WO2013146579A1 - Inspection sample receiving body, inspection device and inspection method - Google Patents

Inspection sample receiving body, inspection device and inspection method Download PDF

Info

Publication number
WO2013146579A1
WO2013146579A1 PCT/JP2013/058259 JP2013058259W WO2013146579A1 WO 2013146579 A1 WO2013146579 A1 WO 2013146579A1 JP 2013058259 W JP2013058259 W JP 2013058259W WO 2013146579 A1 WO2013146579 A1 WO 2013146579A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
liquid
test
unit
capillary
Prior art date
Application number
PCT/JP2013/058259
Other languages
French (fr)
Japanese (ja)
Inventor
由美子 大鹿
千里 吉村
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2013146579A1 publication Critical patent/WO2013146579A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00495Centrifuges

Definitions

  • the present invention relates to a test object receiver, a test method, and a test apparatus for performing a chemical, medical, or biological test on a substance to be tested.
  • the microchip has a fluid circuit inside.
  • the fluid circuit includes, for example, a liquid reagent holding unit that holds a liquid reagent, a sample such as blood to be tested or analyzed, a specific component in the sample, or a measuring unit, a sample, or a sample for measuring a liquid reagent.
  • a liquid reagent holding unit that holds a liquid reagent
  • a sample such as blood to be tested or analyzed
  • a specific component in the sample or a measuring unit, a sample, or a sample for measuring a liquid reagent.
  • Each component such as a mixing unit for mixing the specific component and the liquid reagent, a detection unit for performing inspection or analysis on the mixed solution, and a fine path for appropriately connecting these units.
  • Patent Literature 1 plasma components are separated and extracted from blood injected into a fluid path by centrifugation or the like, and measurement is performed. The weighed plasma and the liquid reagent move to the mixing unit and are mixed. A microchip in which a mixed specimen moves to a detection unit and optical measurement is performed is disclosed.
  • An object of the present invention is to provide an inspection object receiver, an inspection apparatus, and an inspection method that can prevent and perform an appropriate inspection.
  • the inspection object receptacle according to the present disclosure according to claim 1 is an inspection object to be inspected according to a centrifugal force generated by revolution and a predetermined angle held by rotation.
  • One or more implementation units for performing inspection, centrifugation, or quantitative measurement or optical measurement in an inspection process on the inspection liquid which is a test object receiver used for inspection by moving liquid inside
  • the inspection liquid that is not used in the inspection process in the implementation portion flows into at least a part of the connection flow path that connects the plurality of implementation portions by flowing the inspection liquid into the implementation portion by centrifugal force.
  • a capillary holding part for holding the test liquid by capillary force.
  • the capillary holding portion is a flow that causes the inspection liquid to flow into the implementation portion that performs the next inspection step in the connection channel. It is on the downstream side of the inlet.
  • the inspection target receptacle of the present disclosure according to claim 3 is used for an application in which an inspection liquid to be inspected is moved inside according to a centrifugal force generated by revolution and a predetermined angle held by rotation.
  • One or more implementation units that are a test object receiver and perform centrifugation, quantitative determination, or optical measurement in the inspection process on the inspection liquid, and are not used in the inspection process performed by the execution unit.
  • a capillary holding part for holding the test liquid by capillary force in at least a part of the surplus part for storing the test liquid.
  • the inspection subject receptacle according to the present disclosure according to claim 4 is characterized in that, in the above disclosure, the capillary holding portion includes an innermost portion that is not connected to another flow path among the surplus portions. .
  • test object receptacle according to the present disclosure according to claim 5 is characterized in that, in the above disclosure, the capillary holding portion is configured to be inclined so that a thickness of a space for holding the test liquid is gradually reduced. To do.
  • the inspection device according to the present disclosure according to claim 6 is the above-described disclosure, wherein the inspection target receiver arranged at a predetermined position rotates on the inspection target receiver rotated by the predetermined angle, and the inspection target receiver rotated by the rotation unit.
  • a revolving means for revolving so as to apply the centrifugal force; and a rotation control means for controlling a revolving operation of the revolving means and a revolving operation of the revolving means with respect to the inspection object receiver.
  • the inspection method of the present disclosure according to claim 7 is characterized in that the inspection liquid is inspected using the inspection object receiver disclosed above.
  • the inspection object receiver of the present disclosure is used for an application in which an inspection liquid to be inspected is moved inside according to a centrifugal force generated by revolution and a predetermined angle held by rotation.
  • a receptor to be inspected a quantification unit for quantifying the amount of test liquid necessary for the test, a measurement unit for optically measuring the test liquid quantified in the quantification unit, the quantification unit, and the measurement
  • the part of the connecting flow path connecting the parts the part of the storing part storing the excess test liquid in the quantifying part, and the liquid storing part branched from the connecting flow path
  • a capillary holding part that is formed narrower than the other part and holds the test liquid by capillary force.
  • the capillary holding portion is provided in at least a part of the connection flow path that connects between the execution portions that perform each inspection step. It can prevent flowing into each implementation part. Specifically, for example, unnecessary inspection liquid, such as inspection liquid that has been surplus in the previous inspection process, does not flow into the execution unit of the target inspection process. Therefore, the inspection process can be accurately performed in each implementation unit, and the inspection liquid can be appropriately inspected.
  • the capillary holding unit is provided on the downstream side of the inflow port to the execution unit of the target inspection process. Therefore, inflows other than the inspection liquid necessary for the target inspection process can be prevented.
  • the capillary holding part is provided in at least a part of the storage part that stores the inspection liquid that is not used in the inspection process performed in each execution part, it is related to the target inspection process. It is possible to prevent the inspection liquid having no air from flowing into each of the implementation units. Specifically, for example, unnecessary inspection liquid such as surplus inspection liquid does not flow into the target inspection process execution unit. Therefore, the inspection process can be accurately performed in each implementation unit, and the inspection liquid can be appropriately inspected.
  • the capillary holding portion is provided in the innermost portion that is not connected to another flow path, it is possible to reliably prevent an excessive flow of the inspection liquid into the implementation portion.
  • the inspection object receptacle, the inspection apparatus, and the inspection method according to the present disclosure when inspecting the inspection liquid, the liquid other than the inspection liquid to be inspected is inspected for each part in the inspection process. It is possible to prevent unintended inflow and perform an appropriate inspection.
  • FIG. 5 is an explanatory diagram illustrating an XX cross section illustrated in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure.
  • FIG. 6 is an explanatory diagram illustrating an AA cross section illustrated in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram illustrating a cross section taken along the line BB illustrated in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure.
  • FIG. 8 is an explanatory diagram illustrating a cross section taken along the line CC in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure.
  • It is a flowchart which shows the content of the process of the test
  • FIG. 1 is a side view illustrating an example of an inspection apparatus in which an inspection chip according to an embodiment of the present disclosure is in a steady state.
  • FIG. 2 is a side view illustrating an example of an inspection apparatus in which the inspection chip according to the embodiment of the present disclosure is in a displaced state.
  • FIG. 3 is a plan view illustrating an example of the inspection apparatus according to the embodiment of the present disclosure.
  • the upper housing 300 shown in FIGS. 1 and 2 is indicated by a virtual line, and FIG. 3 shows a state in which the top plate of the upper housing 300 is removed.
  • the inspection apparatus 100 includes an upper casing 300, a lower casing 101 that includes a drive mechanism that controls driving of the inspection apparatus 100, a turntable 102 that can be rotated about the vertical axis L by the control of the drive mechanism, and an inspection chip.
  • the illustrated example shows an outline for explanation of the inspection apparatus 100, and the dimensional ratio of each part, the detailed shape, and the like are not limited to this as long as the structure has an equivalent function.
  • the inspection apparatus 100 applies a centrifugal force to the inspection chip 400 by rotation about the vertical axis L separated from the inspection chip 400 held by the holder 103.
  • the inspection apparatus 100 can switch the centrifugal direction that is the direction of the centrifugal force applied to the inspection chip 400 by rotating the inspection chip 400 about the horizontal axis T.
  • the holder 103 is, for example, a box-shaped body having an outer shape formed by a bottom plate, an upper plate, and a side wall. Specifically, the holder 103 is a box-shaped member formed in a rectangular shape in plan view that is slightly larger than the test chip 400 so that the test chip 400 formed in rectangular shape in plan view can be stored and held therein.
  • the inspection apparatus 100 is installed on the floor and includes a drive mechanism that rotates the turntable 102 around the vertical axis L inside the lower housing 101.
  • the turntable 102 is a disk-shaped rotating body that is provided on the upper surface side of the lower housing 101 and holds the holder 103 by an L-shaped plate 151. Specifically, the turntable 102 rotates around the vertical axis L by a driving mechanism controlled according to a control signal input from the control device 180.
  • the angle changing mechanism 150 is a drive mechanism that rotates the holder 103 provided on the turntable 102 around the horizontal axis T.
  • the angle changing mechanism 150 includes an L-shaped plate 151 that is a pair of L-shaped plate-shaped connecting fittings fixed to the upper surface of the turntable 102.
  • the L-shaped plate 151 extends upward from a base portion fixed near the center of the turntable 102, and an upper end portion extends outward in the radial direction of the turntable 102.
  • a rack gear 152 fixed to the inner shaft 104 is provided between the L-shaped plates 151.
  • the rack gear 152 is a vertically long metal plate-like member, and gears are carved on both end faces.
  • the present invention is not limited to this. Specifically, the number of L-shaped plates 151 may be one or more, and a plurality of pairs may be used. By making a pair, a balance is achieved during rotation.
  • the holder 103 is rotatably held around the horizontal axis T by the gear 153.
  • a pinion gear 154 supported by an L-shaped plate 151 is interposed between the gear 153 and the rack gear 152.
  • the pinion gear 154 meshes with the gear 153 and the rack gear 152, respectively.
  • a columnar guide member 155 is provided at the upper end of the rack gear 152.
  • the guide member 155 is held so as to be slidable in the vertical direction.
  • the pinion gear 154 and the gear 153 are driven to rotate, whereby the holder 103 rotates about the horizontal axis T.
  • the holder 103 holding the inspection chip 400 rotates around the vertical axis L as the turntable 102 is rotationally driven by the drive mechanism according to the control by the control device 180. To do. Centrifugal force is applied to the inspection chip 400 by revolution.
  • the rack gear 152, the pinion gear 154, and the gear 153 are driven to rotate, and the holder 103 holding the inspection chip 400 is moved horizontally. Rotates around T. Due to the rotation, the centrifugal direction acting on the test chip 400 changes relatively.
  • the direction of the centrifugal force applied by the revolution of the inspection chip 400 by the turntable 102 changes due to the rotation by the angle rotation mechanism 150.
  • the test liquid stored in the fluid circuit inside the test chip 400 moves to each part, is separated into a plurality of layers, is mixed with a drug, Processes such as dilution, quantification, retention, and various measurements are performed.
  • the rotation angle As shown in FIG. 1, when the rack gear 152 is lowered to the lowest end of the movable range, the holder 103 is in a steady state where the rotation angle is 0 degree.
  • the structure rotates around the horizontal axis T, but is not limited thereto. Specifically, a configuration may be adopted in which each holder 103 rotates around an axis parallel to the vertical axis L to change the centrifugal direction.
  • the holder 103 when the rack gear 152 is raised to the uppermost end of the movable range, the holder 103 is in a displaced state where the rotation angle is 90 degrees. Specifically, in the displaced state, the holder 103 is rotated 90 degrees around the horizontal axis T from the steady state.
  • the holder 103 on the right side of the drawing will be described. Specifically, when the rotation angle rotates from 0 degrees to 90 degrees, it is assumed to be counterclockwise, and when it rotates from 90 degrees to 0 degrees, it is described as clockwise.
  • the range in which the holder 103 can rotate is an angular width in which the holder 103 can rotate from 0 degrees in the steady state to 90 degrees in the displaced state.
  • the rotation range is described as being 0 degrees to 90 degrees, but is not limited to this, and is determined based on the moving direction of the test liquid in the test chip 400 according to the test contents. It is good.
  • the upper housing 300 is fixed to the upper side of the lower housing 101, and a measuring unit 310 for optically measuring the inspection liquid stored in the inspection chip 400 is provided therein.
  • the measuring unit 310 performs optical measurement on the test liquid in accordance with a control signal input from the control device 180.
  • the upper casing 300 is provided outside the range in which the holder 103 is rotated with respect to the vertical axis L that is the rotation center of the turntable 102.
  • the upper housing 300 has an opposing wall 321 that extends on an arc in a plan view on the outer peripheral side of the turntable 102.
  • the measurement unit 310 provided in the upper housing 300 transmits light extending in a direction intersecting the holder 103 at a predetermined position serving as a measurement position to the inspection chip 400 to be measured, thereby allowing the inspection liquid in the inspection chip 400 to be transmitted. Measure.
  • the measuring unit 310 includes a light source 311 that emits measurement light by the light emitting unit 313 and an optical sensor 312 that detects the measurement light emitted from the light source 311 by the light receiving unit 314.
  • the measurement light transmitted through the inspection chip 400 is described as being measured.
  • the measurement light is not limited thereto, and the measurement light reflected by the inspection liquid flowing into the measurement unit 310 is measured. Also good.
  • the light source 311 and the optical sensor 312 are arranged outside the rotation range of the holder 103.
  • the height position of the optical path connecting the light source 311 and the optical sensor 312 is based on the height of the portion of the test chip 400 held by the holder 103 that stores the test liquid to be measured with reference to the holder 103 in a steady state. It is set according to the position.
  • the control device 180 connected to the outside of the inspection device 100 performs various measurements based on the measurement light measured by the measurement unit 310. That is, the control device 180 incorporates a CPU, RAM, ROM, and the like (not shown), and controls various revolutions and rotations in the inspection device 100 holding the inspection chip 400 to perform various measurements.
  • the control device 180 includes an operation unit for a user to instruct various operations of the inspection device 100.
  • the control device 180 is externally connected.
  • the present invention is not limited to this, and the function of the control device 180 may be provided inside the inspection device 100.
  • the disk-like turntable 102 is provided on the upper surface side of the lower casing 101, but the present invention is not limited to this. That is, any configuration that can apply a centrifugal force to the inspection chip 400 is acceptable, and the shape of the housing and the turntable 102 is not limited.
  • a pair of holders 103 are provided in the vicinity of the circumference of the turntable 102, the present invention is not limited to this. That is, the number of holders 103 may be one or a plurality, and any arrangement that can apply a desired centrifugal force to the inspection chip 400 is sufficient.
  • FIG. 4 is an explanatory diagram illustrating an example of the internal structure of the inspection chip according to the embodiment of the present disclosure.
  • FIG. 4 a plan view of the inspection chip 400 when the inspection chip 400 is installed in the inspection apparatus 100 shown in FIGS. 1 to 3 will be described.
  • the inspection chip 400 is composed of a plate member having a rectangular shape in plan view and having a predetermined thickness, and includes a fluid circuit for executing storage, movement, measurement, and the like of the inspection liquid to be subjected to the predetermined inspection.
  • the material of the plate member include polystyrene (PS), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polymethyl methacrylate (PMMA), polycarbonate (PC), Polyethylene naphthalate (PEN), polyarylate resin (PAR), acrylonitrile butadiene styrene resin (ABS), vinyl chloride resin (PVC), polymethylpentene resin (PMP), polybutadiene resin (PBD), biodegradable polymer ( There are no particular restrictions on organic materials such as BP), cycloolefin polymer (COP), and polydimethylsiloxane (PDMS), or inorganic materials such as silicon, glass,
  • the fluid circuit of the test chip 400 shows an outline for explanation, and unless otherwise specified, the dimensional ratio, capacity, and the like of each part are not limited thereto.
  • the inspection chip 400 includes a fluid circuit including a concave portion having a predetermined depth in the thickness direction of the substrate 500 which is a plate member shown in FIG.
  • the fluid circuit includes a supply unit 410, a determination unit 430, a storage unit 470, a measurement unit 450, a first guide path 440, an inflow port 490, a liquid reservoir 480, a second guide path 460, and a capillary. Holding units 401, 402, 403, and 404 are provided.
  • the supply unit 410 temporarily holds the inspection liquid injected from the injection port 420.
  • the quantification unit 430 quantifies the test liquid supplied from the supply port 411 of the supply unit 410.
  • the storage unit 470 can store a surplus portion of the test liquid supplied to the determination unit 430.
  • the measuring unit 450 can be accommodated in order to perform a predetermined measurement using the test liquid quantified by the quantifying unit 430 as the next process.
  • the first guide path 440 is a movement path of the test liquid from the quantification unit 430 to the measurement unit 450.
  • the inflow port 490 allows the inspection liquid to flow into the measurement unit 450 in the first guide path 440.
  • the liquid reservoir 480 holds a test liquid that is not a measurement target when the test liquid flows into the measurement unit 450.
  • the second guide path 460 is a movement path of the test liquid from the quantification unit to the storage unit 470.
  • the capillary holders 401, 402, and 403 can hold a test liquid that is provided in a part between the quantification unit 430 and the measurement unit 450 and is not an inspection target.
  • the capillary holding unit 404 can hold a test liquid that is provided in a part or more of the volume of the storage unit 470 and is not a test target.
  • the test liquid is quantified in the quantification unit 430, and the measurement unit 450 is described as performing optical measurement to analyze the test liquid flowing in from the quantification unit 430.
  • the measurement unit 450 performs analysis.
  • steps such as mixing, analysis, centrifugation, dilution, and holding, and the measurement unit 450 performs analysis.
  • Various processes other than may be performed.
  • the inspection chip 400 into which the inspection liquid is injected from the inlet 420 into the supply unit 410 is held at a predetermined angle by rotation under the control of the angle changing mechanism 150, and centrifugal force is applied by revolution on the turntable 102.
  • the inspection liquid is supplied from the supply port 411 to the quantification unit 430 for performing quantification by the centrifugal force applied in the inspection chip 400.
  • FIG. 5 is an explanatory diagram illustrating an XX cross section illustrated in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure.
  • the inside of the supply unit 410 is partitioned by a substrate 500 and an upper cover 501.
  • the upper cover 501 is provided with an inlet 420 for injecting a test liquid into the supply unit 410.
  • the inlet 420 after the inspection liquid is injected may be sealed with a film or the like as necessary.
  • test liquid passes through an opening made up of a connection portion between the quantitative unit 430 and the first guide path 440 and a connection site between the quantitative unit 430 and the second guide path 460, and then enters the quantitative unit 430. Supplied in any direction on the inner wall.
  • the inspection apparatus 100 quantifies the inspection liquid supplied to the quantification unit 430 according to the control of the control device 180.
  • the centrifugal force for quantifying in the quantifying unit 430 may be in a direction perpendicular to the opening, and is adjusted by a predetermined angle held by the rotation of the inspection chip 400 under the control of the angle changing mechanism 150.
  • the surplus test liquid at the time of supplying the test liquid to the quantification unit 430 and at the time of quantification by the quantification unit 430 flows out to the storage unit 470 via the second guide path 460.
  • the inspection liquid quantified by the quantification unit 430 flows into the measurement unit 450 which is a different room via the first guide path 440 and the inflow port 490.
  • the inspection liquid is allowed to enter the inlet 490 according to a predetermined angle held by the rotation of the inspection chip 400 controlled by the angle changing mechanism 150 and the centrifugal force applied by the revolution on the turntable 102. Then, the liquid flows into the measurement unit 450 for the inspection liquid.
  • the inflow port 490 is in a part of the flow path connecting the quantification unit 430 and the measurement unit 450, and the flow path formation direction is changed at the inflow port 490. That is, it is a portion where the direction of the centrifugal force is changed when the inspection liquid is flowed from the quantification unit 430 to the measurement unit 450.
  • the inspection liquid flows into the measurement unit 450 from the inlet 490, the inspection liquid that is not a measurement target in the measurement unit 450 leaks through the wall surface on the inlet 490 side of the upper wall of the measurement unit 450, or the like. Held in the liquid reservoir 480.
  • the test liquid may be a specimen such as blood, a sample such as a drug, or a mixed liquid, and is appropriately selected according to a desired test.
  • the number of parts such as the supply unit 410, the determination unit 430, the storage unit 470, the liquid storage unit 480, and the measurement unit 450, or the number of paths through which can be set can be appropriately set according to a desired examination.
  • the inspection chip 400 includes capillary holders 401, 402, and 403 between a measurement unit 450 and a determination unit 430 that performs a predetermined measurement or measurement in a test liquid.
  • the storage unit 470 into which the excess test liquid flows from the quantification unit 430 includes a capillary holding unit 404.
  • the capillary holding portions 401, 402, 403, and 404 have a predetermined space in the plate thickness direction of the substrate 500 that can hold liquid by capillary force. Yes.
  • the capillary holders 401, 402, 403, and 404 can hold the test liquid in a state where a centrifugal force of a predetermined level or higher is not applied due to the capillary force.
  • the capillary holders 401, 402, 403, and 404 in the embodiment of the present disclosure flow in unnecessary inspection liquid in each inspection process by connecting the wall in contact with the inspection liquid in the inspection chip 400. It is the structure which hold
  • the inspection liquid remaining in the previous process is prevented from flowing into the measurement unit 450 through the inner wall surface in the inspection chip 400.
  • the capillary holders 401 and 402 hold the inspection liquid that has reached the inner wall surface.
  • the capillary holding parts 403 and 404 are provided on the internal wall surface. The test liquid that has been collected is retained.
  • FIGS. 6 to 8 illustrate and explain the case where the inspection liquid K unnecessary for each inspection step is held.
  • FIG. 6 is an explanatory diagram illustrating an AA cross section illustrated in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure.
  • the capillary holding portion 401 is provided in a part of the first guide path 440.
  • the capillary holding unit 401 is provided on the quantifying unit 430 side, which is upstream of the inflow port 490 of the first guide path 440.
  • the capillary holding part 401 is formed by a capillary wall part 611 provided on the substrate 500 and an upper cover 501 facing the capillary wall part 611.
  • the capillary wall portion 611 is a wall that protrudes toward the upper cover 501.
  • the capillary holding part 401 should just form the space which generate
  • the capillary wall portion 611 is described as being provided on the substrate 500, but the present invention is not limited thereto.
  • a capillary wall portion may be provided in the upper cover 500 in order to form a space capable of holding the test liquid K. This capillary wall portion is a wall protruding toward the substrate 500.
  • the capillary holding unit 401 measures the inspection liquid K remaining on the quantification unit 430 side.
  • the inspection liquid K can be held so as not to flow into the portion 450.
  • the capillary holding unit 401 is unnecessary for optical measurement in a state where a centrifugal force for flowing the test liquid to be measured into the measurement unit 450 is not applied when the measurement unit 450 performs optical measurement.
  • the inspection liquid K can be held when the inspection liquid K travels along the inner wall surface.
  • the capillary holding unit 401 appropriately The test liquid to be measured can be caused to flow into 450.
  • the capillary holding unit 402 is provided on the measurement unit 450 side, which is downstream of the inlet 490 of the first guide path 440.
  • the capillary holding part 402 is formed by a capillary wall part 612 provided on the substrate 500 and an upper cover 501 facing the capillary wall part 512.
  • the capillary wall portion 612 is a wall that protrudes toward the upper cover 501.
  • the capillary wall portion 612 has been described as being provided on the substrate 500, the present invention is not limited to this, and the capillary wall portion 612 may be provided on the upper cover 500. This capillary wall portion is a wall protruding toward the substrate 500.
  • the inspection liquid flows from the quantification unit 430 to the measurement unit 450, when the measurement unit 450 performs an optical measurement, unnecessary measurement liquid K is added to the measurement unit 450 by connecting the inner wall surface of the inspection chip 400 or the like.
  • the capillary holder 402 can hold the test liquid K so that it does not flow.
  • the capillary holding unit 402 is unnecessary for the optical measurement in a state where the centrifugal force for allowing the test liquid to be measured to flow into the measurement unit 450 is not applied when the measurement unit 450 performs the optical measurement.
  • the inspection liquid K can be held when the inspection liquid K reaches the inner wall surface.
  • the centrifugal force for allowing the test liquid to be measured to flow into the measuring unit 450 is applied to the capillary holding unit 402
  • the centrifugal force is larger than the capillary force, so that the measuring unit appropriately The test liquid to be measured can be caused to flow into 450.
  • FIG. 7 is an explanatory diagram illustrating a cross section taken along the line BB illustrated in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure.
  • the capillary holding unit 403 is provided in a liquid reservoir 480 that holds a test liquid that is not used in the measurement unit 450 when the test liquid flows from the determination unit 430 to the measurement unit 450.
  • the capillary holding part 403 is formed by a capillary wall part 711 provided on the substrate 500 and an upper cover 501 facing the capillary wall part 711.
  • the capillary wall portion 711 is a wall that protrudes toward the upper cover 501.
  • the capillary wall portion 711 has been described as being provided on the substrate 500, the present invention is not limited thereto, and the upper cover 500 may be provided with a capillary wall portion.
  • the capillary wall portion is a wall protruding toward the substrate 500.
  • the capillary holding unit 403 causes the unnecessary inspection liquid K once held in the liquid reservoir 480 to pass through the inner wall surface of the inspection chip 400.
  • the test liquid K can be held so as not to flow into the measurement unit 450.
  • FIG. 8 is an explanatory diagram illustrating a cross section taken along the line CC in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure.
  • the capillary holding unit 404 is provided in a storage unit 470 that holds a test liquid that has become surplus in the quantitative determination unit 430.
  • the capillary holding part 404 is formed by a capillary wall part 811 provided on the substrate 500 and an upper cover 501 facing the capillary wall part 811.
  • the capillary wall portion 811 protrudes toward the upper cover 501.
  • the capillary wall portion 811 has been described as being provided on the substrate 500, the present invention is not limited to this, and the capillary wall portion 811 may be provided on the upper cover 500.
  • the capillary wall portion protrudes toward the substrate 500.
  • the capillary holding unit 404 holds the test liquid K so that the unnecessary test liquid K once held in the storage unit 470 does not flow back to the quantification unit 430 or the measurement unit 450 by, for example, covering the inner wall surface of the test chip 400. can do.
  • the quantification unit 430 or the measurement unit 450 illustrated in FIGS. 4 to 8 realizes the function of the implementation unit of the present disclosure.
  • the first guide route 440 or the second guide route 460 realizes the function of the connection channel of the present disclosure.
  • the capillary holding portions 401, 402, 403, and 404 realize the function of the capillary holding portion of the present disclosure.
  • the storage part 470 or the liquid storage part 480 implements the function of the surplus part of the present disclosure.
  • FIG. 9 is a flowchart showing the contents of the process of the present disclosure.
  • a test liquid is injected from the injection port 420 to the supply unit 410 of the test chip 400 before processing in the test apparatus 100 (step S ⁇ b> 901).
  • step S901 when the injection of the inspection liquid is completed, the inspection chip 400 is set in the holder 103 (step S902).
  • step S902 when the setting of the inspection chip 400 is completed, the operation unit of the control device 180 is operated to turn on the inspection device 100 in order to execute the processing of the inspection device 100 (step S903).
  • the CPU of the control device 180 controls the inspection device 100 according to the control program stored in the ROM, and starts applying a predetermined centrifugal force to the inspection chip 400 (step S904).
  • the inspection apparatus 100 rotates and drives the holder 103 holding the turntable 102 and the inspection chip 400 by the angle changing mechanism 150 and the drive mechanism under the control of the control device 180.
  • a predetermined centrifugal force supplies the test liquid from the supply unit 410 to the quantification unit 430, quantifies the test liquid in the quantification unit 430, and flows the test liquid from the quantification unit 430 into the measurement unit 450
  • the rotational speed of the turntable 102 is controlled so that the predetermined centrifugal force is larger than the capillary force in the capillary holding portions 401, 402, 403, and 404.
  • the CPU of the control device 180 controls the inspection device 100 according to the control program, and ends the application of the centrifugal force through a predetermined process (step S905).
  • the application of the centrifugal force is terminated through a necessary process based on a predetermined program for the test liquid, for example.
  • step S905 when the application of the centrifugal force is completed, the inspection apparatus 100 is configured such that the measurement unit 450 holding the inspection liquid to be measured by the measurement unit 310 is on the optical path connecting the light source 311 and the optical sensor 312.
  • the inspection chip 400 is moved so as to be (step S906).
  • step S906 when the inspection chip 400 is moved, the inspection apparatus 100 measures the inspection liquid by the measurement unit 310 according to the control of the control device 180 (step S907).
  • the light source 311 irradiates the inspection liquid inside the inspection chip 400 with light
  • the optical sensor 312 detects the light transmitted through the inspection liquid, whereby the inspection liquid is measured.
  • the inspection chip 400 is in a steady state and no centrifugal force is applied.
  • Capillary holders 401, 402, 403, and 404 are provided inside the inspection chip 400 so that the inspection liquid K unnecessary for optical measurement does not flow into the measurement unit 450. That is, the test liquid K unnecessary for optical measurement is held by the capillary force of the capillary holders 401, 402, 403, and 404.
  • step S907 information measured by the measurement unit 310 is output to the control device 180.
  • the control device 180 outputs the test result of the test liquid based on the measured information (step S908), and ends the series of processes.
  • As the inspection result for example, measured information is analyzed by a predetermined program, and is displayed on a display unit (not shown) as an analysis result of the measured information.
  • the capillaries prevent the unnecessary inspection liquid from flowing into the quantification unit 430 or the measurement unit 450 that performs quantification or measurement as each inspection process.
  • the holding units 401, 402, 403, and 404 hold unnecessary test liquid.
  • the reservoir 470 or the liquid reservoir 480 in which the capillary holders 403 and 404 are formed has been described as having a uniform thickness up to the innermost part that is not connected to other flow paths. This is not a limitation.
  • the capillary holders 403 and 404 may be provided in at least a part of the reservoir 470 or the liquid reservoir 480.
  • FIG. 10 is an explanatory diagram illustrating an example (part 1) of the shape of the test chip according to the modification of the present disclosure.
  • the same components as those in the embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the storage part 470 is described as an example, a part that is not connected to another flow path such as the liquid storage part 480 may have the same configuration.
  • the storage part 470 is a structure provided with the capillary holding
  • the capillary holding part 1001 is formed by a capillary wall part 1011 provided on the substrate 500 and an upper cover 501 facing the capillary wall part 1011.
  • the capillary wall portion 1101 is a wall that protrudes toward the upper cover 501.
  • the test liquid K flowing into the innermost part of the storage unit 470 is held by the capillary holding unit 1011 without flowing out of the storage unit 470 by the capillary force of the capillary holding unit 1001. Therefore, it is possible to prevent unnecessary test liquid K from flowing into the quantification unit 430 and the measurement unit 450, and an appropriate test can be performed.
  • FIG. 11 is an explanatory diagram illustrating an example (part 2) of the shape of the test chip according to the modification of the present disclosure.
  • the same components as those of the embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the storage unit 470 will be described as an example, but the present modification may be applied to the capillary holding units 401 and 402 upstream or downstream of the inflow port 490, the capillary holding unit 403 provided in the liquid storage unit 480, and the like. Good.
  • the storage part 470 is provided with the capillary holding part 1101 inclined toward the downstream part from the illustrated left side which is the upstream side.
  • the capillary holding part 1101 has a space in which the thickness of the substrate 500 gradually decreases toward the innermost part of the storage part 470.
  • the capillary holding part 1001 is formed by a capillary wall part 1111 provided on the substrate 500 and an upper cover 501 facing the capillary wall part 1111. With the capillary holding part 1101 having such a configuration, the capillary holding part 1101 can be created more easily than the test chip 400 having a step.
  • the substrate 500 facing the upper cover 501 in each capillary holding portion has a thick structure, but this is not restrictive.
  • the upper substrate 500 shown in the capillary holding portion may be a so-called meat stealing portion which is a space. In this way, the test chip 400 can be easily formed and reduced in weight.
  • any one of the plurality of capillary holding portions may be selectively provided with an inclination or may have a partial configuration.
  • the method described above can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer.
  • the program may be a transmission medium that can be distributed via a network such as the Internet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

The purpose of the present invention is to prevent the inflow of unwanted inspection liquid in each inspection step in the inside of an inspection chip. An inspection chip (400) is used for inspecting an inspection liquid by moving the inspection liquid to be inspected inside the chip in accordance with the centrifugal force created by revolution and a prescribed angle maintained by rotation. The inspection chip (400) comprises: a quantitative measurement part (430) or a measurement part (450) for carrying out, as an inspection step, quantification or optical measurement of the inspection liquid; and capillary holding parts (401, 402, 403) to flow the inspection liquid into the quantitative measurement part (430) or the measurement part (450) by a centrifugal force and hold the inspection liquid by a capillary force if an inspection liquid not to be employed in the inspection step flows into at least a part of a plurality of sections between the quantitative measurement part (430) and the measurement part (450).

Description

検査対象受体、検査装置および検査方法Inspection object receiver, inspection device, and inspection method
 この発明は、検査対象となる物質に対して化学的、医学的、または生物学的な検査を行うための検査対象受体、検査方法および検査装置に関する。 The present invention relates to a test object receiver, a test method, and a test apparatus for performing a chemical, medical, or biological test on a substance to be tested.
 近年、医療、健康、食品、創薬などの分野でDNA(Deoxyribo Nucleic Acid)、酵素、抗原、抗体、タンパク質、ウィルス、細胞などの生体物質、または化学物質を検知、検出あるいは定量する重要性が増している。これら生体物質、または化学物質などを簡便に測定できる様々なバイオチップおよびマイクロ化学チップなどのマイクロチップが提案されている。 In recent years, the importance of detecting, detecting or quantifying biological substances such as DNA (Deoxyribo Nucleic Acid), enzymes, antigens, antibodies, proteins, viruses, cells, or chemical substances in the fields of medicine, health, food, drug discovery, etc. It is increasing. Various biochips and microchips such as microchemical chips that can easily measure these biological substances or chemical substances have been proposed.
 マイクロチップは、内部に流体回路を有している。流体回路は、たとえば、液体試薬を保持する液体試薬保持部、検査または分析の対象となる血液などの検体あるいは検体中の特定成分、または液体試薬を計量するための計量部、検体、または検体中の特定成分と、液体試薬とを混合する混合部、および混合液について検査、または分析をおこなうための検出部などの各部と、これら各部を適切に接続する微細な経路とから構成されている。 The microchip has a fluid circuit inside. The fluid circuit includes, for example, a liquid reagent holding unit that holds a liquid reagent, a sample such as blood to be tested or analyzed, a specific component in the sample, or a measuring unit, a sample, or a sample for measuring a liquid reagent. Each component such as a mixing unit for mixing the specific component and the liquid reagent, a detection unit for performing inspection or analysis on the mixed solution, and a fine path for appropriately connecting these units.
 たとえば、マイクロチップでは血液中の血漿成分などを用いて各種検査がおこなわれることがある。特許文献1では、流体経路内に注入された血液から遠心分離などによって血漿成分が分離・抽出され、計量がおこなわれる。計量された血漿と、液体試薬とが混合部へ移動し混合される。混合された検体が検出部へ移動し、光学計測がおこなわれるマイクロチップが開示されている。 For example, in a microchip, various tests may be performed using plasma components in blood. In Patent Literature 1, plasma components are separated and extracted from blood injected into a fluid path by centrifugation or the like, and measurement is performed. The weighed plasma and the liquid reagent move to the mixing unit and are mixed. A microchip in which a mixed specimen moves to a detection unit and optical measurement is performed is disclosed.
特開2009-258013号公報JP 2009-258013 A
 しかしながら、上述した特許文献1に記載の技術では、マイクロチップに付与された遠心力によって分離部、混合部、または検出部など、検査において所定の処理を実施する部位へ検体が導入される。各部位への経路は、検体が通過することによって濡れる。このため、検体と、マイクロチップとの親和性によって、所定の処理を実施している間に、本来処理の対象となる検体以外の検体、または廃液が流入してしまうことがあるという問題が一例として挙げられる。余剰な検体、または廃液などが各部位へ意図せず流入してしまうと、検査を正確に実施できないこととなる。 However, in the technique described in Patent Document 1 described above, a specimen is introduced into a site where a predetermined process is performed in a test, such as a separation unit, a mixing unit, or a detection unit, by centrifugal force applied to the microchip. The route to each part gets wet as the specimen passes. For this reason, there is an example of a problem in which a sample other than the sample to be originally processed or waste liquid may flow in during a predetermined process due to the affinity between the sample and the microchip. As mentioned. If an excessive sample or waste liquid flows into each part unintentionally, the test cannot be performed accurately.
 この発明は、上述した問題を解決するためになされたものであり、検査液体を検査する際、毛管保持部によって、チップ内の各部位において検査対象となる検査液体以外の液体の意図しない流入を防ぎ、適切な検査をおこなうことができる検査対象受体、検査装置および検査方法を提供することを目的とする。 The present invention has been made to solve the above-described problem, and when inspecting the inspection liquid, the capillary holding portion causes unintentional inflow of liquid other than the inspection liquid to be inspected at each part in the chip. An object of the present invention is to provide an inspection object receiver, an inspection apparatus, and an inspection method that can prevent and perform an appropriate inspection.
 上述した課題を解決し、目的を達成するため、請求項1記載の本開示の検査対象受体は、公転によって生じる遠心力と、自転によって保持される所定角度とに応じて検査対象となる検査液体を内部で移動させて検査する用途に用いられる検査対象受体であって、前記検査液体に対して、検査工程における遠心分離または定量または光学的測定を実施する1以上の実施部と、前記遠心力によって前記検査液体を前記実施部へ流入させ、複数の前記実施部間を連結する連結流路の少なくとも一部に、前記実施部における前記検査工程に用いない前記検査液体が流入した場合に、前記検査液体を毛管力によって保持する毛管保持部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the inspection object receptacle according to the present disclosure according to claim 1 is an inspection object to be inspected according to a centrifugal force generated by revolution and a predetermined angle held by rotation. One or more implementation units for performing inspection, centrifugation, or quantitative measurement or optical measurement in an inspection process on the inspection liquid, which is a test object receiver used for inspection by moving liquid inside When the inspection liquid that is not used in the inspection process in the implementation portion flows into at least a part of the connection flow path that connects the plurality of implementation portions by flowing the inspection liquid into the implementation portion by centrifugal force. And a capillary holding part for holding the test liquid by capillary force.
 請求項2記載の本開示の検査対象受体は、上記開示において、前記毛管保持部は、前記連結流路のうち、次の前記検査工程を実施する前記実施部へ前記検査液体を流入させる流入口の下流側にあることを特徴とする。 The inspection target receptacle according to the present disclosure according to claim 2, in the above disclosure, the capillary holding portion is a flow that causes the inspection liquid to flow into the implementation portion that performs the next inspection step in the connection channel. It is on the downstream side of the inlet.
 請求項3記載の本開示の検査対象受体は、公転によって生じる遠心力と、自転によって保持される所定角度とに応じて検査対象となる検査液体を内部で移動させて検査する用途に用いられる検査対象受体であって、前記検査液体に対して、検査工程における遠心分離または定量または光学的測定を実施する1以上の実施部と、前記実施部によって実施される前記検査工程に用いられない前記検査液体を貯留する余剰部の少なくとも一部で前記検査液体を毛管力によって保持する毛管保持部と、を備えることを特徴とする。 The inspection target receptacle of the present disclosure according to claim 3 is used for an application in which an inspection liquid to be inspected is moved inside according to a centrifugal force generated by revolution and a predetermined angle held by rotation. One or more implementation units that are a test object receiver and perform centrifugation, quantitative determination, or optical measurement in the inspection process on the inspection liquid, and are not used in the inspection process performed by the execution unit. And a capillary holding part for holding the test liquid by capillary force in at least a part of the surplus part for storing the test liquid.
 請求項4記載の本開示の検査対象受体は、上記開示において、前記毛管保持部は、前記余剰部のうち、他の流路と連結しない最奥部が含まれていることを特徴とする。 The inspection subject receptacle according to the present disclosure according to claim 4 is characterized in that, in the above disclosure, the capillary holding portion includes an innermost portion that is not connected to another flow path among the surplus portions. .
 請求項5記載の本開示の検査対象受体は、上記開示において、前記毛管保持部は、前記検査液体を保持する空間の厚さが徐々に薄くなるよう傾斜して構成されることを特徴とする。 The test object receptacle according to the present disclosure according to claim 5 is characterized in that, in the above disclosure, the capillary holding portion is configured to be inclined so that a thickness of a space for holding the test liquid is gradually reduced. To do.
 請求項6記載の本開示の検査装置は、上記開示において、所定位置に配置された前記検査対象受体を前記所定角度自転する自転手段と、前記自転手段によって自転された前記検査対象受体に、前記遠心力を印加するよう公転する公転手段と、前記検査対象受体に対する、前記自転手段における自転動作と、前記公転手段における公転動作とを制御する回動制御手段と、を備えることを特徴とする。 The inspection device according to the present disclosure according to claim 6 is the above-described disclosure, wherein the inspection target receiver arranged at a predetermined position rotates on the inspection target receiver rotated by the predetermined angle, and the inspection target receiver rotated by the rotation unit. A revolving means for revolving so as to apply the centrifugal force; and a rotation control means for controlling a revolving operation of the revolving means and a revolving operation of the revolving means with respect to the inspection object receiver. And
 請求項7記載の本開示の検査方法は、上記開示の検査対象受体を用いて、前記検査液体の検査をおこなうことを特徴とする。 The inspection method of the present disclosure according to claim 7 is characterized in that the inspection liquid is inspected using the inspection object receiver disclosed above.
 請求項8記載の本開示の検査対象受体は、公転によって生じる遠心力と、自転によって保持される所定角度とに応じて検査対象となる検査液体を内部で移動させて検査する用途に用いられる検査対象受体であって、検査に必要な量の検査液体を定量するための定量部と、前記定量部において定量された検査液体が光学的測定される測定部と、前記定量部と前記測定部とを連結する連結流路の一部、前記定量部において余剰とされた検査液体を貯留する貯留部の一部、および前記連結流路から分岐された液溜部のすくなくともいずれか1つにおいて、他部よりも流路が狭く形成され、毛管力により検査液体を保持する毛管保持部と、を備えることを特徴とする。 The inspection object receiver of the present disclosure according to claim 8 is used for an application in which an inspection liquid to be inspected is moved inside according to a centrifugal force generated by revolution and a predetermined angle held by rotation. A receptor to be inspected, a quantification unit for quantifying the amount of test liquid necessary for the test, a measurement unit for optically measuring the test liquid quantified in the quantification unit, the quantification unit, and the measurement In at least one of the part of the connecting flow path connecting the parts, the part of the storing part storing the excess test liquid in the quantifying part, and the liquid storing part branched from the connecting flow path And a capillary holding part that is formed narrower than the other part and holds the test liquid by capillary force.
 請求項1記載の開示によれば、各検査工程を実施する実施部間を連結する連結流路の少なくとも一部に毛管保持部を備えるため、対象となる検査工程とは関係のない検査液体が各実施部に流入することを防ぐことができる。具体的には、たとえば、対象となる検査工程の実施部に対して、前の検査工程において余剰となった検査液体など、不要な検査液体が流入することがない。したがって、各実施部において正確に検査工程を実施することができ、適切に検査液体の検査をおこなうことができる。 According to the disclosure of claim 1, since the capillary holding portion is provided in at least a part of the connection flow path that connects between the execution portions that perform each inspection step, the inspection liquid that is not related to the target inspection step is provided. It can prevent flowing into each implementation part. Specifically, for example, unnecessary inspection liquid, such as inspection liquid that has been surplus in the previous inspection process, does not flow into the execution unit of the target inspection process. Therefore, the inspection process can be accurately performed in each implementation unit, and the inspection liquid can be appropriately inspected.
 請求項2記載の開示によれば、対象となる検査工程の実施部への流入口の下流側に毛管保持部を備える構成である。したがって、対象となる検査工程に必要な検査液体以外の流入を防ぐことができる。 According to the disclosure of claim 2, the capillary holding unit is provided on the downstream side of the inflow port to the execution unit of the target inspection process. Therefore, inflows other than the inspection liquid necessary for the target inspection process can be prevented.
 請求項3記載の開示によれば、各実施部において実施される検査工程に用いられない検査液体を貯留する貯留部の少なくとも一部に毛管保持部を備えるため、対象となる検査工程とは関係のない検査液体が各実施部に流入することを防ぐことができる。具体的には、たとえば、対象となる検査工程の実施部に対して、余剰となった検査液体など、不要な検査液体が流入することがない。したがって、各実施部において正確に検査工程を実施することができ、適切に検査液体の検査をおこなうことができる。 According to the disclosure of claim 3, since the capillary holding part is provided in at least a part of the storage part that stores the inspection liquid that is not used in the inspection process performed in each execution part, it is related to the target inspection process. It is possible to prevent the inspection liquid having no air from flowing into each of the implementation units. Specifically, for example, unnecessary inspection liquid such as surplus inspection liquid does not flow into the target inspection process execution unit. Therefore, the inspection process can be accurately performed in each implementation unit, and the inspection liquid can be appropriately inspected.
 請求項4記載の開示によれば、他の流路と連結しない最奥部に毛管保持部を備えるため、実施部への余剰な検査液体の流入を確実に防ぐことができる。 According to the disclosure of the fourth aspect, since the capillary holding portion is provided in the innermost portion that is not connected to another flow path, it is possible to reliably prevent an excessive flow of the inspection liquid into the implementation portion.
 請求項5記載の開示によれば、毛管保持部における検査液体を保持する空間の厚さが徐々に薄くなるよう傾斜して構成するため、検査工程に不要な検査液体を保持しやすい。また、検査対象受体を形成する際に、容易な加工によって毛管保持部を生成することができる。 According to the disclosure of claim 5, since it is configured to be inclined so that the thickness of the space for holding the test liquid in the capillary holder is gradually reduced, it is easy to hold the test liquid unnecessary for the test process. Moreover, when forming a test object receptacle, a capillary holding part can be produced | generated by an easy process.
 請求項6記載の開示によれば、検査液体を測定する際、対象となる検査工程の実施部に対して、不要な検査液体が流入することがない。したがって、適切な検査をおこなうことができる。 According to the disclosure of the sixth aspect, when the test liquid is measured, unnecessary test liquid does not flow into the execution unit of the target test process. Therefore, an appropriate inspection can be performed.
 請求項7記載の開示によれば、検査液体を測定する際、対象となる検査工程の実施部に対して、不要な検査液体が流入することがない。したがって、適切な検査をおこなうことができる。 According to the disclosure of the seventh aspect, when measuring the test liquid, unnecessary test liquid does not flow into the execution unit of the target test process. Therefore, an appropriate inspection can be performed.
 以上説明したように、本開示にかかる検査対象受体、検査装置および検査方法によれば、検査液体を検査する際、検査工程の各部位に対して、検査対象となる検査液体以外の液体の意図しない流入を防ぎ、適切な検査をおこなうことができるという効果を奏する。 As described above, according to the inspection object receptacle, the inspection apparatus, and the inspection method according to the present disclosure, when inspecting the inspection liquid, the liquid other than the inspection liquid to be inspected is inspected for each part in the inspection process. It is possible to prevent unintended inflow and perform an appropriate inspection.
本開示の実施形態の検査装置の一例を示す平面図である。It is a top view showing an example of an inspection device of an embodiment of this indication. 本開示の実施形態の検査装置の一例を示す断面図である。It is sectional drawing which shows an example of the test | inspection apparatus of embodiment of this indication. 本開示の実施形態の検査装置における角度調整機構の一例を示す説明図である。It is explanatory drawing which shows an example of the angle adjustment mechanism in the inspection apparatus of embodiment of this indication. 本開示の実施形態の検査チップの一例を示す説明図である。It is explanatory drawing which shows an example of the test | inspection chip of embodiment of this indication. 図5は、本開示の実施形態の検査チップの内部構造について、図4に示したX-X断面を示す説明図である。FIG. 5 is an explanatory diagram illustrating an XX cross section illustrated in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure. 図6は、本開示の実施形態の検査チップの内部構造について、図4に示したA-A断面を示す説明図である。FIG. 6 is an explanatory diagram illustrating an AA cross section illustrated in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure. 図7は、本開示の実施形態の検査チップの内部構造について、図4に示したB-B断面を示す説明図である。FIG. 7 is an explanatory diagram illustrating a cross section taken along the line BB illustrated in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure. 図8は、本開示の実施形態の検査チップの内部構造について、図4に示したC-C断面を示す説明図である。FIG. 8 is an explanatory diagram illustrating a cross section taken along the line CC in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure. 本開示の実施形態の検査装置の処理の内容を示すフローチャートである。It is a flowchart which shows the content of the process of the test | inspection apparatus of embodiment of this indication. 本開示の変形例における検査チップの形状の一例(その1)を示す説明図である。It is explanatory drawing which shows an example (the 1) of the shape of the test | inspection chip in the modification of this indication. 本開示の変形例における検査チップの形状の一例(その2)を示す説明図である。It is explanatory drawing which shows an example (the 2) of the shape of the test | inspection chip in the modification of this indication.
 以下に添付図面を参照して、この開示の検査対象受体、検査装置および検査方法の好適な実施の形態を詳細に説明する。 Hereinafter, with reference to the attached drawings, preferred embodiments of the inspection object receiver, the inspection apparatus, and the inspection method of the present disclosure will be described in detail.
 (実施形態)
 (検査装置の構成)
 図1~図3を用いて、本開示の検査対象受体としての検査チップ内部に収容される検査対象となる検査液体に対して、所定の検査をおこなうために遠心力を印加する検査装置の概要について説明する。本開示の実施形態では、検査液体として、検査、または分析の対象となる血液など検体、検体中の特定成分、または液体試薬などを用いる場合について説明する。
(Embodiment)
(Configuration of inspection equipment)
1 to 3, an inspection apparatus that applies a centrifugal force to perform a predetermined inspection on an inspection liquid to be inspected contained in an inspection chip as an inspection target receiver of the present disclosure. An outline will be described. In the embodiment of the present disclosure, a case will be described in which a sample such as blood to be tested or analyzed, a specific component in the sample, or a liquid reagent is used as the test liquid.
 図1は、本開示の実施形態の検査チップが定常状態にある検査装置の一例を示す側面図である。図2は、本開示の実施形態の検査チップが変位状態にある検査装置の一例を示す側面図である。図3は、本開示の実施形態の検査装置の一例を示す平面図である。説明を簡略とするため、図1および図2に示す上部筐体300を仮想線で示し、図3では上部筐体300の天板が取り除かれた状態を示す。 FIG. 1 is a side view illustrating an example of an inspection apparatus in which an inspection chip according to an embodiment of the present disclosure is in a steady state. FIG. 2 is a side view illustrating an example of an inspection apparatus in which the inspection chip according to the embodiment of the present disclosure is in a displaced state. FIG. 3 is a plan view illustrating an example of the inspection apparatus according to the embodiment of the present disclosure. In order to simplify the description, the upper housing 300 shown in FIGS. 1 and 2 is indicated by a virtual line, and FIG. 3 shows a state in which the top plate of the upper housing 300 is removed.
 検査装置100は、上部筐体300と、検査装置100の駆動を制御する駆動機構を備える下部筐体101と、駆動機構の制御によって垂直軸Lを中心として回転可能なターンテーブル102と、検査チップ400を内部に保持する箱状のホルダ103と、検査チップ400の保持角度を変更させる角度変更機構150と、検査装置100における遠心処理、または計測処理などを制御する制御装置180とを備える。図示の例は、検査装置100の説明のための概略を示すものであり、同等の機能を備える構成であれば各部位の寸法比率、および詳細形状などはこれに限ることはない。 The inspection apparatus 100 includes an upper casing 300, a lower casing 101 that includes a drive mechanism that controls driving of the inspection apparatus 100, a turntable 102 that can be rotated about the vertical axis L by the control of the drive mechanism, and an inspection chip. A box-shaped holder 103 that holds 400 inside, an angle changing mechanism 150 that changes a holding angle of the inspection chip 400, and a control device 180 that controls a centrifugal process or a measurement process in the inspection apparatus 100. The illustrated example shows an outline for explanation of the inspection apparatus 100, and the dimensional ratio of each part, the detailed shape, and the like are not limited to this as long as the structure has an equivalent function.
 検査装置100は、ホルダ103に保持される検査チップ400から離間した垂直軸Lを中心とした回転によって、検査チップ400に遠心力を付与する。検査装置100は、検査チップ400を水平軸Tまわりに回転させることによって、検査チップ400に付与する遠心力の方向である遠心方向を切り替えることができる。 The inspection apparatus 100 applies a centrifugal force to the inspection chip 400 by rotation about the vertical axis L separated from the inspection chip 400 held by the holder 103. The inspection apparatus 100 can switch the centrifugal direction that is the direction of the centrifugal force applied to the inspection chip 400 by rotating the inspection chip 400 about the horizontal axis T.
 ホルダ103は、たとえば、底板と上板と側壁とで外形が形成された箱状体である。具体的には、ホルダ103は、平面視長方形に形成された検査チップ400を内部に収納および保持できるように、検査チップ400より一回り大きい平面視長方形に形成された箱状の部材である。 The holder 103 is, for example, a box-shaped body having an outer shape formed by a bottom plate, an upper plate, and a side wall. Specifically, the holder 103 is a box-shaped member formed in a rectangular shape in plan view that is slightly larger than the test chip 400 so that the test chip 400 formed in rectangular shape in plan view can be stored and held therein.
 検査装置100は、床面に設置され、下部筐体101内部にターンテーブル102を垂直軸Lまわりに回転させる駆動機構を備える。ターンテーブル102は、下部筐体101の上面側に設けられ、L型プレート151によってホルダ103を保持する円盤状の回転体である。具体的には、ターンテーブル102は、制御装置180から入力される制御信号にしたがって制御される駆動機構によって、垂直軸Lまわりに回転する。 The inspection apparatus 100 is installed on the floor and includes a drive mechanism that rotates the turntable 102 around the vertical axis L inside the lower housing 101. The turntable 102 is a disk-shaped rotating body that is provided on the upper surface side of the lower housing 101 and holds the holder 103 by an L-shaped plate 151. Specifically, the turntable 102 rotates around the vertical axis L by a driving mechanism controlled according to a control signal input from the control device 180.
 角度変更機構150は、ターンテーブル102に設けられたホルダ103を、水平軸Tまわりに回転させる駆動機構である。具体的には、角度変更機構150は、ターンテーブル102の上面に固定された一対のL字型板状の連結金具であるL型プレート151を有する。L型プレート151は、ターンテーブル102の中心近傍に固定された基部から上方に延設され、上端部がターンテーブル102の径方向外側に延設されている。 The angle changing mechanism 150 is a drive mechanism that rotates the holder 103 provided on the turntable 102 around the horizontal axis T. Specifically, the angle changing mechanism 150 includes an L-shaped plate 151 that is a pair of L-shaped plate-shaped connecting fittings fixed to the upper surface of the turntable 102. The L-shaped plate 151 extends upward from a base portion fixed near the center of the turntable 102, and an upper end portion extends outward in the radial direction of the turntable 102.
 L型プレート151の間には、内軸104に固定されたラックギア152が設けられている。ラックギア152は、縦長の金属製の板状部材であり、両端面にギアが各々刻まれている。L型プレート151を一対設けることとして説明したが、これに限ることはない。具体的には、L型プレート151は、1つ以上であればよく、複数対であってもよい。対とすることで、回転時にバランスがとられる。 A rack gear 152 fixed to the inner shaft 104 is provided between the L-shaped plates 151. The rack gear 152 is a vertically long metal plate-like member, and gears are carved on both end faces. Although described as providing a pair of L-shaped plates 151, the present invention is not limited to this. Specifically, the number of L-shaped plates 151 may be one or more, and a plurality of pairs may be used. By making a pair, a balance is achieved during rotation.
 L型プレート151の延設方向の先端側では、ギア153によって水平軸Tを中心にホルダ103が回転自在に保持される。ギア153と、ラックギア152との間には、L型プレート151によって支持されたピニオンギア154が介在している。ピニオンギア154は、ギア153およびラックギア152にそれぞれ噛合している。 At the leading end side in the extending direction of the L-shaped plate 151, the holder 103 is rotatably held around the horizontal axis T by the gear 153. A pinion gear 154 supported by an L-shaped plate 151 is interposed between the gear 153 and the rack gear 152. The pinion gear 154 meshes with the gear 153 and the rack gear 152, respectively.
 ラックギア152の上端部には、柱状のガイド部材155が設けられている。ガイド部材155は、上下方向に摺動可能に保持されている。ラックギア152の上下動に連動して、ピニオンギア154、およびギア153がそれぞれ従動回転することで、ホルダ103が水平軸Tを中心に回転する。 A columnar guide member 155 is provided at the upper end of the rack gear 152. The guide member 155 is held so as to be slidable in the vertical direction. In conjunction with the vertical movement of the rack gear 152, the pinion gear 154 and the gear 153 are driven to rotate, whereby the holder 103 rotates about the horizontal axis T.
 本開示の実施形態では、制御装置180による制御にしたがって、駆動機構によってターンテーブル102を回転駆動するのに伴い、検査チップ400を保持したホルダ103が垂直軸Lを中心とした回転である公転をする。検査チップ400には、公転によって遠心力が付与される。 In the embodiment of the present disclosure, the holder 103 holding the inspection chip 400 rotates around the vertical axis L as the turntable 102 is rotationally driven by the drive mechanism according to the control by the control device 180. To do. Centrifugal force is applied to the inspection chip 400 by revolution.
 制御装置180による制御にしたがって、角度変更機構150によってガイド部材155を摺動するのに伴い、ラックギア152、ピニオンギア154、およびギア153が従動回転し、検査チップ400を保持したホルダ103が水平軸Tを中心とした回転である自転をする。自転によって、検査チップ400に作用する遠心方向が相対変化する。 As the guide member 155 is slid by the angle changing mechanism 150 according to the control by the control device 180, the rack gear 152, the pinion gear 154, and the gear 153 are driven to rotate, and the holder 103 holding the inspection chip 400 is moved horizontally. Rotates around T. Due to the rotation, the centrifugal direction acting on the test chip 400 changes relatively.
 ターンテーブル102による検査チップ400の公転によって印加される遠心力の方向は、角度回転機構150による自転により変化する。この遠心力、および遠心力の方向が制御されることにより、検査チップ400内部の流体回路に収容された検査液体は、各部への移動、複数の層に分離する遠心分離、薬剤との混合、希釈、定量、保持、各種測定などの処理が行われる。 The direction of the centrifugal force applied by the revolution of the inspection chip 400 by the turntable 102 changes due to the rotation by the angle rotation mechanism 150. By controlling the centrifugal force and the direction of the centrifugal force, the test liquid stored in the fluid circuit inside the test chip 400 moves to each part, is separated into a plurality of layers, is mixed with a drug, Processes such as dilution, quantification, retention, and various measurements are performed.
 本開示の実施形態において、ホルダ103の状態を説明するため、図示の下方向である重力方向となす角度を自転角度として説明する。図1に示すように、ラックギア152が可動範囲の最下端まで下降した状態であるとき、ホルダ103は、自転角度が0度である定常状態となる。本開示の実施形態では、水平軸Tまわりに自転する構成としたが、これに限ることはない。具体的には、各ホルダ103について垂直軸Lと平行な軸まわりに自転して遠心方向を変更させる構成としてもよい。 In the embodiment of the present disclosure, in order to describe the state of the holder 103, the angle formed with the gravity direction, which is the downward direction in the figure, will be described as the rotation angle. As shown in FIG. 1, when the rack gear 152 is lowered to the lowest end of the movable range, the holder 103 is in a steady state where the rotation angle is 0 degree. In the embodiment of the present disclosure, the structure rotates around the horizontal axis T, but is not limited thereto. Specifically, a configuration may be adopted in which each holder 103 rotates around an axis parallel to the vertical axis L to change the centrifugal direction.
 図2に示すように、ラックギア152が可動範囲の最上端まで上昇した状態であるとき、ホルダ103は、自転角度が90度である変位状態となる。具体的には、変位状態では、ホルダ103は、定常状態から水平軸Tまわりに90度回転した状態である。本開示の実施形態では、図1および図2で示したホルダ103のうち、紙面右側のホルダ103について説明する。具体的には、自転角度が0度から90度方向に回転する場合は、反時計回りとし、90度から0度方向に回転する場合は時計回りとして説明する。 As shown in FIG. 2, when the rack gear 152 is raised to the uppermost end of the movable range, the holder 103 is in a displaced state where the rotation angle is 90 degrees. Specifically, in the displaced state, the holder 103 is rotated 90 degrees around the horizontal axis T from the steady state. In the embodiment of the present disclosure, among the holders 103 illustrated in FIGS. 1 and 2, the holder 103 on the right side of the drawing will be described. Specifically, when the rotation angle rotates from 0 degrees to 90 degrees, it is assumed to be counterclockwise, and when it rotates from 90 degrees to 0 degrees, it is described as clockwise.
 すなわち、ホルダ103が自転可能な角度幅である自転可能範囲は、定常状態の0度から、変位状態の90度までとなる。本開示の実施形態では、自転可能範囲を0度から90度として説明するが、これに限ることはなく、検査内容に応じた検査チップ400内での検査液体の移動方向に基づいて定められることとしてもよい。 That is, the range in which the holder 103 can rotate is an angular width in which the holder 103 can rotate from 0 degrees in the steady state to 90 degrees in the displaced state. In the embodiment of the present disclosure, the rotation range is described as being 0 degrees to 90 degrees, but is not limited to this, and is determined based on the moving direction of the test liquid in the test chip 400 according to the test contents. It is good.
 上部筐体300は、下部筐体101の上側に固定されており、検査チップ400に収容された検査液体を光学的に計測する計測部310が内部に設けられている。計測部310は、制御装置180から入力される制御信号にしたがって、検査液体に対して光学的計測をおこなう。 The upper housing 300 is fixed to the upper side of the lower housing 101, and a measuring unit 310 for optically measuring the inspection liquid stored in the inspection chip 400 is provided therein. The measuring unit 310 performs optical measurement on the test liquid in accordance with a control signal input from the control device 180.
 詳細には、上部筐体300は、ターンテーブル102の回転中心である垂直軸Lに対して、ホルダ103が回転される範囲の外側に設けられている。上部筐体300は、ターンテーブル102の外周側において平面視で円弧上に延びる対向壁321を有する。 Specifically, the upper casing 300 is provided outside the range in which the holder 103 is rotated with respect to the vertical axis L that is the rotation center of the turntable 102. The upper housing 300 has an opposing wall 321 that extends on an arc in a plan view on the outer peripheral side of the turntable 102.
 上部筐体300に設けられた計測部310は、計測位置となる所定位置でホルダ103交差する方向に延びる光を、計測対象となる検査チップ400に透過させることで、検査チップ400内の検査液体を計測する。 The measurement unit 310 provided in the upper housing 300 transmits light extending in a direction intersecting the holder 103 at a predetermined position serving as a measurement position to the inspection chip 400 to be measured, thereby allowing the inspection liquid in the inspection chip 400 to be transmitted. Measure.
 計測部310は、発光部313によって計測光を発する光源311と、受光部314によって光源311から発せられた計測光を検出する光センサ312とを有する。本開示の実施形態では、検査チップ400を透過した計測光を計測することとして説明するが、これに限ることはなく、計測部310に流入した検査液体において反射される計測光を計測することとしてもよい。 The measuring unit 310 includes a light source 311 that emits measurement light by the light emitting unit 313 and an optical sensor 312 that detects the measurement light emitted from the light source 311 by the light receiving unit 314. In the embodiment of the present disclosure, the measurement light transmitted through the inspection chip 400 is described as being measured. However, the measurement light is not limited thereto, and the measurement light reflected by the inspection liquid flowing into the measurement unit 310 is measured. Also good.
 光源311および光センサ312は、ホルダ103の回転範囲の外側に配置されている。光源311と、光センサ312とを結ぶ光路の高さ位置は、定常状態であるホルダ103を基準として、ホルダ103に保持される検査チップ400における計測対象となる検査液体が収容される部位の高さ位置に応じて設定される。 The light source 311 and the optical sensor 312 are arranged outside the rotation range of the holder 103. The height position of the optical path connecting the light source 311 and the optical sensor 312 is based on the height of the portion of the test chip 400 held by the holder 103 that stores the test liquid to be measured with reference to the holder 103 in a steady state. It is set according to the position.
 検査装置100の外部に接続された制御装置180は、計測部310によって計測された計測光に基づいて各種測定をおこなう。すなわち、制御装置180は、図示しないCPU、RAM、およびROMなどを内蔵して、検査チップ400が保持された検査装置100における公転、および自転を制御して、各種測定をおこなう。 The control device 180 connected to the outside of the inspection device 100 performs various measurements based on the measurement light measured by the measurement unit 310. That is, the control device 180 incorporates a CPU, RAM, ROM, and the like (not shown), and controls various revolutions and rotations in the inspection device 100 holding the inspection chip 400 to perform various measurements.
 制御装置180は、利用者が検査装置100の各種動作を指示するための操作部を備えている。本開示の実施形態では、制御装置180を外部接続することとしたが、これに限ることはなく、制御装置180の機能を検査装置100内部に備えることとしてもよい。 The control device 180 includes an operation unit for a user to instruct various operations of the inspection device 100. In the embodiment of the present disclosure, the control device 180 is externally connected. However, the present invention is not limited to this, and the function of the control device 180 may be provided inside the inspection device 100.
 なお、図1~図3を用いて説明した本開示の実施形態では、下部筐体101の上面側に円盤状のターンテーブル102を備えることとして説明したが、これに限ることはない。すなわち、検査チップ400に遠心力を印加できる構成であればよく、筐体、およびターンテーブル102の形状は限定されない。ホルダ103は、ターンテーブル102の円周近傍に一対設けることとしたが、これに限ることはない。すなわち、ホルダ103は、一つであったり複数であったりしてもよく、検査チップ400に所望の遠心力を印加できる配置であればよい。 In the embodiment of the present disclosure described with reference to FIGS. 1 to 3, the disk-like turntable 102 is provided on the upper surface side of the lower casing 101, but the present invention is not limited to this. That is, any configuration that can apply a centrifugal force to the inspection chip 400 is acceptable, and the shape of the housing and the turntable 102 is not limited. Although a pair of holders 103 are provided in the vicinity of the circumference of the turntable 102, the present invention is not limited to this. That is, the number of holders 103 may be one or a plurality, and any arrangement that can apply a desired centrifugal force to the inspection chip 400 is sufficient.
 (検査チップ400の構成)
 図4~図8を参照して、本開示の実施形態の検査チップ400の構成について説明する。図4は、本開示の実施形態の検査チップの内部構造の一例を示す説明図である。図4では、図1~3に示した検査装置100に検査チップ400を設置する場合における検査チップ400の平面視について説明する。
(Configuration of inspection chip 400)
The configuration of the test chip 400 according to the embodiment of the present disclosure will be described with reference to FIGS. FIG. 4 is an explanatory diagram illustrating an example of the internal structure of the inspection chip according to the embodiment of the present disclosure. In FIG. 4, a plan view of the inspection chip 400 when the inspection chip 400 is installed in the inspection apparatus 100 shown in FIGS. 1 to 3 will be described.
 検査チップ400は、平面視長方形で所定の厚みを有する板部材から構成されており、所定の検査の対象となる検査液体について収容、移動、および測定などを実行するための流体回路を備えている。板部材の材質は、たとえば、ポリスチレン(PS)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタラート(PBT)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリエチレンナフタレート(PEN)、ポリアリレート樹脂(PAR)、アクリロニトル・ブタジエン・スチレン樹脂(ABS)、塩化ビニル樹脂(PVC)、ポリメチルペンテン樹脂(PMP)、ポリブタジエン樹脂(PBD)、生分解性ポリマー(BP)、シクロオレフィンポリマー(COP)、ポリジメチルシロキサン(PDMS)などの有機材料、あるいはシリコン、ガラス、石英などの無機材料など特に制限されない。 The inspection chip 400 is composed of a plate member having a rectangular shape in plan view and having a predetermined thickness, and includes a fluid circuit for executing storage, movement, measurement, and the like of the inspection liquid to be subjected to the predetermined inspection. . Examples of the material of the plate member include polystyrene (PS), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polymethyl methacrylate (PMMA), polycarbonate (PC), Polyethylene naphthalate (PEN), polyarylate resin (PAR), acrylonitrile butadiene styrene resin (ABS), vinyl chloride resin (PVC), polymethylpentene resin (PMP), polybutadiene resin (PBD), biodegradable polymer ( There are no particular restrictions on organic materials such as BP), cycloolefin polymer (COP), and polydimethylsiloxane (PDMS), or inorganic materials such as silicon, glass, and quartz.
 図4における紙面手前側である検査チップ400の表面側が、図5に示す上カバー501によって内部に検査液体が保持されるよう、流体回路を覆う構成となっている。検査チップ400の流体回路は、説明のための概略を示すものであり、特に記載のない限り各部位の寸法比率、および容量などはこれに限ることはない。 4 is configured to cover the fluid circuit so that the test liquid is held inside by the upper cover 501 shown in FIG. The fluid circuit of the test chip 400 shows an outline for explanation, and unless otherwise specified, the dimensional ratio, capacity, and the like of each part are not limited thereto.
 検査チップ400は、図5に示す板部材である基板500の厚み方向における所定深さの凹部からなる流体回路を備える。流体回路は、供給部410と、定量部430と、貯留部470と、測定部450と、第一案内経路440と、流入口490と、液溜部480と、第二案内経路460と、毛管保持部401、402、403、404とを備える。供給部410は、注入口420から注入される検査液体を一時保持する。定量部430は、供給部410の供給口411から供給される検査液体を定量する。貯留部470は、定量部430に供給される検査液体のうち余剰分を貯留可能である。測定部450は、定量部430において定量された検査液体を次工程として所定の測定を実施するために収容可能である。第一案内経路440は、定量部430から測定部450への検査液体の移動経路である。流入口490は、第一案内経路440のうち測定部450へ検査液体を流入させる。液溜部480は、測定部450へ検査液体が流入する際、測定対象としない検査液体を保持する。第二案内経路460は、定量部から貯留部470への検査液体の移動経路である。毛管保持部401、402、403は、定量部430から測定部450の間の一部分設けられた、検査対象とならない検査液体を保持可能である。毛管保持部404は、貯留部470の容積の一部分以上に設けられた、検査対象とならない検査液体を保持可能である。 The inspection chip 400 includes a fluid circuit including a concave portion having a predetermined depth in the thickness direction of the substrate 500 which is a plate member shown in FIG. The fluid circuit includes a supply unit 410, a determination unit 430, a storage unit 470, a measurement unit 450, a first guide path 440, an inflow port 490, a liquid reservoir 480, a second guide path 460, and a capillary. Holding units 401, 402, 403, and 404 are provided. The supply unit 410 temporarily holds the inspection liquid injected from the injection port 420. The quantification unit 430 quantifies the test liquid supplied from the supply port 411 of the supply unit 410. The storage unit 470 can store a surplus portion of the test liquid supplied to the determination unit 430. The measuring unit 450 can be accommodated in order to perform a predetermined measurement using the test liquid quantified by the quantifying unit 430 as the next process. The first guide path 440 is a movement path of the test liquid from the quantification unit 430 to the measurement unit 450. The inflow port 490 allows the inspection liquid to flow into the measurement unit 450 in the first guide path 440. The liquid reservoir 480 holds a test liquid that is not a measurement target when the test liquid flows into the measurement unit 450. The second guide path 460 is a movement path of the test liquid from the quantification unit to the storage unit 470. The capillary holders 401, 402, and 403 can hold a test liquid that is provided in a part between the quantification unit 430 and the measurement unit 450 and is not an inspection target. The capillary holding unit 404 can hold a test liquid that is provided in a part or more of the volume of the storage unit 470 and is not a test target.
 本開示の実施形態では、定量部430において検査液体が定量され、測定部450において、定量部430から流入する検査液体の分析をおこなうために光学的に計測をおこなうこととして説明するが、これに限られない。具体的には、たとえば、定量部430、および測定部450の他に、混合、分析、遠心分離、希釈、保持などの各種工程を実施するため部位があってもよいし、測定部450において分析以外の各種工程が実施されてもよい。 In the embodiment of the present disclosure, the test liquid is quantified in the quantification unit 430, and the measurement unit 450 is described as performing optical measurement to analyze the test liquid flowing in from the quantification unit 430. Not limited. Specifically, for example, in addition to the quantification unit 430 and the measurement unit 450, there may be a site for performing various steps such as mixing, analysis, centrifugation, dilution, and holding, and the measurement unit 450 performs analysis. Various processes other than may be performed.
 注入口420から供給部410に検査液体が注入された検査チップ400は、角度変更機構150の制御による自転によって所定角度に保持され、ターンテーブル102上における公転によって遠心力が印加される。検査液体は、検査チップ400内において印加された遠心力によって、供給口411から定量をおこなうための定量部430へ供給される。 The inspection chip 400 into which the inspection liquid is injected from the inlet 420 into the supply unit 410 is held at a predetermined angle by rotation under the control of the angle changing mechanism 150, and centrifugal force is applied by revolution on the turntable 102. The inspection liquid is supplied from the supply port 411 to the quantification unit 430 for performing quantification by the centrifugal force applied in the inspection chip 400.
 図5を用いて、本開示の実施形態の検査チップ400における供給部410について説明する。図5は、本開示の実施形態の検査チップの内部構造について、図4に示したX-X断面を示す説明図である。図5において、供給部410の内部は、基板500と、上カバー501とによって区画されている。上カバー501には、供給部410内部に検査液体を注入する注入口420が備えられている。図示はしないが、検査液体が注入された後の注入口420は必要に応じてフィルムなどによってシールされてもよい。 The supply unit 410 in the inspection chip 400 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 5 is an explanatory diagram illustrating an XX cross section illustrated in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure. In FIG. 5, the inside of the supply unit 410 is partitioned by a substrate 500 and an upper cover 501. The upper cover 501 is provided with an inlet 420 for injecting a test liquid into the supply unit 410. Although not shown, the inlet 420 after the inspection liquid is injected may be sealed with a film or the like as necessary.
 図4に戻って、検査液体は、定量部430と第一案内経路440との接続部位と、定量部430と第二案内経路460との接続部位と、からなる開口を通過して定量部430内部の壁面の任意の方向に向かって供給される。 Returning to FIG. 4, the test liquid passes through an opening made up of a connection portion between the quantitative unit 430 and the first guide path 440 and a connection site between the quantitative unit 430 and the second guide path 460, and then enters the quantitative unit 430. Supplied in any direction on the inner wall.
 供給部410から定量部430に検査液体が供給されると、検査装置100は、制御装置180の制御にしたがって、定量部430に供給された検査液体の定量をおこなう。定量部430において定量をおこなう遠心力は、開口と垂直な方向であればよく、角度変更機構150の制御による検査チップ400の自転で保持される所定角度によって調整される。 When the inspection liquid is supplied from the supply unit 410 to the quantification unit 430, the inspection apparatus 100 quantifies the inspection liquid supplied to the quantification unit 430 according to the control of the control device 180. The centrifugal force for quantifying in the quantifying unit 430 may be in a direction perpendicular to the opening, and is adjusted by a predetermined angle held by the rotation of the inspection chip 400 under the control of the angle changing mechanism 150.
 定量部430への検査液体の供給の際、および定量部430における定量の際に余剰となる検査液体は、第二案内経路460を経由して貯留部470へ流出する。定量部430によって定量された検査液体は、第一案内経路440、および流入口490を経由して異なる部屋である測定部450へ流入する。 The surplus test liquid at the time of supplying the test liquid to the quantification unit 430 and at the time of quantification by the quantification unit 430 flows out to the storage unit 470 via the second guide path 460. The inspection liquid quantified by the quantification unit 430 flows into the measurement unit 450 which is a different room via the first guide path 440 and the inflow port 490.
 具体的には、検査液体は、角度変更機構150の制御による検査チップ400の自転によって保持される所定角度と、ターンテーブル102上における公転によって印加される遠心力とに応じて、流入口490を介して検査液体の測定部450へ流入する。 Specifically, the inspection liquid is allowed to enter the inlet 490 according to a predetermined angle held by the rotation of the inspection chip 400 controlled by the angle changing mechanism 150 and the centrifugal force applied by the revolution on the turntable 102. Then, the liquid flows into the measurement unit 450 for the inspection liquid.
 流入口490は、定量部430と、測定部450とを連結する流路の一部にあり、この流入口490において流路の形成方向が変わる。すなわち、定量部430から測定部450へと検査液体の流入がなされる際、遠心力の方向が変化される部位である。流入口490から検査液体が測定部450へ流入する際、測定部450において測定対象とならない検査液体は、測定部450の上方の壁面のうち流入口490側の壁面などを介して漏れ伝わるなどして液溜部480に保持される。 The inflow port 490 is in a part of the flow path connecting the quantification unit 430 and the measurement unit 450, and the flow path formation direction is changed at the inflow port 490. That is, it is a portion where the direction of the centrifugal force is changed when the inspection liquid is flowed from the quantification unit 430 to the measurement unit 450. When the inspection liquid flows into the measurement unit 450 from the inlet 490, the inspection liquid that is not a measurement target in the measurement unit 450 leaks through the wall surface on the inlet 490 side of the upper wall of the measurement unit 450, or the like. Held in the liquid reservoir 480.
 本開示の実施形態では、検査液体は、血液などの検体、薬剤などの試料、または混合液体などであってもよく、所望の検査に応じて適宜選択される。供給部410、定量部430、貯留部470、液溜部480、測定部450などの部位の数量、または経由する経路の数量などは所望の検査に応じて適宜設定可能である。 In the embodiment of the present disclosure, the test liquid may be a specimen such as blood, a sample such as a drug, or a mixed liquid, and is appropriately selected according to a desired test. The number of parts such as the supply unit 410, the determination unit 430, the storage unit 470, the liquid storage unit 480, and the measurement unit 450, or the number of paths through which can be set can be appropriately set according to a desired examination.
 検査チップ400は、検査液体に、所定の検査工程である定量、または測定を実施する定量部430と、測定部450との間に毛管保持部401,402,403を備えている。定量部430から余剰分の検査液体が流入される貯留部470は毛管保持部404を備えている。詳細は、図6~図8を用いて説明するが、毛管保持部401,402,403,404は、基板500の板厚方向に、毛管力によって液体を保持可能な所定の空間を有している。 The inspection chip 400 includes capillary holders 401, 402, and 403 between a measurement unit 450 and a determination unit 430 that performs a predetermined measurement or measurement in a test liquid. The storage unit 470 into which the excess test liquid flows from the quantification unit 430 includes a capillary holding unit 404. Although details will be described with reference to FIGS. 6 to 8, the capillary holding portions 401, 402, 403, and 404 have a predetermined space in the plate thickness direction of the substrate 500 that can hold liquid by capillary force. Yes.
 毛管保持部401,402,403,404は、毛管力によって、所定以上の遠心力が付与されない状態で検査液体を保持することができる。すなわち、本開示の実施形態における毛管保持部401,402,403,404は、検査チップ400内において、検査液体と接面した壁面をつたうなどして、各検査工程において不要な検査液体が流入したりしないよう、検査液体を保持する構成である。 The capillary holders 401, 402, 403, and 404 can hold the test liquid in a state where a centrifugal force of a predetermined level or higher is not applied due to the capillary force. In other words, the capillary holders 401, 402, 403, and 404 in the embodiment of the present disclosure flow in unnecessary inspection liquid in each inspection process by connecting the wall in contact with the inspection liquid in the inspection chip 400. It is the structure which hold | maintains a test | inspection liquid so that it may not.
 具体的には、たとえば、測定部450によって検査液体の光学測定がおこなわれる際、前の工程に残存する検査液体が、検査チップ400内の内部壁面をつたって測定部450へ流入すること防ぐため、毛管保持部401、402は、内部壁面をつたってきた検査液体を保持する。余剰分として貯留部470、または液溜部480に貯留された検査液体が、検査チップ400内の内部壁面をつたって測定部450へ流入すること防ぐため、毛管保持部403、404は、内部壁面をつたってきた検査液体を保持する。 Specifically, for example, when optical measurement of the inspection liquid is performed by the measurement unit 450, the inspection liquid remaining in the previous process is prevented from flowing into the measurement unit 450 through the inner wall surface in the inspection chip 400. The capillary holders 401 and 402 hold the inspection liquid that has reached the inner wall surface. In order to prevent the inspection liquid stored in the storage part 470 or the liquid storage part 480 as an excess from flowing into the measurement part 450 through the internal wall surface in the inspection chip 400, the capillary holding parts 403 and 404 are provided on the internal wall surface. The test liquid that has been collected is retained.
 一例として、液面の上昇h(m)は、表面張力T(N/m)、接触角θ、液体の密度ρ(kg/m3)重力加速度g(m/s2)、流路の内径r(m)とすると、h=(2Tcosθ)/(ρgr)とあらわすことができる。 As an example, the rise h (m) of the liquid level is the surface tension T (N / m), the contact angle θ, the liquid density ρ (kg / m 3 ), the gravitational acceleration g (m / s 2 ), the inner diameter of the flow path. If r (m), it can be expressed as h = (2T cos θ) / (ρgr).
 図6~図8を用いて、毛管保持部401,402,403,404が各検査工程において不要な検査液体を保持する場合について説明する。説明のため、図6~図8では各検査工程に不要な検査液体Kを保持している場合を図示して説明する。 The case where the capillary holders 401, 402, 403, and 404 hold unnecessary test liquid in each test process will be described with reference to FIGS. For the sake of explanation, FIGS. 6 to 8 illustrate and explain the case where the inspection liquid K unnecessary for each inspection step is held.
 定量部430と測定部450との間の流路である第一案内経路440の一部に設けられた毛管保持部401と、流入口490における測定部450側に設けられた毛管保持部402と、について説明する。図6は、本開示の実施形態の検査チップの内部構造について、図4に示したA-A断面を示す説明図である。 A capillary holding part 401 provided in a part of the first guide path 440 that is a flow path between the quantification part 430 and the measuring part 450, and a capillary holding part 402 provided on the measuring part 450 side in the inflow port 490 Will be described. FIG. 6 is an explanatory diagram illustrating an AA cross section illustrated in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure.
 図6において、毛管保持部401は、第一案内経路440の一部に設けられている。図示の例では、毛管保持部401は、第一案内経路440の流入口490よりも上流側である定量部430側に設けられている。 6, the capillary holding portion 401 is provided in a part of the first guide path 440. In the illustrated example, the capillary holding unit 401 is provided on the quantifying unit 430 side, which is upstream of the inflow port 490 of the first guide path 440.
 毛管保持部401は、基板500に設けられた毛管壁部611と、毛管壁部611と対向する上カバー501と、によって形成される。毛管壁部611は、上カバー501に向かって突設される壁である。具体的には、毛管保持部401は、毛管力を発生する空間を形成すればよく、毛管壁部611から毛管壁部611と対向する上カバー501までの長さは、たとえば0.1から1mm程度でもよい。本開示の実施形態では、毛管壁部611を基板500に設けることとして説明したが、これに限ることはない。具体的には、たとえば、検査液体Kを保持可能な空間を形成するために上カバー500に毛管壁部が設けられてもよい。この毛管壁部は基板500に向かって突設される壁である。 The capillary holding part 401 is formed by a capillary wall part 611 provided on the substrate 500 and an upper cover 501 facing the capillary wall part 611. The capillary wall portion 611 is a wall that protrudes toward the upper cover 501. Specifically, the capillary holding part 401 should just form the space which generate | occur | produces capillary force, and the length from the capillary wall part 611 to the upper cover 501 facing the capillary wall part 611 is 0.1, for example To about 1 mm. In the embodiment of the present disclosure, the capillary wall portion 611 is described as being provided on the substrate 500, but the present invention is not limited thereto. Specifically, for example, a capillary wall portion may be provided in the upper cover 500 in order to form a space capable of holding the test liquid K. This capillary wall portion is a wall protruding toward the substrate 500.
 たとえば、定量部430から測定部450へ検査液体が流入した後、測定部450において検査液体の光学測定がおこなわれる際に、毛管保持部401は、定量部430側に残存する検査液体Kが測定部450へ流入しないよう検査液体Kを保持することができる。 For example, after the inspection liquid flows from the quantification unit 430 to the measurement unit 450, when the measurement liquid is optically measured by the measurement unit 450, the capillary holding unit 401 measures the inspection liquid K remaining on the quantification unit 430 side. The inspection liquid K can be held so as not to flow into the portion 450.
 具体的には、毛管保持部401は、測定部450によって光学測定がおこなわれる際、測定部450へ測定対象となる検査液体を流入させるための遠心力が印加されない状態において、光学測定に不要な検査液体Kが内部壁面を伝ってきた場合に検査液体Kを保持することができる。一方、毛管保持部401は、測定部450へ測定対象となる検査液体を流入させるための遠心力が印加されている状態においては、遠心力の方が毛管力よりも大きいため、適切に測定部450へ測定対象の検査液体を流入させることができる。 Specifically, the capillary holding unit 401 is unnecessary for optical measurement in a state where a centrifugal force for flowing the test liquid to be measured into the measurement unit 450 is not applied when the measurement unit 450 performs optical measurement. The inspection liquid K can be held when the inspection liquid K travels along the inner wall surface. On the other hand, since the centrifugal force is larger than the capillary force in the state in which the centrifugal force for allowing the test liquid to be measured to flow into the measuring unit 450 is applied to the capillary holding unit 401, the capillary holding unit 401 appropriately The test liquid to be measured can be caused to flow into 450.
 毛管保持部402は、第一案内経路440の流入口490よりも下流側である測定部450側に設けられている。毛管保持部402は、基板500に設けられた毛管壁部612と、毛管壁部512と対向する上カバー501と、によって形成される。毛管壁部612は、上カバー501に向かって突設される壁である。毛管壁部612を基板500に設けることとして説明したが、これに限ることはなく、上カバー500に毛管壁部612が設けられてもよい。この毛管壁部は基板500に向かって突設される壁である。 The capillary holding unit 402 is provided on the measurement unit 450 side, which is downstream of the inlet 490 of the first guide path 440. The capillary holding part 402 is formed by a capillary wall part 612 provided on the substrate 500 and an upper cover 501 facing the capillary wall part 512. The capillary wall portion 612 is a wall that protrudes toward the upper cover 501. Although the capillary wall portion 612 has been described as being provided on the substrate 500, the present invention is not limited to this, and the capillary wall portion 612 may be provided on the upper cover 500. This capillary wall portion is a wall protruding toward the substrate 500.
 たとえば、定量部430から測定部450へ検査液体が流入した後、測定部450において光学測定がおこなわれる際に、検査チップ400の内部壁面をつたうなどして測定部450に不要な検査液体Kが流入しないよう毛管保持部402は、検査液体Kを保持することができる。 For example, after the inspection liquid flows from the quantification unit 430 to the measurement unit 450, when the measurement unit 450 performs an optical measurement, unnecessary measurement liquid K is added to the measurement unit 450 by connecting the inner wall surface of the inspection chip 400 or the like. The capillary holder 402 can hold the test liquid K so that it does not flow.
 具体的には、毛管保持部402は、測定部450によって光学測定がおこなわれる際、測定部450へ測定対象となる検査液体を流入させるための遠心力が印加されない状態において、光学測定に不要な検査液体Kが内部壁面をつたってきた場合に検査液体Kを保持することができる。一方、毛管保持部402は、測定部450へ測定対象となる検査液体を流入させるための遠心力が印加されている状態においては、遠心力の方が毛管力よりも大きいため、適切に測定部450へ測定対象の検査液体を流入させることができる。 Specifically, the capillary holding unit 402 is unnecessary for the optical measurement in a state where the centrifugal force for allowing the test liquid to be measured to flow into the measurement unit 450 is not applied when the measurement unit 450 performs the optical measurement. The inspection liquid K can be held when the inspection liquid K reaches the inner wall surface. On the other hand, in the state where the centrifugal force for allowing the test liquid to be measured to flow into the measuring unit 450 is applied to the capillary holding unit 402, the centrifugal force is larger than the capillary force, so that the measuring unit appropriately The test liquid to be measured can be caused to flow into 450.
 液溜部480に設けられた毛管保持部403について説明する。図7は、本開示の実施形態の検査チップの内部構造について、図4に示したB-B断面を示す説明図である。図7において、毛管保持部403は、定量部430から測定部450への検査液体の流入に際して、測定部450において用いられない検査液体を保持する液溜部480に設けられている。 The capillary holder 403 provided in the liquid reservoir 480 will be described. FIG. 7 is an explanatory diagram illustrating a cross section taken along the line BB illustrated in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure. In FIG. 7, the capillary holding unit 403 is provided in a liquid reservoir 480 that holds a test liquid that is not used in the measurement unit 450 when the test liquid flows from the determination unit 430 to the measurement unit 450.
 毛管保持部403は、基板500に設けられた毛管壁部711と、毛管壁部711と対向する上カバー501と、によって形成される。毛管壁部711は、上カバー501に向かって突設される壁である。毛管壁部711を基板500に設けることとして説明したが、これに限ることはなく、上カバー500に毛管壁部が設けられてもよい。この毛管壁部は、基板500に向かって突設される壁である。 The capillary holding part 403 is formed by a capillary wall part 711 provided on the substrate 500 and an upper cover 501 facing the capillary wall part 711. The capillary wall portion 711 is a wall that protrudes toward the upper cover 501. Although the capillary wall portion 711 has been described as being provided on the substrate 500, the present invention is not limited thereto, and the upper cover 500 may be provided with a capillary wall portion. The capillary wall portion is a wall protruding toward the substrate 500.
 毛管保持部403は、たとえば、測定部450において検査液体の光学測定がおこなわれる際に、液溜部480に一旦保持された不要な検査液体Kが、検査チップ400の内部壁面をつたわるなどして測定部450に流入しないよう検査液体Kを保持することができる。 For example, when the measuring unit 450 performs optical measurement of the inspection liquid, the capillary holding unit 403 causes the unnecessary inspection liquid K once held in the liquid reservoir 480 to pass through the inner wall surface of the inspection chip 400. The test liquid K can be held so as not to flow into the measurement unit 450.
 貯留部470に設けられた毛管保持部404について説明する。図8は、本開示の実施形態の検査チップの内部構造について、図4に示したC-C断面を示す説明図である。図8において、毛管保持部404は、定量部430における定量の際に余剰となった検査液体を保持する貯留部470に設けられている。 The capillary holder 404 provided in the reservoir 470 will be described. FIG. 8 is an explanatory diagram illustrating a cross section taken along the line CC in FIG. 4 with respect to the internal structure of the test chip according to the embodiment of the present disclosure. In FIG. 8, the capillary holding unit 404 is provided in a storage unit 470 that holds a test liquid that has become surplus in the quantitative determination unit 430.
 毛管保持部404は、基板500に設けられた毛管壁部811と、毛管壁部811と対向する上カバー501と、によって形成される。毛管壁部811は、上カバー501に向かって突設される。毛管壁部811を基板500に設けることとして説明したが、これに限ることはなく、上カバー500に毛管壁部811が設けられてもよい。この毛管壁部は基板500に向かって突設される。 The capillary holding part 404 is formed by a capillary wall part 811 provided on the substrate 500 and an upper cover 501 facing the capillary wall part 811. The capillary wall portion 811 protrudes toward the upper cover 501. Although the capillary wall portion 811 has been described as being provided on the substrate 500, the present invention is not limited to this, and the capillary wall portion 811 may be provided on the upper cover 500. The capillary wall portion protrudes toward the substrate 500.
 毛管保持部404は、たとえば、貯留部470に一旦保持された不要な検査液体Kが、検査チップ400の内部壁面をつたうなどして定量部430や測定部450に逆流しないよう検査液体Kを保持することができる。 For example, the capillary holding unit 404 holds the test liquid K so that the unnecessary test liquid K once held in the storage unit 470 does not flow back to the quantification unit 430 or the measurement unit 450 by, for example, covering the inner wall surface of the test chip 400. can do.
 各構成要素と、各機能を対応付けて説明すると、図4~図8に示した定量部430または測定部450が、本開示の実施部の機能を実現する。第一案内経路440または第二案内経路460が、本開示の連結流路の機能を実現する。毛管保持部401,402,403,404が、本開示の毛管保持部の機能を実現する。貯留部470または液溜部480が、本開示の余剰部の機能を実現する。 Describing each component and each function in association with each other, the quantification unit 430 or the measurement unit 450 illustrated in FIGS. 4 to 8 realizes the function of the implementation unit of the present disclosure. The first guide route 440 or the second guide route 460 realizes the function of the connection channel of the present disclosure. The capillary holding portions 401, 402, 403, and 404 realize the function of the capillary holding portion of the present disclosure. The storage part 470 or the liquid storage part 480 implements the function of the surplus part of the present disclosure.
 (検査装置100の処理の内容)
 図9を用いて、本開示の実施形態の検査装置の処理の内容について説明する。図9は、本開示の処理の内容を示すフローチャートである。図9のフローチャートにおいて、まず、検査装置100での処理前に、注入口420から検査チップ400の供給部410へ検査液体が注入される(ステップS901)。ステップS901において、検査液体の注入が完了すると、ホルダ103に検査チップ400がセットされる(ステップS902)。
(Contents of processing of inspection apparatus 100)
The content of the process of the inspection apparatus according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 9 is a flowchart showing the contents of the process of the present disclosure. In the flowchart of FIG. 9, first, a test liquid is injected from the injection port 420 to the supply unit 410 of the test chip 400 before processing in the test apparatus 100 (step S <b> 901). In step S901, when the injection of the inspection liquid is completed, the inspection chip 400 is set in the holder 103 (step S902).
 ステップS902において、検査チップ400のセットが完了すると、検査装置100の処理を実行するため、制御装置180の操作部が操作されて、検査装置100の電源が投入される(ステップS903)。 In step S902, when the setting of the inspection chip 400 is completed, the operation unit of the control device 180 is operated to turn on the inspection device 100 in order to execute the processing of the inspection device 100 (step S903).
 制御装置180のCPUは、ROMに記憶されている制御プログラムにしたがって検査装置100を制御して、検査チップ400に所定の遠心力の印加を開始する(ステップS904)。 The CPU of the control device 180 controls the inspection device 100 according to the control program stored in the ROM, and starts applying a predetermined centrifugal force to the inspection chip 400 (step S904).
 具体的には、検査装置100は、制御装置180の制御にしたがって角度変更機構150、および駆動機構などによってターンテーブル102および検査チップ400の保持されたホルダ103を回転駆動させる。この回転駆動により、所定の遠心力が、たとえば、供給部410から定量部430へ検査液体を供給する、定量部430において検査液体を定量する、および定量部430から測定部450へ検査液体を流入させる。所定の遠心力は、毛管保持部401,402,403,404における毛管力よりも大きくなるようにターンテーブル102の回転数が制御される。 Specifically, the inspection apparatus 100 rotates and drives the holder 103 holding the turntable 102 and the inspection chip 400 by the angle changing mechanism 150 and the drive mechanism under the control of the control device 180. By this rotational driving, for example, a predetermined centrifugal force supplies the test liquid from the supply unit 410 to the quantification unit 430, quantifies the test liquid in the quantification unit 430, and flows the test liquid from the quantification unit 430 into the measurement unit 450 Let The rotational speed of the turntable 102 is controlled so that the predetermined centrifugal force is larger than the capillary force in the capillary holding portions 401, 402, 403, and 404.
 ステップS904における遠心力の印加の後、制御装置180のCPUは、制御プログラムにしたがって検査装置100を制御し、所定の処理を経て遠心力の印加を終了する(ステップS905)。遠心力の印加は、たとえば、検査液体に対して所定のプログラムに基づいた必要な処理を経て終了することとなる。 After the application of the centrifugal force in step S904, the CPU of the control device 180 controls the inspection device 100 according to the control program, and ends the application of the centrifugal force through a predetermined process (step S905). The application of the centrifugal force is terminated through a necessary process based on a predetermined program for the test liquid, for example.
 ステップS905において、遠心力の印加が終了すると、検査装置100は、計測部310による計測の対象となる検査液体が保持された測定部450が、光源311と、光センサ312とを結ぶ光路上となるように検査チップ400を移動させる(ステップS906)。 In step S905, when the application of the centrifugal force is completed, the inspection apparatus 100 is configured such that the measurement unit 450 holding the inspection liquid to be measured by the measurement unit 310 is on the optical path connecting the light source 311 and the optical sensor 312. The inspection chip 400 is moved so as to be (step S906).
 ステップS906において、検査チップ400を移動させると、検査装置100は、制御装置180の制御にしたがって、計測部310による検査液体の測定をおこなう(ステップS907)。たとえば、光源311が検査チップ400内部の検査液体に対して光を照射し、検査液体を透過した光を光センサ312が検出することによって検査液体が測定される。 In step S906, when the inspection chip 400 is moved, the inspection apparatus 100 measures the inspection liquid by the measurement unit 310 according to the control of the control device 180 (step S907). For example, the light source 311 irradiates the inspection liquid inside the inspection chip 400 with light, and the optical sensor 312 detects the light transmitted through the inspection liquid, whereby the inspection liquid is measured.
 光学測定の際、検査チップ400は、定常状態となっており、遠心力は印加されていない。光学測定に不要な検査液体Kが測定部450に流入しないように、毛管保持部401,402,403,404が検査チップ400内部に備えられている。すなわち、毛管保持部401,402,403,404の毛管力によって、光学測定に不要な検査液体Kが保持される。 During the optical measurement, the inspection chip 400 is in a steady state and no centrifugal force is applied. Capillary holders 401, 402, 403, and 404 are provided inside the inspection chip 400 so that the inspection liquid K unnecessary for optical measurement does not flow into the measurement unit 450. That is, the test liquid K unnecessary for optical measurement is held by the capillary force of the capillary holders 401, 402, 403, and 404.
 ステップS907において、計測部310によって測定された情報は制御装置180に出力される。制御装置180は、測定された情報に基づいて、検査液体の検査結果を出力し(ステップS908)、一連の処理を終了する。検査結果は、たとえば、測定された情報が所定のプログラムによって解析され、この測定された情報の解析結果として図示しない表示部に表示される。 In step S907, information measured by the measurement unit 310 is output to the control device 180. The control device 180 outputs the test result of the test liquid based on the measured information (step S908), and ends the series of processes. As the inspection result, for example, measured information is analyzed by a predetermined program, and is displayed on a display unit (not shown) as an analysis result of the measured information.
 本開示の各構成要素における処理と、本開示の実施形態の各処理または各機能とを関連付けて説明すると、ステップS504、ステップS505、ステップS506およびステップS507における制御装置180のCPUによる検査装置100の駆動機構および角度変更機構150の制御によって、本開示の自転手段による自転工程、公転手段による公転工程、および回動制御手段による回動制御工程の処理が実行される。 The process in each component of the present disclosure will be described in association with each process or each function of the embodiment of the present disclosure. The inspection apparatus 100 by the CPU of the control device 180 in step S504, step S505, step S506, and step S507. By the control of the drive mechanism and the angle changing mechanism 150, the rotation process by the rotation means of the present disclosure, the revolution process by the revolution means, and the rotation control process by the rotation control means are executed.
 以上説明したように、本開示の実施形態によれば、毛管保持部401,402,403,404が、定量部430、または測定部450などに不要な検査液体が流入しないよう、不要な検査液体を保持することができるため、適切な検査をおこなうことができる。 As described above, according to the embodiment of the present disclosure, unnecessary test liquid is prevented so that the capillary holders 401, 402, 403, 404 do not flow unnecessary test liquid into the quantification unit 430, the measurement unit 450, or the like. Therefore, it is possible to perform an appropriate inspection.
 (その他一部の変形例)
 本開示の実施形態では特に、図4~図8に示した検査チップ400では、各検査工程としての定量、または測定をおこなう定量部430、または測定部450に不要な検査液体が流入しないよう毛管保持部401,402,403,404が不要な検査液体を保持している。特に、図4~図8では、毛管保持部403,404が形成される貯留部470、または液溜部480は、他の流路と連結しない最奥部まで一様な厚みとして説明されたがこれに限ることはない。
(Some other variations)
In the embodiment of the present disclosure, in particular, in the inspection chip 400 shown in FIGS. 4 to 8, the capillaries prevent the unnecessary inspection liquid from flowing into the quantification unit 430 or the measurement unit 450 that performs quantification or measurement as each inspection process. The holding units 401, 402, 403, and 404 hold unnecessary test liquid. In particular, in FIGS. 4 to 8, the reservoir 470 or the liquid reservoir 480 in which the capillary holders 403 and 404 are formed has been described as having a uniform thickness up to the innermost part that is not connected to other flow paths. This is not a limitation.
 具体的には、毛管保持部403,404は、貯留部470、または液溜部480の少なくとも一部に設けられればよい。ここで、図10を用いて、貯留部470の一部に毛管保持部が設けられる場合について説明する。図10は、本開示の変形例における検査チップの形状の一例(その1)を示す説明図である。図10では、実施形態と同様の構成については同一の符号を付して説明を省略する。貯留部470を一例に挙げて説明するが、液溜部480など、他の流路と連結しない部位が同様の構成を有してもよい。 Specifically, the capillary holders 403 and 404 may be provided in at least a part of the reservoir 470 or the liquid reservoir 480. Here, the case where a capillary holding part is provided in a part of storage part 470 is demonstrated using FIG. FIG. 10 is an explanatory diagram illustrating an example (part 1) of the shape of the test chip according to the modification of the present disclosure. In FIG. 10, the same components as those in the embodiment are denoted by the same reference numerals, and the description thereof is omitted. Although the storage part 470 is described as an example, a part that is not connected to another flow path such as the liquid storage part 480 may have the same configuration.
 図10において、貯留部470は、最奥部の上流側である図示左側に毛管保持部1001を備える構成である。すなわち毛管壁部1001は、貯留部470に部分的に形成される。毛管保持部1001は、基板500に設けられた毛管壁部1011と、毛管壁部1011と対向する上カバー501とによって形成される。毛管壁部1101は、上カバー501に向かって突設される壁である。毛管保持部1011によって、貯留部470の最奥部まで流入した検査液体Kは、毛管保持部1001の毛管力によって、貯留部470から流出することなく保持される。したがって、定量部430、および測定部450へ不要な検査液体Kが流入することを防ぐことができ、適切な検査をおこなうことができる。 In FIG. 10, the storage part 470 is a structure provided with the capillary holding | maintenance part 1001 in the illustration left side which is the upstream of the innermost part. That is, the capillary wall portion 1001 is partially formed in the storage portion 470. The capillary holding part 1001 is formed by a capillary wall part 1011 provided on the substrate 500 and an upper cover 501 facing the capillary wall part 1011. The capillary wall portion 1101 is a wall that protrudes toward the upper cover 501. The test liquid K flowing into the innermost part of the storage unit 470 is held by the capillary holding unit 1011 without flowing out of the storage unit 470 by the capillary force of the capillary holding unit 1001. Therefore, it is possible to prevent unnecessary test liquid K from flowing into the quantification unit 430 and the measurement unit 450, and an appropriate test can be performed.
 図4~図8に示した検査チップ400では、毛管保持部401,402,403,404は一様な厚さとして説明したが、これに限ることはない。ここで、図11を用いて、貯留部470に設けられた毛管保持部について説明する。図11は、本開示の変形例における検査チップの形状の一例(その2)を示す説明図である。図11では、実施形態と同様の構成については同一の符号を付して説明を省略する。貯留部470を一例に挙げて説明するが、流入口490の上流、または下流の毛管保持部401,402、液溜部480に設けられた毛管保持部403などに本変形例が適用されてもよい。 In the inspection chip 400 shown in FIGS. 4 to 8, the capillary holding portions 401, 402, 403, and 404 have been described as having a uniform thickness, but the present invention is not limited to this. Here, the capillary holding part provided in the storage part 470 is demonstrated using FIG. FIG. 11 is an explanatory diagram illustrating an example (part 2) of the shape of the test chip according to the modification of the present disclosure. In FIG. 11, the same components as those of the embodiment are denoted by the same reference numerals and the description thereof is omitted. The storage unit 470 will be described as an example, but the present modification may be applied to the capillary holding units 401 and 402 upstream or downstream of the inflow port 490, the capillary holding unit 403 provided in the liquid storage unit 480, and the like. Good.
 図11において、貯留部470は、上流側である図示左側から下流部に向かって傾斜した毛管保持部1101を備えている。換言すれば、毛管保持部1101は、貯留部470の最奥部に向かって、徐々に基板500の板厚方向の厚さが薄くなる空間を有している。毛管保持部1001は、基板500に設けられた毛管壁部1111と、毛管壁部1111と対向する上カバー501とによって形成される。このような構成とした毛管保持部1101によって、段差を有する構成の検査チップ400よりも容易に毛管保持部1101を作成することができる。 In FIG. 11, the storage part 470 is provided with the capillary holding part 1101 inclined toward the downstream part from the illustrated left side which is the upstream side. In other words, the capillary holding part 1101 has a space in which the thickness of the substrate 500 gradually decreases toward the innermost part of the storage part 470. The capillary holding part 1001 is formed by a capillary wall part 1111 provided on the substrate 500 and an upper cover 501 facing the capillary wall part 1111. With the capillary holding part 1101 having such a configuration, the capillary holding part 1101 can be created more easily than the test chip 400 having a step.
 図4~図8、図10および図11に示した毛管保持部では、各毛管保持部における上カバー501に対向する基板500は厚い構成であるが、これに限ることはない。具体的には、毛管保持部における図示上側の基板500は、空間とするいわゆる肉盗み部としてもよく、このようにすれば、検査チップ400の容易な成形、軽量化を図ることができる。 In the capillary holding portions shown in FIGS. 4 to 8, 10 and 11, the substrate 500 facing the upper cover 501 in each capillary holding portion has a thick structure, but this is not restrictive. Specifically, the upper substrate 500 shown in the capillary holding portion may be a so-called meat stealing portion which is a space. In this way, the test chip 400 can be easily formed and reduced in weight.
 上述した説明では、実施形態および一部の変形例について別々の例として説明したが、これに限ることはない。すなわち、それぞれを組み合わせた構成として、実施形態および一部の変形例を適宜組み合わせて利用してもよい。具体的には、たとえば、複数の毛管保持部のうちのいずれかに、選択的に傾斜が設けられたり、部分的な構成としたりしてもよい。 In the above description, the embodiment and some modified examples have been described as separate examples, but the present invention is not limited to this. That is, as a combination of the configurations, the embodiment and some of the modifications may be combined as appropriate. Specifically, for example, any one of the plurality of capillary holding portions may be selectively provided with an inclination or may have a partial configuration.
 なお、上述で説明した方法は、あらかじめ用意されたプログラムをパーソナルコンピュータ、またはワークステーションなどのコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。 The method described above can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer. The program may be a transmission medium that can be distributed via a network such as the Internet.
 100 検査装置
 101 下部筐体
 102 ターンテーブル
 103 ホルダ
 150 角度変更機構
 180 制御装置
 300 上部筐体
 310 計測部
 400 検査チップ
 410 供給部
 411 供給口
 420 注入口
 430 定量口
 440 第一案内経路
 450 測定部
 460 第二案内経路
 470 貯留部
 480 液溜部
 490 流入口
 401,402,403,404,1001,1101 毛管保持部
 500 基板
 501 上カバー
DESCRIPTION OF SYMBOLS 100 Inspection apparatus 101 Lower housing | casing 102 Turntable 103 Holder 150 Angle changing mechanism 180 Control apparatus 300 Upper housing | casing 310 Measuring part 400 Inspection chip 410 Supply part 411 Supply port 420 Inlet 430 Fixed quantity port 440 First guide path 450 Measuring part 460 Second guide path 470 Reservoir 480 Liquid reservoir 490 Inlet 401, 402, 403, 404, 1001, 1101 Capillary holder 500 Substrate 501 Upper cover

Claims (8)

  1.  公転によって生じる遠心力と、自転によって保持される所定角度とに応じて検査対象となる検査液体を内部で移動させて検査する用途に用いられる検査対象受体であって、
     前記検査液体に対して、検査工程における遠心分離または定量または光学的測定を実施する1以上の実施部と、
     前記遠心力によって前記検査液体を前記実施部へ流入させ、複数の前記実施部間を連結する連結流路の少なくとも一部に、前記実施部における前記検査工程に用いない前記検査液体が流入した場合に、前記検査液体を毛管力によって保持する毛管保持部と、
     を備えることを特徴とする検査対象受体。
    A test object receiver used for an application in which a test liquid to be inspected is moved inside according to a centrifugal force generated by revolution and a predetermined angle held by rotation,
    One or more implementation parts for performing centrifugation or quantitative determination or optical measurement in the inspection process on the inspection liquid;
    When the inspection liquid that is not used in the inspection process in the implementation unit flows into at least a part of the connection flow path that connects the plurality of implementation units by flowing the inspection liquid into the implementation unit by the centrifugal force. A capillary holding part for holding the test liquid by capillary force;
    A test object receiver characterized by comprising:
  2.  前記毛管保持部は、前記連結流路のうち、次の前記検査工程を実施する前記実施部へ前記検査液体を流入させる流入口の下流側にあることを特徴とする請求項1に記載の検査対象受体。 2. The inspection according to claim 1, wherein the capillary holding part is located downstream of an inflow port through which the inspection liquid flows into the execution part that performs the next inspection step in the connection flow path. Target recipient.
  3.  公転によって生じる遠心力と、自転によって保持される所定角度とに応じて検査対象となる検査液体を内部で移動させて検査する用途に用いられる検査対象受体であって、
     前記検査液体に対して、検査工程における遠心分離または定量または光学的測定を実施する1以上の実施部と、
     前記実施部によって実施される前記検査工程に用いられない前記検査液体を貯留する余剰部の少なくとも一部で前記検査液体を毛管力によって保持する毛管保持部と、
     を備えることを特徴とする検査対象受体。
    A test object receiver used for applications in which a test liquid to be inspected is moved in accordance with a centrifugal force generated by revolution and a predetermined angle held by rotation,
    One or more implementation parts for performing centrifugation or quantitative determination or optical measurement in the inspection process on the inspection liquid;
    A capillary holding part for holding the test liquid by capillary force in at least a part of a surplus part for storing the test liquid that is not used in the test process performed by the execution part;
    A test object receiver characterized by comprising:
  4.  前記毛管保持部は、前記余剰部のうち、他の流路と連結しない最奥部が含まれていることを特徴とする請求項3に記載の検査対象受体。 4. The test object receptacle according to claim 3, wherein the capillary holding portion includes an innermost portion that is not connected to another flow path among the surplus portions.
  5.  前記毛管保持部は、前記検査液体を保持する空間の厚さが徐々に薄くなるよう傾斜して構成されることを特徴とする請求項1に記載の検査対象受体。 2. The test object receptacle according to claim 1, wherein the capillary holder is configured to be inclined so that a thickness of a space for holding the test liquid is gradually reduced.
  6.  請求項1に記載の検査対象受体について、所定位置に配置された前記検査対象受体を前記所定角度自転する自転手段と、
     前記自転手段によって自転された前記検査対象受体に、前記遠心力を印加するよう公転する公転手段と、
     前記検査対象受体に対する、前記自転手段における自転動作と、前記公転手段における公転動作とを制御する回動制御手段と、
     を備えることを特徴とする検査装置。
    About the inspection object receiver according to claim 1, rotation means for rotating the inspection object receiver arranged at a predetermined position by the predetermined angle;
    Revolving means for revolving to apply the centrifugal force to the test object receiver rotated by the rotating means;
    Rotation control means for controlling the rotation operation in the rotation means and the revolution operation in the revolution means with respect to the inspection object receiver,
    An inspection apparatus comprising:
  7.  請求項1に記載の検査対象受体を用いて、前記検査液体の検査をおこなうことを特徴とする検査方法。 An inspection method, wherein the inspection liquid is inspected using the inspection object receiver according to claim 1.
  8.  公転によって生じる遠心力と、自転によって保持される所定角度とに応じて検査対象となる検査液体を内部で移動させて検査する用途に用いられる検査対象受体であって、
     検査に必要な量の検査液体を定量するための定量部と、
     前記定量部において定量された検査液体が光学的測定される測定部と、
     前記定量部と前記測定部とを連結する連結流路の一部、前記定量部において余剰とされた検査液体を貯留する貯留部の一部、および前記連結流路から分岐された液溜部のすくなくともいずれか1つにおいて、他部よりも流路が狭く形成され、毛管力により検査液体を保持する毛管保持部と、
    を備えることを特徴とする検査対象受体。
    A test object receiver used for an application in which a test liquid to be inspected is moved inside according to a centrifugal force generated by revolution and a predetermined angle held by rotation,
    A quantification unit for quantifying the amount of test liquid required for the inspection;
    A measuring unit for optically measuring the test liquid quantified in the quantifying unit;
    A part of a connection channel that connects the quantification unit and the measurement unit, a part of a storage unit that stores excess test liquid in the quantification unit, and a liquid storage part that branches off from the connection channel In at least one of them, a capillary holding portion that is formed narrower than the other portion and holds the test liquid by capillary force;
    A test object receiver characterized by comprising:
PCT/JP2013/058259 2012-03-29 2013-03-22 Inspection sample receiving body, inspection device and inspection method WO2013146579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-075764 2012-03-29
JP2012075764A JP2013205282A (en) 2012-03-29 2012-03-29 Inspection object holder, inspection device, and inspection method

Publications (1)

Publication Number Publication Date
WO2013146579A1 true WO2013146579A1 (en) 2013-10-03

Family

ID=49259834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058259 WO2013146579A1 (en) 2012-03-29 2013-03-22 Inspection sample receiving body, inspection device and inspection method

Country Status (2)

Country Link
JP (1) JP2013205282A (en)
WO (1) WO2013146579A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533605A (en) * 2001-03-09 2004-11-04 バイオミクロ システムズ インコーポレイティッド Method and system for connecting a microfluidic interface to an array
JP2006208183A (en) * 2005-01-27 2006-08-10 Brother Ind Ltd Inspecting object receiver, preparative device, and preparative method
JP2007232673A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Micro fluid chip
JP2009121892A (en) * 2007-11-14 2009-06-04 Panasonic Corp Analyzing device, and analyzer and analysis method using device
JP4336834B2 (en) * 2003-10-03 2009-09-30 独立行政法人物質・材料研究機構 Chip usage and inspection chip
JP2011214884A (en) * 2010-03-31 2011-10-27 Brother Industries Ltd Inspection object receiving body, inspection device and inspection method
JP2011237325A (en) * 2010-05-12 2011-11-24 Brother Ind Ltd Inspection object acceptor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077953B2 (en) * 2008-04-18 2012-11-21 ローム株式会社 Microchip

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533605A (en) * 2001-03-09 2004-11-04 バイオミクロ システムズ インコーポレイティッド Method and system for connecting a microfluidic interface to an array
JP4336834B2 (en) * 2003-10-03 2009-09-30 独立行政法人物質・材料研究機構 Chip usage and inspection chip
JP2006208183A (en) * 2005-01-27 2006-08-10 Brother Ind Ltd Inspecting object receiver, preparative device, and preparative method
JP2007232673A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Micro fluid chip
JP2009121892A (en) * 2007-11-14 2009-06-04 Panasonic Corp Analyzing device, and analyzer and analysis method using device
JP2011214884A (en) * 2010-03-31 2011-10-27 Brother Industries Ltd Inspection object receiving body, inspection device and inspection method
JP2011237325A (en) * 2010-05-12 2011-11-24 Brother Ind Ltd Inspection object acceptor

Also Published As

Publication number Publication date
JP2013205282A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP2011196849A (en) Rotating analysis chip and measurement system using the same
JP5359987B2 (en) Inspection target
JP5137012B2 (en) Microchip
JP5359964B2 (en) Inspection object receiver, inspection apparatus and inspection method
JP5728217B2 (en) Microchip and inspection or analysis method using the same
JP5459265B2 (en) Inspection target receptacle, liquid mixing system including the inspection target receptacle, and liquid mixing method using the liquid mixing system
JP2012202736A (en) Inspection object acceptor, inspection method, and inspection device
JP5267515B2 (en) Inspection target
JP5843160B2 (en) Inspection object receiver, inspection device, and inspection method
JP2014219424A (en) Rotary analysis chip and measurement system using the same
JP2011080769A (en) Disk-like analyzing chip and measuring system using the same
WO2013146579A1 (en) Inspection sample receiving body, inspection device and inspection method
JP6010967B2 (en) Inspection object receiver, inspection device, and inspection method
JP5958452B2 (en) Inspection chip
JP2009276143A (en) Microchip
JP5958451B2 (en) Inspection chip, liquid feeding method, and liquid feeding program
JP2012013553A (en) Inspection object acceptor
JP2014066540A (en) Inspection chip, method of manufacturing cover member, and inspection system
JP5915686B2 (en) Inspection chip
JP6137106B2 (en) Inspection chip and inspection system
JP5910657B2 (en) Inspection chip and inspection system
KR101881203B1 (en) Apparatus for analysing platelet
JP2015031643A (en) Inspection chip
JP5408094B2 (en) Inspection target
JP2014010043A (en) Inspection system, inspection object acceptor and inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768709

Country of ref document: EP

Kind code of ref document: A1