JP3567668B2 - Combustion control method for moving bed type waste incinerator - Google Patents

Combustion control method for moving bed type waste incinerator Download PDF

Info

Publication number
JP3567668B2
JP3567668B2 JP04612197A JP4612197A JP3567668B2 JP 3567668 B2 JP3567668 B2 JP 3567668B2 JP 04612197 A JP04612197 A JP 04612197A JP 4612197 A JP4612197 A JP 4612197A JP 3567668 B2 JP3567668 B2 JP 3567668B2
Authority
JP
Japan
Prior art keywords
combustion
refuse
moving bed
burn
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04612197A
Other languages
Japanese (ja)
Other versions
JPH10238738A (en
Inventor
満義 古城
克之 中西
剛 松添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP04612197A priority Critical patent/JP3567668B2/en
Publication of JPH10238738A publication Critical patent/JPH10238738A/en
Application granted granted Critical
Publication of JP3567668B2 publication Critical patent/JP3567668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、移動床式ごみ焼却炉の燃焼制御方法に関し、さらに詳しくは移動床式ごみ焼却炉の立下げ運転において、炉内残留ごみを最適な燃焼状態で燃し切ることができ、立下げ運転中の炉内残留ごみの不完全燃焼により黒煙を発生させることなく、またCOの発生を最小限に抑制し、しかも短時間で立下げ運転を完了する移動床式ごみ焼却炉の燃焼制御方法に係るものである。
【0002】
【従来の技術】
日々の操業を、立上げ運転、定常運転、立下げ運転の3形態で構成されるバッチ運転で実施する1日8時間操業の機械化バッチ式ごみ焼却炉、又は上記バッチ運転を1日16時間で実施する准連続式ごみ焼却炉の立下げ運転では、従来、埋火運転が実施されてきた。埋火運転とは、ごみホッパ内に残留するごみをごみ供給装置により炉内の移動床上に搬送した後、各移動床の各燃焼空気送入単位への燃焼空気の送入を急速に停止することにより炉内残留ごみの燃焼を急速に停止する立下げ運転方法である。
【0003】
埋火運転では、
(A)立下げ運転開始から焼却炉の運転を停止まで短時間で完了する。
(B)ごみの燃焼が停止し、灰分を含んだ炉内残留ごみは、埋火操作で移動床上に供給された新しいのごみ下敷きとなる。この新しく供給されたごみは、埋火運転開始まで燃焼していた炉内残留ごみの顕熱の放散を妨げ、極力熱容量を保持する断熱効果を有している。そのため、翌日の立上げ運転を開始する時点で、
a)炉内温度は200〜250℃以上の比較的高い炉温レベルを保っている。
b)炉内残留ごみは、上述の顕熱による乾燥過程が進行している。
という状態なので、ごみの着火性が良く、短時間でかつ助燃バーナの燃料を多量に使用することなく立上げ運転を実施することができるという2つの利点がある。
【0004】
ところがこの埋火運転で焼却炉の運転を停止すると、
(イ)各移動床への燃焼空気の送入が停止されるので、炉内残留ごみは若干の炉内導入空気による極端な酸素不足での燃焼、つまり不完全燃焼となり、黒煙発生が避けられない場合が多い。
(ロ)上記(イ)の状態が進行し、時間経過に従って黒煙発生量が漸減していくが、この一連の過程においても炉内は不完全燃焼状態であり、黒煙の発生はなくともCOの発生を避けることはできない。
という欠点がある。また、この黒煙には、多量のダイオキシン類が含まれている。更に不完全燃焼の代表的指標である排ガス中のCO排出濃度は、ダイオキシン類の排出量と強い相関がある。
【0005】
近年、ごみ焼却炉や産業廃棄物焼却炉等から発生するダイオキシン類を筆頭とする微量有害物質の排出抑制を強化する動きがあり、焼却炉内ごみ等の廃棄物をより完全燃焼させる必要が高まっている。
以上の状況から、上記のようなバッチ式ごみ焼却運転を行う移動床式ごみ焼却炉の立下げ運転においては、常に最適な状態でごみを燃焼することができ、炉内残留ごみを完全に燃し切ることができ、立下げ運転中の炉内残留ごみの不完全燃焼により黒煙を発生させることなく、またCOの発生を最小限に抑制できることが重要な課題である。
【0006】
そこで上記の課題を解決するためには、下記(a)〜(e)の各要素を管理してごみの燃焼を最適化する必要がある。
(a)燃し切り運転の開始時刻を的確に判定すること。
1日の操業で処理するごみの全量をごみ供給ホッパへ投入終了後、炉内へのごみの単位時間当りの供給量が減少し、燃焼負荷が減少し、具体的には炉内温度が下降し、排ガス中のCO濃度が上昇する等のプロセス状態が変動し、燃し切り運転へ移行すべき時点であることを判定する。
(b)上記燃し切り運転開始時刻から運転停止まで、時間経過に対する各移動床の各燃焼空気送入単位上のごみ層厚みを特定する。
(c)上記燃し切り運転開始時刻から運転停止まで、時間経過に対する炉内残留ごみの燃し切り点、すなわち、ごみ供給ホッパに残留しているごみを全て炉内へ搬送した後、炉内に残留している未燃状態のごみの、搬送方向に沿って移動する位置、すなわちごみ投入ホッパ側の尾端位置を特定する。
(d)上記燃し切り運転開始時刻から運転停止まで、時間経過に対する炉内残留ごみの燃え切り点、すなわち、ごみの搬送方向に対して炉尻側で完全灰化するポイントを、移動床上の搬送方向に沿った一定範囲内に保持する。
(e)上記(a)、(b)、(c)、(d)により上記燃し切り運転開始時刻から運転停止まで、時間経過に対する炉内残留ごみの搬送方向に対する分布状況を正確に把握し、各移動床上の各燃焼空気送入単位上の未燃焼状態のごみを最適な空燃比で燃焼させるのに必要な燃焼空気流量を、上記各燃焼空気送入単位へ個別に調節して供給する。
【0007】
従来の燃え切り燃焼制御技術としては、例えば、特開平5−141640号公報には、燃焼中の被焼却物を搬送する搬送手段を設けた燃焼帯と、燃焼帯における被焼却物の気体燃焼の終了位置を検出する燃え切り位置検出手段と、検出された燃え切り位置が設定範囲に入るように搬送速度を増減調節する燃焼制御手段とを備えた焼却炉の燃焼制御装置であって、燃え切り位置検出手段を、火格子に配置した複数の温度検出素子と、温度検出素子による検出温度が最高となる位置を燃え切り位置と判別する判別手段とで構成した、焼却炉の燃焼制御装置が示されている。
【0008】
また、特開昭61−36611号公報には、ごみ供給手段によってごみを焼却炉に供給し、ごみ焼却炉は乾燥域と燃焼域とにそれぞれ設けられた移動床を有し、ごみ焼却炉の発生熱量が一定となるように、乾燥域と燃焼域と後燃焼域とにおける供給空気量と、ごみ供給量と、移動床の速度とを操作する燃焼制御方法において、検出された燃え切りレベルをあらかじめ定められた燃え切りレベルと比較し、その偏差値に基づいて、前記供給空気量及び前記ごみ供給流量の少なくともいづれか一方の操作量を補正することを特徴とする、ごみ焼却炉の燃焼制御方法が開示されている。
【0009】
また、特公昭55−17286号公報には、乾燥火格子と、燃焼火格子を有するゴミ焼却炉の制御方法において、前記燃焼火格子上のゴミ層厚を測定し、ある時点における測定値がその時点より十分長い時間以前の過去の時点における測定値よりも所定の偏差値以上大きくなった時、前記燃焼火格子の速度を一定時間増加せしめることを特徴とするゴミ焼却炉の制御方法が開示されている。尚、前記ゴミ層厚は、燃焼火格子の上下に配置された感圧素子によって測定されたゴミ層の差圧に比例し、また、燃焼火格子に送入された燃焼空気流量測定値の2乗に反比例する演算値である。
【0010】
【発明が解決しようとする課題】
これらの従来技術は全て、炉内残留ごみの搬送方向に沿った分布形状が予め設定された基準状態から偏差が生じた場合、その偏差を解消し元の理想化された基準状態に戻すことを目的として、供給空気量、ごみ供給速度、移動床の搬送速度の基準値を補正する制御方法、つまり理想的な定常燃焼状態からの「ゆらぎ」に対する制御方法である。よってこれらは、24時間連続運転の全連続式ごみ焼却炉の燃焼制御に対して、好適に適用することが可能であると考えられる。
【0011】
ところが、炉内残留ごみの完全燃し切りを目的とする移動床式ごみ焼却炉の立下げ運転においては、炉内残留ごみの搬送方向に沿った分布形状が、図3〜図5に示すように大きく変化する。すなわち、燃し切り運転開始時点の図3中の31(A)、図4中の32(B)、33(C)を経由して全てのごみを完全灰化するまで、大きく変位する。従って、空間軸(各移動床の各燃焼空気送入単位)、時間軸(燃し切り運転開始時刻からの経過時間)の2次元の操業領域におけるごみの「分布形状の絶対値」、すなわち、ごみ層厚及び前記燃し切り点を精度良く特定し、各操業領域に対し、最適な空気過剰率で送入する燃焼空気流量の「基準値」を個別に調整する必要がある。
【0012】
従って、上記従来技術を適用しただけで本発明が解決しようとする上記(a)〜(e)の課題を根本的に解決することは、非常に困難である。
本発明はこのような条件下において、好適に適用することができる移動床式ごみ焼却炉の燃焼制御方法を提供することを目的とする。
本発明の他の目的は、従来技術のように多数の光量検出手段(炉内温度検出手段)や移動床の火格子温度検出手段を配置することなく、所定の燃し切り点及び各移動床の各燃焼空気投入単位上のごみ層厚みを正確で精度良く特定し、立下げ運転中の燃焼の最適化を図ることである。
【0013】
【課題を解決するための手段】
上記目的を達成するための本発明による焼却炉の特徴的な構成は、移動床式ごみ焼却炉の立下げ運転において、次の(i)、(ii)の手段である。
(i)その日の操業で処理するごみの全量をごみ供給ホッパへ投入終了後、炉内へのごみの単位時間当りの供給量が減少し、燃焼負荷が減少し、定常燃焼状態から燃し切り運転へ移行する時点、すなわち燃し切り運転開始時刻を的確に判定する手段。
(ii)燃し切り運転開始時刻を起点とし、各移動床の内いづれか1つの累積駆動回数に基づいて、各移動床の各燃焼空気送入単位に送入する燃焼空気流量を個別に調整する手段。
【0014】
本発明は上記(ii)の手段を用いることにより、上記(i)で判定した燃し切り運転開始時刻からの、各移動床の内何れか1つの累積駆動回数により、燃し切り点、または各移動床の各燃焼空気送入単位上のごみ層厚を特定すると共に、燃し切り運転中の炉内燃焼状況を最適化するために、各移動床の各燃焼空気投入単位へ投入する燃焼空気流量の調整を個別に行うものである。
【0015】
すなわち本発明は、移動床式ごみ焼却炉の立下げ運転において、ごみ投入ホッパへのごみの投入完了以降に燃し切り運転開始時刻を判定し、該燃し切り運転開始時刻以降は、いずれか1つの移動床の累積駆動回数に基づいて、各移動床の各燃焼空気送入単位に送入する燃焼空気流量を各立下げプログラムパターンに従って個別に調整し、炉内残留ごみを最適な燃焼状態で燃し切ると共に、立下げ運転中黒煙を発生させることなく、COの発生を最小限に抑制し、短時間で立下げ運転を完了することを特徴とする移動床式ごみ焼却炉の燃焼制御方法を提供するものである。
【0016】
またこの場合前記燃し切り運転用開始時刻はホッパから炉内へのごみの移動量が自然減少し始めた時点とするとよい。
【0017】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を説明する。図1は本発明が適用される移動床式ごみ焼却炉1の全体フローシートである。こみ焼却炉1は、ごみ投入ホッパ2から被焼却物であるごみ30を供給され、ごみ供給装置4はこれを乾燥移動床5に供給する。乾燥移動床5、燃焼移動床6、後燃焼移動床7は、中空の移動床であって、その上面に供給されたごみ30を順次前進させながら、中空部から燃焼空気をごみ層に送り、ごみ30を燃焼させる。ごみ30は、後燃焼移動床7を離脱するまでに完全に灰化するように燃焼され、灰は排出口8から排出される。燃焼排ガス10は、焼却炉煙道9を通って排出され、空気予熱器12、バグフィルタ13、誘引通風機14を経て煙突15から放出される。燃焼空気16は、押込み送風機11から、送風し、空気予熱器12で加熱され、送風制御装置を経て乾燥移動床5、燃焼移動床6、後燃焼移動床7に供給される。送風制御装置は、例えば設定器18、22、26、流量指示制御装置(FIC)19、23、27、制御弁20、24、28から構成され、流量計17、21、25の測定値を制御装置19、23、27に入力し、適正流量をフィードバック制御する。
【0018】
本発明の燃焼制御方法について、図2〜4を参照して説明する。
図2は、立下げ運転に於ける乾燥移動床5への燃焼空気投入流量設定システムを示す説明図である。立下げ運転時には、切替えスイッチ41、44により、定常ACC(自動燃焼制御システム)47、或いはその他の設定手段48を立下げプログラムパターン49に切り替えて、これを設定器26(図1参照)に入力する。例えば、図2の燃焼移動床6の累積駆動回数と乾燥移動床5への燃焼空気投入流量設定値との関係を示すグラフに示されるような立下げプログラムパターン49を設定する。この立下げプログラムパターン49の横軸には、燃し切り運転開始時刻以降の燃焼移動床6の累積駆動回数を取ってある。この燃焼移動床6の累積駆動回数に対応して、乾燥移動床5への燃焼空気投入流量設定値を与える。尚、立下げプログラムパターン49中の流量V [Nm /h]は、乾燥移動床5を冷却し、その表面温度を耐熱限界以下に維持するために最低限必要な、乾燥移動床5への投入空気流量である。
【0019】
図3は、立下げ運転に於ける燃焼移動床6への燃焼空気投入流量設定システムを示す説明図である。立下げ運転時には、切り替えスイッチ42、45により、定常ACC(自動燃焼制御システム)47或いはその他の設定手段48から、立下げプログラム50に切り替えて、これを設定器22(図1参照)に入力する。図3の燃焼移動床6の累積駆動回数と燃焼移動床6への燃焼空気投入流量設定値との関係を示すグラフに示されるような立下げプログラムパターン50を設定する。このプログラムパターン50の横軸には、燃し切り運転開始時刻以降の燃焼移動床6の累積駆動回数を取ってある。この燃焼移動床6の累積駆動回数に対応して、燃焼移動床6への燃焼空気投入流量設定値を与える。尚、立下げプログラムパターン50中の流量V [Nm /h]は、燃焼移動床6を冷却し、その表面温度を耐熱限界以下に維持するために最低限必要な、燃焼移動床6への投入空気流量である。
【0020】
図4は立下げ運転に於ける後燃焼移動床7への燃焼空気投入流量設定システムを示す説明図である。立下げ運転時には、切り替えスイッチ43,46により、定常ACC(自動燃焼制御システム)47、或いはその他の設定手段48から立下げプログラム49に切り替えて、設定器26(図1参照)に入力する。例えば、図4の燃焼移動床6の累積駆動回数と後燃焼移動床7への燃焼空気投入流量設定値との関係を示すグラフに示されるような立下げプログラムパターン51を設定する。この立下げプログラムパターン51の横軸には、燃し切り運転開始時刻以降の燃焼移動床6の累積駆動回数を取ってある。この燃焼移動床6の累積駆動回数に対応して、後燃焼移動床7への燃焼空気投入流量設定値を与える。尚、立下げプログラムパターン51中の流量V [Nm /h]は、後燃焼移動床7を冷却し、その表面温度を耐熱限界以下に維持するために最低限必要な、後燃焼移動床7への投入空気流量である。
【0021】
次に、図5、6、7中のプロフィール31(A)、32(B)、33(C)は、各移動床上のごみの、搬送方向に対する分布を示したものである。最初に、図5のプロフィール31(A)は、ごみ投入ホッパ2内のごみの上面レベルをレベルセンサ3が検出した時点を燃し切り運転開始時刻と判定し、燃焼移動床6の累積駆動回数のカウントを開始した直後の分布である。尚、レベルセンサ3は、日々の操業において、その日のごみの計画処理量の全量をごみ投入ホッパ2へ投入完了後、供給装置4が、定常駆動速度でごみを移動床上に供給していても、ごみの供給量が自然に減少し始めるようなポイントに配設されている。つまり、この時点から時間経過とともに、移動床上の炉内残留ごみの、搬送方向に対する分布が、完全燃し切りに向かって変化する。図6のプロフィール32(B)は、移動床上のごみの積載状態がごみ供給装置4の駆動範囲を脱し、炉内残留ごみの搬送方向に対して投入側の尾端が、乾燥移動床5の投入側の尾端位置に到達した時点のごみの分布である。また、図7のプロフィール33(C)は、炉内残留ごみの搬送方向に対する尾端位置が、燃焼移動床6の尾端位置に到達した時の分布である。
【0022】
このようなごみの分布の態様は、各移動床のいづれか1つの、燃し切り運転開始時刻以降の累積駆動回数をベースにして整理すると、再現性の良い燃し切り運転条件をほぼ一義的に決定することができる。この関係は、立下げ運転中に移動床上に供給されるごみの可燃成分比、水分、形状、その他の特性が変動し、従って燃焼性、燃焼速度等に変動があっても、それらのばらつきを包含して、的確に成立することが知見された。本発明は、発明者らが鋭意研究して得たこのような全く新規な知見に立脚して、工業的に高い精度で成立するものである。しかも、炉内残留ごみの完全燃し切りを目的とした立下げ運転において、不完全燃焼により発生する黒煙を炉外へ排出することなく、かつ短時間で立下げ運転を完了することができる。
【0023】
尚、各移動床への燃焼空気流量投入パターンを示す立下げプログラムパターン49、50、51等は、焼却炉の規模、性能、バッチ操業時間の設定、ごみの特性等を勘案して、実績運転データにより修正を加えることによって、最適なプログラムを得ることができ、しかも再現性が高いものである。
【0024】
【実施例】
図8に本発明を適用する以前の移動式ごみ焼却炉の立下げ運転のタイムチャートを示した。また図9に本発明を実際に適用し調整を完了後の移動式ごみ焼却炉の立下げ運転のタイムチャートを示した。この焼却炉は、図1に示すごみ焼却炉1で、1日8時間運転の機械化バッチ式焼却炉である。処理量は、2.7トン/時、ごみ(被燃焼物)の低位発熱量は約1000kcal/kgである。炉の運転時間は毎日9時00分〜17時00分までの8時間運転で、14時30分から立下げ運転開始となっている。図8、9のデータは排ガス中のCO濃度(瞬時値)[ppm]であり、立下げ運転開始(14時30分)後、この実績値が100ppmを越えた時点から運転終了までの経過時間を、炉内ごみの安全燃し切り運転の評価指標とする。
【0025】
図8に示す従来の立下げ運転では、運転終了の1時間35分前より炉内残留ごみの最適な燃焼を維持することが不可能となり、不完全燃焼による排ガス中のCO濃度の排出が始まった。更に、運転終了の10分前に、図1のバグフィルタ13への通ガスを解除した直後に、同じく図1の煙突15より黒鉛の排出が認められた。それに対し、図9に示ように、本発明を実際に適用した立下げ運転では、運転終了の47分前まで最適な燃し切り運転を維持できた。その結果、運転終了の10分前に、図1のバグフィルタ13への通ガスを解除しても、煙突15より黒鉛及び白煙の何れも排出は認められず、炉内残留ごみの完全灰化を達成し、翌日の立上げ運転開始までに完全に空炉の状態に保持することができた。
【0026】
【発明の効果】
本発明によれば、ごみ焼却炉に光量検出手段や移動床温度検出手段をそれぞれ多数配置しなくても、所定の燃し切り点及び各移動床上の各燃焼空気ごみ層厚みを精度よく特定し、その状況に応じて最適な各移動床への燃焼空気流量の投入を実施し、立下げ運転中の燃焼の最適化を図ることができる。そのために、立下げ運転を通じて炉外へ黒煙を発生させることなく、かつ短時間で立下げ運転を終了させることができる。
【図面の簡単な説明】
【図1】実施例に係る全体フローシートである。
【図2】立下げ運転の操作説明図である。
【図3】立下げ運転の操作説明図である。
【図4】立下げ運転操作説明図である。
【図5】立下げ運転の炉内のごみのプロフィールを示す説明図である。
【図6】立下げ運転の炉内のごみのプロフィールを示す説明図である。
【図7】立下げ運転の炉内のごみのプロフィールを示す説明図である。
【図8】従来の立下げ運転の排ガス中のCOの変化を示すチャートである。
【図9】実施例の立下げ運転の排ガス中のCOの変化を示すチャートである。
【符号の説明】
1 ごみ焼却炉
2 ホッパ
3 レベルセンサ
4 供給装置
5 乾燥移動床
6 燃焼移動床
7 後燃焼移動床
8 排出口
9 焼却炉煙道
10 排ガス
11 送風機
12 空気予熱器
13 バグフィルタ
14 誘引通風機
15 煙突
16 燃焼用空気
17、21、25 流量計
18、22、26 設定器
19、23、27 流量指示制御装置(FIC)
20、24、28 制御弁
30 廃棄物
31、32、33 プロフィール
41〜46 切替えスイッチ
47 定常ACC(自動燃焼制御システム)
48 その他の設定手段
49、50、51 立下げプログラムパターン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a combustion control method for a moving-bed incinerator, and more particularly to a moving-bed-type incinerator in a shutdown operation, in which the residual waste in the furnace can be burned out in an optimal combustion state, and the shutdown is performed. Combustion control of a moving-bed incinerator that does not generate black smoke due to incomplete combustion of residual refuse in the furnace during operation, minimizes CO generation, and completes the shutdown operation in a short time Pertains to the method.
[0002]
[Prior art]
A mechanized batch incinerator of 8 hours per day, in which daily operations are performed in a batch operation composed of three forms of start-up operation, steady operation, and shutdown operation, or the above-mentioned batch operation is performed in 16 hours per day In the quasi-continuous refuse incinerator shutdown operation to be implemented, an incineration operation has conventionally been implemented. Burn-in operation means that after the refuse remaining in the refuse hopper is conveyed to a moving bed in the furnace by a refuse supply device, the supply of combustion air to each combustion air supply unit of each moving bed is rapidly stopped. This is a shutdown operation method in which the combustion of residual waste in the furnace is stopped quickly.
[0003]
In underground driving,
(A) The operation of the incinerator is completed in a short time from the start of the shutdown operation to the stop of the operation of the incinerator.
(B) Burning of the refuse is stopped, and the remaining refuse-containing refuse in the furnace becomes new refuse underlay supplied on the moving bed by the burning operation. The newly supplied refuse prevents the sensible heat of the residual refuse in the furnace that has been burning until the start of the fire-filling operation from dissipating, and has an adiabatic effect of maintaining the heat capacity as much as possible. Therefore, at the start of the next day's start-up operation,
a) The furnace temperature is maintained at a relatively high furnace temperature level of 200 to 250 ° C. or more.
b) The drying process by the sensible heat described above is proceeding for the residual dust in the furnace.
Therefore, there are two advantages that the ignitability of the refuse is good, and the start-up operation can be performed in a short time without using a large amount of the fuel of the auxiliary burner.
[0004]
However, when the operation of the incinerator was stopped during this burning operation,
(B) Since the supply of combustion air to each moving bed is stopped, the residual refuse in the furnace is burned due to a slight oxygen shortage due to a slight amount of air introduced into the furnace, that is, incomplete combustion, and the generation of black smoke is avoided. Often not.
(B) The state of the above (a) progresses and the amount of black smoke generated gradually decreases with the lapse of time. Even during this series of processes, the furnace is in an incomplete combustion state, and even if black smoke is not generated. The generation of CO cannot be avoided.
There is a disadvantage that. This black smoke contains a large amount of dioxins. Furthermore, the CO emission concentration in exhaust gas, which is a representative index of incomplete combustion, has a strong correlation with the amount of dioxins emitted.
[0005]
In recent years, there has been a movement to strengthen the control of the emission of trace toxic substances such as dioxins generated from refuse incinerators and industrial waste incinerators, etc., and the need to completely burn waste such as refuse in incinerators has increased. ing.
From the above situation, in the shutdown operation of the moving-bed-type incinerator that performs the batch-type incineration operation as described above, the waste can always be burned in an optimal state, and the residual waste in the furnace can be completely burned. It is an important issue to be able to reduce the generation of CO by minimizing the generation of black smoke due to incomplete combustion of the residual refuse in the furnace during the shutdown operation.
[0006]
Therefore, in order to solve the above-mentioned problems, it is necessary to optimize the combustion of refuse by managing the following elements (a) to (e).
(A) To accurately determine the start time of the burn-off operation.
After the entire amount of refuse to be processed in one day's operation is put into the refuse supply hopper, the amount of refuse supplied to the furnace per unit time decreases, the combustion load decreases, and the furnace temperature decreases. Then, it is determined that the process state changes, such as an increase in the CO concentration in the exhaust gas, and it is time to shift to the burn-out operation.
(B) From the start time of the burn-off operation to the stop of the operation, the thickness of the refuse layer on each combustion air supply unit of each moving bed with respect to the passage of time is specified.
(C) From the start time of the burn-off operation to the stop of the operation, the burn-off point of the residual refuse in the furnace with respect to the elapse of time, that is, after all the refuse remaining in the refuse supply hopper is transferred into the furnace, The position at which the unburned waste remaining in the unburned state moves along the transport direction, that is, the tail end position on the waste input hopper side is specified.
(D) From the burn-out operation start time to the operation stop, the burn-off point of the residual refuse in the furnace with respect to the elapse of time, that is, the point where complete incineration is performed on the furnace bottom side with respect to the direction in which the refuse is transported, It is kept within a certain range along the transport direction.
(E) From (a), (b), (c), and (d) above, from the start time of the burn-off operation to the stop of the operation, the distribution state of the residual dust in the furnace with respect to the elapse of time in the transport direction is accurately grasped. The combustion air flow rate required to burn the unburned refuse on each combustion air supply unit on each moving bed at the optimum air-fuel ratio is individually adjusted and supplied to each of the combustion air supply units. .
[0007]
As a conventional burn-off combustion control technique, for example, Japanese Patent Application Laid-Open No. 5-141640 discloses a combustion zone provided with a conveying means for conveying an incineration object during combustion, and a gas combustion of the incineration object in the combustion zone. What is claimed is: 1. A combustion control apparatus for an incinerator, comprising: a burn-out position detecting means for detecting an end position; and combustion control means for increasing or decreasing a conveying speed so that the detected burn-off position falls within a set range. A combustion control device for an incinerator, comprising: a position detecting means comprising a plurality of temperature detecting elements arranged on a grate and a determining means for determining a position at which the temperature detected by the temperature detecting element is the highest as a burn-out position. Have been.
[0008]
JP-A-61-36611 discloses that refuse is supplied to an incinerator by refuse supply means. The refuse incinerator has moving beds provided in a drying zone and a combustion zone, respectively. In the combustion control method of operating the supply air amount, the refuse supply amount, and the moving bed speed in the drying area, the combustion area, and the post-combustion area so that the generated heat amount is constant, the detected burn-off level is determined. A combustion control method for a refuse incinerator, comprising: comparing a predetermined burn-out level; and correcting at least one of the supply air amount and the waste supply flow rate based on the deviation value. Is disclosed.
[0009]
Further, Japanese Patent Publication No. 55-17286 discloses a method of controlling a dry grate and a refuse incinerator having a combustion grate by measuring the thickness of the garbage layer on the combustion grate and obtaining a measured value at a certain point in time. A method for controlling a refuse incinerator characterized by increasing the speed of the combustion grate for a predetermined time when the measured value is larger than a measured value at a past time point which is sufficiently longer than a predetermined time point by a predetermined deviation value or more is disclosed. ing. The thickness of the dust layer is proportional to the differential pressure of the dust layer measured by the pressure-sensitive elements arranged above and below the combustion grate, and is 2% of the measured value of the flow rate of the combustion air sent to the combustion grate. This is an operation value that is inversely proportional to the power.
[0010]
[Problems to be solved by the invention]
All of these prior arts disclose that, when the distribution shape of the residual refuse in the furnace along the conveying direction has a deviation from a preset reference state, the deviation is eliminated and the original idealized reference state is returned. The purpose is a control method for correcting the reference values of the supply air amount, the refuse supply speed, and the transfer speed of the moving bed, that is, a control method for "fluctuation" from an ideal steady combustion state. Therefore, it is considered that these can be suitably applied to the combustion control of a full-time continuous incinerator operated continuously for 24 hours.
[0011]
However, in the operation of shutting down a moving-bed-type incinerator for completely burning out the residual waste in the furnace, the distribution shape of the residual waste in the furnace along the conveying direction is as shown in FIGS. 3 to 5. It changes greatly. That is, there is a large displacement until all the refuse is completely incinerated via 31 (A) in FIG. 3 and 32 (B) and 33 (C) in FIG. 4 at the start of the burn-off operation. Therefore, the “absolute value of the distribution shape” of the dust in the two-dimensional operation area on the space axis (each combustion air feeding unit of each moving bed) and the time axis (the elapsed time from the burn-off operation start time), It is necessary to accurately specify the refuse layer thickness and the burn-off point, and individually adjust the "reference value" of the combustion air flow rate to be supplied at the optimum excess air ratio for each operation area.
[0012]
Therefore, it is very difficult to fundamentally solve the above-mentioned problems (a) to (e) that the present invention intends to solve only by applying the above-described conventional technology.
An object of the present invention is to provide a combustion control method for a moving-bed refuse incinerator that can be suitably applied under such conditions.
Another object of the present invention is to provide a predetermined burn-out point and each moving bed without arranging a large number of light amount detecting means (furnace temperature detecting means) and a grate temperature detecting means of the moving bed as in the prior art. The purpose of the present invention is to accurately and accurately specify the thickness of the refuse layer on each combustion air input unit to optimize the combustion during the shutdown operation.
[0013]
[Means for Solving the Problems]
The characteristic configuration of the incinerator according to the present invention for achieving the above object is the following means (i) and (ii) in the operation of moving down the incinerator moving down the floor.
(I) After the entire amount of refuse to be processed in the operation on that day is put into the refuse supply hopper, the amount of refuse supplied into the furnace per unit time is reduced, the combustion load is reduced, and the refuse is burned out of the steady combustion state. Means for accurately determining the time point when the operation shifts to operation, that is, the burn-out operation start time.
(Ii) Starting from the burn-out operation start time, individually adjusting the flow rate of combustion air to be supplied to each combustion air supply unit of each moving bed based on the cumulative number of times of driving of any one of the moving beds. means.
[0014]
According to the present invention, by using the means of (ii), the burn-off point or the burn-off point can be determined by the cumulative number of times of driving of any one of the moving beds from the burn-out operation start time determined in (i). Combustion injected into each combustion air input unit of each moving bed in order to identify the thickness of the refuse layer on each combustion air supply unit of each moving bed and to optimize the combustion state in the furnace during burn-out operation The adjustment of the air flow rate is performed individually.
[0015]
That is, the present invention determines the start-up operation start time after the completion of the introduction of the refuse into the refuse input hopper in the shut-down operation of the moving bed refuse incinerator, and after the start-up operation start time, Based on the cumulative number of driving times of one moving bed, the flow rate of combustion air to be sent to each combustion air feeding unit of each moving bed is individually adjusted according to each falling program pattern, and the residual refuse in the furnace is optimized for the combustion state. Combustion of a moving bed refuse incinerator characterized by minimizing the generation of CO while minimizing the generation of CO without generating black smoke during the shutdown operation and completing the shutdown operation in a short time A control method is provided.
[0016]
Further, in this case, the start time for the burn-off operation may be the time when the moving amount of the dust from the hopper into the furnace starts to decrease naturally.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall flow sheet of a moving-bed refuse incinerator 1 to which the present invention is applied. The refuse incinerator 1 is supplied with the refuse 30 as the incineration material from the refuse input hopper 2, and the refuse supply device 4 supplies the refuse to the drying moving bed 5. The drying moving bed 5, the combustion moving bed 6, and the post-combustion moving bed 7 are hollow moving beds, and while the refuse 30 supplied to the upper surface is sequentially advanced, the combustion air is sent from the hollow portion to the refuse layer, Burn the refuse 30. The refuse 30 is burned so as to be completely incinerated before leaving the post-combustion moving bed 7, and the ash is discharged from the discharge port 8. The flue gas 10 is discharged through the incinerator flue 9, and is discharged from the chimney 15 through the air preheater 12, the bag filter 13, and the induction ventilator 14. The combustion air 16 is blown from a forced air blower 11, heated by an air preheater 12, and supplied to a drying moving bed 5, a combustion moving bed 6, and a post-combustion moving bed 7 via a blowing control device. The blower control device includes, for example, setting devices 18, 22, 26, flow instruction control devices (FIC) 19, 23, 27, and control valves 20, 24, 28, and controls the measurement values of the flow meters 17, 21, 25. The signals are input to the devices 19, 23, and 27, and the appropriate flow rate is feedback-controlled.
[0018]
The combustion control method of the present invention will be described with reference to FIGS.
FIG. 2 is an explanatory view showing a system for setting the flow rate of the combustion air supplied to the drying moving bed 5 in the shut-down operation. During the shut-down operation, the changeover switches 41 and 44 are used to switch the steady-state ACC (automatic combustion control system) 47 or other setting means 48 to the shut-down program pattern 49 and input this to the setter 26 (see FIG. 1). I do. For example, a fall program pattern 49 is set as shown in a graph showing the relationship between the cumulative number of drives of the combustion moving bed 6 and the set value of the flow rate of the combustion air into the drying moving bed 5 in FIG. The abscissa of the falling program pattern 49 indicates the cumulative number of times the combustion moving bed 6 has been driven since the burn-off operation start time. Corresponding to the cumulative number of times the combustion moving bed 6 is driven, a set value of the flow rate of the combustion air supplied to the drying moving bed 5 is given. The flow rate V 5 [Nm 3 / h] in the falling program pattern 49 is used to cool the drying moving bed 5 and maintain the surface temperature of the drying moving bed 5 at a minimum necessary to maintain the surface temperature below the heat resistance limit. Is the input air flow rate.
[0019]
FIG. 3 is an explanatory diagram showing a system for setting the flow rate of the combustion air supplied to the combustion moving bed 6 in the shut-down operation. At the time of the shut-down operation, the changeover switches 42 and 45 are used to switch the steady-state ACC (automatic combustion control system) 47 or other setting means 48 to the shut-down program 50 and input this to the setter 22 (see FIG. 1). . A fall program pattern 50 is set as shown in a graph showing the relationship between the cumulative number of times of driving of the combustion moving bed 6 and the set value of the flow rate of combustion air to the combustion moving bed 6 in FIG. The abscissa of the program pattern 50 indicates the cumulative number of times the combustion moving bed 6 has been driven since the burn-off operation start time. Corresponding to the cumulative number of times of driving of the combustion moving bed 6, a set value of the flow rate of the combustion air supplied to the combustion moving bed 6 is given. The flow rate V 6 [Nm 3 / h] in the falling program pattern 50 is applied to the combustion moving bed 6 which is the minimum necessary for cooling the combustion moving bed 6 and keeping its surface temperature below the heat resistance limit. Is the input air flow rate.
[0020]
FIG. 4 is an explanatory diagram showing a system for setting the flow rate of the combustion air supplied to the post-combustion moving bed 7 in the shutdown operation. During the shut-down operation, the steady-state ACC (automatic combustion control system) 47 or other setting means 48 is switched to the shut-down program 49 by the changeover switches 43 and 46 and input to the setting device 26 (see FIG. 1). For example, a fall program pattern 51 is set as shown in a graph showing the relationship between the cumulative number of times of driving of the combustion moving bed 6 and the set value of the flow rate of combustion air to the after-combustion moving bed 7 in FIG. On the horizontal axis of the falling program pattern 51, the cumulative number of times of driving of the combustion moving bed 6 after the burn-out operation start time is shown. Corresponding to the cumulative number of times of driving of the combustion moving bed 6, a set value of the flow rate of the combustion air to the post-combustion moving bed 7 is given. The flow rate V 7 [Nm 3 / h] in the falling program pattern 51 is the minimum value required for cooling the post-combustion moving bed 7 and keeping its surface temperature below the heat resistant limit. 7 is the input air flow rate.
[0021]
Next, profiles 31 (A), 32 (B), and 33 (C) in FIGS. 5, 6, and 7 show the distribution of dust on each moving floor in the transport direction. First, the profile 31 (A) in FIG. 5 indicates that the time when the level sensor 3 detects the upper surface level of the refuse in the refuse input hopper 2 is the burn-off operation start time, and the cumulative number of times the combustion moving bed 6 has been driven. Is the distribution immediately after the start of counting. In addition, even if the supply device 4 supplies the refuse to the movable floor at a steady driving speed after the completion of the input of the entire amount of the refuse to be processed to the refuse input hopper 2 in the daily operation, It is located at a point where the refuse supply starts to decrease naturally. That is, as time elapses from this point, the distribution of the residual dust in the furnace on the moving bed in the transport direction changes toward complete burnout. The profile 32 (B) of FIG. 6 shows that the loading state of the refuse on the moving bed is out of the driving range of the refuse supply device 4, and the tail end on the input side with respect to the conveying direction of the residual refuse in the furnace is the drying movable bed 5 This is the distribution of waste when it reaches the tail end position on the input side. The profile 33 (C) in FIG. 7 is a distribution when the tail end position in the furnace in the conveying direction of the residual dust reaches the tail end position of the combustion moving bed 6.
[0022]
Such a mode of distribution of the waste is determined based on the cumulative number of times of driving of any one of the moving floors after the burn-out operation start time, so that the burn-out operation condition with good reproducibility is almost uniquely determined. can do. This relationship indicates that even if the combustible component ratio, moisture, shape, and other characteristics of the refuse supplied to the moving bed during the shut-down operation fluctuate, even if the flammability, combustion speed, etc. fluctuate, these fluctuations will be reduced. It has been found that it is included and properly established. The present invention is based on such totally novel knowledge obtained by the inventors' earnest research, and is industrially established with high precision. Moreover, in the shut-down operation for the purpose of completely burning out the residual dust in the furnace, the shut-down operation can be completed in a short time without discharging the black smoke generated by the incomplete combustion to the outside of the furnace. .
[0023]
Note that the falling program patterns 49, 50, 51, etc., which indicate the combustion air flow rate input pattern to each moving bed, are actually operated in consideration of the scale and performance of the incinerator, the setting of the batch operation time, the characteristics of the waste, and the like. By modifying the data, an optimal program can be obtained, and the reproducibility is high.
[0024]
【Example】
FIG. 8 shows a time chart of the shutdown operation of the mobile waste incinerator before applying the present invention. FIG. 9 shows a time chart of a shutdown operation of the mobile refuse incinerator after the present invention is actually applied and adjustment is completed. This incinerator is a garbage incinerator 1 shown in FIG. 1 and is a mechanized batch incinerator operated for 8 hours a day. The throughput is 2.7 tons / hour, and the lower heating value of the refuse (burnable material) is about 1000 kcal / kg. The furnace is operated for 8 hours every day from 9:00 to 17:00, and the shutdown operation is started from 14:30. The data in FIGS. 8 and 9 are the CO concentration (instantaneous value) [ppm] in the exhaust gas, and the elapsed time from when the actual value exceeds 100 ppm to the end of the operation after the start of the shutdown operation (14:30). Is used as an evaluation index for safe burn-off operation of in-furnace waste.
[0025]
In the conventional shut-down operation shown in FIG. 8, it is impossible to maintain the optimal combustion of the residual refuse in the furnace 1 hour and 35 minutes before the end of the operation, and the exhaustion of the CO concentration in the exhaust gas due to incomplete combustion starts. Was. Further, 10 minutes before the end of the operation, immediately after the gas passage to the bag filter 13 in FIG. 1 was released, the discharge of graphite from the chimney 15 in FIG. 1 was also recognized. On the other hand, as shown in FIG. 9, in the shutdown operation to which the present invention was actually applied, the optimal burn-off operation could be maintained up to 47 minutes before the end of the operation. As a result, even if the gas flow to the bag filter 13 in FIG. 1 was canceled 10 minutes before the operation was completed, neither graphite nor white smoke was discharged from the chimney 15, and the complete ash remaining in the furnace was not removed. By the start of the next day's start-up operation, it was possible to completely maintain the state of the empty furnace.
[0026]
【The invention's effect】
According to the present invention, it is possible to accurately specify a predetermined burn-off point and a thickness of each combustion air debris layer on each moving bed without arranging a large number of light amount detecting means and moving bed temperature detecting means in the refuse incinerator. According to the situation, the optimal flow of the combustion air to each moving bed can be performed to optimize the combustion during the shut-down operation. Therefore, the shutdown operation can be completed in a short time without generating black smoke outside the furnace through the shutdown operation.
[Brief description of the drawings]
FIG. 1 is an overall flow sheet according to an embodiment.
FIG. 2 is an operation explanatory view of a falling operation.
FIG. 3 is an operation explanatory view of a falling operation.
FIG. 4 is an explanatory diagram of a falling operation operation.
FIG. 5 is an explanatory view showing a profile of dust in a furnace in a shutdown operation.
FIG. 6 is an explanatory diagram showing a profile of dust in a furnace in a shutdown operation.
FIG. 7 is an explanatory diagram showing a profile of dust in a furnace in a shutdown operation.
FIG. 8 is a chart showing changes in CO in exhaust gas of a conventional shut-down operation.
FIG. 9 is a chart showing a change in CO in exhaust gas in a shut-down operation according to an example.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Refuse incinerator 2 Hopper 3 Level sensor 4 Supply device 5 Dry moving bed 6 Combustion moving bed 7 Post-combustion moving bed 8 Outlet 9 Incinerator flue 10 Exhaust gas 11 Blower 12 Air preheater 13 Bag filter 14 Induction ventilator 15 Chimney 16 Combustion air 17, 21, 25 Flow meters 18, 22, 26 Setting devices 19, 23, 27 Flow instruction control device (FIC)
20, 24, 28 Control valve 30 Waste 31, 32, 33 Profiles 41 to 46 Changeover switch 47 Steady-state ACC (automatic combustion control system)
48 Other setting means 49, 50, 51 Falling program pattern

Claims (2)

移動床式ごみ焼却炉の立下げ運転において、ごみ投入ホッパへのごみの投入完了以降に燃し切り運転開始時刻を判定し、該燃し切り運転開始時刻以降は、いずれか1つの移動床の累積駆動回数に基づいて、各移動床の各燃焼空気送入単位に送入する燃焼空気流量を各立下げプログラムパターンに従って個別に調整し、炉内残留ごみを最適な燃焼状態で燃し切ると共に、立下げ運転中黒煙を発生させることなく、COの発生を最小限に抑制し、短時間で立下げ運転を完了することを特徴とする移動床式ごみ焼却炉の燃焼制御方法。In the shut-down operation of the moving bed type waste incinerator, the burn-off operation start time is determined after the completion of the charging of the waste into the garbage charging hopper, and after the burn-off operation start time, any one of the moving beds is determined. Based on the cumulative number of times of operation, the combustion air flow to be sent to each combustion air supply unit of each moving bed is individually adjusted according to each falling program pattern, and the residual refuse in the furnace is burned out in an optimal combustion state. A method of controlling combustion in a moving-bed refuse incinerator, characterized in that the generation of CO is suppressed to a minimum without generating black smoke during the shutdown operation and the shutdown operation is completed in a short time. 前記燃し切り運転用開始時刻はホッパから炉内へのごみの移動量が自然減少し始めた時点とすることを特徴とする請求項1記載の移動床式ごみ焼却炉の燃焼制御方法。2. The combustion control method for a moving-bed refuse incinerator according to claim 1, wherein the start-up time for the burn-off operation is a time when a moving amount of refuse from the hopper into the furnace starts to decrease naturally.
JP04612197A 1997-02-28 1997-02-28 Combustion control method for moving bed type waste incinerator Expired - Fee Related JP3567668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04612197A JP3567668B2 (en) 1997-02-28 1997-02-28 Combustion control method for moving bed type waste incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04612197A JP3567668B2 (en) 1997-02-28 1997-02-28 Combustion control method for moving bed type waste incinerator

Publications (2)

Publication Number Publication Date
JPH10238738A JPH10238738A (en) 1998-09-08
JP3567668B2 true JP3567668B2 (en) 2004-09-22

Family

ID=12738169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04612197A Expired - Fee Related JP3567668B2 (en) 1997-02-28 1997-02-28 Combustion control method for moving bed type waste incinerator

Country Status (1)

Country Link
JP (1) JP3567668B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146141A (en) * 1998-11-06 2000-05-26 Hitachi Zosen Corp Cooling structure for fire grate in stoker type refuse incinerator
CN102705831A (en) * 2012-05-11 2012-10-03 袁永扬 Solid waste incinerator body
CN102705832B (en) * 2012-05-11 2013-07-10 袁永扬 Solid waste incinerator without emission of flue gas

Also Published As

Publication number Publication date
JPH10238738A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
US4838183A (en) Apparatus and method for incinerating heterogeneous materials
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
JP3567668B2 (en) Combustion control method for moving bed type waste incinerator
JPH11294740A (en) Exhaust gas complete combustion control method and apparatus
JPH0634118A (en) Combustion controller of incinerator
JP2955477B2 (en) Combustion air supply mechanism for garbage incinerator
JPH071084B2 (en) Air amount control method for fluidized bed furnace with boiler
JPH1151348A (en) Moving bed waste incinerator and method of controlling combustion
JPH08178247A (en) Method of detecting nature of refuse in incinerator
JP3618668B2 (en) Stoker waste incinerator
JPH0311218A (en) Automatic combustion controller for refuse incinerator
JPH05141640A (en) Combustion control device for incinerator
EP1274961B1 (en) A process for the incineration of solid combustible material
JPS6246119A (en) Burning control method of classified waste incinerator
JPH07332642A (en) Garbage incinerator
JP3946603B2 (en) Waste incinerator and incineration method using the same
JP3936884B2 (en) Control method of stoker type incinerator
JP3888870B2 (en) Garbage incinerator
JP3607058B2 (en) Incinerator and operation control method for incinerator
JP2624912B2 (en) Incinerator combustion control device
JPH07190327A (en) Combustion controller for refuse incinerator
JP2004245519A (en) Combustion controller for incinerator
JPH036407B2 (en)
JP2004278898A (en) Operation method of burner in incinerator and operation control device
JP2002267134A (en) Combustion control system of refuse incinerator having no boiler facility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees