンクリートに圧縮応力を与えるプレストレストコンクリート(以下、PCと呼ぶ)が良く知られている。PCに用いられる鋼線、すなわちPC鋼線は、高強度であるほどPCの高強度化及び軽量化に寄与でき、現状ではJIS G3536で規定されるように、例えばφ15.2mmの7本より線で、最大試験力261kN程度のものが知られている。
 また、PC鋼線は、建築安全性等の観点からJIS規格以外にも種々の規格や推奨試験が定められている。特に、高強度PC鋼線を適用する上では、耐遅れ破壊特性を考慮することが重要である。遅れ破壊とは、応力が付加された状態で鋼材を長時間使用した場合に、鋼中に侵入した水素が鋼材表面の微細なキズ等に集中し、キズ周辺の組織を脆化させ、脆性破壊を引き起こす現象である。PC鋼線は、常に緊張された状態で使用されるため、遅れ破壊を起こす可能性があり、厳しい規格が設けられている。特に、強度の上昇に伴って遅れ破壊しやすくなることが良く知られており、高強度化しても遅れ破壊を抑制できる鋼材の開発が求められている。
 例えば、特許文献1では炭素量が0.6~1.1%のPC鋼線において、伸線加工後に450℃以上の温度でのブルーイングを行うことによって線材表層の板状セメンタイトを球状化し、耐遅れ破壊特性を向上させる技術が開示されている。しかし、特許文献1では、板状セメンタイトの球状化によって鋼線強度が低下し、強度の向上には限界があるため、2000MPa以上の素線強度が得られないという問題があった。
 特許文献2は、炭素量が0.6~1.3%のPC鋼線において、表層部に圧縮残留応力を付与した加工パーライト組織とすることによって、耐遅れ破壊特性を向上させる技術を開示している。しかし、特許文献2は、素線強度が1600MPa程度までを対象とした技術であり、この技術によって、素線強度が例えば2000MPa以上のより高い領域での水素拡散による耐遅れ破壊特性を十分に確保することは困難であると考えられる。
 PC鋼線ではないが、特許文献3は、炭素量が0.65~1.20%の軸受鋼において、50~300nmのTi系又はAl系の窒化物等を所定以上分散させて水素をトラップし、焼戻しマルテンサイト組織における耐遅れ破壊性を向上させる技術が開示されている。しかし、組織が異なれば水素の拡散挙動も異なり、トラップサイトとして適切な析出物の大きさ、量などが異なるため、この技術を主相がパーライト組織であるPC鋼線などにそのまま適用することはできない。また、伸線加工後に焼入れ焼戻し処理を行う軸受鋼の製造工程と、パテンティング処理後に伸線加工を行うPC鋼線の製造工程は大きく異なっており、製造工程における窒化物等の析出制御方法も異なる。
特開2004-360005号公報 特開2004-131797号公報 特許第3591236号公報
 本発明は、主相がパーライト組織である線材において、高強度化に伴う耐遅れ破壊特性の低下を抑制し、建築基準に適合する耐遅れ破壊特性を有する高強度PC鋼線、ワイヤーロープ等に用いることのできる線材を提供することを目的とする。
 本発明者らは、主相がパーライト組織である線材において、水素トラップ効果を有する介在物について検討したところ、AlN量を所定量以上確保するとともに、AlNの中でも10~20μmのサイズのAlNを所定以上確保することが重要であることを見出した。すなわち、本発明の線材は、C:0.8~1.2%(質量%の意味。以下、成分組成について同じ。)、Si:0.1~2.0%、Mn:0.1~2.0%、N:0.002~0.010%、Al:0.04~0.15%、P:0.02%以下(0%を含む)、S:0.02%以下(0%を含む)を含み、残部が鉄及び不可避不純物であり、Al量とN量が下記式(1)の関係を満足し、
 [Al]≦-2.1×10×[N]+0.255 ・・・(1)
 (但し、式(1)において[Al]、[N]は、それぞれAl、Nの含有量(質量%)である。)
組織の95面積%以上がパーライト組織であるとともに、AlN量が0.005%以上であり、且つ、長さaと厚さbの相乗平均(ab)1/2で表されるAlNの径dGMの最大値極値分布において、dGMが10~20μmであるAlNの割合が、個数基準で50%以上であることを特徴とする。上記線材は、固溶N量が0.003%以下であることが好ましい。
 また、本発明は、更に(a)Cr:1.0%以下(0%を含まない)、Ni:1.0%以下(0%を含まない)、Co:1.0%以下(0%を含まない)、Mo:1.0%以下(0%を含まない)、及びCu:0.5%以下(0%を含まない)よりなる群から選択される少なくとも1種、(b)B:0.005%以下(0%を含まない)、Nb:0.5%以下(0%を含まない)及びV:0.5%以下(0%を含まない)よりなる群から選択される少なくとも1種を含有することも好ましい。
 本発明は、上記線材から得られる鋼線も包含する。
 本発明によれば、Al量とN量を適切に調整し、さらにAlNの総量と、所定サイズ(dGMが10~20μm)のAlNを適切に存在させているため、耐遅れ破壊特性に優れた線材を提供することができる。また、本発明の好ましい態様において、固溶N量を所定以下に調整することによって、鋼線の捻回特性を向上できる。
 本発明者らが検討したところ、主相がパーライト組織である線材においては、水素のトラップサイトとしてAlNを所定量確保し、且つサイズが10~20μmであるAlNを所定以上確保することが有効であることを見出した。
 AlN量は、多いほど水素のトラップ効果が高まるため、0.005%以上と定めた。AlN量は、好ましくは0.006%以上であり、より好ましくは0.007%以上(特に0.01%以上)である。AlN量の上限は特に限定されないが、通常0.04%程度である。
 また、サイズが10~20μmであるAlNの個数を確保する指標として、本発明では最大値極値分布を用いる。まず、AlNのサイズとしては、AlNの長さaと厚さbの相乗平均(ab)1/2を用い、これをdGM(μm)と表す。本発明において、AlNの長さaとは、線材長手方向のAlNの長さを意味し、AlNの厚さbとは、線材長手方向に垂直な方向のAlNの長さを意味する。
 dGMの最大値極値分布とは、所定面積中に存在するAlNのdGMの最大値dGM(max)を測定し、これを複数視野について繰り返し、測定された複数のdGM(max)について統計処理したものを意味する。本発明では、該極値分布において、dGM(max)が10~20μmであるAlNの割合を、個数基準で50%以上とする。dGMが20μmを超えるAlNが多く存在すると、AlNの総個数が減少し、水素トラップ効果が十分に発揮できない。また、dGMが10μm未満のAlNは水素トラップ効果が少ない。従って、該極値分布において、dGM(max)が10~20μmであるAlNの割合を、個数基準で50%以上とすることによって、水素トラップに有効なAlNを十分に確保できる。
 なお本発明において、主相の組織の95面積%以上がパーライト組織である。パーライト組織の面積率は、好ましくは97%以上であり、より好ましくは100%である。
 次に、本発明の線材の化学成分について説明する。
 C:0.8~1.2%
 Cは、強度の上昇に有効な元素であり、C含有量の増加に伴って、線材及び冷間加工後の鋼線の強度が向上する。そこでC量は0.8%以上と定めた。C量は、好ましくは0.85%以上であり、より好ましくは0.90%以上である。しかし、C量が過剰になりすぎると、冷間伸線中に時効脆化を引き起こすため、鋼線の靭性が低下し、より線加工時に割れが発生するという問題がある。そこでC量は1.2%以下と定めた。C量は、好ましくは1.1%以下であり、より好ましくは1.05%以下である。
 Si:0.1~2.0%
 Siは、脱酸剤の作用も有するが、特に線材の強度を向上させる作用及びリラクセーション特性を改善する作用を有するため有効な元素である。また、溶融亜鉛めっきを用いる場合には、Siはめっき時に生じる強度低下を抑える作用も有する。これら作用を有効に発揮させるため、Si量を0.1%以上と定めた。Si量は、好ましくは0.2%以上であり、より好ましくは0.4%以上である。一方、Si量が過剰になりすぎると、冷間伸線性を悪化させ、断線率の増加を引き起こす。そこで、Si量を2.0%以下と定めた。Si量は好ましくは1.8%以下であり、より好ましくは1.5%以下である。
 Mn:0.1~2.0%
 Mnは、Siと同様に脱酸作用も有しているが、特に鋼中のSをMnSとして固定して、鋼の靭性及び延性を高める作用を有している。これらの作用を有効に発揮させるためにはMn量は0.1%以上とする。Mn量は、好ましくは0.15%以上であり、より好ましくは0.2%以上である。しかし、Mnは偏析し易い元素であり、過剰に添加すると、Mn偏析部の焼入れ性が過剰に増大し、マルテンサイト等の過冷組織を生成させる恐れがある。そこで、Mn量は2.0%以下と定めた。Mn量は、好ましくは1.8%以下であり、より好ましくは1.5%以下である。
 N:0.002~0.010%
 Nは、本発明の特徴であるAlNを形成するために重要な元素であり、0.002%以上含有することが必要である。N量は、好ましくは0.0025%以上であり、より好ましくは0.0030%以上(特に0.0040%以上)である。しかし、NはCと同様に侵入型元素として鋼中に固溶し、歪み時効による脆化を引き起こすため、過剰に添加すると固溶N量が増大することによる捻回特性の低下を引き起こす。そこで、N量は0.010%以下と定めた。N量は、好ましくは0.0090%以下であり、より好ましくは0.0080%以下である。
 固溶N量:0.003%以下
 上述した通り、固溶Nは捻回特性の低下を引き起こすため、少ないほど好ましい。従って、固溶N量は0.003%以下が好ましい。固溶N量は、より好ましくは0.002%以下であり、さらに好ましくは0.001%以下である。固溶N量は、Al、B、Nbなどの窒化物形成元素の量と、N量を調整することなどによって、制御できる。
 Al:0.04~0.15%、且つ[Al]≦-2.1×10×[N]+0.255
 Alは、脱酸作用に加えて、本発明においてはNと結合してAlNを形成し、水素をトラップして耐遅れ破壊特性を向上させるために重要な元素である。また、前記AlNはピンニング効果によって結晶粒を微細化する効果も有する。このような効果を有効に発揮するため、Al量は0.04%以上とする。Al量は、好ましくは0.05%以上であり、より好ましくは0.055%以上である。一方、Al量が過剰になり、特にN量が多い領域でAl量が過剰になると粗大なAlNが生成し、AlNによる水素トラップ効果が低減する。従って、Al量の上限は0.15%に定めるとともに、かつ下記式(1)の関係を満たすようにする。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)中、[Al]、[N]は、それぞれAl、Nの含有量(質量%)を表している。式(1)は、N量、Al量を様々に変化させた際の耐遅れ破壊特性を調べた数多くの実験例から導き出された式である。Al量が式(1)の関係を満たすことによって、N量の多い領域では、Al量の上限がより厳格に制御され、粗大なAlNの形成を抑制できる。Al量の上限は、好ましくは0.14%以下であり、より好ましくは0.12%以下である。
 P:0.02%以下(0%を含む)
 Pは、旧オーステナイト粒界に偏析して粒界を脆化させ、疲労特性を低下させるため、その含有量は少なければ少ないほど好ましい。従って、P量は0.02%以下とする。P量は、好ましくは0.015%以下であり、より好ましくは0.010%以下である。
 S:0.02%以下(0%を含む)
 Sは、Pと同様に旧オーステナイト粒界に偏析して粒界を脆化させ、疲労特性を低下させるため、その含有量は少なければ少ないほど好ましい。従って、S量は0.02%以下とする。S量は、好ましくは0.015%以下であり、より好ましくは0.010%以下である。
 本発明の線材の基本成分は上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物が鋼中に含まれることは当然に許容される。さらに本発明の線材は、強度、靭性、延性等の特性をさらに向上させるため、必要に応じて下記の元素を含有していても良い。
 Cr:1.0%以下(0%を含まない)、Ni:1.0%以下(0%を含まない)、Co:1.0%以下(0%を含まない)、Mo:1.0%以下(0%を含まない)、及びCu:0.5%以下(0%を含まない)よりなる群から選択される少なくとも1種
 Crは、パーライトのラメラ間隔を微細化し、線材の強度や靭性を高める作用を有する。このような作用を有効に発揮させるため、Cr量は0.05%以上が好ましい。Cr量は、より好ましくは0.1%以上であり、さらに好ましくは0.2%以上である。一方、Cr量が過剰になりすぎると、焼入れ性が向上して熱間圧延中の過冷組織を発生させる危険性が高まるため、Cr量は1.0%以下とすることが好ましい。Cr量は、より好ましくは0.6%以下であり、さらに好ましくは0.5%以下である。
 Niは、伸線後の鋼線の靭性を高める元素である。このような作用を有効に発揮させるため、Ni量は0.05%以上が好ましく、より好ましくは0.1%以上であり、さらに好ましくは0.2%以上である。しかし、Niは過剰に添加してもその効果が飽和し、経済的に無駄である。従って、Ni量は1.0%以下が好ましく、より好ましくは0.7%以下、さらに好ましくは0.6%以下である。
 Coは、初析セメンタイトを低減し(特にC量が高い場合)、組織を均一なパーライト組織に制御しやすくするという作用を有する。この作用を有効に発揮するため、Co量は0.05%以上が好ましく、より好ましくは0.1%以上、さらに好ましくは0.2%以上である。しかし、Coは過剰に添加してもその効果が飽和し、経済的に無駄である。従って、Co量は1.0%以下が好ましく、より好ましくは0.8%以下であり、さらに好ましくは0.6%以下である。
 Moは、鋼線の耐食性を向上させる元素である。このような作用を有効に発揮するため、Mo量は0.05%以上が好ましく、より好ましくは0.1%以上である。しかし、Mo量が過剰になると、熱間圧延時に過冷組織が発生しやすくなり、また延性も劣化する。そこでMo量は1.0%以下が好ましく、より好ましくは0.5%以下であり、さらに好ましくは0.3%以下である。
 Cuは、鋼線の耐食性を向上させる元素である。このような作用を有効に発揮するため、Cu量は0.05%以上が好ましく、より好ましくは0.08%以上である。一方、Cu量が過剰になると、Sと反応して粒界部にCuSを偏析させ、線材製造過程で疵を発生させる。このような影響を避けるため、Cu量は0.5%以下が好ましく、より好ましくは0.2%以下であり、さらに好ましくは0.18%以下である。
 B:0.005%以下(0%を含まない)、Nb:0.5%以下(0%を含まない)及びV:0.5%以下(0%を含まない)よりなる群から選択される少なくとも1種
 Bは、初析フェライトや初析セメンタイトの生成を妨げ、組織を均一なパーライト組織に制御しやすくする作用を有する。また、AlNが析出した後の余剰の固溶NをBNで固定することにより、固溶Nによる歪み時効を抑制して靭性を向上できる他、固溶B自体も靭性を向上させる作用がある。このような作用を有効に発揮させるため、B量は0.0003%以上が好ましく、より好ましくは0.0005%以上、さらに好ましくは0.001%以上である。一方、B量が過剰になると、Feとの化合物であるFe-B系化合物(例えばFeB2)が析出し、熱間圧延時の割れを引き起こすため、B量は0.005%以下が好ましい。B量は、より好ましくは0.004%以下であり、さらに好ましくは0.003%以下である。
 Nbは、AlNが析出した後の余剰の固溶Nと窒化物を形成し、結晶粒微細化に寄与する他、固溶Nを固定することによる時効脆化の抑制効果も有する。このような作用を有効に発揮するため、Nb量は0.01%以上が好ましく、より好ましくは0.03%以上、さらに好ましくは0.05%以上である。しかし、Nb量が過剰になってもその効果は飽和し、経済的に無駄であるため、Nb量は0.5%以下が好ましく、より好ましくは0.4%以下、さらに好ましくは0.2%以下である。
 VはNbと同様にAlNが析出した後の余剰の固溶Nと窒化物を形成し、結晶粒微細化に寄与する他、固溶Nを固定することによる時効脆化の抑制効果も有する。このような作用を有効に発揮するため、V量は0.01%以上が好ましく、より好ましくは0.02%以上、さらに好ましくは0.03%以上である。しかし、V量が過剰になってもその効果は飽和し、経済的に無駄であるため、V量は0.5%以下が好ましく、より好ましくは0.4%以下、さらに好ましくは0.2%以下である。
 線材(冷間伸線前のものを意味する)は、通常、化学成分を適切に制御した鋼を溶製、分塊圧延、熱間圧延する(さらに必要に応じてパテンティング処理する)ことにより製造できるが、本発明の線材においてAlNの量と粒度分布(AlNのdGMの最大値極値分布において、dGMが10~20μmであるAlNの割合が、個数基準で50%以上)を適切に制御するためには、Al及びNの含有量を上述した範囲に適切に制御した上で、AlNが析出する温度範囲での熱履歴を適切に制御することが重要である。
 AlNは、鋼中では約1300℃以下で析出を開始し、温度が低下するにつれて析出量が増大し、約900℃で完全に析出する。したがって、製造工程において鋼がこれらの温度範囲に曝され、AlNの析出挙動に大きく影響する分塊圧延及び熱間圧延の条件を適切に制御する必要がある。通常、分塊圧延後の冷却速度は遅いため、析出したAlNが粗大化しやすく、これに対して熱間圧延後の冷却速度は相対的に速いので、析出したAlNを微細にできる。
 具体的には、分塊圧延での加熱温度を1230~1280℃、冷却速度を0.2℃/秒以上とする。分塊圧延時に高温で加熱し、且つ冷却速度を速めることでAlNの析出及び粗大化を防ぐことができる。そこで分塊圧延温度は1230℃以上が好ましく、より好ましくは1240℃以上である。一方、分塊圧延温度が高すぎると焼き割れが生じるため、上限は1280℃以下とすることが好ましく、より好ましくは1270℃以下である。また冷却速度は0.2℃/秒以上が好ましく、より好ましくは0.4℃/秒以上、さらに好ましくは0.5℃/秒以上である。冷却速度の上限は特に限定されないが、例えば1.5℃/秒以下(好ましくは1.2℃/秒以下)である。
 さらに、分塊圧延により得られたビレットを熱間圧延した後、水冷等によって850~950℃に冷却し、コイル状に載置する。前記したコイル状の線材の載置温度を低めにすることによって、微細(dGMが10~20μm)なAlNを析出できる。そこで、載置温度は950℃以下が好ましく、より好ましくは940℃以下、さらに好ましくは920℃以下である。一方、載置温度が低すぎると、水素トラップに寄与しない非常に微細なAlNが数多く析出する。そこで、載置温度は850℃以上が好ましく、より好ましくは870℃以上、さらに好ましくは890℃以上である。
 また、前記した分塊圧延や熱間圧延の条件の少なくとも一部が外れるなどして、AlNの量や分布状態が適切に制御できない場合には、熱間圧延後に、適切な温度範囲でのパテンティング処理を行うことも有効である。パテンティング処理時の再加熱温度は880~1000℃、パテンティング温度は530~620℃が好ましい。熱間圧延後のAlN量が少ない場合は、上記した再加熱温度を低め(例えば880~940℃程度)に設定すれば、析出量を増加できる。また、熱間圧延後のAlNが粗大化している場合には、再加熱温度を高め(例えば940~1000℃)に設定し、粗大化したAlNを鋼中に一旦固溶させてから再度析出させれば良い。
 本発明の線材は、水素トラップサイトとして有効に作用できるAlNを十分に確保しているため、これを用いたワイヤーロープやPC鋼線などの鋼線は、耐遅れ破壊特性に優れており、有用である。また、本発明はこのような鋼線も包含する。
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 表1に示す成分の鋼塊を、表2に示した条件で分塊圧延、熱間圧延して線材コイルに加工し、場合によっては更にパテンティング処理を行った。採取したサンプルの抽出残渣測定からAlNの総量を、そして断面積の観察からAlNの分布状態を評価した。それらの結果を表2に示す。
 1.AlNの総量、及び固溶N量の測定
 抽出残渣測定では、10%アセチルアセトン溶液を用いた電解抽出残渣測定を行い、メッシュは0.1μmのものを用い、残渣中のAlN量をブロムエステル法で測定した。また、インドフェノール吸収分光光度法を用いて、AlNを含めた窒素化合物の量を測定し、鋼中の全N量から差し引くことによって固溶N量を求めた。ブロムエステル法に用いた試料重量は3g、吸収分光法に用いた試料重量は0.5gとした。
 2.AlNの分布状態の測定
 本測定では、線材の軸線を含み、且つ長手方向に平行な断面において、表層からD/4(Dは線材の直径)までの領域(2箇所)の合計が140mm2となるようにサンプルを切り出し(すなわち、サンプルの長さLはL×D/4+L×D/4=L×D/2が140mm2となるように定められる)、前記断面において、JIS G0555に従って、観察視野内で最大のAlNの大きさを測定し、これを任意の20視野について行った。なお、測定に際しては、JIS G0551に規定されるD系及びDS系介在物をAlNとみなし、AlNの大きさとしてはAlNの長さ(a)と厚さ(b)の相乗平均(ab)1/2を採用した。
 次に、得られた線材コイルを伸線加工して鋼線を作製し、鋼線の引張強度(素線強度)を測定した。更に、より線加工及びホットストレッチ処理を行って表2に示すようなより線径及びより線構造を有するより線とし、そのより線のロープ強度、耐遅れ破壊特性、及び捻回特性を測定した。それらの結果を表3に示す。
 3.鋼線の引張強度(素線強度)の測定
 鋼線の引張強度を、JIS Z2241に従って測定した。
 4.ロープ強度の測定
 ロープ強度の測定は、JIS G3536に従い、引張試験の最大試験力を測定した。
 5.耐遅れ破壊特性の測定
 遅れ破壊特性は、文献1(fib Bulletin No.30: Acceptance of stay cable systems using prestressing steels, January. 2005)の記載に基づき、0.8p.u(0.8p.uとは破断荷重の80%を意味する)の荷重下で、20質量%、50℃のチオシアン酸アンモニウム溶液に浸漬し、12サンプルについて破断するまでの時間を測定した。最小破断時間が2時間以上であり、かつ中央値破断時間が5時間以上である場合を合格とした。
 6.捻回特性の測定
 捻回特性は、FKKフレネシー工法のFKK HTS-26規格に基づき、捻回値3回以上を達成している場合を合格とした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 試験No.1~3、5、9、10、13~20は、成分、組織、AlNの量、及びAlNの分布状態がいずれも本発明の要件を満たしていたため、素線強度で2000MPa以上(好ましくは2100MPa以上)を達成でき、JIS G3536に規定の基準を満たす高いより線強度を満たしつつ、耐遅れ破壊特性も良好であり、実用に耐える高強度より線が得られた。さらに、これら試験例は、好ましい要件である固溶N量の要件も満たしているため、捻回特性にも優れている。なお、例えば試験No.15~18は、発明例中でも特に固溶N量が低減された例であり、その結果、捻回特性も非常に優れており、一方、発明例中で最も固溶N量が多かった試験No.9は、発明例中で捻回値が最も小さかった。
 また、試験No.10、15、17については、熱間圧延の載置温度が好ましい要件を外れているが、その後に適切なパテンティング処理を行っているため、本発明の要件を満たす線材が得られている。
 一方、試験No.4、6~8、11、12、21~27は、本発明の要件のいずれかが満たされていなかったか、あるいは本発明の鋼材を得るのに必要な製造条件が満たされていなかった例である。
 No.4は、分塊圧延時の加熱温度が低かったため、またNo.6は分塊圧延後の冷却速度が遅かったため、いずれも粗大なAlNが析出し、AlNの粒度分布が本発明の要件を満足せず、耐遅れ破壊特性が劣化した。
 No.7は、熱間圧延後の載置温度が高く、載置中のAlNの析出が不十分となり、AlN量及びAlNの粒度分布がいずれも本発明の要件を満足せず、耐遅れ破壊性が劣化した。No.8は、熱間圧延後の載置温度が低く、AlNが過度に微細化したため、AlNの粒度分布が本発明の要件を満足せず、耐遅れ破壊性が劣化した。
 No.11は、分塊圧延時の加熱温度が高すぎたために焼き割れを起こした。
 No.12は、パテンティング処理温度が低すぎたため、ベイナイト(B)とパーライト(P)の混合組織(P+B)となり、伸線性が低下した。なお、ベイナイトの分率は、およそ20面積%であった。
 No.21は、C量が多かった例であり、伸線中の時効脆化が顕著で、断線が多発した。No.22は、C量が少なかった例であり、JIS G3536で規定のより線B種の強度を達成できなかった。
 No.23は、Al量が少なかった例であり、AlN量が十分確保できなかったために、耐遅れ破壊特性が劣化した。No.24は、N量が本発明の範囲内ではあるが少なめであり、且つAl量が多かった例であり、多量のAl系酸化物が生成して、伸線時の断線が多発した。
 No.25は、N量が少なかった例であり、十分な量のAlN量が確保できないとともに、AlNの粒度分布も本発明の要件を満足できず、耐遅れ破壊特性が劣化した。No.26はN量が多かった例であり、粗大なAlNが析出したために耐遅れ破壊特性が劣化した。またNo.26は、固溶N量が本発明の好ましい要件を満たしていないため、捻回値が他の試験例に比べて最も小さい。
 No.27は、N量が本発明で規定する範囲ではあるが多めであり、かつAl量が式(1)の要件を満たしておらず、多かった例であり、粗大なAlNが析出して、耐遅れ破壊特性が劣化した。

Claims (5)

  1.  C :0.8~1.2%(質量%の意味。以下、成分組成について同じ。)、
     Si:0.1~2.0%、
     Mn:0.1~2.0%、
     N :0.002~0.010%、
     Al:0.04~0.15%、
     P :0.02%以下(0%を含む)、
     S :0.02%以下(0%を含む)を含み、残部が鉄及び不可避不純物であり、
     Al量とN量が下記式(1)の関係を満足し、
     [Al]≦-2.1×10×[N]+0.255 ・・・(1)
     (但し、式(1)において[Al]、[N]は、それぞれAl、Nの含有量(質量%)である。)
     組織の95面積%以上がパーライト組織であるとともに、
     AlN量が0.005%以上であり、且つ、長さaと厚さbの相乗平均(ab)1/2で表されるAlNの径dGMの最大値極値分布において、dGMが10~20μmであるAlNの割合が、個数基準で50%以上であることを特徴とする線材。
  2.  固溶N量が0.003%以下である請求項1に記載の線材。
  3.  更に、
     Cr:1.0%以下(0%を含まない)、
     Ni:1.0%以下(0%を含まない)、
     Co:1.0%以下(0%を含まない)、
     Mo:1.0%以下(0%を含まない)、及び
     Cu:0.5%以下(0%を含まない)よりなる群から選択される少なくとも1種を含有する請求項1に記載の線材。
  4.  更に、
     B :0.005%以下(0%を含まない)、
     Nb:0.5%以下(0%を含まない)、及び
     V:0.5%以下(0%を含まない)よりなる群から選択される少なくとも1種を含有する請求項1に記載の線材。
  5.  請求項1~4のいずれかに記載の線材から得られる鋼線。
PCT/JP2013/058566 2012-03-29 2013-03-25 線材及びこれを用いた鋼線 WO2013146676A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES13767810T ES2743735T3 (es) 2012-03-29 2013-03-25 Alambrón y cable de acero usando el mismo
CN201380016256.5A CN104204255B (zh) 2012-03-29 2013-03-25 线材以及使用其的钢丝
EP13767810.8A EP2832878B1 (en) 2012-03-29 2013-03-25 Wire rod and steel wire using same
KR1020147026390A KR101624447B1 (ko) 2012-03-29 2013-03-25 선재 및 이를 이용한 강선
MX2014011471A MX2014011471A (es) 2012-03-29 2013-03-25 Varilla de alambre y alambre de acero que usa la misma.
ZA2014/06891A ZA201406891B (en) 2012-03-29 2014-09-19 Wire rod and steel wire using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-077003 2012-03-29
JP2012077003A JP5802162B2 (ja) 2012-03-29 2012-03-29 線材及びこれを用いた鋼線

Publications (1)

Publication Number Publication Date
WO2013146676A1 true WO2013146676A1 (ja) 2013-10-03

Family

ID=49259927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058566 WO2013146676A1 (ja) 2012-03-29 2013-03-25 線材及びこれを用いた鋼線

Country Status (8)

Country Link
EP (1) EP2832878B1 (ja)
JP (1) JP5802162B2 (ja)
KR (1) KR101624447B1 (ja)
CN (1) CN104204255B (ja)
ES (1) ES2743735T3 (ja)
MX (1) MX2014011471A (ja)
WO (1) WO2013146676A1 (ja)
ZA (1) ZA201406891B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180216208A1 (en) * 2015-07-21 2018-08-02 Nippon Steel & Sumitomo Metal Corporation High-strength pc steel wire
US20180216213A1 (en) * 2015-07-21 2018-08-02 Nippon Steel & Sumitomo Metal Corporation High-strength pc steel wire
AU2018245893B2 (en) * 2017-03-31 2021-10-07 Nippon Steel Corporation Railway wheel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710640B (zh) * 2013-12-30 2016-05-25 钢铁研究总院 一种经济节约型调质处理690MPa级高强高韧钢板
CN106414786B (zh) * 2014-06-04 2019-01-08 新日铁住金株式会社 钢线
CN105886948A (zh) * 2015-01-26 2016-08-24 鞍钢股份有限公司 一种高速铁路无砟轨道用35Si2Cr钢棒的生产方法
JP6795319B2 (ja) * 2015-03-30 2020-12-02 株式会社神戸製鋼所 伸線性に優れた高炭素鋼線材、および鋼線
KR101867677B1 (ko) * 2016-07-22 2018-06-15 주식회사 포스코 내지연파괴 특성이 우수한 선재 및 그 제조방법
KR102117400B1 (ko) * 2018-08-31 2020-06-01 주식회사 포스코 냉간압조용 선재, 이를 이용한 가공품 및 이들의 제조방법
JP7469642B2 (ja) 2020-05-21 2024-04-17 日本製鉄株式会社 高強度鋼線

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131797A (ja) 2002-10-10 2004-04-30 Nippon Steel Corp 耐遅れ破壊特性の良好なpc鋼線およびその製造方法ならびにpc撚り線
JP3591236B2 (ja) 1997-09-04 2004-11-17 日本精工株式会社 転がり軸受
JP2004360005A (ja) 2003-06-04 2004-12-24 Nippon Steel Corp 遅れ破壊特性の優れた高強度pc鋼線およびその製造方法
WO2007001057A1 (ja) * 2005-06-29 2007-01-04 Nippon Steel Corporation 伸線特性に優れた高強度線材およびその製造方法
JP2008261027A (ja) * 2007-04-13 2008-10-30 Nippon Steel Corp 耐水素脆化特性に優れた高強度亜鉛めっきボルト及びその製造方法
JP2009280836A (ja) * 2008-05-19 2009-12-03 Nippon Steel Corp 耐遅れ破壊特性に優れた高強度pc鋼線及びその製造方法
WO2011089782A1 (ja) * 2010-01-25 2011-07-28 新日本製鐵株式会社 線材、鋼線、及び線材の製造方法
JP2012041587A (ja) * 2010-08-17 2012-03-01 Nippon Steel Corp 高強度かつ耐水素脆化特性に優れた機械部品用線材、鋼線、および機械部品とその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149732A (ja) * 1984-01-13 1985-08-07 Sumitomo Electric Ind Ltd 鋼線材の熱処理方法
JPS61261430A (ja) * 1985-05-14 1986-11-19 Shinko Kosen Kogyo Kk 高強度高靭性鋼線の製造方法
JPH05171267A (ja) * 1991-09-27 1993-07-09 Nippon Steel Corp 高靭性パーライト鋼の製造法
US20070187003A1 (en) * 2004-03-02 2007-08-16 Honda Motor Co., Ltd. High-strength bolt superior in delayed fracture and resistance and relaxation resistance
CN101208445B (zh) * 2005-06-29 2014-11-26 新日铁住金株式会社 拉丝性能优异的高强度线材及其制造方法
JP5169839B2 (ja) * 2007-01-31 2013-03-27 新日鐵住金株式会社 捻回特性に優れるpws用めっき鋼線及びその製造方法
CN102137949B (zh) * 2009-06-25 2013-09-11 新日铁住金株式会社 耐蚀性和疲劳特性优良的桥梁用高强度Zn-Al镀层钢丝及其制造方法
BR112012025089A2 (pt) * 2010-04-01 2017-09-12 Kobe Steel Ltd Fio de aço de alto carbono excelente na estampabilidade de fio e propriedade de fadiga após trefilagem do fio

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591236B2 (ja) 1997-09-04 2004-11-17 日本精工株式会社 転がり軸受
JP2004131797A (ja) 2002-10-10 2004-04-30 Nippon Steel Corp 耐遅れ破壊特性の良好なpc鋼線およびその製造方法ならびにpc撚り線
JP2004360005A (ja) 2003-06-04 2004-12-24 Nippon Steel Corp 遅れ破壊特性の優れた高強度pc鋼線およびその製造方法
WO2007001057A1 (ja) * 2005-06-29 2007-01-04 Nippon Steel Corporation 伸線特性に優れた高強度線材およびその製造方法
JP2008261027A (ja) * 2007-04-13 2008-10-30 Nippon Steel Corp 耐水素脆化特性に優れた高強度亜鉛めっきボルト及びその製造方法
JP2009280836A (ja) * 2008-05-19 2009-12-03 Nippon Steel Corp 耐遅れ破壊特性に優れた高強度pc鋼線及びその製造方法
WO2011089782A1 (ja) * 2010-01-25 2011-07-28 新日本製鐵株式会社 線材、鋼線、及び線材の製造方法
JP2012041587A (ja) * 2010-08-17 2012-03-01 Nippon Steel Corp 高強度かつ耐水素脆化特性に優れた機械部品用線材、鋼線、および機械部品とその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180216208A1 (en) * 2015-07-21 2018-08-02 Nippon Steel & Sumitomo Metal Corporation High-strength pc steel wire
US20180216213A1 (en) * 2015-07-21 2018-08-02 Nippon Steel & Sumitomo Metal Corporation High-strength pc steel wire
US10752974B2 (en) * 2015-07-21 2020-08-25 Nippon Steel Corporation High-strength PC steel wire
US10808305B2 (en) * 2015-07-21 2020-10-20 Nippon Steel Corporation High-strength PC steel wire
AU2018245893B2 (en) * 2017-03-31 2021-10-07 Nippon Steel Corporation Railway wheel

Also Published As

Publication number Publication date
EP2832878A4 (en) 2016-04-27
EP2832878A1 (en) 2015-02-04
KR101624447B1 (ko) 2016-05-25
EP2832878B1 (en) 2019-08-14
JP5802162B2 (ja) 2015-10-28
CN104204255A (zh) 2014-12-10
JP2013204133A (ja) 2013-10-07
ZA201406891B (en) 2016-01-27
MX2014011471A (es) 2014-12-08
CN104204255B (zh) 2016-08-24
ES2743735T3 (es) 2020-02-20
KR20140129239A (ko) 2014-11-06

Similar Documents

Publication Publication Date Title
JP5802162B2 (ja) 線材及びこれを用いた鋼線
JP5833485B2 (ja) 線材及びこれを用いた鋼線
JP5135557B2 (ja) 耐遅れ破壊特性に優れた高強度鋼材と高強度ボルト、及び、その製造方法
JP5177323B2 (ja) 耐遅れ破壊特性に優れた高強度鋼材と高強度ボルト、及び、その製造方法
JP6180351B2 (ja) 生引き性に優れた高強度鋼線用線材および高強度鋼線
JP5846080B2 (ja) 耐遅れ破壊特性に優れた高強度鋼材
KR20210065164A (ko) 고강도 강판 및 그 제조 방법
WO2016002413A1 (ja) 鋼線用線材および鋼線
JP5251632B2 (ja) 耐遅れ破壊特性に優れた高強度鋼材、高強度ボルト及びその製造方法
CN107406950B (zh) 拉丝性优异的高碳钢线材和钢线
EP3486345A1 (en) Steel wire
JP5977699B2 (ja) 生引き性に優れた高強度鋼線用線材、高強度鋼線、高強度亜鉛めっき鋼線、およびその製造方法
JP6288265B2 (ja) 鋼線
JP5945196B2 (ja) 高強度鋼線用線材
JP2019123905A (ja) プレストレストコンクリート用緊張材用の二相ステンレス鋼線材、二相ステンレス鋼線及びプレストレストコンクリート用緊張材
WO2014034070A1 (ja) 鉄筋用鋼および鉄筋
WO2016002414A1 (ja) 鋼線用線材および鋼線
CN108350544B (zh) 钢线
JP2000001751A (ja) 耐断線性の高強度鋼線
JPH06336648A (ja) 耐遅れ破壊特性に優れた高強度pc棒線とその製造方法
JP6135553B2 (ja) 鉄筋およびその製造方法
JP2018162523A (ja) 鋼線用線材および鋼線
JP7479794B2 (ja) 耐遅れ破壊特性に優れたpc鋼材及びその製造方法
JP2018162524A (ja) 鋼線用線材および鋼線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013767810

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147026390

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/011471

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE