JP2003161422A - Combustion control method and device of garbage incinerator - Google Patents

Combustion control method and device of garbage incinerator

Info

Publication number
JP2003161422A
JP2003161422A JP2001356791A JP2001356791A JP2003161422A JP 2003161422 A JP2003161422 A JP 2003161422A JP 2001356791 A JP2001356791 A JP 2001356791A JP 2001356791 A JP2001356791 A JP 2001356791A JP 2003161422 A JP2003161422 A JP 2003161422A
Authority
JP
Japan
Prior art keywords
combustion
dust
amount
ignition point
bed height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001356791A
Other languages
Japanese (ja)
Other versions
JP3916450B2 (en
Inventor
Keiji Ito
恵二 伊藤
Tetsushi Hayashi
哲史 林
Hideki Endo
英樹 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2001356791A priority Critical patent/JP3916450B2/en
Publication of JP2003161422A publication Critical patent/JP2003161422A/en
Application granted granted Critical
Publication of JP3916450B2 publication Critical patent/JP3916450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an exhaust gas quantity by stably burning garbage by supplying a proper quantity of combustion air in response to a combustion state. <P>SOLUTION: An ignition point 1 and a burn-off point E are determined on the basis of the temperature distribution obtained from imaging data of an infrared imaging device. The oxygen concentration of exhaust gas exhausted from the inside of a furnace body 1 is detected. The total supply air quantity of falling within a prescribed range on the oxygen concentration is determined. A combustion air quantity supplied to a combustion area is determined by subtracting a required air quantity of a dry area and a pre-combustion area from the total supply air quantity. The combustion area is partitioned into a plurality of control blocks with every wind box capable of controlling the combustion air quantity. An average temperature of the respective control blocks is respectively determined from the imaging data. The combustion air quantity supplied to the respective combustion control blocks is proportioned in response to the average temperature of the combustion control blocks. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ストーカ式ごみ焼
却炉における燃焼制御方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control method and apparatus in a stoker type refuse incinerator.

【0002】[0002]

【従来の技術】従来、ストーカ式ごみ焼却炉において、
たとえば特開平8−94055号には、撮像手段により
ごみの燃焼状態を撮影し、この画像データから火炎域を
抽出するとともにRGBに色分解し、各画素毎のR色と
G色の強度比から高温領域の面積を抽出し、高温域の面
積と風箱への燃焼空気量が反比例するように燃焼空気の
供給総量を調節し、さらに画像データの火炎領域から求
められた燃え切り位置に基づいて、風箱の燃焼空気量の
供給比率を調整するものが提案されている。
2. Description of the Related Art Conventionally, in a stoker-type refuse incinerator,
For example, in Japanese Unexamined Patent Publication No. 8-94055, a burning state of dust is photographed by an image pickup means, a flame region is extracted from this image data, and color separation is performed into RGB, and the intensity ratio of R color and G color for each pixel is determined. The area of the high temperature area is extracted, the total amount of combustion air is adjusted so that the area of the high temperature area and the amount of combustion air to the wind box are inversely proportional, and based on the burnout position obtained from the flame area of the image data. , The one which adjusts the supply ratio of the combustion air amount of the wind box is proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来構成
では、高温域の面積が大きくなるほど、燃焼が活発化し
て過剰空気による吹き抜けや火格子の焼損を防ぐため
に、燃焼空気の供給総量を減少させ、反対に高温域の面
積が小さくなるほど、燃焼が低下して不完全燃焼が生じ
るのを防ぐために燃焼空気の供給総量を増加させてい
る。
However, in the above-mentioned conventional structure, the larger the area of the high temperature region is, the more the combustion is activated and the total amount of the combustion air is reduced in order to prevent the blow-through and the burnout of the grate due to the excess air. On the contrary, the smaller the area of the high temperature region is, the more the total supply amount of the combustion air is increased in order to prevent the combustion from decreasing and the incomplete combustion to occur.

【0004】また燃焼帯で、前後に分離された風箱への
空気供給比率を、燃焼面積の比率で供給している。この
ため、高温燃焼域が広い場合に、燃焼空気の供給量を減
少させると、燃焼が抑制されるものの、燃焼が不安定な
還元燃焼となって、煤などの未燃分が増加するとともに
一酸化炭素ガスなどの有害ガスが発生しやすくなる。ま
た高温域の面積が小さい場合に、燃焼空気の供給総量を
増加させると、一時的に炉内の温度低下が生じて燃焼む
らが生じやすいという問題があった。また、一般的にご
み焼却炉では、部分的な燃焼のバラツキがあるため、必
要な理論空気量よりも多い空気量が供給されており、全
体として排ガスの総排出量が増加して、排ガス処理設備
への負担が大きくなり、容量の大きい排ガス処理設備が
必要であったり、処理薬剤の使用量やメンテナンスの回
数が増加するという問題があった。
Further, in the combustion zone, the air supply ratio to the wind box separated into the front and rear is supplied in the ratio of the combustion area. Therefore, if the supply amount of combustion air is reduced when the high temperature combustion region is wide, combustion is suppressed, but the combustion becomes unstable reduction combustion, and unburned components such as soot increase and A harmful gas such as carbon oxide gas is easily generated. Further, when the area of the high temperature region is small, when the total supply amount of the combustion air is increased, there is a problem that the temperature inside the furnace is temporarily lowered and uneven combustion easily occurs. In addition, in general, waste incinerators are supplied with more air than the theoretical air volume required because of partial combustion variations, which increases the total emission of exhaust gas and There is a problem in that the burden on the facility becomes large, a large-capacity exhaust gas treatment facility is required, and the amount of treatment chemicals used and the number of maintenances increase.

【0005】本発明は上記問題点を解決して、燃焼状態
に対応して適正な量の燃焼空気を供給し安定した燃焼を
実現できるとともに、排ガス量の削減が図れるごみ焼却
炉の燃焼制御方法および装置を提供することを目的とす
る。
The present invention solves the above problems and can supply a proper amount of combustion air according to the combustion state to realize stable combustion, and at the same time, can reduce the amount of exhaust gas and control the combustion in a refuse incinerator. And to provide a device.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載のごみ焼却炉の燃焼制御方法は、炉床部
を赤外線撮像装置により撮像し、前記撮像データにより
得られた炉床部の温度分布に基づいて着火点と燃え切り
点とを判定し、炉内から排出される排ガスの酸素濃度を
検出し、前記酸素濃度が所定範囲内となる総供給空気量
を求めるとともに、該総供給空気量から乾燥域とおき燃
焼域の必要空気量を減算して、燃焼域に供給する燃焼空
気量を求め、前記少なくとも燃焼域を、燃焼空気量を制
御可能な複数の制御ブロックに分離し、前記撮像データ
から各制御ブロックの温度分布をそれぞれ求め、前記制
御ブロックの平均温度に対応した燃焼空気量を制御ブロ
ックにそれぞれ供給するものである。
In order to achieve the above object, the combustion control method for a refuse incinerator according to claim 1, wherein the hearth is imaged by an infrared imaging device and the hearth obtained from the imaging data. The ignition point and the burn-out point are determined based on the temperature distribution of the part, the oxygen concentration of the exhaust gas discharged from the furnace is detected, and the total air supply amount in which the oxygen concentration is within a predetermined range is obtained. The required air amount in the dry zone and the required combustion zone are subtracted from the supplied air volume to obtain the combustion air volume to be supplied to the combustion zone, and at least the combustion zone is divided into a plurality of control blocks capable of controlling the combustion air volume. The temperature distribution of each control block is obtained from the imaged data, and the combustion air amount corresponding to the average temperature of the control block is supplied to each control block.

【0007】上記構成によれば、制御ブロックごとに温
度分布を計測し、それぞれの平均温度に応じて燃焼空気
量を供給するので、過不足の無い適正な燃焼空気量を制
御ブロックに供給することができる。したがって、燃焼
空気量の過不足の無い状態で安定して燃焼させることが
でき、燃焼空気の過不足による未燃分や有害ガスの発生
を未然に防止でき、また余分な燃焼空気を供給しなくて
済むので、排ガス量が増加することもない。これによ
り、容量の大きい排ガス処理設備も不要となり、処理薬
剤の使用量やメンテナンスの回数を削減することができ
る。
According to the above configuration, the temperature distribution is measured for each control block, and the combustion air amount is supplied according to each average temperature. Therefore, the proper combustion air amount without excess or deficiency is supplied to the control block. You can Therefore, it is possible to perform stable combustion in a state where there is no excess or deficiency in the amount of combustion air, it is possible to prevent the generation of unburned components and harmful gas due to excess and deficiency of combustion air, and to supply no excess combustion air. Therefore, the amount of exhaust gas does not increase. This eliminates the need for a large-capacity exhaust gas treatment facility and reduces the amount of treatment chemicals used and the number of maintenance operations.

【0008】請求項2記載のごみ焼却炉の燃焼制御方法
は、請求項1において、乾燥域のごみの層高を検出し、
該ごみの層高を一定範囲に保持しつつ、前記着火点が許
容範囲となるように、乾燥域のごみの搬送速度と、炉内
へのごみの供給量とを制御するものである。
According to a second aspect of the present invention, there is provided a combustion control method for a refuse incinerator according to the first aspect, in which the bed height of dust in a dry area is detected.
While keeping the bed height of the dust within a certain range, the transport speed of the dust in the dry region and the amount of the dust supplied to the furnace are controlled so that the ignition point is within the allowable range.

【0009】上記構成によれば、乾燥域のごみの層高を
一定範囲に保持しつつ、ごみの搬送速度とごみ供給量と
を制御して、着火点を許容範囲に保持するので、ごみ質
が変動しても着火点の変動が少なく、良好にごみを乾燥
させて、燃焼域に送り込むことができる。また着火点が
変動しないので、燃焼域も増減せず、より安定した燃焼
が可能となり、さらに制御ブロックにおける着火点の変
動が小さいため、燃焼空気量の制御も容易に実施できる
とともに、さらに安定した燃焼が可能となる。
According to the above construction, while keeping the bed height of the dust in the dry region within a certain range, the conveyance speed of the dust and the amount of dust supplied are controlled to keep the ignition point within the allowable range, so that the quality of the dust is reduced. Even if it fluctuates, there is little fluctuation in the ignition point, and it is possible to satisfactorily dry the waste and send it to the combustion zone. In addition, since the ignition point does not change, the combustion area does not increase or decrease, more stable combustion is possible, and since the fluctuation of the ignition point in the control block is small, the amount of combustion air can be easily controlled and more stable combustion can be achieved. It will be possible.

【0010】請求項3記載のごみ焼却炉の燃焼制御方法
は、炉床部を赤外線撮像装置により撮像し、この撮像デ
ータにより得られた温度分布に基づいて着火点を判定
し、前記乾燥域のごみの層高を検出し、該ごみの層高を
一定範囲に保持しつつ、前記着火点が許容範囲となるよ
うに、乾燥域のごみの搬送速度と、炉内へのごみの供給
量とを制御するものである。
According to a third aspect of the combustion control method for a refuse incinerator, an image of the hearth is imaged by an infrared imaging device, the ignition point is determined based on the temperature distribution obtained from the imaged data, and the dust in the dry area is determined. The bed height of the waste is detected, and while keeping the bed height of the dust within a certain range, the conveyance speed of the dust in the dry region and the amount of the dust supplied to the furnace are controlled so that the ignition point is within the allowable range. To do.

【0011】上記構成によれば、乾燥域のごみの層高を
一定範囲に保持しつつ、ごみの搬送速度と、炉内へのご
みの供給量とを制御することにより、着火点を許容範囲
に保持するので、ごみ質が変動しても乾燥域の変動は小
さく、これにより良好にごみを乾燥させて、燃焼域に送
り込むことができ、また着火点の変動が小さいため、燃
焼域も増減しないので、より安定した燃焼が可能とな
る。
According to the above construction, the ignition point is set within the allowable range by controlling the transport speed of the dust and the amount of the dust supplied into the furnace while keeping the bed height of the dust in the dry region within a certain range. Since it keeps it, even if the quality of the waste fluctuates, the fluctuation in the dry area is small, so that the waste can be dried well and sent to the combustion area.Since the fluctuation of the ignition point is small, the combustion area does not increase or decrease. , More stable combustion becomes possible.

【0012】請求項4記載のごみ焼却炉の燃焼制御装置
は、炉床部を撮像する赤外線撮像装置と、炉内から排出
される排ガスの酸素濃度を検出する酸素濃度検出手段
と、前記少なくとも燃焼域に区画して形成され、燃焼空
気量を制御可能な複数の制御ブロックと、前記赤外線撮
像装置の撮像データと酸素濃度検出手段の検出データに
基づいて前記制御ブロックに供給する燃焼空気量を制御
する燃焼コントローラとを具備し、前記燃焼コントロー
ラに、撮像データから得られた温度分布に基づいて着火
点と燃え切り点とを判定するとともに各制御ブロックの
温度分布をそれぞれ求める帯域・温度分布判定部と、酸
素濃度が所定範囲内となる総供給空気量を求める総空気
量演算部と、前記総供給空気量から乾燥域とおき燃焼域
の必要空気量を減算して燃焼域に供給する燃焼空気量を
求め、燃焼域の制御ブロックにそれぞれ供給する燃焼空
気量を、制御ブロックの平均温度に比例して配分する配
分量演算部とを設けたものである。
According to a fourth aspect of the present invention, there is provided a combustion control device for a refuse incinerator, which comprises an infrared image pickup device for picking up an image of a hearth, an oxygen concentration detecting means for detecting an oxygen concentration of exhaust gas discharged from the inside of the furnace, and at least the combustion. A plurality of control blocks that are formed by being divided into regions and are capable of controlling the combustion air amount, and control the combustion air amount supplied to the control block based on the imaging data of the infrared imaging device and the detection data of the oxygen concentration detection means. And a combustion controller for determining the ignition point and the burn-out point based on the temperature distribution obtained from the imaged data, and the zone / temperature distribution determination unit for determining the temperature distribution of each control block. , A total air amount calculation unit for obtaining a total supply air amount so that the oxygen concentration is within a predetermined range, and subtracting a required air amount in a dry zone and a required combustion zone from the total air supply amount Determine the amount of combustion air supplied to the combustion zone Te, respectively supplied combustion air quantity to the control block of the combustion zone is in proportion to the average temperature of the control block which is provided a distribution amount calculation unit for allocation.

【0013】上記構成によれば、帯域・温度分布判定部
により、赤外線撮像装置の撮像データに基づいて、着火
点、燃え切り点と温度分布を求め、さらに総空気量演算
部により排ガスの酸素濃度から総空気供給量求め、配分
空気量演算部によりこの総空気供給量から制御ブロック
ごとに平均温度に比例した燃焼空気量を演算して供給す
るので、過不足の無い適正な燃焼空気量を燃焼域の制御
ブロックごとに供給することができる。したがって、ご
みを安定して燃焼させることができ、燃焼空気の過不足
による未燃分や有害ガスの発生を未然に防止できる。ま
た余分な燃焼空気を供給しなくて済むので、排ガス量が
増加することもない。これにより、容量の大きい排ガス
処理設備も不要となり、処理薬剤の使用量やメンテナン
スの回数を削減することができる。
According to the above construction, the band / temperature distribution determining unit obtains the ignition point, the burn-out point and the temperature distribution based on the image data of the infrared image pickup device, and further the total air amount calculating unit calculates the oxygen concentration of the exhaust gas. The total air supply amount is calculated, and the distribution air amount calculation unit calculates and supplies the combustion air amount proportional to the average temperature for each control block from the total air supply amount, and supplies the proper combustion air amount without excess or deficiency. Can be supplied for each control block. Therefore, the waste can be stably burned, and the generation of unburned components and harmful gas due to excess and deficiency of combustion air can be prevented. Moreover, since it is not necessary to supply an extra combustion air, the amount of exhaust gas does not increase. This eliminates the need for a large-capacity exhaust gas treatment facility and reduces the amount of treatment chemicals used and the number of maintenance operations.

【0014】請求項5記載のごみ焼却炉の燃焼制御装置
は、請求項4記載の構成において、前記乾燥域のごみの
層高を検出する層高検出手段と、前記赤外線撮像装置の
撮像データと層高検出手段の検出データに基づいて、着
火点位置を制御する燃焼コントローラとを具備し、前記
燃焼コントローラに、撮像データから得られた温度分布
に基づいて乾燥域と燃焼域の境界の着火点を判定する帯
域判定部と、層高検出手段の検出データにより乾燥域の
ごみの層高を一定範囲に保持しつつ乾燥域のごみ搬送速
度とごみ供給量とを制御して前記着火点を許容範囲に保
持する着火点制御部とを設けたものである。
According to a fifth aspect of the present invention, in the combustion control device for a refuse incinerator according to the fourth aspect, the bed height detecting means for detecting the bed height of the dust in the dry area and the image data of the infrared imaging device are included. A combustion controller that controls the ignition point position based on the detection data of the bed height detection means, and the combustion controller determines the ignition point at the boundary between the dry zone and the combustion zone based on the temperature distribution obtained from the imaging data. By keeping the bed height of the dust in the dry area within a certain range by the band determination unit and the detection data of the bed height detecting means, the dust conveyance speed and the dust supply amount in the dry area are controlled to keep the ignition point within the allowable range. And an ignition point control unit for controlling the ignition point.

【0015】上記構成によれば、ごみの層高を一定範囲
に保持しつつ、ごみの搬送速度とごみ供給量とを着火点
制御部により制御して、着火点を許容範囲に保持するの
で、ごみ質が変動しても着火点の変動が小さく、良好に
ごみを乾燥させて、燃焼域に送り込むことができる。ま
た着火点の変動が小さいため、燃焼域も増減せず、より
安定した燃焼が可能となり、さらに着火点の変動が小さ
いため、制御ブロックにおける燃焼空気量の制御も容易
に実施できるとともに、さらに安定した燃焼が可能とな
る。
According to the above construction, while keeping the height of the dust layer within a certain range, the dust conveyance speed and the dust supply amount are controlled by the ignition point control unit to keep the ignition point within the allowable range. Fluctuates in the ignition point, the dust can be dried well and can be sent to the combustion zone. Also, since the fluctuation of the ignition point is small, the combustion area does not increase or decrease, and more stable combustion is possible.Furthermore, since the fluctuation of the ignition point is small, the control of the combustion air amount in the control block can be easily performed, and a more stable combustion is achieved. Is possible.

【0016】請求項6記載のごみ焼却炉の燃焼制御装置
は、炉床部を撮像する赤外線撮像装置と、乾燥域のごみ
の層高を検出する層高検出手段とを設け、前記赤外線撮
像装置の撮像データと層高検出手段の検出データに基づ
いて、着火点位置を判定する帯域判定部と、層高検出手
段の検出データにより乾燥域のごみの層高を一定範囲に
保持しつつ乾燥域のごみ搬送速度とごみ供給量とを制御
して前記着火点を許容範囲に保持する着火点制御部とを
有する燃焼コントローラを設けたものである。
A combustion control device for a refuse incinerator according to claim 6 is provided with an infrared imaging device for imaging the hearth and a bed height detecting means for detecting the bed height of the dust in the dry region. Based on the imaging data of and the detection data of the bed height detection means, the band determination unit that determines the ignition point position, and the detection data of the bed height detection means, while keeping the bed height of the dust in the dry area within a certain range, A combustion controller is provided, which has an ignition point control unit that controls the dust transfer speed and the dust supply amount to maintain the ignition point within an allowable range.

【0017】上記構成によれば、着火点制御部により、
層高検出手段の検出データに基づいてごみの層高を一定
範囲に保持しつつ、ごみの搬送速度とごみ供給量とを制
御して、着火点を許容範囲に保持するので、ごみ質が変
動しても着火点の変動を小さくすることができ、良好に
ごみを乾燥させて、燃焼域に送り込むことができる。ま
た着火点が変動しないので、燃焼域に及ぼす影響も少な
く安定した燃焼が可能となる。
According to the above configuration, the ignition point control section
While keeping the bed height of the dust within a certain range based on the detection data of the bed height detection means, the garbage conveyance speed and the amount of supplied dust are controlled to keep the ignition point within the allowable range, so the dust quality fluctuates. However, the fluctuation of the ignition point can be reduced, and the waste can be dried well and sent into the combustion zone. Further, since the ignition point does not change, stable combustion is possible with little influence on the combustion region.

【0018】[0018]

【発明の実施の形態】ここで、本発明に係るストーカ式
ごみ焼却炉の燃焼制御装置の実施の形態を図1〜図5に
基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Here, an embodiment of a combustion control device for a stoker type refuse incinerator according to the present invention will be described with reference to FIGS.

【0019】図1に示すように、一端側にごみ供給口2
が形成されると共に、他端側に灰排出口3が形成された
炉本体1の底部には、燃焼状態のごみを攪拌しつつ搬送
するとともに下方からの空気により乾燥燃焼させる火格
子装置(炉床部)4が配置されている。ごみ供給口2に
は、ごみホッパ5内のごみを所定量ずつ炉本体1内に供
給するごみプッシャ装置(ごみ供給装置)6が配設さ
れ、このごみプッシャ装置6は、プッシャシリンダより
プッシャブロックを間欠的に出退することによりごみホ
ッパ5内のごみを定量供給するように構成され、プッシ
ャシリンダに駆動流体を給排出する切換弁を操作するプ
ッシャー操作部6aが設けられている。
As shown in FIG. 1, the dust supply port 2 is provided on one end side.
Is formed and the ash discharge port 3 is formed on the other end of the furnace body 1 at the bottom of the furnace grate device for conveying the combusted dust while stirring and dry-burning it with air from below. The floor) 4 is arranged. A waste pusher device (dust supply device) 6 for supplying a predetermined amount of the waste in the waste hopper 5 into the furnace main body 1 is arranged at the waste supply port 2, and the waste pusher device 6 is provided with a pusher block rather than a pusher cylinder. A pusher operating portion 6a for operating a switching valve for supplying / discharging driving fluid to / from a pusher cylinder is provided so as to supply a fixed amount of dust in the dust hopper 5 by intermittently moving back and forth.

【0020】前記炉本体1内では、火格子装置4上で上
流側のごみ供給口2から下流側に、乾燥域11と燃焼域
12とおき燃焼域13が形成されてごみが焼却処理さ
れ、灰や焼却残滓が灰排出口3から排出される。火格子
装置4は、上流側から下流側に沿って固定火格子と可動
火格子とが幅方向に交互に配置された火格子床を具備
し、搬送駆動部4aにより可動火格子がごみの送り方向
に往復移動されてごみや焼却残滓が乾燥域11から燃焼
域12、おき燃焼域13に順次送られる。前記火格子床
の下部には、ごみの送り方向に複数に分割(図では8分
割)された風箱7A〜7Hがそれぞれ配置されており、
総空気供給装置(メインブロワ)8からメインダクト9
に供給された空気が、分岐ダクトから流量調整装置(た
とえばダンパ)10A〜10Hを介して風箱7A〜7H
にそれぞれ送られ、前記火格子床を介して炉本体1内の
乾燥域11と燃焼域12とおき燃焼域13に供給され
る。が8炉本体1の乾燥域11の天壁には、乾燥域11
のごみの高さを検出する層高検出手段である層高センサ
21、たとえばレーザレベルセンサが配設されている。
また炉本体1の天壁には火格子装置4を斜め上方から撮
像する赤外線カメラ(赤外線撮像装置)22が配置され
ており、この赤外線カメラ22のレンズ部には、3〜4
μmの波長のみの近赤外線を通過させるフィルタが装備
され、不輝炎からの赤外線放射を除去してごみ層の表面
温度を計測できるように構成されている。また炉本体1
から排出される排ガスは、炉本体1上部の排ガス通路2
3から、廃熱を回収する熱回収器24および排ガスの温
度調整や有害物質、塵埃の除去を行う排ガス処理装置2
5を介して排出されるが、たとえば排ガス処理装置25
の濾過式集塵器(バグフィルタ)の出口に、排ガスの酸
素濃度を検出する酸素濃度検出センサ(酸素濃度検出手
段)26が配置されている。
In the furnace body 1, a dry zone 11, a combustion zone 12 and an alternate combustion zone 13 are formed on the grate device 4 downstream from the upstream dust supply port 2 to incinerate the dust, Ash and incineration residue are discharged from the ash discharge port 3. The grate device 4 includes a grate floor in which fixed grate and movable grate are alternately arranged in the width direction from the upstream side to the downstream side, and the movable grate is fed by the transport drive unit 4a. After being reciprocally moved in the direction, the refuse and incineration residue are sequentially sent from the dry zone 11 to the combustion zone 12 and then the combustion zone 13. In the lower part of the grate floor, wind boxes 7A to 7H that are divided into a plurality of pieces (8 divisions in the figure) in the garbage feeding direction are arranged,
Total air supply device (main blower) 8 to main duct 9
The air supplied to the air ducts 7A to 7H from the branch ducts via the flow rate adjusting devices (for example, dampers) 10A to 10H.
And is supplied to the dry zone 11, the combustion zone 12, and the vertical combustion zone 13 in the furnace body 1 through the grate floor. There is a dry zone 11 on the top wall of the dry zone 11 of the furnace body 1.
A bed height sensor 21 which is a bed height detecting means for detecting the height of dust is provided, for example, a laser level sensor.
Further, an infrared camera (infrared imaging device) 22 for picking up an image of the grate device 4 from an obliquely upper position is arranged on the top wall of the furnace body 1.
It is equipped with a filter that passes near-infrared rays having a wavelength of only μm, and is configured to remove infrared rays emitted from the flame and measure the surface temperature of the dust layer. Also the furnace body 1
Exhaust gas discharged from the exhaust gas passage 2 above the furnace body 1
Heat recovery device 24 for recovering waste heat from 3 and exhaust gas treatment device 2 for controlling the temperature of exhaust gas and removing harmful substances and dust
5 is discharged through the exhaust gas treatment device 25, for example.
An oxygen concentration detection sensor (oxygen concentration detection means) 26 for detecting the oxygen concentration of exhaust gas is arranged at the outlet of the filter type dust collector (bag filter).

【0021】赤外線カメラ22の撮像データと酸素濃度
検出センサ26の検出データと層高センサ21の検出デ
ータに基づいて燃焼を制御する燃焼コントローラ30が
設けられており、燃焼コントローラ23では、燃焼域1
2の空気量制御と、乾燥域11の着火点制御とが行われ
る。
A combustion controller 30 is provided for controlling combustion on the basis of the image data of the infrared camera 22, the oxygen concentration detection sensor 26 and the bed height sensor 21, and the combustion controller 23 includes a combustion zone 1
The air amount control of 2 and the ignition point control of the dry zone 11 are performed.

【0022】前記燃焼コントローラ30は、赤外線カメ
ラ22の撮像データを、たとえば図2に示すように濃色
ほど高温の温度分布データに加工する前処理を行う画像
処理部31が設けられている。またこの画像処理部31
のデータを温度分布データに加工し、さらに図3に示す
着火点Iと燃え切り点Eとを判定して乾燥域11と燃焼
域12とおき燃焼域13との範囲を特定する温度分布・
帯域判定部32が設けられている。この温度分布・帯域
判定部32では、図4(a)に示すように、ごみ供給口
2から見て温度線Tb(閾値)以上である面積内に、着
火点Iとなる横断線ILを横断させて、横断線ILと温
度線Tbで囲まれた面積Am1が所定の閾値Adとなる
ように横断線ILを配置し、これにより着火点Iを決定
する。また図4(b)に示すように、同様に灰排出口3
から見て、温度線Ta(閾値)以上の面積内に、燃え切
り点Eとなる横断線ELを横断させ、横断線ELと温度
線Taとで囲まれた面積Am2と閾値Aaとなるように
横断線ILを配置し、これにより燃え切り点Eを決定す
る。
The combustion controller 30 is provided with an image processing section 31 which performs a pre-processing for processing the image data of the infrared camera 22 into temperature distribution data of higher color as shown in FIG. In addition, this image processing unit 31
Is processed into temperature distribution data, and the ignition point I and the burn-out point E shown in FIG. 3 are determined to specify the ranges of the dry zone 11, the combustion zone 12, and the interburn zone 13.
A band determination unit 32 is provided. In the temperature distribution / band determination unit 32, as shown in FIG. 4A, the crossing line IL that is the ignition point I is crossed within an area that is equal to or larger than the temperature line Tb (threshold value) when viewed from the dust supply port 2. Then, the transverse line IL is arranged so that the area Am1 surrounded by the transverse line IL and the temperature line Tb becomes the predetermined threshold Ad, and the ignition point I is determined by this. In addition, as shown in FIG.
As seen from the above, the transverse line EL that becomes the burn-out point E is crossed within the area equal to or larger than the temperature line Ta (threshold value) so that the area Am2 and the threshold value Aa surrounded by the transverse line EL and the temperature line Ta become the threshold value Aa. A transverse line IL is placed, which determines the burn-out point E.

【0023】また燃焼コントローラ30には、酸素濃度
検出センサ26の検出データに基づいて総空気供給量を
求める総空気量演算部33が設けられている。この総空
気量演算部33では、排ガスの酸素濃度が一定レベル
(所定範囲内)となるように、ごみの投入量や燃焼速
度、ごみ質に応じて必要な総空気供給量が求められる。
Further, the combustion controller 30 is provided with a total air amount calculation unit 33 for obtaining the total air supply amount based on the detection data of the oxygen concentration detection sensor 26. The total air amount calculation unit 33 obtains a necessary total air supply amount according to the amount of injected dust, the combustion speed, and the quality of the dust so that the oxygen concentration of the exhaust gas becomes a constant level (within a predetermined range).

【0024】この総空気量演算部33により求められた
総空気供給量のデータに基づいて、総空気供給制御部3
4から総空気供給装置8に制御信号が出力され、乾燥域
11と燃焼域12とおき燃焼域13に必要な空気が供給
される。
Based on the total air supply amount data obtained by the total air amount calculation unit 33, the total air supply control unit 3
A control signal is output from 4 to the total air supply device 8, and the required air is supplied to the dry zone 11, the combustion zone 12, and the alternate combustion zone 13.

【0025】また火格子装置4の火格子床は、空気供給
量が独自に調整可能な風箱7A〜7Hに対応して8つの
制御ブロック20A〜20Hに区分されており、制御コ
ントローラ30には、各帯域ごとに必要な空気量を求
め、さらに乾燥域11の制御ブロック20A,20B
と、燃焼域12の制御ブロック20C〜20Fと、おき
燃焼域13の制御ブロック20G,20Hに供給する空
気量を求める分配空気量演算部35が設けられている。
この分配空気量演算部35では、総空気供給量のデータ
から乾燥域11とおき燃焼域13に必要な空気量を減算
して、燃焼域12に供給する燃焼空気量を求める。そし
て帯域・温度分布判定部32のデータから燃焼域12に
対応する制御ブロック20C〜20Fの平均温度を読み
取り、この制御ブロック20C〜20Fの平均温度と、
燃焼空気量に基づいて、平均温度が高い制御ブロック2
0C〜20Fには多くの燃焼空気を配分して酸素不足が
生じないように、温度平均値に比例する演算式により各
制御ブロック20C〜20Fに配分する空気量が求めら
れる。
Further, the grate floor of the grate device 4 is divided into eight control blocks 20A to 20H corresponding to the wind boxes 7A to 7H whose air supply amount can be adjusted independently. , The amount of air required for each zone, and the control blocks 20A, 20B of the dry zone 11
A distributed air amount calculation unit 35 for determining the amount of air supplied to the control blocks 20C to 20F of the combustion region 12 and the control blocks 20G and 20H of the alternate combustion region 13 is provided.
The distributed air amount calculation unit 35 subtracts the air amount required for the dry zone 11 and the combustion zone 13 from the data of the total air supply amount to obtain the combustion air amount to be supplied to the combustion zone 12. Then, the average temperature of the control blocks 20C to 20F corresponding to the combustion zone 12 is read from the data of the zone / temperature distribution determination unit 32, and the average temperature of the control blocks 20C to 20F,
Control block 2 with a high average temperature based on the amount of combustion air
The amount of air to be distributed to each of the control blocks 20C to 20F is obtained by an arithmetic expression proportional to the temperature average value so that a large amount of combustion air is distributed to 0C to 20F and oxygen deficiency does not occur.

【0026】たとえば制御ブロック20C,20D,2
0E,20Fの温度平均値Tc,Td,Te,Tfと
し、総燃焼空気量を10とした場合の配分比率を表1に
示す。
For example, the control blocks 20C, 20D, 2
Table 1 shows distribution ratios when the temperature average values Tc, Td, Te, and Tf of 0E and 20F are set and the total combustion air amount is set to 10.

【0027】[0027]

【表1】 ここでは、制御ブロック20C〜20Fにおける平均温
度の大小により分配量を決定したが、温度平均値の温度
差の比率を考慮して空気配分比率を演算することもでき
る。
[Table 1] Here, although the distribution amount is determined by the magnitude of the average temperature in the control blocks 20C to 20F, the air distribution ratio can be calculated in consideration of the ratio of the temperature difference of the temperature average value.

【0028】また乾燥域11およびおき燃焼域13での
空気量も、上記燃焼域12と同じく、平均温度値の大小
または温度差の比率を考慮して、各域への総空気量が分
配される。
The air amounts in the dry zone 11 and the alternate combustion zone 13 are distributed in the same manner as in the combustion zone 12 in consideration of the ratio of the average temperature value or the temperature difference. It

【0029】さらに燃焼コントローラ30には、着火点
Iの位置を制御する着火点制御部37が設けられてい
る。この着火点制御部37は、乾燥域11のごみの層高
を一定に保持しつつ、温度分布・帯域判定部32で温度
分布から判断される着火点Iを一定の許容範囲に保持す
るために、層高検出センサ21の検出データと温度分布
・帯域判定部32の着火点Iの位置データに基づいて、
ごみ搬送制御部38を介してごみ搬送装置である火格子
装置4の搬送駆動部4aと、ごみ供給制御部39を介し
てプッシャ駆動部4cとをPID制御する。
Further, the combustion controller 30 is provided with an ignition point control section 37 for controlling the position of the ignition point I. This ignition point control unit 37 keeps the dust layer height in the dry zone 11 constant while keeping the ignition point I determined from the temperature distribution in the temperature distribution / band determination unit 32 within a certain allowable range. Based on the detection data of the high detection sensor 21 and the position data of the ignition point I of the temperature distribution / band determination unit 32,
PID control is performed on the transport drive unit 4a of the grate device 4 which is a waste transport device via the dust transport control unit 38 and the pusher drive unit 4c via the dust supply control unit 39.

【0030】またこの着火点Iの位置は、たとえば乾燥
制御ブロック20Bと制御ブロック20Cとの境界位置
を中心として許容範囲が設定されるのが望ましい。これ
は燃え切り点Eも同様であるが、着火点Iが制御ブロッ
クすなわち風箱の中間位置であれば、乾燥域11の乾燥
用空気と燃焼域12の燃焼用空気とを混在して空気量を
計算する必要があるためである。もし、制御ブロック2
0A〜20Gの中間位置に着火点Iまたは燃え切り点E
が存在する場合には、乾燥域と燃焼域、または燃焼域と
おき燃焼域の面積の大きい側をその区域に属するとして
もよいし、あるいは面積比率に対応して乾燥用空気と燃
焼用空気、燃焼用空気とおき燃焼用空気とを混合し供給
してもよい。特に燃え切り点Eのある制御ブロックは燃
焼域12とすることにより、供給される空気量が多くな
り未燃物が残るのを防止することもできる。
Further, it is desirable that the position of the ignition point I is set within an allowable range with the boundary position between the drying control block 20B and the control block 20C as the center. This is the same for the burn-out point E, but if the ignition point I is at the intermediate position of the control block, that is, the air box, the drying air in the drying area 11 and the combustion air in the combustion area 12 are mixed to obtain the air amount. This is because it needs to be calculated. If control block 2
Ignition point I or burnout point E at an intermediate position of 0A to 20G
When there is, the side of the dry area and the combustion area, or the larger area of the combustion area and the combustion area may belong to the area, or the drying air and the combustion air corresponding to the area ratio, The combustion air and the pre-combustion air may be mixed and supplied. In particular, by setting the control block having the burn-out point E in the combustion region 12, it is possible to prevent the unburned matter from remaining because the amount of supplied air increases.

【0031】上記実施の形態によれば、着火点制御部3
7により、層高検出センサ21の検出データと温度分布
・帯域判定部32の着火点Iの位置データに基づいて、
搬送駆動部4aによるごみの搬送速度と、プッシャ駆動
部4cによるごみの供給量とをPID制御し、乾燥域1
1のごみの層高を一定に保持しつつ、着火点Iを一定の
許容範囲に保持するので、ごみ質が変動しても、乾燥域
11を一定範囲に保持できて燃焼域12に影響を与える
ことがなく、安定した乾燥と燃焼とが可能となる。また
着火点Iを制御ブロックの境界線付近に保持することに
より、制御ブロックにおける空気供給量を容易に設定す
ることができ、より安定した乾燥と燃焼が可能となる。
According to the above embodiment, the ignition point control unit 3
7, based on the detection data of the bed height detection sensor 21 and the position data of the ignition point I of the temperature distribution / band determination unit 32,
PID control is performed on the dust transport speed by the transport drive unit 4a and the dust supply amount by the pusher drive unit 4c, and the dry area 1
Since the ignition point I is kept within a certain allowable range while keeping the bed height of No. 1 refuse constant, even if the refuse quality changes, the dry zone 11 can be kept within a certain range and the combustion zone 12 is affected. And stable drying and burning are possible. Further, by keeping the ignition point I near the boundary line of the control block, the air supply amount in the control block can be easily set, and more stable drying and combustion can be performed.

【0032】さらに、赤外線カメラ22による画像から
得られる温度分布により、燃焼域12の制御ブロック2
0C〜20Fごとの温度平均値を求め、分配空気量演算
部35により温度平均値が高いほど多くの燃焼空気を供
給するので、燃焼空気が必要とされる高温部に十分の空
気を供給することができ、安定した燃焼が可能となる。
したがって、従来のように、高温の部位が空気不足にな
って煤などの未燃分や有害ガスを発生することもなく、
燃焼を安定して継続させることができる。
Further, according to the temperature distribution obtained from the image taken by the infrared camera 22, the control block 2 for the combustion zone 12
The temperature average value for each 0C to 20F is calculated, and the higher the temperature average value is supplied by the distribution air amount calculation unit 35, the more combustion air is supplied. Therefore, sufficient air should be supplied to the high temperature portion where the combustion air is required. And stable combustion is possible.
Therefore, unlike in the past, there is no shortage of air in the high-temperature portion to generate unburned matter such as soot or harmful gas,
Combustion can be continued stably.

【0033】さらにまた、おき燃焼域13でも同様に、
制御ブロックに分けて空気供給量を制御することによ
り、さらに安定したおき燃焼が可能となる。なお、上記
実施の形態では、ごみの送り方向に沿って帯域を区画
し、制御ブロックを形成したが、大型のごみ焼却炉で
は、それに加えて図6に示すように、幅方向に複数に分
割して制御ブロック列20α〜20δを形成し、制御ブ
ロック20C〜20Fを制御ブロック列20α〜20δ
で分割したそれぞれのブロックへの空気量を独自に制御
するように構成することもできる。
Furthermore, in the combustion zone 13 as well,
By controlling the air supply amount in each control block, more stable combustion can be performed. In the above embodiment, the control block is formed by partitioning the zone along the direction of the refuse feed, but in a large refuse incinerator, in addition to that, as shown in FIG. To form control block sequences 20α to 20δ, and control blocks 20C to 20F to control block sequences 20α to 20δ.
It is also possible to independently control the amount of air to each block divided by.

【0034】また、制御ブロックにおける空気量の分配
調整による燃焼制御は、火格子の焼損やクリンカの発生
を防ぐために、火格子上のごみ層厚が一定値以上ある場
合に実施する。
Further, the combustion control by adjusting the distribution of the air amount in the control block is carried out when the thickness of the dust layer on the grate exceeds a certain value in order to prevent the burnout of the grate and the occurrence of clinker.

【0035】この場合、図1に示す層高センサ21や、
それとは別に設置した層高センサ、火格子下部からの通
風抵抗を検出して層高を推定する層高検出装置などを使
用して、燃焼域やおき燃焼域も層高の計測対象とし、こ
れら燃焼域やおき燃焼域の層高検出データを分配空気量
演算装置35に入力する。これら層高検出データに基づ
いて層高が低い火格子(風箱)の燃焼空気の供給量を、
空気供給量を全風箱数で割った平均量もしくは平均値以
下の設定値とし、温度分布の平均値から定まる空気分配
比率による制御空気量と比較して、前記設定値が大きい
場合や等しい場合には前記空気分配比率による制御空気
量を採用し、小さい場合にはその差分を他の風箱に平均
的に振り分けるなどの処理を行う。これにより、各領域
での適正な乾燥、燃焼、おき燃焼の各プロセスをそれぞ
れ完了することができ、排ガス量の低減、ごみの完全燃
焼を実現できる。
In this case, the bed height sensor 21 shown in FIG.
Using a bed height sensor installed separately, a bed height detection device that estimates the bed height by detecting the ventilation resistance from the bottom of the grate, and the combustion area and other combustion areas are also measured for bed height. The bed height detection data in the combustion region and the alternate combustion region is input to the distributed air amount computing device 35. Based on these bed height detection data, the amount of combustion air supplied to the grate (wind box) with a low bed height
If the set value is large or equal compared to the control air amount based on the air distribution ratio determined from the average value of the temperature distribution, with the air supply amount divided by the number of all air boxes as the average amount or a set value less than the average value. The control air amount based on the air distribution ratio is adopted as the above, and when the control air amount is small, the difference is averaged to other wind boxes. As a result, each process of proper drying, combustion, and vertical combustion in each region can be completed, and the amount of exhaust gas can be reduced and the complete combustion of dust can be realized.

【0036】また乾燥域11、燃焼域12およびおき燃
焼域13にそれぞれ分配される総空気量は、各域11〜
13を構成する風箱A1,A2,A3・・Amごとに更に次
のように分配してもよい。たとえばそれらの風箱上にあ
る火格子上の平均温度を、前記風箱A1,A2,A3・・
mに対応して、T1,T2,T3・・Tmとし、各風箱へ
の分配空気量を下記の式により制御する。
The total amount of air distributed to each of the dry zone 11, the combustion zone 12, and the alternate combustion zone 13 is from 11 to 11.
Wind box A 1 which constitutes a 13, A 2, A 3 each · · A m may be distributed further as follows. For example, the average temperature on the grate on those wind boxes is calculated as the above-mentioned wind boxes A 1 , A 2 , A 3 ...
T 1 , T 2 , T 3 ··· T m corresponding to A m , and the amount of air distributed to each wind box is controlled by the following formula.

【0037】各域の風箱Anの分配空気量=(乾燥)域
に分配される総空気量)×α/Tn 但し、n=1,2・・m 係数αは、α×(1/T1+1/T2+1/T3+・・1
/Tm)=1 これにより、平均温度Tが他の風箱上の火格子における
平均温度と比較して、高ければ高いほど分配空気量が減
り、逆に低ければ低いほど分配空気量が増えることにな
る。
Amount of distributed air in the air box A n in each region = (total amount of air distributed in the (dry) region) × α / T n where n = 1, 2 ·· m coefficient α is α × (1 / T 1 + 1 / T 2 + 1 / T 3 + ... 1
/ T m ) = 1 As a result, the higher the average temperature T is compared with the average temperature in the grate on the other wind box, the higher the distribution air amount, and the lower the average temperature T, the larger the distribution air amount. It will be.

【0038】乾燥域11で上記の分配空気量の調整を行
うことにより、乾燥の均一性が向上し、後段の燃焼域、
おき燃焼域での燃焼の均一性が向上する。また燃焼域1
2で上記の分配空気量の調整を行うことにより、燃焼の
均一性が向上し、おき燃焼域での燃焼の均一性が向上
し、さらに排ガス量の低減が実現できる。また、おき燃
焼13で上記の分配空気量の調整を行うことにより、お
き燃焼の均一性が向上される。もちろん、各域11〜1
3での総空気量の分配を2つまたはすべての域11〜1
3で行うこともできる。
By adjusting the amount of distributed air in the drying zone 11, the uniformity of drying is improved,
The uniformity of combustion in the alternating combustion region is improved. Combustion area 1
By adjusting the distribution air amount in 2 above, the uniformity of combustion is improved, the uniformity of combustion in the alternate combustion region is improved, and the amount of exhaust gas can be reduced. Further, by adjusting the above-mentioned distributed air amount in the upstream combustion 13, the uniformity of the upstream combustion is improved. Of course, each area 11-1
Distribution of total air volume in 3 or 2 in all or 11
It can also be done in 3.

【0039】さらに、上記各域11〜13での総空気量
の分配を、火格子上のごみ層厚が一定値以上ある場合に
実施するが、火格子上のごみ層厚と関係なく実施するこ
ともできる。
Further, the distribution of the total air amount in each of the above regions 11 to 13 is carried out when the dust layer thickness on the grate exceeds a certain value, but it is carried out regardless of the dust layer thickness on the grate. You can also

【0040】[0040]

【発明の効果】以上に述べたごとく請求項1記載の発明
によれば、制御ブロックごとに温度分布を計測し、それ
ぞれの平均温度に応じて燃焼空気量を供給するので、過
不足の無い適正な燃焼空気量を制御ブロックに供給する
ことができる。したがって、燃焼空気量の過不足の無い
状態で安定して燃焼させることができ、燃焼空気の過不
足による未燃分や有害ガスの発生を未然に防止でき、ま
た余分な燃焼空気を供給しなくて済むので、排ガス量が
増加することもない。これにより、容量の大きい排ガス
処理設備も不要となり、処理薬剤の使用量やメンテナン
スの回数を削減することができる。
As described above, according to the invention of claim 1, the temperature distribution is measured for each control block and the combustion air amount is supplied according to each average temperature, so that there is no excess or deficiency. A large amount of combustion air can be supplied to the control block. Therefore, it is possible to perform stable combustion in a state where there is no excess or deficiency in the amount of combustion air, it is possible to prevent the generation of unburned components and harmful gas due to excess and deficiency of combustion air, and to supply no excess combustion air. Therefore, the amount of exhaust gas does not increase. This eliminates the need for a large-capacity exhaust gas treatment facility and reduces the amount of treatment chemicals used and the number of maintenance operations.

【0041】請求項2記載の発明によれば、乾燥域のご
みの層高を一定範囲に保持しつつ、ごみの搬送速度とご
み供給量とを制御して、着火点を許容範囲に保持するの
で、ごみ質が変動しても着火点の変動が少なく、良好に
ごみを乾燥させて、燃焼域に送り込むことができる。ま
た着火点が変動しないので、燃焼域も増減せず、より安
定した燃焼が可能となり、さらに制御ブロックにおける
着火点の変動が小さいため、燃焼空気量の制御も容易に
実施できるとともに、さらに安定した燃焼が可能とな
る。
According to the second aspect of the present invention, while keeping the bed height of the dust in the dry region within a certain range, the conveyance speed of the dust and the amount of supplied dust are controlled to keep the ignition point within the allowable range. Even if the quality of the waste fluctuates, the ignition point does not fluctuate so that the waste can be dried well and sent to the combustion zone. In addition, since the ignition point does not change, the combustion area does not increase or decrease, more stable combustion is possible, and since the fluctuation of the ignition point in the control block is small, the amount of combustion air can be easily controlled and more stable combustion can be achieved. It will be possible.

【0042】請求項3記載の発明によれば、乾燥域のご
みの層高を一定範囲に保持しつつ、ごみの搬送速度と、
炉内へのごみの供給量とを制御することにより、着火点
を許容範囲に保持するので、ごみ質が変動しても乾燥域
の変動は小さく、これにより良好にごみを乾燥させて、
燃焼域に送り込むことができ、また着火点の変動が小さ
いため、燃焼域も増減しないので、より安定した燃焼が
可能となる。
According to the third aspect of the present invention, while keeping the layer height of the dust in the dry region within a certain range, the transport speed of the dust and
By controlling the amount of dust supplied to the furnace, the ignition point is maintained within the allowable range, so even if the dust quality changes, the change in the drying area is small, and this allows the waste to be dried well,
Since it can be sent to the combustion area and the fluctuation of the ignition point is small, the combustion area does not increase or decrease, so that more stable combustion becomes possible.

【0043】請求項4記載の発明によれば、帯域・温度
分布判定部により、赤外線撮像装置の撮像データに基づ
いて、着火点、燃え切り点と温度分布を求め、さらに総
空気量演算部により排ガスの酸素濃度から総空気供給量
求め、配分空気量演算部によりこの総空気供給量から制
御ブロックごとに平均温度に比例した燃焼空気量を演算
して供給するので、過不足の無い適正な燃焼空気量を燃
焼域の制御ブロックごとに供給することができる。した
がって、ごみを安定して燃焼させることができ、燃焼空
気の過不足による未燃分や有害ガスの発生を未然に防止
できる。また余分な燃焼空気を供給しなくて済むので、
排ガス量が増加することもない。これにより、容量の大
きい排ガス処理設備も不要となり、処理薬剤の使用量や
メンテナンスの回数を削減することができる。
According to the fourth aspect of the present invention, the band / temperature distribution determination unit obtains the ignition point, the burn-out point and the temperature distribution based on the image data of the infrared image pickup device, and the total air amount calculation unit further calculates the exhaust gas. The total air supply amount is calculated from the oxygen concentration of the above, and the distribution air amount calculation unit calculates and supplies the combustion air amount proportional to the average temperature for each control block from this total air supply amount, so that there is no excess or deficiency of the proper combustion air. The quantity can be supplied per control block in the combustion zone. Therefore, the waste can be stably burned, and the generation of unburned components and harmful gas due to excess and deficiency of combustion air can be prevented. Moreover, since it is not necessary to supply extra combustion air,
The amount of exhaust gas does not increase. This eliminates the need for a large-capacity exhaust gas treatment facility and reduces the amount of treatment chemicals used and the number of maintenance operations.

【0044】請求項5記載の発明によれば、ごみの層高
を一定範囲に保持しつつ、ごみの搬送速度とごみ供給量
とを着火点制御部により制御して、着火点を許容範囲に
保持するので、ごみ質が変動しても着火点の変動が小さ
く、良好にごみを乾燥させて、燃焼域に送り込むことが
できる。また着火点の変動が小さいため、燃焼域も増減
せず、より安定した燃焼が可能となり、さらに着火点の
変動が小さいため、制御ブロックにおける燃焼空気量の
制御も容易に実施できるとともに、さらに安定した燃焼
が可能となる。
According to the fifth aspect of the present invention, while keeping the dust layer height within a certain range, the dust conveyance speed and the dust supply amount are controlled by the ignition point control unit to keep the ignition point within the allowable range. Therefore, even if the quality of the dust fluctuates, the fluctuation of the ignition point is small, and it is possible to satisfactorily dry the dust and send it to the combustion zone. Also, since the fluctuation of the ignition point is small, the combustion area does not increase or decrease, and more stable combustion is possible.Furthermore, since the fluctuation of the ignition point is small, the control of the combustion air amount in the control block can be easily performed, and a more stable combustion is achieved. Is possible.

【0045】請求項6記載の発明によれば、着火点制御
部により、層高検出手段の検出データに基づいてごみの
層高を一定範囲に保持しつつ、ごみの搬送速度とごみ供
給量とを制御して、着火点を許容範囲に保持するので、
ごみ質が変動しても着火点の変動を小さくすることがで
き、良好にごみを乾燥させて、燃焼域に送り込むことが
できる。また着火点が変動しないので、燃焼域に及ぼす
影響も少なく安定した燃焼が可能となる。
According to the sixth aspect of the present invention, the ignition point control unit maintains the bed height of the dust within a certain range based on the detection data of the bed height detecting means, and at the same time, the dust conveyance speed and the dust supply amount. By controlling and keeping the ignition point within the allowable range,
Even if the quality of the waste fluctuates, the fluctuation of the ignition point can be reduced, and the waste can be dried well and sent to the combustion zone. Further, since the ignition point does not change, stable combustion is possible with little influence on the combustion region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るごみ焼却炉の実施の形態を示す構
成図である。
FIG. 1 is a configuration diagram showing an embodiment of a refuse incinerator according to the present invention.

【図2】同赤外線撮像装置による炉内の温度分布を示す
画像図である。
FIG. 2 is an image diagram showing a temperature distribution in a furnace by the infrared imaging device.

【図3】同乾燥域、燃焼域、おき燃焼域を示す画像図で
ある。
FIG. 3 is an image diagram showing the dry zone, the combustion zone, and the alternate combustion zone.

【図4】(a)は着火点を判定するための説明図、
(b)は燃え切り点を判定するための説明図である。
FIG. 4A is an explanatory diagram for determining an ignition point,
(B) is an explanatory view for determining a burn-out point.

【図5】同制御する制御ブロックを示す画像図である。FIG. 5 is an image diagram showing a control block for the same control.

【図6】同制御ブロックの他の実施の形態を示す画像図
である。
FIG. 6 is an image diagram showing another embodiment of the control block.

【符号の説明】[Explanation of symbols]

I 着火点 E 燃え切り点 1 炉本体 2 ごみ供給口 3 灰排出口 4 火格子装置 4a 火格子床 4b 搬送駆動部 6 ごみプッシャ装置 7A〜7H 風箱 8 総空気供給装置 9 メインダクト 10A〜10H 流量調整装置 11 乾燥域 12 燃焼域 13 おき燃焼域 20A〜20H 制御ブロック 21 層高センサ 22 赤外線カメラ 23 排ガス通路 24 熱回収装置 25 排ガス処理装置 26 酸素濃度検出センサ 30 燃焼コントローラ 31 画像処理部 32 温度分布・帯域判定部 33 総空気量演算部 34 総空気供給制御部 35 分配空気量演算部 36 空気調整装置制御部 37 着火点制御部 38 ごみ搬送制御部 39 ごみ供給制御部 I ignition point E burn-out point 1 furnace body 2 garbage supply port 3 Ash outlet 4 grate device 4a grate floor 4b Transport drive unit 6 Garbage pusher device 7A-7H Wind box 8 Total air supply device 9 Main duct 10A to 10H Flow rate adjusting device 11 dry areas 12 Burning area 13 every combustion area 20A to 20H control block 21-layer height sensor 22 infrared camera 23 Exhaust gas passage 24 heat recovery device 25 Exhaust gas treatment equipment 26 Oxygen concentration detection sensor 30 Combustion controller 31 Image processing unit 32 Temperature distribution / band determination unit 33 Total air amount calculator 34 Total Air Supply Control Section 35 Distribution air amount calculation unit 36 Air conditioner control unit 37 Ignition point control unit 38 Garbage transfer control unit 39 Garbage supply control unit

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23G 5/50 F23G 5/50 Q (72)発明者 遠藤 英樹 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 Fターム(参考) 3K062 AA04 AB01 AC01 BA02 CA03 CA05 CA08 CB03 CB08 DA03 DA22 DA38 DA40 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) F23G 5/50 F23G 5/50 Q (72) Inventor Hideki Endo 1-789, Minamikokita, Suminoe-ku, Osaka City, Osaka Prefecture Hitachi Zosen Co., Ltd. F term (reference) 3K062 AA04 AB01 AC01 BA02 CA03 CA05 CA08 CB03 CB08 DA03 DA22 DA38 DA40

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】炉床部を赤外線撮像装置により撮像し、 この撮像データにより得られた炉床部の温度分布に基づ
いて着火点と燃え切り点とを判定し、 炉内から排出される排ガスの酸素濃度を検出し、 前記酸素濃度が所定範囲内となる総供給空気量を求める
とともに、該総供給空気量から乾燥域とおき燃焼域の必
要空気量を減算して、燃焼域に供給する燃焼空気量を求
め、 前記少なくとも燃焼域を、燃焼空気量を制御可能な複数
の制御ブロックに分離し、 前記撮像データから各制御ブロックの温度分布をそれぞ
れ求め、 前記制御ブロックの平均温度に対応した燃焼空気量を制
御ブロックにそれぞれ供給することを特徴とするごみ焼
却炉の燃焼制御方法。
1. A furnace floor is imaged by an infrared imaging device, an ignition point and a burn-out point are determined based on the temperature distribution of the hearth obtained from the imaged data, and exhaust gas discharged from the furnace is detected. Combustion supplied to the combustion region by detecting the oxygen concentration and determining the total supply air amount within which the oxygen concentration is within a predetermined range, and subtracting the required air amounts in the dry zone and the combustion zone from the total supply air volume. Obtaining the air amount, dividing at least the combustion region into a plurality of control blocks capable of controlling the combustion air amount, obtaining the temperature distribution of each control block from the imaging data, respectively, combustion corresponding to the average temperature of the control block A method for controlling combustion in a refuse incinerator, characterized in that an air amount is supplied to each control block.
【請求項2】乾燥域のごみの層高を検出し、 該ごみの層高を一定範囲に保持しつつ、前記着火点が許
容範囲となるように、乾燥域のごみの搬送速度と、炉内
へのごみの供給量とを制御することを特徴とする請求項
1記載のごみ焼却炉の燃焼制御方法。
2. The conveyance speed of the dust in the dry area and the inside of the furnace so that the bed height of the dust in the dry area is detected, and the ignition point is within an allowable range while keeping the bed height of the dust in a certain range. The method for controlling combustion in a refuse incinerator according to claim 1, wherein the amount of refuse supplied to the waste incinerator is controlled.
【請求項3】炉床部を赤外線撮像装置により撮像し、 この撮像データにより得られた温度分布に基づいて着火
点を判定し、 前記乾燥域のごみの層高を検出し、 該ごみの層高を一定範囲に保持しつつ、前記着火点が許
容範囲となるように、乾燥域のごみの搬送速度と、炉内
へのごみの供給量とを制御することを特徴とするごみ焼
却炉の燃焼制御方法。
3. The hearth is imaged by an infrared imaging device, the ignition point is determined based on the temperature distribution obtained from the imaged data, the bed height of the dust in the dry area is detected, and the bed height of the dust is detected. Combustion control of a refuse incinerator, characterized by controlling the conveying speed of the dust in the dry region and the amount of the dust supplied to the furnace so that the ignition point is within an allowable range while maintaining Method.
【請求項4】炉床部を撮像する赤外線撮像装置と、 炉内から排出される排ガスの酸素濃度を検出する酸素濃
度検出手段と、 前記少なくとも燃焼域に区画して形成され、燃焼空気量
を制御可能な複数の制御ブロックと、 前記赤外線撮像装置の撮像データと酸素濃度検出手段の
検出データに基づいて前記制御ブロックに供給する燃焼
空気量を制御する燃焼コントローラとを具備し、 前記燃焼コントローラに、 撮像データから得られた温度分布に基づいて着火点と燃
え切り点とを判定するとともに各制御ブロックの温度分
布をそれぞれ求める帯域・温度分布判定部と、 酸素濃度が所定範囲内となる総供給空気量を求める総空
気量演算部と、 前記総供給空気量から乾燥域とおき燃焼域の必要空気量
を減算して燃焼域に供給する燃焼空気量を求め、燃焼域
の制御ブロックにそれぞれ供給する燃焼空気量を、制御
ブロックの平均温度に比例して配分する配分空気量演算
部とを設けたことを特徴とするごみ焼却炉の燃焼制御装
置。
4. An infrared image pickup device for picking up an image of the hearth floor, an oxygen concentration detecting means for detecting the oxygen concentration of exhaust gas discharged from the inside of the furnace; A plurality of controllable control blocks; and a combustion controller that controls the amount of combustion air supplied to the control block based on the imaged data of the infrared imaging device and the detection data of the oxygen concentration detection means. , A zone / temperature distribution determination unit that determines the ignition point and the burn-out point based on the temperature distribution obtained from the imaged data and determines the temperature distribution of each control block, and the total supply air with an oxygen concentration within a predetermined range. A total air amount calculation unit for obtaining the amount, the combustion air amount to be supplied to the combustion region by subtracting the required air amount in the dry zone and the combustion zone from the total supply air amount, A combustion control device for a refuse incinerator, comprising: a distribution air amount calculation unit that distributes the amount of combustion air supplied to each control block in the combustion region in proportion to the average temperature of the control block.
【請求項5】前記乾燥域のごみの層高を検出する層高検
出手段を設け、 前記燃焼コントローラに、層高検出手段の検出データに
より乾燥域のごみの層高を一定範囲に保持しつつ、乾燥
域のごみ搬送速度とごみ供給量とを制御して前記着火点
を許容範囲に保持する着火点制御部とを設けたことを特
徴とする請求項4記載のごみ焼却炉の燃焼制御装置。
5. A bed height detection means for detecting the bed height of the dust in the dry area is provided, and the combustion controller holds the bed height of the dust in the dry area within a certain range based on the detection data of the bed height detection means. 5. The combustion control device for a refuse incinerator according to claim 4, further comprising: an ignition point control unit that controls the refuse transport speed and the dust supply amount in the dry region to maintain the ignition point within an allowable range.
【請求項6】炉床部を撮像する赤外線撮像装置と、乾燥
域のごみの層高を検出する層高検出手段とを設け、 前記赤外線撮像装置の撮像データと層高検出手段の検出
データに基づいて、着火点位置を判定する帯域判定部
と、層高検出手段の検出データにより乾燥域のごみの層
高を一定範囲に保持しつつ乾燥域のごみ搬送速度とごみ
供給量とを制御して前記着火点を許容範囲に保持する着
火点制御部とを有する燃焼コントローラを設けたことを
特徴とするごみ焼却炉の燃焼制御装置。
6. An infrared imaging device for imaging the hearth and a bed height detecting means for detecting the bed height of dust in a dry area are provided, and the imaging data of the infrared imaging device and the detection data of the bed height detecting means are provided. Based on the band determination unit for determining the ignition point position, the bed height of the dry area is controlled by the detection data of the bed height detecting means while controlling the dust transport speed and the dust supply amount in the dry zone. A combustion controller for a refuse incinerator, comprising: a combustion controller having an ignition point control unit that maintains the ignition point within an allowable range.
JP2001356791A 2001-11-22 2001-11-22 Combustion control method and apparatus for refuse incinerator Expired - Fee Related JP3916450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001356791A JP3916450B2 (en) 2001-11-22 2001-11-22 Combustion control method and apparatus for refuse incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001356791A JP3916450B2 (en) 2001-11-22 2001-11-22 Combustion control method and apparatus for refuse incinerator

Publications (2)

Publication Number Publication Date
JP2003161422A true JP2003161422A (en) 2003-06-06
JP3916450B2 JP3916450B2 (en) 2007-05-16

Family

ID=19168245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001356791A Expired - Fee Related JP3916450B2 (en) 2001-11-22 2001-11-22 Combustion control method and apparatus for refuse incinerator

Country Status (1)

Country Link
JP (1) JP3916450B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057398A (en) * 2005-08-25 2007-03-08 Hitachi Zosen Corp Detecting method and detecting device of burning region in burner furnace
JP2008261510A (en) * 2007-04-10 2008-10-30 Takuma Co Ltd Plant operation control method by omnidirectional monitoring
CN102748765A (en) * 2012-07-31 2012-10-24 杭州和利时自动化有限公司 Method, device and system for controlling incinerator fire grate and feeding device
CN102840585A (en) * 2012-09-11 2012-12-26 绿色动力环保集团股份有限公司 Three-driving inverse push type incinerator grate and feeding device control method, device and system
WO2013146489A1 (en) * 2012-03-30 2013-10-03 日立造船株式会社 Combustion control device and combustion state detection device in incinerator
JP2013238350A (en) * 2012-05-15 2013-11-28 Takuma Co Ltd Stoker type incinerator and combustion method of the same
WO2014132532A1 (en) * 2013-02-28 2014-09-04 日立造船株式会社 Recirculated exhaust gas supply control method for stoker furnace, and stoker furnace
JP2017145981A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
JP2017145980A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
JP2017145979A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
WO2017175483A1 (en) * 2016-04-06 2017-10-12 日立造船株式会社 Stoker-type incinerator
JP2020091054A (en) * 2018-12-04 2020-06-11 株式会社プランテック Combustion control method and incinerator
JP2021188880A (en) * 2020-06-04 2021-12-13 Jfeエンジニアリング株式会社 Information processor, information processing method, combustion control device and combustion control method
CN113867404A (en) * 2021-11-05 2021-12-31 交通运输部天津水运工程科学研究所 Beach garbage inspection method and system based on unmanned aerial vehicle
JP2022069679A (en) * 2017-11-09 2022-05-11 川崎重工業株式会社 Device and method for controlling combustion of stoker furnace and device and method for detecting fuel movement amount

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543389B1 (en) * 2018-06-19 2019-07-10 川崎重工業株式会社 Reactor internal condition determination method and combustion control method
JP7403295B2 (en) * 2019-11-29 2023-12-22 三菱重工業株式会社 Combustion equipment, calculation methods and programs

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057398A (en) * 2005-08-25 2007-03-08 Hitachi Zosen Corp Detecting method and detecting device of burning region in burner furnace
JP2008261510A (en) * 2007-04-10 2008-10-30 Takuma Co Ltd Plant operation control method by omnidirectional monitoring
WO2013146489A1 (en) * 2012-03-30 2013-10-03 日立造船株式会社 Combustion control device and combustion state detection device in incinerator
JP2013210108A (en) * 2012-03-30 2013-10-10 Osaka Prefecture Univ Device for detecting combustion state in incinerator, and combustion controller
JP2013238350A (en) * 2012-05-15 2013-11-28 Takuma Co Ltd Stoker type incinerator and combustion method of the same
CN102748765A (en) * 2012-07-31 2012-10-24 杭州和利时自动化有限公司 Method, device and system for controlling incinerator fire grate and feeding device
CN102748765B (en) * 2012-07-31 2015-12-02 杭州和利时自动化有限公司 Incineration furnace grate and charging gear control method, device and system
CN102840585A (en) * 2012-09-11 2012-12-26 绿色动力环保集团股份有限公司 Three-driving inverse push type incinerator grate and feeding device control method, device and system
WO2014132532A1 (en) * 2013-02-28 2014-09-04 日立造船株式会社 Recirculated exhaust gas supply control method for stoker furnace, and stoker furnace
JP2014167353A (en) * 2013-02-28 2014-09-11 Hitachi Zosen Corp Stoker furnace recirculated exhaust gas supply control method and stoker furnace
JP2017145981A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
JP2017145980A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
JP2017145979A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
WO2017175483A1 (en) * 2016-04-06 2017-10-12 日立造船株式会社 Stoker-type incinerator
JP2017187228A (en) * 2016-04-06 2017-10-12 日立造船株式会社 Stoker type incinerator
JP2022069679A (en) * 2017-11-09 2022-05-11 川崎重工業株式会社 Device and method for controlling combustion of stoker furnace and device and method for detecting fuel movement amount
JP2020091054A (en) * 2018-12-04 2020-06-11 株式会社プランテック Combustion control method and incinerator
JP2021188880A (en) * 2020-06-04 2021-12-13 Jfeエンジニアリング株式会社 Information processor, information processing method, combustion control device and combustion control method
JP7428080B2 (en) 2020-06-04 2024-02-06 Jfeエンジニアリング株式会社 Information processing device, information processing method, combustion control device, and combustion control method
CN113867404A (en) * 2021-11-05 2021-12-31 交通运输部天津水运工程科学研究所 Beach garbage inspection method and system based on unmanned aerial vehicle
CN113867404B (en) * 2021-11-05 2024-02-09 交通运输部天津水运工程科学研究所 Beach garbage inspection method and system based on unmanned aerial vehicle

Also Published As

Publication number Publication date
JP3916450B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP2003161422A (en) Combustion control method and device of garbage incinerator
CA2666782C (en) Incineration plant and method for controlling an incineration plant
JPH06109228A (en) Ash melting furnace
JP6671326B2 (en) Combustion control method and waste incinerator
JP6040054B2 (en) Stoker furnace recirculation exhaust gas supply control method and stoker furnace
JP2001033017A (en) Method for controlling combustion of refuse incinerator
WO2021111742A1 (en) Combustion facility control device, combustion facility control method and program
JP2002022124A (en) Stoker furnace
JPH08178247A (en) Method of detecting nature of refuse in incinerator
JP2004239508A (en) Combustion control method of refuse incinerator, and refuse incinerator
JP4036768B2 (en) Combustion control device for incinerator
JP3567668B2 (en) Combustion control method for moving bed type waste incinerator
JPH10253031A (en) Combustion controller for incinerator
JP2624912B2 (en) Incinerator combustion control device
JP3888870B2 (en) Garbage incinerator
JP7093709B2 (en) Incinerator
JP6918293B1 (en) Combustion completion device and combustion completion method
JPH10332121A (en) Combustion controlling method for refuse incinerator
JP2788387B2 (en) Incinerator combustion state detector
JP2005164121A (en) Combustion control method for incinerator
JP2735766B2 (en) Garbage incinerator
JP3896979B2 (en) Combustion control method and control apparatus for waste incinerator
JP2761187B2 (en) Garbage incinerator
JPH08334217A (en) Combustion controller for garbage incinerator
JPH10238764A (en) Method and apparatus for controlling combustion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees