WO2013146489A1 - Combustion control device and combustion state detection device in incinerator - Google Patents

Combustion control device and combustion state detection device in incinerator Download PDF

Info

Publication number
WO2013146489A1
WO2013146489A1 PCT/JP2013/057952 JP2013057952W WO2013146489A1 WO 2013146489 A1 WO2013146489 A1 WO 2013146489A1 JP 2013057952 W JP2013057952 W JP 2013057952W WO 2013146489 A1 WO2013146489 A1 WO 2013146489A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
unit
combustion state
fuzzy
unburned
Prior art date
Application number
PCT/JP2013/057952
Other languages
French (fr)
Japanese (ja)
Inventor
誠 藤吉
馨 川端
秀友 市橋
達也 堅多
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2013146489A1 publication Critical patent/WO2013146489A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows

Definitions

  • the present invention relates to a combustion state detection device for detecting a combustion state in a combustion chamber in a waste incinerator and a combustion control device for controlling the combustion of waste based on the combustion state detected by the combustion state detection device.
  • the detection accuracy is not good for the one that performs image processing on the captured image and detects the combustion state such as the burnout position by the luminance value, It is influenced by disturbances and cannot be used for control. Therefore, there is a problem that it is not possible to sufficiently cope with the deterioration of the combustion state and the change of the flame.
  • the present invention is capable of accurately detecting a combustion state such as a burnout position of garbage, and capable of sufficiently dealing with deterioration of the combustion state, change in flame, and the like, and a combustion state detection device in a waste incinerator and the combustion state
  • An object of the present invention is to provide a combustion control device using a detection device.
  • a combustion state detecting device in an incinerator in which a combustion grate is disposed on a bottom wall portion of a combustion chamber and a post-combustion grate is disposed on the lower side thereof.
  • a combustion state detection device for detecting the combustion state of waste in an incinerator, A captured image acquisition unit that acquires captured images taken by the camera from the lower side in the combustion chamber at predetermined time intervals;
  • a combustion zone extraction unit for extracting a combustion zone consisting of a main combustion stage portion provided with a combustion grate and a rear combustion stage portion provided with a post combustion grate from image data acquired by the captured image acquisition unit; , The combustion zone extracted by the combustion zone extraction unit is divided into a first zone and a second zone and a third zone that are larger than the first zone to obtain image data of three different sizes.
  • a combustion state analysis unit that analyzes the combustion state with respect to the image data of the first section, the second section, and the third section obtained by the combustion zone section using a fuzzy c average method;
  • the combustion state detection unit is configured to detect a combustion state based on each analysis data obtained by the combustion state analysis unit.
  • the 2nd side surface of this invention is a combustion state analysis part in the combustion state detection apparatus of the 1st side surface,
  • a combustion discriminating unit that inputs image data of the first zone and discriminates, for each of the first zones, whether it is in a combustion state or an unburned state by a discriminator using a fuzzy c-average method;
  • An unburned mass discriminating unit that inputs the image data of the third zone and discriminates the presence or absence of the unburned mass by a classifier using a fuzzy c average method for each of these third zones,
  • the image data of the second section is input, and for each of these second sections, a flame discriminating unit that discriminates the intensity of the flame by a discriminator using a fuzzy c average method is configured.
  • the 3rd side surface of this invention is a combustion state detection part in the combustion state detection apparatus of the 1st side surface,
  • a burnout position detector for detecting the first section of the combustion state obtained by the combustion identification unit of the combustion state analyzer to detect the burned mass and detecting the burnout position by detecting the lower end position of the burned mass
  • An unburned lump detection unit This is composed of a flame region detection unit that detects the intensity and position of the flame based on the flame division data obtained by the flame identification unit of the combustion state analysis unit.
  • any one of the combustion state detection devices described in the first to third aspects a burnout position detected by the combustion state detection device, and an unburned garbage lump.
  • the fuzzy operation unit which inputs the degree and its position, the flame intensity and its position data, performs fuzzy inference based on these data, and outputs the control command of the supply amount of combustion air and dust, and the combustion state
  • An air control target position detection unit for inputting the position data of the unburned garbage lump and the flame position detected by the detection device and detecting the control target position of the combustion air output from the fuzzy calculation unit; Is.
  • a fuzzy arithmetic unit in the combustion control device of the fourth aspect.
  • a fuzzy inference data creation unit for obtaining an average value of a plurality of data input in time series and a rate of change of the average value;
  • the average value and change rate obtained by the fuzzy inference data creation unit are input, and a predetermined fuzzy rule is applied to the average value and change rate to obtain the output value for controlling the supply amount of combustion air and dust. It is composed of the fuzzy reasoning part to be sought.
  • the combustion zone is extracted from the combustion chamber consisting of the main combustion stage portion related to the combustion grate and the rear combustion stage portion related to the post-combustion grate.
  • the extracted combustion zone is divided into first, second and third sections of different sizes to obtain three types of image data, and the obtained first, second and third sections are obtained. Since the combustion state is analyzed with respect to the image data of the sections using the fuzzy c average method, the combustion state in the combustion chamber can be detected with high accuracy.
  • the data indicating the combustion state detected by the combustion state detection device that is, the combustion state such as the burnout position, the degree of unburned litter, and the strength of the flame is input.
  • the inference is performed by applying the average value and the rate of change to a predetermined fuzzy rule, it is possible to perform a control that takes into account the tendency of combustion, and thus to the deterioration of the combustion state, the change of the flame, etc. I can cope with it enough.
  • the detected data is used to determine the combustion in the incinerator, that is, at least the waste supply amount and the combustion air supply amount. Therefore, the combustion control device including the combustion state detection device will be described.
  • the waste incinerator is a stoker furnace, which is disposed in the lower part of the furnace body 1 and is provided with a waste input port 2 at the front part and an incineration residue outlet 3 at the rear part.
  • a combustion chamber 4 which is combusted and provided with a freeboard space above the front side, a first flue 6 for guiding the exhaust gas generated in the combustion chamber 4 to the outside, and a boiler portion 7 for heat recovery are arranged.
  • Air supply nozzles 9 for blowing combustion air to the left and right sides of the combustion chamber 4 are provided on the left and right side walls of the combustion chamber 4 at the front of the furnace body 1.
  • a movable combustion grate 10 (10A) and a post combustion stage (also referred to as a post combustion stage part) B constituting a main combustion stage (also referred to as a main combustion stage part) A are configured.
  • a post-combustion grate (10B) is provided.
  • the combustion chamber 4 is supplied with dust and is also supplied with combustion air from the left and right air supply nozzles 9. These supply amounts are controlled by the combustion control device 11 according to the present invention.
  • the rear wall 1a of the combustion chamber 4 is provided with a photographing camera 12 (for example, an industrial camera such as a CCD camera is used) for photographing the front.
  • the captured image, that is, image data is input to the combustion control device 11.
  • the combustion control device 11 will be described.
  • the inside of the combustion chamber 4 is photographed from the rear wall side (incineration residue outlet side) to the front wall side (garbage inlet side).
  • combustion control device 11 will be described with reference to FIG.
  • an identifier based on the fuzzy c average method (hereinafter also referred to as an FCM discriminator). It is configured by software).
  • the training data is used to classify the combustion state (referred to as class 1) and the unburned state (referred to as class 2), and each class includes, for example, two clusters. Classify into clusters, and optimize each parameter of membership function (described later) using data such as cluster center position (hereinafter referred to as cluster center), variance-covariance matrix, and evaluation data obtained at this time Is planned.
  • cluster center cluster center position
  • variance-covariance matrix variance-covariance matrix
  • evaluation data obtained at this time Is planned.
  • the training data is image data of the combustion state in the combustion chamber taken in advance
  • the evaluation data is also image data of the combustion state in the combustion chamber taken by the photographing camera.
  • uki is a membership
  • D is a Mahalanobis distance, which is represented by the following equation (2).
  • S i is a variance-covariance matrix (fuzzy variance-covariance matrix), and v i is an average value of data, that is, the center of cluster (i), and is represented by the following formulas (3) and (4), respectively. Note that k is a data number.
  • the cluster phase for calculating the Mahalanobis distance and the first phase of clustering the training data for each class to obtain the variance-covariance matrix, and the optimization of the membership function parameters are performed. Therefore, a second phase for classifying the evaluation data for each class is provided.
  • the membership (value) (tilde u qk ) to the class q of the k-th data x k is expressed by the following equation (6).
  • a tilde symbol ( ⁇ ) is added to the head of u, and this “tilde u” is expressed as “* u” in the text.
  • the membership function is expressed as “u * ” as shown below.
  • u qkj * is a membership function for the cluster j and is represented by the following equation (7).
  • the membership function u qkj * in the above equation (7) includes a plurality of parameters, and these parameters are optimal using training data and evaluation data (only training data may be used). Is done.
  • semi-hardware clustering is performed in order to shorten the calculation time.
  • discrete values for example, 0.6, 0.8, etc.
  • the class is divided into two and each class is divided into two clusters. This is because experience has shown that dividing each class into two clusters allows efficient clustering.
  • the number of clusters is not limited to two, and may be one or three or more, for example. For example, when the discrete value is 0.5, the number of clusters is 1, and when the discrete value is 1.0, two hard (not fuzzy) clusters are obtained. Of course, the number of classes is not limited to two, and may be three or more.
  • semi-hardware clustering is performed for each class, that is, for the image data of the combustion state, using the training data.
  • membership u ki is set as in the following equation (8).
  • the initial membership (u k1 , u k2 ) for each cluster is set as in the following equations (9) and (10).
  • f k is a main component score of one class of image data x k .
  • clustering is performed for each class (classes 1 and 2) using the training data. That is, each class is divided into two clusters.
  • clustering is performed for each class based on the obtained membership u.
  • clustering is performed using the evaluation data.
  • the Mahalanobis distance D is obtained for the center v of each cluster obtained in the first phase.
  • the membership u obtained in the first phase is used.
  • each parameter (m, ⁇ , ⁇ ) in the membership function u * is used.
  • these are also called free parameters or hyper parameters.
  • PSO particle swarm optimization method
  • the cluster mixing ratio ⁇ which is the same parameter as the three parameters (m, ⁇ , ⁇ ) in the membership function u * , is optimized.
  • the search for the best position of the particle swarm is performed by the following update formulas (11) and (12).
  • Para is a parameter indicating the position of the particle and is a vector composed of ⁇ , m, ⁇ , and ⁇ .
  • Velo is the velocity vector of the particle.
  • Rand is a diagonal matrix of random numbers between “0” and “1”.
  • w 0 , c 1 , and c 2 are scalar constants.
  • pbset and gbest are position vectors of pbset and gbest, respectively.
  • optimization is performed so that the membership * u using the membership function u * belongs to the correct class, in other words, the correct class membership * u is larger.
  • the Mahalanobis distance D with respect to the center v of each cluster obtained in the preparation step of the image data that has been photographed and subjected to predetermined processing is obtained, and this Mahalanobis distance is expressed by the above equation (6).
  • the membership function value u * obtained by substitution is substituted into the above equation (5) to obtain membership * u for each class cluster.
  • the membership * u which is determined for each cluster, determine the membership * u i of each class, in which, and the membership * u 2 of the members of the class 1 ship * u 1 and class 2 In comparison, the larger value is determined as the class to which the image data belongs.
  • class 1 membership * u 1 when the class 1 membership * u 1 is large, it is determined to be in a burning state, and when the class 2 membership * u 2 is large, it is determined to be in an unburned state. .
  • the degree of unburned lump that is, the probability, is output based on the value of membership * u.
  • combustion control device 11 including the combustion state detection device 13 that executes the above-described preparation step and actual state of the combustion state will be described.
  • the free parameters (m, ⁇ , ⁇ , ⁇ ), the cluster center v, the variance-covariance matrix S, the class mixture ratio ⁇ , and the like are elements related to identification, and are also identification parameters.
  • the combustion control device 11 captures a captured image (a still image) in the combustion chamber 4 captured from the rear wall 1a side by the imaging camera 12 at a first predetermined time interval.
  • the captured image acquisition unit 21 that acquires (inputs) at intervals of 1 second and the balance of the combustion state in the captured image, that is, the image data acquired by the captured image acquisition unit 21 (such as the burnout point of garbage) are relatively clear.
  • the degree of understanding can be said to be well-balanced).
  • the combustion pass / fail judgment unit 22 provided with an FCM discriminator for judging, and the image data judged by the combustion pass / fail judgment unit 22 is a second predetermined value. As shown in FIG.
  • an image data averaging processing unit 23 that averages at a time interval, for example, an interval of 10 seconds, and image data averaged by the image data averaging processing unit 23 are input.
  • the main combustion grate 10 (10A) and the post-combustion grate 10 (10B), that is, the combustion zone, that is, the portions other than the main combustion stage portion A and the rear combustion stage portion B are masked with black so that the combustion zone is
  • the three types of image data obtained in the above are input, and the combustion state analysis unit 26 that analyzes the combustion state using an FCM discriminator, and the analysis data analyzed by the combustion state analysis unit 26 and the FCM identification
  • a combustion state detection unit 27 that detects a combustion state using a gas generator, and the detection data detected by the combustion state detection unit 27 are input and fuzzy inference is performed
  • a fuzzy calculation unit 28 that outputs a control command (control signal) of a supply amount of waste) and a supply amount of waste (hereinafter referred to as a waste supply amount), that is, a correction command (correction signal) for the current command value, and the combustion state detection unit 27, the position of the unburned lump and the position of the flame detected in 27 is input, and the air to be detected, that is, the right or left air supply nozzle 9, is detected from the fuzzy computing unit 28. And a control target position detection unit 29.
  • the FCM discriminator is in a state where the combustion state is generally good and the burnout position which is the burnout point is clear (balance is good), the combustion state is badly seen and the burnout position is bad. It is determined whether or not the combustion state cannot be visually confirmed (determination is impossible) due to a state in which the combustion state is not clear (balance imbalance), or ascending ash, filling with water vapor, or the like.
  • combustion quality determination unit 22 for example, after determining 10 captured images, if more than half of the images are poorly balanced, a balance abnormality alarm is output, and there is no one with good balance. The subsequent processing is stopped.
  • RGB component values luminance values
  • the image data for example, 480 ⁇ 640 pixels
  • the combustion zone extracted by the combustion zone extraction unit 24 has three types of sizes, that is, the first zone (about 10 ⁇ 10 pixels; it can be said that the square is a small square). It is divided into a second section (about 30 ⁇ 80 pixels; a medium-long section of a medium rectangle with a long width) and a third section (about 60 ⁇ 60 pixels; a large square section with a large width).
  • the combustion zone is divided into a square first section, a rectangular second section having an area larger than the first section, and a square third section having an area larger than the first section. ing.
  • the difference between the second section and the third section is the shape, and the size of the area of both sections is selected according to the state of the flame, so it cannot be determined which is larger. . Accordingly, when viewed in the combustion zone, as shown in FIG. 13, the first section (D1) is about 500 pieces, and as shown in FIG. 14, the third section (D3: 1 section is shown by hatching) is 14, As shown in FIG. 15, 40 second sections (D2: 1 section is indicated by hatching) are obtained. The number of these sections and the number of pixels for each section can be changed as necessary.
  • the 3rd division (D3) and the 2nd division (D2) when dividing, it is the distance of the half of the division in the horizontal direction and the up-and-down direction, for example so that the adjacent divisions may overlap a part. So they are staggered.
  • the reason why the adjacent sections are shifted from each other in this manner is to identify the combustion state in a narrow range as much as possible so that the combustion state can be accurately determined while being a large section.
  • the FCM discriminator identifies the combustion / unburned state, the presence / absence of unburned mass, that is, the degree of unburned mass, the strength of the flame, and the like.
  • the combustion state analyzing unit 26 divides the image data of each first section obtained by the combustion zone section 25 into two classes of combustion / unburned by the FCM discriminator.
  • the burnout position of the burned garbage, the degree of unburned lump (the probability of being unburned litter) and its position, and the intensity of the flame, that is, a strong flame area (for example, strong fire) Flame) and its position is detected.
  • the combustion state detection unit 27 detects a combustion mass based on the first section of the combustion state obtained by the combustion identification unit 41 of the combustion state analysis unit 26 and based on this combustion mass.
  • a burnout position detection unit 51 that detects a burnout position by detecting the lower end position of the combustion lump, and a burnout position detected by the burnout position detection unit 51 and an unburned lump identification unit of the combustion state analysis unit 26 Based on the unburned lump data obtained at 42, the unburned lump detection unit 52 that detects the degree and position of the unburned lump and the flame obtained by the flame identification unit 43 of the combustion state analysis unit 26 And a flame region detection unit 53 for detecting a region with a strong flame based on the data.
  • the burnout position detection unit 51 uses the data of the first section of the combustion state obtained by the combustion identification unit 41 to extract a combustion mass that is a burning mass and scan the combustion mass from above, for example. Then, the position at which the lump has disappeared is determined as the burnout position L (conversely, the position at which the lump appeared by scanning from below may be determined as the burnout position) (see FIG. 16). .
  • a labeling process is performed with respect to a 1st division, and it detects when the 1st division which is burning continues eight or more (8 connection labeling process).
  • the unburned lump detection unit 52 based on the data of the third zone obtained by the unburned lump identification unit 42, that is, when there is a third zone that is not burned above the burnout position, A certain degree and its position (position of the third section) are detected.
  • the intensity and position of the strongly burning flame (strong flame) based on the data of the second section obtained by the flame identification unit 43. (The position of the second section) is detected.
  • a numerical value of 0 to 100 (%) is used as the flame intensity based on the membership value (which is also a probability representing the probability of identification) when identified by the FCM classifier. Further, when there is an adjacent third section or second section, the position where each section overlaps is output as the position. That is, both can identify a narrow portion while being a relatively large section.
  • the fuzzy computing unit 28 is a fuzzy inference data creation unit (hereinafter referred to as a data creation unit) that calculates a plurality of, for example, 10 average values of combustion state detection data input in time series and a rate of change of the average value. ) 61 and the data obtained by the data creation unit 61 are input, and this data is applied to a fuzzy rule to make an inference, thereby controlling the supply amount of combustion air and dust as an output (correction command) ) To obtain a fuzzy reasoning unit 62.
  • a fuzzy inference data creation unit hereinafter referred to as a data creation unit
  • the fuzzy inference unit 62 uses an average value of data obtained by the data creation unit 61 (referred to as a current value in the fuzzy set shown below) and a rate of change thereof for each input
  • An inference unit 62a having a fuzzy rule (described later) for inferring an output membership function (corresponding to the antecedent part) from a membership function (corresponding to the antecedent part), and an output obtained by the inference part 62a
  • a non-fuzzification unit 62b is provided for defuzzifying (numerizing) the output from the membership function for use by, for example, the mini-max method.
  • the membership function will be described as MSF.
  • the fuzzy set for input as shown in FIG. 5, a set of three MSFs [VS (small), ME (medium), VB (large)] is used, and an output fuzzy set is used. As shown in FIG. 6, the one composed of five MSFs [VS (very little), MS (somewhat little), ME (zero), MB (somewhat much), VB (very much)] is used. It is done. A graph representing a specific fuzzy set will be described later.
  • the input MSFs are ME (corresponding to 50%) and ME (corresponding to ⁇ 5%), respectively, and ME (zero) is selected as the output MSF.
  • the smaller one of the two input MSF grades is selected, and this grade is applied to the output MSF.
  • the output MSF (ME) has a triangular shape, a trapezoidal graph in which the upper portion is cut from the grade value is output.
  • the MSF for output is also required for the flame strength and burnout position.
  • the supply speed (that is, the feed rate of the grate) is slowed according to the degree. This is to dry the garbage. Further, when the flame strength is high, the supply speed is increased.
  • FIG. 8 shows a fuzzy rule for the flame strength
  • FIG. 9 shows a fuzzy rule for the burnout position.
  • each position is considered in addition to the degree of unburned litter and the strength of the flame.
  • the input MSFs are ME (corresponding to 50%) and ME (corresponding to ⁇ 5%), respectively, and ME (zero) is selected as the output MSF.
  • the smaller one of the two input MSF grades is selected, and this grade is applied to the output MSF.
  • the output MSF (ME) has a triangular shape, a trapezoidal graph in which the upper portion is cut from the grade value is output.
  • MSF for output is also required for the flame strength.
  • the two MSFs for the unburned garbage lump and the flame strength obtained in this way are synthesized, and for example, the center of gravity is obtained, and an output value, that is, an air supply amount as a control command is obtained.
  • the output value when the flame is strong, the air supply amount is decreased, and when there is an unburned garbage lump, the air supply amount is increased.
  • strength of a flame is shown in FIG.
  • the air control target position detection unit 29 when the air supply amount is controlled by the fuzzy calculation unit 28, the position data of the third section output from the unburned lump detection unit 52 and The position data of the second section output from the flame region detection unit 53 is input, and it is determined (selected) whether to control the air supply amount from the left or right air supply nozzle 9.
  • a command for selecting the air supply nozzle 9 to be controlled is output together with a control command for the air supply amount.
  • combustion identification unit 41 of the combustion state analysis unit 26 identifies whether the combustion state is the combustion state or the unburned state.
  • the FCM discriminator is a normalization unit that partitions the image data of the first section input from the combustion zone section 25 into 1024 (32 sections in the vertical and horizontal directions to have the same number of data).
  • a vectorization unit 72 that converts the image data normalized by the normalization unit 71 into a 1024-dimensional vector
  • the dimension of the vector data vectorized by the vectorization unit 72 is, for example, 50 dimensions by principal component analysis.
  • a dimensional compression unit 73 that compresses the data into the data
  • a Mahalanobis distance calculation unit 74 that obtains a Mahalanobis distance with respect to the center of the cluster that has been dimensionally compressed by the dimensional compression unit 73
  • a Mahalanobis distance calculation unit 74 a Mahalanobis distance calculation unit 74.
  • the above equation (7) for determining the membership function u * and membership * u and ( 6) Based on the membership calculation unit 75 provided with the equation and the membership * u obtained by the membership calculation unit 75, the class to which the image data belongs, that is, the combustion state or the unburned state It is comprised from the state judgment part 76 which judges these.
  • the class to which the image data belongs that is, the combustion state or the unburned state It is comprised from the state judgment part 76 which judges these.
  • appropriate combustion chamber position information, image compression coefficients, and identification data are obtained from a database unit (not shown). Parameters are read and used. In actual operation, the identification parameter read is a value that is optimally adjusted by training or the like (the description is omitted, but a parameter adjustment unit is provided).
  • the Mahalanobis distance calculation unit 74 obtains the Mahalanobis distance D with respect to the cluster center obtained in advance of the image data
  • the membership calculation unit 75 obtains the membership function u * (function) based on the Mahalanobis distance D. Value), and membership * u is obtained based on this membership function u * . That is, membership * u 1 , * u 2 is obtained for each cluster. Then, for each class, membership is added, and memberships * u c1 and * u c2 in the class are obtained.
  • the state determination unit 76 compares the obtained memberships * u c1 and * u c2 in each class, and determines that this image data belongs to the larger value.
  • each class at the time of this determination is shown in FIG. 4, the two Class 1 and Class 2, in which respectively form two clusters 1 and cluster 2, respectively, the class 1 side, there is a cluster 2 clusters 1 and v 12 of v 11, also On the class 2 side, there is also a cluster 1 of v 21 and a cluster 2 of v 22 .
  • FIG. 4 the two Class 1 and Class 2, in which respectively form two clusters 1 and cluster 2, respectively, the class 1 side, there is a cluster 2 clusters 1 and v 12 of v 11, also On the class 2 side, there is also a cluster 1 of v 21 and a cluster 2 of v 22 .
  • the membership of X for one cluster 1 in class 1 is u 11
  • the membership of X for the other cluster 2 is u 12
  • the class 2 the membership of X to class 1 is u 21
  • the membership of X to the other cluster 2 is u 22
  • the membership u 1 to class 1 of X is u 11 + u 12
  • membership u 2 for the class 2 the membership u 21 + u 22. That is, the total value of membership of each cluster in each class (which is the sum of membership heights for both clusters) becomes the membership for each class.
  • the memberships u 1 and u 2 they belong to the larger class. If it belongs to class 1, it is in a burning state, and if it belongs to class 2, it indicates an unburned state.
  • the state in the combustion chamber 4 is captured by the captured camera 12 by the captured image acquisition unit 21.
  • the combustion quality determination unit 22 applies the FCM identification method to the captured image data of the combustion chamber 4 to determine whether combustion is normally performed.
  • the normal case is a state in which the combustion can be controlled, for example, a case where the burnout position in the combustion chamber 4 is relatively clearly shown.
  • it is not normal that is, when it is abnormal, it is in a state where combustion cannot be controlled. Say such a case. When such a state continues for 10 images (about 10 seconds), an alarm indicating that the combustion state is abnormal (unbalanced) is output.
  • the combustion quality determination unit 22 determines that the combustion is not abnormal but normal
  • the image data is input to the image data averaging processing unit 23, and the image data is averaged.
  • the RGB data for each pixel is averaged.
  • the averaged image data is input to the combustion zone extraction unit 24, and the main combustion stage portion A and the post combustion stage portion B in the combustion chamber 4 are extracted.
  • the extracted combustion area is input to the combustion area section 25 and divided into three types of sections, that is, image data of the first section, the second section, and the third section.
  • the first section and the third section are performed for the entire combustion zone 10A, 10B, while the second section is performed for the main combustion zone 10A.
  • the image data of the first section is input to the combustion identification unit 41, and it is determined for each first section whether it is in a combustion state or an unburned state by the FCM identifier.
  • the image data of the third section is input to the unburned mass identification unit 42, and it is determined for each third section whether the combustion state is burning by the FCM identifier or the unburned state is not burning. .
  • the image data of the second section is input to the flame discriminating unit 43, and is classified into four in accordance with the intensity of the flame, that is, the presence / absence of the flame and the strength of the flame for each second section by the FCM discriminator. That is, it is classified into four types: strong flame, medium flame, weak flame, and no flame.
  • the combustion state detection unit 27 detects the combustion state.
  • the burnout position detection unit 51 the combustion / unburned data for each first section obtained by the combustion identification unit 41 is input and, for example, an 8-connected labeling process is performed on the burning first section.
  • an 8-connected labeling process is performed on the burning first section.
  • the region determined to be a combustion mass is scanned, for example, for each row of the first section from above, and the position of the lower end row is obtained. This position is detected as a burnout position.
  • the burnout position detected by the burnout position detection unit 51 is input, and the third zone data of the unburned lump detected by the unburned lump detection unit 42 is input. It is determined whether or not the position of the third section is above the burnout position, and if it is above, it is determined that there is an unburned garbage lump, and the position of the third section Is detected.
  • the position of the third section a value expressed as a numerical value from the front side with the total length of the combustion zone being 0 to 100 (%) is used.
  • the degree of unburned litter is output as a numerical value in the range of 0 to 100%. As this numerical value, the membership value obtained when the FCM discriminator classifies the third section as burned / unburned is used.
  • the flame area detection unit 53 inputs the identification results identified by the flame identification unit 43 into the four types of strong flame, medium flame, weak flame and no flame, and the second zone having the highest flame intensity.
  • the position in this case also, the total length of the combustion zone is expressed as a numerical value from the front side with 0 to 100 (%)) and its intensity are detected as numerical values.
  • burnout position data (a numerical value when the combustion range in the front-rear direction is in the range of 0 to 100%), the degree of unburned litter (in the range of 0 to 100%) ) And the flame intensity (numerical values in the range of 0 to 100%) are input to the fuzzy computing unit 28.
  • the data creation unit 61 of the fuzzy calculation unit 28 obtains, for example, an average value for 10 pieces and a change rate thereof as fuzzy inference data based on the input data.
  • these average values and rate of change are inferred by applying fuzzy rules prepared for each, and then de-fuzzified to obtain the waste supply amount and air supply amount, and the air control target position
  • the air supply nozzle 9 that is the air control target detected by the detection unit 29 is selected.
  • the determined dust supply amount and air supply amount and the position of the air supply nozzle 9 to be controlled are output to the dust supply control unit and the combustion air control unit in the incinerator, and an optimum combustion state is obtained.
  • the burnout position is closer to the front, the amount of waste supply is increased, that is, the waste supply speed is increased, and when there is an unburned waste lump, the air supply from the corresponding air supply nozzle 9 is supplied.
  • the amount is increased and the flame is strong, the corresponding air supply amount from the air supply nozzle 9 is decreased.
  • a combustion region including a main combustion stage portion related to the combustion grate and a rear combustion stage portion related to the post combustion grate is extracted in the combustion chamber.
  • the combustion zone extracted by the combustion zone extraction unit is divided into a first zone, a second zone, and a third zone having different sizes and shapes to obtain three types of image data. Since the combustion state is analyzed using the fuzzy c average method for the image data of the first, second and third sections, the combustion state in the combustion chamber can be detected with high accuracy. .
  • each data indicating the detected combustion state that is, the burnout position, the degree of unburned garbage lump, the intensity of the flame, and the like are input, and the average value and the change rate are input to a predetermined fuzzy rule. Since inference is performed by applying the control, it is possible to perform control in consideration of the tendency of combustion, and therefore, it is possible to sufficiently cope with deterioration of the combustion state, change of flame, and the like. For example, even when an unburned garbage lump is generated in the incinerator, it is possible to immediately perform optimum combustion that can eliminate the lump.
  • the combustion state in the combustion chamber is very complicated due to the burning of dust, and cannot be reproduced based on data obtained from sensors such as calculations and flow rate / temperature, but an FCM discriminator is used.
  • the flame state can be directly learned and the judgment model can be self-generated, so that the combustion state can be detected with high accuracy.
  • human beings give some numerical values, and the appropriate values change depending on the garbage quality and driving conditions. Leading to a decline.
  • This FCM discriminator includes a normalization unit that obtains and normalizes a plurality of representative values from captured image data (section image data) captured by the imaging camera, and a representative value obtained by the normalization unit.
  • a vectorization unit that vectorizes the image data to be obtained, a dimension compression unit that compresses the dimension of the vector data vectorized by the vectorization unit, and training data of the vector data compressed by the dimension compression unit in advance.
  • the Mahalanobis distance calculation unit for obtaining the Mahalanobis distance to the obtained cluster center, the Mahalanobis distance obtained by the Mahalanobis distance calculation unit are substituted into the membership function (u * ) shown in the following equation (13), and the function value is (14)
  • a state determination unit that divides the photographed image into two classes (either a burning state or a non-burning state) using the membership obtained in .
  • ⁇ qj is the mixing ratio of cluster j in class q
  • S is the variance-covariance matrix
  • ⁇ q is the mixing ratio of class q.
  • the principal component analysis method is used when the dimension is compressed by the dimension compression unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

The present invention is configured from: a combustion region extraction unit (24) that extracts a combustion region comprising a primary combustion stage portion with regards to a combustion fire grate and a post-combustion stage portion with regards to a post-combustion fire grate from image data obtained from a captured image acquisition unit (21); a combustion region compartmentalization unit (25) that compartmentalizes the combustion region extracted by the combustion region extraction unit into first compartments, and second compartments and third compartments larger than the first compartments to obtain three sizes of image data; a combustion state analysis unit (26) that uses the fuzzy c-means to analyze the state of combustion in the image data of each compartment obtained by the combustion region compartmentalization unit; and a combustion state detection unit (27) that detects the combustion state on the basis of the analysis data obtained by the combustion state analysis unit.

Description

焼却炉における燃焼状態検出装置および燃焼制御装置Combustion state detection device and combustion control device in incinerator
 本発明は、ごみ焼却炉における燃焼室内の燃焼状態を検出するための燃焼状態検出装置およびこの燃焼状態検出装置により検出された燃焼状態に基づきごみの燃焼を制御する燃焼制御装置に関するものである。 The present invention relates to a combustion state detection device for detecting a combustion state in a combustion chamber in a waste incinerator and a combustion control device for controlling the combustion of waste based on the combustion state detected by the combustion state detection device.
 従来、ごみ焼却炉においては、炉内のごみの燃焼状態を認識する場合、すなわち燃焼状態を検出する場合、焼却炉における燃焼室内を撮影カメラにより撮影し、この撮影画像に画像処理を施すとともにその輝度値に基づき、例えば燃え切り位置などが検出されていた(例えば、特許文献1参照)。 Conventionally, in a waste incinerator, when the combustion state of waste in the furnace is recognized, that is, when the combustion state is detected, the combustion chamber in the incinerator is photographed with a photographing camera, and the photographed image is subjected to image processing and Based on the luminance value, for example, a burnout position or the like has been detected (for example, see Patent Document 1).
2004-85094号公報No. 2004-85094
 しかし、従来の燃焼状態を検出する場合には撮影画像に画像処理を施すとともにその輝度値により燃え切り位置などの燃焼状態を検出するものにあっては、その検出精度が良いとは言えず、外乱等に左右され制御に使用できない。したがって、燃焼状態の悪化、火炎の変化などに十分に対処し得ないという問題があった。 However, in the case of detecting the conventional combustion state, the detection accuracy is not good for the one that performs image processing on the captured image and detects the combustion state such as the burnout position by the luminance value, It is influenced by disturbances and cannot be used for control. Therefore, there is a problem that it is not possible to sufficiently cope with the deterioration of the combustion state and the change of the flame.
 そこで、本発明は、ごみの燃え切り位置などの燃焼状態を精度良く検出し得るとともに、燃焼状態の悪化、火炎の変化などに十分に対処し得るごみ焼却炉における燃焼状態検出装置および当該燃焼状態検出装置を用いた燃焼制御装置を提供することを目的とする。 Therefore, the present invention is capable of accurately detecting a combustion state such as a burnout position of garbage, and capable of sufficiently dealing with deterioration of the combustion state, change in flame, and the like, and a combustion state detection device in a waste incinerator and the combustion state An object of the present invention is to provide a combustion control device using a detection device.
 上記課題を解決するため、本発明の第1の側面は、焼却炉における燃焼状態検出装置は、燃焼室の底壁部に燃焼用火格子およびその下手側に後燃焼用火格子が配置された焼却炉におけるごみの燃焼状態を検出する燃焼状態検出装置であって、
 燃焼室内を下手側から撮影カメラにより撮影した撮影画像を所定時間間隔でもって取得する撮影画像取得部と、
 この撮影画像取得部で取得された画像データから燃焼用火格子が設けられた主燃焼段部分および後燃焼用火格子が設けられた後燃焼段部分から成る燃焼域を抽出する燃焼域抽出部と、
 この燃焼域抽出部で抽出された燃焼域を第1区画並びに、この第1区画よりも大きい第2区画および第3区画でもってそれぞれ区画して3種類の大きさの画像データを得る燃焼域区画部と、
 この燃焼域区画部で得られた第1区画、第2区画および第3区画の画像データに対して燃焼状態をファジィc平均法を用いてそれぞれ分析する燃焼状態分析部と、
 この燃焼状態分析部で得られた各分析データに基づき燃焼状態を検出する燃焼状態検出部とから構成したものである。
In order to solve the above-mentioned problem, according to a first aspect of the present invention, there is provided a combustion state detecting device in an incinerator in which a combustion grate is disposed on a bottom wall portion of a combustion chamber and a post-combustion grate is disposed on the lower side thereof. A combustion state detection device for detecting the combustion state of waste in an incinerator,
A captured image acquisition unit that acquires captured images taken by the camera from the lower side in the combustion chamber at predetermined time intervals;
A combustion zone extraction unit for extracting a combustion zone consisting of a main combustion stage portion provided with a combustion grate and a rear combustion stage portion provided with a post combustion grate from image data acquired by the captured image acquisition unit; ,
The combustion zone extracted by the combustion zone extraction unit is divided into a first zone and a second zone and a third zone that are larger than the first zone to obtain image data of three different sizes. And
A combustion state analysis unit that analyzes the combustion state with respect to the image data of the first section, the second section, and the third section obtained by the combustion zone section using a fuzzy c average method;
The combustion state detection unit is configured to detect a combustion state based on each analysis data obtained by the combustion state analysis unit.
 また、本発明の第2の側面は、第1の側面の燃焼状態検出装置における燃焼状態分析部を、
 第1区画の画像データを入力してこれら各第1区画毎に、燃焼状態か未燃状態であるかをファジィc平均法を用いた識別器により識別する燃焼識別部と、
 第3区画の画像データを入力してこれら第3区画毎に、未燃塊の有無をファジィc平均法を用いた識別器により識別する未燃塊識別部と、
 第2区画の画像データを入力してこれら第2区画毎に、火炎の強度をファジィc平均法を用いた識別器により識別する火炎識別部とから構成したものである。
Moreover, the 2nd side surface of this invention is a combustion state analysis part in the combustion state detection apparatus of the 1st side surface,
A combustion discriminating unit that inputs image data of the first zone and discriminates, for each of the first zones, whether it is in a combustion state or an unburned state by a discriminator using a fuzzy c-average method;
An unburned mass discriminating unit that inputs the image data of the third zone and discriminates the presence or absence of the unburned mass by a classifier using a fuzzy c average method for each of these third zones,
The image data of the second section is input, and for each of these second sections, a flame discriminating unit that discriminates the intensity of the flame by a discriminator using a fuzzy c average method is configured.
 また、本発明の第3の側面は、第1の側面の燃焼状態検出装置おける燃焼状態検出部を、
 燃焼状態分析部の燃焼識別部で得られた燃焼状態の第1区画を検出して燃焼塊を検出するとともにこの燃焼塊の下端位置を検出することにより燃え切り位置を検出する燃え切り位置検出部と、
 この燃え切り位置検出部で検出された燃え切り位置および燃焼状態分析部の未燃塊識別部で得られた未燃塊の区画データに基づき、未燃ごみ塊である度合いおよびその位置を検出する未燃ごみ塊検出部と、
 燃焼状態分析部の火炎識別部で得られた火炎の区画データに基づき火炎の強度およびその位置を検出する火炎領域検出部とから構成したものである。
Moreover, the 3rd side surface of this invention is a combustion state detection part in the combustion state detection apparatus of the 1st side surface,
A burnout position detector for detecting the first section of the combustion state obtained by the combustion identification unit of the combustion state analyzer to detect the burned mass and detecting the burnout position by detecting the lower end position of the burned mass When,
Based on the burnout position detected by the burnout position detection unit and the unburned lump section data obtained by the unburned lump identification unit of the combustion state analysis unit, the degree and position of the unburned lump are detected. An unburned lump detection unit;
This is composed of a flame region detection unit that detects the intensity and position of the flame based on the flame division data obtained by the flame identification unit of the combustion state analysis unit.
 また、本発明の第4の側面は、上記第1~第3の側面に記載のいずれかの燃焼状態検出装置と、当該燃焼状態検出装置で検出された燃え切り位置、未燃ごみ塊である度合いおよびその位置、並びに火炎の強度およびその位置のデータを入力するとともにこれら各データに基づきファジィ推論を行い、燃焼用空気およびごみの供給量の制御指令を出力するファジィ演算部と、上記燃焼状態検出装置で検出された未燃ごみ塊の位置および火炎の位置のデータを入力して上記ファジィ演算部から出力される燃焼用空気の制御対象位置を検出する空気制御対象位置検出部とを具備したものである。 According to a fourth aspect of the present invention, there is provided any one of the combustion state detection devices described in the first to third aspects, a burnout position detected by the combustion state detection device, and an unburned garbage lump. The fuzzy operation unit which inputs the degree and its position, the flame intensity and its position data, performs fuzzy inference based on these data, and outputs the control command of the supply amount of combustion air and dust, and the combustion state An air control target position detection unit for inputting the position data of the unburned garbage lump and the flame position detected by the detection device and detecting the control target position of the combustion air output from the fuzzy calculation unit; Is.
 さらに、本発明の第5の側面は、上記第4の側面の燃焼制御装置におけるファジィ演算部を、
 時系列で入力される複数個のデータの平均値およびこの平均値の変化率を求めるファジィ推論用データ作成部と、
 このファジィ推論用データ作成部で求められた平均値および変化率を入力するとともに、これら平均値および変化率に所定のファジィルールを適用して燃焼用空気およびごみの供給量の制御用出力値を求めるファジィ推論部とから構成したものである。
Further, according to a fifth aspect of the present invention, there is provided a fuzzy arithmetic unit in the combustion control device of the fourth aspect.
A fuzzy inference data creation unit for obtaining an average value of a plurality of data input in time series and a rate of change of the average value;
The average value and change rate obtained by the fuzzy inference data creation unit are input, and a predetermined fuzzy rule is applied to the average value and change rate to obtain the output value for controlling the supply amount of combustion air and dust. It is composed of the fuzzy reasoning part to be sought.
 上記燃焼状態検出装置の構成によると、燃焼室内を燃焼用火格子に係る主燃焼段部分および後燃焼用火格子に係る後燃焼段部分から成る燃焼域を抽出するとともに、この燃焼域抽出部で抽出された燃焼域を異なる大きさの第1区画、第2区画および第3区画でもってそれぞれ区画して3種類の画像データを得るとともに、これら得られた第1区画、第2区画および第3区画の画像データに対して燃焼状態をファジィc平均法を用いてそれぞれ分析するようにしたので、燃焼室内の燃焼状態を精度良く検出することができる。 According to the configuration of the combustion state detecting device, the combustion zone is extracted from the combustion chamber consisting of the main combustion stage portion related to the combustion grate and the rear combustion stage portion related to the post-combustion grate. The extracted combustion zone is divided into first, second and third sections of different sizes to obtain three types of image data, and the obtained first, second and third sections are obtained. Since the combustion state is analyzed with respect to the image data of the sections using the fuzzy c average method, the combustion state in the combustion chamber can be detected with high accuracy.
 また、上記燃焼制御装置の構成によると、上記燃焼状態検出装置により検出された燃焼状態、すなわち燃え切り位置、未燃ごみ塊である度合い、火炎の強度などの燃焼状態を示す各データを入力するとともに、その平均値および変化率を所定のファジィルールに適用することにより推論を行うようにしたので、燃焼の傾向を加味した制御を行うことができ、したがって燃焼状態の悪化、火炎の変化などに十分に対処することができる。 Further, according to the configuration of the combustion control device, the data indicating the combustion state detected by the combustion state detection device, that is, the combustion state such as the burnout position, the degree of unburned litter, and the strength of the flame is input. In addition, since the inference is performed by applying the average value and the rate of change to a predetermined fuzzy rule, it is possible to perform a control that takes into account the tendency of combustion, and thus to the deterioration of the combustion state, the change of the flame, etc. I can cope with it enough.
本発明の実施例に係るごみ焼却炉の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the waste incinerator which concerns on the Example of this invention. 同実施例に係るごみ焼却炉における燃焼制御装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the combustion control apparatus in the waste incinerator concerning the Example. 同燃焼制御装置にて用いられるFCM識別器の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the FCM discrimination device used with the combustion control apparatus. 同FCM識別器によるファジィクラスタリングの説明図である。It is explanatory drawing of the fuzzy clustering by the FCM discriminator. 同燃焼制御装置のファジィ推論部で用いられる入力用のファジィ集合を示すグラフである。It is a graph which shows the fuzzy set for input used in the fuzzy reasoning part of the combustion control device. 同燃焼制御装置のファジィ推論部で用いられる出力用のファジィ集合を示すグラフである。It is a graph which shows the fuzzy set for output used in the fuzzy reasoning part of the combustion control device. 同ファジィ推論部で用いられるファジィルールを示す表である。It is a table | surface which shows the fuzzy rule used in the same fuzzy inference part. 同ファジィ推論部で用いられるファジィルールを示す表である。It is a table | surface which shows the fuzzy rule used in the same fuzzy inference part. 同ファジィ推論部にて用いられるファジィルールを示す表である。It is a table | surface which shows the fuzzy rule used in the same fuzzy reasoning part. 同ファジィ推論部で用いられるファジィルールを示す表である。It is a table | surface which shows the fuzzy rule used in the same fuzzy inference part. 同ファジィ推論部で用いられるファジィルールを示す表である。It is a table | surface which shows the fuzzy rule used in the same fuzzy inference part. 同ごみ焼却炉における燃焼室内の撮影画像の燃焼段部分を抽出した燃焼状態を示す図である。It is a figure which shows the combustion state which extracted the combustion step part of the picked-up image in the combustion chamber in the refuse incinerator. 同ごみ焼却炉における燃焼室内の撮影画像の燃焼段部分を抽出した燃焼状態を示す図である。It is a figure which shows the combustion state which extracted the combustion step part of the picked-up image in the combustion chamber in the refuse incinerator. 同ごみ焼却炉における燃焼室内の撮影画像の燃焼段部分を抽出した燃焼状態を示す図である。It is a figure which shows the combustion state which extracted the combustion step part of the picked-up image in the combustion chamber in the refuse incinerator. 同ごみ焼却炉における燃焼室内の撮影画像の燃焼段部分を抽出した燃焼状態を示す図である。It is a figure which shows the combustion state which extracted the combustion step part of the picked-up image in the combustion chamber in the refuse incinerator. 同ごみ焼却炉における燃焼室内の撮影画像の燃焼段部分を抽出した燃焼状態を示す図である。It is a figure which shows the combustion state which extracted the combustion step part of the picked-up image in the combustion chamber in the refuse incinerator.
 以下、本発明の実施例に係るごみ焼却炉における燃焼状態検出装置および燃焼制御装置について説明する。 Hereinafter, a combustion state detection device and a combustion control device in a waste incinerator according to an embodiment of the present invention will be described.
 なお、本実施例においては、ごみ焼却炉内でのごみ(廃棄物)の燃焼状態を検出した後、この検出データを用いて焼却炉における燃焼、すなわち少なくともごみ供給量および燃焼用空気供給量を制御するようにしたものであり、このため、燃焼状態検出装置を含めた燃焼制御装置について説明する。 In this embodiment, after detecting the combustion state of the waste (waste) in the waste incinerator, the detected data is used to determine the combustion in the incinerator, that is, at least the waste supply amount and the combustion air supply amount. Therefore, the combustion control device including the combustion state detection device will be described.
 まず、本発明に係る燃焼制御装置が用いられるごみ焼却炉の概略構成について説明する。 First, a schematic configuration of a waste incinerator in which the combustion control device according to the present invention is used will be described.
 図1に示すように、ごみ焼却炉はストーカ炉であって、炉本体1内の下部に配置され前部にごみ投入口2が設けられるとともに後部に焼却残渣取出口3が設けられてごみを燃焼させ且つ前寄り上方にフリーボード空間部が設けられた燃焼室4と、この燃焼室4で発生した排ガスを外部に導くための第1煙道6および熱回収用のボイラ部7が配置された第2煙道8とから構成されている。また、炉本体1の前寄りの燃焼室4の左右の側壁部には、燃焼室4内の左右にそれぞれ燃焼用空気を吹き込むための空気供給ノズル9が設けられている。 As shown in FIG. 1, the waste incinerator is a stoker furnace, which is disposed in the lower part of the furnace body 1 and is provided with a waste input port 2 at the front part and an incineration residue outlet 3 at the rear part. A combustion chamber 4 which is combusted and provided with a freeboard space above the front side, a first flue 6 for guiding the exhaust gas generated in the combustion chamber 4 to the outside, and a boiler portion 7 for heat recovery are arranged. And a second flue 8. Air supply nozzles 9 for blowing combustion air to the left and right sides of the combustion chamber 4 are provided on the left and right side walls of the combustion chamber 4 at the front of the furnace body 1.
 上記燃焼室4の底部には、主燃焼段(主燃焼段部分とも言う)Aを構成する可動式の燃焼用火格子10(10A)および後燃焼段(後燃焼段部分とも言う)Bを構成する後燃焼用火格子(10B)が設けられている。この燃焼室4には、ごみが供給されるとともに上記左右の空気供給ノズル9から燃焼用空気が供給されており、これらの供給量については本発明に係る燃焼制御装置11により制御されている。また、燃焼室4の後壁部1aには、前方を撮影する撮影用カメラ(例えば、CCDカメラなどの工業用カメラが用いられる)12が設けられており、この撮影用カメラ12にて撮影された撮影画像、すなわち画像データが燃焼制御装置11に入力される。 At the bottom of the combustion chamber 4, a movable combustion grate 10 (10A) and a post combustion stage (also referred to as a post combustion stage part) B constituting a main combustion stage (also referred to as a main combustion stage part) A are configured. A post-combustion grate (10B) is provided. The combustion chamber 4 is supplied with dust and is also supplied with combustion air from the left and right air supply nozzles 9. These supply amounts are controlled by the combustion control device 11 according to the present invention. The rear wall 1a of the combustion chamber 4 is provided with a photographing camera 12 (for example, an industrial camera such as a CCD camera is used) for photographing the front. The captured image, that is, image data is input to the combustion control device 11.
 以下、燃焼制御装置11について説明するが、簡単に言うと、燃焼室4内を後壁側(焼却残渣取出口側)から前壁側(ごみ投入口側)に向かって撮影し、この撮影画像にファジィクラスタリングを適用し、燃焼の有無、火炎の強弱つまり火炎の強度などの燃焼状態を検出し、これらの検出データを用いて、最適な燃焼が行われるように、燃焼室4に供給される燃焼用空気およびごみの供給量をそれぞれ制御するものである。 Hereinafter, the combustion control device 11 will be described. In brief, the inside of the combustion chamber 4 is photographed from the rear wall side (incineration residue outlet side) to the front wall side (garbage inlet side). Is applied to the combustion chamber 4 to detect the combustion state such as the presence or absence of combustion, the strength of the flame, that is, the strength of the flame, and the like, and the detected data is used to supply the combustion chamber 4 so that optimum combustion is performed. It controls the supply amount of combustion air and garbage.
 以下、この燃焼制御装置11を図2に基づき説明する。 Hereinafter, the combustion control device 11 will be described with reference to FIG.
 この燃焼制御装置11においては、ファジィc平均法(fuzzy c-means;以下、FCM識別法とも言う)を用いたファジィクラスタリングが行われるため、ファジィc平均法による識別器(以下、FCM識別器とも言い、ソフトウエアにより構成されている)が具備されている。 In this combustion control device 11, since fuzzy clustering using a fuzzy c-means (hereinafter also referred to as FCM discrimination method) is performed, an identifier based on the fuzzy c average method (hereinafter also referred to as an FCM discriminator). It is configured by software).
 このFCM識別器によるクラスタリングが複数個所で行われており、その適用箇所は異なるが、識別方法そのものは同じであり、ここで説明しておく。 Clustering by this FCM discriminator is performed at a plurality of locations, and the application location is different, but the discrimination method itself is the same and will be described here.
 ここでは、燃焼状態の検出に、特に後述する燃焼識別部に用いられる識別方法について説明するが、このファジィc平均法の適用に際しては、各種パラメータを選定する予備工程と実際に識別が行われる実工程とがある。 Here, an identification method used for detection of the combustion state, particularly used in the combustion identification unit described later, will be described. However, when this fuzzy c-average method is applied, an actual identification is performed with a preliminary process for selecting various parameters. There is a process.
 予備工程では、最初に訓練用データを用いて、燃焼状態(クラス1と称す)と未燃状態(クラス2と称す)とに分類するとともに、クラス毎についても、複数個のクラスターに例えば2つのクラスターに分類し、そしてこのとき得られたクラスター中心位置(以下、クラスター中心という)、分散共分散行列などのデータおよび評価用データを用いて、メンバーシップ関数(後述する)の各パラメータの最適化が図られる。なお、訓練用データは、予め撮影された燃焼室での燃焼状態の画像データであり、評価用データについても、撮影用カメラにて撮影された燃焼室での燃焼状態の画像データである。 In the preliminary process, first, the training data is used to classify the combustion state (referred to as class 1) and the unburned state (referred to as class 2), and each class includes, for example, two clusters. Classify into clusters, and optimize each parameter of membership function (described later) using data such as cluster center position (hereinafter referred to as cluster center), variance-covariance matrix, and evaluation data obtained at this time Is planned. Note that the training data is image data of the combustion state in the combustion chamber taken in advance, and the evaluation data is also image data of the combustion state in the combustion chamber taken by the photographing camera.
 次に、ファジィc平均法について説明する。 Next, the fuzzy c averaging method will be described.
 このファジィc平均法は繰返し重み付き最小二乗法を用いるので目的関数Jは下記(1)式のように設定される。 Since this fuzzy c-average method uses an iteratively weighted least square method, the objective function J i is set as shown in the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 但し、(1)式中、ukiはメンバーシップ、Dはマハラノビス距離で下記(2)式にて表わされる。 In the equation (1), uki is a membership, and D is a Mahalanobis distance, which is represented by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 Sは分散共分散行列(ファジィ分散共分散行列)、vはデータの平均値つまりクラスター(i)の中心で、それぞれ下記(3)式および(4)式にて表わされる。なお、kはデータ番号である。 S i is a variance-covariance matrix (fuzzy variance-covariance matrix), and v i is an average value of data, that is, the center of cluster (i), and is represented by the following formulas (3) and (4), respectively. Note that k is a data number.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、クラスター(i)の混合比率αを下記(5)式にて表わす。 Further, the mixing ratio α of the cluster (i) is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記(2)式~(5)式を(1)式で示す目的関数値が収束するまで繰り返し求めるのがFCM識別器によるクラスタリングである。 Clustering by the FCM discriminator repeatedly obtains the above equations (2) to (5) until the objective function value indicated by equation (1) converges.
 そして、予備工程には、マハラノビス距離を計算するためのクラスター中心と分散共分散行列を求めるために訓練用データのクラスタリングをクラス毎に行う第1フェーズと、メンバーシップ関数のパラメータの最適化を行うために評価用データをクラス毎に分類する第2フェーズとが具備されている。 In the preliminary process, the cluster phase for calculating the Mahalanobis distance and the first phase of clustering the training data for each class to obtain the variance-covariance matrix, and the optimization of the membership function parameters are performed. Therefore, a second phase for classifying the evaluation data for each class is provided.
 ところで、k番目のデータxのクラスqへのメンバーシップ(値)(チルダuqk)は下記(6)式にて表わされる。式中では、uの頭に、チルダの記号(~)を付加しており、この「チルダu」を文章中では、「*u」として表記する。なお、メンバーシップ関数については、下記に示すように「u」と表記する。 By the way, the membership (value) (tilde u qk ) to the class q of the k-th data x k is expressed by the following equation (6). In the formula, a tilde symbol (˜) is added to the head of u, and this “tilde u” is expressed as “* u” in the text. The membership function is expressed as “u * ” as shown below.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 (6)式中、uqkj はクラスターjに対するメンバーシップ関数で、下記(7)式で表わされる。 In the equation (6), u qkj * is a membership function for the cluster j and is represented by the following equation (7).
 πはクラスqの混合比率(訓練用データの混合比率)、すなわち事前確率であり、cはクラス毎のクラスターjの数で、本実施例では2(c=2)である。 π q is a mixing ratio of class q (mixing ratio of training data), that is, a prior probability, c is the number of clusters j for each class, and is 2 (c = 2) in this embodiment.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記(7)式のメンバーシップ関数uqkj には複数のパラメータが含まれており、これらのパラメータは、訓練用データおよび評価用データを用いて(訓練用データだけを用いてもよい)最適化が行われる。 The membership function u qkj * in the above equation (7) includes a plurality of parameters, and these parameters are optimal using training data and evaluation data (only training data may be used). Is done.
 そして、クラスタリングを行う際に、計算時間の短縮化を図るために、セミハードクラスタリングが行われる。このセミハードクラスタリングにおいては、メンバーシップとして離散値(例えば、0.6とか、0.8など)が用いられる。 And, when performing clustering, semi-hardware clustering is performed in order to shorten the calculation time. In this semi-hardware clustering, discrete values (for example, 0.6, 0.8, etc.) are used as membership.
 また、このセミハードクラスタリングにおいては、上述したように、クラスを2つに分けるとともに、これら各クラスを2つのクラスターに分けるものとする。これは、経験上、各クラスを2つのクラスターに分割するのが、効率良くクラスタリングを行い得ることが判っているからである。なお、クラスター個数については、2つに限定されるものでもなく、例えば1つまたは3つ以上であってもよい。例えば、上記離散値を0.5とすると、クラスター数は1となり、離散値を1.0とすると、ハード(ファジィではない)な2つのクラスターとなる。勿論、クラスの個数についても、2つに限定されるものでもなく、3つ以上であってもよい。 In this semi-hardware clustering, as described above, the class is divided into two and each class is divided into two clusters. This is because experience has shown that dividing each class into two clusters allows efficient clustering. The number of clusters is not limited to two, and may be one or three or more, for example. For example, when the discrete value is 0.5, the number of clusters is 1, and when the discrete value is 1.0, two hard (not fuzzy) clusters are obtained. Of course, the number of classes is not limited to two, and may be three or more.
 第1フェーズでは、訓練用データを用いて、クラス毎に、つまり燃焼状態の画像データに対して、セミハードクラスタリングが行われる。 In the first phase, semi-hardware clustering is performed for each class, that is, for the image data of the combustion state, using the training data.
 すなわち、ハードとファジイの中間的なセミハードクラスタリングをするために、メンバーシップukiを下記(8)式のように設定する。 That is, in order to perform semi-hard clustering between hardware and fuzzy, membership u ki is set as in the following equation (8).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 以下、具体的な手順について説明する(クラスター数(i)は2個とする)。なお、βは上述した離散値で指定される。 Hereinafter, a specific procedure will be described (the number of clusters (i) is two). Note that β is specified by the discrete value described above.
 まず、クラスター毎の初期メンバーシップ(uk1,uk2)を下記(9)式および(10)式のように設定する。 First, the initial membership (u k1 , u k2 ) for each cluster is set as in the following equations (9) and (10).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 なお、上記式中、fは1つのクラスの画像データxの主成分得点である。 In the above formula, f k is a main component score of one class of image data x k .
 上記の式により、メンバーシップが与えられると、(4)式からvを、(3)式からSを求め、そして(2)式と(3)式とからマハラノビス距離Dを求め、(8)式でメンバーシップuを更新する。この更新は、メンバーシップが収束するまで繰り返し行われる。 When membership is given by the above equation, v is obtained from equation (4), S is obtained from equation (3), and Mahalanobis distance D is obtained from equations (2) and (3), (8) Update membership u with formula. This update is repeated until membership has converged.
 次に、訓練用データを用いて、各クラス毎(クラス1,2)にクラスタリングを行う。すなわち、各クラスをそれぞれ2つのクラスターに分割する。 Next, clustering is performed for each class (classes 1 and 2) using the training data. That is, each class is divided into two clusters.
 このとき、目的関数Jを用いてセミハードクラスタリングを行う。 At this time, semi-hardware clustering is performed using the objective function J.
 すなわち、目的関数Jが最小となるような訓練用データ毎のメンバーシップuを求める。これにより、各クラスターの中心vとそのメンバーシップuとが求められる。 That is, the membership u for each training data that minimizes the objective function J is obtained. Thus, the center v of each cluster and its membership u are obtained.
 そして、上記求められたメンバーシップuに基づき、各クラス毎にクラスタリングが行われる。 Then, clustering is performed for each class based on the obtained membership u.
 第2フェーズでは、評価用データを用いてクラスタリングが行われる。 In the second phase, clustering is performed using the evaluation data.
 すなわち、第1フェーズにて求められた各クラスターの中心vに対して、マハラノビス距離Dを求める。このとき、第1フェーズで求められたメンバーシップuが用いられる。 That is, the Mahalanobis distance D is obtained for the center v of each cluster obtained in the first phase. At this time, the membership u obtained in the first phase is used.
 そして、予め定められた(6)式にて示すメンバーシップ関数uに、上記求められたマハラノビス距離Dを適用して(用いて)、メンバーシップ関数uにおける各パラメータ(m,γ,ν,α;これらを自由パラメータまたはハイパーパラメータともいう)の最適化を図る。この最適化においては、粒子群最適化法(PSO)が用いられる。 Then, by applying (using) the obtained Mahalanobis distance D to the membership function u * shown by the predetermined equation (6), each parameter (m, γ, ν) in the membership function u * is used. , Α; these are also called free parameters or hyper parameters). In this optimization, a particle swarm optimization method (PSO) is used.
 ここで、この粒子群最適化法を簡単に説明しておく。 Here, this particle swarm optimization method will be briefly described.
 この粒子群最適化法は、メンバーシップ関数uにおける3つのパラメータ(m,γ,ν)と同じくパラメータであるクラスターの混合比率αの最適化が行われる。 In this particle swarm optimization method, the cluster mixing ratio α, which is the same parameter as the three parameters (m, γ, ν) in the membership function u * , is optimized.
 すなわち、この粒子群最適化法では、粒子群の最良位置の探索が、以下に示す(11)式および(12)式の更新式により行われる。 That is, in this particle swarm optimization method, the search for the best position of the particle swarm is performed by the following update formulas (11) and (12).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 上記式中、Paraは粒子の位置を示すパラメータで、α,m,γ,νからなるベクトルである。Veloは粒子の速度ベクトルである。Randは「0」と「1」との間の乱数の対角行列である。w,c,cはスカラー定数である。pbset とgbest はそれぞれpbset とgbestの位置ベクトルである。 In the above formula, Para is a parameter indicating the position of the particle and is a vector composed of α, m, γ, and ν. Velo is the velocity vector of the particle. Rand is a diagonal matrix of random numbers between “0” and “1”. w 0 , c 1 , and c 2 are scalar constants. pbset and gbest are position vectors of pbset and gbest, respectively.
 そして、これらの自由パラメータは、評価用データの誤識別率を最小にするように決定される。 These free parameters are determined so as to minimize the misidentification rate of the evaluation data.
 すなわち、上記メンバーシップ関数uを用いたメンバーシップ*uが、正しいクラスに属するように、言い換えれば、正しいクラスのメンバーシップ*uの方が大きくなるように、最適化が図られる。 That is, optimization is performed so that the membership * u using the membership function u * belongs to the correct class, in other words, the correct class membership * u is larger.
 上述した準備工程にて、メンバーシップ関数uが求められる。 In the above-described preparation process, the membership function u * is obtained.
 次に、上記FCM識別器を用いて燃焼状態を検出する場合の実工程について簡単に説明しておく。ここでは、燃焼室4内の燃焼状態と未燃状態とを識別する場合について説明する。 Next, the actual process when the combustion state is detected using the FCM discriminator will be briefly described. Here, the case where the combustion state in the combustion chamber 4 and an unburned state are identified is demonstrated.
 まず、撮影され且つ所定の処理(後述する)が施された画像データの、上記準備工程で求められた各クラスターの中心vに対するマハラノビス距離Dを求めるとともに、このマハラノビス距離を上記(6)式に代入して求められるメンバーシップ関数値uを上記(5)式に代入し、各クラスのクラスターに対するメンバーシップ*uを求める。そして、クラスター毎に求められたメンバーシップ*uを加算し、クラス毎のメンバーシップ*uを求め、その中で、クラス1のメンバーシップ*uとクラス2のメンバーシップ*uとを比較し、値の大きい方が、当該画像データが所属するクラスと判断する。 First, the Mahalanobis distance D with respect to the center v of each cluster obtained in the preparation step of the image data that has been photographed and subjected to predetermined processing (described later) is obtained, and this Mahalanobis distance is expressed by the above equation (6). The membership function value u * obtained by substitution is substituted into the above equation (5) to obtain membership * u for each class cluster. Then, by adding the membership * u, which is determined for each cluster, determine the membership * u i of each class, in which, and the membership * u 2 of the members of the class 1 ship * u 1 and class 2 In comparison, the larger value is determined as the class to which the image data belongs.
 具体的には、クラス1のメンバーシップ*uが大きい場合には、燃焼状態であると判断され、クラス2のメンバーシップ*uが大きい場合には、未燃状態であると判断される。 Specifically, when the class 1 membership * u 1 is large, it is determined to be in a burning state, and when the class 2 membership * u 2 is large, it is determined to be in an unburned state. .
 また、未燃塊の有無の判断時には、メンバーシップ*uの値に基づき、未燃ごみ塊である度合いすなわち確率が出力される。 Also, when determining whether or not there is an unburned lump, the degree of unburned lump, that is, the probability, is output based on the value of membership * u.
 以下、上述した準備工程および燃焼状態の実工程を実行する燃焼状態検出装置13を含む燃焼制御装置11について説明する。 Hereinafter, the combustion control device 11 including the combustion state detection device 13 that executes the above-described preparation step and actual state of the combustion state will be described.
 なお、以下の説明において、自由パラメータ(m,γ,ν,α)およびクラスター中心v,分散共分散行列S、クラスの混合比率πなどが識別に関わる要素であり、識別用パラメータでもある。 In the following description, the free parameters (m, γ, ν, α), the cluster center v, the variance-covariance matrix S, the class mixture ratio π, and the like are elements related to identification, and are also identification parameters.
 この燃焼制御装置11は、図2に示すように、撮影用カメラ12にて後壁部1a側から撮影した燃焼室4内の撮影画像(静止画像である)を第1所定時間間隔でもって、例えば1秒間隔でもって取得(入力)する撮影画像取得部21と、この撮影画像取得部21で取得された撮影画像すなわち画像データにおける燃焼状態のバランス(ごみの燃え切り点などが比較的明瞭に分かる程度を、バランスが整っていると言うことができる)を判定するためのFCM識別器が具備された燃焼良否判定部22と、この燃焼良否判定部22で判定された画像データを第2所定時間間隔、例えば、10秒間隔でもって平均化する画像データ平均化処理部23と、この画像データ平均化処理部23で平均化された画像データを入力して、図12に示すように、燃焼域である主燃焼用火格子10(10A)および後燃焼用火格子10(10B)、つまり主燃焼段部分Aおよび後燃焼段部分B以外の部分を黒色にてマスキング処理を行い燃焼域を抽出する燃焼域抽出部24と、この燃焼域抽出部24で抽出された燃焼域に対して3種類の大きさでもって区画(ブロック化)する燃焼域区画部25と、この燃焼域区画部25で得られた3種類の画像データを入力するとともにFCM識別器を用いて燃焼状態の分析を行う燃焼状態分析部26と、この燃焼状態分析部26で分析された分析データを入力するとともにFCM識別器を用いて燃焼状態を検出する燃焼状態検出部27と、この燃焼状態検出部27で検出された検出データを入力しファジィ推論を行うことにより、燃焼用空気の供給量(以下、空気供給量という)およびごみの供給量(以下、ごみ供給量という)の制御指令(制御信号)つまり現在の指令値に対する補正指令(補正信号)を出力するファジィ演算部28と、上記燃焼状態検出部27で検出された未燃ごみ塊の位置および火炎の位置のデータを入力して上記ファジィ演算部28から出力される燃焼用空気の制御対象位置すなわち左右いずれかの空気供給ノズル9を検出する空気制御対象位置検出部29とから構成されている。 As shown in FIG. 2, the combustion control device 11 captures a captured image (a still image) in the combustion chamber 4 captured from the rear wall 1a side by the imaging camera 12 at a first predetermined time interval. For example, the captured image acquisition unit 21 that acquires (inputs) at intervals of 1 second and the balance of the combustion state in the captured image, that is, the image data acquired by the captured image acquisition unit 21 (such as the burnout point of garbage) are relatively clear. The degree of understanding can be said to be well-balanced). The combustion pass / fail judgment unit 22 provided with an FCM discriminator for judging, and the image data judged by the combustion pass / fail judgment unit 22 is a second predetermined value. As shown in FIG. 12, an image data averaging processing unit 23 that averages at a time interval, for example, an interval of 10 seconds, and image data averaged by the image data averaging processing unit 23 are input. The main combustion grate 10 (10A) and the post-combustion grate 10 (10B), that is, the combustion zone, that is, the portions other than the main combustion stage portion A and the rear combustion stage portion B are masked with black so that the combustion zone is The combustion zone extraction unit 24 to be extracted, the combustion zone partition unit 25 that is divided (blocked) into three types of sizes with respect to the combustion zone extracted by the combustion zone extraction unit 24, and the combustion zone partition unit 25 The three types of image data obtained in the above are input, and the combustion state analysis unit 26 that analyzes the combustion state using an FCM discriminator, and the analysis data analyzed by the combustion state analysis unit 26 and the FCM identification A combustion state detection unit 27 that detects a combustion state using a gas generator, and the detection data detected by the combustion state detection unit 27 are input and fuzzy inference is performed to thereby supply a combustion air supply amount (hereinafter referred to as air). A fuzzy calculation unit 28 that outputs a control command (control signal) of a supply amount of waste) and a supply amount of waste (hereinafter referred to as a waste supply amount), that is, a correction command (correction signal) for the current command value, and the combustion state detection unit 27, the position of the unburned lump and the position of the flame detected in 27 is input, and the air to be detected, that is, the right or left air supply nozzle 9, is detected from the fuzzy computing unit 28. And a control target position detection unit 29.
 上記燃焼良否判定部22では、FCM識別器により、見た目に燃焼状態が全体的に良好で燃え切り点である燃え切り位置がはっきりとしている状態(バランス良好)、見た目に燃焼状態が悪く燃え切り位置がはっきりとしない状態(バランス不良)、または灰の舞い上がり、水蒸気の充満などにより、燃焼状態が目視で確認できない状態(判定不能)であるかが判定される。 In the combustion quality determination unit 22, the FCM discriminator is in a state where the combustion state is generally good and the burnout position which is the burnout point is clear (balance is good), the combustion state is badly seen and the burnout position is bad. It is determined whether or not the combustion state cannot be visually confirmed (determination is impossible) due to a state in which the combustion state is not clear (balance imbalance), or ascending ash, filling with water vapor, or the like.
 そして、この燃焼良否判定部22では、例えば10枚分の撮影画像を判定した後、半数以上がバランス不良であった場合に、バランス異常警報が出力され、バランス良好のものが1枚もない場合には、以後の処理は停止される。 Then, in the combustion quality determination unit 22, for example, after determining 10 captured images, if more than half of the images are poorly balanced, a balance abnormality alarm is output, and there is no one with good balance. The subsequent processing is stopped.
 上記画像データ平均化処理部23では、燃焼良否判定部22でバランス良好であると判断された画像データ(例えば、480×640画素)に対して、画素毎に、RGB成分値(輝度値)の平均値が求められる。 In the image data averaging processing unit 23, RGB component values (luminance values) are determined for each pixel with respect to the image data (for example, 480 × 640 pixels) determined to be in good balance by the combustion quality determination unit 22. An average value is obtained.
 上記燃焼域区画部25では、燃焼域抽出部24で抽出された燃焼域が、3種類の大きさに、すなわち第1区画(10×10画素程度;幅が小さい正方形の小区画ともいえる)、第2区画(30×80画素程度;幅が中ぐらいで縦に長い長方形の中長区画ともいえる)および第3区画(60×60画素程度;幅が大きい正方形の大区画ともいえる)に区画される。簡単に言えば、燃焼域が、正方形の第1区画、この第1区画よりも大きい面積を有する長方形の第2区画およびこの第1区画より大きい面積を有する正方形の第3区画でもってそれぞれ区画されている。なお、第2区画と第3区画との違いは形状であり、またこれら両区間の面積の大小については、火炎の状態に応じて選ばれることになるため、いずれが大きいかを決めることはできない。したがって、燃焼域で見ると、図13に示すように、第1区画(D1)は500個程度、図14に示すように、第3区画(D3:1区画を斜線で示す)は14個、図15に示すように、第2区画(D2:1区画を斜線で示す)は40個得られる。なお、これら各区画の個数および各区画に対する画素数については、必要に応じて変更し得るものである。 In the combustion zone partition unit 25, the combustion zone extracted by the combustion zone extraction unit 24 has three types of sizes, that is, the first zone (about 10 × 10 pixels; it can be said that the square is a small square). It is divided into a second section (about 30 × 80 pixels; a medium-long section of a medium rectangle with a long width) and a third section (about 60 × 60 pixels; a large square section with a large width). The Briefly, the combustion zone is divided into a square first section, a rectangular second section having an area larger than the first section, and a square third section having an area larger than the first section. ing. The difference between the second section and the third section is the shape, and the size of the area of both sections is selected according to the state of the flame, so it cannot be determined which is larger. . Accordingly, when viewed in the combustion zone, as shown in FIG. 13, the first section (D1) is about 500 pieces, and as shown in FIG. 14, the third section (D3: 1 section is shown by hatching) is 14, As shown in FIG. 15, 40 second sections (D2: 1 section is indicated by hatching) are obtained. The number of these sections and the number of pixels for each section can be changed as necessary.
 ところで、第3区画(D3)および第2区画(D2)については、区画する際に、隣接する区画同士はその一部が重なるように、例えば左右方向および上下方向で、その区画の半分の距離でもってずらして配置される。このように、隣接する区画同士をずらせたのは、大きい区画でありながら、燃焼状態を適確に判断し得るように、すなわちその燃焼状態を呈する位置をできるだけ狭い範囲で特定するためである。 By the way, about the 3rd division (D3) and the 2nd division (D2), when dividing, it is the distance of the half of the division in the horizontal direction and the up-and-down direction, for example so that the adjacent divisions may overlap a part. So they are staggered. The reason why the adjacent sections are shifted from each other in this manner is to identify the combustion state in a narrow range as much as possible so that the combustion state can be accurately determined while being a large section.
 上記燃焼状態分析部26では、FCM識別器により、燃焼・未燃の状態、未燃塊の有無つまり未燃塊である度合い、火炎の強度などが識別される。 In the combustion state analysis unit 26, the FCM discriminator identifies the combustion / unburned state, the presence / absence of unburned mass, that is, the degree of unburned mass, the strength of the flame, and the like.
 すなわち、図2に示すように、この燃焼状態分析部26には、燃焼域区画部25で得られた各第1区画の画像データをFCM識別器で、燃焼/未燃の2つのクラスに分ける燃焼識別部41と、同じく燃焼域区画部25で得られた各第3区画の画像データをFCM識別器で、未燃塊の有無を判断する未燃塊識別部42と、同じく燃焼域区画部25で得られた第2区画の画像データをFCM識別器で、火炎の強度に応じて4つのクラスに、例えば強火炎、中火炎、小火炎、火炎無しに識別する火炎識別部43とが具備されている。 That is, as shown in FIG. 2, the combustion state analyzing unit 26 divides the image data of each first section obtained by the combustion zone section 25 into two classes of combustion / unburned by the FCM discriminator. The combustion discriminating unit 41, the unburned mass discriminating unit 42 for determining the presence / absence of an unburned mass with the FCM discriminator using the image data of each third zone obtained by the combustion zone dividing unit 25, and the combustion zone dividing unit A flame discriminating unit 43 for discriminating the image data of the second section obtained in No. 25 into four classes according to the strength of the flame, for example, strong flame, medium flame, small flame, no flame, is provided. Has been.
 上記燃焼状態検出部27では、燃焼ごみの燃え切り位置、未燃ごみの塊である度合い(未燃ごみである確率である)およびその位置、並びに火炎の強度すなわち火炎の強い領域(例えば、強火炎)およびその位置が検出される。 In the combustion state detection unit 27, the burnout position of the burned garbage, the degree of unburned lump (the probability of being unburned litter) and its position, and the intensity of the flame, that is, a strong flame area (for example, strong fire) Flame) and its position is detected.
 図2に示すように、上記燃焼状態検出部27には、上記燃焼状態分析部26の燃焼識別部41で得られた燃焼状態の第1区画に基づき燃焼塊を検出するとともにこの燃焼塊に基づき燃焼塊の下端位置を検出することにより燃え切り位置を検出する燃え切り位置検出部51と、この燃え切り位置検出部51で検出された燃え切り位置および燃焼状態分析部26の未燃塊識別部42で得られた未燃塊のデータに基づき、未燃ごみ塊である度合いおよびその位置を検出する未燃ごみ塊検出部52と、燃焼状態分析部26の火炎識別部43で得られた火炎のデータに基づき火炎の強い領域を検出する火炎領域検出部53とが具備されている。 As shown in FIG. 2, the combustion state detection unit 27 detects a combustion mass based on the first section of the combustion state obtained by the combustion identification unit 41 of the combustion state analysis unit 26 and based on this combustion mass. A burnout position detection unit 51 that detects a burnout position by detecting the lower end position of the combustion lump, and a burnout position detected by the burnout position detection unit 51 and an unburned lump identification unit of the combustion state analysis unit 26 Based on the unburned lump data obtained at 42, the unburned lump detection unit 52 that detects the degree and position of the unburned lump and the flame obtained by the flame identification unit 43 of the combustion state analysis unit 26 And a flame region detection unit 53 for detecting a region with a strong flame based on the data.
 上記燃え切り位置検出部51では、燃焼識別部41で得られた燃焼状態の第1区画のデータを用いて、燃焼している塊である燃焼塊を抽出するとともにこの燃焼塊を例えば上方から走査して当該塊部が無くなった位置が、燃え切り位置Lと判断される(逆に、下方から走査して塊部が現れた位置を燃え切り位置と判断してもよい)(図16参照)。 The burnout position detection unit 51 uses the data of the first section of the combustion state obtained by the combustion identification unit 41 to extract a combustion mass that is a burning mass and scan the combustion mass from above, for example. Then, the position at which the lump has disappeared is determined as the burnout position L (conversely, the position at which the lump appeared by scanning from below may be determined as the burnout position) (see FIG. 16). .
 なお、燃焼塊については、第1区画に対してラべリング処理を行い、燃焼している第1区画が例えば8個以上連続する場合(8連結ラべリング処理)に検出される。 In addition, about a combustion lump, a labeling process is performed with respect to a 1st division, and it detects when the 1st division which is burning continues eight or more (8 connection labeling process).
 上記未燃ごみ塊検出部52では、未燃塊識別部42で得られた第3区画のデータに基づき、すなわち燃え切り位置より上側で燃えていない第3区画がある場合、未燃ごみ塊である度合いおよびその位置(第3区画の位置)が検出される。 In the unburned lump detection unit 52, based on the data of the third zone obtained by the unburned lump identification unit 42, that is, when there is a third zone that is not burned above the burnout position, A certain degree and its position (position of the third section) are detected.
 また、上記火炎領域検出部53では、未燃ごみ塊検出部52同様に、火炎識別部43で得られた第2区画のデータに基づき、強く燃えている火炎(強火炎)の強度およびその位置(第2区画の位置)が検出さる。 Further, in the flame area detection unit 53, similarly to the unburned litter detection unit 52, the intensity and position of the strongly burning flame (strong flame) based on the data of the second section obtained by the flame identification unit 43. (The position of the second section) is detected.
 なお、ここでは火炎の強度として、FCM識別器により識別した際のメンバーシップの値(識別の確からさを表す確率でもある)に基づき、0~100(%)の数値が用いられる。また、隣接する第3区画または第2区画が存在する場合には、それぞれの位置は、両区画が重なっている部分が位置として出力される。つまり、両方とも、比較的大きい区画でありながら、狭い部分を特定することができる。 Note that, here, a numerical value of 0 to 100 (%) is used as the flame intensity based on the membership value (which is also a probability representing the probability of identification) when identified by the FCM classifier. Further, when there is an adjacent third section or second section, the position where each section overlaps is output as the position. That is, both can identify a narrow portion while being a relatively large section.
 上記ファジィ演算部28は、時系列で入力される燃焼状態の検出データの複数個、例えば10個の平均値およびこの平均値の変化率を求めるファジィ推論用データ作成部(以下、データ作成部という)61と、このデータ作成部61で求められたデータを入力するとともに、このデータをファジィルールに適用して推論を行うことにより出力としての燃焼用空気およびごみの供給量の制御指令(補正指令)を得るファジィ推論部62とから構成されている。 The fuzzy computing unit 28 is a fuzzy inference data creation unit (hereinafter referred to as a data creation unit) that calculates a plurality of, for example, 10 average values of combustion state detection data input in time series and a rate of change of the average value. ) 61 and the data obtained by the data creation unit 61 are input, and this data is applied to a fuzzy rule to make an inference, thereby controlling the supply amount of combustion air and dust as an output (correction command) ) To obtain a fuzzy reasoning unit 62.
 まず、データ作成部61について説明する。 First, the data creation unit 61 will be described.
 すなわち、燃え切り位置を示すデータ、未燃ごみ塊の検出データ(未燃ごみ塊である度合い)、火炎の検出データ(火炎の強度)が時系列でデータ作成部61に入力されて、それぞれ10個分のデータの平均値Eが求められるとともに、この得られた前後における2つの平均値Eの差分を求めてその変化率[(E-Ek-1)/Δt]が求められる。 That is, data indicating the burnout position, unburned lump detection data (degree of unburned lump), and flame detection data (flame intensity) are input to the data creation unit 61 in time series, and each 10 The average value E of the individual data is obtained, and the difference between the two average values E before and after the obtained data is obtained, and the rate of change [(E k −E k−1 ) / Δt] is obtained.
 次に、ファジィ推論部62について説明する。 Next, the fuzzy inference unit 62 will be described.
 このファジィ推論部62には、図示しないが、上記データ作成部61で求められたデータの平均値(以下に示すファジィ集合では現在値と称す)およびその変化率に基づき、それぞれに対応する入力用メンバーシップ関数(前件部に相当する)から出力用メンバーシップ関数(後件部に相当する)を推論するファジィルール(後述する)を有する推論部62aと、この推論部62aで求められた出力用メンバーシップ関数からその出力を例えばミニ・マックス法により非ファジィ化(数値化)する非ファジィ化部62bが具備されている。なお、以下、メンバーシップ関数をMSFと称して説明する。 Although not shown in the figure, the fuzzy inference unit 62 uses an average value of data obtained by the data creation unit 61 (referred to as a current value in the fuzzy set shown below) and a rate of change thereof for each input An inference unit 62a having a fuzzy rule (described later) for inferring an output membership function (corresponding to the antecedent part) from a membership function (corresponding to the antecedent part), and an output obtained by the inference part 62a A non-fuzzification unit 62b is provided for defuzzifying (numerizing) the output from the membership function for use by, for example, the mini-max method. Hereinafter, the membership function will be described as MSF.
 例えば、入力用のファジィ集合としては、図5に示すように、それぞれ3つのMSF[VS(小),ME(中),VB(大)]からなるものが用いられ、また出力用のファジィ集合としては、図6に示すように、5つのMSF[VS(非常に少なく),MS(やや少なく),ME(ゼロ),MB(やや多く),VB(非常に多く)]からなるものが用いられる。なお、具体的なファジィ集合を表すグラフについては、後で説明する。 For example, as the fuzzy set for input, as shown in FIG. 5, a set of three MSFs [VS (small), ME (medium), VB (large)] is used, and an output fuzzy set is used. As shown in FIG. 6, the one composed of five MSFs [VS (very little), MS (somewhat little), ME (zero), MB (somewhat much), VB (very much)] is used. It is done. A graph representing a specific fuzzy set will be described later.
 以下、ファジィ推論部62で行われる推論内容を具体的に説明する。
(1)まず、ごみ供給量を求める場合について説明する。
Hereinafter, inference contents performed by the fuzzy inference unit 62 will be described in detail.
(1) First, the case where the amount of waste supply is determined will be described.
 ごみ供給量については、未燃ごみ塊である度合い、火炎の強度、および燃え切り位置が考慮される。 ご Regarding the amount of waste supplied, the degree of unburned waste lump, the strength of the flame, and the burnout position are considered.
 例えば、未燃ごみ塊である度合いが50%(0~100%の範囲の値)で、その変化率が-5%(-50~+50%の範囲の値)である場合、図7に示すように、入力用MSFは、それぞれ、ME(50%に対応)およびME(-5%に対応)となり、出力用MSFとしてはME(ゼロ)が選択される。 For example, when the degree of unburned litter is 50% (value in the range of 0 to 100%) and the rate of change is -5% (value in the range of -50 to + 50%), it is shown in FIG. Thus, the input MSFs are ME (corresponding to 50%) and ME (corresponding to −5%), respectively, and ME (zero) is selected as the output MSF.
 そして、この場合、2つの入力用MSFのグレードの小さい方が選択され、このグレードが出力用のMSFに適用される。例えば、出力用MSF(ME)が三角形状である場合には、そのグレード値から上の部分が切除された台形状のグラフが出力となる。 In this case, the smaller one of the two input MSF grades is selected, and this grade is applied to the output MSF. For example, when the output MSF (ME) has a triangular shape, a trapezoidal graph in which the upper portion is cut from the grade value is output.
 同様にして、火炎の強度および燃え切り位置についても、出力用のMSFが求められる。 Similarly, the MSF for output is also required for the flame strength and burnout position.
 そして、このようにして求められた3つのMSFが合成されるとともに、その重心が求められて出力値が得られる。 Then, the three MSFs obtained in this way are synthesized, and the center of gravity is obtained to obtain an output value.
 この出力値としては、未燃ごみ塊がある場合には、その度合いに応じて供給速度(つまり、火格子の送り速度である)が遅くされる。これは、ごみを乾燥させるためである。また、火炎の強度が大きい場合には、供給速度が速くされる。 As this output value, when there is an unburned garbage lump, the supply speed (that is, the feed rate of the grate) is slowed according to the degree. This is to dry the garbage. Further, when the flame strength is high, the supply speed is increased.
 なお、火炎の強度のファジィルールを図8に、燃え切り位置のファジィルールを図9に示しておく。
(2)次に、空気供給量を求める場合について説明する。
FIG. 8 shows a fuzzy rule for the flame strength, and FIG. 9 shows a fuzzy rule for the burnout position.
(2) Next, the case where the air supply amount is obtained will be described.
 空気供給量については、未燃ごみ塊の度合いおよび火炎の強度に加えてそれぞれの位置が考慮される。 ∙ Regarding the air supply amount, each position is considered in addition to the degree of unburned litter and the strength of the flame.
 以下、ごみ供給量の場合と同様の手順ではあるが説明しておく。 Hereafter, although it is the same procedure as the case of waste supply amount, it explains.
 すなわち、未燃ごみ塊である度合いが50%(0~100%の範囲の値)で、その変化率が-5%(-50~+50%の範囲の値)である場合、図10に示すように、入力用MSFは、それぞれ、ME(50%に対応)およびME(-5%に対応)となり、出力用MSFとしてはME(ゼロ)が選択される。 That is, when the degree of unburned lump is 50% (value in the range of 0 to 100%) and the rate of change is -5% (value in the range of -50 to + 50%), it is shown in FIG. Thus, the input MSFs are ME (corresponding to 50%) and ME (corresponding to −5%), respectively, and ME (zero) is selected as the output MSF.
 そして、この場合、2つの入力用MSFのグレードの小さい方が選択され、このグレードが出力用のMSFに適用される。例えば、出力用MSF(ME)が三角形状である場合には、そのグレード値から上の部分が切除された台形状のグラフが出力となる。 In this case, the smaller one of the two input MSF grades is selected, and this grade is applied to the output MSF. For example, when the output MSF (ME) has a triangular shape, a trapezoidal graph in which the upper portion is cut from the grade value is output.
 同様にして、火炎の強度についても、出力用のMSFが求められる。 Similarly, MSF for output is also required for the flame strength.
 そして、このようにして求められた未燃ごみ塊および火炎の強度用の2つのMSFが合成されるとともに、例えばその重心が求められて、制御指令としての出力値つまり空気供給量が得られる。この出力値としては、火炎が強い場合には、空気供給量が減らされ、また未燃ごみ塊がある場合には、空気供給量が増やされる。なお、火炎の強度についてのファジィルールを図11に示しておく。 Then, the two MSFs for the unburned garbage lump and the flame strength obtained in this way are synthesized, and for example, the center of gravity is obtained, and an output value, that is, an air supply amount as a control command is obtained. As the output value, when the flame is strong, the air supply amount is decreased, and when there is an unburned garbage lump, the air supply amount is increased. In addition, the fuzzy rule regarding the intensity | strength of a flame is shown in FIG.
 また、上記空気制御対象位置検出部29では、上述したように、ファジィ演算部28により空気供給量が制御される際に、未燃ごみ塊検出部52から出力された第3区画の位置データおよび火炎領域検出部53から出力された第2区画の位置データが入力されて、左右いずれの空気供給ノズル9からの空気供給量を制御するかが判断(選択)される。 In the air control target position detection unit 29, as described above, when the air supply amount is controlled by the fuzzy calculation unit 28, the position data of the third section output from the unburned lump detection unit 52 and The position data of the second section output from the flame region detection unit 53 is input, and it is determined (selected) whether to control the air supply amount from the left or right air supply nozzle 9.
 したがって、空気供給量の制御指令とともに制御対象となる空気供給ノズル9の選択指令が出力されることになる。 Therefore, a command for selecting the air supply nozzle 9 to be controlled is output together with a control command for the air supply amount.
 ここで、上述したFCM識別器の構成について説明しておく。 Here, the configuration of the FCM discriminator described above will be described.
 ここでは、燃焼状態分析部26の燃焼識別部41に設けられて燃焼状態であるかまたは未燃状態であるかを識別するものとして説明する。 Here, the description will be made on the assumption that the combustion identification unit 41 of the combustion state analysis unit 26 identifies whether the combustion state is the combustion state or the unburned state.
 このFCM識別器は、図3に示すように、燃焼域区画部25から入力された第1区画の画像データを1024(縦横ともに32区画して同一のデータ個数にする)に区画する正規化部71と、この正規化部71で正規化された画像データを1024次元のベクトルにするベクトル化部72と、このベクトル化部72でベクトル化されたベクトルデータの次元を主成分分析により例えば50次元のデータに圧縮する次元圧縮部73と、この次元圧縮部73で次元圧縮された画像データの予め求められたクラスターの中心に対するマハラノビス距離を求めるマハラノビス距離計算部74と、このマハラノビス距離計算部74で求められたマハラノビス距離に基づきメンバーシップ関数uおよびメンバーシップ*uを求める上記(7)式および(6)式が具備されたメンバーシップ計算部75と、このメンバーシップ計算部75で求められたメンバーシップ*uに基づき、当該画像データが、どのクラスに属するかつまり燃焼状態か未燃状態であるかを判断する状態判断部76とから構成されている。なお、次元圧縮部73、マハラノビス距離計算部74、メンバーシップ計算部75および状態判断部76での計算に際しては、データベース部(図示せず)から適切な燃焼室位置情報、画像圧縮係数、識別用パラメータなどが読み込まれて使用される。なお、実稼動時において、読み込まれる識別用パラメータは訓練などにより最適に調整された値である(説明を省略するが、パラメータの調整部などが具備されている)。 As shown in FIG. 3, the FCM discriminator is a normalization unit that partitions the image data of the first section input from the combustion zone section 25 into 1024 (32 sections in the vertical and horizontal directions to have the same number of data). 71, a vectorization unit 72 that converts the image data normalized by the normalization unit 71 into a 1024-dimensional vector, and the dimension of the vector data vectorized by the vectorization unit 72 is, for example, 50 dimensions by principal component analysis. A dimensional compression unit 73 that compresses the data into the data, a Mahalanobis distance calculation unit 74 that obtains a Mahalanobis distance with respect to the center of the cluster that has been dimensionally compressed by the dimensional compression unit 73, and a Mahalanobis distance calculation unit 74. Based on the calculated Mahalanobis distance, the above equation (7) for determining the membership function u * and membership * u and ( 6) Based on the membership calculation unit 75 provided with the equation and the membership * u obtained by the membership calculation unit 75, the class to which the image data belongs, that is, the combustion state or the unburned state It is comprised from the state judgment part 76 which judges these. In the calculation by the dimension compression unit 73, the Mahalanobis distance calculation unit 74, the membership calculation unit 75, and the state determination unit 76, appropriate combustion chamber position information, image compression coefficients, and identification data are obtained from a database unit (not shown). Parameters are read and used. In actual operation, the identification parameter read is a value that is optimally adjusted by training or the like (the description is omitted, but a parameter adjustment unit is provided).
 具体的には、マハラノビス距離計算部74では、画像データの予め求められているクラスター中心に対するマハラノビス距離Dが求められ、そしてメンバーシップ計算部75では、マハラノビス距離Dに基づきメンバーシップ関数u(関数値)が求まり、このメンバーシップ関数uに基づきメンバーシップ*uが求められる。つまり、各クラスターに対してメンバーシップ*u,*uが求められる。そして、各クラス毎において、メンバーシップが加算されて、クラスにおけるメンバーシップ*uc1,*uc2が求められる。 Specifically, the Mahalanobis distance calculation unit 74 obtains the Mahalanobis distance D with respect to the cluster center obtained in advance of the image data, and the membership calculation unit 75 obtains the membership function u * (function) based on the Mahalanobis distance D. Value), and membership * u is obtained based on this membership function u * . That is, membership * u 1 , * u 2 is obtained for each cluster. Then, for each class, membership is added, and memberships * u c1 and * u c2 in the class are obtained.
 そして、状態判断部76において、これら求められた各クラスでのメンバーシップ*uc1,*uc2同士が比較されて、その値が大きい方に、この画像データが属していると判断される。 Then, the state determination unit 76 compares the obtained memberships * u c1 and * u c2 in each class, and determines that this image data belongs to the larger value.
 例えば、この判断時の各クラスにおけるメンバーシップを図4に示す。図4は、2つのクラス1およびクラス2に、それぞれ2つのクラスター1およびクラスター2をそれぞれ形成したもので、クラス1側には、v11のクラスター1とv12のクラスター2とがあり、またクラス2側にも、v21のクラスター1と、v22のクラスター2とがある。図4において、Xの地点が判断すべき画像データであるとすると、クラス1における一方のクラスター1に対するXのメンバーシップをu11、他方のクラスター2に対するXのメンバーシップをu12とし、またクラス2の一方のクラスター1に対するXのメンバーシップをu21、他方のクラスター2に対するXのメンバーシップをu22とすると、Xのクラス1に対するメンバーシップuは、u11+u12となり、またXのクラス2に対するメンバーシップuは、u21+u22となる。つまり、各クラスにおける各クラスターのメンバーシップの合計値(両クラスターに対するメンバーシップの高さの合計である)が各クラスに対するメンバーシップとなる。そして、そのメンバーシップu,uのうち、大きい方のクラスに所属していることになる。クラス1に所属していれば、燃焼状態であり、またクラス2に所属していれば、未燃状態を示している。 For example, the membership in each class at the time of this determination is shown in FIG. 4, the two Class 1 and Class 2, in which respectively form two clusters 1 and cluster 2, respectively, the class 1 side, there is a cluster 2 clusters 1 and v 12 of v 11, also On the class 2 side, there is also a cluster 1 of v 21 and a cluster 2 of v 22 . In FIG. 4, if the point of X is image data to be determined, the membership of X for one cluster 1 in class 1 is u 11 , the membership of X for the other cluster 2 is u 12 , and the class 2, the membership of X to class 1 is u 21 , and the membership of X to the other cluster 2 is u 22 , the membership u 1 to class 1 of X is u 11 + u 12 , membership u 2 for the class 2, the u 21 + u 22. That is, the total value of membership of each cluster in each class (which is the sum of membership heights for both clusters) becomes the membership for each class. Of the memberships u 1 and u 2 , they belong to the larger class. If it belongs to class 1, it is in a burning state, and if it belongs to class 2, it indicates an unburned state.
 なお、上述した粒子群最適化法にて誤識別率が最小となるように自由パラメータが探索されるが、例えばクラスターの混合比率αを変化させると、図4のクラスターの領域(等高線で示す)の形状が変化することになり、したがって2つのクラスの境界線も非線形に変化する。 Note that free parameters are searched for by the above-described particle swarm optimization method so that the misidentification rate is minimized. For example, when the cluster mixing ratio α is changed, the cluster region (shown by contour lines) in FIG. Will change, and therefore the boundaries of the two classes will also change non-linearly.
 次に、上記燃焼制御装置11による燃焼状態の全体的な制御方法について説明する。 Next, an overall control method of the combustion state by the combustion control device 11 will be described.
 燃焼状態検出装置13にて、予め、訓練用データおよび評価用データにより、各種識別用のパラメータが決定されている状態において、燃焼室4内の状態が撮影カメラ12で撮影画像取得部21にて取り込まれると、まず、燃焼良否判定部22で燃焼室4内の燃焼が適正に行われているか否かが判定される。この燃焼良否判定部22では、取り込まれた燃焼室4の画像データにFCM識別法が適用されて、燃焼が正常に行われているか否かが判断される。正常な場合とは、燃焼の制御が可能な状態であり、例えば燃焼室4内の燃え切り位置などが比較的明瞭に写っている場合を言う。一方、正常でない場合つまり異常である場合は、燃焼の制御をすることができないような状態であり、例えば燃焼室4内に灰が舞い上がり、または水蒸気などが充満して燃え切り位置が不明であるような場合を言う。このような状態が、画像10枚(10秒程度)続いた場合には、燃焼状態が異常(バランス不良)である旨の警報が出力される。 In the state in which various identification parameters are determined in advance by the training data and the evaluation data in the combustion state detection device 13, the state in the combustion chamber 4 is captured by the captured camera 12 by the captured image acquisition unit 21. When it is taken in, first, it is determined whether or not the combustion in the combustion chamber 4 is properly performed by the combustion quality determination unit 22. The combustion quality determination unit 22 applies the FCM identification method to the captured image data of the combustion chamber 4 to determine whether combustion is normally performed. The normal case is a state in which the combustion can be controlled, for example, a case where the burnout position in the combustion chamber 4 is relatively clearly shown. On the other hand, when it is not normal, that is, when it is abnormal, it is in a state where combustion cannot be controlled. Say such a case. When such a state continues for 10 images (about 10 seconds), an alarm indicating that the combustion state is abnormal (unbalanced) is output.
 そして、燃焼良否判定部22で燃焼が異常でなく、正常であると判断された場合には、その画像データが画像データ平均化処理部23に入力されて、画像データの平均化、つまり、各画素毎のRGBデータの平均化が行われる。 When the combustion quality determination unit 22 determines that the combustion is not abnormal but normal, the image data is input to the image data averaging processing unit 23, and the image data is averaged. The RGB data for each pixel is averaged.
 この平均化された画像データは燃焼域抽出部24に入力されて、燃焼室4における主燃焼段部分Aおよび後燃焼段部分Bが抽出される。 The averaged image data is input to the combustion zone extraction unit 24, and the main combustion stage portion A and the post combustion stage portion B in the combustion chamber 4 are extracted.
 次に、抽出された燃焼域が燃焼域区画部25に入力されて、3種類の区画に、すなわち第1区画、第2区画、第3区画の画像データに区画される。なお、第1区画および第3区画は、燃焼域全体10A,10Bに対して行われるが、第2区画は主燃焼域10Aに対して行われる。 Next, the extracted combustion area is input to the combustion area section 25 and divided into three types of sections, that is, image data of the first section, the second section, and the third section. The first section and the third section are performed for the entire combustion zone 10A, 10B, while the second section is performed for the main combustion zone 10A.
 次に、これら区画された画像データが燃焼状態分析部26に入力される。 Next, these segmented image data are input to the combustion state analysis unit 26.
 すなわち、第1区画の画像データが燃焼識別部41に入力され、第1区画毎にFCM識別器にて燃焼状態か未燃状態かが判断される。 That is, the image data of the first section is input to the combustion identification unit 41, and it is determined for each first section whether it is in a combustion state or an unburned state by the FCM identifier.
 また、第3区画の画像データは未燃塊識別部42に入力され、第3区画毎にFCM識別器にて燃焼している燃焼状態であるか燃焼していない未燃状態かが判断される。 Further, the image data of the third section is input to the unburned mass identification unit 42, and it is determined for each third section whether the combustion state is burning by the FCM identifier or the unburned state is not burning. .
 さらに、第2区画の画像データは火炎識別部43に入力され、第2区画毎にFCM識別器にて、火炎の強度、つまり、火炎の有無および火炎の強弱など4つに分類される。すなわち、強火炎、中火炎、弱火炎および火炎無しの4つに分類される。 Further, the image data of the second section is input to the flame discriminating unit 43, and is classified into four in accordance with the intensity of the flame, that is, the presence / absence of the flame and the strength of the flame for each second section by the FCM discriminator. That is, it is classified into four types: strong flame, medium flame, weak flame, and no flame.
 次に、上記燃焼状態検出部27にて燃焼状態が検出される。 Next, the combustion state detection unit 27 detects the combustion state.
 すなわち、燃え切り位置検出部51では、燃焼識別部41で得られた第1区画毎の燃焼・未燃データを入力するとともに、燃焼している第1区画に対して例えば8連結ラべリング処理を行うことにより、燃焼塊が検出される。なお、8連結より少ない塊については、部分的に燃えている状態であると考えられるため考慮しない。 That is, in the burnout position detection unit 51, the combustion / unburned data for each first section obtained by the combustion identification unit 41 is input and, for example, an 8-connected labeling process is performed on the burning first section. By performing the above, a combustion mass is detected. In addition, since it is thought that it is the state which is partially burning about the lump less than 8 connection, it does not consider.
 そして、燃焼塊であると判断された領域に対して、例えば上方から第1区画の列毎に走査して、その下端列の位置を求める。この位置が燃え切り位置として検出される。 Then, the region determined to be a combustion mass is scanned, for example, for each row of the first section from above, and the position of the lower end row is obtained. This position is detected as a burnout position.
 次に、未燃ごみ塊検出部52では、上記燃え切り位置検出部51で検出された燃え切り位置を入力するとともに、未燃塊検出部42で検出された未燃塊の第3区画データを入力し、この第3区画の位置が燃え切り位置より上方であるか否かを判断し、上方にある場合には、未燃ごみ塊が存在していると判断され、その第3区画の位置が検出される。この第3区画の位置としては、燃焼域の全長を0~100(%)とし前側からの数値として表したものが用いられる。また、未燃ごみ塊である度合いについても、0~100%の範囲の数値で出力される。この数値としては、FCM識別器により第3区画に対して燃焼・未燃のクラス分けを行ったときに得られたメンバーシップ値が用いられる。 Next, in the unburned lump detection unit 52, the burnout position detected by the burnout position detection unit 51 is input, and the third zone data of the unburned lump detected by the unburned lump detection unit 42 is input. It is determined whether or not the position of the third section is above the burnout position, and if it is above, it is determined that there is an unburned garbage lump, and the position of the third section Is detected. As the position of the third section, a value expressed as a numerical value from the front side with the total length of the combustion zone being 0 to 100 (%) is used. Also, the degree of unburned litter is output as a numerical value in the range of 0 to 100%. As this numerical value, the membership value obtained when the FCM discriminator classifies the third section as burned / unburned is used.
 次に、火炎領域検出部53では、火炎識別部43で強火炎、中火炎、弱火炎および火炎無しの4つに識別された識別結果を入力して、火炎の強度が最も高い第2区画の位置(この場合も、燃焼域の全長を0~100(%)とし前側からの数値として表したもの)とその強度が数値として検出される。 Next, the flame area detection unit 53 inputs the identification results identified by the flame identification unit 43 into the four types of strong flame, medium flame, weak flame and no flame, and the second zone having the highest flame intensity. The position (in this case also, the total length of the combustion zone is expressed as a numerical value from the front side with 0 to 100 (%)) and its intensity are detected as numerical values.
 次に、上記求められた値、すなわち燃え切り位置のデータ(前後方向における燃焼域を0~100%の範囲とした場合の数値)、未燃ごみ塊である度合い(0~100%の範囲とした場合の数値)、火炎の強度(0~100%の範囲とした場合の数値)のデータが、ファジィ演算部28に入力される。 Next, the value obtained above, that is, burnout position data (a numerical value when the combustion range in the front-rear direction is in the range of 0 to 100%), the degree of unburned litter (in the range of 0 to 100%) ) And the flame intensity (numerical values in the range of 0 to 100%) are input to the fuzzy computing unit 28.
 そして、ファジィ演算部28のデータ作成部61では、上述したように、それぞれ入力されたデータに基づき、ファジィ推論用のデータとして、例えば10個分の平均値およびその変化率が求められる。 Then, as described above, the data creation unit 61 of the fuzzy calculation unit 28 obtains, for example, an average value for 10 pieces and a change rate thereof as fuzzy inference data based on the input data.
 次に、これら平均値および変化率が、それぞれに用意されたファジィルールが適用されて推論が行われた後、非ファジィ化されてごみ供給量および空気供給量が求められるとともに、空気制御対象位置検出部29にて検出された空気制御対象である空気供給ノズル9が選択される。そして、これら求められたごみ供給量および空気供給量並びにその制御対象となる空気供給ノズル9の位置が、焼却炉におけるごみ供給制御部および燃焼空気制御部に出力されて、最適な燃焼状態となるように制御される。例えば、燃え切り位置が前寄りにある場合には、ごみ供給量が増加されつまりごみ供給速度が速くされ、また未燃ごみ塊がある場合には、それに対応する空気供給ノズル9からの空気供給量が増加され、また火炎が強い場合には、それに対応する空気供給ノズル9からの空気供給量が減少される。 Next, these average values and rate of change are inferred by applying fuzzy rules prepared for each, and then de-fuzzified to obtain the waste supply amount and air supply amount, and the air control target position The air supply nozzle 9 that is the air control target detected by the detection unit 29 is selected. Then, the determined dust supply amount and air supply amount and the position of the air supply nozzle 9 to be controlled are output to the dust supply control unit and the combustion air control unit in the incinerator, and an optimum combustion state is obtained. To be controlled. For example, when the burnout position is closer to the front, the amount of waste supply is increased, that is, the waste supply speed is increased, and when there is an unburned waste lump, the air supply from the corresponding air supply nozzle 9 is supplied. When the amount is increased and the flame is strong, the corresponding air supply amount from the air supply nozzle 9 is decreased.
 上述した燃焼状態検出装置およびこれを用いた燃焼制御装置の構成によると、燃焼室内を燃焼用火格子に係る主燃焼段部分および後燃焼用火格子に係る後燃焼段部分から成る燃焼域を抽出するとともに、この燃焼域抽出部で抽出された燃焼域を大きさ・形状などが異なる第1区画、第2区画および第3区画でもってそれぞれ区画して3種類の画像データを得、そしてこれら得られた第1区画、第2区画および第3区画の画像データに対して燃焼状態をファジィc平均法を用いてそれぞれ分析するようにしたので、燃焼室内の燃焼状態を精度良く検出することができる。 According to the configuration of the combustion state detection device described above and the combustion control device using the combustion state detection device, a combustion region including a main combustion stage portion related to the combustion grate and a rear combustion stage portion related to the post combustion grate is extracted in the combustion chamber. In addition, the combustion zone extracted by the combustion zone extraction unit is divided into a first zone, a second zone, and a third zone having different sizes and shapes to obtain three types of image data. Since the combustion state is analyzed using the fuzzy c average method for the image data of the first, second and third sections, the combustion state in the combustion chamber can be detected with high accuracy. .
 また、これら検出された燃焼状態、すなわち燃え切り位置、未燃ごみ塊である度合い、火炎の強度などの燃焼状態を示す各データを入力するとともに、その平均値および変化率を所定のファジィルールに適用して推論を行うようにしたので、燃焼の傾向を加味した制御を行うことができ、したがって燃焼状態の悪化、火炎の変化などに十分に対処することができる。例えば、焼却炉内で未燃ごみ塊が発生した場合でも、直ちに、それを解消し得る最適な燃焼を行うことができる。 In addition, each data indicating the detected combustion state, that is, the burnout position, the degree of unburned garbage lump, the intensity of the flame, and the like are input, and the average value and the change rate are input to a predetermined fuzzy rule. Since inference is performed by applying the control, it is possible to perform control in consideration of the tendency of combustion, and therefore, it is possible to sufficiently cope with deterioration of the combustion state, change of flame, and the like. For example, even when an unburned garbage lump is generated in the incinerator, it is possible to immediately perform optimum combustion that can eliminate the lump.
 より具体的に言えば、従来、燃焼状態を検出する場合、燃焼室内の画像を客観的に分析するだけで、例えば輝度値の大小だけで炎の有無を判定して燃え切り位置を検出することになるため、大勢に影響のない小さな炎の塊などを検出してしまい、その検出精度が低いという問題がある。これに対して、本実施例では、ベテラン運転員の経験が生かされた燃焼状態判定用アルゴリズムを組み込んだFCM識別器を用いることにより、焼却炉における、特にストーカ炉におけるごみの燃え切り位置などの燃焼状態を精度良く検出するようにしたものである。すなわち、燃焼室内の燃焼状態はごみを燃やしている関係上、非常に複雑であり、計算や流量・温度などのセンサから得られるデータに基づき再現できない性質のものであるが、FCM識別器を用いることにより、火炎状態を直接に学習し判断モデルを自己生成できるので、燃焼状態を精度良く検出することができる。なお、従来の輝度値を用いた方法では、判断のもとになる指標は、人が何らかの数値を与えるものであり、ごみ質や運転条件によってその適正値が変化してしまうため、やはり、精度の低下に繋がる。 More specifically, conventionally, when detecting the combustion state, it is only necessary to objectively analyze the image in the combustion chamber, for example, to determine the presence or absence of a flame based on the magnitude of the brightness value and detect the burnout position. Therefore, there is a problem that small flames and the like that do not affect many are detected, and the detection accuracy is low. On the other hand, in this embodiment, by using an FCM discriminator incorporating an algorithm for judging the combustion state using the experience of experienced operators, it is possible to determine the position of burnout of garbage in an incinerator, particularly in a stoker furnace. The combustion state is accurately detected. That is, the combustion state in the combustion chamber is very complicated due to the burning of dust, and cannot be reproduced based on data obtained from sensors such as calculations and flow rate / temperature, but an FCM discriminator is used. Thus, the flame state can be directly learned and the judgment model can be self-generated, so that the combustion state can be detected with high accuracy. In addition, in the conventional method using luminance values, human beings give some numerical values, and the appropriate values change depending on the garbage quality and driving conditions. Leading to a decline.
 なお、上述したFCM識別器の構成を一般的に且つ簡単に説明すると、以下のようになる。 The configuration of the above-described FCM discriminator will be generally and briefly described as follows.
 このFCM識別器は、撮影用カメラにより撮影された撮影画像データ(区画の画像データ)から複数の代表値を取得して正規化する正規化部と、この正規化部で得られた代表値よりなる画像データをベクトル化するベクトル化部と、このベクトル化部でベクトル化されたベクトルデータの次元を圧縮する次元圧縮部と、この次元圧縮部で圧縮されたベクトルデータの予め訓練用データで求められたクラスター中心に対するマハラノビス距離を求めるマハラノビス距離計算部と、このマハラノビス距離計算部で求められたマハラノビス距離を下記(13)式に示すメンバーシップ関数(u)に代入するとともにこの関数値を下記(14)式に代入してメンバーシップ(チルダu)を求めるメンバーシップ計算部と、このメンバーシップ計算部で求められたメンバーシップを用いて撮影画像を、例えば2つのクラス(燃焼している燃焼状態および燃焼していない未燃状態のいずれかのクラス)に分ける状態判断部とを具備したものである。 This FCM discriminator includes a normalization unit that obtains and normalizes a plurality of representative values from captured image data (section image data) captured by the imaging camera, and a representative value obtained by the normalization unit. A vectorization unit that vectorizes the image data to be obtained, a dimension compression unit that compresses the dimension of the vector data vectorized by the vectorization unit, and training data of the vector data compressed by the dimension compression unit in advance. The Mahalanobis distance calculation unit for obtaining the Mahalanobis distance to the obtained cluster center, the Mahalanobis distance obtained by the Mahalanobis distance calculation unit are substituted into the membership function (u * ) shown in the following equation (13), and the function value is (14) Membership calculation section for substituting into equation (tilde u) and membership calculation And a state determination unit that divides the photographed image into two classes (either a burning state or a non-burning state) using the membership obtained in .
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 但し、上記式中、αqjはクラスq内のクラスターjの混合比率、Sは分散共分散行列、πはクラスqの混合比率である。 In the above formula, α qj is the mixing ratio of cluster j in class q, S is the variance-covariance matrix, and π q is the mixing ratio of class q.
 また、次元圧縮部にて次元を圧縮する際に、主成分分析法を用いたものである。 Also, the principal component analysis method is used when the dimension is compressed by the dimension compression unit.
 さらに、(13)式にて示すメンバーシップ関数(u)における各パラメータ(m,γ,ν,α)の最適化を行う際に、粒子群最適化法が用いられている。 Furthermore, a particle swarm optimization method is used when optimizing each parameter (m, γ, ν, α) in the membership function (u * ) expressed by equation (13).

Claims (5)

  1.  燃焼室の底壁部に燃焼用火格子およびその下手側に後燃焼用火格子が配置された焼却炉におけるごみの燃焼状態を検出する燃焼状態検出装置であって、
     燃焼室内を下手側から撮影カメラにより撮影した撮影画像を所定時間間隔でもって取得する撮影画像取得部と、
     この撮影画像取得部で取得された画像データから燃焼用火格子が設けられた主燃焼段部分および後燃焼用火格子が設けられた後燃焼段部分から成る燃焼域を抽出する燃焼域抽出部と、
     この燃焼域抽出部で抽出された燃焼域を第1区画並びに、この第1区画よりも大きい第2区画および第3区画でもってそれぞれ区画して3種類の大きさの画像データを得る燃焼域区画部と、
     この燃焼域区画部で得られた第1区画、第2区画および第3区画の画像データに対して燃焼状態をファジィc平均法を用いてそれぞれ分析する燃焼状態分析部と、
     この燃焼状態分析部で得られた各分析データに基づき燃焼状態を検出する燃焼状態検出部と
     から構成したことを特徴とする焼却炉における燃焼状態検出装置。
    A combustion state detection device for detecting a combustion state of garbage in an incinerator in which a combustion grate is disposed on a bottom wall portion of a combustion chamber and a rear combustion grate is disposed on the lower side thereof,
    A captured image acquisition unit that acquires captured images taken by the camera from the lower side in the combustion chamber at predetermined time intervals;
    A combustion zone extraction unit for extracting a combustion zone consisting of a main combustion stage portion provided with a combustion grate and a rear combustion stage portion provided with a post combustion grate from image data acquired by the captured image acquisition unit; ,
    The combustion zone extracted by the combustion zone extraction unit is divided into a first zone and a second zone and a third zone that are larger than the first zone to obtain image data of three different sizes. And
    A combustion state analysis unit that analyzes the combustion state with respect to the image data of the first section, the second section, and the third section obtained by the combustion zone section using a fuzzy c average method;
    A combustion state detection device in an incinerator characterized by comprising a combustion state detection unit for detecting a combustion state based on each analysis data obtained by the combustion state analysis unit.
  2.  燃焼状態分析部を、
     第1区画の画像データを入力してこれら各第1区画毎に、燃焼状態か未燃状態であるかをファジィc平均法を用いた識別器により識別する燃焼識別部と、
     第3区画の画像データを入力してこれら第3区画毎に、未燃塊の有無をファジィc平均法を用いた識別器により識別する未燃塊識別部と、
     第2区画の画像データを入力してこれら第2区画毎に、火炎の強度をファジィc平均法を用いた識別器により識別する火炎識別部と
     から構成したことを特徴とする請求項1に記載の焼却炉における燃焼状態検出装置。
    The combustion state analyzer
    A combustion discriminating unit that inputs image data of the first zone and discriminates, for each of the first zones, whether it is in a combustion state or an unburned state by a discriminator using a fuzzy c-average method;
    An unburned mass discriminating unit that inputs the image data of the third zone and discriminates the presence or absence of the unburned mass by a discriminator using a fuzzy c average method for each of these third zones,
    The image data of the second section is input, and for each of these second sections, a flame discriminating unit that discriminates the intensity of the flame with a discriminator using a fuzzy c-average method is provided. Apparatus for detecting the state of combustion in an incinerator.
  3.  燃焼状態検出部を、
     燃焼状態分析部の燃焼識別部で得られた燃焼状態の第1区画を検出して燃焼塊を検出するとともにこの燃焼塊の下端位置を検出することにより燃え切り位置を検出する燃え切り位置検出部と、
     この燃え切り位置検出部で検出された燃え切り位置および燃焼状態分析部の未燃塊識別部で得られた未燃塊の区画データに基づき、未燃ごみ塊である度合いおよびその位置を検出する未燃ごみ塊検出部と、
     燃焼状態分析部の火炎識別部で得られた火炎の区画データに基づき火炎の強度およびその位置を検出する火炎領域検出部と
     から構成したことを特徴とする請求項1に記載の焼却炉における燃焼状態検出装置。
    Combustion state detector
    A burnout position detector for detecting the first section of the combustion state obtained by the combustion identification unit of the combustion state analyzer to detect the burned mass and detecting the burnout position by detecting the lower end position of the burned mass When,
    Based on the burnout position detected by the burnout position detection unit and the unburned lump section data obtained by the unburned lump identification unit of the combustion state analysis unit, the degree and position of the unburned lump are detected. An unburned lump detection unit;
    The combustion in an incinerator according to claim 1, characterized by comprising: a flame region detection unit for detecting the intensity and position of the flame based on the flame division data obtained by the flame identification unit of the combustion state analysis unit. State detection device.
  4.  請求項1乃至3のいずれかに記載の燃焼状態検出装置と、当該燃焼状態検出装置で検出された燃え切り位置、未燃ごみ塊である度合いおよびその位置、並びに火炎の強度およびその位置のデータを入力するとともにこれら各データに基づきファジィ推論を行い、燃焼用空気およびごみの供給量の制御指令を出力するファジィ演算部と、
     上記燃焼状態検出装置で検出された未燃ごみ塊の位置および火炎の位置のデータを入力して上記ファジィ演算部から出力される燃焼用空気の制御対象位置を検出する空気制御対象位置検出部と
     を具備したことを特徴とする焼却炉における燃焼制御装置。
    The combustion state detection device according to any one of claims 1 to 3, the burnout position detected by the combustion state detection device, the degree and position of unburned lump, and the intensity of the flame and data of the position And fuzzy inference based on these data, and output a control command for the supply amount of combustion air and waste,
    An air control target position detection unit for detecting the control target position of the combustion air output from the fuzzy calculation unit by inputting the data of the position of the unburned garbage lump and the flame position detected by the combustion state detection device; A combustion control device in an incinerator characterized by comprising:
  5.  ファジィ演算部を、
     時系列で入力される複数個のデータの平均値およびこの平均値の変化率を求めるファジィ推論用データ作成部と、
     このファジィ推論用データ作成部で求められた平均値および変化率を入力するとともに、これら平均値および変化率に所定のファジィルールを適用して燃焼用空気およびごみの供給量の制御用出力値を求めるファジィ推論部と
     から構成したことを特徴とする請求項4に記載の焼却炉における燃焼制御装置。
    Fuzzy operation unit
    A fuzzy inference data creation unit for obtaining an average value of a plurality of data input in time series and a rate of change of the average value;
    The average value and change rate obtained by the fuzzy inference data creation unit are input, and a predetermined fuzzy rule is applied to the average value and change rate to obtain the output value for controlling the supply amount of combustion air and dust. The combustion control device for an incinerator according to claim 4, comprising: a fuzzy reasoning unit to be obtained.
PCT/JP2013/057952 2012-03-30 2013-03-21 Combustion control device and combustion state detection device in incinerator WO2013146489A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-078468 2012-03-30
JP2012078468A JP5755171B2 (en) 2012-03-30 2012-03-30 Combustion state detection device and combustion control device in incinerator

Publications (1)

Publication Number Publication Date
WO2013146489A1 true WO2013146489A1 (en) 2013-10-03

Family

ID=49259746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057952 WO2013146489A1 (en) 2012-03-30 2013-03-21 Combustion control device and combustion state detection device in incinerator

Country Status (3)

Country Link
JP (1) JP5755171B2 (en)
MY (1) MY174994A (en)
WO (1) WO2013146489A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109886231A (en) * 2019-02-28 2019-06-14 重庆科技学院 A kind of garbage burning factory Combustion Flame Recognition Using method
CN111336828A (en) * 2020-04-14 2020-06-26 福建三钢闽光股份有限公司 Heating furnace temperature controller based on FCM fuzzy time sequence
CN111753691A (en) * 2020-06-15 2020-10-09 上海电气集团股份有限公司 Method, equipment and system for detecting and controlling gasification furnace
CN111947463A (en) * 2020-08-11 2020-11-17 中冶长天国际工程有限责任公司 Sintering machine charge level image analysis system and method
CN113313204A (en) * 2020-12-09 2021-08-27 北京大学深圳研究生院 Deep learning-based garbage incineration state identification method and incineration control method
CN113776688A (en) * 2021-08-20 2021-12-10 浙江大学 Three-dimensional temperature measuring method of garbage incinerator based on acoustic and flame radiation images
CN117029012A (en) * 2023-08-11 2023-11-10 山东亚科环保科技有限公司 Treatment system for waste liquid in caprolactam production

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864411B (en) * 2015-03-17 2017-06-23 厦门奥普拓自控科技有限公司 A kind of grate firing boiler extinguishes the intelligent checking system of boundary
JP6696816B2 (en) * 2016-04-06 2020-05-20 日立造船株式会社 Stoker incinerator
JP6899674B2 (en) * 2017-03-16 2021-07-07 日立造船株式会社 Information processing equipment, information processing methods, and information processing programs
JP6782203B2 (en) * 2017-08-09 2020-11-11 川崎重工業株式会社 Calorific value estimation method, calorific value estimation device, and waste storage facility
JP7148327B2 (en) * 2018-08-31 2022-10-05 日立造船株式会社 CRANE CONTROL DEVICE, CONTROL METHOD OF CRANE CONTROL DEVICE, CONTROL PROGRAM, AND RECORDING MEDIUM
JP7218186B2 (en) * 2019-01-16 2023-02-06 東京瓦斯株式会社 How to provide diagnostic information for combustion equipment
JP7403295B2 (en) * 2019-11-29 2023-12-22 三菱重工業株式会社 Combustion equipment, calculation methods and programs
JP7127179B1 (en) 2021-03-29 2022-08-29 三菱重工業株式会社 Combustion furnace and combustion furnace control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854903A (en) * 1994-08-10 1996-02-27 Hitachi Zosen Corp Identification method for multivariable interference system process
JPH0894055A (en) * 1994-09-29 1996-04-12 Kubota Corp Combustion controller
JPH08178247A (en) * 1994-12-28 1996-07-12 Kubota Corp Method of detecting nature of refuse in incinerator
JPH08296828A (en) * 1995-04-25 1996-11-12 Sumitomo Heavy Ind Ltd Burning condition judging method of garbage incinerator and burning controller using the same
JP2000274675A (en) * 1999-03-29 2000-10-03 Mitsubishi Heavy Ind Ltd Combustion method and combustor for combustion furnace
JP2003161422A (en) * 2001-11-22 2003-06-06 Hitachi Zosen Corp Combustion control method and device of garbage incinerator
JP2004085094A (en) * 2002-08-27 2004-03-18 Jfe Engineering Kk Incinerator
JP2007057398A (en) * 2005-08-25 2007-03-08 Hitachi Zosen Corp Detecting method and detecting device of burning region in burner furnace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212605A (en) * 2008-02-29 2009-09-17 Sony Corp Information processing method, information processor, and program
JP2012227645A (en) * 2011-04-18 2012-11-15 Nikon Corp Image processing program, image processing method, image processor, and imaging apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854903A (en) * 1994-08-10 1996-02-27 Hitachi Zosen Corp Identification method for multivariable interference system process
JPH0894055A (en) * 1994-09-29 1996-04-12 Kubota Corp Combustion controller
JPH08178247A (en) * 1994-12-28 1996-07-12 Kubota Corp Method of detecting nature of refuse in incinerator
JPH08296828A (en) * 1995-04-25 1996-11-12 Sumitomo Heavy Ind Ltd Burning condition judging method of garbage incinerator and burning controller using the same
JP2000274675A (en) * 1999-03-29 2000-10-03 Mitsubishi Heavy Ind Ltd Combustion method and combustor for combustion furnace
JP2003161422A (en) * 2001-11-22 2003-06-06 Hitachi Zosen Corp Combustion control method and device of garbage incinerator
JP2004085094A (en) * 2002-08-27 2004-03-18 Jfe Engineering Kk Incinerator
JP2007057398A (en) * 2005-08-25 2007-03-08 Hitachi Zosen Corp Detecting method and detecting device of burning region in burner furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109886231A (en) * 2019-02-28 2019-06-14 重庆科技学院 A kind of garbage burning factory Combustion Flame Recognition Using method
CN111336828A (en) * 2020-04-14 2020-06-26 福建三钢闽光股份有限公司 Heating furnace temperature controller based on FCM fuzzy time sequence
CN111753691A (en) * 2020-06-15 2020-10-09 上海电气集团股份有限公司 Method, equipment and system for detecting and controlling gasification furnace
CN111753691B (en) * 2020-06-15 2024-01-02 上海电气集团股份有限公司 Method, equipment and system for detecting and controlling gasification furnace
CN111947463A (en) * 2020-08-11 2020-11-17 中冶长天国际工程有限责任公司 Sintering machine charge level image analysis system and method
CN113313204A (en) * 2020-12-09 2021-08-27 北京大学深圳研究生院 Deep learning-based garbage incineration state identification method and incineration control method
CN113776688A (en) * 2021-08-20 2021-12-10 浙江大学 Three-dimensional temperature measuring method of garbage incinerator based on acoustic and flame radiation images
CN117029012A (en) * 2023-08-11 2023-11-10 山东亚科环保科技有限公司 Treatment system for waste liquid in caprolactam production
CN117029012B (en) * 2023-08-11 2024-03-12 山东亚科环保科技有限公司 Treatment system for waste liquid in caprolactam production

Also Published As

Publication number Publication date
JP2013210108A (en) 2013-10-10
JP5755171B2 (en) 2015-07-29
MY174994A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
WO2013146489A1 (en) Combustion control device and combustion state detection device in incinerator
US7231078B2 (en) Method for monitoring a thermodynamic process
JP2021008991A (en) Automatic combustion control method and automatic combustion control device
CN107730548A (en) It is a kind of based on average gray and area towards heating furnace flame real-time detection method
JP7208829B2 (en) Information processing device, incineration control device, information processing method, and information processing program
JP6008618B2 (en) Garbage condition detection device in a garbage incinerator
JP6543390B1 (en) Furnace internal condition judging method and evaporation control method
KR102276894B1 (en) Calorific value estimation method, calorific value estimation device and waste storage facility
JP2020042468A (en) Image feature extraction method and image feature extraction device
CN113222244A (en) Online boiler combustion optimization method based on flame combustion image judgment
JP2005090774A (en) Device for estimating supply amount of garbage for garbage incinerator
JP3772007B2 (en) Fire detection equipment
JP2797056B2 (en) Combustion control method and device for refuse incinerator
JP3467751B2 (en) Detection method of combustion position and burn-off point position in refuse incinerator
WO2023053627A1 (en) Information processing device, determination method, determination program, and control system
JP2021103063A (en) Refuse layer thickness evaluation method of refuse incinerator and combustion control method of refuse incinerator
WO2024106008A1 (en) Collapse detection system and collapse detection method
JP2024021222A (en) Method of estimating characteristics of waste, and device of estimating characteristics of waste
CN116798003B (en) Visual auxiliary monitoring method for incinerator
KR100711364B1 (en) An Exhaust Smoke Recognition and Auto-alarm Device and Method using Picture Image Analysis
JPH08296828A (en) Burning condition judging method of garbage incinerator and burning controller using the same
JPH08100916A (en) Combustion controller
JP3121204B2 (en) Combustion state detector
JP2001175845A (en) Vehicle end detecting device
JP2021103062A (en) Burn-off point estimation method for refuse incinerator and burn-off point adjustment method for refuse incinerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769131

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13769131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE