WO2024106008A1 - Collapse detection system and collapse detection method - Google Patents

Collapse detection system and collapse detection method Download PDF

Info

Publication number
WO2024106008A1
WO2024106008A1 PCT/JP2023/034285 JP2023034285W WO2024106008A1 WO 2024106008 A1 WO2024106008 A1 WO 2024106008A1 JP 2023034285 W JP2023034285 W JP 2023034285W WO 2024106008 A1 WO2024106008 A1 WO 2024106008A1
Authority
WO
WIPO (PCT)
Prior art keywords
collapse
unit
determination
images
judgment
Prior art date
Application number
PCT/JP2023/034285
Other languages
French (fr)
Japanese (ja)
Inventor
信治 岩下
慶子 青山
駿 郡司
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024106008A1 publication Critical patent/WO2024106008A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements

Definitions

  • Patent Document 1 discloses a supply amount detection system including an imaging device configured to capture an image of solid fuel before it accumulates in a feeder section of an incinerator and falls into a combustion chamber, and a detection device that detects the amount of the solid fuel supplied to the combustion chamber based on the image captured by the imaging device.
  • the amount of the solid fuel supplied to the combustion chamber is detected based on the difference between a first luminance, which is the luminance of the image at a first timing, and a second luminance, which is the luminance of the image at a second timing that is later than the first timing and is lower than the first luminance.
  • Patent No. 6979482 Japanese Patent Application Laid-Open No. 9-060842 JP 2019-196845 A
  • the collapse detection method disclosed herein includes one or more computers acquiring images of materials to be incinerated that have accumulated in a feeder of an incineration facility and are being pushed toward a combustion chamber at a first predetermined period, calculating a representative value of brightness based on the acquired first image, calculating a representative value of brightness based on two or more images acquired within the time it takes for one collapse of the materials to occur among a plurality of images in a time series acquired before the first image, and making a determination regarding the collapse based on the representative value of brightness based on the first image and the representative value of brightness based on the two or more images.
  • the collapse detection system includes an acquisition unit that acquires images of materials to be incinerated that have accumulated in a feeder of an incineration facility and are being pushed toward a combustion chamber at a first predetermined period, and a collapse detection unit that makes a determination regarding the collapse based on a first input element that is a first image acquired by the acquisition unit, and a second input element that is two or more images captured within the time it takes for one collapse of the materials to occur among a plurality of images in a time series acquired by the acquisition unit prior to the first image.
  • the present disclosure provides a collapse detection system and a collapse detection method that can improve the accuracy of detecting the collapse of materials to be incinerated.
  • FIG. 1 is a schematic diagram showing an overall configuration of an incineration facility according to an embodiment of the present disclosure.
  • FIG. 1 is a functional block diagram of an information processing device according to an embodiment of the present disclosure.
  • 4 is a diagram showing an example of an image to be determined by a first determination unit according to the first embodiment of the present disclosure
  • FIG. 13 is a diagram showing an example of an image to be determined by a third determination unit according to the first embodiment of the present disclosure
  • FIG. 6A to 6C are diagrams illustrating an example of a time-series determination result by a first determination unit according to the first embodiment of the present disclosure.
  • FIG. 6A to 6C are diagrams illustrating an example of a time-series determination result by a second determination unit according to the first embodiment of the present disclosure.
  • 4 is a diagram showing an example of an image to be determined by a disturbance determination unit according to the first embodiment of the present disclosure
  • FIG. 1A to 1C are diagrams illustrating an example of a low deviation image and a high deviation image used for learning by a trained model for disturbance determination according to the first embodiment of the present disclosure.
  • 5 is a diagram showing an example of a time-series determination result by a disturbance determination unit according to the first embodiment of the present disclosure;
  • FIG. 10 is a flowchart illustrating an example of an operation of the information processing device according to the second embodiment of the present disclosure.
  • 13A to 13C are diagrams illustrating an example of a time series of determination results by a first collapse determination unit and a second collapse determination unit according to a second embodiment of the present disclosure.
  • FIG. 13 is a functional block diagram of an information processing device according to a third embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of an image that is a target of calculation by a first calculator according to a third embodiment of the present disclosure.
  • the incineration facility 100 is a stoker-type waste incinerator in which, for example, urban waste, industrial waste, biomass, or the like is incinerated.
  • the material to be incinerated may be referred to as "waste.” That is, in this embodiment, the waste is fuel for causing a combustion reaction in the incineration facility.
  • the incineration facility 100 includes, for example, a hopper 102, a feeder 104, a furnace body 108, an extrusion device 110, an air supply device 112, a heat recovery boiler 114, a cooling tower 116, a dust collector 118, a chimney 120, and a collapse detection system 1.
  • the combustion area 130 burns the waste Fg by raising a flame 131.
  • the post-combustion area 132 completely burns the remaining burnt waste that was not completely burned in the combustion area 130.
  • the waste Fg that has been dried, burned, and post-combusted in the combustion chamber R becomes ash 135, which falls through an ash chute 146 downstream of the post-combustion area 132 and is discharged outside the furnace body 108.
  • the heat recovery boiler 114, the temperature reducing tower 116, the dust collector 118, and the chimney 120 are each provided in a flue 144 through which exhaust gas 143 generated by burning waste Fg in the combustion chamber R flows.
  • the exhaust gas 143 flows through the heat recovery boiler 114, the temperature reducing tower 116, the dust collector 118, and the chimney 120 in that order.
  • the heat recovery boiler 114 generates steam from the thermal energy of the exhaust gas 143.
  • the temperature reducing tower 116 lowers the temperature of the exhaust gas 143 that has passed through the heat recovery boiler 114.
  • the dust collector 118 collects fly ash contained in the exhaust gas 143 that has passed through the temperature reducing tower 116.
  • the collapse detection system 1 detects that the garbage Fg accumulated in the feeder 104 has been pushed by the push-out arm 124 toward the combustion chamber R and supplied to the combustion chamber R. Specifically, the collapse detection system 1 detects the collapse of the garbage Fg from inside the feeder 104 into the combustion chamber R.
  • the "collapse" here means, for example, that a certain amount of garbage Fg is supplied at once from the garbage Fg accumulated in the feeder 104 to the combustion chamber R.
  • collapse is classified into a first-scale collapse and a second-scale collapse that is larger in scale than the first-scale collapse.
  • the collapse detection system 1 detects the scale (amount) of the garbage Fg that has collapsed into the combustion chamber R.
  • the collapse detection system 1 includes, for example, an imaging device 2 and an information processing device 4.
  • the infrared camera 5 captures images in the above wavelength band, it can transmit the flame 131, and the flame 131 is prevented from being reflected in the generated infrared image.
  • the visible light camera 6 captures the front surface Fr of the garbage Fg in a predetermined wavelength band in the visible wavelength range, and generates a visible light image. Since the visible light camera 6 captures images in the above wavelength band, it cannot transmit the flame 131, and the flame 131 is mainly reflected in the generated visible light image.
  • the first calculation unit 50 calculates the average value of the luminance of each of the first region 42a to the ninth region 42i in the first target region 42 in the first infrared image, and further averages the calculated nine luminance average values to calculate the average value of the entire first target region 42 as the representative value of the luminance based on the first infrared image.
  • the representative value calculated by the first calculation unit 50 is not limited to the average value, and may be, for example, a statistical value such as a median. In other words, the method of calculating the representative value by the first calculation unit 50 is not necessarily limited to the above.
  • the first calculation unit 50 sends the calculated representative value of the luminance in the first target region 42 to the determination unit 70.
  • the second calculation unit 55 calculates a representative value of the luminance of a specific target region that is a part of the second infrared image.
  • the target region that the second calculation unit 55 calculates is the same region as the first target region 42 described above.
  • the second calculation unit 55 calculates the average value of the luminance of each of the first region 42a to the ninth region 42i of the first target region 42, and calculates the average value of the entire first target region 42 by further averaging the calculated nine average values of luminance.
  • the second calculation unit 55 calculates the average value of the entire first target region 42 as a representative value based on the multiple second infrared images.
  • the representative value calculated by the second calculation unit 55 is not limited to the average value, and may be a statistical value such as a median.
  • the method of calculating the representative value by the second calculation unit 55 is not necessarily limited to the above.
  • the second calculation unit 55 sends the representative value of the luminance of the entire first target region 42 based on the multiple second infrared images to the determination unit 70.
  • the third calculation unit 60 receives a visible light image from the images received from the acquisition unit 40, and calculates a third feature amount based on the received visible light image.
  • the third feature amount is a representative value of luminance based on one visible light image (e.g., the most recent visible light image) received by the third calculation unit 60.
  • the visible light image used by the third calculation unit 60 to calculate the representative value of luminance is referred to as a "first visible light image”. That is, the third calculation unit 60 calculates the representative value of luminance based on the first visible light image acquired by the acquisition unit 40.
  • the first visible light image is another example of the first image.
  • An example of a visible light image received by the third calculation unit 60 is shown in FIG. 4.
  • the first visible light image (a) is shown in monotone (black and white display) for convenience of illustration.
  • the third calculation unit 60 generates an image (b) by extracting only the red component from the first visible light image (a) among the monochromatic components, and calculates a representative value of luminance in a specific target region that is a part of the image (b) from which only the red component has been extracted.
  • the image from which only the red component has been extracted from the first visible light image by the third calculation unit 60 is referred to as a "monochromatic component image.”
  • the target region is referred to as a "second target region 43.”
  • the monochromatic component image is an example of a visible light image.
  • the monochromatic component extracted from the first visible light image by the third calculation unit 60 is not limited to the red component, and for example, a monochromatic component image may be generated from the first visible light image by using only the green component or only the blue component as the monochromatic component.
  • the third calculation unit 60 calculates a representative value of brightness for the second target region 43, which is an area in which the flame 131 is mainly reflected in the monochromatic component image.
  • the second target region 43 that is the object of calculation by the third calculation unit 60 is equally divided into multiple regions.
  • FIG. 4 an example is shown in which the second target region 43 is divided into three regions in the width direction (direction perpendicular to the conveying direction W1) of the furnace body 108.
  • the second target region 43 is not limited to being divided into three equal regions, and may be divided into two or four or more regions.
  • the third calculation unit 60 calculates the median value of the brightness of each of the left region 43l, the center region 43c, and the right region 43r in the second target region 43 in the monochromatic component image as a representative value.
  • the representative value calculated by the third calculation unit 60 is not limited to the median, and may be a statistical value such as an average value. In other words, the method of calculating the representative value by the third calculation unit 60 is not necessarily limited to the above.
  • the third calculation unit 60 sends the representative values of the luminance of the left region 43l, the center region 43c, and the right region 43r in the calculated single-color component image to the determination unit 70.
  • the fourth calculation unit 65 receives a visible light image from the images received from the acquisition unit 40, and calculates a fourth feature amount based on the received multiple visible light images.
  • the fourth feature amount is a representative value of luminance based on the multiple visible light images received by the fourth calculation unit 65.
  • the fourth calculation unit 65 calculates a representative value of luminance based on multiple visible light images captured within a time it takes for one collapse of the garbage Fg, from among two or more visible light images in a time series that were acquired before the first visible light image used by the third calculation unit 60 to calculate the representative value.
  • the two or more visible light images used by the fourth calculation unit 65 to calculate the representative value of luminance are visible light images captured at a predetermined time interval from each other.
  • the time interval existing between two or more visible light images is referred to as the "third time".
  • the fourth calculation unit 65 calculates the representative value of luminance based on each of the number of visible light images of the number of frames acquired per unit time by the acquisition unit 40. Therefore, the third time is the second predetermined period.
  • the third time is, for example, less than one second long.
  • the two or more visible light images are images captured before the first visible light image for a fourth time period that is at least twice the third time period.
  • the fourth calculation unit 65 calculates a representative value of luminance based on the two or more visible light images, for example, three or more (four or more) visible light images.
  • the fourth calculation unit 65 calculates a representative value of luminance based on each of the images of the number of frames acquired per unit time by the acquisition unit 40.
  • the multiple visible light images are multiple images acquired over a time period longer than at least half the time period S.
  • the multiple visible light images are acquired over a time period S.
  • each of the multiple images used by the fourth calculator 65 to calculate the representative value of luminance will be referred to as a "second visible light image.”
  • the second visible light image is an example of the second image.
  • the fourth calculation unit 65 generates a monochromatic component image from the second infrared image and calculates a representative value of the luminance of a specific target region that is a part of the monochromatic component image.
  • the target region that the fourth calculation unit 65 calculates is the same region as the second target region 43 described above.
  • the fourth calculation unit 65 calculates the median value of the luminance of each of the left region 43l, the central region 43c, and the right region 43r of the second target region 43. Furthermore, the fourth calculation unit 65 calculates the median value of the entire left region 43l, the entire central region 43c, and the entire right region 43r as a representative value based on multiple monochromatic component images.
  • the representative value calculated by the fourth calculation unit 65 is not limited to the median value, and may be a statistical quantity such as an average value. In other words, the method of calculating the representative value by the fourth calculation unit 65 is not necessarily limited to the above.
  • the fourth calculation unit 65 sends the representative values of the luminance of each of the multiple left region 43l, the multiple center region 43c, and the multiple right region 43r based on the multiple calculated single-color component images to the determination unit 70.
  • the determination unit 70 performs various determination processes (described later) based on the image received from the acquisition unit 40 and the feature amounts (e.g., representative values of luminance) received from each of the first calculation unit 50, the second calculation unit 55, the third calculation unit 60, and the fourth calculation unit 65.
  • the determination unit 70 has, for example, a first determination unit 71, a second determination unit 72, a disturbance determination unit 74, a third determination unit 73, a first collapse determination unit 75, and a second collapse determination unit 76.
  • the first determination unit 71 performs a determination regarding collapse based on the representative value of brightness (first feature amount) received from the first calculation unit 50 and the representative value of brightness (second feature amount) received from the second calculation unit 55.
  • the determination by the first determination unit 71 will be referred to as the "first determination.”
  • the first determination unit 71 calculates a feature change amount V1 (absolute value) occurring between the first infrared image that is the subject of the first determination and the multiple second infrared images according to the following formula (iii).
  • V1
  • a m (t) is a representative value of luminance (first feature amount) calculated by the first calculation unit 50 at time t.
  • ⁇ B m (t s ) is a representative value of luminance (second feature amount) calculated by the second calculation unit 55.
  • t s are multiple times at which each second infrared image is acquired, and one second infrared image corresponds to one time t s .
  • s is the number of second infrared images, which is the number of frames acquired per unit time.
  • the first collapse determination flag indicates the result of the first determination and indicates a value of 1 or 0.
  • the first threshold value is pre-stored in the storage unit 90.
  • the first determination unit 71 performs a first determination by timely referring to the first threshold value stored in the memory unit 90.
  • the first determination unit 71 sends a first collapse determination flag, which is the result of the first determination, to the first collapse determination unit 75 and the second collapse determination unit 76.
  • FIG. 5 shows the time series change in the characteristic change amount V1 in a specific time period, and the time series change in the first collapse determination flag according to the characteristic change amount V1 in the same time period.
  • the graph shown in FIG. 5 is the result obtained by the inventors' analysis.
  • the time when the operator (experienced worker) of the incineration equipment 100 visually inspects the inside of the combustion chamber R and determines that the waste Fg has collapsed is indicated by a circle ( ⁇ ).
  • the second determination unit 72 makes a determination regarding collapse based on one or more infrared images received from the acquisition unit 40.
  • the second determination unit 72 makes a determination regarding collapse using one first infrared image (the most recent infrared image) that is the target of calculation by the first calculation unit 50 among the images received from the acquisition unit 40.
  • the second determination unit 72 may use one image other than the first infrared image among the images received from the acquisition unit 40.
  • the second determination unit 72 may use multiple images, and the first infrared image may be included in the multiple images.
  • the second judgment unit 72 performs judgment using a trained model that has been trained to output a judgment result regarding the possibility of collapse when the first infrared image is input.
  • the judgment by the second judgment unit 72 is referred to as the "second judgment”
  • the trained model used by the second judgment unit 72 for the second judgment is referred to as the "trained model for second judgment 91”.
  • the trained model for second judgment 91 is pre-stored in the memory unit 90 (see FIG. 2).
  • the second judgment unit 72 inputs the first infrared image received from the acquisition unit 40 to the trained model for second judgment 91 stored in the memory unit 90, thereby acquiring the output judgment result as the result of the second judgment.
  • the trained model for second judgment 91 is, for example, a deep learning model (supervised learning model) such as a convolutional neural network (CNN).
  • the second judgment trained model 91 is generated (trained) by repeating a learning step multiple times (e.g., several thousand times) in which an infrared image captured by the imaging device 2 is input and the presence or absence of collapse in the infrared image (correct answer data determined to be correct by a human) is taught.
  • the second judgment trained model 91 may use a recurrent neural network (RNN) or the like instead of a CNN.
  • RNN recurrent neural network
  • FIG. 6 shows image example (a, d) showing that garbage Fg is flying during collapse (with collapse), and image example 1 (b, e) and image example 2 (c, f) showing that there is no collapse (without collapse), divided into cases where the inside of the combustion chamber R is easy to see and cases where it is difficult to see, among the infrared images captured by the imaging device 2.
  • the second judgment unit 72 inputs an infrared image of a target area, which is a part of the first infrared image, to the second judgment trained model 91.
  • this target area is referred to as the "third target area 44".
  • the third target area 44 is, for example, most of the area in the upper half of the first infrared image, and is an area in which at least all or most of the garbage Fg accumulated in the feeder 104 is reflected. As shown in the example image (a) in FIG. 6, when the garbage Fg collapses, some (plural) of the collapsed garbage Fg may temporarily scatter (fly away) within the combustion chamber R, making it impossible to visually recognize the layer structure of the garbage Fg accumulated in the feeder 104.
  • the second trained model for judgment 91 is generated in advance by inputting infrared images of the third target region 44 as shown in FIG. 6 into the second trained model for judgment 91 and teaching the presence or absence of collapse (correct answer data) for each infrared image.
  • the second trained model for judgment 91 When a new infrared image is input, the second trained model for judgment 91 that has completed training outputs a numerical value related to the possibility of collapse occurring for that infrared image.
  • the numerical value output by the second trained model for judgment 91 is referred to as the "judgment score.”
  • the second judgment unit 72 performs a second judgment to judge whether the judgment score acquired from the second judgment trained model 91 is equal to or greater than a predetermined second threshold.
  • the second judgment unit 72 judges that there is a possibility of collapse, and when the judgment score is less than the second threshold, the second judgment unit 72 judges that there is no possibility of collapse.
  • the second collapse judgment flag indicates the result of the second judgment and indicates a value of 1 or 0.
  • the second threshold is pre-stored in the memory unit 90.
  • the second determination unit 72 performs the second determination by timely referring to the second threshold value stored in the memory unit 90.
  • the second determination unit 72 sends a second collapse determination flag, which is the result of the second determination, to the first collapse determination unit 75.
  • FIG. 7 shows the time series changes in the judgment scores for the time periods shown in FIG. 5, and the time series changes in the second collapse judgment flag according to the judgment scores for the same time periods.
  • the graphs shown in FIG. 7 are the results obtained by the inventors' analysis.
  • the time when the operator of the incineration equipment 100 visually judged that the waste Fg had collapsed by looking inside the combustion chamber R is indicated by a circle ( ⁇ ).
  • the disturbance determination unit 74 determines whether or not there is a disturbance based on a feature amount related to the luminance of one image (e.g., the most recent image) received from the acquisition unit 40.
  • the determination by the disturbance determination unit 74 is referred to as "disturbance determination".
  • the disturbance determination unit 74 performs disturbance determination using a first infrared image that is a calculation target of the first calculation unit 50 among the images received from the acquisition unit 40. Note that, when performing disturbance determination, the disturbance determination unit 74 may use an image other than the first infrared image among the images received from the acquisition unit 40.
  • the disturbance determination unit 74 may use a plurality of images, and the first infrared image may be included in the plurality of images. Furthermore, when receiving an infrared image from the acquisition unit 40, the disturbance determination unit 74 may convert the RAW data (16 bits) into, for example, BMP data (8 bits).
  • the disturbance determination unit 74 calculates, for example, a feature value related to the overall brightness of the first target region 42 in the first infrared image, a feature value related to the brightness of each of the first region 42a to the ninth region 42i in the first target region 42, and a feature value related to the brightness of a plurality of target regions that are part of the first infrared image and are different from the first target region 42.
  • the plurality of target regions different from the first target region 42 are referred to as "fourth target region 45".
  • the fourth target region 45 is, for example, divided into three locations in the first infrared image, and these three fourth target regions 45 are independent of each other.
  • “Independent” here means that the fourth target regions 45 are separated from each other in the first infrared image.
  • One of the fourth target regions 45 (45a in FIG. 8) is a portion above the first target region 42 in the first infrared image, and the ceiling of the furnace body 108, for example, is reflected in the fourth target region 45.
  • One of the fourth target regions 45 (45b in FIG. 8) is a portion to the right of the first target region 42 in the first infrared image, and the side wall of the furnace body 108, for example, is reflected in the fourth target region 45.
  • One of the fourth target regions 45 (45c in FIG.
  • each of the multiple fourth target regions 45 is made to be a different size.
  • the disturbance determination unit 74 calculates two types of statistics as features for the entire first target region 42, the first region 42a to the ninth region 42i, and each of the multiple fourth target regions 45.
  • the two types of statistics are the average luminance and the standard deviation of luminance.
  • feature A the feature related to the luminance of the entire first target region 42
  • feature B the feature related to the luminance in each of the first region 42a to the ninth region 42i
  • feature C the feature related to the luminance of each of the multiple fourth target regions 45
  • the disturbance determination unit 74 determines whether the standard deviation of each calculated feature (feature A to feature C) is included in the first range, which is a predetermined numerical range.
  • the disturbance determination unit 74 determines that the first infrared image is a high deviation image when, for example, one or more of the standard deviations of the feature amount A, the standard deviations of the feature amount B, and the standard deviations of the feature amount C are not included in the first range (outside the first range).
  • the disturbance determination unit 74 determines that the first infrared image is a low deviation image when all of the standard deviations of the feature amount A, the standard deviations of the feature amount B, and the standard deviations of the feature amount C are included in the first range.
  • the disturbance determination unit 74 may determine that the first infrared image is a high deviation image when two or more or all of the standard deviations of the feature amount A, the standard deviations of the feature amount B, and the standard deviations of the feature amount C are not included in the first range.
  • the first range is stored in advance in the storage unit 90.
  • the disturbance determination unit 74 performs the determination of the first infrared image by referring to the first range stored in the storage unit 90 at appropriate times.
  • the disturbance determination unit 74 When the disturbance determination unit 74 receives the above feature values, it performs a determination using a trained model that has been trained to output a determination result indicating the presence or absence of a disturbance.
  • the trained model used by the disturbance determination unit 74 is referred to as the "trained model for disturbance determination 92".
  • the trained model for disturbance determination 92 is pre-stored in the memory unit 90 (see FIG. 2).
  • the disturbance determination unit 74 inputs feature values A, B, and C to the trained model for disturbance determination 92 stored in the memory unit 90, thereby acquiring the output determination result as the result of the disturbance determination.
  • the trained model for disturbance determination 92 has a high deviation model and a low deviation model.
  • the disturbance determination unit 74 determines that the first infrared image is a high deviation image, it inputs feature values (feature values A, B, and C) only to the high deviation model, and acquires the determination result output from the high deviation model as the result of the disturbance determination. On the other hand, if the disturbance determination unit 74 determines that the first infrared image is a low-deviation image, it inputs the feature amount only to the low-deviation model and obtains the determination result output from the low-deviation model as the disturbance determination result.
  • the high deviation model and the low deviation model are supervised learning models such as a Support Vector Machine (SVM). Both the high deviation model and the low deviation model are generated (learned) by repeatedly repeating a learning step in which the above-mentioned features are input and the presence or absence of collapse in the image (correct answer data determined to be correct by a human) is instructed.
  • SVM Support Vector Machine
  • FIG. 9 shows an example of a low deviation image (a) and an example of a high deviation image (b) among the infrared images captured by the imaging device 2.
  • FIG. 10 shows examples of infrared images in a list format corresponding to the magnitude of the deviation in brightness. As shown in FIG. 9 and FIG. 10, it can be seen that the larger or smaller the deviation in brightness, which is a feature, the more difficult it is to grasp the state inside the combustion chamber R.
  • the feature values based on multiple infrared images as shown in FIG. 9 and FIG. 10 are input to the trained model for disturbance determination 92, and the presence or absence of disturbance (correct answer data) for each infrared image is taught, thereby generating the trained model for disturbance determination 92 in advance.
  • the trained model for disturbance determination 92 When a feature value based on a new infrared image is input, the trained model for disturbance determination 92 that has completed learning outputs binary data (e.g., 0 and 1) indicating the presence or absence of collapse for the infrared image.
  • the disturbance determination unit 74 determines the presence or absence of a disturbance as a disturbance determination by outputting a flag corresponding to the value of the binary data acquired from the trained model for disturbance determination 92.
  • the flag related to the disturbance determination output by the disturbance determination unit 74 will be referred to as the "disturbance determination flag.” Therefore, the disturbance determination flag indicates the result of the disturbance determination.
  • FIG. 11 shows the time series of the judgment results regarding the presence or absence of disturbance by the operator of the incineration facility 100 in a specific time period, and the time series of the disturbance judgment flag in the same time period.
  • the graph shown in FIG. 11 is the result obtained by the analysis by the inventors. Note that the time periods T 0 -T 9 shown in FIG. 11 are the same time periods as the time periods T 0 -T 9 shown in FIG. 5 and FIG. 7. In addition, the time corresponding to the intervals between the time scale lines (dotted lines) extending up and down in the graph shown in FIG. 11 are equal for all intervals. From the results shown in FIG. 11, it can be understood that the time when the operator of the incineration facility 100 visually judges the presence of a disturbance inside the combustion chamber R and the time when the disturbance judgment flag is raised are almost the same.
  • the third determination unit 73 performs a determination regarding collapse based on one or more images received from the acquisition unit 40.
  • the third determination unit 73 receives a visible light image from the images received from the acquisition unit 40, and calculates a representative value of luminance based on the received visible light image.
  • the third determination unit 73 performs a determination regarding collapse based on the representative value of luminance (third feature amount) received from the third calculation unit 60 and the representative value of luminance (fourth feature amount) received from the fourth calculation unit 65.
  • the determination by the third determination unit 73 is referred to as a "third determination".
  • the third determination unit 73 calculates, for each region (left region 43l, center region 43c, right region 43r), a feature change amount V2 (absolute value) occurring between a monochromatic component image based on a first visible light image to be subjected to the third determination and a monochromatic component image based on a plurality of second visible light images, according to the following formula (iv).
  • V2
  • C m (t) is a representative value of luminance (third feature amount) calculated by the third calculation unit 60 at time t.
  • ⁇ D m (t u ) is a representative value of luminance (fourth feature amount) calculated by the fourth calculation unit 65.
  • t u are multiple times at which each second visible light image (monochrome component image) was acquired, and one second visible light image corresponds to one time t u .
  • u is the number of second visible light images (monochrome component images), which is the number of frames acquired per unit time.
  • the third determination unit 73 performs a third determination for each region by determining whether the calculated feature change amount V2 is equal to or greater than a predetermined third threshold.
  • the third determination unit 73 determines that there is a possibility of collapse when the feature change amount V2 of one or more regions among the calculated feature change amount V2 for each region is equal to or greater than the third threshold, and determines that there is no possibility of collapse when the feature change amount V2 for all regions is less than the third threshold.
  • the third collapse determination flag indicates the result of the third determination and indicates a value of 1 or 0.
  • the third threshold is pre-stored in the storage unit 90.
  • the third threshold value may be a different value for each region.
  • the third determination unit 73 performs the third determination by referring to the third threshold value stored in the storage unit 90 at appropriate times.
  • the third determination unit 73 sends a third collapse determination flag, which is the result of the third determination, to the first collapse determination unit 75.
  • FIG. 12 shows the time series changes in the characteristic change amount V2 of each area (left area 43l, center area 43c, right area 43r) in a specific time period, and the time series changes in the third collapse determination flag according to the characteristic change amount V2 in the same time period.
  • the graph shown in FIG. 12 is the result obtained by the analysis by the inventors.
  • the time when the operator of the incineration equipment 100 visually judged that the waste Fg had collapsed by looking inside the combustion chamber R is indicated by a circle ( ⁇ ).
  • the first collapse determination unit 75 determines the scale of the collapse based on the result of the first determination received from the first determination unit 71, the result of the second determination received from the second determination unit 72, and the result of the third determination received from the third determination unit 73. In this embodiment, the first collapse determination unit 75 determines the presence or absence of a second-scale collapse, which is larger in scale than the first-scale collapse, based on the first collapse determination flag, the second collapse determination flag, and the third collapse determination flag. Specifically, the first collapse determination unit 75 determines that a second-scale collapse has occurred when the sum of the value of the first collapse determination flag, the value of the second collapse determination flag, and the value of the third collapse determination flag is equal to or greater than the determination threshold value.
  • the first collapse determination unit 75 detects a collapse of the second scale. When the first collapse determination unit 75 detects a collapse of the second scale, it outputs a flag indicating the presence of a collapse. On the other hand, the first collapse determination unit 75 determines that there is no collapse of the second scale when the sum of the value of the first collapse determination flag, the value of the second collapse determination flag, and the value of the third collapse determination flag is less than the determination threshold value. That is, the first collapse determination unit 75 detects that there is no collapse of the second scale. When the first collapse determination unit 75 detects that there is no collapse of the second scale, it outputs a flag indicating that there is no collapse of the second scale.
  • the flag output by the first collapse determination unit 75 is referred to as a "second scale collapse detection flag".
  • the determination threshold value is stored in advance in the storage unit 90.
  • the determination threshold value is an integer, for example, 2 is adopted. That is, in this embodiment, the first collapse determination unit 75 determines that there is a collapse of the second scale when two-thirds or more of the determination results of the first determination result, the second determination result, and the third determination result indicate the possibility of collapse.
  • the first collapse determination unit 75 determines whether or not a collapse of the second scale has occurred by timely referring to the determination threshold value stored in the memory unit 90.
  • the first collapse determination unit 75 sends a second-scale collapse detection flag to the second collapse determination unit 76 and the control unit 80.
  • the flag output by the second collapse determination unit 76 is referred to as the "first scale collapse detection flag.”
  • the second collapse determination unit 76 sends the first scale collapse detection flag to the control unit 80.
  • the control unit 80 controls the plurality of control target devices S based on the collapse detection flags received from the first collapse determination unit 75 and the second collapse determination unit 76 (see FIG. 1 and FIG. 2).
  • the control unit 80 controls one or more of the plurality of control target devices S, for example, so that the concentration of unburned gas in the combustion chamber R is reduced.
  • the control unit 80 controls one or more of the plurality of control target devices S, for example, so that the control target devices S are operated at rated speed.
  • the control unit 80 transmits, for example, signals indicating the increase or decrease in the moving speed of the push arm 124, the moving speed of the grate 126, the increase or decrease in the number of revolutions of the blower 138, the valve opening degree of the first flow rate control valve 140, and the valve opening degree of the second flow rate control valve 142 to each control target device S.
  • the control unit 80 may control one or more of the multiple control target devices S so that the concentration of unburned gas in the combustion chamber R is reduced to a smaller extent than when the control unit 80 receives a second-scale collapse detection flag.
  • the acquisition unit 40 acquires an infrared image from the imaging device 2 (step S1).
  • the acquisition unit 40 also acquires a visible light image from the imaging device 2 (step S11).
  • the first calculation unit 50 calculates a representative value of brightness based on the first infrared image acquired in step S1.
  • the second calculation unit 55 also calculates a representative value of brightness based on the second infrared image acquired in step S1 (step S2).
  • the disturbance determination unit 74 performs a disturbance determination based on the first infrared image acquired in step S1 (step S3). If the disturbance determination unit 74 determines that there is a disturbance (step S3: YES), the process returns to step S1.
  • step S3 determines that there is no disturbance
  • step S4 the first determination unit 71 performs a first determination based on the representative value of brightness calculated in step S2 (step S4)
  • step S5 the second determination unit 72 performs a second determination based on the representative value of brightness calculated in step S2 (step S5).
  • the third calculation unit 60 calculates a representative value of luminance based on the first visible light image acquired in step S11.
  • the fourth calculation unit 65 calculates a representative value of luminance based on the second visible light image acquired in step S1 (step S12).
  • the third judgment unit 73 performs a third judgment based on the representative value of luminance calculated in step S12 (step S13).
  • the first collapse determination unit 75 determines whether or not a second-scale collapse has occurred based on the results of the determination in steps S4, S5, and S6 (step S6). That is, in step S6, the first collapse determination unit 75 determines whether or not the total value of the first collapse determination flag, the second collapse determination flag, and the third collapse determination flag is equal to or greater than the determination threshold value. If the first collapse determination unit 75 determines that a second-scale collapse has occurred (step S6: YES), it detects the second-scale collapse (step S7). When the processing of step S7 is completed, the processing returns to step S1.
  • step S8 determines whether there is a change in the representative brightness value. That is, in step S8, the second collapse determination unit 76 determines whether there is a collapse of the first scale based on the first collapse determination flag. If the second collapse determination unit 76 determines that there is a collapse of the first scale (step S8: YES), it detects the collapse of the first scale (step S9). When the processing of step S9 is completed, the processing returns to step S1. On the other hand, if the second collapse determination unit 76 determines that there is no collapse of the first scale (step S8: NO), it detects that there is no collapse (step S10). When the processing of step S10 is completed, the processing returns to step S1.
  • the operation of the information processing device 4 described above is repeatedly executed during the operation of the incineration facility 100.
  • the presence or absence of collapse of the garbage Fg is determined based on a representative value of brightness based on the first infrared image and a representative value of brightness based on multiple second infrared images captured within the time it takes for one collapse of the garbage Fg, among multiple infrared images in a time series acquired before the first infrared image. Therefore, the presence or absence of collapse of the garbage Fg can be determined with higher accuracy compared to, for example, a case in which the presence or absence of collapse is determined based on the brightness of each image acquired at two timings. In other words, the detection accuracy regarding the collapse of the garbage Fg can be improved. As a result, the combustion state of the garbage Fg in the combustion chamber R can be accurately grasped.
  • FIG. 14 is a diagram showing an example of the results of the time series of the collapse detection flags output by the first collapse determination unit 75 and the second collapse determination unit 76 according to this embodiment. That is, FIG. 14 shows the final determination result (detection result) by the information processing device 4 in this embodiment.
  • the graph shown in FIG. 14 is a result obtained by the analysis by the inventors.
  • the time when the operator of the incineration equipment 100 visually checks the inside of the combustion chamber R and determines that the first scale of garbage Fg has collapsed is shown by a triangle ( ⁇ ), and the time when the second scale of garbage Fg has collapsed is shown by a circle ( ⁇ ).
  • the time corresponding to the interval between the time scale lines (dotted lines) extending up and down in the graph shown in FIG. 14 is equal for all intervals. From the results shown in Figure 14, although there are times (between time T -18 and time T -17 ) when the information processing device 4 may have overly detected the collapse of the waste Fg, it can be seen that the time when the operator of the incineration equipment 100 determined that a collapse had occurred almost coincides with the time when the collapse determination flag is raised.
  • the second collapse determination unit 76 calculates the similarity between the image acquired by the acquisition unit 40 and one or more images previously acquired by the acquisition unit 40, and determines that there is no collapse if the calculated similarity does not satisfy a predetermined condition.
  • the determination of the presence or absence of a collapse by the second collapse determination unit 76 will be described using as an example a case in which the second determination unit 72 calculates the similarity between the first infrared image at time t and multiple infrared images acquired in the past prior to the first infrared image.
  • the second collapse determination unit 76 binarizes the luminance included in a specific target area (b), which is a part of the infrared image (a) received from the acquisition unit 40, into data of 0 and 1 (0/1 conversion).
  • the target area to be binarized by the second collapse determination unit 76 is referred to as the "fifth target area 46".
  • the fifth target area 46 is, for example, an area in the upper half of the infrared image in which a part (most part) of the garbage Fg accumulated in the feeder 104 is reflected.
  • the second collapse determination unit 76 binarizes the luminance included in the fifth target area 46, for example, based on a predetermined luminance threshold value.
  • the luminance threshold value is stored in advance in the storage unit 90.
  • the second collapse determination unit 76 binarizes the fifth target area 46 by referring to the luminance threshold value stored in the storage unit 90 at appropriate times.
  • the fifth target area 46 binarized by the second collapse determination unit 76 is referred to as the "binarized data 46'".
  • FIG. 16 is a diagram for conceptually explaining a method of calculating the similarity calculated by the second collapse determination unit 76.
  • the second collapse determination unit 76 acquires the difference between the binarized data 46' based on the first infrared image at time t and the binarized data 46' based on each of a plurality of infrared images acquired in the past before the first infrared image (X 1 , X 2 , ..., X y-1 , X y shown in FIG. 16), and calculates the average value of the acquired differences ( ⁇ X/y shown in FIG. 16) as the similarity.
  • the binarized data 46' based on each of the plurality of infrared images here means, for example, the binarized data 46' based on the infrared image acquired at time t-1, the binarized data 46' based on the infrared image acquired at time t-2, ..., the binarized data 46' based on the infrared image acquired at time t-(y-1), and the binarized data 46' based on the infrared image acquired at time t-y.
  • y is, for example, an integer, and a value of 2 or more (such as 5) is adopted.
  • the second collapse determination unit 76 determines whether the calculated similarity satisfies a predetermined condition. In this embodiment, the second collapse determination unit 76 determines whether the similarity is equal to or greater than a predetermined similarity threshold. In this case, the second collapse determination unit 76 determines that the predetermined condition is satisfied when the similarity is equal to or greater than the similarity threshold, and that the predetermined condition is not satisfied when the similarity is less than the similarity threshold.
  • the similarity threshold is pre-stored in the memory unit 90. The second collapse determination unit 76 determines whether the calculated similarity satisfies a predetermined condition by referring to the similarity threshold stored in the memory unit 90 at appropriate times.
  • the second collapse determination unit 76 determines that a first-scale collapse has occurred when the similarity does not satisfy the predetermined condition. That is, the second collapse determination unit 76 detects a first-scale collapse. When the second collapse determination unit 76 detects a first-scale collapse, it outputs a first-scale collapse detection flag indicating the presence of a collapse. On the other hand, the second collapse determination unit 76 determines that there is no collapse when the similarity satisfies a predetermined condition. In other words, the second collapse determination unit 76 detects that there is no collapse. When the second collapse determination unit 76 detects a collapse of the first scale, it outputs a collapse detection flag indicating that there is no collapse.
  • step S8 determines that there is a change in the representative brightness value (step S8: YES)
  • it calculates the similarity and determines whether the calculated similarity satisfies a predetermined condition (step S20).
  • step S20 determines that there is no change in the representative brightness value
  • step S10 detects that there is no collapse (step S10).
  • step S9 the second collapse determination unit 76 detects a collapse of the first scale (step S9).
  • step S9 determines the processing of step S10.
  • FIG. 18 is a diagram showing an example of the results of the time series of the collapse detection flags output by the first collapse determination unit 75 and the second collapse determination unit 76 described above. That is, FIG. 18 shows the final determination result (detection result) by the information processing device 4.
  • the graph shown in FIG. 18 is a result obtained by the analysis by the inventors.
  • the time when the operator of the incineration equipment 100 visually checks the inside of the combustion chamber R and determines that the first scale of garbage Fg has collapsed is shown by a triangle ( ⁇ ), and the time when the second scale of garbage Fg has collapsed is shown by a circle ( ⁇ ).
  • the time corresponding to the interval between the time scale lines (dotted and dashed lines) extending up and down in the graph shown in FIG.
  • the collapse detection unit 41 in this embodiment has a first calculation unit 50, a second calculation unit 55, a fifth calculation unit 66, a sixth calculation unit 67, and a judgment unit 70.
  • the judgment unit 70 has a disturbance judgment unit 74, a fourth judgment unit 77, a fifth judgment unit 78, a third collapse judgment unit 79, and a fourth collapse judgment unit 81.
  • the first target region 42 that is the target of calculation by the first calculation unit 50 is divided into 24 small regions with equal areas partitioned in a 6 ⁇ 4 matrix. Note that the first target region 42 is not limited to being divided equally into 24 small regions in a matrix.
  • the first calculation unit 50 calculates the average brightness value of each small region in the first target region 42 in the first infrared image.
  • the representative value calculated by the first calculation unit 50 is not limited to the average brightness value of each small region, and may be a statistical value such as the median.
  • the fifth calculation unit 66 calculates a fifth feature based on the representative value of the luminance (first feature) received from the first calculation unit 50 and the representative value of the luminance (second feature) received from the second calculation unit 55.
  • the fifth feature is a sum of luminance changes obtained by time-differentiating the average value of the luminance of each of the 24 small regions in the first target region 42 in the first infrared image.
  • the sum calculated by the fifth calculation unit 66 is not limited to the sum of the luminance changes of each of the small regions, and may be, for example, the sum of a statistical quantity such as a median.
  • the fifth calculation unit 66 inputs the sum of the luminance changes of each of the small regions in the first target region 42 in the first infrared image to the third collapse determination unit 79.
  • the sixth calculation unit 67 performs unsupervised learning using an autoencoder algorithm, and calculates a sixth feature using dimension-reduced information placed in the hidden layer of the learned autoencoder.
  • the autoencoder 96 is stored in advance in the storage unit 90 (see FIG. 19).
  • the sixth feature is infrared image information in which a plurality of consecutive infrared images acquired by the imaging device 2 are encoded by the autoencoder 96 and the number of dimensions is reduced.
  • the imaging device 2 acquires one frame of infrared image every 0.1 seconds.
  • the sixth calculation unit 67 inputs a plurality of consecutive infrared images acquired by the imaging device 2 at intervals of 0.1 seconds to the autoencoder 96.
  • the plurality of infrared images are compressed (encoded) in the process of flowing from the input layer to the hidden layer, and the number of dimensions is reduced to 512 dimensions. After that, the infrared image with the reduced number of dimensions is restored (decoded) to the original information in the process of flowing from the hidden layer to the output layer. If the infrared image placed in the input layer can be restored from the infrared image flowing from the hidden layer to the output layer, the learning data of the infrared image does not contain abnormal data such as disturbance images, and it is considered that correct learning has been performed. If correct learning is performed, the infrared image information with reduced dimensions has reduced noise in the image. Note that the interval at which the imaging device 2 captures infrared images is not limited to 0.1 seconds. Also, the dimension reduction performed in the autoencoder 96 is not limited to 512 dimensions.
  • the sixth calculation unit 67 packages 40 consecutive frames of infrared image information, from which the number of dimensions has been reduced and noise in the images has been removed, that have been acquired over a total of four seconds, two seconds before and two seconds after the point in time when a human judges that a waste collapse has occurred, from among a plurality of consecutive infrared image information at 0.1 second intervals, from which the number of dimensions has been reduced and noise in the images has been removed, and inputs the packaged infrared image information into a long short-term memory (LSTM) network included in the fourth collapse determination unit 81.
  • LSTM long short-term memory
  • the long short-term memory network is a type of RNN that learns and predicts (regression and classification) time-series data
  • the fourth collapse determination unit 81 makes a judgment using a trained model that has been trained to output a judgment result regarding the possibility of a collapse when the packaged infrared image information is input to the long short-term memory network.
  • the trained model used for the judgment by the fourth collapse determination unit 81 is referred to as the "trained model for collapse judgment 97".
  • the trained model 97 for determining collapse is stored in advance in the storage unit 90 (see FIG. 19).
  • the number of information frames to be packaged is not limited to 40.
  • the fourth determination unit 77 makes a determination regarding collapse based on one or more infrared images received from the acquisition unit 40.
  • the fourth determination unit 77 makes a determination regarding collapse using one first infrared image (the most recent infrared image) that is the target of calculation by the first calculation unit 50 among the images received from the acquisition unit 40.
  • the fourth determination unit 77 may use one image other than the first infrared image among the images received from the acquisition unit 40.
  • the fourth determination unit 77 may use multiple images, and the first infrared image may be included in the multiple images.
  • the fourth judgment unit 77 makes a judgment using a trained model that has been trained to output a judgment result regarding the possibility of a collapse when the first infrared image is input.
  • the judgment by the fourth judgment unit 77 is referred to as the "fourth judgment”
  • the trained model that the fourth judgment unit 77 uses for the fourth judgment is referred to as the "trained model for fourth judgment 94".
  • the trained model for fourth judgment 94 is pre-stored in the memory unit 90 (see FIG. 19).
  • the fourth judgment unit 77 inputs the first infrared image received from the acquisition unit 40 to the trained model for fourth judgment 94 stored in the memory unit 90, thereby acquiring the output judgment result as the result of the fourth judgment.
  • the trained model for fourth judgment 94 is, for example, a deep learning model (supervised learning model) such as a convolutional neural network (CNN).
  • the fourth judgment trained model 94 is generated (trained) by repeating a learning step multiple times in which an infrared image captured by the imaging device 2 is input and the presence or absence of collapse in the infrared image (correct answer data determined to be correct by a human) is taught.
  • the fourth judgment trained model 94 may use a recurrent neural network (RNN) instead of a CNN.
  • RNN recurrent neural network
  • image examples (a, d) showing garbage Fg flying during collapse (collapse), image examples (b, e) showing ash flying without the effect of collapse (no collapse), and image examples (c, f, including water vapor retention) showing other states (no collapse) are shown in FIG. 21.
  • the fourth judgment unit 77 classifies the presence or absence of collapse for the infrared image captured by the imaging device 2 based on the above three classified image examples.
  • the fourth trained model for judgment 94 is generated in advance by being taught the presence or absence of collapse for the infrared image (correct answer data).
  • the fourth trained model for judgment 94 that has completed learning outputs a numerical value related to the possibility of collapse occurring for the infrared image as a "judgment score".
  • the fourth collapse judgment flag indicates the result of the fourth judgment and indicates a value of 1 or 0.
  • the fourth threshold is pre-stored in the memory unit 90.
  • the fourth determination unit 77 performs the fourth determination by timely referring to the fourth threshold value stored in the memory unit 90.
  • the fourth determination unit 77 inputs a fourth collapse determination flag, which is the result of the fourth determination, to the third collapse determination unit 79.
  • the fifth determination unit 78 makes a determination regarding collapse based on the visible light image received from the acquisition unit 40.
  • the fifth determination unit 78 makes a determination regarding collapse using a first visible light image (the most recent visible light image) among the images received from the acquisition unit 40.
  • the fifth determination unit 78 may use one image other than the first visible light image among the images received from the acquisition unit 40.
  • the fifth determination unit 78 may use multiple images, and the first visible light image may be included in the multiple images.
  • the fifth judgment unit 78 performs judgment using a trained model that has been trained to output a judgment result regarding the possibility of collapse when the first visible light image is input.
  • the judgment by the fifth judgment unit 78 is referred to as the "fifth judgment”
  • the trained model that the fifth judgment unit 78 uses for the fifth judgment is referred to as the "trained model for fifth judgment 95”.
  • the trained model for fifth judgment 95 is stored in advance in the storage unit 90 (see FIG. 19).
  • the fifth judgment unit 78 inputs the first visible light image received from the acquisition unit 40 to the trained model for fifth judgment 95 stored in the storage unit 90, thereby acquiring the output judgment result as the result of the fifth judgment.
  • the trained model for fifth judgment 95 is, for example, a deep learning model (supervised learning model) such as a convolutional neural network (CNN).
  • the fifth trained model for judgment 95 is generated (trained) by repeating a learning step multiple times in which a visible light image captured by the imaging device 2 is input and the presence or absence of collapse in the visible light image (correct answer data determined to be correct by a human) is taught.
  • the fifth trained model for judgment 95 may use a recurrent neural network (RNN) instead of a CNN.
  • RNN recurrent neural network
  • the fifth judgment unit 78 classifies the first visible light image based on example images in which garbage covers flames during a large-scale collapse, and example images showing other conditions (no collapse). That is, a visible light image of a target region that is part of the first visible light image is input to the fifth trained judgment model 95, and the presence or absence of collapse in the first visible light image is classified based on the above two example images.
  • the fifth trained judgment model 95 is generated in advance by being taught the presence or absence of collapse in the visible light image (correct answer data). When a new visible light image is input, the fifth trained judgment model 95 that has completed learning outputs a numerical value related to the possibility of collapse occurring in the visible light image as a "judgment score".
  • the fifth judgment unit 78 judges whether the judgment score acquired from the fifth judgment trained model 95 is equal to or greater than a predetermined fifth threshold (fifth judgment).
  • the fifth judgment unit 78 judges that there is a possibility of collapse when the acquired judgment score is equal to or greater than the fifth threshold, and judges that there is no possibility of collapse when the judgment score is less than the fifth threshold.
  • the fifth threshold is stored in advance in the memory unit 90.
  • the fifth judgment unit 78 performs the fifth judgment by referring to the fifth threshold stored in the memory unit 90 at appropriate times.
  • the fifth determination unit 78 inputs the fifth collapse determination flag, which is the result of the fifth determination, to the third collapse determination unit 79.
  • the third collapse determination unit 79 determines whether or not the waste in the furnace has collapsed based on the sum of the brightness changes of each of the 24 small regions in the first target region 42 in the first infrared image calculated by the fifth calculation unit 66, a fourth collapse determination flag which is the result of the fourth determination performed by the fourth determination unit 77, and a fifth collapse determination flag which is the result of the fifth determination performed by the fifth determination unit 78. Specifically, three patterns are prepared by combining the sum of the brightness changes in the first target region 42, the fourth collapse determination flag, and the fifth collapse determination flag. As shown in FIG.
  • the first pattern is when the sum of the brightness changes in the first target region 42 is 22 or more or ⁇ 26 or less
  • the third collapse determination unit 79 determines that there is collapse in the furnace when the sum of the brightness change amounts of each of the 24 small areas in the first target area 42 in the first infrared image calculated by the fifth calculation unit 66, the fourth collapse determination flag input from the fourth determination unit 77, and the fifth collapse determination flag input from the fifth determination unit 78 correspond to any of the above first to third patterns, and determines that there is no collapse in the furnace when they do not correspond to any of the above first to third patterns.
  • the threshold value of the sum of the brightness change amounts of the infrared images included in the above first to third patterns may be changed depending on the type of image selected.
  • the range of the threshold value of the sum of the brightness change amounts of the infrared images included in the second pattern may be smaller than the range of the threshold value of the sum of the brightness change amounts of the infrared images included in the first pattern.
  • the range of the threshold value of the sum of the brightness change amount of the infrared image included in the third pattern may be smaller than the range of the threshold value of the sum of the brightness change amount of the infrared image included in the first and second patterns.
  • the fourth collapse determination unit 81 includes a long-short-term memory network, which is a type of RNN that performs learning and prediction (regression and classification) of time-series data.
  • the fourth collapse determination unit 81 determines whether or not the waste in the furnace has collapsed by using a trained model for collapse determination 97 that has been trained to output a determination result regarding the possibility of collapse when a package of 40 consecutive frames of infrared image information from which noise in the images has been removed is input from the sixth calculation unit 67 to the long-short-term memory network.
  • the fourth collapse determination unit 81 obtains a determination result by the long-short-term memory network by inputting the package of 40 consecutive frames of infrared image information from which noise in the images has been removed input from the sixth calculation unit 67 to the trained model for collapse determination 97 stored in the storage unit 90.
  • the fourth collapse determination unit 81 trains the long- and short-term memory network on the package and determines the state inside the furnace from the state transitions of the 40 frames of infrared images. That is, when 40 consecutive frames of infrared image information are input to the trained model for collapse determination 97, the trained model for collapse determination 97 is generated in advance by teaching the presence or absence of collapse (correct answer data) for the infrared image information based on the state inside the furnace over time. When a package of infrared image information is input, the trained model for collapse determination 97 that has completed learning outputs a numerical value related to the possibility of collapse occurring for the 40 frames of infrared image information included in the package as a "determination score".
  • the fourth collapse judgment unit 81 judges whether the judgment score acquired from the trained model for collapse judgment 97 is equal to or greater than a predetermined sixth threshold (sixth judgment).
  • the fourth collapse judgment unit 81 judges that there is a possibility of collapse when the acquired judgment score is equal to or greater than the sixth threshold, and judges that there is no possibility of collapse when the judgment score is less than the sixth threshold.
  • the control unit 80 controls the plurality of control target devices S based on the collapse detection flag received from the fourth collapse determination unit 81 (see FIG. 19). In this embodiment, when the control unit 80 receives a collapse detection flag indicating the occurrence of collapse from the fourth collapse determination unit 81, it controls one or more of the plurality of control target devices S so that the control target devices S operate at a rated speed.
  • the control unit 80 transmits, for example, signals indicating the increase or decrease in the moving speed of the push arm 124, the moving speed of the grate 126, the increase or decrease in the number of revolutions of the blower 138, the valve opening degree of the first flow rate control valve 140, and the valve opening degree of the second flow rate control valve 142 to each control target device S.
  • the control unit 80 may control one or more of the plurality of control target devices S so that the concentration of unburned gas in the combustion chamber R is reduced.
  • the acquisition unit 40 acquires an infrared image from the imaging device 2 (step S1).
  • the acquisition unit 40 also acquires a visible light image from the imaging device 2 (step S11).
  • the first calculation unit 50 calculates a representative value of brightness based on the first infrared image acquired in step S1.
  • the second calculation unit 55 also calculates a representative value of brightness based on the second infrared image acquired in step S1 (step S2).
  • the disturbance determination unit 74 performs a disturbance determination based on the first infrared image acquired in step S1 (step S3). If the disturbance determination unit 74 determines that there is a disturbance (step S3: YES), the processing returns to step S1.
  • the fifth calculation unit 66 calculates a fifth feature based on the representative value of brightness (first feature) received from the first calculation unit 50 and the representative value of brightness (second feature) received from the second calculation unit 55 (step S21).
  • the fourth determination unit 77 makes a collapse-related determination based on one or more infrared images received from the acquisition unit 40 (step S22).
  • the fifth determination unit 78 also makes a collapse-related determination based on the visible light image received from the acquisition unit 40 (step S23).
  • the third collapse determination unit 79 determines whether or not the waste inside the furnace has collapsed based on the sum of the brightness changes of each small area in the first target area 42 in the first infrared image calculated in step S21, the result of the determination in step S22, and the result of the determination in step S23 (step S24).
  • step S24: i 1)
  • the operation of the information processing device 4 described above is repeatedly executed during the operation of the incineration facility 100.
  • the element of time transition is taken into consideration when grasping the state inside the furnace, and information on 40 consecutive frames of infrared images acquired by the acquisition unit 40 is input to a long-short-term memory network, which is one of the trained models with a recursive structure, and the state inside the furnace is determined from the state transition of 40 consecutive frames of infrared images.
  • the above-mentioned first collapse determination unit 75 may determine whether or not a second-scale collapse, which is larger than the first-scale collapse, has occurred based on both the result of the first determination and the result of the second determination. In this case, the first collapse determination unit 75 may determine that a second-scale collapse has occurred when the sum of the value of the first collapse determination flag and the value of the second collapse determination flag is equal to or greater than the determination threshold value.
  • the collapse detection unit 41 may also determine whether or not a collapse has occurred based on a first input element, which is the first infrared image acquired by the acquisition unit 40, and a second input element, which is two or more second infrared images captured within the time it takes for one collapse of the garbage Fg among a plurality of images in a time series acquired by the acquisition unit 40 before the first infrared image.
  • the collapse detection unit 41 makes the determination using a trained model 93 (see FIG. 2; hereinafter, referred to as the "trained model for collapse detection") that has been trained to output a determination result regarding the possibility of a collapse when the first input element and the second input element are input.
  • the trained model for collapse detection 93 is stored in advance in the storage unit 90.
  • the collapse detection unit 41 acquires the output determination result by inputting the first input element and the second input element received from the acquisition unit 40 into the trained model for collapse detection 93 stored in the storage unit 90.
  • the trained model for collapse detection 93 is, for example, a deep learning model such as a convolutional neural network.
  • the trained model 93 for collapse detection is generated by repeatedly performing a learning step in which an infrared image as a first input element and a second input element captured by the imaging device 2 are input, and the presence or absence of a collapse is taught for the infrared image.
  • the images that the first calculation unit 50 and the second calculation unit 55 receive from the acquisition unit 40 are not limited to infrared images. Furthermore, the images that the third calculation unit 60 and the fourth calculation unit 65 receive from the acquisition unit 40 are not limited to visible light images.
  • the incineration facility 100 is a stoker-type waste incinerator, but is not limited to a stoker-type waste incinerator.
  • the incineration facility 100 may be, for example, a kiln stoker furnace, a biomass fluidized bed boiler, a sludge incinerator, etc. Therefore, the collapse detection system 1 described above may be a system that is applied to incineration facilities such as these kiln stoker furnaces, biomass fluidized bed boilers, and sludge incinerators.
  • FIG. 24 is a hardware configuration diagram showing the configuration of a computer 1100 according to this embodiment.
  • the computer 1100 includes a processor 1110, a main memory 1120, a storage 1130, and an interface 1140.
  • the information processing device 4 described above is implemented in one or more computers 1100.
  • the operation of each of the above-mentioned processing units is stored in the storage 1130 in the form of a program.
  • the processor 1110 reads the program from the storage 1130, expands it in the main memory 1120, and executes the above-mentioned processing according to the program.
  • the processor 1110 also secures a memory area in the main memory 1120 corresponding to the above-mentioned memory unit 90 according to the program.
  • the program may be for realizing part of the function to be performed by the computer 1100.
  • the program may be for performing a function by combining it with other programs already stored in the storage 1130 or by combining it with other programs implemented in other devices.
  • the computer 1100 may also be provided with a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration.
  • PLDs include Programmable Array Logic (PAL), Generic Array Logic (GAL), Complex Programmable Logic Device (CPLD), and Field Programmable Gate Array (FPGA).
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Examples of storage 1130 include a magnetic disk, a magneto-optical disk, and a semiconductor memory.
  • Storage 1130 may be an internal medium directly connected to the bus of computer 1100, or an external medium connected to computer 1100 via interface 1140 or a communication line.
  • computer 1100 that receives the program may expand the program in main memory 1120 and execute the above-mentioned processing.
  • storage 1130 is a non-transient tangible storage medium.
  • the program may also be for realizing part of the above-mentioned functions.
  • the program may be a so-called differential file (differential program) that realizes the above-mentioned functions in combination with other programs already stored in storage 1130.
  • the collapse detection system 1 includes an acquisition unit 40 that acquires images of the incinerated material (garbage Fg) that is piled up in the feeder 104 of the incineration equipment 100 and pushed toward the combustion chamber R at a first predetermined period, a first calculation unit 50 that calculates a representative value of brightness based on the first image (first infrared image) acquired by the acquisition unit 40, a second calculation unit 55 that calculates a representative value of brightness based on two or more images (second infrared images) captured within the time it takes for one collapse of the incinerated material among a plurality of images in a time series acquired by the acquisition unit 40 before the first image, and a determination unit 70 that makes a determination regarding the collapse based on the representative value of brightness calculated by the first calculation unit 50 and the representative value of brightness calculated by the second calculation unit 55.
  • an acquisition unit 40 that acquires images of the incinerated material (garbage Fg) that is piled up in the feeder 104 of the incineration equipment 100 and pushed toward the combustion chamber
  • a collapse detection system 1 according to a second aspect is the collapse detection system 1 of (1), in which the second calculation unit 55 may calculate an average or median brightness value for the two or more images as a representative brightness value based on the two or more images.
  • a collapse detection system 1 according to a third aspect is a collapse detection system 1 according to (1) or (2), in which the two or more images are images captured at an interval of a first time from each other, and the two or more images may be images captured before the first image for a second time that is at least twice the first time.
  • a collapse detection system 1 according to a fourth aspect is a collapse detection system 1 according to any one of (1) to (3), and the determination unit 70 may include a first determination unit 71 that makes a first determination regarding the collapse based on a representative value of brightness calculated by the first calculation unit 50 and a representative value of brightness calculated by the second calculation unit 55, a second determination unit 72 that makes a second determination regarding the collapse based on one or more images acquired by the acquisition unit 40, and a first collapse determination unit 75 that determines the presence or absence of a second-scale collapse, which is larger in scale than the first-scale collapse, based on the result of the first determination and the result of the second determination.
  • a collapse detection system 1 according to a fifth aspect is the collapse detection system 1 according to (4), in which the second determination unit 72 may perform the second determination using a trained model (trained model 91 for second determination) that has been trained to output a determination result regarding the possibility that the collapse has occurred when an image acquired by the acquisition unit 40 is input.
  • a trained model trained model 91 for second determination
  • the collapse detection system 1 according to the sixth aspect is the collapse detection system 1 according to (4) or (5), in which the acquisition unit 40 acquires the infrared image, which is the image, at the first predetermined period and acquires a visible light image of the inside of the combustion chamber R at a second predetermined period, the second determination unit 72 makes the second determination based on one or more infrared images acquired by the acquisition unit 40, the determination unit 70 further includes a third determination unit 73 that makes a third determination regarding the collapse based on one or more visible light images acquired by the acquisition unit 40, and the first collapse determination unit 75 may determine the presence or absence of a collapse of the second scale based on the result of the first determination, the result of the second determination, and the result of the third determination.
  • the collapse detection system 1 is any one of the collapse detection systems 1 of (4) to (6), in which the determination unit 70 includes a disturbance determination unit 74 that determines the presence or absence of a disturbance based on a feature related to the brightness of the image acquired by the acquisition unit 40, and the determination by the first collapse determination unit 75 may be made when the disturbance determination unit 74 determines that there is no disturbance.
  • the collapse detection system 1 is any one of the collapse detection systems 1 of (4) to (7), and the determination unit 70 may further include a second collapse determination unit 76 that determines the presence or absence of the first scale collapse based on a change in brightness of the multiple images acquired by the acquisition unit 40 when the first collapse determination unit 75 determines that there is no collapse of the second scale.
  • a collapse detection system 1 according to a ninth aspect is the collapse detection system 1 of (8), in which the second collapse determination unit 76 calculates a similarity between an image acquired by the acquisition unit 40 and one or more images previously acquired by the acquisition unit 40, and may determine that no collapse has occurred if the similarity does not satisfy a predetermined condition.
  • a collapse detection system 1 according to a tenth aspect is the collapse detection system 1 of (1), in which the determination unit 70 may determine the presence or absence of a collapse by performing processing that includes inputting features extracted based on one or more images acquired by the acquisition unit 40 into a trained model 97 having a recursive structure.
  • the collapse detection system 1 according to the eleventh aspect is the collapse detection system 1 according to (10), and the determination unit 70 may include a fourth determination unit 77 that performs a fourth determination by inputting features extracted based on one or more infrared images acquired by the acquisition unit 40 into a deep learning model, a fifth determination unit 78 that performs a fifth determination by inputting features extracted based on the visible image acquired by the acquisition unit 40 into a deep learning model, and a third collapse determination unit 79 that performs a determination regarding the collapse based on features calculated based on the representative value of luminance calculated by the first calculation unit 50 and the representative value of luminance calculated by the second calculation unit 55, the result of the fourth determination, and the result of the fifth determination.
  • the determination unit 70 may include a fourth determination unit 77 that performs a fourth determination by inputting features extracted based on one or more infrared images acquired by the acquisition unit 40 into a deep learning model, a fifth determination unit 78 that performs a fifth determination by inputting features extracted based on the visible image
  • the collapse detection system 1 according to the twelfth aspect is the collapse detection system 1 according to (10) or (11), in which the determination unit 70 packages features of a plurality of images acquired continuously at a predetermined time interval by the acquisition unit 40, and may input the packaged features of the plurality of images to the trained model 97 having the recursive structure.
  • the collapse detection system 1 according to the thirteenth aspect is the collapse detection system 1 according to (12), in which the dimensions of multiple images acquired continuously at a predetermined time interval by the acquisition unit 40 are reduced using an autoencoder 96, and the features of the multiple images with reduced dimensions may be packaged.
  • the collapse detection method includes one or more computers 1100 acquiring images of the incinerated materials that have accumulated in the feeder 104 of the incineration equipment 100 and are being pushed toward the combustion chamber R at a first predetermined period, calculating a representative value of brightness based on the acquired first image, calculating a representative value of brightness based on two or more images that were acquired within the time it takes for one collapse of the incinerated materials among a plurality of images in a time series acquired before the first image, and making a judgment regarding the collapse based on the representative value of brightness based on the first image and the representative value of brightness based on the two or more images.
  • the collapse detection system 1 includes an acquisition unit 40 that acquires images of the incinerated materials that have accumulated in the feeder 104 of the incineration equipment 100 and are being pushed toward the combustion chamber R at a first predetermined period, and a collapse detection unit 41 that makes a judgment regarding the collapse based on a first input element that is a first image acquired by the acquisition unit 40, and a second input element that is two or more images captured within the time it takes for one collapse of the incinerated materials among a plurality of images in a time series acquired by the acquisition unit 40 before the first image.
  • the present disclosure relates to a system for detecting the collapse of materials to be incinerated within the combustion chamber of an incinerator.
  • the collapse detection system disclosed herein can improve the accuracy of detecting the collapse of materials to be incinerated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

The collapse detection system disclosed herein comprises: an acquisition unit that acquires, at a first prescribed cycle, captured images of an object to be incinerated that is deposited in a feeder of an incineration facility and pushed out toward a combustion chamber; a first calculation unit that calculates a representative value of brightness based on a first image acquired by the acquisition unit; a second calculation unit that calculates a representative value of brightness based on two or more images captured within a period of time for one collapse of the object to be incinerated, among a plurality of images in time series that were acquired by the acquisition unit before the first image; and a determination unit that performs determination related to the collapse on the basis of the representative value of brightness calculated by the first calculation unit and the representative value of brightness calculated by the second calculation unit.

Description

崩落検知システム、および崩落検知方法Collapse detection system and collapse detection method
 本開示は、崩落検知システム、および崩落検知方法に関する。本願は、2022年11月17日に出願された特願2022-183989号に対して優先権を主張し、その内容をここに援用する。 This disclosure relates to a collapse detection system and a collapse detection method. This application claims priority to Japanese Patent Application No. 2022-183989, filed on November 17, 2022, the contents of which are incorporated herein by reference.
 特許文献1には、焼却炉のフィーダ部に堆積して燃焼室に落下する前の固体燃料の画像を撮像するように構成された撮像装置と、前記撮像装置によって撮像された前記画像に基づいて前記燃焼室に供給された前記固体燃料の量を検知する検知装置と、を備えた供給量検知システムが開示されている。この供給量検知システムでは、第1タイミングにおける前記画像の輝度である第1輝度と、前記第1タイミングよりも遅い第2タイミングにおける前記画像の輝度であって前記第1輝度よりも低い第2輝度との差分の値に基づいて、前記燃焼室に供給された前記固体燃料の量が検知される。具体的には、検知装置は、前記画像を複数の区画画像に区画し、前記複数の区画画像の各々における前記第1輝度と前記第2輝度との差分の値が予め設定された閾値を超えた前記区画画像の数をカウントし、カウントされたカウント数が予め設定された設定数を超えると、前記燃焼室に供給された前記固体燃料の量が過剰であることを検知する。 Patent Document 1 discloses a supply amount detection system including an imaging device configured to capture an image of solid fuel before it accumulates in a feeder section of an incinerator and falls into a combustion chamber, and a detection device that detects the amount of the solid fuel supplied to the combustion chamber based on the image captured by the imaging device. In this supply amount detection system, the amount of the solid fuel supplied to the combustion chamber is detected based on the difference between a first luminance, which is the luminance of the image at a first timing, and a second luminance, which is the luminance of the image at a second timing that is later than the first timing and is lower than the first luminance. Specifically, the detection device divides the image into a plurality of partition images, counts the number of partition images in which the difference between the first luminance and the second luminance in each of the plurality of partition images exceeds a preset threshold, and detects that the amount of the solid fuel supplied to the combustion chamber is excessive when the counted number exceeds a preset number.
 特許文献2には、給じん機と、前記給じん機のごみの出口部と流動床式焼却炉のごみの供給口とを結ぶシュート部を有する流動床式焼却装置において、前記給じん機のごみの出口部からごみの落下する様子を観察できる位置にテレビカメラを取り付けて、取り付けたテレビカメラの画像に基づいて、ごみの落下量とごみの発熱量とを算出する算出手段を設けたことを特徴とする流動床式焼却装置が開示されている。この流動床式焼却装置では、(a)画像の取り込み、(b)画像の二値化、(c)輪郭の認識、(d)輪郭の中の面積の算出、(e)その面積内の重心の算出、(f)重心、面積の記憶(g)前回算出した重心と今回算出した重心の移動距離に面積をかける、ことを含む処理フローによりごみの量が検出される。 Patent Document 2 discloses a fluidized bed incineration apparatus having a dust feeder and a chute connecting the dust feeder's dust outlet and the dust supply port of a fluidized bed incinerator, characterized in that a television camera is attached at a position where the falling of the dust from the dust feeder's dust outlet can be observed, and a calculation means is provided for calculating the amount of falling trash and the amount of heat generated by the trash based on the image from the attached television camera. In this fluidized bed incineration apparatus, the amount of trash is detected by a processing flow including: (a) taking in an image; (b) binarizing the image; (c) recognizing the contour; (d) calculating the area within the contour; (e) calculating the center of gravity within that area; (f) storing the center of gravity and area; and (g) multiplying the area by the distance traveled by the center of gravity calculated last time and the center of gravity calculated this time.
 特許文献3には、運転中のボイラ炉内のような燃焼場を可視化して観察することができる燃焼場の観察装置が開示されている。この観察装置では、燃焼場を撮影することによって取得された画像をグレースケール変換する手段、燃焼場を撮影することによって取得された画像をコントラスト調整する手段、または燃焼場を撮影することによって取得された画像をグレースケール変換してからコントラスト調整する手段などを有し、あるタイミングで撮影された1つの画像に対して所定の処理を行うことで、燃焼場を可視化するための情報を生成する。 Patent Document 3 discloses a combustion field observation device that can visualize and observe a combustion field such as the inside of a boiler furnace during operation. This observation device has a means for converting an image obtained by photographing the combustion field to grayscale, a means for adjusting the contrast of an image obtained by photographing the combustion field, or a means for converting an image obtained by photographing the combustion field to grayscale and then adjusting the contrast, and performs a specified process on an image photographed at a certain timing to generate information for visualizing the combustion field.
特許第6979482号公報Patent No. 6979482 特開平9-060842号公報Japanese Patent Application Laid-Open No. 9-060842 特開2019-196845号公報JP 2019-196845 A
 ところで、燃焼室内では複雑な事象が生じるため、被焼却物の崩落を適切に検知することが難しい場合がある。しかしながら、燃焼室に関する制御をより適切に行うため、被焼却物の崩落の検知精度を高めることが期待されている。 However, because complex events occur within the combustion chamber, it can be difficult to properly detect the collapse of incinerated materials. However, there is hope for improving the accuracy of detecting the collapse of incinerated materials in order to more appropriately control the combustion chamber.
 本開示は上記課題を解決するためになされたものであって、被焼却物の崩落に関する検知精度の向上を図ることができる崩落検知システム、および崩落検知方法を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a collapse detection system and collapse detection method that can improve the accuracy of detecting the collapse of materials to be incinerated.
 上記課題を解決するために、本開示に係る崩落検知システムは、焼却設備のフィーダ内に堆積して燃焼室に向けて押し出される被焼却物を撮像した画像を第1所定周期で取得する取得部と、前記取得部により取得された第1画像に基づく輝度の代表値を算出する第1算出部と、前記取得部により前記第1画像よりも前に取得された時系列上の複数の画像のなかで、前記被焼却物の1回の崩落にかかる時間内に撮像された2以上の画像に基づく輝度の代表値を算出する第2算出部と、前記第1算出部により算出された輝度の代表値と、前記第2算出部により算出された輝度の代表値とに基づき前記崩落に関する判定を行う判定部と、を備える。 In order to solve the above problem, the collapse detection system disclosed herein comprises an acquisition unit that acquires images of materials to be incinerated that are piled up in a feeder of an incineration facility and pushed toward a combustion chamber at a first predetermined period; a first calculation unit that calculates a representative value of brightness based on the first images acquired by the acquisition unit; a second calculation unit that calculates a representative value of brightness based on two or more images captured within the time it takes for one collapse of the materials to be incinerated, among a plurality of images in a time series acquired by the acquisition unit before the first image; and a determination unit that makes a determination regarding the collapse based on the representative value of brightness calculated by the first calculation unit and the representative value of brightness calculated by the second calculation unit.
 本開示に係る崩落検知方法は、1以上のコンピュータが、焼却設備のフィーダ内に堆積して燃焼室に向けて押し出される被焼却物を撮像した画像を第1所定周期で取得し、取得した第1画像に基づく輝度の代表値を算出し、前記第1画像よりも前に取得した時系列上の複数の画像のなかで、前記被焼却物の1回の崩落にかかる時間内に撮像された2以上の画像に基づく輝度の代表値を算出し、前記第1画像に基づく輝度の代表値と、前記2以上の画像に基づく輝度の代表値とに基づき前記崩落に関する判定を行う、ことを含む。 The collapse detection method disclosed herein includes one or more computers acquiring images of materials to be incinerated that have accumulated in a feeder of an incineration facility and are being pushed toward a combustion chamber at a first predetermined period, calculating a representative value of brightness based on the acquired first image, calculating a representative value of brightness based on two or more images acquired within the time it takes for one collapse of the materials to occur among a plurality of images in a time series acquired before the first image, and making a determination regarding the collapse based on the representative value of brightness based on the first image and the representative value of brightness based on the two or more images.
 本開示に係る崩落検知システムは、焼却設備のフィーダ内に堆積して燃焼室に向けて押し出される被焼却物を撮像した画像を第1所定周期で取得する取得部と、前記取得部により取得された第1画像である第1入力要素と、前記取得部により前記第1画像よりも前に取得された時系列上の複数の画像のなかで、前記被焼却物の1回の崩落にかかる時間内に撮像された2以上の画像である第2入力要素とに基づき、前記崩落に関する判定を行う崩落検知部と、を備える。 The collapse detection system according to the present disclosure includes an acquisition unit that acquires images of materials to be incinerated that have accumulated in a feeder of an incineration facility and are being pushed toward a combustion chamber at a first predetermined period, and a collapse detection unit that makes a determination regarding the collapse based on a first input element that is a first image acquired by the acquisition unit, and a second input element that is two or more images captured within the time it takes for one collapse of the materials to occur among a plurality of images in a time series acquired by the acquisition unit prior to the first image.
 本開示によれば、被焼却物の崩落に関する検知精度の向上を図ることができる崩落検知システム、および崩落検知方法を提供することができる。 The present disclosure provides a collapse detection system and a collapse detection method that can improve the accuracy of detecting the collapse of materials to be incinerated.
本開示の実施形態に係る焼却設備の全体を示す概略構成図である。1 is a schematic diagram showing an overall configuration of an incineration facility according to an embodiment of the present disclosure. 本開示の実施形態に係る情報処理装置の機能ブロック図である。FIG. 1 is a functional block diagram of an information processing device according to an embodiment of the present disclosure. 本開示の第1実施形態に係る第1判定部が判定の対象とする画像の一例を示す図である。4 is a diagram showing an example of an image to be determined by a first determination unit according to the first embodiment of the present disclosure; FIG. 本開示の第1実施形態に係る第3判定部が判定の対象とする画像の一例を示す図である。13 is a diagram showing an example of an image to be determined by a third determination unit according to the first embodiment of the present disclosure; FIG. 本開示の第1実施形態に係る第1判定部による時系列上の判定結果の一例を示す図である。6A to 6C are diagrams illustrating an example of a time-series determination result by a first determination unit according to the first embodiment of the present disclosure. 本開示の第1実施形態に係る第2判定用学習済みモデルが学習のために用いる画像の一覧を例示的に示す図である。A figure showing an example of a list of images used for learning by the second judgment trained model according to the first embodiment of the present disclosure. 本開示の第1実施形態に係る第2判定部による時系列上の判定結果の一例を示す図である。6A to 6C are diagrams illustrating an example of a time-series determination result by a second determination unit according to the first embodiment of the present disclosure. 本開示の第1実施形態に係る外乱判定部が判定の対象とする画像の一例を示す図である。4 is a diagram showing an example of an image to be determined by a disturbance determination unit according to the first embodiment of the present disclosure; FIG. 本開示の第1実施形態に係る外乱判定用学習済みモデルが学習に用いる低偏差画像および高偏差画像の一例を示す図である。1A to 1C are diagrams illustrating an example of a low deviation image and a high deviation image used for learning by a trained model for disturbance determination according to the first embodiment of the present disclosure. 本開示の第1実施形態に係る外乱判定用学習済みモデルが学習に用いる画像を輝度の偏差の大小に対応した形で一覧的に示す図である。A figure showing a list of images used for learning by the trained model for disturbance determination according to the first embodiment of the present disclosure, in a format corresponding to the magnitude of the deviation in brightness. 本開示の第1実施形態に係る外乱判定部による時系列上の判定結果の一例を示す図である。5 is a diagram showing an example of a time-series determination result by a disturbance determination unit according to the first embodiment of the present disclosure; FIG. 本開示の第1実施形態に係る第3判定部による時系列上の判定結果の一例を示す図である。13A to 13C are diagrams illustrating an example of a time-series determination result by a third determination unit according to the first embodiment of the present disclosure. 本開示の第1実施形態に係る情報処理装置の動作の一例を示すフローチャートである。5 is a flowchart illustrating an example of an operation of the information processing device according to the first embodiment of the present disclosure. 本開示の第1実施形態に係る第1崩落判定部および第2崩落判定部による時系列上の判定結果の一例を示す図である。11A to 11C are diagrams illustrating an example of a time-series determination result by a first collapse determination unit and a second collapse determination unit according to the first embodiment of the present disclosure. 本開示の第2実施形態に係る二値化データを説明するための図である。FIG. 11 is a diagram for explaining binarized data according to a second embodiment of the present disclosure. 本開示の第2実施形態に係る第2崩落判定部による類似度の算出方法を概念的に説明するための図である。13 is a diagram for conceptually explaining a method for calculating a similarity by a second collapse determiner according to a second embodiment of the present disclosure. FIG. 本開示の第2実施形態に係る情報処理装置の動作の一例を示すフローチャートである。10 is a flowchart illustrating an example of an operation of the information processing device according to the second embodiment of the present disclosure. 本開示の第2実施形態に係る第1崩落判定部および第2崩落判定部による時系列上の判定結果の一例を示す図である。13A to 13C are diagrams illustrating an example of a time series of determination results by a first collapse determination unit and a second collapse determination unit according to a second embodiment of the present disclosure. 本開示の第3実施形態に係る情報処理装置の機能ブロック図である。FIG. 13 is a functional block diagram of an information processing device according to a third embodiment of the present disclosure. 本開示の第3実施形態に係る第1算出部が算出の対象とする画像の一例を示す図である。FIG. 13 is a diagram illustrating an example of an image that is a target of calculation by a first calculator according to a third embodiment of the present disclosure. 本開示の第3実施形態に係る第4判定用学習済みモデルが学習のために用いる画像の一覧を例示的に示す図である。A figure showing an example of a list of images used for learning by the fourth judgment trained model according to the third embodiment of the present disclosure. 本開示の第3実施形態に係る第3崩落判定部が判定の基準とする輝度変化量の総和の数値範囲、及び第4、第5判定部の判定結果を示す表である。13 is a table showing a numerical range of the sum of the luminance change amounts that is used as a criterion for judgment by a third collapse judgment unit according to a third embodiment of the present disclosure, and judgment results of a fourth and fifth judgment unit. 本開示の第3実施形態に係る情報処理装置の動作の一例を示すフローチャートである。13 is a flowchart illustrating an example of an operation of the information processing device according to the third embodiment of the present disclosure. 本開示の実施形態に係るコンピュータの構成を示すハードウェア構成図である。FIG. 2 is a hardware configuration diagram illustrating a configuration of a computer according to an embodiment of the present disclosure.
 以下、添付図面を参照しながら、焼却設備、および崩落検知システムを実施するための形態を説明する。 Below, we will explain the implementation of the incineration equipment and the collapse detection system with reference to the attached drawings.
<焼却設備の第1実施形態>
 焼却設備100は、例えば、都市ごみ、産業廃棄物、またはバイオマスなどを被焼却物とするストーカ式のごみ焼却炉である。以下、被焼却物を「ごみ」と称する場合がある。すなわち、本実施形態では、ごみは、焼却設備内で燃焼反応を生じさせるための燃料である。図1に示すように、焼却設備100は、例えば、ホッパ102と、フィーダ104と、炉本体108と、押出装置110と、空気供給装置112と、熱回収ボイラ114と、減温塔116と、集じん装置118と、煙突120と、崩落検知システム1とを備えている。
<First embodiment of incineration facility>
The incineration facility 100 is a stoker-type waste incinerator in which, for example, urban waste, industrial waste, biomass, or the like is incinerated. Hereinafter, the material to be incinerated may be referred to as "waste." That is, in this embodiment, the waste is fuel for causing a combustion reaction in the incineration facility. As shown in FIG. 1, the incineration facility 100 includes, for example, a hopper 102, a feeder 104, a furnace body 108, an extrusion device 110, an air supply device 112, a heat recovery boiler 114, a cooling tower 116, a dust collector 118, a chimney 120, and a collapse detection system 1.
 フィーダ104は、炉本体108の燃焼室Rに向かって延びる通路である。フィーダ104には、ホッパ102から投入されたごみFgが導入されて一時的に堆積する。炉本体108は、ごみFgを焼却処理するための燃焼室Rを内部に有している。炉本体108内でごみFgが搬送される方向を搬送方向W1(図1中の左右方向)とすると、フィーダ104における搬送方向W1の下流側の下流側端部121は、燃焼室Rの受入口122に接続されている。 The feeder 104 is a passageway that extends toward the combustion chamber R of the furnace body 108. Waste Fg fed from the hopper 102 is introduced into the feeder 104 and temporarily piles up. The furnace body 108 has an internal combustion chamber R for incinerating the waste Fg. If the direction in which the waste Fg is transported within the furnace body 108 is defined as the transport direction W1 (the left-right direction in FIG. 1), then the downstream end 121 of the feeder 104 downstream of the transport direction W1 is connected to the receiving port 122 of the combustion chamber R.
 押出装置110は、フィーダ104内に堆積したごみFgを、受入口122を介して燃焼室Rに押し出すための押出アーム124を有している。押出アーム124は、フィーダ104内を搬送方向W1の上流側から下流側、および下流側から上流側に向かって移動可能(進退可能)である。本実施形態では、押出アーム124は、フィーダ104内を搬送方向W1に往復運動し、ごみFgを燃焼室R内に間欠的に供給する。本実施形態では、押出アーム124は、制御対象装置Sの一例である。 The push-out device 110 has a push-out arm 124 for pushing out the waste Fg accumulated in the feeder 104 into the combustion chamber R through the receiving port 122. The push-out arm 124 is movable (advanceably and retreatably) within the feeder 104 from the upstream side to the downstream side and from the downstream side to the upstream side in the conveying direction W1. In this embodiment, the push-out arm 124 reciprocates within the feeder 104 in the conveying direction W1, and intermittently supplies the waste Fg into the combustion chamber R. In this embodiment, the push-out arm 124 is an example of a device S to be controlled.
 炉本体108は、受入口122を介して燃焼室Rに押し出されたごみFgが落下する火格子126(ストーカ)を含む。火格子126は、燃焼室Rにおける床部に相当している。火格子126は、火格子126上のごみFgを受入口122から離れていく方向(搬送方向W1の下流側)に移動させる。火格子126は、制御対象装置Sの一例である。また、燃焼室Rは、搬送方向W1の上流側から下流側に向かって順番に並ぶ乾燥領域128、燃焼領域130、および後燃焼領域132を含む。乾燥領域128は、燃焼室R内の熱によってごみFgを乾燥させる。燃焼領域130は、火炎131をあげてごみFgを燃焼させる。後燃焼領域132は、燃焼領域130で燃え切らなかった燃え切りを完全燃焼させる。燃焼室Rで乾燥、燃焼、および後燃焼したごみFgは、灰135となり、後燃焼領域132よりも下流側にある灰シュート146から落下して炉本体108の外部に排出される。 The furnace body 108 includes a grate 126 (stoker) into which the waste Fg pushed into the combustion chamber R through the receiving port 122 falls. The grate 126 corresponds to the floor of the combustion chamber R. The grate 126 moves the waste Fg on the grate 126 in a direction away from the receiving port 122 (downstream in the conveying direction W1). The grate 126 is an example of a controlled device S. The combustion chamber R also includes a drying area 128, a combustion area 130, and a post-combustion area 132, which are arranged in order from the upstream side to the downstream side in the conveying direction W1. The drying area 128 dries the waste Fg by the heat in the combustion chamber R. The combustion area 130 burns the waste Fg by raising a flame 131. The post-combustion area 132 completely burns the remaining burnt waste that was not completely burned in the combustion area 130. The waste Fg that has been dried, burned, and post-combusted in the combustion chamber R becomes ash 135, which falls through an ash chute 146 downstream of the post-combustion area 132 and is discharged outside the furnace body 108.
 空気供給装置112は、ごみFgの燃焼に用いられる1次空気、および、ごみFgの燃焼によって発生した一酸化炭素のような未燃ガスの濃度を低減させるために用いられる2次空気を燃焼室Rに供給する。空気供給装置112は、空気供給管136と、空気供給管136に設けられたブロワ138と、空気供給管136に設けられた第1流量調整弁140および第2流量調整弁142とを有している。ブロワ138から圧送されて空気供給管136を流通する空気の一部は、1次空気として第1流量調整弁140により流量を調整されながら、燃焼室Rの下部から火格子126を通じて燃焼室R内に供給される。空気供給管136を流通する空気の残りの一部は、2次空気として第2流量調整弁142により流量を調整されながら、燃焼室Rの側壁から燃焼室R内の上方側に供給される。本実施形態では、例えば、燃焼室Rの乾燥領域128、燃焼領域130、および後燃焼領域132のそれぞれに1次空気が供給され、燃焼領域130の上方側に2次空気が供給される。本実施形態では、ブロワ138、第1流量調整弁140、および第2流量調整弁142は、いずれも制御対象装置Sの一例である。 The air supply device 112 supplies the combustion chamber R with primary air used for burning the waste Fg and secondary air used to reduce the concentration of unburned gases such as carbon monoxide generated by the burning of the waste Fg. The air supply device 112 has an air supply pipe 136, a blower 138 provided in the air supply pipe 136, and a first flow control valve 140 and a second flow control valve 142 provided in the air supply pipe 136. A portion of the air pressurized from the blower 138 and flowing through the air supply pipe 136 is supplied into the combustion chamber R from the lower part of the combustion chamber R through the grate 126 while its flow rate is adjusted by the first flow control valve 140 as primary air. The remaining portion of the air flowing through the air supply pipe 136 is supplied to the upper part of the combustion chamber R from the side wall of the combustion chamber R while its flow rate is adjusted by the second flow control valve 142 as secondary air. In this embodiment, for example, primary air is supplied to each of the drying area 128, the combustion area 130, and the post-combustion area 132 of the combustion chamber R, and secondary air is supplied to the upper side of the combustion area 130. In this embodiment, the blower 138, the first flow control valve 140, and the second flow control valve 142 are all examples of the controlled device S.
 熱回収ボイラ114、減温塔116、集じん装置118、および煙突120のそれぞれは、ごみFgが燃焼室Rで燃焼されることで生成された排ガス143が流通する煙道144に設けられている。排ガス143は、熱回収ボイラ114、減温塔116、集じん装置118、煙突120の順に流通する。熱回収ボイラ114は、排ガス143の熱エネルギから蒸気を生成する。減温塔116は、熱回収ボイラ114を通過した排ガス143の温度を下げる。集じん装置118は、減温塔116を通過した排ガス143に含まれる飛灰を捕集する。煙突120は、集じん装置118を通過した排ガス143を焼却設備100の外部に排気する。熱回収ボイラ114で生成した蒸気は、例えば焼却設備100の外部に配置された蒸気タービン(図示省略)などに供給される。 The heat recovery boiler 114, the temperature reducing tower 116, the dust collector 118, and the chimney 120 are each provided in a flue 144 through which exhaust gas 143 generated by burning waste Fg in the combustion chamber R flows. The exhaust gas 143 flows through the heat recovery boiler 114, the temperature reducing tower 116, the dust collector 118, and the chimney 120 in that order. The heat recovery boiler 114 generates steam from the thermal energy of the exhaust gas 143. The temperature reducing tower 116 lowers the temperature of the exhaust gas 143 that has passed through the heat recovery boiler 114. The dust collector 118 collects fly ash contained in the exhaust gas 143 that has passed through the temperature reducing tower 116. The chimney 120 exhausts the exhaust gas 143 that has passed through the dust collector 118 to the outside of the incineration equipment 100. The steam generated in the heat recovery boiler 114 is supplied to, for example, a steam turbine (not shown) located outside the incineration facility 100.
<崩落検知システム>
 崩落検知システム1は、フィーダ104内に堆積したごみFgが押出アーム124によって燃焼室Rに向けて押し出されて燃焼室Rに供給されたことを検知する。具体的には、崩落検知システム1は、フィーダ104内から燃焼室RへのごみFgの崩落を検知する。ここでいう「崩落」とは、例えば、フィーダ104内に堆積したごみFgからある程度まとまった量のごみFgが一度に燃焼室Rに供給されることを意味する。本実施形態では、崩落は、第1規模の崩落と、第1規模の崩落よりも崩落の規模が大きい第2規模の崩落とに分類されている。
<Collapse detection system>
The collapse detection system 1 detects that the garbage Fg accumulated in the feeder 104 has been pushed by the push-out arm 124 toward the combustion chamber R and supplied to the combustion chamber R. Specifically, the collapse detection system 1 detects the collapse of the garbage Fg from inside the feeder 104 into the combustion chamber R. The "collapse" here means, for example, that a certain amount of garbage Fg is supplied at once from the garbage Fg accumulated in the feeder 104 to the combustion chamber R. In this embodiment, collapse is classified into a first-scale collapse and a second-scale collapse that is larger in scale than the first-scale collapse.
 第1規模の崩落は、後述の撮像装置2によって撮像された赤外画像中のフィーダ104内に堆積したごみFgの全体のうち、炉本体108の幅方向(搬送方向W1とは直交する方向)における3分の1程度のごみFgの層構造を視認することができなくなるとともに、崩落後のごみFgの一部が燃焼室R内を飛び散る場合を含む。また、第1規模の崩落は、赤外画像中のフィーダ104内に堆積したごみFgの全体のうち、炉本体108の幅方向における3分の1以上かつ3分の2未満のごみFgの層構造を視認することができなくなるとともに、崩落後のごみFgの一部が燃焼室R内を飛び散らない場合をも含む。 The first-scale collapse includes a case where the layer structure of about one-third of the total garbage Fg accumulated in the feeder 104 in the width direction of the furnace body 108 (direction perpendicular to the conveying direction W1) cannot be visually recognized in the infrared image captured by the imaging device 2 described below, and part of the garbage Fg after the collapse scatters inside the combustion chamber R. The first-scale collapse also includes a case where the layer structure of more than one-third but less than two-thirds of the total garbage Fg accumulated in the feeder 104 in the width direction of the furnace body 108 cannot be visually recognized in the infrared image, and part of the garbage Fg after the collapse does not scatter inside the combustion chamber R.
 一方、第2規模の崩落は、赤外画像中のフィーダ104内に堆積したごみFgの全体のうち、炉本体108の幅方向における3分の2以上のごみFgの層構造を視認することができなくなるとともに、崩落後のごみFgの一部が燃焼室R内を飛び散る場合を含む。また、第2規模の崩落は、後述の撮像装置2によって撮像された可視光画像中の火炎131にごみFgが落下し、炉本体108の幅方向における3分の1以上の領域で火炎131が消える場合をも含む。 On the other hand, the second scale collapse includes a case where the layer structure of the garbage Fg in more than two-thirds of the width of the furnace body 108 of the total garbage Fg accumulated in the feeder 104 in the infrared image becomes impossible to see, and part of the garbage Fg after the collapse scatters inside the combustion chamber R. In addition, the second scale collapse also includes a case where the garbage Fg falls onto the flame 131 in the visible light image captured by the imaging device 2 described below, causing the flame 131 to disappear in an area of more than one-third of the width of the furnace body 108.
 したがって本実施形態では、崩落検知システム1は、燃焼室Rに崩落したごみFgの規模(量)を検知する。図1および図2に示すように、崩落検知システム1は、例えば、撮像装置2と、情報処理装置4とを備えている。 Therefore, in this embodiment, the collapse detection system 1 detects the scale (amount) of the garbage Fg that has collapsed into the combustion chamber R. As shown in Figures 1 and 2, the collapse detection system 1 includes, for example, an imaging device 2 and an information processing device 4.
[撮像装置]
 撮像装置2は、フィーダ104内に堆積しているごみFgが映り込むように、燃焼室R内の画像を撮像する。撮像装置2によって撮像されたごみFgの画像は、リアルタイムで情報処理装置4に送信される。撮像装置2は、燃焼室Rに崩落する前のごみFgの表面のうち、燃焼室Rに対向する前面Frの画像を撮像するように、炉本体108に配置されている。具体的には、撮像装置2は、燃焼室Rにおける後燃焼領域132よりも搬送方向W1の下流側に位置する炉本体108の炉尻145に設けられている。なお、ごみFgの前面Frの赤外画像および可視光画像を撮像可能であれば、撮像装置2は炉本体108の炉尻145以外の箇所に設けられてもよい。
[Imaging device]
The imaging device 2 captures an image of the inside of the combustion chamber R so that the garbage Fg accumulated in the feeder 104 is reflected. The image of the garbage Fg captured by the imaging device 2 is transmitted to the information processing device 4 in real time. The imaging device 2 is arranged in the furnace body 108 so as to capture an image of the front surface Fr of the garbage Fg facing the combustion chamber R before it collapses into the combustion chamber R. Specifically, the imaging device 2 is provided at the bottom 145 of the furnace body 108 located downstream of the post-combustion region 132 in the combustion chamber R in the conveying direction W1. Note that the imaging device 2 may be provided at a location other than the bottom 145 of the furnace body 108 as long as it is possible to capture an infrared image and a visible light image of the front surface Fr of the garbage Fg.
 本実施形態では、撮像装置2は、赤外画像を撮像することができる赤外カメラ5と、可視光画像を撮像することができる可視光カメラ6とを有している(図1参照)。撮像装置2は、燃焼室Rの受入口122から搬送方向W1における下流側に向けてせり出したごみFgの前面Frの赤外画像および可視光画像を撮像可能である。赤外カメラ5は、例えば3.8μm~4.2μmの波長帯でごみFgの前面Frを撮像し、赤外画像を生成する。赤外カメラ5は上記波長帯で撮影するため、火炎131を透過することができ、生成した赤外画像中に火炎131が映り込むことが抑制される。可視光カメラ6は、可視波長域の所定の波長帯でごみFgの前面Frを撮像し、可視光画像を生成する。可視光カメラ6は上記波長帯で撮影するため、火炎131を透過することができず、生成した可視光画像中には主として火炎131が映り込む。 In this embodiment, the imaging device 2 has an infrared camera 5 capable of capturing infrared images and a visible light camera 6 capable of capturing visible light images (see FIG. 1). The imaging device 2 is capable of capturing infrared images and visible light images of the front surface Fr of the garbage Fg protruding from the receiving port 122 of the combustion chamber R toward the downstream side in the conveying direction W1. The infrared camera 5 captures the front surface Fr of the garbage Fg in a wavelength band of, for example, 3.8 μm to 4.2 μm, and generates an infrared image. Since the infrared camera 5 captures images in the above wavelength band, it can transmit the flame 131, and the flame 131 is prevented from being reflected in the generated infrared image. The visible light camera 6 captures the front surface Fr of the garbage Fg in a predetermined wavelength band in the visible wavelength range, and generates a visible light image. Since the visible light camera 6 captures images in the above wavelength band, it cannot transmit the flame 131, and the flame 131 is mainly reflected in the generated visible light image.
[情報処理装置]
 情報処理装置4は、撮像装置2によって撮像された画像に基づき、フィーダ104内から燃焼室Rに供給されたごみFgに関する情報を検知する。図2に示すように、情報処理装置4は、例えば、取得部40と、崩落検知部41と、制御部80と、記憶部90とを備えている。
[Information processing device]
The information processing device 4 detects information about the garbage Fg supplied from the feeder 104 to the combustion chamber R based on the image captured by the imaging device 2. As shown in FIG. 2, the information processing device 4 includes, for example, an acquisition unit 40, a collapse detection unit 41, a control unit 80, and a storage unit 90.
(取得部の構成)
 取得部40は、撮像装置2から送信される画像をリアルタイムで受信することで経時的に取得する。本実施形態では、取得部40は、赤外画像を第1所定周期で撮像装置2から取得し、可視光画像を第2所定周期で撮像装置2から取得する。第1所定周期および第2所定周期は、例えば、撮像装置2のフレームレート(fps:flames per second)などに基づき決定される。取得部40は、取得した赤外画像および可視光画像を崩落検知部41に送る。
(Configuration of Acquisition Unit)
The acquisition unit 40 acquires images over time by receiving images transmitted from the imaging device 2 in real time. In this embodiment, the acquisition unit 40 acquires infrared images from the imaging device 2 at a first predetermined cycle, and acquires visible light images from the imaging device 2 at a second predetermined cycle. The first predetermined cycle and the second predetermined cycle are determined based on, for example, the frame rate (fps: flames per second) of the imaging device 2. The acquisition unit 40 sends the acquired infrared images and visible light images to the collapse detection unit 41.
(崩落検知部の構成)
 崩落検知部41は、取得部40から受け付けた赤外画像および可視光画像に基づき、フィーダ104から燃焼室RにごみFgが崩落したこと、および崩落して燃焼室Rに供給されたごみFgの規模(量)などを検知する。崩落検知部41は、例えば、第1算出部50と、第2算出部55と、第3算出部60と、第4算出部65と、判定部70とを有している。
(Configuration of collapse detection unit)
The collapse detection unit 41 detects, based on the infrared image and the visible light image received from the acquisition unit 40, that the waste Fg has collapsed from the feeder 104 into the combustion chamber R, and the scale (amount) of the waste Fg that has collapsed and been supplied to the combustion chamber R. The collapse detection unit 41 has, for example, a first calculation unit 50, a second calculation unit 55, a third calculation unit 60, a fourth calculation unit 65, and a determination unit 70.
(第1算出部)
 第1算出部50は、取得部40から受け付けた画像のうち赤外画像を受け付けるとともに、受け付けた赤外画像に基づき第1特徴量を算出する。本実施形態では、第1特徴量は、第1算出部50が受け付けた1つの赤外画像(例えば直近の赤外画像)に基づく輝度の代表値である。以下、第1算出部50が輝度の代表値を算出するために用いる赤外画像を「第1赤外画像」と称する。すなわち、第1算出部50は、取得部40により取得された第1赤外画像に基づく輝度の代表値を算出する。第1赤外画像は、第1画像の一例である。本実施形態では、第1算出部50は、第1赤外画像中の一部である特定の対象領域における輝度の代表値を算出する。以下、当該対象領域を「第1対象領域42」と称する。
(First Calculation Unit)
The first calculation unit 50 receives an infrared image from the images received from the acquisition unit 40, and calculates a first feature amount based on the received infrared image. In this embodiment, the first feature amount is a representative value of luminance based on one infrared image (e.g., the most recent infrared image) received by the first calculation unit 50. Hereinafter, the infrared image used by the first calculation unit 50 to calculate the representative value of luminance is referred to as the "first infrared image". That is, the first calculation unit 50 calculates the representative value of luminance based on the first infrared image acquired by the acquisition unit 40. The first infrared image is an example of the first image. In this embodiment, the first calculation unit 50 calculates the representative value of luminance in a specific target area that is a part of the first infrared image. Hereinafter, the target area is referred to as the "first target area 42".
 図3に示すように、第1算出部50は、第1赤外画像中のフィーダ104内に堆積したごみFgが主として映り込む領域を第1対象領域42として輝度の代表値を算出する。本実施形態では、第1算出部50が算出の対象とする第1対象領域42は、複数の領域に分かれている。図3中では、第1対象領域42が3×3のマトリクス状の9領域に等分されている場合を一例として示している。なお、第1対象領域42は、マトリクス状の9領域に等分されている場合に限定されることはなく、2~8領域または10領域以上に分けられてもよい。以下、図3中に示した第1対象領域42を左上から右下にかけて順番に「第1領域42a」、「第2領域42b」、「第3領域42c」、「第4領域42d」、「第5領域42e」、「第6領域42f」、「第7領域42g」、「第8領域42h」、「第9領域42i」と称する。第1算出部50は、例えば、第1赤外画像中の第1対象領域42における第1領域42a~第9領域42iそれぞれの輝度の平均値を算出し、算出した9つの輝度の平均値を更に平均化することで得られる第1対象領域42全体の平均値を、第1赤外画像に基づく輝度の代表値として算出する。なお、第1算出部50が算出する代表値は、平均値に限定されることはなく、例えば中央値などの統計量であってもよい。すなわち、第1算出部50による代表値の算出方法は、必ずしも上記に限定されることはない。第1算出部50は、算出した第1対象領域42における輝度の代表値を判定部70に送る。 As shown in FIG. 3, the first calculation unit 50 calculates a representative value of brightness for the first target area 42, which is an area in the first infrared image where the dust Fg accumulated in the feeder 104 is mainly reflected. In this embodiment, the first target area 42 that is the target of calculation by the first calculation unit 50 is divided into multiple areas. FIG. 3 shows an example in which the first target area 42 is equally divided into nine areas in a 3×3 matrix. Note that the first target area 42 is not limited to being equally divided into nine areas in a matrix, and may be divided into 2 to 8 areas or 10 or more areas. Hereinafter, the first target area 42 shown in FIG. 3 will be referred to as the "first area 42a", "second area 42b", "third area 42c", "fourth area 42d", "fifth area 42e", "sixth area 42f", "seventh area 42g", "eighth area 42h", and "ninth area 42i" in order from the upper left to the lower right. For example, the first calculation unit 50 calculates the average value of the luminance of each of the first region 42a to the ninth region 42i in the first target region 42 in the first infrared image, and further averages the calculated nine luminance average values to calculate the average value of the entire first target region 42 as the representative value of the luminance based on the first infrared image. Note that the representative value calculated by the first calculation unit 50 is not limited to the average value, and may be, for example, a statistical value such as a median. In other words, the method of calculating the representative value by the first calculation unit 50 is not necessarily limited to the above. The first calculation unit 50 sends the calculated representative value of the luminance in the first target region 42 to the determination unit 70.
(第2算出部)
 第2算出部55は、取得部40から受け付けた画像のうち赤外画像を受け付けるとともに、受け付けた複数の赤外画像に基づき第2特徴量を算出する。本実施形態では、第2特徴量は、第2算出部55が受け付けた複数の赤外画像に基づく輝度の代表値である。具体的には、第2算出部55は、第1算出部50が代表値の算出に用いた第1赤外画像よりも前に取得された時系列上の2以上の赤外画像のなかで、ごみFgの1回の崩落にかかる時間内に撮像された複数の赤外画像に基づく輝度の代表値を算出する。ここでいう「1回の崩落にかかる時間」には、例えば、ごみFgの1回の崩落が発生したと人間によって判断された時間が複数回に亘って取得された後、取得された複数の時間を平均化することで得られた時間が採用される。具体的には、1回の崩落を示す撮像装置2のフレーム数(画像数)の分布などから平均フレーム数を算出することで、ごみFgの1回の崩落にかかる時間が定義される。
(Second Calculation Unit)
The second calculation unit 55 receives an infrared image from the images received from the acquisition unit 40, and calculates a second feature amount based on the received infrared images. In this embodiment, the second feature amount is a representative value of brightness based on the infrared images received by the second calculation unit 55. Specifically, the second calculation unit 55 calculates a representative value of brightness based on the infrared images captured within the time required for one collapse of the garbage Fg among two or more infrared images in a time series acquired before the first infrared image used by the first calculation unit 50 to calculate the representative value. The "time required for one collapse" here refers to, for example, a time obtained by averaging the acquired multiple times after a time at which a human judges that one collapse of the garbage Fg has occurred is acquired multiple times. Specifically, the time required for one collapse of the garbage Fg is defined by calculating the average number of frames from the distribution of the number of frames (number of images) of the imaging device 2 indicating one collapse.
 第2算出部55が輝度の代表値の算出に用いる2以上の赤外画像は、互いに所定の時間間隔をあけて撮像された赤外画像である。以下、2以上の赤外画像の間に存在する時間間隔を「第1時間」と称する。本実施形態では、第2算出部55は、取得部40によって単位時間当たりに取得されたフレーム数分の赤外画像のそれぞれに基づき輝度の代表値を算出する。したがって、第1時間は、上記第1所定周期である。第1時間は、例えば、1秒未満の長さである。 The two or more infrared images used by the second calculation unit 55 to calculate the representative brightness value are infrared images captured at a predetermined time interval from each other. Hereinafter, the time interval between the two or more infrared images is referred to as the "first time". In this embodiment, the second calculation unit 55 calculates the representative brightness value based on each of the infrared images of the number of frames acquired per unit time by the acquisition unit 40. Therefore, the first time is the above-mentioned first predetermined period. The first time is, for example, less than one second long.
 本実施形態では、2以上の赤外画像は、少なくとも第1時間の2倍以上である第2時間に亘り第1赤外画像よりも前に撮像された赤外画像である。第2算出部55は、2以上の赤外画像として、例えば、3以上(更に言えば4以上)の赤外画像に基づき、複数の赤外画像に基づく輝度の代表値を算出する。ここで、ごみFgの1回の崩落にかかる時間をSとし、第1所定周期をTとし、算出に用いられる赤外画像の枚数(フレーム数)をNとした場合、下記式(i)が成立する。
 S/2<T×N  …(i)
 すなわち、複数の赤外画像は、少なくともSの半分の時間よりも長い時間に亘って取得された複数の画像である。本実施形態では、複数の赤外画像は、Sの時間に亘って取得されている。以下、第2算出部55が輝度の代表値を算出するために用いる複数の赤外画像のそれぞれを「第2赤外画像」と称する。第2赤外画像は、第2画像の一例である。
In this embodiment, the two or more infrared images are infrared images captured before the first infrared image for a second time period that is at least twice the first time period. The second calculation unit 55 calculates a representative value of brightness based on the multiple infrared images, for example, three or more (four or more) infrared images as the two or more infrared images. Here, when the time required for one collapse of the garbage Fg is S, the first predetermined period is Ti , and the number of infrared images (number of frames) used in the calculation is Ni , the following formula (i) is established.
S/2<T i ×N i ... (i)
That is, the multiple infrared images are multiple images acquired over a time period longer than at least half the time period S. In this embodiment, the multiple infrared images are acquired over a time period S. Hereinafter, each of the multiple infrared images used by the second calculator 55 to calculate the representative value of brightness will be referred to as a "second infrared image." The second infrared image is an example of the second image.
 第2算出部55は、第2赤外画像中の一部である特定の対象領域の輝度の代表値を算出する。第2算出部55が算出の対象とする当該対象領域は、上述した第1対象領域42と同じ領域である。第2算出部55は、第1対象領域42の第1領域42a~第9領域42iそれぞれの輝度の平均値を算出し、算出した9つの輝度の平均値を更に平均化することで得られる第1対象領域42全体の平均値を算出する。さらに、第2算出部55は、複数の第2赤外画像に基づき、複数の第1対象領域42全体の平均値を代表値として算出する。なお、第2算出部55が算出する代表値は、平均値に限定されることはなく、例えば中央値などの統計量であってもよい。すなわち、第2算出部55による代表値の算出方法は、必ずしも上記に限定されることはない。第2算出部55は、複数の第2赤外画像に基づいた複数の第1対象領域42全体の輝度の代表値を判定部70に送る。 The second calculation unit 55 calculates a representative value of the luminance of a specific target region that is a part of the second infrared image. The target region that the second calculation unit 55 calculates is the same region as the first target region 42 described above. The second calculation unit 55 calculates the average value of the luminance of each of the first region 42a to the ninth region 42i of the first target region 42, and calculates the average value of the entire first target region 42 by further averaging the calculated nine average values of luminance. Furthermore, the second calculation unit 55 calculates the average value of the entire first target region 42 as a representative value based on the multiple second infrared images. Note that the representative value calculated by the second calculation unit 55 is not limited to the average value, and may be a statistical value such as a median. In other words, the method of calculating the representative value by the second calculation unit 55 is not necessarily limited to the above. The second calculation unit 55 sends the representative value of the luminance of the entire first target region 42 based on the multiple second infrared images to the determination unit 70.
(第3算出部)
 第3算出部60は、取得部40から受け付けた画像のうち可視光画像を受け付けるとともに、受け付けた可視光画像に基づき第3特徴量を算出する。本実施形態では、第3特徴量は、第3算出部60が受け付けた1つの可視光画像(例えば直近の可視光画像)に基づく輝度の代表値である。以下、第3算出部60が輝度の代表値を算出するために用いる可視光画像を「第1可視光画像」と称する。すなわち、第3算出部60は、取得部40により取得された第1可視光画像に基づく輝度の代表値を算出する。第1可視光画像は、第1画像の別の一例である。第3算出部60が受け付けた可視光画像の一例を図4に示す。図4中では、図示の都合上、第1可視光画像(a)をモノトーン(白黒表示)で示している。図4に示すように本実施形態では、第3算出部60は、第1可視光画像(a)から単色成分のうち赤成分のみを抽出した画像(b)を生成するとともに、赤成分のみを抽出した画像(b)中の一部である特定の対象領域における輝度の代表値を算出する。以下、第3算出部60により第1可視光画像から赤成分のみが抽出された画像を「単色成分画像」と称する。また、当該対象領域を「第2対象領域43」と称する。単色成分画像は、可視光画像の一例である。なお、第3算出部60が第1可視光画像から抽出する単色成分は、赤成分に限定されることはなく、例えば緑成分のみや青成分のみを単色成分として第1可視光画像から単色成分画像を生成してもよい。
(Third Calculation Unit)
The third calculation unit 60 receives a visible light image from the images received from the acquisition unit 40, and calculates a third feature amount based on the received visible light image. In this embodiment, the third feature amount is a representative value of luminance based on one visible light image (e.g., the most recent visible light image) received by the third calculation unit 60. Hereinafter, the visible light image used by the third calculation unit 60 to calculate the representative value of luminance is referred to as a "first visible light image". That is, the third calculation unit 60 calculates the representative value of luminance based on the first visible light image acquired by the acquisition unit 40. The first visible light image is another example of the first image. An example of a visible light image received by the third calculation unit 60 is shown in FIG. 4. In FIG. 4, the first visible light image (a) is shown in monotone (black and white display) for convenience of illustration. As shown in FIG. 4, in this embodiment, the third calculation unit 60 generates an image (b) by extracting only the red component from the first visible light image (a) among the monochromatic components, and calculates a representative value of luminance in a specific target region that is a part of the image (b) from which only the red component has been extracted. Hereinafter, the image from which only the red component has been extracted from the first visible light image by the third calculation unit 60 is referred to as a "monochromatic component image." In addition, the target region is referred to as a "second target region 43." The monochromatic component image is an example of a visible light image. Note that the monochromatic component extracted from the first visible light image by the third calculation unit 60 is not limited to the red component, and for example, a monochromatic component image may be generated from the first visible light image by using only the green component or only the blue component as the monochromatic component.
 第3算出部60は、単色成分画像中の火炎131が主として映り込む領域を第2対象領域43として輝度の代表値を算出する。ここで、第3算出部60が算出の対象とする第2対象領域43は、複数の領域に等分されている。図4中では、第2対象領域43が炉本体108の幅方向(搬送方向W1とは直交する方向)で3領域に分けられている場合を一例として示している。なお、第2対象領域43は、3領域に等分されている場合に限定されることはなく、2領域または4領域以上に分けられてもよい。以下、図4中に示した第2対象領域43を左から右に向かって順番に「左側領域43l」、「中央領域43c」、「右側領域43r」と称する。第3算出部60は、単色成分画像中の第2対象領域43における左側領域43l、中央領域43c、および右側領域43rそれぞれの輝度の中央値を代表値として算出する。なお、第3算出部60が算出する代表値は、中央値に限定されることはなく、例えば平均値などの統計量であってもよい。すなわち、第3算出部60による代表値の算出方法は、必ずしも上記に限定されることはない。第3算出部60は、算出した単色成分画像中の左側領域43l、中央領域43c、および右側領域43rそれぞれの輝度の代表値を判定部70に送る。 The third calculation unit 60 calculates a representative value of brightness for the second target region 43, which is an area in which the flame 131 is mainly reflected in the monochromatic component image. Here, the second target region 43 that is the object of calculation by the third calculation unit 60 is equally divided into multiple regions. In FIG. 4, an example is shown in which the second target region 43 is divided into three regions in the width direction (direction perpendicular to the conveying direction W1) of the furnace body 108. Note that the second target region 43 is not limited to being divided into three equal regions, and may be divided into two or four or more regions. Hereinafter, the second target region 43 shown in FIG. 4 will be referred to as the "left region 43l", the "center region 43c", and the "right region 43r" in order from left to right. The third calculation unit 60 calculates the median value of the brightness of each of the left region 43l, the center region 43c, and the right region 43r in the second target region 43 in the monochromatic component image as a representative value. The representative value calculated by the third calculation unit 60 is not limited to the median, and may be a statistical value such as an average value. In other words, the method of calculating the representative value by the third calculation unit 60 is not necessarily limited to the above. The third calculation unit 60 sends the representative values of the luminance of the left region 43l, the center region 43c, and the right region 43r in the calculated single-color component image to the determination unit 70.
(第4算出部)
 第4算出部65は、取得部40から受け付けた画像のうち可視光画像を受け付けるとともに、受け付けた複数の可視光画像に基づき第4特徴量を算出する。本実施形態では、第4特徴量は、第4算出部65が受け付けた複数の可視光画像に基づく輝度の代表値である。具体的には、第4算出部65は、第3算出部60が代表値の算出に用いた第1可視光画像よりも前に取得された時系列上の2以上の可視光画像のなかで、ごみFgの1回の崩落にかかる時間内に撮像された複数の可視光画像に基づく輝度の代表値を算出する。
(Fourth Calculation Unit)
The fourth calculation unit 65 receives a visible light image from the images received from the acquisition unit 40, and calculates a fourth feature amount based on the received multiple visible light images. In this embodiment, the fourth feature amount is a representative value of luminance based on the multiple visible light images received by the fourth calculation unit 65. Specifically, the fourth calculation unit 65 calculates a representative value of luminance based on multiple visible light images captured within a time it takes for one collapse of the garbage Fg, from among two or more visible light images in a time series that were acquired before the first visible light image used by the third calculation unit 60 to calculate the representative value.
 第4算出部65が輝度の代表値の算出に用いる2以上の可視光画像は、互いに所定の時間間隔で撮像された可視光画像である。以下、2以上の可視光画像の間に存在する時間間隔を「第3時間」と称する。本実施形態では、第4算出部65は、取得部40によって単位時間当たりに取得されたフレーム数分の可視光画像のそれぞれに基づき輝度の代表値を算出する。したがって、第3時間は、上記第2所定周期である。第3時間は、例えば、1秒未満の長さである。 The two or more visible light images used by the fourth calculation unit 65 to calculate the representative value of luminance are visible light images captured at a predetermined time interval from each other. Hereinafter, the time interval existing between two or more visible light images is referred to as the "third time". In this embodiment, the fourth calculation unit 65 calculates the representative value of luminance based on each of the number of visible light images of the number of frames acquired per unit time by the acquisition unit 40. Therefore, the third time is the second predetermined period. The third time is, for example, less than one second long.
 本実施形態では、2以上の可視光画像は、少なくとも第3時間の2倍以上である第4時間に亘り第1可視光画像よりも前に撮像された画像である。第4算出部65は、2以上の可視光画像として、例えば、3以上(更に言えば4以上)の可視光画像に基づき、複数の可視光画像に基づく輝度の代表値を算出する。本実施形態では、第4算出部65は、取得部40によって単位時間当たりに取得されたフレーム数分の画像のそれぞれに基づき輝度の代表値を算出する。ここで、ごみFgの1回の崩落にかかる時間をSとし、第2所定周期をTiiとし、算出に用いられる可視光画像の枚数(フレーム数)をNiiとした場合に、下記式(ii)が成立する。
 S/2<Tii×Nii  …(ii)
 すなわち、複数の可視光画像は、少なくともSの半分の時間よりも長い時間に亘って取得された複数の画像である。本実施形態では、複数の可視光画像は、Sの時間に亘って取得されている。以下、第4算出部65が輝度の代表値を算出するために用いる複数の画像のそれぞれを「第2可視光画像」と称する。第2可視光画像は、第2画像の一例である。
In this embodiment, the two or more visible light images are images captured before the first visible light image for a fourth time period that is at least twice the third time period. The fourth calculation unit 65 calculates a representative value of luminance based on the two or more visible light images, for example, three or more (four or more) visible light images. In this embodiment, the fourth calculation unit 65 calculates a representative value of luminance based on each of the images of the number of frames acquired per unit time by the acquisition unit 40. Here, when the time required for one collapse of the garbage Fg is S, the second predetermined period is T ii , and the number of visible light images (number of frames) used in the calculation is N ii , the following formula (ii) is established.
S/2< Tii × Nii ... (ii)
That is, the multiple visible light images are multiple images acquired over a time period longer than at least half the time period S. In this embodiment, the multiple visible light images are acquired over a time period S. Hereinafter, each of the multiple images used by the fourth calculator 65 to calculate the representative value of luminance will be referred to as a "second visible light image." The second visible light image is an example of the second image.
 第4算出部65は、第2赤外画像から単色成分画像を生成するとともに、当該単色成分画像中の一部である特定の対象領域の輝度の代表値を算出する。第4算出部65が算出の対象とする当該対象領域は、上述した第2対象領域43と同じ領域である。第4算出部65は、第2対象領域43の左側領域43l、中央領域43c、および右側領域43rそれぞれの輝度の中央値を算出する。さらに、第4算出部65は、複数の単色成分画像に基づき、左側領域43l全体、中央領域43c全体、および右側領域43r全体の中央値を代表値として算出する。なお、第4算出部65が算出する代表値は、中央値に限定されることはなく、例えば平均値などの統計量であってもよい。すなわち、第4算出部65による代表値の算出方法は、必ずしも上記に限定されることはない。第4算出部65は、算出した複数の単色成分画像に基づいた複数の左側領域43l全体、中央領域43c全体、および右側領域43r全体それぞれの輝度の代表値を判定部70に送る。 The fourth calculation unit 65 generates a monochromatic component image from the second infrared image and calculates a representative value of the luminance of a specific target region that is a part of the monochromatic component image. The target region that the fourth calculation unit 65 calculates is the same region as the second target region 43 described above. The fourth calculation unit 65 calculates the median value of the luminance of each of the left region 43l, the central region 43c, and the right region 43r of the second target region 43. Furthermore, the fourth calculation unit 65 calculates the median value of the entire left region 43l, the entire central region 43c, and the entire right region 43r as a representative value based on multiple monochromatic component images. Note that the representative value calculated by the fourth calculation unit 65 is not limited to the median value, and may be a statistical quantity such as an average value. In other words, the method of calculating the representative value by the fourth calculation unit 65 is not necessarily limited to the above. The fourth calculation unit 65 sends the representative values of the luminance of each of the multiple left region 43l, the multiple center region 43c, and the multiple right region 43r based on the multiple calculated single-color component images to the determination unit 70.
(判定部)
 図2に戻り、判定部70の構成を説明する。判定部70は、取得部40から受け付けた画像、ならびに、第1算出部50、第2算出部55、第3算出部60、および第4算出部65のそれぞれから受け付けた特徴量(例えば輝度の代表値)に基づき、各種の判定処理(後述)を行う。本実施形態では、判定部70は、例えば、第1判定部71と、第2判定部72と、外乱判定部74と、第3判定部73と、第1崩落判定部75と、第2崩落判定部76とを有している。
(Determination unit)
Returning to Fig. 2, the configuration of the determination unit 70 will be described. The determination unit 70 performs various determination processes (described later) based on the image received from the acquisition unit 40 and the feature amounts (e.g., representative values of luminance) received from each of the first calculation unit 50, the second calculation unit 55, the third calculation unit 60, and the fourth calculation unit 65. In this embodiment, the determination unit 70 has, for example, a first determination unit 71, a second determination unit 72, a disturbance determination unit 74, a third determination unit 73, a first collapse determination unit 75, and a second collapse determination unit 76.
 (第1判定部)
 第1判定部71は、第1算出部50から受け付けた輝度の代表値(第1特徴量)と、第2算出部55から受け付けた輝度の代表値(第2特徴量)とに基づき、崩落に関する判定を行う。以下、第1判定部71による判定を「第1判定」と称する。第1判定部71は、下記式(iii)にしたがって、第1判定の対象となる第1赤外画像と複数の第2赤外画像との間に生じる特徴変化量V1(絶対値)を算出する。
 V1=|A(t)-(ΣB(t))/s|  …(iii)
(First Determination Unit)
The first determination unit 71 performs a determination regarding collapse based on the representative value of brightness (first feature amount) received from the first calculation unit 50 and the representative value of brightness (second feature amount) received from the second calculation unit 55. Hereinafter, the determination by the first determination unit 71 will be referred to as the "first determination." The first determination unit 71 calculates a feature change amount V1 (absolute value) occurring between the first infrared image that is the subject of the first determination and the multiple second infrared images according to the following formula (iii).
V1=|A m (t)-(ΣB m (t s ))/s| ... (iii)
 上記式(iii)におけるA(t)は、時刻tで第1算出部50により算出された輝度の代表値(第1特徴量)である。ΣB(t)は、第2算出部55により算出された輝度の代表値(第2特徴量)である。tは、各第2赤外画像が取得された複数の時刻であり、1つの第2赤外画像に時刻tが1つずつ対応している。sは、第2赤外画像の数であり、単位時間当たりに取得されたフレーム数である。 In the above formula (iii), A m (t) is a representative value of luminance (first feature amount) calculated by the first calculation unit 50 at time t. ΣB m (t s ) is a representative value of luminance (second feature amount) calculated by the second calculation unit 55. t s are multiple times at which each second infrared image is acquired, and one second infrared image corresponds to one time t s . s is the number of second infrared images, which is the number of frames acquired per unit time.
 第1判定部71は、算出した特徴変化量V1が所定の第1しきい値以上であるか否かの判定を第1判定として行う。第1判定部71は、算出した特徴変化量V1が第1しきい値以上である場合に、崩落の可能性が有ると判定し、特徴変化量V1が第1しきい値未満である場合に、崩落の可能性が無いと判定する。本実施形態では、第1判定部71は、特徴変化量V1が第1しきい値以上である場合に、崩落有りを示すフラグ(i=1)を出力する。一方、第1判定部71は、特徴変化量V1が第1しきい値未満である場合に、崩落無しを示すフラグ(i=0)を出力する。以下、第1判定部71が出力する崩落の判定に関するフラグ(i=1または0)を「第1崩落判定フラグ」と称する。つまり、第1崩落判定フラグは、第1判定の結果を示し、1または0の値を示す。なお、第1しきい値は、記憶部90にあらかじめ記憶されている。第1判定部71は、記憶部90に記憶されている第1しきい値を適時に参照することで第1判定を行う。第1判定部71は、第1判定の結果である第1崩落判定フラグを第1崩落判定部75および第2崩落判定部76に送る。 The first determination unit 71 performs a first determination as to whether the calculated characteristic change amount V1 is equal to or greater than a predetermined first threshold value. When the calculated characteristic change amount V1 is equal to or greater than the first threshold value, the first determination unit 71 determines that there is a possibility of collapse, and when the characteristic change amount V1 is less than the first threshold value, the first determination unit 71 determines that there is no possibility of collapse. In this embodiment, when the characteristic change amount V1 is equal to or greater than the first threshold value, the first determination unit 71 outputs a flag (i=1) indicating that there is collapse. On the other hand, when the characteristic change amount V1 is less than the first threshold value, the first determination unit 71 outputs a flag (i=0) indicating that there is no collapse. Hereinafter, the flag (i=1 or 0) regarding the determination of collapse output by the first determination unit 71 is referred to as a "first collapse determination flag". In other words, the first collapse determination flag indicates the result of the first determination and indicates a value of 1 or 0. The first threshold value is pre-stored in the storage unit 90. The first determination unit 71 performs a first determination by timely referring to the first threshold value stored in the memory unit 90. The first determination unit 71 sends a first collapse determination flag, which is the result of the first determination, to the first collapse determination unit 75 and the second collapse determination unit 76.
 ここで、特定の時間帯における特徴変化量V1の時系列上の変化と、同一時間帯における特徴変化量V1に応じた第1崩落判定フラグの時系列上の変化とを図5に示す。図5中に示すグラフは、発明者らによる解析によって得られた結果である。図5中の(b)では、焼却設備100のオペレータ(熟練作業員)が燃焼室R内を目視することによってごみFgの崩落有りと判定された時刻を丸(〇)で示している。また、図5中に示すグラフにおける上下に延びる時間目盛線(一点鎖線)同士の間隔に対応する時間は、いずれの間隔でも等しい。図5に示す結果より、焼却設備100のオペレータによって崩落有りと判定された時刻と、第1崩落判定フラグが立ち上がる時刻(i=1となる時刻)とがおおむね一致していることが把握される。 Here, FIG. 5 shows the time series change in the characteristic change amount V1 in a specific time period, and the time series change in the first collapse determination flag according to the characteristic change amount V1 in the same time period. The graph shown in FIG. 5 is the result obtained by the inventors' analysis. In FIG. 5(b), the time when the operator (experienced worker) of the incineration equipment 100 visually inspects the inside of the combustion chamber R and determines that the waste Fg has collapsed is indicated by a circle (◯). In addition, the time corresponding to the interval between the time scale lines (dotted and dashed lines) extending up and down in the graph shown in FIG. 5 is equal for all intervals. From the results shown in FIG. 5, it can be seen that the time when the operator of the incineration equipment 100 determines that a collapse has occurred and the time when the first collapse determination flag is raised (the time when i=1) are roughly the same.
 (第2判定部)
 第2判定部72は、取得部40から受け付けた1以上の赤外画像に基づき、崩落に関する判定を行う。本実施形態では、第2判定部72は、取得部40から受け付けた画像のうち第1算出部50が算出の対象とする1つの第1赤外画像(直近の赤外画像)を用いて、崩落に関する判定を行う。なお、第2判定部72は、崩落の判定を行うに当たって、取得部40から受け付けた画像のうち第1赤外画像とは異なる1つの画像を用いてもよい。また、第2判定部72は、崩落の判定を行うに当たって、複数の画像を用いてもよく、複数の画像のなかに第1赤外画像が含まれてもよい。
(Second Judgment Unit)
The second determination unit 72 makes a determination regarding collapse based on one or more infrared images received from the acquisition unit 40. In this embodiment, the second determination unit 72 makes a determination regarding collapse using one first infrared image (the most recent infrared image) that is the target of calculation by the first calculation unit 50 among the images received from the acquisition unit 40. Note that, when making a determination regarding collapse, the second determination unit 72 may use one image other than the first infrared image among the images received from the acquisition unit 40. Furthermore, when making a determination regarding collapse, the second determination unit 72 may use multiple images, and the first infrared image may be included in the multiple images.
 第2判定部72は、第1赤外画像が入力されると、崩落が生じた可能性に関する判定結果を出力するように学習された学習済みモデルを用いて判定を行う。以下、第2判定部72による判定を「第2判定」と称し、第2判定部72が第2判定に用いる学習済みモデルを「第2判定用学習済みモデル91」と称する。第2判定用学習済みモデル91は、記憶部90にあらかじめ記憶されている(図2参照)。第2判定部72は、記憶部90に記憶されている第2判定用学習済みモデル91に取得部40から受け付けた第1赤外画像を入力することで、出力された判定結果を第2判定の結果として取得する。第2判定用学習済みモデル91は、例えば、畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)などの深層学習モデル(教師あり学習モデル)である。第2判定用学習済みモデル91は、撮像装置2によって撮像された赤外画像が入力されるとともに、当該赤外画像に対する崩落の有無(人間によって正しいと判断された正解データ)が教示される学習ステップが、複数回(例えば数千回)繰り返されることで生成される(学習される)。なお、第2判定用学習済みモデル91は、CNNに代えて、回帰型ニューラルネットワーク(RNN:Recurrent Neural Network)などが用いられてもよい。 The second judgment unit 72 performs judgment using a trained model that has been trained to output a judgment result regarding the possibility of collapse when the first infrared image is input. Hereinafter, the judgment by the second judgment unit 72 is referred to as the "second judgment", and the trained model used by the second judgment unit 72 for the second judgment is referred to as the "trained model for second judgment 91". The trained model for second judgment 91 is pre-stored in the memory unit 90 (see FIG. 2). The second judgment unit 72 inputs the first infrared image received from the acquisition unit 40 to the trained model for second judgment 91 stored in the memory unit 90, thereby acquiring the output judgment result as the result of the second judgment. The trained model for second judgment 91 is, for example, a deep learning model (supervised learning model) such as a convolutional neural network (CNN). The second judgment trained model 91 is generated (trained) by repeating a learning step multiple times (e.g., several thousand times) in which an infrared image captured by the imaging device 2 is input and the presence or absence of collapse in the infrared image (correct answer data determined to be correct by a human) is taught. Note that the second judgment trained model 91 may use a recurrent neural network (RNN) or the like instead of a CNN.
 ここで、撮像装置2によって撮像された赤外画像のうち、崩落時にごみFgが舞うこと(崩落有り)を示す画像例(a,d)、ならびに、崩落が無いこと(崩落無し)を示す画像例1(b,e)および画像例2(c,f)を、燃焼室R内が見えやすい場合と見えにくい場合とに分けて図6に示す。図6中の各画像例に二点鎖線で示すように、本実施形態では、第2判定部72は、第1赤外画像中の一部である対象領域の赤外画像を第2判定用学習済みモデル91に入力する。以下、当該対象領域を「第3対象領域44」と称する。第3対象領域44は、例えば、第1赤外画像中の上半部における大部分の領域であり、少なくともフィーダ104内に堆積したごみFgのすべてまたは大部分が映り込む領域である。なお、図6中の画像例(a)に示すように、ごみFgが崩落した場合、崩落したごみFgの一部(複数)は、一時的に燃焼室R内を飛散し(飛び散る)、フィーダ104内に堆積するごみFgの層構造を視認することができなくなることがある。図6に示すような複数の第3対象領域44の赤外画像が第2判定用学習済みモデル91に入力されるとともに、各赤外画像に対する崩落の有無(正解データ)が教示されることで、第2判定用学習済みモデル91があらかじめ生成されている。学習を終えた第2判定用学習済みモデル91は、新たな赤外画像が入力された場合に、当該赤外画像に対する崩落が生じた可能性に関する数値を出力する。以下、第2判定用学習済みモデル91が出力する数値を「判定用スコア」と称する。 Here, FIG. 6 shows image example (a, d) showing that garbage Fg is flying during collapse (with collapse), and image example 1 (b, e) and image example 2 (c, f) showing that there is no collapse (without collapse), divided into cases where the inside of the combustion chamber R is easy to see and cases where it is difficult to see, among the infrared images captured by the imaging device 2. As shown by the two-dot chain line in each image example in FIG. 6, in this embodiment, the second judgment unit 72 inputs an infrared image of a target area, which is a part of the first infrared image, to the second judgment trained model 91. Hereinafter, this target area is referred to as the "third target area 44". The third target area 44 is, for example, most of the area in the upper half of the first infrared image, and is an area in which at least all or most of the garbage Fg accumulated in the feeder 104 is reflected. As shown in the example image (a) in FIG. 6, when the garbage Fg collapses, some (plural) of the collapsed garbage Fg may temporarily scatter (fly away) within the combustion chamber R, making it impossible to visually recognize the layer structure of the garbage Fg accumulated in the feeder 104. The second trained model for judgment 91 is generated in advance by inputting infrared images of the third target region 44 as shown in FIG. 6 into the second trained model for judgment 91 and teaching the presence or absence of collapse (correct answer data) for each infrared image. When a new infrared image is input, the second trained model for judgment 91 that has completed training outputs a numerical value related to the possibility of collapse occurring for that infrared image. Hereinafter, the numerical value output by the second trained model for judgment 91 is referred to as the "judgment score."
 第2判定部72は、第2判定用学習済みモデル91から取得した判定用スコアが所定の第2しきい値以上であるか否かの判定を第2判定として行う。第2判定部72は、取得した判定用スコアが第2しきい値以上である場合に、崩落の可能性が有ると判定し、判定用スコアが第2しきい値未満である場合に、崩落の可能性が無いと判定する。本実施形態では、第2判定部72は、判定用スコアが第2しきい値以上である場合に、崩落有りを示すフラグ(i=1)を出力する。一方、第2判定部72は、判定用スコアが第2しきい値未満である場合に、崩落無しを示すフラグ(i=0)を出力する。以下、第2判定部72が出力する崩落の判定に関するフラグ(i=1または0)を「第2崩落判定フラグ」と称する。つまり、第2崩落判定フラグは、第2判定の結果を示し、1または0の値を示す。なお、第2しきい値は、記憶部90にあらかじめ記憶されている。第2判定部72は、記憶部90に記憶されている第2しきい値を適時に参照することで第2判定を行う。第2判定部72は、第2判定の結果である第2崩落判定フラグを第1崩落判定部75に送る。 The second judgment unit 72 performs a second judgment to judge whether the judgment score acquired from the second judgment trained model 91 is equal to or greater than a predetermined second threshold. When the acquired judgment score is equal to or greater than the second threshold, the second judgment unit 72 judges that there is a possibility of collapse, and when the judgment score is less than the second threshold, the second judgment unit 72 judges that there is no possibility of collapse. In this embodiment, when the judgment score is equal to or greater than the second threshold, the second judgment unit 72 outputs a flag (i = 1) indicating that there is collapse. On the other hand, when the judgment score is less than the second threshold, the second judgment unit 72 outputs a flag (i = 0) indicating that there is no collapse. Hereinafter, the flag (i = 1 or 0) regarding the judgment of collapse output by the second judgment unit 72 is referred to as a "second collapse judgment flag". In other words, the second collapse judgment flag indicates the result of the second judgment and indicates a value of 1 or 0. The second threshold is pre-stored in the memory unit 90. The second determination unit 72 performs the second determination by timely referring to the second threshold value stored in the memory unit 90. The second determination unit 72 sends a second collapse determination flag, which is the result of the second determination, to the first collapse determination unit 75.
 ここで、図5に示した時間帯における判定用スコアの時系列上の変化と、同一時間帯における判定用スコアに応じた第2崩落判定フラグの時系列上の変化とを図7に示す。図7中に示すグラフは、発明者らによる解析によって得られた結果である。図7中の(b)では、焼却設備100のオペレータが燃焼室R内を目視することによってごみFgの崩落有りと判定された時刻を丸(〇)で示している。また、図7中に示すグラフにおける上下に延びる時間目盛線(一点鎖線)同士の間隔に対応する時間は、いずれの間隔でも等しい。図7に示す結果より、焼却設備100のオペレータによって崩落有りと判定された時刻と、第2崩落判定フラグが立ち上がる時刻(i=1となる時刻)とがおおむね一致していることが把握される。 FIG. 7 shows the time series changes in the judgment scores for the time periods shown in FIG. 5, and the time series changes in the second collapse judgment flag according to the judgment scores for the same time periods. The graphs shown in FIG. 7 are the results obtained by the inventors' analysis. In FIG. 7(b), the time when the operator of the incineration equipment 100 visually judged that the waste Fg had collapsed by looking inside the combustion chamber R is indicated by a circle (◯). In addition, the time corresponding to the intervals between the time scale lines (dotted lines) extending up and down in the graph shown in FIG. 7 are equal for all intervals. From the results shown in FIG. 7, it can be seen that the time when the operator of the incineration equipment 100 judged that a collapse had occurred and the time when the second collapse judgment flag is raised (the time when i=1) are roughly the same.
 (外乱判定部)
 外乱判定部74は、取得部40から受け付けた1つの画像(例えば直近の画像)の輝度に関する特徴量に基づき、外乱の有無を判定する。以下、外乱判定部74による判定を「外乱判定」と称する。本実施形態では、外乱判定部74は、取得部40から受け付けた画像のうち第1算出部50が算出の対象とする第1赤外画像を用いて外乱判定を行う。なお、外乱判定部74は、外乱判定を行うに当たって、取得部40から受け付けた画像のうち第1赤外画像とは異なる画像を用いてもよい。また、外乱判定部74は、外乱判定を行うに当たって、複数の画像を用いてもよく、複数の画像のなかに第1赤外画像が含まれてもよい。また、外乱判定部74は、取得部40から赤外画像を受け付けた際、RAWデータ(16ビット)から例えばBMPデータ(8ビット)に変換してもよい。
(Disturbance determination unit)
The disturbance determination unit 74 determines whether or not there is a disturbance based on a feature amount related to the luminance of one image (e.g., the most recent image) received from the acquisition unit 40. Hereinafter, the determination by the disturbance determination unit 74 is referred to as "disturbance determination". In this embodiment, the disturbance determination unit 74 performs disturbance determination using a first infrared image that is a calculation target of the first calculation unit 50 among the images received from the acquisition unit 40. Note that, when performing disturbance determination, the disturbance determination unit 74 may use an image other than the first infrared image among the images received from the acquisition unit 40. Furthermore, when performing disturbance determination, the disturbance determination unit 74 may use a plurality of images, and the first infrared image may be included in the plurality of images. Furthermore, when receiving an infrared image from the acquisition unit 40, the disturbance determination unit 74 may convert the RAW data (16 bits) into, for example, BMP data (8 bits).
 外乱判定部74は、例えば、第1赤外画像中の第1対象領域42の全体の輝度に関する特徴量と、第1対象領域42における第1領域42a~第9領域42iそれぞれの輝度に関する特徴量と、第1赤外画像中の一部であって第1対象領域42とは異なる複数の対象領域の輝度に関する特徴量とを算出する。以下、第1対象領域42とは異なる当該複数の対象領域を「第4対象領域45」と称する。図8に示すように、第4対象領域45は、例えば、第1赤外画像中で3箇所に分かれており、これら3箇所の第4対象領域45は互いに独立している。ここでいう「独立」とは、各第4対象領域45が第1赤外画像中で互いに離間している状態を意味している。第4対象領域45のうちの1つ(図8中の45a)は、第1赤外画像中における第1対象領域42よりも上方側の部分であり、当該第4対象領域45には、例えば炉本体108の天井部などが映り込む。また、第4対象領域45のうちの1つ(図8中の45b)は、第1赤外画像中における第1対象領域42よりも右方側の部分であり、当該第4対象領域45には、例えば炉本体108の側壁部などが映り込む。また、第4対象領域45のうちの1つ(図8中の45c)は、第1赤外画像中における第1対象領域42よりも下方側の部分であり、当該第4対象領域45には、例えば後燃焼領域132で後燃焼するごみFgなどが映り込む。したがって、第4対象領域45には、フィーダ104内に堆積したごみFgが映り込むことがほとんどない。本実施形態では、複数の第4対象領域45のそれぞれは、互いに異なる大きさとされている。 The disturbance determination unit 74 calculates, for example, a feature value related to the overall brightness of the first target region 42 in the first infrared image, a feature value related to the brightness of each of the first region 42a to the ninth region 42i in the first target region 42, and a feature value related to the brightness of a plurality of target regions that are part of the first infrared image and are different from the first target region 42. Hereinafter, the plurality of target regions different from the first target region 42 are referred to as "fourth target region 45". As shown in FIG. 8, the fourth target region 45 is, for example, divided into three locations in the first infrared image, and these three fourth target regions 45 are independent of each other. "Independent" here means that the fourth target regions 45 are separated from each other in the first infrared image. One of the fourth target regions 45 (45a in FIG. 8) is a portion above the first target region 42 in the first infrared image, and the ceiling of the furnace body 108, for example, is reflected in the fourth target region 45. One of the fourth target regions 45 (45b in FIG. 8) is a portion to the right of the first target region 42 in the first infrared image, and the side wall of the furnace body 108, for example, is reflected in the fourth target region 45. One of the fourth target regions 45 (45c in FIG. 8) is a portion below the first target region 42 in the first infrared image, and the fourth target region 45 reflects, for example, the waste Fg that is post-combusted in the post-combustion region 132. Therefore, the waste Fg accumulated in the feeder 104 is hardly reflected in the fourth target region 45. In this embodiment, each of the multiple fourth target regions 45 is made to be a different size.
 外乱判定部74は、第1対象領域42の全体と、第1領域42a~第9領域42iと、複数の第4対象領域45とのそれぞれに対して、2種類の統計量を特徴量として算出する。本実施形態では、2種類の統計量は、輝度の平均値、および輝度の標準偏差である。以下、第1対象領域42の全体の輝度に関する特徴量を「特徴量A」と称し、第1領域42a~第9領域42iの各領域における輝度に関する特徴量を「特徴量B」と称し、複数の第4対象領域45(45a、45b、45c)の各々の輝度に関する特徴量を「特徴量C」と称する。本実施形態では、外乱判定部74は、算出した各特徴量(特徴量A~特徴量C)の標準偏差が、所定の数値範囲である第1範囲に含まれるか否かを判定する。外乱判定部74は、特徴量Aの標準偏差、特徴量Bの標準偏差、および特徴量Cの標準偏差のうち、例えば1つ以上が第1範囲に含まれない(第1範囲外にある)場合に、第1赤外画像が高偏差画像であると判定する。一方、外乱判定部74は、特徴量Aの標準偏差、特徴量Bの標準偏差、および特徴量Cの標準偏差のすべてが第1範囲に含まれる場合に、第1赤外画像が低偏差画像であると判定する。なお、外乱判定部74は、特徴量Aの標準偏差、特徴量Bの標準偏差、および特徴量Cの標準偏差のうち、2つ以上またはすべてが第1範囲に含まれない場合に、第1赤外画像が高偏差画像であると判定してもよい。また、第1範囲は、記憶部90にあらかじめ記憶されている。外乱判定部74は、記憶部90に記憶されている第1範囲を適時に参照することで第1赤外画像の判定を行う。 The disturbance determination unit 74 calculates two types of statistics as features for the entire first target region 42, the first region 42a to the ninth region 42i, and each of the multiple fourth target regions 45. In this embodiment, the two types of statistics are the average luminance and the standard deviation of luminance. Hereinafter, the feature related to the luminance of the entire first target region 42 will be referred to as "feature A", the feature related to the luminance in each of the first region 42a to the ninth region 42i will be referred to as "feature B", and the feature related to the luminance of each of the multiple fourth target regions 45 (45a, 45b, 45c) will be referred to as "feature C". In this embodiment, the disturbance determination unit 74 determines whether the standard deviation of each calculated feature (feature A to feature C) is included in the first range, which is a predetermined numerical range. The disturbance determination unit 74 determines that the first infrared image is a high deviation image when, for example, one or more of the standard deviations of the feature amount A, the standard deviations of the feature amount B, and the standard deviations of the feature amount C are not included in the first range (outside the first range). On the other hand, the disturbance determination unit 74 determines that the first infrared image is a low deviation image when all of the standard deviations of the feature amount A, the standard deviations of the feature amount B, and the standard deviations of the feature amount C are included in the first range. Note that the disturbance determination unit 74 may determine that the first infrared image is a high deviation image when two or more or all of the standard deviations of the feature amount A, the standard deviations of the feature amount B, and the standard deviations of the feature amount C are not included in the first range. The first range is stored in advance in the storage unit 90. The disturbance determination unit 74 performs the determination of the first infrared image by referring to the first range stored in the storage unit 90 at appropriate times.
 外乱判定部74は、上記特徴量が入力されると、外乱の有無を示す判定結果を出力するように学習された学習済みモデルを用いて判定を行う。以下、外乱判定部74が用いる学習済みモデルを「外乱判定用学習済みモデル92」と称する。外乱判定用学習済みモデル92は、記憶部90にあらかじめ記憶されている(図2参照)。外乱判定部74は、記憶部90に記憶されている外乱判定用学習済みモデル92に特徴量A、特徴量B、および特徴量Cを入力することで、出力された判定結果を外乱判定の結果として取得する。本実施形態では、外乱判定用学習済みモデル92は、高偏差モデルと、低偏差モデルとを有している。外乱判定部74は、第1赤外画像が高偏差画像であると判定した場合に、特徴量(特徴量A、特徴量B、および特徴量C)を高偏差モデルにのみ入力し、高偏差モデルから出力された判定結果を外乱判定の結果として取得する。一方、外乱判定部74は、第1赤外画像が低偏差画像であると判定した場合に、特徴量を低偏差モデルにのみ入力し、低偏差モデルから出力された判定結果を外乱判定の結果として取得する。 When the disturbance determination unit 74 receives the above feature values, it performs a determination using a trained model that has been trained to output a determination result indicating the presence or absence of a disturbance. Hereinafter, the trained model used by the disturbance determination unit 74 is referred to as the "trained model for disturbance determination 92". The trained model for disturbance determination 92 is pre-stored in the memory unit 90 (see FIG. 2). The disturbance determination unit 74 inputs feature values A, B, and C to the trained model for disturbance determination 92 stored in the memory unit 90, thereby acquiring the output determination result as the result of the disturbance determination. In this embodiment, the trained model for disturbance determination 92 has a high deviation model and a low deviation model. When the disturbance determination unit 74 determines that the first infrared image is a high deviation image, it inputs feature values (feature values A, B, and C) only to the high deviation model, and acquires the determination result output from the high deviation model as the result of the disturbance determination. On the other hand, if the disturbance determination unit 74 determines that the first infrared image is a low-deviation image, it inputs the feature amount only to the low-deviation model and obtains the determination result output from the low-deviation model as the disturbance determination result.
 本実施形態では、高偏差モデルおよび低偏差モデルは、例えば、SVM(Support Vector Machine)などの教師あり学習モデルである。高偏差モデルおよび低偏差モデルは、いずれも上述した特徴量が入力されるとともに、当該画像に対する崩落の有無(人間によって正しいと判断された正解データ)が教示される学習ステップが、複数回繰り返されることで生成される(学習される)。 In this embodiment, the high deviation model and the low deviation model are supervised learning models such as a Support Vector Machine (SVM). Both the high deviation model and the low deviation model are generated (learned) by repeatedly repeating a learning step in which the above-mentioned features are input and the presence or absence of collapse in the image (correct answer data determined to be correct by a human) is instructed.
 ここで、撮像装置2によって撮像された赤外画像のうち、低偏差画像の一例(a)、および高偏差画像の一例(b)を図9に示す。また、赤外画像の例を輝度の偏差の大小に対応した形で一覧的に図10に示す。図9および図10に示すように、特徴量である輝度の偏差が大きいほどまたは小さいほど、燃焼室R内の様子の把握が難しいことが分かる。図9および図10に示すような複数の赤外画像に基づく特徴量が外乱判定用学習済みモデル92に入力されるとともに、各赤外画像に対する外乱の有無(正解データ)が教示されることで、外乱判定用学習済みモデル92があらかじめ生成される。学習を終えた外乱判定用学習済みモデル92は、新たな赤外画像に基づく特徴量が入力された場合に、当該赤外画像に対する崩落の有無を示す2値データ(例えば、0と1)を出力する。外乱判定部74は、外乱判定用学習済みモデル92から取得した2値データの値に応じたフラグを出力することで外乱の有無を外乱判定として判定する。以下、外乱判定部74が出力する外乱の判定に関するフラグを「外乱判定フラグ」と称する。したがって、外乱判定フラグは、外乱判定の結果を示す。 Here, FIG. 9 shows an example of a low deviation image (a) and an example of a high deviation image (b) among the infrared images captured by the imaging device 2. FIG. 10 shows examples of infrared images in a list format corresponding to the magnitude of the deviation in brightness. As shown in FIG. 9 and FIG. 10, it can be seen that the larger or smaller the deviation in brightness, which is a feature, the more difficult it is to grasp the state inside the combustion chamber R. The feature values based on multiple infrared images as shown in FIG. 9 and FIG. 10 are input to the trained model for disturbance determination 92, and the presence or absence of disturbance (correct answer data) for each infrared image is taught, thereby generating the trained model for disturbance determination 92 in advance. When a feature value based on a new infrared image is input, the trained model for disturbance determination 92 that has completed learning outputs binary data (e.g., 0 and 1) indicating the presence or absence of collapse for the infrared image. The disturbance determination unit 74 determines the presence or absence of a disturbance as a disturbance determination by outputting a flag corresponding to the value of the binary data acquired from the trained model for disturbance determination 92. Hereinafter, the flag related to the disturbance determination output by the disturbance determination unit 74 will be referred to as the "disturbance determination flag." Therefore, the disturbance determination flag indicates the result of the disturbance determination.
 ここで、特定の時間帯で焼却設備100のオペレータによる外乱の有無に関する判定結果の時系列上の変化と、同一時間帯における外乱判定フラグの時系列上の変化とを図11に示す。図11中に示すグラフは、発明者らによる解析によって得られた結果である。なお、図11中に示す時間帯T~Tは、図5中および図7中で示した時間帯T~Tと同一の時間帯である。また、図11中に示すグラフにおける上下に延びる時間目盛線(一点鎖線)同士の間隔に対応する時間は、いずれの間隔でも等しい。図11に示す結果より、焼却設備100のオペレータが燃焼室R内を目視することによって外乱有りと判定された時刻と、外乱判定フラグが立ち上がる時刻とがほぼ一致していることが把握される。 FIG. 11 shows the time series of the judgment results regarding the presence or absence of disturbance by the operator of the incineration facility 100 in a specific time period, and the time series of the disturbance judgment flag in the same time period. The graph shown in FIG. 11 is the result obtained by the analysis by the inventors. Note that the time periods T 0 -T 9 shown in FIG. 11 are the same time periods as the time periods T 0 -T 9 shown in FIG. 5 and FIG. 7. In addition, the time corresponding to the intervals between the time scale lines (dotted lines) extending up and down in the graph shown in FIG. 11 are equal for all intervals. From the results shown in FIG. 11, it can be understood that the time when the operator of the incineration facility 100 visually judges the presence of a disturbance inside the combustion chamber R and the time when the disturbance judgment flag is raised are almost the same.
 (第3判定部)
 第3判定部73は、取得部40から受け付けた1以上の画像に基づき、崩落に関する判定を行う。本実施形態では、第3判定部73は、取得部40から受け付けた画像のうち可視光画像を受け付けるとともに、受け付けた可視光画像に基づき輝度の代表値を算出する。第3判定部73は、第3算出部60から受け付けた輝度の代表値(第3特徴量)と、第4算出部65から受け付けた輝度の代表値(第4特徴量)とに基づき、崩落に関する判定を行う。以下、第3判定部73による判定を「第3判定」と称する。第3判定部73は、下記式(iv)にしたがって、第3判定の対象となる第1可視光画像に基づく単色成分画像と、複数の第2可視光画像に基づく単色成分画像との間に生じる特徴変化量V2(絶対値)を、領域ごと(左側領域43l、中央領域43c、右側領域43r)に算出する。 V2=|C(t)-(ΣD(t))/u|  …(iv)
(Third Judgment Unit)
The third determination unit 73 performs a determination regarding collapse based on one or more images received from the acquisition unit 40. In this embodiment, the third determination unit 73 receives a visible light image from the images received from the acquisition unit 40, and calculates a representative value of luminance based on the received visible light image. The third determination unit 73 performs a determination regarding collapse based on the representative value of luminance (third feature amount) received from the third calculation unit 60 and the representative value of luminance (fourth feature amount) received from the fourth calculation unit 65. Hereinafter, the determination by the third determination unit 73 is referred to as a "third determination". The third determination unit 73 calculates, for each region (left region 43l, center region 43c, right region 43r), a feature change amount V2 (absolute value) occurring between a monochromatic component image based on a first visible light image to be subjected to the third determination and a monochromatic component image based on a plurality of second visible light images, according to the following formula (iv). V2=|C m (t)-(ΣD m (t u ))/u| ... (iv)
 上記式(iv)におけるC(t)は、時刻tで第3算出部60により算出された輝度の代表値(第3特徴量)である。ΣD(t)は、第4算出部65により算出された輝度の代表値(第4特徴量)である。tは、各第2可視光画像(単色成分画像)が取得された複数の時刻であり、1つの第2可視光画像に時刻tが1つずつ対応している。uは、第2可視光画像(単色成分画像)の数であり、単位時間当たりに取得されたフレーム数である。 In the above formula (iv), C m (t) is a representative value of luminance (third feature amount) calculated by the third calculation unit 60 at time t. ΣD m (t u ) is a representative value of luminance (fourth feature amount) calculated by the fourth calculation unit 65. t u are multiple times at which each second visible light image (monochrome component image) was acquired, and one second visible light image corresponds to one time t u . u is the number of second visible light images (monochrome component images), which is the number of frames acquired per unit time.
 第3判定部73は、算出した特徴変化量V2が所定の第3しきい値以上であるか否かの判定を各領域に対して第3判定として行う。第3判定部73は、算出した領域ごとの特徴変化量V2のうち1つ以上の領域の特徴変化量V2が第3しきい値以上である場合に、崩落の可能性が有ると判定し、全ての領域ごとの特徴変化量V2が第3しきい値未満である場合に、崩落の可能性が無いと判定する。本実施形態では、第3判定部73は、特徴変化量V2が第3しきい値以上である場合に、崩落有りを示すフラグ(i=1)を出力する。一方、第3判定部73は、特徴変化量V2が第3しきい値未満である場合に、崩落無しを示すフラグ(i=0)を出力する。以下、第3判定部73が出力する崩落の判定に関するフラグ(i=1または0)を「第3崩落判定フラグ」と称する。つまり、第3崩落判定フラグは、第3判定の結果を示し、1または0の値を示す。なお、第3しきい値は、記憶部90にあらかじめ記憶されている。第3しきい値は、領域ごとに異なる値であってもよい。第3判定部73は、記憶部90に記憶されている第3しきい値を適時に参照することで第3判定を行う。第3判定部73は、第3判定の結果である第3崩落判定フラグを第1崩落判定部75に送る。 The third determination unit 73 performs a third determination for each region by determining whether the calculated feature change amount V2 is equal to or greater than a predetermined third threshold. The third determination unit 73 determines that there is a possibility of collapse when the feature change amount V2 of one or more regions among the calculated feature change amount V2 for each region is equal to or greater than the third threshold, and determines that there is no possibility of collapse when the feature change amount V2 for all regions is less than the third threshold. In this embodiment, the third determination unit 73 outputs a flag (i = 1) indicating the presence of collapse when the feature change amount V2 is equal to or greater than the third threshold. On the other hand, the third determination unit 73 outputs a flag (i = 0) indicating the absence of collapse when the feature change amount V2 is less than the third threshold. Hereinafter, the flag (i = 1 or 0) regarding the determination of collapse output by the third determination unit 73 is referred to as a "third collapse determination flag". In other words, the third collapse determination flag indicates the result of the third determination and indicates a value of 1 or 0. The third threshold is pre-stored in the storage unit 90. The third threshold value may be a different value for each region. The third determination unit 73 performs the third determination by referring to the third threshold value stored in the storage unit 90 at appropriate times. The third determination unit 73 sends a third collapse determination flag, which is the result of the third determination, to the first collapse determination unit 75.
 ここで、特定の時間帯における各領域(左側領域43l、中央領域43c、右側領域43r)の特徴変化量V2の時系列上の変化と、同一時間帯における特徴変化量V2に応じた第3崩落判定フラグの時系列上の変化とを図12に示す。図12中に示すグラフは、発明者らによる解析によって得られた結果である。図12中の(d)では、焼却設備100のオペレータが燃焼室R内を目視することによってごみFgの崩落有りと判定された時刻を丸(〇)で示している。また、図12中に示すグラフにおける上下に延びる時間目盛線(一点鎖線)同士の間隔に対応する時間は、いずれの間隔でも等しい。図12に示す結果より、焼却設備100のオペレータによって崩落有りと判定された時刻と、第3崩落判定フラグが立ち上がる時刻(i=1となる時刻)とがおおむね一致していることが把握される。 Here, FIG. 12 shows the time series changes in the characteristic change amount V2 of each area (left area 43l, center area 43c, right area 43r) in a specific time period, and the time series changes in the third collapse determination flag according to the characteristic change amount V2 in the same time period. The graph shown in FIG. 12 is the result obtained by the analysis by the inventors. In FIG. 12(d), the time when the operator of the incineration equipment 100 visually judged that the waste Fg had collapsed by looking inside the combustion chamber R is indicated by a circle (◯). In addition, the time corresponding to the interval between the time scale lines (dotted lines) extending up and down in the graph shown in FIG. 12 is equal for all intervals. From the results shown in FIG. 12, it can be seen that the time when the operator of the incineration equipment 100 judged that there had been a collapse and the time when the third collapse determination flag is raised (the time when i=1) are roughly the same.
 (第1崩落判定部)
 第1崩落判定部75は、第1判定部71から受け付けた第1判定の結果と、第2判定部72から受け付けた第2判定の結果と、第3判定部73から受け付けた第3判定の結果とに基づき、崩落の規模を判定する。本実施形態では、第1崩落判定部75は、第1崩落判定フラグと、第2崩落判定フラグと、第3崩落判定フラグとに基づき、第1規模の崩落よりも崩落の規模が大きい第2規模の崩落の有無を判定する。具体的には、第1崩落判定部75は、第1崩落判定フラグの値と、第2崩落判定フラグの値と、第3崩落判定フラグの値との合計値が、判定用しきい値以上である場合に、第2規模の崩落が有ると判定する。すなわち、第1崩落判定部75は、第2規模の崩落を検知する。第1崩落判定部75は、第2規模の崩落を検知した場合に、崩落有りを示すフラグを出力する。一方、第1崩落判定部75は、第1崩落判定フラグの値と、第2崩落判定フラグの値と、第3崩落判定フラグの値との合計値が、判定用しきい値未満である場合に、第2規模の崩落が無いと判定する。すなわち、第1崩落判定部75は、第2規模の崩落が無いことを検知する。第1崩落判定部75は、第2規模の崩落が無いことを検知した場合に、第2規模の崩落無しを示すフラグを出力する。以下、第1崩落判定部75が出力するフラグを「第2規模崩落検知フラグ」と称する。なお、判定用しきい値は、記憶部90にあらかじめ記憶されている。本実施形態では、判定用しきい値は、整数であり、例えば2などが採用される。すなわち、本実施形態では、第1崩落判定部75は、上述した第1判定の結果、第2判定の結果、および第3判定の結果のうち3分の2以上の判定結果が崩落の可能性があることを示す場合、第2規模の崩落があると判定する。第1崩落判定部75は、記憶部90に記憶されている判定用しきい値を適時に参照することで第2規模の崩落の有無の判定を行う。第1崩落判定部75は、第2規模崩落検知フラグを第2崩落判定部76および制御部80に送る。
(First collapse determination unit)
The first collapse determination unit 75 determines the scale of the collapse based on the result of the first determination received from the first determination unit 71, the result of the second determination received from the second determination unit 72, and the result of the third determination received from the third determination unit 73. In this embodiment, the first collapse determination unit 75 determines the presence or absence of a second-scale collapse, which is larger in scale than the first-scale collapse, based on the first collapse determination flag, the second collapse determination flag, and the third collapse determination flag. Specifically, the first collapse determination unit 75 determines that a second-scale collapse has occurred when the sum of the value of the first collapse determination flag, the value of the second collapse determination flag, and the value of the third collapse determination flag is equal to or greater than the determination threshold value. That is, the first collapse determination unit 75 detects a collapse of the second scale. When the first collapse determination unit 75 detects a collapse of the second scale, it outputs a flag indicating the presence of a collapse. On the other hand, the first collapse determination unit 75 determines that there is no collapse of the second scale when the sum of the value of the first collapse determination flag, the value of the second collapse determination flag, and the value of the third collapse determination flag is less than the determination threshold value. That is, the first collapse determination unit 75 detects that there is no collapse of the second scale. When the first collapse determination unit 75 detects that there is no collapse of the second scale, it outputs a flag indicating that there is no collapse of the second scale. Hereinafter, the flag output by the first collapse determination unit 75 is referred to as a "second scale collapse detection flag". The determination threshold value is stored in advance in the storage unit 90. In this embodiment, the determination threshold value is an integer, for example, 2 is adopted. That is, in this embodiment, the first collapse determination unit 75 determines that there is a collapse of the second scale when two-thirds or more of the determination results of the first determination result, the second determination result, and the third determination result indicate the possibility of collapse. The first collapse determination unit 75 determines whether or not a collapse of the second scale has occurred by timely referring to the determination threshold value stored in the memory unit 90. The first collapse determination unit 75 sends a second-scale collapse detection flag to the second collapse determination unit 76 and the control unit 80.
 (第2崩落判定部)
 第2崩落判定部76は、第1崩落判定部75により第2規模の崩落が無いと判定された場合に、取得部40から受け付けた複数の画像の輝度の変化に基づき、第1規模の崩落の有無を判定する。本実施形態では、第2崩落判定部76は、第1判定部71から受け付けた第1崩落判定フラグに基づき、第1規模の崩落の有無を判定する。具体的には、第2崩落判定部76は、第1崩落判定フラグが崩落有り(i=1)を示した場合に、第1規模の崩落が有ると判定する。すなわち、第2崩落判定部76は、第1規模の崩落を検知する。第2崩落判定部76は、第1規模の崩落を検知した場合に、崩落有りを示すフラグを出力する。一方、第2崩落判定部76は、第1崩落判定フラグが崩落無し(i=0)を示した場合に、崩落が無いと判定する。すなわち、第2崩落判定部76は、崩落が無いことを検知する。第2崩落判定部76は、第1規模の崩落を検知した場合に、崩落無しを示すフラグを出力する。以下、第2崩落判定部76が出力するフラグを「第1規模崩落検知フラグ」と称する。また以下では、「第1規模崩落検知フラグ」と上述した「第2規模崩落検知フラグ」とを区別しない場合は単に「崩落検知フラグ」と称する。第2崩落判定部76は、第1崩落検知フラグを制御部80に送る。
(Second collapse determination unit)
When the first collapse determination unit 75 determines that there is no collapse of the second scale, the second collapse determination unit 76 determines the presence or absence of a collapse of the first scale based on a change in brightness of the multiple images received from the acquisition unit 40. In this embodiment, the second collapse determination unit 76 determines the presence or absence of a collapse of the first scale based on the first collapse determination flag received from the first determination unit 71. Specifically, when the first collapse determination flag indicates that there is a collapse (i=1), the second collapse determination unit 76 determines that there is a collapse of the first scale. That is, the second collapse determination unit 76 detects a collapse of the first scale. When the second collapse determination unit 76 detects a collapse of the first scale, it outputs a flag indicating that there is a collapse. On the other hand, when the first collapse determination flag indicates that there is no collapse (i=0), the second collapse determination unit 76 determines that there is no collapse. That is, the second collapse determination unit 76 detects that there is no collapse. When the second collapse determination unit 76 detects a collapse of the first scale, it outputs a flag indicating no collapse. Hereinafter, the flag output by the second collapse determination unit 76 is referred to as the "first scale collapse detection flag." In addition, below, when there is no need to distinguish between the "first scale collapse detection flag" and the above-mentioned "second scale collapse detection flag," they will simply be referred to as the "collapse detection flag." The second collapse determination unit 76 sends the first scale collapse detection flag to the control unit 80.
(制御部の構成)
 制御部80は、第1崩落判定部75および第2崩落判定部76から受け付けた崩落検知フラグに基づき、複数の制御対象装置Sを制御する(図1および図2参照)。本実施形態では、制御部80は、第1崩落判定部75から崩落有りを示す第2規模崩落検知フラグを受け付けた場合、例えば燃焼室R内の未燃ガスの濃度が低減するように、複数の制御対象装置Sのうち1つ以上を制御する。一方、制御部80は、第2崩落判定部76から第1規模崩落検知フラグを受け付けた場合、例えば制御対象装置Sが定格運転するように、複数の制御対象装置Sのうち1つ以上を制御する。制御部80は、例えば、押出アーム124の移動速度、火格子126の移動速度、ブロワ138の回転数の増減、第1流量調整弁140の弁開度、および第2流量調整弁142の弁開度それぞれの増減を示す信号などを各制御対象装置Sに送信する。なお、制御部80は、第2崩落判定部76から第1規模崩落検知フラグを受け付けた場合、第2規模崩落検知フラグを受け付けた場合と比べて小さい程度で、燃焼室R内の未燃ガスの濃度が低減するように、複数の制御対象装置Sのうち1つ以上を制御してもよい。
(Configuration of the control unit)
The control unit 80 controls the plurality of control target devices S based on the collapse detection flags received from the first collapse determination unit 75 and the second collapse determination unit 76 (see FIG. 1 and FIG. 2). In this embodiment, when the control unit 80 receives the second-scale collapse detection flag indicating the presence of collapse from the first collapse determination unit 75, the control unit 80 controls one or more of the plurality of control target devices S, for example, so that the concentration of unburned gas in the combustion chamber R is reduced. On the other hand, when the control unit 80 receives the first-scale collapse detection flag from the second collapse determination unit 76, the control unit 80 controls one or more of the plurality of control target devices S, for example, so that the control target devices S are operated at rated speed. The control unit 80 transmits, for example, signals indicating the increase or decrease in the moving speed of the push arm 124, the moving speed of the grate 126, the increase or decrease in the number of revolutions of the blower 138, the valve opening degree of the first flow rate control valve 140, and the valve opening degree of the second flow rate control valve 142 to each control target device S. In addition, when the control unit 80 receives a first-scale collapse detection flag from the second collapse determination unit 76, it may control one or more of the multiple control target devices S so that the concentration of unburned gas in the combustion chamber R is reduced to a smaller extent than when the control unit 80 receives a second-scale collapse detection flag.
(情報処理装置の動作)
 続いて、図13を参照して本実施形態における情報処理装置4の動作の一例について説明する。ただし、以下に説明する処理の順番は、以下の例に限定されず、適宜入れ替えられてもよい。
(Operation of information processing device)
Next, an example of the operation of the information processing device 4 in this embodiment will be described with reference to Fig. 13. However, the order of the processes described below is not limited to the following example, and may be changed as appropriate.
 取得部40は、撮像装置2から赤外画像を取得する(ステップS1)。また、取得部40は、撮像装置2から可視光画像を取得する(ステップS11)。ステップS1の処理に次いで、第1算出部50は、ステップS1で取得された第1赤外画像に基づき輝度の代表値を算出する。また、第2算出部55は、ステップS1で取得された第2赤外画像に基づき輝度の代表値を算出する(ステップS2)。次いで、外乱判定部74は、ステップS1で取得された第1赤外画像に基づき外乱判定を行う(ステップS3)。外乱判定部74により外乱が有ると判定された場合(ステップS3:YES)、ステップS1の処理に戻る。一方、外乱判定部74により外乱が無いと判定された場合(ステップS3:NO)、第1判定部71は、ステップS2で算出された輝度の代表値に基づき第1判定を行い(ステップS4)、第2判定部72は、ステップS2で算出された輝度の代表値に基づき第2判定を行う(ステップS5)。 The acquisition unit 40 acquires an infrared image from the imaging device 2 (step S1). The acquisition unit 40 also acquires a visible light image from the imaging device 2 (step S11). Following the process of step S1, the first calculation unit 50 calculates a representative value of brightness based on the first infrared image acquired in step S1. The second calculation unit 55 also calculates a representative value of brightness based on the second infrared image acquired in step S1 (step S2). Next, the disturbance determination unit 74 performs a disturbance determination based on the first infrared image acquired in step S1 (step S3). If the disturbance determination unit 74 determines that there is a disturbance (step S3: YES), the process returns to step S1. On the other hand, if the disturbance determination unit 74 determines that there is no disturbance (step S3: NO), the first determination unit 71 performs a first determination based on the representative value of brightness calculated in step S2 (step S4), and the second determination unit 72 performs a second determination based on the representative value of brightness calculated in step S2 (step S5).
 上記ステップS11の処理に次いで、第3算出部60は、ステップS11で取得された第1可視光画像に基づき輝度の代表値を算出する。また、第4算出部65は、ステップS1で取得された第2可視光画像に基づき輝度の代表値を算出する(ステップS12)。次いで、第3判定部73は、ステップS12で算出された輝度の代表値に基づき、第3判定を行う(ステップS13)。 Following the processing of step S11 above, the third calculation unit 60 calculates a representative value of luminance based on the first visible light image acquired in step S11. The fourth calculation unit 65 calculates a representative value of luminance based on the second visible light image acquired in step S1 (step S12). Next, the third judgment unit 73 performs a third judgment based on the representative value of luminance calculated in step S12 (step S13).
 上記ステップS4,S5,S13の処理に次いで、第1崩落判定部75は、ステップS4の判定の結果、ステップS5の判定の結果、およびステップS6の判定の結果に基づき、第2規模の崩落の有無を判定する(ステップS6)。すなわち、ステップS6では、第1崩落判定部75は、第1崩落判定フラグ、第2崩落判定フラグ、および第3崩落判定フラグの合計値が判定用しきい値以上であるか否かを判定する。第1崩落判定部75は、第2規模の崩落が有ると判定した場合(ステップS6:YES)、第2規模の崩落を検知する(ステップS7)。ステップS7の処理が終了した場合、ステップS1の処理に戻る。 Following the processing of steps S4, S5, and S13 above, the first collapse determination unit 75 determines whether or not a second-scale collapse has occurred based on the results of the determination in steps S4, S5, and S6 (step S6). That is, in step S6, the first collapse determination unit 75 determines whether or not the total value of the first collapse determination flag, the second collapse determination flag, and the third collapse determination flag is equal to or greater than the determination threshold value. If the first collapse determination unit 75 determines that a second-scale collapse has occurred (step S6: YES), it detects the second-scale collapse (step S7). When the processing of step S7 is completed, the processing returns to step S1.
 一方、第1崩落判定部75により第2規模の崩落が無いと判定された場合(ステップS6:NO)、第2崩落判定部76は、輝度の代表値の変化が有るか否かを判定する(ステップS8)。すなわち、ステップS8では、第2崩落判定部76は、第1崩落判定フラグに基づき第1規模の崩落の有無を判定する。第2崩落判定部76は、第1規模の崩落が有ると判定した場合(ステップS8:YES)、第1規模の崩落を検知する(ステップS9)。ステップS9の処理が終了した場合、ステップS1の処理に戻る。一方、第2崩落判定部76は、第1規模の崩落が無いと判定した場合(ステップS8:NO)、崩落が無いことを検知する(ステップS10)。ステップS10の処理が終了した場合、ステップS1の処理に戻る。 On the other hand, if the first collapse determination unit 75 determines that there is no collapse of the second scale (step S6: NO), the second collapse determination unit 76 determines whether there is a change in the representative brightness value (step S8). That is, in step S8, the second collapse determination unit 76 determines whether there is a collapse of the first scale based on the first collapse determination flag. If the second collapse determination unit 76 determines that there is a collapse of the first scale (step S8: YES), it detects the collapse of the first scale (step S9). When the processing of step S9 is completed, the processing returns to step S1. On the other hand, if the second collapse determination unit 76 determines that there is no collapse of the first scale (step S8: NO), it detects that there is no collapse (step S10). When the processing of step S10 is completed, the processing returns to step S1.
 以上説明した情報処理装置4の動作は、焼却設備100の運転段階で繰り返し実行される。 The operation of the information processing device 4 described above is repeatedly executed during the operation of the incineration facility 100.
(作用・効果)
 燃焼室R内では複雑な事象が生じるため、ごみFgの崩落を適切に検知することが難しい場合がある。例えば、一因として、燃焼室R内では、意図しないタイミングで灰135などが舞い、舞った灰135が画像中に一瞬映り込む場合などが挙げられる。
(Action and Effects)
It may be difficult to properly detect the collapse of the garbage Fg because complex phenomena occur in the combustion chamber R. For example, one of the reasons may be that ash 135 or the like may fly up in the combustion chamber R at an unintended timing, and the flying ash 135 may be reflected for an instant in the image.
 本実施形態では、第1赤外画像に基づく輝度の代表値と、第1赤外画像よりも前に取得された時系列上の複数の赤外画像のうち、ごみFgの1回の崩落にかかる時間内に撮像された複数の第2赤外画像に基づく輝度の代表値とのそれぞれに基づき、ごみFgの崩落の有無が判定される。したがって、例えば2つのタイミングで取得された各画像の輝度に基づき崩落の有無を判定する場合と比較して、ごみFgの崩落の有無をより高精度に判定することができる。つまり、ごみFgの崩落に関する検知精度の向上を図ることができる。その結果、燃焼室R内でのごみFgの燃焼状態を正確に把握することができる。 In this embodiment, the presence or absence of collapse of the garbage Fg is determined based on a representative value of brightness based on the first infrared image and a representative value of brightness based on multiple second infrared images captured within the time it takes for one collapse of the garbage Fg, among multiple infrared images in a time series acquired before the first infrared image. Therefore, the presence or absence of collapse of the garbage Fg can be determined with higher accuracy compared to, for example, a case in which the presence or absence of collapse is determined based on the brightness of each image acquired at two timings. In other words, the detection accuracy regarding the collapse of the garbage Fg can be improved. As a result, the combustion state of the garbage Fg in the combustion chamber R can be accurately grasped.
 図14は、本実施形態に係る第1崩落判定部75および第2崩落判定部76により出力された崩落検知フラグの時系列上の結果の一例を示す図である。すなわち、図14では、本実施形態における情報処理装置4による最終判定結果(検知結果)を示している。図14中に示すグラフは、発明者らによる解析によって得られた結果である。図14中では、焼却設備100のオペレータが燃焼室R内を目視することによって第1規模のごみFgの崩落有りと判定された時刻を三角(△)で示し、第2規模のごみFgの崩落有りと判定された時刻を丸(〇)で示している。また、図14中に示すグラフにおける上下に延びる時間目盛線(一点鎖線)同士の間隔に対応する時間は、いずれの間隔でも等しい。図14に示す結果より、情報処理装置4によってごみFgの崩落有りと過剰に検知された可能性のある時間(時刻T-18および時刻T-17の間)は見受けられるものの、焼却設備100のオペレータによって崩落有りと判定された時刻と、崩落判定フラグが立ち上がる時刻とがほぼ一致していることが把握される。 FIG. 14 is a diagram showing an example of the results of the time series of the collapse detection flags output by the first collapse determination unit 75 and the second collapse determination unit 76 according to this embodiment. That is, FIG. 14 shows the final determination result (detection result) by the information processing device 4 in this embodiment. The graph shown in FIG. 14 is a result obtained by the analysis by the inventors. In FIG. 14, the time when the operator of the incineration equipment 100 visually checks the inside of the combustion chamber R and determines that the first scale of garbage Fg has collapsed is shown by a triangle (△), and the time when the second scale of garbage Fg has collapsed is shown by a circle (◯). In addition, the time corresponding to the interval between the time scale lines (dotted lines) extending up and down in the graph shown in FIG. 14 is equal for all intervals. From the results shown in Figure 14, although there are times (between time T -18 and time T -17 ) when the information processing device 4 may have overly detected the collapse of the waste Fg, it can be seen that the time when the operator of the incineration equipment 100 determined that a collapse had occurred almost coincides with the time when the collapse determination flag is raised.
<焼却設備の第2実施形態>
 次に、本開示に係る焼却設備100の第2実施形態について説明する。なお、以下に説明する第2実施形態では、上記の第1実施形態と共通する構成については図中に同符号を付してその説明を省略する。第2実施形態では、崩落検知部41の第2崩落判定部76構成が、上記の第1実施形態で説明した第2崩落判定部76と異なっている。
<Second embodiment of incineration facility>
Next, a second embodiment of the incineration facility 100 according to the present disclosure will be described. In the second embodiment described below, components common to the first embodiment will be denoted by the same reference numerals in the drawings and will not be described. In the second embodiment, the configuration of the second collapse determination unit 76 of the collapse detection unit 41 is different from the second collapse determination unit 76 described in the first embodiment.
 本実施形態では、第2崩落判定部76は、取得部40により取得された画像と、取得部40により過去に取得された1以上の画像との類似度を算出し、算出した類似度が所定条件を満たさない場合、崩落が無いと判定する。以下、第2判定部72が時刻tにおける第1赤外画像と、第1赤外画像よりも前の過去に取得された複数の赤外画像を対象に類似度を算出する場合を一例とした第2崩落判定部76による崩落の有無の判定について説明する。 In this embodiment, the second collapse determination unit 76 calculates the similarity between the image acquired by the acquisition unit 40 and one or more images previously acquired by the acquisition unit 40, and determines that there is no collapse if the calculated similarity does not satisfy a predetermined condition. Below, the determination of the presence or absence of a collapse by the second collapse determination unit 76 will be described using as an example a case in which the second determination unit 72 calculates the similarity between the first infrared image at time t and multiple infrared images acquired in the past prior to the first infrared image.
 図15に示すように、第2崩落判定部76は、取得部40から受け付けた赤外画像(a)中の一部である特定の対象領域(b)に含まれる輝度を0と1のデータに二値化(0/1化)する。以下、第2崩落判定部76が二値化の対象とする対象領域を「第5対象領域46」と称する。第5対象領域46は、例えば、赤外画像中の上半部におけるフィーダ104内に堆積したごみFgの一部(大部分)が映り込む領域である。第2崩落判定部76は、例えば所定の輝度しきい値に基づき、第5対象領域46に含まれる輝度を二値化する。なお、輝度しきい値は、記憶部90にあらかじめ記憶されている。第2崩落判定部76は、記憶部90に記憶されている輝度しきい値を適時に参照することで第5対象領域46を二値化する。以下、第2崩落判定部76により二値化された第5対象領域46を「二値化データ46´」と称する。 As shown in FIG. 15, the second collapse determination unit 76 binarizes the luminance included in a specific target area (b), which is a part of the infrared image (a) received from the acquisition unit 40, into data of 0 and 1 (0/1 conversion). Hereinafter, the target area to be binarized by the second collapse determination unit 76 is referred to as the "fifth target area 46". The fifth target area 46 is, for example, an area in the upper half of the infrared image in which a part (most part) of the garbage Fg accumulated in the feeder 104 is reflected. The second collapse determination unit 76 binarizes the luminance included in the fifth target area 46, for example, based on a predetermined luminance threshold value. The luminance threshold value is stored in advance in the storage unit 90. The second collapse determination unit 76 binarizes the fifth target area 46 by referring to the luminance threshold value stored in the storage unit 90 at appropriate times. Hereinafter, the fifth target area 46 binarized by the second collapse determination unit 76 is referred to as the "binarized data 46'".
 図16は、第2崩落判定部76が算出する類似度の算出方法を概念的に説明するための図である。図16に示すように、第2崩落判定部76は、時刻tにおける第1赤外画像に基づく二値化データ46´と、第1赤外画像よりも前の過去に取得された複数の赤外画像のそれぞれに基づく二値化データ46´との差分(図16中に示すX、X、・・・、Xy-1、X)を取得し、取得した複数の差分の平均値(図16中に示すΣX/y)を類似度として算出する。ここでいう複数の赤外画像のそれぞれに基づく二値化データ46´とは、例えば、時刻t-1に取得された赤外画像に基づく二値化データ46´、時刻t-2に取得された赤外画像に基づく二値化データ46´、・・・、時刻t-(y-1)に取得された赤外画像に基づく二値化データ46´、および時刻t-yに取得された赤外画像に基づく二値化データ46´のそれぞれを意味する。yは、例えば整数であり、例えば2以上の値(5など)が採用される。 FIG. 16 is a diagram for conceptually explaining a method of calculating the similarity calculated by the second collapse determination unit 76. As shown in FIG. 16, the second collapse determination unit 76 acquires the difference between the binarized data 46' based on the first infrared image at time t and the binarized data 46' based on each of a plurality of infrared images acquired in the past before the first infrared image (X 1 , X 2 , ..., X y-1 , X y shown in FIG. 16), and calculates the average value of the acquired differences (ΣX/y shown in FIG. 16) as the similarity. The binarized data 46' based on each of the plurality of infrared images here means, for example, the binarized data 46' based on the infrared image acquired at time t-1, the binarized data 46' based on the infrared image acquired at time t-2, ..., the binarized data 46' based on the infrared image acquired at time t-(y-1), and the binarized data 46' based on the infrared image acquired at time t-y. y is, for example, an integer, and a value of 2 or more (such as 5) is adopted.
 第2崩落判定部76は、算出した類似度が所定条件を満たすか否かを判定する。本実施形態では、第2崩落判定部76は、類似度が所定の類似度しきい値以上であるか否かを判定する。この際、第2崩落判定部76は、類似度が類似度しきい値以上である場合に所定条件が満たされ、類似度が類似度しきい値未満である場合に所定条件が満たされていないと判定する。なお、類似度しきい値は、記憶部90にあらかじめ記憶されている。第2崩落判定部76は、記憶部90に記憶されている類似度しきい値を適時に参照することで、算出した類似度が所定条件を満たすか否かを判定する。第2崩落判定部76は、類似度が所定条件を満たしていない場合に、第1規模の崩落が有ると判定する。すなわち、第2崩落判定部76は、第1規模の崩落を検知する。第2崩落判定部76は、第1規模の崩落を検知した場合に、崩落有りを示す第1規模崩落検知フラグを出力する。一方、第2崩落判定部76は、類似度が所定条件を満たす場合に、崩落が無いと判定する。すなわち、第2崩落判定部76は、崩落が無いことを検知する。第2崩落判定部76は、第1規模の崩落を検知した場合に、崩落無しを示す崩落検知フラグを出力する。 The second collapse determination unit 76 determines whether the calculated similarity satisfies a predetermined condition. In this embodiment, the second collapse determination unit 76 determines whether the similarity is equal to or greater than a predetermined similarity threshold. In this case, the second collapse determination unit 76 determines that the predetermined condition is satisfied when the similarity is equal to or greater than the similarity threshold, and that the predetermined condition is not satisfied when the similarity is less than the similarity threshold. The similarity threshold is pre-stored in the memory unit 90. The second collapse determination unit 76 determines whether the calculated similarity satisfies a predetermined condition by referring to the similarity threshold stored in the memory unit 90 at appropriate times. The second collapse determination unit 76 determines that a first-scale collapse has occurred when the similarity does not satisfy the predetermined condition. That is, the second collapse determination unit 76 detects a first-scale collapse. When the second collapse determination unit 76 detects a first-scale collapse, it outputs a first-scale collapse detection flag indicating the presence of a collapse. On the other hand, the second collapse determination unit 76 determines that there is no collapse when the similarity satisfies a predetermined condition. In other words, the second collapse determination unit 76 detects that there is no collapse. When the second collapse determination unit 76 detects a collapse of the first scale, it outputs a collapse detection flag indicating that there is no collapse.
 続いて、図17を参照して情報処理装置4の動作の一例について説明する。ただし、以下に説明する処理の順番は、以下の例に限定されず、適宜入れ替えられてもよい。また、図13を用いて説明した情報処理装置4の動作と重複する部分の説明は省略する。 Next, an example of the operation of the information processing device 4 will be described with reference to FIG. 17. However, the order of the processes described below is not limited to the following example, and may be changed as appropriate. Also, descriptions of parts that overlap with the operation of the information processing device 4 described using FIG. 13 will be omitted.
 第2崩落判定部76は、輝度の代表値の変化が有ると判定した場合(ステップS8:YES)、類似度を算出するとともに、算出した類似度が所定条件を満たすか否かを判定する(ステップS20)。一方、第2崩落判定部76は、輝度の代表値の変化が無いと判定した場合(ステップS8:NO)、崩落が無いことを検知する(ステップS10)。第2崩落判定部76は、類似度が所定条件を満たさない場合(ステップS20:NO)、第1規模の崩落を検知する(ステップS9)。一方、第2崩落判定部76は、類似度が所定条件を満たす場合(ステップS20:YES)、ステップS10の処理を実行する。 If the second collapse determination unit 76 determines that there is a change in the representative brightness value (step S8: YES), it calculates the similarity and determines whether the calculated similarity satisfies a predetermined condition (step S20). On the other hand, if the second collapse determination unit 76 determines that there is no change in the representative brightness value (step S8: NO), it detects that there is no collapse (step S10). If the similarity does not satisfy the predetermined condition (step S20: NO), the second collapse determination unit 76 detects a collapse of the first scale (step S9). On the other hand, if the similarity satisfies the predetermined condition (step S20: YES), the second collapse determination unit 76 executes the processing of step S10.
 図18は、上述した第1崩落判定部75および第2崩落判定部76により出力された崩落検知フラグの時系列上の結果の一例を示す図である。すなわち、図18では、情報処理装置4による最終判定結果(検知結果)を示している。図18中に示すグラフは、発明者らによる解析によって得られた結果である。図18中では、焼却設備100のオペレータが燃焼室R内を目視することによって第1規模のごみFgの崩落有りと判定された時刻を三角(△)で示し、第2規模のごみFgの崩落有りと判定された時刻を丸(〇)で示している。また、図18中に示すグラフにおける上下に延びる時間目盛線(一点鎖線)同士の間隔に対応する時間は、いずれの間隔でも等しい。図18に示す結果では、図14中に示した結果と比較して、情報処理装置4によってごみFgの崩落有りと過剰に検知された可能性のある時間(図14中の時刻T-18および時刻T-17の間)が無い。また、焼却設備100のオペレータによって崩落有りと判定された時刻と、崩落判定フラグが立ち上がる時刻とが一致していることが把握される。 FIG. 18 is a diagram showing an example of the results of the time series of the collapse detection flags output by the first collapse determination unit 75 and the second collapse determination unit 76 described above. That is, FIG. 18 shows the final determination result (detection result) by the information processing device 4. The graph shown in FIG. 18 is a result obtained by the analysis by the inventors. In FIG. 18, the time when the operator of the incineration equipment 100 visually checks the inside of the combustion chamber R and determines that the first scale of garbage Fg has collapsed is shown by a triangle (△), and the time when the second scale of garbage Fg has collapsed is shown by a circle (◯). In addition, the time corresponding to the interval between the time scale lines (dotted and dashed lines) extending up and down in the graph shown in FIG. 18 is equal for all intervals. In the results shown in FIG. 18, there is no time (between time T -18 and time T -17 in FIG. 14) during which the information processing device 4 may have excessively detected the collapse of the garbage Fg, as compared with the results shown in FIG. 14. It is also understood that the time when the operator of the incineration facility 100 determines that a collapse has occurred coincides with the time when the collapse determination flag is raised.
<焼却設備の第3実施形態>
 次に、本開示に係る焼却設備100の第3実施形態について説明する。なお、以下に説明する第3実施形態では、上記の第1実施形態と共通する構成については図中に同符号を付してその説明を省略する。第3実施形態では、崩落検知部41と記憶部90の構成が、上記の第1実施形態と異なっている。
<Third embodiment of incineration equipment>
Next, a third embodiment of the incineration facility 100 according to the present disclosure will be described. In the third embodiment described below, the configurations common to the first embodiment are denoted by the same reference numerals in the drawings and will not be described. In the third embodiment, the configurations of the collapse detection unit 41 and the storage unit 90 are different from those of the first embodiment.
(崩落検知部の構成)
 図19に示すように、本実施形態における崩落検知部41は、第1算出部50と、第2算出部55と、第5算出部66と、第6算出部67と、判定部70とを有している。判定部70は、外乱判定部74と、第4判定部77と、第5判定部78と、第3崩落判定部79と、第4崩落判定部81とを有している。
(Configuration of collapse detection unit)
19 , the collapse detection unit 41 in this embodiment has a first calculation unit 50, a second calculation unit 55, a fifth calculation unit 66, a sixth calculation unit 67, and a judgment unit 70. The judgment unit 70 has a disturbance judgment unit 74, a fourth judgment unit 77, a fifth judgment unit 78, a third collapse judgment unit 79, and a fourth collapse judgment unit 81.
(第1算出部)
 図20に示すように、本実施形態では、第1算出部50が算出の対象とする第1対象領域42は、6×4のマトリクス状に区切られた面積の等しい24個の小領域に分かれている。なお、第1対象領域42は、マトリクス状の24個の小領域に等分されている場合に限定されることはない。
(First Calculation Unit)
20, in this embodiment, the first target region 42 that is the target of calculation by the first calculation unit 50 is divided into 24 small regions with equal areas partitioned in a 6 × 4 matrix. Note that the first target region 42 is not limited to being divided equally into 24 small regions in a matrix.
 第1算出部50は、例えば、第1赤外画像中の第1対象領域42における小領域それぞれの輝度の平均値を算出する。なお、第1算出部50が算出する代表値は、各小領域の輝度の平均値に限定されることはなく、例えば中央値などの統計量であってもよい。 The first calculation unit 50, for example, calculates the average brightness value of each small region in the first target region 42 in the first infrared image. Note that the representative value calculated by the first calculation unit 50 is not limited to the average brightness value of each small region, and may be a statistical value such as the median.
(第5算出部)
 第5算出部66は、外乱判定部74により外乱が無いと判定された場合、第1算出部50から受け付けた輝度の代表値(第1特徴量)と、第2算出部55から受け付けた輝度の代表値(第2特徴量)とに基づいて第5特徴量を算出する。本実施形態では、第5特徴量は、第1赤外画像中の第1対象領域42における24個の小領域それぞれの輝度の平均値を時間差分した輝度変化量の総和である。なお、第5算出部66によって算出される総和は、小領域それぞれの輝度変化量の総和に限定されることはなく、例えば中央値などの統計量の総和であってもよい。第5算出部66は、第1赤外画像中の第1対象領域42における小領域それぞれの輝度変化量の総和を、第3崩落判定部79に入力する。
(Fifth Calculation Unit)
When the disturbance determination unit 74 determines that there is no disturbance, the fifth calculation unit 66 calculates a fifth feature based on the representative value of the luminance (first feature) received from the first calculation unit 50 and the representative value of the luminance (second feature) received from the second calculation unit 55. In this embodiment, the fifth feature is a sum of luminance changes obtained by time-differentiating the average value of the luminance of each of the 24 small regions in the first target region 42 in the first infrared image. Note that the sum calculated by the fifth calculation unit 66 is not limited to the sum of the luminance changes of each of the small regions, and may be, for example, the sum of a statistical quantity such as a median. The fifth calculation unit 66 inputs the sum of the luminance changes of each of the small regions in the first target region 42 in the first infrared image to the third collapse determination unit 79.
(第6算出部)
 第6算出部67は、オートエンコーダ(Auto Encoder)のアルゴリズムを用いて教師無し学習を行い、学習済のオートエンコーダの隠れ層に置かれる次元削減された情報を用いて第6特徴量を算出する。本実施形態では、オートエンコーダ96は、記憶部90にあらかじめ記憶されている(図19参照)。第6特徴量は、撮像装置2によって取得された連続する複数の赤外画像がオートエンコーダ96によってエンコードされ、次元数を削減された赤外画像情報である。撮像装置2は、0.1秒毎に1フレームの赤外画像を取得する。第6算出部67は、オートエンコーダ96に、撮像装置2によって取得された、0.1秒間隔で連続する複数の赤外画像を入力する。オートエンコーダ96では、当該複数の赤外画像が入力層から隠れ層に流れる過程で圧縮(エンコード)され、512次元にまで次元数を削減される。その後、次元数を削減された赤外画像が隠れ層から出力層に流れる過程で元の情報に復元(デコード)される。隠れ層から出力層に流れた赤外画像から、入力層に置かれた赤外画像が復元できたら、その赤外画像の学習データは外乱画像のような異常データを含まず、正しい学習が行われたとみなす。正しい学習が行われると、次元数を削減された赤外画像情報は、画像中のノイズを削減されている。なお、撮像装置2による赤外画像取得の間隔は0.1秒には限定されない。また、オートエンコーダ96において実施される次元削減は、512次元に限定されない。
(Sixth Calculation Unit)
The sixth calculation unit 67 performs unsupervised learning using an autoencoder algorithm, and calculates a sixth feature using dimension-reduced information placed in the hidden layer of the learned autoencoder. In this embodiment, the autoencoder 96 is stored in advance in the storage unit 90 (see FIG. 19). The sixth feature is infrared image information in which a plurality of consecutive infrared images acquired by the imaging device 2 are encoded by the autoencoder 96 and the number of dimensions is reduced. The imaging device 2 acquires one frame of infrared image every 0.1 seconds. The sixth calculation unit 67 inputs a plurality of consecutive infrared images acquired by the imaging device 2 at intervals of 0.1 seconds to the autoencoder 96. In the autoencoder 96, the plurality of infrared images are compressed (encoded) in the process of flowing from the input layer to the hidden layer, and the number of dimensions is reduced to 512 dimensions. After that, the infrared image with the reduced number of dimensions is restored (decoded) to the original information in the process of flowing from the hidden layer to the output layer. If the infrared image placed in the input layer can be restored from the infrared image flowing from the hidden layer to the output layer, the learning data of the infrared image does not contain abnormal data such as disturbance images, and it is considered that correct learning has been performed. If correct learning is performed, the infrared image information with reduced dimensions has reduced noise in the image. Note that the interval at which the imaging device 2 captures infrared images is not limited to 0.1 seconds. Also, the dimension reduction performed in the autoencoder 96 is not limited to 512 dimensions.
 第6算出部67は、後述するように第3崩落判定部79によって炉内に崩壊有りと判定されると、次元数を削減されて画像中のノイズが除去された、0.1秒間隔で連続する複数の赤外画像情報の中から、ごみの崩落が起きたと人間によって判断された時点を基点として前後2秒間ずつ、合計4秒間に取得された連続する40フレーム分のノイズが除去された赤外画像情報をまとめてパッケージ化し、第4崩落判定部81に含まれる長・短期記憶(LSTM:Long Short-Term Memory)ネットワークに入力する。長・短期記憶ネットワークは、時系列データの学習や予測(回帰・分類)を行うRNNの一種であって、第4崩落判定部81では、パッケージ化された赤外画像情報が長・短期記憶ネットワークに入力されると、崩落が生じた可能性に関する判定結果を出力するように学習された学習済みモデルを用いて判定を行う。以下、第4崩落判定部81による判定に用いる学習済みモデルを「崩落判定用学習済みモデル97」と称する。崩落判定用学習済みモデル97は、記憶部90にあらかじめ記憶されている(図19参照)。なお、パッケージ化される情報フレーム数は40個に限定されない。炉内のごみ面からごみが剥がれ、ごみが炉床に着床し、炉内にごみが舞い、炉内に舞ったごみが落下するまでの一連の事象がどの程度の時間をかけて進行するのかを観察し、焼却炉の特性等を考慮して適宜増減させればよい。また、ごみの崩落が起きたとする人間の判断には不確実性が含まれるので、ごみの崩落が起きたと人間によって判断された時点の赤外画像情報を含めて以後5フレーム分を崩落発生の学習データとしてもよい。 When the third collapse determination unit 79 determines that there is a collapse in the furnace as described below, the sixth calculation unit 67 packages 40 consecutive frames of infrared image information, from which the number of dimensions has been reduced and noise in the images has been removed, that have been acquired over a total of four seconds, two seconds before and two seconds after the point in time when a human judges that a waste collapse has occurred, from among a plurality of consecutive infrared image information at 0.1 second intervals, from which the number of dimensions has been reduced and noise in the images has been removed, and inputs the packaged infrared image information into a long short-term memory (LSTM) network included in the fourth collapse determination unit 81. The long short-term memory network is a type of RNN that learns and predicts (regression and classification) time-series data, and the fourth collapse determination unit 81 makes a judgment using a trained model that has been trained to output a judgment result regarding the possibility of a collapse when the packaged infrared image information is input to the long short-term memory network. Hereinafter, the trained model used for the judgment by the fourth collapse determination unit 81 is referred to as the "trained model for collapse judgment 97". The trained model 97 for determining collapse is stored in advance in the storage unit 90 (see FIG. 19). The number of information frames to be packaged is not limited to 40. It is sufficient to observe how long it takes for the series of events to progress, from the time the garbage peels off the garbage surface inside the furnace, the time it lands on the furnace floor, the time it floats inside the furnace, and the time it falls from the garbage that has floated inside the furnace, and to the time it can be increased or decreased as appropriate, taking into account the characteristics of the incinerator, etc. Also, since a human's judgment that a garbage collapse has occurred includes uncertainty, the following five frames, including the infrared image information at the time when the human judges that a garbage collapse has occurred, may be used as the training data for the occurrence of the collapse.
(第4判定部)
 第4判定部77は、取得部40から受け付けた1以上の赤外画像に基づき、崩落に関する判定を行う。本実施形態では、第4判定部77は、取得部40から受け付けた画像のうち第1算出部50が算出の対象とする1つの第1赤外画像(直近の赤外画像)を用いて、崩落に関する判定を行う。なお、第4判定部77は、崩落の判定を行うに当たって、取得部40から受け付けた画像のうち第1赤外画像とは異なる1つの画像を用いてもよい。また、第4判定部77は、崩落の判定を行うに当たって、複数の画像を用いてもよく、複数の画像のなかに第1赤外画像が含まれてもよい。
(Fourth Judgment Unit)
The fourth determination unit 77 makes a determination regarding collapse based on one or more infrared images received from the acquisition unit 40. In this embodiment, the fourth determination unit 77 makes a determination regarding collapse using one first infrared image (the most recent infrared image) that is the target of calculation by the first calculation unit 50 among the images received from the acquisition unit 40. Note that, when making a determination regarding collapse, the fourth determination unit 77 may use one image other than the first infrared image among the images received from the acquisition unit 40. Furthermore, when making a determination regarding collapse, the fourth determination unit 77 may use multiple images, and the first infrared image may be included in the multiple images.
 第4判定部77は、第1赤外画像が入力されると、崩落が生じた可能性に関する判定結果を出力するように学習された学習済みモデルを用いて判定を行う。以下、第4判定部77による判定を「第4判定」と称し、第4判定部77が第4判定に用いる学習済みモデルを「第4判定用学習済みモデル94」と称する。第4判定用学習済みモデル94は、記憶部90にあらかじめ記憶されている(図19参照)。第4判定部77は、記憶部90に記憶されている第4判定用学習済みモデル94に取得部40から受け付けた第1赤外画像を入力することで、出力された判定結果を第4判定の結果として取得する。第4判定用学習済みモデル94は、例えば、畳み込みニューラルネットワーク(CNN)などの深層学習モデル(教師あり学習モデル)である。第4判定用学習済みモデル94は、撮像装置2によって撮像された赤外画像が入力されるとともに、当該赤外画像に対する崩落の有無(人間によって正しいと判断された正解データ)が教示される学習ステップが、複数回繰り返されることで生成(学習)される。なお、第4判定用学習済みモデル94は、CNNに代えて、回帰型ニューラルネットワーク(RNN)などが用いられてもよい。 The fourth judgment unit 77 makes a judgment using a trained model that has been trained to output a judgment result regarding the possibility of a collapse when the first infrared image is input. Hereinafter, the judgment by the fourth judgment unit 77 is referred to as the "fourth judgment", and the trained model that the fourth judgment unit 77 uses for the fourth judgment is referred to as the "trained model for fourth judgment 94". The trained model for fourth judgment 94 is pre-stored in the memory unit 90 (see FIG. 19). The fourth judgment unit 77 inputs the first infrared image received from the acquisition unit 40 to the trained model for fourth judgment 94 stored in the memory unit 90, thereby acquiring the output judgment result as the result of the fourth judgment. The trained model for fourth judgment 94 is, for example, a deep learning model (supervised learning model) such as a convolutional neural network (CNN). The fourth judgment trained model 94 is generated (trained) by repeating a learning step multiple times in which an infrared image captured by the imaging device 2 is input and the presence or absence of collapse in the infrared image (correct answer data determined to be correct by a human) is taught. Note that the fourth judgment trained model 94 may use a recurrent neural network (RNN) instead of a CNN.
 撮像装置2によって撮像された赤外画像のうち、崩落時にごみFgが舞うこと(崩落有り)を示す画像例(a,d)、崩落の影響なく灰が舞うこと(崩落無し)を示す画像例(b,e)、およびそれ以外(崩落無し)状態を示す画像例(c,f、水蒸気の滞留含む)を図21に示す。本実施形態では、第4判定部77は、第1赤外画像中の一部である対象領域の赤外画像が第4判定用学習済みモデル94に入力されると、上記3つに分類された画像例に基づいて、撮像装置2によって撮像された赤外画像に対する崩落の有無を分類する。当該赤外画像に対する崩落の有無(正解データ)が教示されることで、第4判定用学習済みモデル94があらかじめ生成されている。学習を終えた第4判定用学習済みモデル94は、新たな赤外画像が入力された場合に、当該赤外画像に対する崩落が生じた可能性に関する数値を「判定用スコア」として出力する。 In the infrared images captured by the imaging device 2, image examples (a, d) showing garbage Fg flying during collapse (collapse), image examples (b, e) showing ash flying without the effect of collapse (no collapse), and image examples (c, f, including water vapor retention) showing other states (no collapse) are shown in FIG. 21. In this embodiment, when an infrared image of a target area that is a part of the first infrared image is input to the fourth trained model for judgment 94, the fourth judgment unit 77 classifies the presence or absence of collapse for the infrared image captured by the imaging device 2 based on the above three classified image examples. The fourth trained model for judgment 94 is generated in advance by being taught the presence or absence of collapse for the infrared image (correct answer data). When a new infrared image is input, the fourth trained model for judgment 94 that has completed learning outputs a numerical value related to the possibility of collapse occurring for the infrared image as a "judgment score".
 第4判定部77は、第4判定用学習済みモデル94から取得した判定用スコアが所定の第4しきい値以上であるか否かの判定を行う(第4判定)。第4判定部77は、取得した判定用スコアが第4しきい値以上である場合に、崩落の可能性が有ると判定し、判定用スコアが第4しきい値未満である場合に、崩落の可能性が無いと判定する。本実施形態では、第4判定部77は、判定用スコアが第4しきい値以上である場合に、崩落有りを示すフラグ(i=1)を出力する。一方、第4判定部77は、判定用スコアが第4しきい値未満である場合に、崩落無しを示すフラグ(i=0)を出力する。以下、第4判定部77が出力する崩落の判定に関するフラグ(i=1または0)を「第4崩落判定フラグ」と称する。つまり、第4崩落判定フラグは、第4判定の結果を示し、1または0の値を示す。第4しきい値は、記憶部90にあらかじめ記憶されている。第4判定部77は、記憶部90に記憶されている第4しきい値を適時に参照することで第4判定を行う。第4判定部77は、第4判定の結果である第4崩落判定フラグを、第3崩落判定部79に入力する。 The fourth judgment unit 77 judges whether the judgment score acquired from the fourth judgment trained model 94 is equal to or greater than a predetermined fourth threshold (fourth judgment). When the acquired judgment score is equal to or greater than the fourth threshold, the fourth judgment unit 77 judges that there is a possibility of collapse, and when the judgment score is less than the fourth threshold, it judges that there is no possibility of collapse. In this embodiment, when the judgment score is equal to or greater than the fourth threshold, the fourth judgment unit 77 outputs a flag (i = 1) indicating that there is collapse. On the other hand, when the judgment score is less than the fourth threshold, the fourth judgment unit 77 outputs a flag (i = 0) indicating that there is no collapse. Hereinafter, the flag (i = 1 or 0) regarding the judgment of collapse output by the fourth judgment unit 77 is referred to as the "fourth collapse judgment flag". In other words, the fourth collapse judgment flag indicates the result of the fourth judgment and indicates a value of 1 or 0. The fourth threshold is pre-stored in the memory unit 90. The fourth determination unit 77 performs the fourth determination by timely referring to the fourth threshold value stored in the memory unit 90. The fourth determination unit 77 inputs a fourth collapse determination flag, which is the result of the fourth determination, to the third collapse determination unit 79.
(第5判定部)
 第5判定部78は、取得部40から受け付けた可視光画像に基づき、崩落に関する判定を行う。本実施形態では、第5判定部78は、取得部40から受け付けた画像のうち第1可視光画像(直近の可視光画像)を用いて、崩落に関する判定を行う。なお、第5判定部78は、崩落の判定を行うに当たって、取得部40から受け付けた画像のうち第1可視光画像とは異なる1つの画像を用いてもよい。また、第5判定部78は、崩落の判定を行うに当たって、複数の画像を用いてもよく、複数の画像のなかに第1可視光画像が含まれてもよい。
(Fifth Judgment Unit)
The fifth determination unit 78 makes a determination regarding collapse based on the visible light image received from the acquisition unit 40. In this embodiment, the fifth determination unit 78 makes a determination regarding collapse using a first visible light image (the most recent visible light image) among the images received from the acquisition unit 40. Note that, when making the determination regarding collapse, the fifth determination unit 78 may use one image other than the first visible light image among the images received from the acquisition unit 40. Furthermore, when making the determination regarding collapse, the fifth determination unit 78 may use multiple images, and the first visible light image may be included in the multiple images.
 第5判定部78は、第1可視光画像が入力されると、崩落が生じた可能性に関する判定結果を出力するように学習された学習済みモデルを用いて判定を行う。以下、第5判定部78による判定を「第5判定」と称し、第5判定部78が第5判定に用いる学習済みモデルを「第5判定用学習済みモデル95」と称する。第5判定用学習済みモデル95は、記憶部90にあらかじめ記憶されている(図19参照)。第5判定部78は、記憶部90に記憶されている第5判定用学習済みモデル95に取得部40から受け付けた第1可視光画像を入力することで、出力された判定結果を第5判定の結果として取得する。第5判定用学習済みモデル95は、例えば、畳み込みニューラルネットワーク(CNN)などの深層学習モデル(教師あり学習モデル)である。第5判定用学習済みモデル95は、撮像装置2によって撮像された可視光画像が入力されるとともに、当該可視光画像に対する崩落の有無(人間によって正しいと判断された正解データ)が教示される学習ステップが、複数回繰り返されることで生成(学習)される。なお、第5判定用学習済みモデル95は、CNNに代えて、回帰型ニューラルネットワーク(RNN)などが用いられてもよい。 The fifth judgment unit 78 performs judgment using a trained model that has been trained to output a judgment result regarding the possibility of collapse when the first visible light image is input. Hereinafter, the judgment by the fifth judgment unit 78 is referred to as the "fifth judgment", and the trained model that the fifth judgment unit 78 uses for the fifth judgment is referred to as the "trained model for fifth judgment 95". The trained model for fifth judgment 95 is stored in advance in the storage unit 90 (see FIG. 19). The fifth judgment unit 78 inputs the first visible light image received from the acquisition unit 40 to the trained model for fifth judgment 95 stored in the storage unit 90, thereby acquiring the output judgment result as the result of the fifth judgment. The trained model for fifth judgment 95 is, for example, a deep learning model (supervised learning model) such as a convolutional neural network (CNN). The fifth trained model for judgment 95 is generated (trained) by repeating a learning step multiple times in which a visible light image captured by the imaging device 2 is input and the presence or absence of collapse in the visible light image (correct answer data determined to be correct by a human) is taught. Note that the fifth trained model for judgment 95 may use a recurrent neural network (RNN) instead of a CNN.
 第5判定部78は、大規模崩落時にごみが火炎に覆いかぶさる画像例、およびそれ以外(崩落無し)状態を示す画像例に基づいて第1可視光画像の分類を行う。すなわち、第1可視光画像中の一部である対象領域の可視光画像が第5判定用学習済みモデル95に入力されるとともに、上記2つの画像例に基づいて第1可視光画像に対する崩落の有無を分類する。当該可視光画像に対する崩落の有無(正解データ)が教示されることで、第5判定用学習済みモデル95があらかじめ生成されている。学習を終えた第5判定用学習済みモデル95は、新たな可視光画像が入力された場合に、当該可視光画像に対する崩落が生じた可能性に関する数値を「判定用スコア」として出力する。 The fifth judgment unit 78 classifies the first visible light image based on example images in which garbage covers flames during a large-scale collapse, and example images showing other conditions (no collapse). That is, a visible light image of a target region that is part of the first visible light image is input to the fifth trained judgment model 95, and the presence or absence of collapse in the first visible light image is classified based on the above two example images. The fifth trained judgment model 95 is generated in advance by being taught the presence or absence of collapse in the visible light image (correct answer data). When a new visible light image is input, the fifth trained judgment model 95 that has completed learning outputs a numerical value related to the possibility of collapse occurring in the visible light image as a "judgment score".
 第5判定部78は、第5判定用学習済みモデル95から取得した判定用スコアが所定の第5しきい値以上であるか否かの判定を行う(第5判定)。第5判定部78は、取得した判定用スコアが第5しきい値以上である場合に、崩落の可能性が有ると判定し、判定用スコアが第5しきい値未満である場合に、崩落の可能性が無いと判定する。本実施形態では、第5判定部78は、判定用スコアが第5しきい値以上である場合に、崩落有りを示すフラグ(i=1)を出力する。一方、第5判定部78は、判定用スコアが第5しきい値未満である場合に、崩落無しを示すフラグ(i=0)を出力する。以下、第5判定部78が出力する崩落の判定に関するフラグ(i=1または0)を「第5崩落判定フラグ」と称する。第5しきい値は、記憶部90にあらかじめ記憶されている。第5判定部78は、記憶部90に記憶されている第5しきい値を適時に参照することで第5判定を行う。第5判定部78は、第5判定の結果である第5崩落判定フラグを、第3崩落判定部79に入力する。 The fifth judgment unit 78 judges whether the judgment score acquired from the fifth judgment trained model 95 is equal to or greater than a predetermined fifth threshold (fifth judgment). The fifth judgment unit 78 judges that there is a possibility of collapse when the acquired judgment score is equal to or greater than the fifth threshold, and judges that there is no possibility of collapse when the judgment score is less than the fifth threshold. In this embodiment, the fifth judgment unit 78 outputs a flag (i = 1) indicating the presence of collapse when the judgment score is equal to or greater than the fifth threshold. On the other hand, the fifth judgment unit 78 outputs a flag (i = 0) indicating the absence of collapse when the judgment score is less than the fifth threshold. Hereinafter, the flag (i = 1 or 0) regarding the judgment of collapse output by the fifth judgment unit 78 is referred to as the "fifth collapse judgment flag". The fifth threshold is stored in advance in the memory unit 90. The fifth judgment unit 78 performs the fifth judgment by referring to the fifth threshold stored in the memory unit 90 at appropriate times. The fifth determination unit 78 inputs the fifth collapse determination flag, which is the result of the fifth determination, to the third collapse determination unit 79.
(第3崩落判定部)
 第3崩落判定部79は、第5算出部66によって算出された第1赤外画像中の第1対象領域42における24個の小領域それぞれの輝度変化量の総和と、第4判定部77において行われた第4判定の結果である第4崩壊判定フラグと、第5判定部78において行われた第5判定の結果である第5崩壊判定フラグとに基づいて、炉内のごみの崩壊の有無を判定する。具体的には、第1対象領域42における輝度変化量の総和、第4崩壊判定フラグ、及び第5崩壊判定フラグを組み合合わせた3つのパターンが用意されている。図22に示すように、第1のパターンは、第1対象領域42におけるそれぞれの輝度変化量の総和が22以上又は-(マイナス)26以下であって、かつ第4判定部77から入力された第4崩壊判定フラグが、崩落有りを示すフラグ(i=1)であるときである。第2のパターンは、第1対象領域42における小領域それぞれの輝度変化量の総和が20以上又は-(マイナス)13以下であって、かつ第5判定部78から入力された第5崩壊判定フラグが、崩落有りを示すフラグ(i=1)であるときである。第3のパターンは、第1対象領域42における小領域それぞれの輝度変化量の総和が10以上又は-(マイナス)13以下であって、かつ第4判定部77から入力された第4崩壊判定フラグ、及び第5判定部78から入力された第5崩壊判定フラグが、どちらも崩落有りを示すフラグ(i=1)であるときである。
(Third collapse judgment section)
The third collapse determination unit 79 determines whether or not the waste in the furnace has collapsed based on the sum of the brightness changes of each of the 24 small regions in the first target region 42 in the first infrared image calculated by the fifth calculation unit 66, a fourth collapse determination flag which is the result of the fourth determination performed by the fourth determination unit 77, and a fifth collapse determination flag which is the result of the fifth determination performed by the fifth determination unit 78. Specifically, three patterns are prepared by combining the sum of the brightness changes in the first target region 42, the fourth collapse determination flag, and the fifth collapse determination flag. As shown in FIG. 22, the first pattern is when the sum of the brightness changes in the first target region 42 is 22 or more or −26 or less, and the fourth collapse determination flag input from the fourth determination unit 77 is a flag (i=1) indicating the presence of collapse. The second pattern is when the sum of the amounts of change in luminance of each of the small regions in first target region 42 is equal to or greater than 20 or equal to or less than − (minus) 13, and the fifth collapse determination flag input from fifth determination unit 78 is a flag indicating the presence of collapse (i = 1). The third pattern is when the sum of the amounts of change in luminance of each of the small regions in first target region 42 is equal to or greater than 10 or equal to or less than − (minus) 13, and both the fourth collapse determination flag input from fourth determination unit 77 and the fifth collapse determination flag input from fifth determination unit 78 are flags indicating the presence of collapse (i = 1).
 第3崩落判定部79は、第5算出部66によって算出された第1赤外画像中の第1対象領域42における24個の小領域それぞれの輝度変化量の総和、第4判定部77から入力された第4崩壊判定フラグ、第5判定部78から入力された第5崩壊判定フラグが、上記第1から第3のパターンのいずれかに該当するとき、炉内に崩壊有りと判定し、上記第1から第3のパターンのいずれかに該当しないとき、炉内に崩壊無しと判定する。なお、上記第1から第3のパターンに含まれる赤外画像の輝度変化量の総和のしきい値は、選択される画像の種類に依存して変化させてもよい。すなわち、可視光画像の深層学習による判定結果が崩壊有りを示す場合、炉内では大規模なごみの崩落が起こっているとみなすことができるので、第2のパターンに含まれる赤外画像の輝度変化量の総和のしきい値の範囲は、第1のパターンに含まれる赤外画像の輝度変化量の総和のしきい値の範囲よりも小さくしてもよい。また、赤外画像の深層学習による判定結果、及び可視光画像の深層学習による判定結果が共に崩壊有りを示す場合は、炉内でごみの崩落が起こっている確度が高いとみなすことができる。そこで、第3のパターンに含まれる赤外画像の輝度変化量の総和のしきい値の範囲は、第1、及び第2のパターンに含まれる赤外画像の輝度変化量の総和のしきい値の範囲よりも小さくしてもよい。 The third collapse determination unit 79 determines that there is collapse in the furnace when the sum of the brightness change amounts of each of the 24 small areas in the first target area 42 in the first infrared image calculated by the fifth calculation unit 66, the fourth collapse determination flag input from the fourth determination unit 77, and the fifth collapse determination flag input from the fifth determination unit 78 correspond to any of the above first to third patterns, and determines that there is no collapse in the furnace when they do not correspond to any of the above first to third patterns. The threshold value of the sum of the brightness change amounts of the infrared images included in the above first to third patterns may be changed depending on the type of image selected. In other words, when the determination result by deep learning of the visible light image indicates the presence of collapse, it can be considered that a large-scale collapse of garbage is occurring in the furnace, so the range of the threshold value of the sum of the brightness change amounts of the infrared images included in the second pattern may be smaller than the range of the threshold value of the sum of the brightness change amounts of the infrared images included in the first pattern. Furthermore, if the results of the deep learning judgment of the infrared image and the deep learning judgment of the visible light image both indicate the presence of collapse, it can be deemed that there is a high probability that the collapse of the waste is occurring inside the furnace. Therefore, the range of the threshold value of the sum of the brightness change amount of the infrared image included in the third pattern may be smaller than the range of the threshold value of the sum of the brightness change amount of the infrared image included in the first and second patterns.
(第4崩落判定部)
 第4崩落判定部81は、時系列データの学習や予測(回帰・分類)を行うRNNの一種である長・短期記憶ネットワークを含む。第4崩落判定部81は、第6算出部67から長・短期記憶ネットワークに、画像中のノイズが除去された連続する40フレーム分の赤外画像情報のパッケージが入力されると、崩落が生じた可能性に関する判定結果を出力するように学習された崩落判定用学習済みモデル97を用いて炉内のごみの崩壊の有無を判定する。第4崩落判定部81は、第6算出部67から入力された画像中のノイズが除去された連続する40フレーム分の赤外画像情報のパッケージを、記憶部90に記憶されている崩落判定用学習済みモデル97に入力することで、長・短期記憶ネットワークによる判定結果を取得する。
(Fourth collapse judgment section)
The fourth collapse determination unit 81 includes a long-short-term memory network, which is a type of RNN that performs learning and prediction (regression and classification) of time-series data. The fourth collapse determination unit 81 determines whether or not the waste in the furnace has collapsed by using a trained model for collapse determination 97 that has been trained to output a determination result regarding the possibility of collapse when a package of 40 consecutive frames of infrared image information from which noise in the images has been removed is input from the sixth calculation unit 67 to the long-short-term memory network. The fourth collapse determination unit 81 obtains a determination result by the long-short-term memory network by inputting the package of 40 consecutive frames of infrared image information from which noise in the images has been removed input from the sixth calculation unit 67 to the trained model for collapse determination 97 stored in the storage unit 90.
 第4崩落判定部81は、第6算出部67から長・短期記憶ネットワークに、画像中のノイズが除去された連続する40フレーム分の赤外画像情報のパッケージが入力されると、当該パッケージを長・短期記憶ネットワークに学習させ、当該赤外画像の40フレーム分の状態推移から、炉内の状態を判定する。すなわち、連続する40フレーム分の赤外画像情報が崩落判定用学習済みモデル97に入力されると、時間の経過を伴う炉内の状態に基づいて当該赤外画像情報に対する崩落の有無(正解データ)が教示されることで、崩落判定用学習済みモデル97があらかじめ生成されている。学習を終えた崩落判定用学習済みモデル97は、赤外画像情報のパッケージが入力されると、当該パッケージに含まれる40フレーム分の赤外画像情報に対する崩落が生じた可能性に関する数値を「判定用スコア」として出力する。 When a package of 40 consecutive frames of infrared image information from which noise has been removed is input from the sixth calculation unit 67 to the long- and short-term memory network, the fourth collapse determination unit 81 trains the long- and short-term memory network on the package and determines the state inside the furnace from the state transitions of the 40 frames of infrared images. That is, when 40 consecutive frames of infrared image information are input to the trained model for collapse determination 97, the trained model for collapse determination 97 is generated in advance by teaching the presence or absence of collapse (correct answer data) for the infrared image information based on the state inside the furnace over time. When a package of infrared image information is input, the trained model for collapse determination 97 that has completed learning outputs a numerical value related to the possibility of collapse occurring for the 40 frames of infrared image information included in the package as a "determination score".
 第4崩落判定部81は、崩落判定用学習済みモデル97から取得した判定用スコアが所定の第6しきい値以上であるか否かの判定を行う(第6判定)。第4崩落判定部81は、取得した判定用スコアが第6しきい値以上である場合に、崩落の可能性が有ると判定し、判定用スコアが第6しきい値未満である場合に、崩落の可能性が無いと判定する。本実施形態では、第4崩落判定部81は、判定用スコアが第6しきい値以上である場合に、崩落有りを示すフラグ(i=1)を出力する。一方、第4崩落判定部81は、判定用スコアが第6しきい値未満である場合に、崩落無しを示すフラグ(i=0)を出力する。判定部70は、第4崩落判定部81がフラグ(i=1)を出力すると、炉内に崩落有りと最終的に判定し、第4崩落判定部81がフラグ(i=0)を出力すると、炉内に崩落無しと最終的に判定する。 The fourth collapse judgment unit 81 judges whether the judgment score acquired from the trained model for collapse judgment 97 is equal to or greater than a predetermined sixth threshold (sixth judgment). The fourth collapse judgment unit 81 judges that there is a possibility of collapse when the acquired judgment score is equal to or greater than the sixth threshold, and judges that there is no possibility of collapse when the judgment score is less than the sixth threshold. In this embodiment, the fourth collapse judgment unit 81 outputs a flag (i = 1) indicating that there is a collapse when the judgment score is equal to or greater than the sixth threshold. On the other hand, the fourth collapse judgment unit 81 outputs a flag (i = 0) indicating that there is no collapse when the judgment score is less than the sixth threshold. When the fourth collapse judgment unit 81 outputs the flag (i = 1), the judgment unit 70 finally judges that there is a collapse in the furnace, and when the fourth collapse judgment unit 81 outputs the flag (i = 0), the judgment unit 70 finally judges that there is no collapse in the furnace.
(制御部の構成)
 制御部80は、第4崩落判定部81から受け付けた崩落検知フラグに基づき、複数の制御対象装置Sを制御する(図19参照)。本実施形態では、制御部80は、第4崩落判定部81から崩落有りを示す崩落検知フラグを受け付けた場合、制御対象装置Sが定格運転するように、複数の制御対象装置Sのうち1つ以上を制御する。制御部80は、例えば、押出アーム124の移動速度、火格子126の移動速度、ブロワ138の回転数の増減、第1流量調整弁140の弁開度、および第2流量調整弁142の弁開度それぞれの増減を示す信号などを各制御対象装置Sに送信する。なお、制御部80は、燃焼室R内の未燃ガスの濃度が低減するように、複数の制御対象装置Sのうち1つ以上を制御してもよい。
(Configuration of the control unit)
The control unit 80 controls the plurality of control target devices S based on the collapse detection flag received from the fourth collapse determination unit 81 (see FIG. 19). In this embodiment, when the control unit 80 receives a collapse detection flag indicating the occurrence of collapse from the fourth collapse determination unit 81, it controls one or more of the plurality of control target devices S so that the control target devices S operate at a rated speed. The control unit 80 transmits, for example, signals indicating the increase or decrease in the moving speed of the push arm 124, the moving speed of the grate 126, the increase or decrease in the number of revolutions of the blower 138, the valve opening degree of the first flow rate control valve 140, and the valve opening degree of the second flow rate control valve 142 to each control target device S. The control unit 80 may control one or more of the plurality of control target devices S so that the concentration of unburned gas in the combustion chamber R is reduced.
(情報処理装置の動作)
 続いて、図23を参照して本実施形態における情報処理装置4の動作の一例について説明する。ただし、以下に説明する処理の順番は、以下の例に限定されず、適宜入れ替えてもよい。
(Operation of information processing device)
Next, an example of the operation of the information processing device 4 in this embodiment will be described with reference to Fig. 23. However, the order of the processes described below is not limited to the following example, and may be changed as appropriate.
 取得部40は、撮像装置2から赤外画像を取得する(ステップS1)。また、取得部40は、撮像装置2から可視光画像を取得する(ステップS11)。ステップS1の処理に次いで、第1算出部50は、ステップS1で取得された第1赤外画像に基づき輝度の代表値を算出する。また、第2算出部55は、ステップS1で取得された第2赤外画像に基づき輝度の代表値を算出する(ステップS2)。次いで、外乱判定部74は、ステップS1で取得された第1赤外画像に基づき外乱判定を行う(ステップS3)。外乱判定部74により外乱が有ると判定された場合(ステップS3:YES)、ステップS1の処理に戻る。一方、外乱判定部74により外乱が無いと判定された場合(ステップS3:NO)、第5算出部66は、第1算出部50から受け付けた輝度の代表値(第1特徴量)と、第2算出部55から受け付けた輝度の代表値(第2特徴量)とに基づいて第5特徴量を算出する(ステップS21)。第4判定部77は、取得部40から受け付けた1以上の赤外画像に基づき、崩落に関する判定を行う(ステップS22)。また、第5判定部78は、取得部40から受け付けた可視光画像に基づき、崩落に関する判定を行う(ステップS23)。 The acquisition unit 40 acquires an infrared image from the imaging device 2 (step S1). The acquisition unit 40 also acquires a visible light image from the imaging device 2 (step S11). Following the processing of step S1, the first calculation unit 50 calculates a representative value of brightness based on the first infrared image acquired in step S1. The second calculation unit 55 also calculates a representative value of brightness based on the second infrared image acquired in step S1 (step S2). Next, the disturbance determination unit 74 performs a disturbance determination based on the first infrared image acquired in step S1 (step S3). If the disturbance determination unit 74 determines that there is a disturbance (step S3: YES), the processing returns to step S1. On the other hand, if the disturbance determination unit 74 determines that there is no disturbance (step S3: NO), the fifth calculation unit 66 calculates a fifth feature based on the representative value of brightness (first feature) received from the first calculation unit 50 and the representative value of brightness (second feature) received from the second calculation unit 55 (step S21). The fourth determination unit 77 makes a collapse-related determination based on one or more infrared images received from the acquisition unit 40 (step S22). The fifth determination unit 78 also makes a collapse-related determination based on the visible light image received from the acquisition unit 40 (step S23).
 上記ステップS21,S22,S23の処理に次いで、第3崩落判定部79は、ステップS21において算出された第1赤外画像中の第1対象領域42における小領域それぞれの輝度変化量の総和、ステップS22の判定の結果、およびステップS23の判定の結果に基づき、炉内のごみの崩落の有無を判定する(ステップS24)。第3崩落判定部79により崩落が有ると判定された場合(ステップS24:i=1)、第6算出部67は、次元数を削減されて画像中のノイズが除去された、0.1秒間隔で連続する複数の赤外画像情報の中から、ごみの崩落が起きたと人間によって判断された時点を基点として前後2秒間ずつ、合計4秒間に連続する40フレーム分のノイズが除去された赤外画像情報をまとめてパッケージ化し、第4崩落判定部81に含まれる長・短期記憶ネットワークに入力する(ステップS25)。第3崩落判定部79により崩落が無いと判定された場合(ステップS24:i=0)、炉内にごみの崩落が無いことが検知される(ステップ28)。ステップS28の処理が終了した場合、ステップS1の処理に戻る。 Following the processing of steps S21, S22, and S23, the third collapse determination unit 79 determines whether or not the waste inside the furnace has collapsed based on the sum of the brightness changes of each small area in the first target area 42 in the first infrared image calculated in step S21, the result of the determination in step S22, and the result of the determination in step S23 (step S24). If the third collapse determination unit 79 determines that a collapse has occurred (step S24: i = 1), the sixth calculation unit 67 compiles and packages 40 consecutive frames of infrared image information from which noise has been removed over a total of 4 seconds, for 2 seconds before and after the point in time when the human judged that the waste had collapsed, from among multiple consecutive infrared image information at 0.1 second intervals in which the number of dimensions has been reduced and noise in the image has been removed, and inputs this to the long-term and short-term memory network included in the fourth collapse determination unit 81 (step S25). If the third collapse determination unit 79 determines that there is no collapse (step S24: i = 0), it is detected that there is no collapse of waste in the furnace (step S28). When the processing of step S28 is completed, the processing returns to step S1.
 ステップS25の処理に次いで、第4崩落判定部81は、第6算出部67から長・短期記憶ネットワークに、画像中のノイズが除去された連続する40フレーム分の赤外画像情報のパッケージが入力されると、崩落判定用学習済みモデル97を用いて炉内のごみの崩壊の有無を判定する(ステップS26)。第4崩落判定部81により崩落が有ると判定された場合(ステップS26:i=1)、炉内にごみの崩落が有ることが検知される(ステップS27)。ステップS27の処理が終了した場合、ステップS1の処理に戻る。第4崩落判定部81により崩落が無いと判定された場合(ステップS26:i=0)、崩落が無いことを検知する(ステップ28)。ステップS28の処理が終了した場合、ステップS1の処理に戻る。 Following the processing of step S25, when a package of 40 consecutive frames of infrared image information from which noise has been removed is input from the sixth calculation unit 67 to the long- and short-term memory network, the fourth collapse determination unit 81 uses the trained model for collapse determination 97 to determine whether or not the waste has collapsed inside the furnace (step S26). If the fourth collapse determination unit 81 determines that a collapse has occurred (step S26: i = 1), it detects that there is a collapse of waste inside the furnace (step S27). When the processing of step S27 is completed, the processing returns to step S1. If the fourth collapse determination unit 81 determines that there is no collapse (step S26: i = 0), it detects that there is no collapse (step 28). When the processing of step S28 is completed, the processing returns to step S1.
 以上説明した情報処理装置4の動作は、焼却設備100の運転段階で繰り返し実行される。 The operation of the information processing device 4 described above is repeatedly executed during the operation of the incineration facility 100.
(作用・効果)
 正しくは崩落を示すとは言えない炉内の状況の変化、例えば、黒い灰が炉内を下から上に移動する状況を撮像した画像であっても、時間の経過を考慮せず1フレーム単独の画像を判断の対象とすると、下から上への灰の移動を把握することはできず、崩落の発生を示すひとつの要素として認識され、過検知の発生の要因となり得る。本実施形態によれば、炉内の状態把握に関して時間推移の要素を考慮し、取得部40により取得された40フレーム分の連続した赤外画像の情報を、再帰型構造を持つ学習済みモデルのひとつである長・短期記憶ネットワークに入力して学習させておき、赤外画像の40フレーム分の連続した赤外画像の状態推移から、炉内の状態を判定する。これにより、上記のような崩落を示すとは言えない炉内の状況の変化を正しく把握することができるので、過検知の発生を抑制することができる。
(Action and Effects)
Even if an image captures a change in the state inside the furnace that does not truly indicate collapse, for example, a state in which black ash moves from bottom to top inside the furnace, if a single frame image is used as the subject of judgment without considering the passage of time, the movement of ash from bottom to top cannot be grasped, and it is recognized as one element indicating the occurrence of collapse, which may cause overdetection. According to this embodiment, the element of time transition is taken into consideration when grasping the state inside the furnace, and information on 40 consecutive frames of infrared images acquired by the acquisition unit 40 is input to a long-short-term memory network, which is one of the trained models with a recursive structure, and the state inside the furnace is determined from the state transition of 40 consecutive frames of infrared images. This makes it possible to correctly grasp the change in the state inside the furnace that cannot be said to indicate collapse as described above, thereby suppressing the occurrence of overdetection.
(その他の実施形態)
 以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成は各実施形態の構成に限られるものではなく、本開示の要旨を逸脱しない範囲内での構成の付加、省略、置換、およびその他の変更が可能である。
Other Embodiments
Although the embodiments of the present disclosure have been described in detail above with reference to the drawings, the specific configurations are not limited to those of the embodiments, and additions, omissions, substitutions, and other modifications of the configurations are possible without departing from the gist of the present disclosure.
 なお、上述した第1崩落判定部75は、第1判定の結果と、第2判定の結果との2つに基づき、第1規模の崩落よりも崩落の規模が大きい第2規模の崩落の有無を判定してもよい。この場合、第1崩落判定部75は、第1崩落判定フラグの値と、第2崩落判定フラグの値との合計値が、判定用しきい値以上である場合に、第2規模の崩落が有ると判定すればよい。 The above-mentioned first collapse determination unit 75 may determine whether or not a second-scale collapse, which is larger than the first-scale collapse, has occurred based on both the result of the first determination and the result of the second determination. In this case, the first collapse determination unit 75 may determine that a second-scale collapse has occurred when the sum of the value of the first collapse determination flag and the value of the second collapse determination flag is equal to or greater than the determination threshold value.
 また、崩落検知部41は、取得部40により取得された第1赤外画像である第1入力要素と、取得部40により第1赤外画像よりも前に取得された時系列上の複数の画像のなかで、ごみFgの1回の崩落にかかる時間内に撮像された2以上の第2赤外画像である第2入力要素とに基づき、崩落の有無を判定してもよい。この場合、崩落検知部41は、第1入力要素および第2入力要素が入力されると、崩落が生じた可能性に関する判定結果を出力するように学習された学習済みモデル93(図2参照。以下、「崩落検知用学習済みモデル」と称する)を用いて判定を行う。崩落検知用学習済みモデル93は、記憶部90にあらかじめ記憶されている。崩落検知部41は、記憶部90に記憶されている崩落検知用学習済みモデル93に取得部40から受け付けた第1入力要素および第2入力要素を入力することで出力された判定結果を取得する。崩落検知用学習済みモデル93は、例えば、畳み込みニューラルネットワークなどの深層学習モデルである。崩落検知用学習済みモデル93は、撮像装置2によって撮像された第1入力要素および第2入力要素としての赤外画像が入力されるとともに、当該赤外画像に対する崩落の有無が教示される学習ステップが、複数回繰り返されることで生成される。 The collapse detection unit 41 may also determine whether or not a collapse has occurred based on a first input element, which is the first infrared image acquired by the acquisition unit 40, and a second input element, which is two or more second infrared images captured within the time it takes for one collapse of the garbage Fg among a plurality of images in a time series acquired by the acquisition unit 40 before the first infrared image. In this case, the collapse detection unit 41 makes the determination using a trained model 93 (see FIG. 2; hereinafter, referred to as the "trained model for collapse detection") that has been trained to output a determination result regarding the possibility of a collapse when the first input element and the second input element are input. The trained model for collapse detection 93 is stored in advance in the storage unit 90. The collapse detection unit 41 acquires the output determination result by inputting the first input element and the second input element received from the acquisition unit 40 into the trained model for collapse detection 93 stored in the storage unit 90. The trained model for collapse detection 93 is, for example, a deep learning model such as a convolutional neural network. The trained model 93 for collapse detection is generated by repeatedly performing a learning step in which an infrared image as a first input element and a second input element captured by the imaging device 2 are input, and the presence or absence of a collapse is taught for the infrared image.
 また、第1算出部50、第2算出部55のそれぞれが取得部40から受け付ける画像は、赤外画像に限定されることはない。また、第3算出部60、および第4算出部65のそれぞれが取得部40から受け付ける画像は、可視光画像に限定されることはない。 Furthermore, the images that the first calculation unit 50 and the second calculation unit 55 receive from the acquisition unit 40 are not limited to infrared images. Furthermore, the images that the third calculation unit 60 and the fourth calculation unit 65 receive from the acquisition unit 40 are not limited to visible light images.
 また、実施形態では、焼却設備100がストーカ式のごみ焼却炉とされているが、ストーカ式のごみ焼却炉に限定されることはない。焼却設備100は、例えば、キルンストーカ炉、バイオマス流動床ボイラ、汚泥焼却炉などであってもよい。したがって、上述の崩落検知システム1は、これらキルンストーカ炉、バイオマス流動床ボイラ、汚泥焼却炉などの焼却設備に適用されるシステムであってもよい。 In addition, in the embodiment, the incineration facility 100 is a stoker-type waste incinerator, but is not limited to a stoker-type waste incinerator. The incineration facility 100 may be, for example, a kiln stoker furnace, a biomass fluidized bed boiler, a sludge incinerator, etc. Therefore, the collapse detection system 1 described above may be a system that is applied to incineration facilities such as these kiln stoker furnaces, biomass fluidized bed boilers, and sludge incinerators.
 また、図24は、本実施形態に係るコンピュータ1100の構成を示すハードウェア構成図である。コンピュータ1100は、プロセッサ1110と、メインメモリ1120と、ストレージ1130と、インターフェース1140とを備えている。 FIG. 24 is a hardware configuration diagram showing the configuration of a computer 1100 according to this embodiment. The computer 1100 includes a processor 1110, a main memory 1120, a storage 1130, and an interface 1140.
 上述の情報処理装置4は、1以上のコンピュータ1100に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ1130に記憶されている。プロセッサ1110は、プログラムをストレージ1130から読み出してメインメモリ1120に展開し、当該プログラムにしたがって上記処理を実行する。また、プロセッサ1110は、プログラムにしたがって、上述した記憶部90に対応する記憶領域をメインメモリ1120に確保する。プログラムは、コンピュータ1100に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージ1130に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。また、コンピュータ1100は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ1110によって実現される機能の一部またはすべてが当該集積回路によって実現されてよい。 The information processing device 4 described above is implemented in one or more computers 1100. The operation of each of the above-mentioned processing units is stored in the storage 1130 in the form of a program. The processor 1110 reads the program from the storage 1130, expands it in the main memory 1120, and executes the above-mentioned processing according to the program. The processor 1110 also secures a memory area in the main memory 1120 corresponding to the above-mentioned memory unit 90 according to the program. The program may be for realizing part of the function to be performed by the computer 1100. For example, the program may be for performing a function by combining it with other programs already stored in the storage 1130 or by combining it with other programs implemented in other devices. The computer 1100 may also be provided with a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration. Examples of PLDs include Programmable Array Logic (PAL), Generic Array Logic (GAL), Complex Programmable Logic Device (CPLD), and Field Programmable Gate Array (FPGA). In this case, some or all of the functions realized by the processor 1110 may be realized by the integrated circuit.
 ストレージ1130の例としては、磁気ディスク、光磁気ディスク、半導体メモリなどが挙げられる。ストレージ1130は、コンピュータ1100のバスに直接的に接続された内部メディアであってもよいし、インターフェース1140または通信回線を介してコンピュータ1100に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ1100に配信される場合、配信を受けたコンピュータ1100が当該プログラムをメインメモリ1120に展開し、上記処理を実行してもよい。上記実施形態では、ストレージ1130は、一時的でない有形の記憶媒体である。また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ1130に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。 Examples of storage 1130 include a magnetic disk, a magneto-optical disk, and a semiconductor memory. Storage 1130 may be an internal medium directly connected to the bus of computer 1100, or an external medium connected to computer 1100 via interface 1140 or a communication line. In addition, when this program is distributed to computer 1100 via a communication line, computer 1100 that receives the program may expand the program in main memory 1120 and execute the above-mentioned processing. In the above embodiment, storage 1130 is a non-transient tangible storage medium. The program may also be for realizing part of the above-mentioned functions. Furthermore, the program may be a so-called differential file (differential program) that realizes the above-mentioned functions in combination with other programs already stored in storage 1130.
<付記>
 各実施形態に記載の崩落検知システム、および崩落検知方法は、例えば以下のように把握される。
<Additional Notes>
The collapse detection system and the collapse detection method described in each embodiment can be understood, for example, as follows.
(1)第1の態様に係る崩落検知システム1は、焼却設備100のフィーダ104内に堆積して燃焼室Rに向けて押し出される被焼却物(ごみFg)を撮像した画像を第1所定周期で取得する取得部40と、前記取得部40により取得された第1画像(第1赤外画像)に基づく輝度の代表値を算出する第1算出部50と、前記取得部40により前記第1画像よりも前に取得された時系列上の複数の画像のなかで、前記被焼却物の1回の崩落にかかる時間内に撮像された2以上の画像(第2赤外画像)に基づく輝度の代表値を算出する第2算出部55と、前記第1算出部50により算出された輝度の代表値と、前記第2算出部55により算出された輝度の代表値とに基づき前記崩落に関する判定を行う判定部70と、を備える。 (1) The collapse detection system 1 according to the first aspect includes an acquisition unit 40 that acquires images of the incinerated material (garbage Fg) that is piled up in the feeder 104 of the incineration equipment 100 and pushed toward the combustion chamber R at a first predetermined period, a first calculation unit 50 that calculates a representative value of brightness based on the first image (first infrared image) acquired by the acquisition unit 40, a second calculation unit 55 that calculates a representative value of brightness based on two or more images (second infrared images) captured within the time it takes for one collapse of the incinerated material among a plurality of images in a time series acquired by the acquisition unit 40 before the first image, and a determination unit 70 that makes a determination regarding the collapse based on the representative value of brightness calculated by the first calculation unit 50 and the representative value of brightness calculated by the second calculation unit 55.
 これにより、例えば2つのタイミングで取得された各画像の輝度に基づき崩落の有無を判定する場合と比較して、ごみFgの崩落の有無をより高精度に判定することができる。その結果、燃焼室R内でのごみFgの燃焼状態を正確に把握することができる。 This makes it possible to determine with higher accuracy whether the garbage Fg has collapsed, for example, compared to when determining whether the garbage Fg has collapsed based on the brightness of each image acquired at two different times. As a result, it is possible to accurately grasp the combustion state of the garbage Fg in the combustion chamber R.
(2)第2の態様に係る崩落検知システム1は、(1)の崩落検知システム1であって、前記第2算出部55は、前記2以上の画像に関する輝度の平均値または中央値を、前記2以上の画像に基づく輝度の代表値として算出してもよい。 (2) A collapse detection system 1 according to a second aspect is the collapse detection system 1 of (1), in which the second calculation unit 55 may calculate an average or median brightness value for the two or more images as a representative brightness value based on the two or more images.
 これにより、具体的な統計量によって第1赤外画像の状態および第2赤外画像の状態を表現することができる。 This allows the state of the first infrared image and the state of the second infrared image to be expressed using specific statistics.
(3)第3の態様に係る崩落検知システム1は、(1)または(2)の崩落検知システム1であって、前記2以上の画像は、互いに第1時間の間隔で撮像された画像であり、前記2以上の画像は、少なくとも前記第1時間の2倍以上である第2時間に亘り前記第1画像よりも前に撮像された画像であってもよい。 (3) A collapse detection system 1 according to a third aspect is a collapse detection system 1 according to (1) or (2), in which the two or more images are images captured at an interval of a first time from each other, and the two or more images may be images captured before the first image for a second time that is at least twice the first time.
 これにより、上記作用をより具体的な設定で実現することができる。 This allows the above effects to be realized in more specific settings.
(4)第4の態様に係る崩落検知システム1は、(1)から(3)のうちいずれかの1つの崩落検知システム1であって、前記判定部70は、前記第1算出部50により算出された輝度の代表値と、前記第2算出部55により算出された輝度の代表値とに基づき前記崩落に関する第1判定を行う第1判定部71と、前記取得部40により取得された1以上の画像に基づき、前記崩落に関する第2判定を行う第2判定部72と、前記第1判定の結果と、前記第2判定の結果とに基づき、第1規模の崩落よりも崩落の規模が大きい第2規模の崩落の有無を判定する第1崩落判定部75と、を含んでもよい。 (4) A collapse detection system 1 according to a fourth aspect is a collapse detection system 1 according to any one of (1) to (3), and the determination unit 70 may include a first determination unit 71 that makes a first determination regarding the collapse based on a representative value of brightness calculated by the first calculation unit 50 and a representative value of brightness calculated by the second calculation unit 55, a second determination unit 72 that makes a second determination regarding the collapse based on one or more images acquired by the acquisition unit 40, and a first collapse determination unit 75 that determines the presence or absence of a second-scale collapse, which is larger in scale than the first-scale collapse, based on the result of the first determination and the result of the second determination.
 これにより、被焼却物の崩落の規模を分類することができる。したがって、燃焼室R内での被焼却物の燃焼状態をより正確に把握することができる。 This allows the scale of collapse of the incinerated materials to be classified. Therefore, the combustion state of the incinerated materials in the combustion chamber R can be grasped more accurately.
(5)第5の態様に係る崩落検知システム1は、(4)の崩落検知システム1であって、前記第2判定部72は、前記取得部40により取得された画像が入力されると、前記崩落が生じた可能性に関する判定結果を出力するように学習された学習済みモデル(第2判定用学習済みモデル91)を用いて、前記第2判定を行ってもよい。 (5) A collapse detection system 1 according to a fifth aspect is the collapse detection system 1 according to (4), in which the second determination unit 72 may perform the second determination using a trained model (trained model 91 for second determination) that has been trained to output a determination result regarding the possibility that the collapse has occurred when an image acquired by the acquisition unit 40 is input.
 これにより、被焼却物の崩落の規模をより高精度に分類することができる。 This allows for more accurate classification of the scale of collapse of the incinerated material.
(6)第6の態様に係る崩落検知システム1は、(4)または(5)の崩落検知システム1であって、前記取得部40は、前記画像である赤外画像を前記第1所定周期で取得するとともに、前記燃焼室R内を撮像した可視光画像を第2所定周期で取得し、前記第2判定部72は、前記取得部40により取得された1以上の赤外画像に基づき、前記第2判定を行い、前記判定部70は、前記取得部40により取得された1以上の可視光画像に基づき、前記崩落に関する第3判定を行う第3判定部73を更に含み、前記第1崩落判定部75は、前記第1判定の結果と、前記第2判定の結果と、前記第3判定の結果とに基づき、前記第2規模の崩落の有無を判定してもよい。 (6) The collapse detection system 1 according to the sixth aspect is the collapse detection system 1 according to (4) or (5), in which the acquisition unit 40 acquires the infrared image, which is the image, at the first predetermined period and acquires a visible light image of the inside of the combustion chamber R at a second predetermined period, the second determination unit 72 makes the second determination based on one or more infrared images acquired by the acquisition unit 40, the determination unit 70 further includes a third determination unit 73 that makes a third determination regarding the collapse based on one or more visible light images acquired by the acquisition unit 40, and the first collapse determination unit 75 may determine the presence or absence of a collapse of the second scale based on the result of the first determination, the result of the second determination, and the result of the third determination.
 これにより、被焼却物の崩落の規模をより高精度に分類することができる。 This allows for more accurate classification of the scale of collapse of the incinerated material.
(7)第7の態様に係る崩落検知システム1は、(4)から(6)のうちいずれかの1つの崩落検知システム1であって、前記判定部70は、前記取得部40により取得された画像の輝度に関する特徴量に基づき、外乱の有無を判定する外乱判定部74を含み、前記第1崩落判定部75による判定は、前記外乱判定部74により外乱が無いと判定された場合に行われてもよい。 (7) The collapse detection system 1 according to the seventh aspect is any one of the collapse detection systems 1 of (4) to (6), in which the determination unit 70 includes a disturbance determination unit 74 that determines the presence or absence of a disturbance based on a feature related to the brightness of the image acquired by the acquisition unit 40, and the determination by the first collapse determination unit 75 may be made when the disturbance determination unit 74 determines that there is no disturbance.
 これにより、例えば被焼却物が崩落していないにもかかわらず崩落を検出することを抑制することができる。 This makes it possible to prevent, for example, the collapse of materials to be incinerated being detected even when they have not collapsed.
(8)第8の態様に係る崩落検知システム1は、(4)から(7)のうちいずれかの1つの崩落検知システム1であって、前記判定部70は、前記第1崩落判定部75により前記第2規模の崩落が無いと判定された場合に、前記取得部40により取得された複数の画像の輝度の変化に基づき前記第1規模の崩落の有無を判定する第2崩落判定部76を更に含んでもよい。 (8) The collapse detection system 1 according to the eighth aspect is any one of the collapse detection systems 1 of (4) to (7), and the determination unit 70 may further include a second collapse determination unit 76 that determines the presence or absence of the first scale collapse based on a change in brightness of the multiple images acquired by the acquisition unit 40 when the first collapse determination unit 75 determines that there is no collapse of the second scale.
 これにより、被焼却物の崩落の規模をより高精度に分類することができる。 This allows for more accurate classification of the scale of collapse of incinerated materials.
(9)第9の態様に係る崩落検知システム1は、(8)の崩落検知システム1であって、前記第2崩落判定部76は、前記取得部40により取得された画像と、前記取得部40により過去に取得された1以上の画像との類似度を算出し、前記類似度が所定条件を満たさない場合、崩落が無いと判定してもよい。 (9) A collapse detection system 1 according to a ninth aspect is the collapse detection system 1 of (8), in which the second collapse determination unit 76 calculates a similarity between an image acquired by the acquisition unit 40 and one or more images previously acquired by the acquisition unit 40, and may determine that no collapse has occurred if the similarity does not satisfy a predetermined condition.
 これにより、例えば被焼却物が崩落していないにもかかわらず崩落を検出すること、すなわち過検知をより抑制することができる。 This makes it possible to further reduce false positives, such as detecting collapse when the material to be incinerated has not collapsed.
(10)第10の態様に係る崩落検知システム1は、(1)の崩落検知システム1であって、前記判定部70は、前記取得部40により取得された1以上の画像に基づいて抽出された特徴量を、再帰型構造を持つ学習済みモデル97に入力することを含む処理を行うことで、前記崩落の有無を判定してもよい。 (10) A collapse detection system 1 according to a tenth aspect is the collapse detection system 1 of (1), in which the determination unit 70 may determine the presence or absence of a collapse by performing processing that includes inputting features extracted based on one or more images acquired by the acquisition unit 40 into a trained model 97 having a recursive structure.
 これにより、過検知の発生を抑制することができる。 This helps prevent false positives from occurring.
(11)第11の態様に係る崩落検知システム1は、(10)の崩落検知システム1であって、前記判定部70は、前記取得部40により取得された1以上の赤外画像に基づいて抽出された特徴量を、深層学習モデルに入力することにより第4判定を行う第4判定部77と、前記取得部40により取得された可視画像に基づいて抽出された特徴量を、深層学習モデルに入力することにより第5判定を行う第5判定部78と、前記第1算出部50により算出された輝度の代表値と前記第2算出部55により算出された輝度の代表値とに基づいて算出された特徴量と、前記第4判定の結果と、前記第5判定の結果とに基づき、前記崩落に関する判定を行う第3崩落判定部79と、を含んでいてもよい。 (11) The collapse detection system 1 according to the eleventh aspect is the collapse detection system 1 according to (10), and the determination unit 70 may include a fourth determination unit 77 that performs a fourth determination by inputting features extracted based on one or more infrared images acquired by the acquisition unit 40 into a deep learning model, a fifth determination unit 78 that performs a fifth determination by inputting features extracted based on the visible image acquired by the acquisition unit 40 into a deep learning model, and a third collapse determination unit 79 that performs a determination regarding the collapse based on features calculated based on the representative value of luminance calculated by the first calculation unit 50 and the representative value of luminance calculated by the second calculation unit 55, the result of the fourth determination, and the result of the fifth determination.
(12)第12の態様に係る崩落検知システム1は、(10)又は(11)の崩落検知システム1であって、前記判定部70は、前記取得部40により所定の時間間隔で連続して取得された複数の画像の特徴量をパッケージ化し、前記パッケージ化された複数の画像の特徴量を、前記再帰型構造を持つ学習済みモデル97に入力してもよい。 (12) The collapse detection system 1 according to the twelfth aspect is the collapse detection system 1 according to (10) or (11), in which the determination unit 70 packages features of a plurality of images acquired continuously at a predetermined time interval by the acquisition unit 40, and may input the packaged features of the plurality of images to the trained model 97 having the recursive structure.
(13)第13の態様に係る崩落検知システム1は、(12)の崩落検知システム1であって、前記取得部40により所定の時間間隔で連続して取得された複数の画像の次元を、オートエンコーダ96を用いて削減し、次元を削減された複数の画像の特徴量をパッケージ化してもよい。 (13) The collapse detection system 1 according to the thirteenth aspect is the collapse detection system 1 according to (12), in which the dimensions of multiple images acquired continuously at a predetermined time interval by the acquisition unit 40 are reduced using an autoencoder 96, and the features of the multiple images with reduced dimensions may be packaged.
(14)第14の態様に係る崩落検知方法は、1以上のコンピュータ1100が、焼却設備100のフィーダ104内に堆積して燃焼室Rに向けて押し出される被焼却物を撮像した画像を第1所定周期で取得し、取得した第1画像に基づく輝度の代表値を算出し、前記第1画像よりも前に取得した時系列上の複数の画像のなかで、前記被焼却物の1回の崩落にかかる時間内に撮像された2以上の画像に基づく輝度の代表値を算出し、前記第1画像に基づく輝度の代表値と、前記2以上の画像に基づく輝度の代表値とに基づき前記崩落に関する判定を行うことを含む。 (14) The collapse detection method according to the fourteenth aspect includes one or more computers 1100 acquiring images of the incinerated materials that have accumulated in the feeder 104 of the incineration equipment 100 and are being pushed toward the combustion chamber R at a first predetermined period, calculating a representative value of brightness based on the acquired first image, calculating a representative value of brightness based on two or more images that were acquired within the time it takes for one collapse of the incinerated materials among a plurality of images in a time series acquired before the first image, and making a judgment regarding the collapse based on the representative value of brightness based on the first image and the representative value of brightness based on the two or more images.
(15)第15の態様に係る崩落検知システム1は、焼却設備100のフィーダ104内に堆積して燃焼室Rに向けて押し出される被焼却物を撮像した画像を第1所定周期で取得する取得部40と、前記取得部40により取得された第1画像である第1入力要素と、前記取得部40により前記第1画像よりも前に取得された時系列上の複数の画像のなかで、前記被焼却物の1回の崩落にかかる時間内に撮像された2以上の画像である第2入力要素とに基づき、前記崩落に関する判定を行う崩落検知部41と、を備える。 (15) The collapse detection system 1 according to the fifteenth aspect includes an acquisition unit 40 that acquires images of the incinerated materials that have accumulated in the feeder 104 of the incineration equipment 100 and are being pushed toward the combustion chamber R at a first predetermined period, and a collapse detection unit 41 that makes a judgment regarding the collapse based on a first input element that is a first image acquired by the acquisition unit 40, and a second input element that is two or more images captured within the time it takes for one collapse of the incinerated materials among a plurality of images in a time series acquired by the acquisition unit 40 before the first image.
 本開示は、焼却炉の燃焼室内における被焼却物の崩落を検知するシステムに関する。本開示の崩落検知システムによれば、被焼却物の崩落検知の精度を向上させることができる。 The present disclosure relates to a system for detecting the collapse of materials to be incinerated within the combustion chamber of an incinerator. The collapse detection system disclosed herein can improve the accuracy of detecting the collapse of materials to be incinerated.
 1…崩落検知システム
 2…撮像装置
 4…情報処理装置
 5…赤外カメラ
 6…可視光カメラ
 8…フィルタ装置
 40…取得部
 41…崩落検知部
 42…第1対象領域
 43…第2対象領域
 44…第3対象領域
 45,45a,45b,45c…第4対象領域
 46…第5対象領域
 46´…二値化データ
 42a…第1領域
 42b…第2領域
 42c…第3領域
 42d…第4領域
 42e…第5領域
 42f…第6領域
 42g…第7領域
 42h…第8領域
 42i…第9領域
 43c…中央領域
 43l…左側領域
 43r…右側領域
 50…第1算出部
 55…第2算出部
 60…第3算出部
 65…第4算出部
 66…第5算出部
 67…第6算出部
 70…判定部
 71…第1判定部
 72…第2判定部
 73…第3判定部
 74…外乱判定部
 75…第1崩落判定部
 76…第2崩落判定部
 77…第4判定部
 78…第5判定部
 79…第3崩落判定部
 80…制御部
 81…第4崩落判定部
 90…記憶部
 91…第2判定用学習済みモデル
 92…外乱判定用学習済みモデル
 93…崩落検知用学習済みモデル
 94…第4判定用学習済みモデル
 95…第5判定用学習済みモデル
 96…オートエンコーダ
 97…崩落判定用学習済みモデル
 100…焼却設備
 102…ホッパ
 104…フィーダ
 108…炉本体
 110…押出装置
 112…空気供給装置
 114…熱回収ボイラ
 116…減温塔
 118…集じん装置
 120…煙突
 121…下流側端部
 122…受入口
 124…押出アーム
 126…火格子
 128…乾燥領域
 130…燃焼領域
 131…火炎
 132…後燃焼領域
 135…灰
 136…空気供給管
 138…ブロワ
 140…第1流量調整弁
 142…第2流量調整弁
 143…排ガス
 144…煙道
 145…炉尻
 146…灰シュート
 1100…コンピュータ
 1110…プロセッサ
 1120…メインメモリ
 1130…ストレージ
 1140…インターフェース
 Fg…ごみ(被焼却物)
 Fr…前面
 R…燃焼室
 S…制御対象装置
 W1…搬送方向
LIST OF SYMBOLS 1... Collapse detection system 2... Imaging device 4... Information processing device 5... Infrared camera 6... Visible light camera 8... Filter device 40... Acquisition unit 41... Collapse detection unit 42... First target area 43... Second target area 44... Third target area 45, 45a, 45b, 45c... Fourth target area 46... Fifth target area 46'... Binarized data 42a... First area 42b... Second area 42c... Third area 42d... Fourth area 42e... Fifth area 42f... Sixth area 42g... Seventh area 42h... Eighth area 42i... Ninth area 43c... Central area 43l... Left area 43r... Right area 50... First calculation unit 55... Second calculation unit 60... Third calculation unit 65... Fourth calculation unit 66... Fifth calculation unit 67... Sixth calculation unit 70...Determination unit 71...First determination unit 72...Second determination unit 73...Third determination unit 74...Disturbance determination unit 75...First collapse determination unit 76...Second collapse determination unit 77...Fourth determination unit 78...Fifth determination unit 79...Third collapse determination unit 80...Control unit 81...Fourth collapse determination unit 90...Memory unit 91...Trained model for second determination 92...Trained model for disturbance determination 93...Trained model for collapse detection 94...Trained model for fourth determination 95...Trained model for fifth determination 96...Autoencoder 97...Trained model for collapse determination 100...Incineration equipment 102...Hopper 104...Feeder 108...Furnace body 110...Extrusion device 112...Air supply device 114...Heat recovery boiler 116...Deheating tower 118...Dust collection device 120: Chimney 121: Downstream end 122: Receiving port 124: Push-out arm 126: Fire grate 128: Drying area 130: Combustion area 131: Flame 132: Post-combustion area 135: Ash 136: Air supply pipe 138: Blower 140: First flow control valve 142: Second flow control valve 143: Exhaust gas 144: Flue 145: End of furnace 146: Ash chute 1100: Computer 1110: Processor 1120: Main memory 1130: Storage 1140: Interface Fg: Garbage (material to be incinerated)
Fr: front face R: combustion chamber S: device to be controlled W1: conveying direction

Claims (15)

  1.  焼却設備のフィーダ内に堆積して燃焼室に向けて押し出される被焼却物を撮像した画像を第1所定周期で取得する取得部と、
     前記取得部により取得された第1画像に基づく輝度の代表値を算出する第1算出部と、
     前記取得部により前記第1画像よりも前に取得された時系列上の複数の画像のなかで、前記被焼却物の1回の崩落にかかる時間内に撮像された2以上の画像に基づく輝度の代表値を算出する第2算出部と、
     前記第1算出部により算出された輝度の代表値と、前記第2算出部により算出された輝度の代表値とに基づき前記崩落に関する判定を行う判定部と、を備えた崩落検知システム。
    An acquisition unit that acquires images of the materials to be incinerated that are piled up in a feeder of the incineration equipment and pushed toward a combustion chamber at a first predetermined period;
    a first calculation unit that calculates a representative value of luminance based on a first image acquired by the acquisition unit;
    A second calculation unit calculates a representative value of brightness based on two or more images captured within a time period required for one collapse of the incineration target from among a plurality of images in a time series acquired by the acquisition unit prior to the first image;
    A collapse detection system comprising: a judgment unit that makes a judgment regarding the collapse based on the representative value of brightness calculated by the first calculation unit and the representative value of brightness calculated by the second calculation unit.
  2.  前記第2算出部は、前記2以上の画像に関する輝度の平均値または中央値を、前記2以上の画像に基づく輝度の代表値として算出する、請求項1に記載の崩落検知システム。 The collapse detection system of claim 1, wherein the second calculation unit calculates an average or median brightness value for the two or more images as a representative brightness value based on the two or more images.
  3.  前記2以上の画像は、互いに第1時間の間隔で撮像された画像であり、
     前記2以上の画像は、少なくとも前記第1時間の2倍以上である第2時間に亘り前記第1画像よりも前に撮像された画像である、請求項1または請求項2に記載の崩落検知システム。
    The two or more images are images captured at a first time interval from each other,
    The collapse detection system according to claim 1 or claim 2, wherein the two or more images are images taken before the first image for a second time period that is at least twice the first time period.
  4.  前記判定部は、
     前記第1算出部により算出された輝度の代表値と、前記第2算出部により算出された輝度の代表値とに基づき前記崩落に関する第1判定を行う第1判定部と、
     前記取得部により取得された1以上の画像に基づき、前記崩落に関する第2判定を行う第2判定部と、
     前記第1判定の結果と、前記第2判定の結果とに基づき、第1規模の崩落よりも崩落の規模が大きい第2規模の崩落の有無を判定する第1崩落判定部と、を含む、請求項1または請求項2に記載の崩落検知システム。
    The determination unit is
    a first determination unit that performs a first determination regarding the collapse based on the representative value of the luminance calculated by the first calculation unit and the representative value of the luminance calculated by the second calculation unit;
    a second determination unit that performs a second determination regarding the collapse based on one or more images acquired by the acquisition unit;
    A collapse detection system as described in claim 1 or claim 2, comprising a first collapse judgment unit that judges whether or not there is a collapse of a second scale, which is larger than the collapse of the first scale, based on the result of the first judgment and the result of the second judgment.
  5.  前記第2判定部は、前記取得部により取得された画像が入力されると、前記崩落が生じた可能性に関する判定結果を出力するように学習された学習済みモデルを用いて、前記第2判定を行う、請求項4に記載の崩落検知システム。 The collapse detection system according to claim 4, wherein the second determination unit performs the second determination using a trained model that has been trained to output a determination result regarding the possibility of the collapse occurring when the image acquired by the acquisition unit is input.
  6.  前記取得部は、前記画像である赤外画像を前記第1所定周期で取得するとともに、前記燃焼室内を撮像した可視光画像を第2所定周期で取得し、
     前記第2判定部は、前記取得部により取得された1以上の赤外画像に基づき、前記第2判定を行い、
     前記判定部は、前記取得部により取得された1以上の可視光画像に基づき、前記崩落に関する第3判定を行う第3判定部を更に含み、
     前記第1崩落判定部は、前記第1判定の結果と、前記第2判定の結果と、前記第3判定の結果とに基づき、前記第2規模の崩落の有無を判定する、請求項4に記載の崩落検知システム。
    The acquisition unit acquires an infrared image, which is the image, at the first predetermined period, and acquires a visible light image capturing an inside of the combustion chamber at a second predetermined period,
    The second determination unit performs the second determination based on one or more infrared images acquired by the acquisition unit,
    The determination unit further includes a third determination unit that makes a third determination regarding the collapse based on the one or more visible light images acquired by the acquisition unit,
    The collapse detection system of claim 4 , wherein the first collapse judgment unit judges whether or not a collapse of the second scale has occurred based on the result of the first judgment, the result of the second judgment, and the result of the third judgment.
  7.  前記判定部は、前記取得部により取得された画像の輝度に関する特徴量に基づき、外乱の有無を判定する外乱判定部を含み、
     前記第1崩落判定部による判定は、前記外乱判定部により外乱が無いと判定された場合に行われる、請求項4に記載の崩落検知システム。
    the determination unit includes a disturbance determination unit that determines the presence or absence of a disturbance based on a feature amount related to luminance of the image acquired by the acquisition unit;
    The collapse detection system according to claim 4 , wherein the determination by the first collapse determiner is made when the disturbance determiner determines that there is no disturbance.
  8.  前記判定部は、前記第1崩落判定部により前記第2規模の崩落が無いと判定された場合に、前記取得部により取得された複数の画像の輝度の変化に基づき前記第1規模の崩落の有無を判定する第2崩落判定部を更に含む、請求項4に記載の崩落検知システム。 The collapse detection system according to claim 4, wherein the determination unit further includes a second collapse determination unit that, when the first collapse determination unit determines that there is no collapse of the second scale, determines whether or not there is a collapse of the first scale based on a change in brightness of the multiple images acquired by the acquisition unit.
  9.  前記第2崩落判定部は、前記取得部により取得された画像と、前記取得部により過去に取得された1以上の画像との類似度を算出し、前記類似度が所定条件を満たさない場合、崩落が無いと判定する、請求項8に記載の崩落検知システム。 The collapse detection system of claim 8, wherein the second collapse determination unit calculates a similarity between the image acquired by the acquisition unit and one or more images previously acquired by the acquisition unit, and determines that no collapse has occurred if the similarity does not satisfy a predetermined condition.
  10.  前記判定部は、前記取得部により取得された1以上の画像に基づいて抽出された特徴量を、再帰型構造を持つ学習済みモデルに入力することを含む処理を行うことで、前記崩落の有無を判定する、請求項1に記載の崩落検知システム。 The collapse detection system of claim 1, wherein the determination unit determines the presence or absence of a collapse by performing processing that includes inputting feature amounts extracted based on one or more images acquired by the acquisition unit into a trained model having a recursive structure.
  11.  前記判定部は、
     前記取得部により取得された1以上の赤外画像に基づいて抽出された特徴量を、深層学習モデルに入力することにより第4判定を行う第4判定部と、
     前記取得部により取得された可視画像に基づいて抽出された特徴量を、深層学習モデルに入力することにより第5判定を行う第5判定部と、
     前記第1算出部により算出された輝度の代表値と前記第2算出部により算出された輝度の代表値とに基づいて算出された特徴量と、前記第4判定の結果と、前記第5判定の結果とに基づき、前記崩落に関する判定を行う第3崩落判定部と、を含む、請求項10に記載の崩落検知システム。
    The determination unit is
    a fourth determination unit that performs a fourth determination by inputting feature amounts extracted based on one or more infrared images acquired by the acquisition unit into a deep learning model;
    a fifth determination unit that performs a fifth determination by inputting the feature amount extracted based on the visible image acquired by the acquisition unit into a deep learning model;
    The collapse detection system described in claim 10, further comprising: a feature calculated based on a representative brightness value calculated by the first calculation unit and a representative brightness value calculated by the second calculation unit; and a third collapse judgment unit that makes a judgment regarding the collapse based on a result of the fourth judgment and a result of the fifth judgment.
  12.  前記判定部は、前記取得部により所定の時間間隔で連続して取得された複数の画像の特徴量をパッケージ化し、前記パッケージ化された複数の画像の特徴量を、前記再帰型構造を持つ学習済みモデルに入力する、請求項10又は11に記載の崩落検知システム。 The collapse detection system according to claim 10 or 11, wherein the determination unit packages the feature amounts of a plurality of images acquired continuously at a predetermined time interval by the acquisition unit, and inputs the packaged feature amounts of the plurality of images into the trained model having the recursive structure.
  13.  前記取得部により所定の時間間隔で連続して取得された複数の画像の次元を、オートエンコーダを用いて削減し、次元を削減された複数の画像の特徴量をパッケージ化する、請求項12に記載の崩落検知システム。 The collapse detection system according to claim 12, further comprising: an autoencoder that reduces the dimensions of multiple images acquired continuously at a predetermined time interval by the acquisition unit; and packaging the features of the multiple images with reduced dimensions.
  14.  1以上のコンピュータが、
     焼却設備のフィーダ内に堆積して燃焼室に向けて押し出される被焼却物を撮像した画像を第1所定周期で取得し、
     取得した第1画像に基づく輝度の代表値を算出し、
     前記第1画像よりも前に取得した時系列上の複数の画像のなかで、前記被焼却物の1回の崩落にかかる時間内に撮像された2以上の画像に基づく輝度の代表値を算出し、
     前記第1画像に基づく輝度の代表値と、前記2以上の画像に基づく輝度の代表値とに基づき前記崩落に関する判定を行う、ことを含む崩落検知方法。
    One or more computers
    Acquiring images of materials to be incinerated that are accumulated in a feeder of an incineration facility and pushed toward a combustion chamber at a first predetermined period;
    Calculating a representative value of luminance based on the acquired first image;
    Calculating a representative value of brightness based on two or more images captured within a time period required for one collapse of the incineration target among a plurality of images in a time series acquired before the first image;
    making a judgment regarding the collapse based on a representative value of brightness based on the first image and a representative value of brightness based on the two or more images.
  15.  焼却設備のフィーダ内に堆積して燃焼室に向けて押し出される被焼却物を撮像した画像を第1所定周期で取得する取得部と、
     前記取得部により取得された第1画像である第1入力要素と、前記取得部により前記第1画像よりも前に取得された時系列上の複数の画像のなかで、前記被焼却物の1回の崩落にかかる時間内に撮像された2以上の画像である第2入力要素とに基づき、前記崩落に関する判定を行う崩落検知部と、を備えた崩落検知システム。
    An acquisition unit that acquires images of the materials to be incinerated that are piled up in a feeder of the incineration equipment and pushed toward a combustion chamber at a first predetermined period;
    A collapse detection system comprising: a collapse detection unit that makes a determination regarding the collapse based on a first input element, which is a first image acquired by the acquisition unit; and a second input element, which is two or more images captured within the time it takes for one collapse of the material to occur among a plurality of images in a time series acquired by the acquisition unit prior to the first image.
PCT/JP2023/034285 2022-11-17 2023-09-21 Collapse detection system and collapse detection method WO2024106008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-183989 2022-11-17
JP2022183989 2022-11-17

Publications (1)

Publication Number Publication Date
WO2024106008A1 true WO2024106008A1 (en) 2024-05-23

Family

ID=91084340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034285 WO2024106008A1 (en) 2022-11-17 2023-09-21 Collapse detection system and collapse detection method

Country Status (1)

Country Link
WO (1) WO2024106008A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159134A (en) * 1995-12-11 1997-06-20 Kubota Corp Fluidized bed type incinerator
JP6979482B2 (en) * 2020-05-29 2021-12-15 三菱重工業株式会社 Incinerator supply amount detection system, incinerator operation control system, incinerator supply amount detection method, and incinerator operation control method
JP6998481B1 (en) * 2021-03-31 2022-02-10 三菱重工業株式会社 Combustion furnace equipment control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159134A (en) * 1995-12-11 1997-06-20 Kubota Corp Fluidized bed type incinerator
JP6979482B2 (en) * 2020-05-29 2021-12-15 三菱重工業株式会社 Incinerator supply amount detection system, incinerator operation control system, incinerator supply amount detection method, and incinerator operation control method
JP6998481B1 (en) * 2021-03-31 2022-02-10 三菱重工業株式会社 Combustion furnace equipment control device

Similar Documents

Publication Publication Date Title
WO2017175483A1 (en) Stoker-type incinerator
JP6983684B2 (en) Control device, boiler, boiler monitoring image acquisition method and boiler monitoring image acquisition program
WO2021124660A1 (en) Combustion facility state identification device, state identification method, and program
WO2024106008A1 (en) Collapse detection system and collapse detection method
TW202421966A (en) Landslide detection system and landslide detection method
CN115016553A (en) Prediction model creation device and method, and exhaust gas concentration control system and method
CN118159776A (en) Control device
JP3467751B2 (en) Detection method of combustion position and burn-off point position in refuse incinerator
CN117321339A (en) Control device for incinerator equipment
CN114729746A (en) Control device for combustion facility, control method for combustion facility, and program
JP2021103063A (en) Refuse layer thickness evaluation method of refuse incinerator and combustion control method of refuse incinerator
JP7445058B1 (en) Combustion equipment system and combustion control method
JP7507931B1 (en) Combustion equipment system and information processing method
JP2024021221A (en) Combustion state estimation method of refuse incinerator, combustion estimation device of refuse incinerator, transportation control method of refuse incinerator, and transportation control device of refuse incinerator
JP3907365B2 (en) Method and apparatus for detecting large incombustibles in garbage incinerator
JP2769618B2 (en) Burnout point detection method for incinerators by image processing
JP3669781B2 (en) Combustion control method for garbage incinerator
JP2024021220A (en) Refuse property determination method, refuse property determination device, transportation control method of refuse incinerator, and transportation control device of refuse incinerator
KR102470121B1 (en) Garbage incinerator and its control method
WO2023171293A1 (en) Image inspection device, machine learning device, image inspection method, and image inspection program
JPH10253031A (en) Combustion controller for incinerator
JP3121204B2 (en) Combustion state detector
JPH08128615A (en) Combustion controller for incinerating furnace
JP2024021223A (en) Method of agitating waste, and system of agitating waste
JP2022121059A (en) Anomaly detection device, anomaly detection method, anomaly detection program, and base model