WO2013146230A1 - 光拡散部材およびその製造方法、表示装置 - Google Patents
光拡散部材およびその製造方法、表示装置 Download PDFInfo
- Publication number
- WO2013146230A1 WO2013146230A1 PCT/JP2013/056811 JP2013056811W WO2013146230A1 WO 2013146230 A1 WO2013146230 A1 WO 2013146230A1 JP 2013056811 W JP2013056811 W JP 2013056811W WO 2013146230 A1 WO2013146230 A1 WO 2013146230A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- shielding layer
- graphic
- light shielding
- base material
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 238000000034 method Methods 0.000 title claims description 17
- 239000000463 material Substances 0.000 claims abstract description 109
- 239000011347 resin Substances 0.000 claims abstract description 53
- 229920005989 resin Polymers 0.000 claims abstract description 53
- 239000004973 liquid crystal related substance Substances 0.000 claims description 94
- 239000000758 substrate Substances 0.000 claims description 63
- 230000005540 biological transmission Effects 0.000 claims description 46
- 238000009792 diffusion process Methods 0.000 claims description 30
- 238000009826 distribution Methods 0.000 claims description 24
- 230000007423 decrease Effects 0.000 claims description 13
- 238000000149 argon plasma sintering Methods 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000011358 absorbing material Substances 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 230000001788 irregular Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 230000035699 permeability Effects 0.000 claims 1
- 238000005520 cutting process Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 276
- 239000010408 film Substances 0.000 description 202
- 230000004048 modification Effects 0.000 description 70
- 238000012986 modification Methods 0.000 description 70
- 230000008859 change Effects 0.000 description 22
- 230000000694 effects Effects 0.000 description 14
- 239000011229 interlayer Substances 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 10
- 239000011651 chromium Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000036211 photosensitivity Effects 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0247—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
- B32B27/365—Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/266—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0257—Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133504—Diffusing, scattering, diffracting elements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/418—Refractive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/42—Polarizing, birefringent, filtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2551/00—Optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133524—Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13356—Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
- G02F1/133562—Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
Definitions
- the present invention relates to a light diffusing member, a manufacturing method thereof, and a display device.
- This application claims priority based on Japanese Patent Application No. 2012-075135 filed in Japan on March 28, 2012, the contents of which are incorporated herein by reference.
- Liquid crystal display devices are widely used as portable electronic devices such as cellular phones or displays for televisions, personal computers, and the like.
- a liquid crystal display device is excellent in visibility from the front, but has a narrow viewing angle. Therefore, various devices have been made to widen the viewing angle.
- a member for diffusing light emitted from a display body such as a liquid crystal panel (hereinafter referred to as a light diffusing member) is provided on the viewing side of the display body.
- Patent Document 1 discloses a light diffusion sheet in which a plurality of truncated cone unit lenses are two-dimensionally arranged on a plane.
- this light diffusion sheet light is transmitted through each unit lens, and a gap between adjacent unit lenses is filled with a resin material to which light absorbing particles are added.
- the angle distribution of the light emitted from the light diffusion sheet is determined by the size of the area of the side surface (inclined surface) of the light transmission part, but the above method does not increase the area of the side surface although the area of the light emission surface is increased. . For this reason, it is difficult to obtain emitted light having a desired angular distribution.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a light diffusing member from which emitted light having a desired angular distribution can be obtained. Moreover, it aims at providing the manufacturing method of the light-diffusion member which can reduce the time and effort which a design change requires. It is another object of the present invention to provide a display device that includes the light diffusing member and has excellent display quality.
- a light diffusing member of the present invention is provided on a light-transmitting base material, a plurality of light shielding layers scattered on one surface of the base material, and the one surface of the base material.
- the light diffusing member of the present invention is characterized in that the plurality of light shielding layers are aperiodically arranged when viewed from the normal direction of the one surface of the substrate.
- the light diffusing member of the present invention is characterized in that at least one of the plurality of light shielding layers has a dimension different from that of the other light shielding layers.
- the light diffusing member of the present invention includes a light-transmitting base material, a light shielding layer formed on one surface of the base material, a plurality of openings scattered in a formation region of the light shielding layer, and the plurality of openings.
- a light-transmitting material layer that is thicker than the light-shielding layer, and when viewed from the normal direction of the one surface of the substrate, at least some of the plurality of openings
- the opening has a planar shape surrounded by the first graphic and the second graphic included in the first graphic, or at least a part of the first graphic and partially overlaps the first graphic
- the cross-sectional area when cut in a plane parallel to the one surface of the base material in the formation region of the light-shielding layer has a planar shape surrounded by at least a part of the second graphic arranged as described above The shape is large on the light shielding layer side and gradually decreases with distance from the light shielding layer. Empty portion is provided, a portion other than the hollow portion
- the light diffusing member of the present invention is characterized in that the plurality of openings are aperiodically arranged when viewed from the normal direction of the one surface of the substrate.
- the light diffusing member of the present invention is characterized in that at least one of the plurality of openings has a size different from that of the other openings.
- the light diffusing member of the present invention is characterized in that the first graphic and the second graphic have the same shape.
- the light diffusing member of the present invention is characterized in that the second graphic is arranged concentrically inside the first graphic.
- the light diffusing member of the present invention is characterized in that the second graphic is eccentrically arranged inside the first graphic.
- the light diffusing member of the present invention is characterized in that the position of the second graphic inside the first graphic is irregular across the plurality of the first graphic.
- the light diffusing member of the present invention is characterized in that at least one of the first graphic and the second graphic has an isotropic shape.
- the light diffusing member of the present invention is characterized in that at least one of the first graphic and the second graphic has an anisotropic shape.
- the light diffusing member of the present invention is characterized in that a plurality of the second figures are arranged inside one of the first figures.
- the plurality of second graphics arranged inside one of the first graphics is the isotropic second graphics and the anisotropic second graphics. It includes a figure.
- the light diffusing member of the present invention is characterized in that air exists in the hollow portion.
- the light diffusing member of the present invention is characterized in that a light scattering layer is provided at a position closer to the light emission side than the light transmitting portion.
- the light diffusion member of the present invention is characterized in that the light shielding layer is made of a light absorbing material.
- the light diffusing member of the present invention is characterized in that the light absorbing material is composed of any one of a black resin, black ink, a metal simple substance, and a laminated film of a metal simple substance and a metal oxide.
- the light diffusing member of the present invention is characterized in that an inclination angle of a side surface of at least one light transmission portion among the plurality of light transmission portions is different from an inclination angle of a side surface of another light transmission portion.
- the light diffusing member of the present invention is characterized in that an inclination angle of a side surface of at least one of the plurality of light transmission portions varies depending on a place.
- the method for manufacturing a light diffusing member of the present invention includes a step of arranging a plurality of first figures interspersed within a predetermined region, and the first figure so as to be included in the first figure, or the first figure A plurality of second figures are arranged so as to partially overlap the figure, and a plurality of patterns having a planar shape surrounded by at least a part of the first figure and at least a part of the second figure are designed. A step of forming a plurality of light-shielding layers corresponding to the pattern on one surface of the substrate having light transparency, and a light-transmitting property so as to cover the plurality of light-shielding layers on the one surface of the substrate.
- the method for manufacturing a light diffusing member of the present invention includes a step of arranging a plurality of first figures interspersed within a predetermined region, and the first figure so as to be included in the first figure, or the first figure A plurality of second figures are arranged so as to partially overlap the figure, and a plurality of patterns having a planar shape surrounded by at least a part of the first figure and at least a part of the second figure are designed. A step of forming a light-shielding layer having a plurality of openings corresponding to the pattern on one surface of the light-transmitting substrate, and covering the plurality of openings on the one surface of the substrate.
- the display device of the present invention is provided with a display body and a viewing angle widening member that is provided on the viewing side of the display body and emits light in a state where the angular distribution of light incident from the display body is wider than before incidence.
- the viewing angle enlarging member is composed of the light diffusing member of the present invention.
- the display device of the present invention is characterized in that the display body includes a light source and a light modulation element that modulates light from the light source, and the light source emits directional light.
- the display device of the present invention is characterized in that the display body is a liquid crystal display element.
- the present invention it is possible to provide a light diffusing member from which emitted light having a desired angular distribution can be obtained. Moreover, according to this invention, the manufacturing method of the light-diffusion member which can reduce the time and effort which a design change requires can be provided. In addition, according to the present invention, it is possible to provide a display device that includes the light diffusing member and has excellent display quality.
- FIG. 2B is a cross-sectional view taken along line A-A ′ of FIG. 2A. It is sectional drawing which shows the liquid crystal panel in a liquid crystal display device. It is a figure for demonstrating the mode of the reflection of the light in the side surface of the light transmissive part of the viewing angle expansion film in a liquid crystal display device. It is a figure for demonstrating the mode of the reflection of the light in the side surface of the light transmissive part of the viewing angle expansion film in a liquid crystal display device. It is a flowchart which shows the manufacturing process of a viewing angle expansion film.
- FIGS. 1 to 7B a first embodiment of the present invention will be described with reference to FIGS. 1 to 7B.
- a liquid crystal display device including a transmissive liquid crystal panel as a display body will be described.
- the scale of the size may be changed depending on the component.
- FIG. 1 is a perspective view of the liquid crystal display device of the present embodiment as viewed obliquely from above (viewing side).
- 2A is a plan view of the liquid crystal display device of the present embodiment
- FIG. 2B is a cross-sectional view taken along the line AA ′ of FIG. 2A.
- the liquid crystal display device 1 (display device) of the present embodiment includes a backlight 2 (light source), a first polarizing plate 3, a first retardation plate 13, and a liquid crystal panel 4 (light modulation).
- liquid crystal display body 6 display body having a second retardation plate 8 and a second polarizing plate 5, and a viewing angle widening film 7 (viewing angle widening member, light diffusing member).
- the liquid crystal panel 4 is schematically illustrated as a single plate, and the detailed structure thereof will be described later with reference to FIG. The observer sees the display from the upper side of the liquid crystal display device 1 in FIG. 2B where the viewing angle widening film 7 is arranged. Therefore, in the following description, the side on which the viewing angle widening film 7 is disposed is referred to as a viewing side, and the side on which the backlight 2 is disposed is referred to as a back side.
- the light emitted from the backlight 2 is modulated by the liquid crystal panel 4, and a predetermined image, character, or the like is displayed by the modulated light. Further, when the light emitted from the liquid crystal panel 4 passes through the viewing angle widening film 7, the angle distribution of the emitted light becomes wider than before entering the viewing angle widening film 7, and the light is widened. Is injected from. Thereby, the observer can visually recognize the display with a wide viewing angle.
- liquid crystal panel 4 an active matrix transmissive liquid crystal panel is described as an example, but a liquid crystal panel applicable to the present invention is not limited to an active matrix transmissive liquid crystal panel.
- the liquid crystal panel applicable to the present invention may be, for example, a transflective (transmissive / reflective) liquid crystal panel or a reflective liquid crystal panel, and each pixel may be a switching thin film transistor (Thin Film Transistor, hereinafter). It may be a simple matrix type liquid crystal panel not provided with (abbreviated as TFT).
- FIG. 3 is a longitudinal sectional view of the liquid crystal panel 4.
- the liquid crystal panel 4 includes a TFT substrate 9 as a switching element substrate, a color filter substrate 10 disposed so as to face the TFT substrate 9, and the TFT substrate 9 and the color filter substrate 10. And a sandwiched liquid crystal layer 11.
- the liquid crystal layer 11 is surrounded by a TFT substrate 9, a color filter substrate 10, and a frame-shaped seal member (not shown) that bonds the TFT substrate 9 and the color filter substrate 10 at a predetermined interval. It is enclosed in the space.
- the liquid crystal panel 4 of the present embodiment performs display in, for example, a VA (Vertical Alignment, vertical alignment) mode, and the liquid crystal layer 11 uses vertical alignment liquid crystal having negative dielectric anisotropy.
- a spherical spacer 12 is disposed between the TFT substrate 9 and the color filter substrate 10 to keep the distance between these substrates constant.
- the display mode is not limited to the VA mode described above, and a TN (Twisted Nematic) mode, an STN (Super Twisted Nematic) mode, an IPS (In-Plane Switching) mode, or the like can be used.
- the TFT substrate 9 has a plurality of pixels (not shown) as a minimum unit area for display arranged in a matrix.
- a plurality of source bus lines (not shown) are formed on the TFT substrate 9 so as to extend in parallel with each other, and a plurality of gate bus lines (not shown) extend in parallel with each other, And it is formed so as to be orthogonal to a plurality of source bus lines. Therefore, on the TFT substrate 9, a plurality of source bus lines and a plurality of gate bus lines are formed in a lattice pattern, and a rectangular region partitioned by adjacent source bus lines and adjacent gate bus lines is one. One pixel.
- the source bus line is connected to the source electrode of the TFT described later, and the gate bus line is connected to the gate electrode of the TFT.
- a TFT 19 having a semiconductor layer 15, a gate electrode 16, a source electrode 17, a drain electrode 18, and the like is formed on the surface of the transparent substrate 14 constituting the TFT substrate 9 on the liquid crystal layer 11 side.
- the transparent substrate 14 for example, a glass substrate can be used.
- a semiconductor layer 15 is formed.
- a gate insulating film 20 is formed on the transparent substrate 14 so as to cover the semiconductor layer 15.
- a material of the gate insulating film 20 for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
- a gate electrode 16 is formed on the gate insulating film 20 so as to face the semiconductor layer 15.
- a laminated film of W (tungsten) / TaN (tantalum nitride), Mo (molybdenum), Ti (titanium), Al (aluminum), or the like is used.
- a first interlayer insulating film 21 is formed on the gate insulating film 20 so as to cover the gate electrode 16.
- a material of the first interlayer insulating film 21 for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
- a source electrode 17 and a drain electrode 18 are formed on the first interlayer insulating film 21.
- the source electrode 17 is connected to the source region of the semiconductor layer 15 through a contact hole 22 that penetrates the first interlayer insulating film 21 and the gate insulating film 20.
- the drain electrode 18 is connected to the drain region of the semiconductor layer 15 through a contact hole 23 that penetrates the first interlayer insulating film 21 and the gate insulating film 20.
- the same conductive material as that for the gate electrode 16 is used.
- a second interlayer insulating film 24 is formed on the first interlayer insulating film 21 so as to cover the source electrode 17 and the drain electrode 18.
- the same material as the first interlayer insulating film 21 described above or an organic insulating material is used.
- a pixel electrode 25 is formed on the second interlayer insulating film 24.
- the pixel electrode 25 is connected to the drain electrode 18 through a contact hole 26 that penetrates the second interlayer insulating film 24. Therefore, the pixel electrode 25 is connected to the drain region of the semiconductor layer 15 using the drain electrode 18 as a relay electrode.
- a transparent conductive material such as ITO (Indium Tin Oxide, Indium Tin Oxide) or IZO (Indium Zinc Oxide, Indium Zinc Oxide) is used.
- An alignment film 27 is formed on the entire surface of the second interlayer insulating film 24 so as to cover the pixel electrode 25.
- This alignment film 27 has an alignment regulating force for vertically aligning liquid crystal molecules constituting the liquid crystal layer 11.
- the form of the TFT may be the top gate type TFT shown in FIG. 3 or the bottom gate type TFT.
- a black matrix 30, a color filter 31, a planarizing layer 32, a counter electrode 33, and an alignment film 34 are sequentially formed on the surface of the transparent substrate 29 constituting the color filter substrate 10 on the liquid crystal layer 11 side.
- the black matrix 30 has a function of blocking light transmission in the inter-pixel region, and is a photo in which metal such as a multilayer film of Cr (chromium) or Cr / Cr oxide, or carbon particles is dispersed in a photosensitive resin. It is made of resist.
- the color filter 31 includes dyes of red (R), green (G), and blue (B), and one pixel electrode 25 on the TFT substrate 9 is any one of R, G, and B. Two color filters 31 are arranged to face each other.
- the flattening layer 32 is made of an insulating film that covers the black matrix 30 and the color filter 31, and has a function of smoothing and flattening a step formed by the black matrix 30 and the color filter 31.
- a counter electrode 33 is formed on the planarization layer 32. As the material of the counter electrode 33, a transparent conductive material similar to that of the pixel electrode 25 is used. Further, an alignment film 34 having a vertical alignment regulating force is formed on the entire surface of the counter electrode 33.
- the color filter 31 may have a multicolor configuration of three or more colors of R, G, and B.
- the backlight 2 includes a light source 36 such as a light emitting diode and a cold cathode tube, and a light guide plate 37 that emits light toward the liquid crystal panel 4 using internal reflection of light emitted from the light source 36. ,have.
- the backlight 2 may be an edge light type in which the light source 36 is disposed on the end face of the light guide 37 as described above, or may be a direct type in which the light source is disposed directly below the light guide.
- the directional backlight makes collimated or substantially collimated light incident on a light diffusion portion of a viewing angle widening film 7 to be described later.
- a directional backlight By using a directional backlight, blurring can be reduced and the light utilization efficiency can be further increased.
- the directional backlight can be realized by optimizing the shape and arrangement of the reflection pattern formed in the light guide plate 37.
- a first polarizing plate 3 that functions as a polarizer is provided between the backlight 2 and the liquid crystal panel 4.
- a second polarizing plate 5 that functions as an analyzer is provided between the liquid crystal panel 4 and the viewing angle widening film 7.
- the 1st polarizing plate 3 and the liquid crystal panel 4 and the 2nd polarizing plate 5 and the liquid crystal panel 4 are provided.
- the viewing angle widening film 7 includes a base material 39, a plurality of light shielding layers 40 formed on one surface of the base material 39 (a surface opposite to the viewing side), and a base material 39. And a transparent resin layer 41 (light transmissive material layer) formed on one surface.
- the viewing angle widening film 7 has a posture in which the side on which the transparent resin layer 41 is provided faces the second polarizing plate 5 and the base 39 side faces the viewing side. 5 is fixed by an adhesive layer 42.
- the base material 39 examples include base materials made of transparent resin such as polyethylene terephthalate (PET), triacetylcellulose (TAC) film, polycarbonate (PC), polyethylene naphthalate (PEN), and polyethersulfone (PES) film. Preferably used.
- PET polyethylene terephthalate
- TAC triacetylcellulose
- PC polycarbonate
- PEN polyethylene naphthalate
- PES polyethersulfone
- the base material 39 becomes a base when a material for the light shielding layer 40 and the transparent resin layer 41 is applied later in the manufacturing process described later.
- the base material 39 has heat resistance and mechanical strength in the heat treatment step during the manufacturing process. It is necessary to prepare. Therefore, as the base material 39, a glass base material or the like may be used in addition to the resin base material. However, it is preferable that the thickness of the base material 39 is as thin as possible without impairing heat resistance and mechanical strength.
- the total light transmittance of the substrate 39 is preferably 90% or more in accordance with JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
- a transparent resin substrate having a thickness of 100 ⁇ m is used as an example.
- the plurality of light shielding layers 40 are formed so as to be scattered on one surface (surface opposite to the viewing side) of the base material 39.
- the planar shape when each light shielding layer 40 is viewed from the normal direction of the base material 39 is a second graphic smaller than the first graphic in a circle 45a that is the first graphic.
- the shape includes a circle 45b.
- the circle 45a is referred to as a first circle
- the circle 45b is referred to as a second circle.
- the light shielding layer 40 is an annular portion surrounded by the first circle 45a and the second circle 45b.
- the inside of the second circle 45 b is an opening 40 h of the light shielding layer 40.
- the center of the first circle 45a coincides with the center of the second circle 45b. That is, the opening 40 h is concentrically arranged inside the light shielding layer 40.
- the plurality of light shielding layers 40 are regularly arranged.
- the x axis is defined as the horizontal direction of the screen of the liquid crystal panel 4
- the y axis is defined as the vertical direction of the screen of the liquid crystal panel 4
- the z axis is defined as the thickness direction of the liquid crystal display device 1.
- the light shielding layers 40 in each column arranged in the y-axis direction are arranged at a constant pitch
- the light shielding layers 40 in each row arranged in the x-axis direction are arranged at a constant pitch.
- the light shielding layers 40 in a predetermined row arranged in the x-axis direction and the light shielding layers 40 in rows adjacent to the row in the y-axis direction are arranged at positions shifted by 1 ⁇ 2 pitch in the x-axis direction. Yes.
- the light shielding layer 40 is composed of a black resin layer having a light absorption property and photosensitivity such as a black resist, or a black ink.
- a single metal such as Cr (chromium) or a Cr / Cr oxide multilayer film, or a laminated film of a single metal and a metal oxide may be used.
- the diameter of each light shielding layer 40 is 10 ⁇ m, and the pitch between adjacent light shielding layers 40 is 20 ⁇ m.
- a transparent resin layer 41 is formed on one surface of the base material 39.
- the transparent resin layer 41 is made of an organic material having optical transparency and photosensitivity such as acrylic resin and epoxy resin. Further, the total light transmittance of the transparent resin layer 41 is preferably 90% or more in accordance with JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
- the thickness of the transparent resin layer 41 is set to be sufficiently larger than the thickness of the light shielding layer 40. In the case of this embodiment, the layer thickness of the transparent resin layer 41 is about 25 ⁇ m as an example, and the layer thickness of the light shielding layer 40 is about 1 ⁇ m as an example.
- the light shielding layer 40 is formed in a hollow area having a shape in which a cross-sectional area when cut along a plane parallel to one surface of the base material 39 is large on the light shielding layer 40 side and gradually decreases as the distance from the light shielding layer 40 increases.
- a portion 43 is formed. That is, the cross-sectional shape of the hollow portion 43 has an inverted triangular shape when the base material 39 is turned upward as shown in FIG. 2B.
- the planar shape of the light shielding layer 40 is annular
- the planar shape of the hollow portion 43 is also annular.
- Air is present inside the hollow portion 43.
- a portion other than the hollow portion 43 of the transparent resin layer 41 that is, a portion where the transparent resin is continuously present contributes to light transmission.
- the transparent resin also exists in a truncated cone shape at a portion corresponding to the opening 40h of the light shielding layer 40, and contributes to light transmission. Therefore, in the following description, a portion other than the hollow portion 43 of the transparent resin layer 41 is referred to as a light transmission portion 44.
- the light incident on the light transmitting portion 44 is totally reflected at the side surface of the light transmitting portion 44, that is, the interface between the light transmitting portion 44 and the hollow portion 43, and is substantially confined inside the light transmitting portion 44.
- the light is directed toward 39 and is emitted to the outside through the base material 39.
- the viewing angle widening film 7 is disposed so that the base material 39 faces the viewing side, and therefore, the surface (base) having the smaller area of the two opposing surfaces of the light transmission portion 44.
- the surface on the side in contact with the material 39) is the light emitting end surface 44a, and the surface with the larger area (the surface opposite to the base material 39) is the light incident end surface 44b.
- the inclination angle ⁇ (angle formed between the light emission end face 44a and the side face 44c shown in FIG. 4B) of the side face 44c (interface between the light transmissive part 44 and the hollow part 43) of the light transmissive part 44 is preferably about 60 ° to 90 °.
- the inclination angle ⁇ of the side surface 44c of the light transmission part 44 is not particularly limited as long as the loss of incident light is not so large and the incident light can be sufficiently diffused.
- the angle ⁇ formed between the side surface 44c of the light transmitting portion 44 and the light emitting end surface 44a is such that the light incident in parallel or substantially parallel to the optical axis OA is totally reflected.
- the angle ⁇ ′ (in degrees) exceeding the critical angle with respect to the normal line CL of the side surface 44c is set.
- the angle ⁇ may be referred to as an inclination angle of the side surface 44 c of the light transmission portion 44.
- the angle ⁇ is a point P where the side surface 44c of the light transmitting portion 44 intersects the light emission end surface 44a, a point Q where the incident light VR parallel to the optical axis OA is incident on the side surface 44c, and a perpendicular to the light emission end surface 44a. If the intersection of the perpendicular line passing through the point Q and the light emission end face 44a is a point R, it can be represented by an angle QPR. At this time, since the value of the angle PQR is (90 ⁇ ) °, the inclination angle ⁇ of the side surface 44c of the light transmitting portion 44 is the same as the incident angle ⁇ ′ of the incident light VR at the point Q. Therefore, the inclination angle ⁇ of the side surface 44c of the light transmission portion 44 is set to an angle exceeding the critical angle.
- the side surface 44c of the light transmitting portion 44 is an interface between the transparent acrylic resin and air. It becomes.
- the refractive index difference at the interface between the inside and the outside of the light transmitting portion 44 is greater than that when any low refractive index material exists outside. The maximum is when there is. Therefore, from Snell's law, in the configuration of the present embodiment, the critical angle is the smallest, and the incident angle range in which the light is totally reflected by the side surface 44c of the light transmitting portion 44 is the widest. As a result, light loss is further suppressed, and high luminance can be obtained.
- the incident light entering at an angle greater than the critical angle is emitted totally reflected by the side surface 44c is transmitted through the light transmitting portion 44 toward the viewer.
- the incident light transmitted through the light transmitting portion 44 without being incident on the side surface 44c is directly emitted to the observer side.
- light incident at an angle below the critical angle is not totally reflected, transmitted through the side surface 44c of the light transmitting portion 44, enters the hollow portion 43.
- the light shielding layer 40 having light absorption is provided in a region other than the light transmitting portion 44, the light transmitted through the side surface 44c of the light transmitting portion 44 is absorbed by the light shielding layer 40. Therefore, blurring of display and a decrease in contrast can be suppressed.
- the amount of light transmitted through the side surface 44c of the light transmitting portion 44 increases, a light amount loss occurs and an image with high luminance cannot be obtained. Therefore, in the liquid crystal display device 1 of the present embodiment, it is preferable to use a backlight that emits light at an angle that does not enter the side surface 44c of the light transmission portion 44 at a critical angle or less, that is, a so-called directional backlight. .
- the refractive index of the base material 39 and the refractive index of the transparent resin layer 41 are substantially equal.
- the reason is that, for example, when the refractive index of the base material 39 and the refractive index of the transparent resin layer 41 are greatly different, the light incident from the light incident end surface 44b is emitted from the transparent resin layer 41 when the transparent resin layer 41 is about to be emitted. This is because unnecessary light refraction or reflection occurs at the interface between the substrate 41 and the base material 39, which may cause problems such as failure to obtain a desired viewing angle and a reduction in the amount of emitted light.
- FIG. 1 The outline of the manufacturing process of the liquid crystal display 6 will be described first.
- the TFT substrate 9 and the color filter substrate 10 are respectively produced.
- the surface of the TFT substrate 9 on which the TFT 19 is formed and the surface of the color filter substrate 10 on which the color filter 31 is formed are arranged to face each other, and the TFT substrate 9 and the color filter substrate 10 are sealed.
- liquid crystal is injected into a space surrounded by the TFT substrate 9, the color filter substrate 10, and the seal member.
- the first retardation plate 13, the first polarizing plate 3, the second retardation plate 8, and the second polarizing plate 4 are attached to both surfaces of the liquid crystal panel 4 thus formed using an optical adhesive or the like. Match.
- the liquid crystal display body 6 is completed.
- a conventionally well-known method is used for the manufacturing method of the TFT substrate 9 and the color filter substrate 10, description is abbreviate
- the pattern of the light shielding layer 40 is designed.
- a plurality of first figures are scattered and arranged in a predetermined region (step S1 in FIG. 5).
- a plurality of first circles 45 a having the same dimensions are used as a plurality of first figures, and a rectangular area having the same dimensions as the base material 39 is used.
- the circles 45a are arranged at a constant pitch in each column arranged in the y-axis direction, and arranged at a constant pitch in each row arranged in the x-axis direction.
- the plurality of first circles 45a are arranged at positions shifted by 1 ⁇ 2 pitch in the x-axis direction in a predetermined row arranged in the x-axis direction and a row adjacent to the row in the y-axis direction.
- a plurality of second figures are arranged so as to be included in the first figure (step S2 in FIG. 5).
- the second circle 45b having a diameter smaller than that of the first circle 45a is used as the plurality of second figures, and the second circle 45b is concentrically disposed inside the first circle 45a. To do. Thereby, a plurality of annular patterns surrounded by the first circle 45a and the second circle 45b are designed.
- the ratio of the total area of the light emission end face 44a of the light transmitting portion 44 to the total area of the viewing angle widening film 7 (base material 39) is defined as the aperture ratio.
- the aperture ratio is, for example, 50%.
- the size and number of the first circle 45a are set.
- the area corresponding to the aperture ratio of 10% is distributed to all the first circles 45a, and the dimensions of the second circles 45b are set.
- the aperture ratio of 50% can be increased to 60%.
- the light shielding layer 40 is formed on the base material 39 based on the pattern designed in the previous process (step S3 in FIG. 5).
- a polyethylene terephthalate (PET) base material 39 having a thickness of 100 ⁇ m is prepared, and using a printing method, a black resin containing carbon as a light shielding layer material on one surface of the base material 39, or The light shielding layer 40 made of black ink and having a thickness of 1 ⁇ m is transferred from the roller 46 onto the substrate 39.
- PET polyethylene terephthalate
- a plurality of light shielding layers 40 having a circular planar shape are formed on one surface of the base material 39.
- the annular light shielding layer 40 corresponds to a non-formation region (hollow portion 43) of the light transmission portion 44 in the next step.
- the light shielding layer 40 is formed by a printing method using a black resin or black ink, but instead of this method, the light shielding layer 40 may be formed by a photolithography method using a black negative resist. Alternatively, the light shielding layer 40 may be directly formed on the base material 39 by mask vapor deposition of a metal such as chromium.
- a transparent negative resist (negative photosensitive resin layer) made of an acrylic resin is applied to the upper surface of the light shielding layer 40 as a light transmissive material, and a film thickness of 25 ⁇ m is applied.
- a coating film 48 is formed (step S4 in FIG. 5).
- the base material 39 on which the coating film 48 is formed is placed on a hot plate, and the coating film 48 is pre-baked at a temperature of 95 ° C. Thereby, the solvent in the transparent negative resist is volatilized.
- the coating film 48 is irradiated with diffused light F from the substrate 39 side using the light shielding layer 40 as a mask to perform exposure (step S5 in FIG. 5).
- an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used.
- the exposure amount is 500 mJ / cm 2 .
- a diffusion plate having a haze of about 50 is arranged on the optical path of the light emitted from the exposure apparatus, Light is irradiated through the diffusion plate. Thereafter, the substrate 39 on which the coating film 48 is formed is placed on a hot plate, and post-exposure baking (PEB) of the coating film 48 is performed at a temperature of 95 ° C.
- PEB post-exposure baking
- the coating film 48 made of a transparent negative resist is developed using a dedicated developer and post-baked at 100 ° C. (step S6 in FIG. 5).
- a transparent resin layer 41 having a plurality of hollow portions 43 is formed on one surface of the base material 39.
- the transparent negative resist constituting the coating film 48 is radially spread so as to spread outward from the non-formation region of the light shielding layer 40. To be exposed.
- the forward tapered hollow portion 43 is formed, and the light transmitting portion 44 has a reverse tapered shape.
- the inclination angle of the side surface 44c of the light transmitting portion 44 can be controlled by the degree of diffusion of the diffused light F.
- the total light transmittance of the viewing angle widening film 7 is preferably 90% or more. When the total light transmittance is 90% or more, sufficient transparency can be obtained, and the optical performance required for the viewing angle widening film 7 can be sufficiently exhibited.
- the total light transmittance is as defined in JIS K7361-1.
- a liquid resist is used as the material of the transparent resin layer has been described, but a film resist may be used instead of this configuration.
- the completed viewing angle widening film 7 is disposed with the base material 39 facing the viewing side and the light transmitting portion 44 facing the second polarizing plate 5 with the adhesive layer 42 interposed therebetween. Is attached to the liquid crystal display body 6.
- the viewing angle widening effect of the viewing angle widening film 7 of the present embodiment will be described with reference to FIGS. 7A and 7B.
- the light L1 incident substantially perpendicular to the light incident end face 44b near the center of the light transmitting portion 44 is Without being totally reflected by the side surface 44c of the light transmission part 44, the light transmission part 44 passes straight through and is transmitted.
- the light L2 incident substantially perpendicular to the light incident end face 44b at the peripheral edge of the light transmitting portion 44 is incident on the side surface 44c of the light transmitting portion at an incident angle larger than the critical angle.
- the light L3 incident obliquely with respect to the light incident end face 44b of the light transmitting portion 44 enters the side surface 44c of the light transmitting portion 44 at an incident angle smaller than the critical angle. Therefore, the light L ⁇ b> 3 passes through the side surface 44 c of the light transmission portion 44 and is absorbed by the light shielding layer 40.
- the light L1 and L2 incident on the viewing angle widening film 7 substantially perpendicularly to the viewing angle widening film 7 has a wider angle distribution than that before entering the viewing angle widening film 7. Injected from the corner enlargement film 7. Therefore, even if the observer inclines the line of sight from the front direction (normal direction) of the liquid crystal display body 6, a good display can be visually recognized.
- the planar shape of the side surface 44c (reflection surface) of the light transmission portion 44 is circular, the angular distribution spreads in all directions centered on the normal direction of the screen of the liquid crystal display body 6. Therefore, the observer can visually recognize a good display in all directions.
- the viewing angle of the liquid crystal display 6 can be expanded by using the viewing angle widening film 7.
- the light L3 obliquely incident on the viewing angle widening film 7 is light that is obliquely transmitted through the liquid crystal panel 4, and is light that is different from a desired retardation, that is, light that causes a decrease in so-called display contrast.
- the viewing angle widening film 7 of the present embodiment can increase the display contrast by cutting such light with the light shielding layer 40.
- the angle distribution of the light emitted from the light diffusion sheet is determined by the area of the side surface (inclined surface) of the light transmission part, but when the size and number of individual light transmission parts are changed, the area of the light emission surface is increased. The area of the side does not increase. Therefore, there is a problem that it is difficult to obtain emitted light having a desired angular distribution.
- the viewing angle widening film 7 of the present embodiment when there is a request to change the aperture ratio once set, the dimension of the opening 40h without changing the outer dimension of each light shielding layer 40. It is possible to change the area of the light transmitting portion 44 simply by changing the angle. In other words, among the double circles constituting the outer shape of each light shielding layer 40, the light transmitting portion 44 can be obtained by changing the size of the inner second circle 45b without changing the size of the outer first circle 45a. The area of can be changed.
- the manufacturing method according to the present embodiment does not change the size of the outer shape (first circle 45a) of the light shielding layer 44.
- the aperture ratio is 50% and does not change.
- the size of the opening 40h (second circle 45b) is increased, and the size of the second circle 45b is set so that the opening area corresponding to the aperture ratio of 20% is distributed to all the light shielding layers 40. .
- the aperture ratio is increased from 60% to 70%. Can be increased. In this way, by increasing the aperture ratio, it is possible to effectively use the light that has been lost until now.
- the aperture ratio when adjusting the aperture ratio, it is only necessary to change the area of the opening 40h, and it is not necessary to change the external dimensions, number, and arrangement of the individual light shielding layers 40. It is possible to reduce the time and labor required.
- one light shielding layer 40 since one light shielding layer 40 has a double circle, the area of the side surface 44c of the light transmitting portion 44 with respect to the area of one light shielding layer 40 becomes very large. As a result, the degree of freedom in adjusting the tilt angle of the side surface 44c of the light transmitting portion 44 is increased, and it becomes easier to obtain emitted light having a desired angular distribution.
- the step of patterning the light transmitting portion 44 in the step of patterning the light transmitting portion 44, if a method of irradiating light through a photomask from the side of the coating film 48 made of a transparent negative resist is used, the light is blocked with a small size. It is extremely difficult to adjust the alignment between the base material 39 on which the layer 40 is formed and the photomask, and it is inevitable that a shift occurs. As a result, the light transmission part 44 and the light shielding layer 40 may overlap, and the light transmittance may be reduced.
- the light transmissive part 44 does not form the light shielding layer 40 because the transparent resin layer 41 is irradiated from the back side of the base material 39 with the light shielding layer 40 as a mask. It is formed in a state of self-alignment (self-alignment) with the region. As a result, the light transmission part 44 and the light shielding layer 40 do not overlap each other, and the light transmittance can be reliably maintained. In addition, since precise alignment work is unnecessary, the time required for manufacturing can be shortened.
- the plurality of light shielding layers 40 are regularly arranged.
- a plurality of light shielding layers 40 whose planar shape is annular are randomly arranged on the base material 39. Accordingly, a plurality of hollow portions formed at the same position as the plurality of light shielding layers 40 are also randomly arranged on the base material 39.
- the manufacturing process of the viewing angle widening film 50 of this modification is the same as that in the above embodiment. However, it is necessary to randomly arrange a plurality of light shielding layers on the base material 39, and an example of a technique for designing a pattern in which a plurality of light shielding layers are randomly arranged will be described.
- the entire rectangular region 51 having the same shape as the substrate is m ⁇ n (for example, 36) consisting of m (for example, 6) and n (for example, 6) in the horizontal direction. Divide into small areas 52.
- FIG. 9B a pattern in which the first circle 45a of the light shielding layer is arranged so as to be closest packed in one small region 52 divided in the previous step is created (left side of FIG. 9B).
- Figure position data serving as a reference for the position of each circle, such as the center coordinates of each circle, is given fluctuation, and position data of a plurality of types (for example, three types of patterns A, B, and C). (Three figures on the right side of FIG. 9B).
- a plurality of types of position data A, B, and C produced in the previous step are randomly assigned to m ⁇ n areas.
- the position data A, B, and C are allocated to the small areas 52 so that the position data A, position data B, and position data C appear randomly in the 36 small areas 52. Therefore, when the photomask 51 is viewed for each small region 52, the arrangement of the first circle 45a (outer shape of the light shielding layer pattern) of each small region 52 is any one of the position data A, the position data B, and the position data C. In other words, not all the light shielding layer patterns are arranged at random in the entire region. However, when the entire photomask 51 is viewed, the plurality of light shielding layer patterns are randomly arranged. That is, the light shielding layer may not be disposed completely at random over the entire substrate.
- an interference fringe pattern is visually recognized when the period of each pattern is slightly shifted.
- a viewing angle widening film in which a plurality of light shielding layers are arranged in a matrix and a liquid crystal panel in which a plurality of pixels are arranged in a matrix are overlapped, the periodic pattern by the light shielding layers of the viewing angle widening film and the liquid crystal panel.
- the plurality of light shielding layers 40 are randomly arranged in a plane, so that interference with the regular arrangement of pixels of the liquid crystal panel 4 occurs.
- the display quality can be maintained without causing moire.
- the opening part 40h was provided in all the light shielding layers 40.
- an opening 40 h is provided in a part of the light shielding layer 40, and an opening 40 h is provided in the remaining light shielding layer 40. It is not done.
- the plurality of light shielding layers 40 are randomly arranged on the base material 39.
- the aperture ratio is 50% when the first circle 45a is entirely a light shielding layer.
- the area corresponding to the aperture ratio of 10% is allocated to all the first circles 45a and the dimensions of the second circle 45b are set.
- the area corresponding to the aperture ratio of 10% may be allocated to only a part of the first circles 45a.
- the dimension of the 2nd circle 45b does not become too small, and the opening part 40h can be formed reliably.
- the aperture ratio can be adjusted appropriately.
- the opening 40 h is concentrically disposed inside the light shielding layer 40.
- the opening 40h is eccentrically arranged inside the light shielding layer 40 as shown in FIG. 10C. That is, the center of the first circle 45a and the center of the second circle 45b constituting the contour of the light shielding layer 40 do not coincide with each other.
- the plurality of light shielding layers 40 are randomly arranged on the base material 39.
- each light shielding layer 61 is annular.
- the planar shape of each light shielding layer 61 is a square ring. That is, the second square 62b constituting the outer shape of the opening 61h is concentrically disposed inside the first square 62a constituting the outer shape of the light shielding layer 61.
- the opening 61 h may be provided only in some of the light shielding layers 61 as in the above-described modification. Further, the opening 61 h may be provided eccentrically inside the light shielding layer 61.
- each light shielding layer 64 is a regular octagonal ring. That is, the second regular octagon 65b constituting the outer shape of the opening 64h is disposed concentrically inside the first regular octagon 65a constituting the outer shape of the light shielding layer 64.
- the opening 64h may be provided only in a part of the light shielding layers 64 as in the above-described modification. Further, the opening may be provided eccentrically inside the light shielding layer 64.
- the planar shape of the light shielding layer 40 in the above embodiment is an annular shape
- the side surface 44c of the light transmission portion 44 that is, the cross-sectional shape of the reflecting surface is also circular. That is, the planar shape of the light shielding layer 40 is an isotropic shape. Therefore, the light reflected by the side surface 44c of the light transmitting portion 44 diffuses in all directions at 360 degrees.
- the square annular light shielding layer 61 shown in FIG. 11A light diffuses in a direction perpendicular to each side of the square.
- the light can be concentrated and diffused in the vertical direction, the horizontal direction, and the oblique 45 degree direction, in which viewing angle characteristics are particularly important in liquid crystal display devices. it can.
- different light diffusion characteristics can be obtained by appropriately changing the shape of the light shielding portion.
- the time and labor required for the design change when adjusting the aperture ratio can be reduced, and the emitted light having a desired angular distribution can be easily obtained.
- the same effect as the form can be obtained.
- FIGS. 12A and 12B The basic configuration of the liquid crystal display device of this embodiment is the same as that of the first embodiment, and only the configuration of the light shielding layer of the viewing angle widening film is different from that of the first embodiment. Therefore, in this embodiment, description of the basic composition of a liquid crystal display device is abbreviate
- FIG. 12A is a perspective view showing the liquid crystal display device 67 of the present embodiment.
- FIG. 12B is a plan view of the viewing angle widening film 68 of the present embodiment. 12A and 12B, the same reference numerals are given to the same components as those used in the first embodiment, and the detailed description thereof is omitted.
- the plurality of light shielding layers 40 have the same dimensions.
- the dimensions (diameters) of the plurality of light shielding layers 69 and the dimensions (diameters) of the openings 69h are different.
- the diameters of the plurality of light shielding layers 69 are distributed in the range of 10 ⁇ m to 25 ⁇ m.
- the inclination angle of the side surface 70c of the light transmission part 70 is the same.
- the plurality of light shielding layers 69 and the openings 69h have a plurality of types of dimensions, and the side surface 70c of the light transmission unit 70 has one type of inclination angle. Further, the plurality of light shielding layers 69 are randomly arranged in a plane as in the first modified example. Other configurations are the same as those of the first embodiment.
- the viewing angle widening film 68 of the present embodiment it is possible to reduce the time and labor required for the design change when adjusting the aperture ratio, and it becomes easy to obtain the emitted light having a desired angular distribution. Similar effects can be obtained.
- the dimensions of the light shielding layers 69 are also different, so that moire fringes due to light diffraction can be more reliably suppressed. Furthermore, since the dimension of the opening 69h is different in addition to the dimension of the light shielding layer 69, the degree of design freedom can be increased.
- FIG. 13 is a plan view of the viewing angle widening film of this embodiment.
- the same reference numerals are given to the same components as those used in the first embodiment, and the detailed description thereof is omitted.
- the light shielding layer 40 has an annular shape, and the first graphic forming the outer shape of the light blocking layer 40 and the second graphic forming the shape of the opening are both perfect circles. It was.
- the point that the light shielding layer 73 is annular is the same as that of the first embodiment.
- the first figure forming the outer shape of the light shielding layer 73 is a circle 74a
- the second figure forming the shape of the opening 73h is an ellipse 74b
- the circle 74a and the ellipse 74b are arranged concentrically.
- the first graphic is an isotropic shape and the second graphic is an anisotropic shape.
- the ellipse 74b forming the opening 73h is arranged in the x-axis direction and the minor axis in the y-axis direction so as to be horizontally long in FIG.
- the plurality of light shielding layers 73 are regularly arranged, but may be randomly arranged.
- the first and second described above can reduce the time and labor required for the design change when adjusting the aperture ratio, and make it easier to obtain the emitted light having a desired angular distribution. The same effect as the embodiment can be obtained.
- the planar shape of the opening 73h of the light shielding layer 73 is an ellipse, and therefore the cross-sectional shape of the side surface (reflecting surface) at the position corresponding to the opening 73h among the side surfaces of the light transmitting portion is also elliptic. It is.
- the diffusion of light in the direction perpendicular to the major axis of the ellipse 74b constituting the opening is stronger than the diffusion of light in the direction perpendicular to the minor axis.
- the viewing angle widening film 72 of this embodiment has anisotropic light diffusion characteristics.
- the first figure forming the outer shape of the light shielding layer 73 is a circle
- the second figure forming the shape of the opening 73h is an ellipse.
- the first figure forming the outer shape of the light shielding layer 78 and the second figure forming the shape of the opening 78h are both elliptical. It is.
- the two ellipses 79a and 79b are arranged concentrically.
- the plurality of light shielding layers 78 are regularly arranged on the base material 39.
- the first figure forming the outer shape of the light shielding layer 82 is an ellipse 83a
- the second figure forming the shape of the opening 82h is a circle 83b. is there.
- the ellipse 83a and the circle 83b are arranged concentrically.
- the plurality of light shielding layers 82 are regularly arranged on the base material 39.
- the first graphic forming the outer shape of the light shielding layer 78 and the second graphic forming the opening 78h are both ellipses 79a and 79b.
- the first graphic forming the outer shape of the light shielding layer 85 and the second graphic forming the opening 85h are both rectangles 86a and 86b.
- the two rectangles 86a and 86b are arranged concentrically.
- the light shielding layer 78 is arranged vertically, but the light shielding layer 78 may be arranged horizontally.
- the first graphic forming the outer shape of the light shielding layer 88 and the second graphic forming the opening 88h are both elongated octagons 89a and 89b.
- the two octagons 89a and 89b are arranged concentrically.
- the light shielding layer 88 is arranged vertically, but the light shielding layer 88 may be arranged horizontally.
- the time and labor required for the design change when adjusting the aperture ratio can be reduced, and the emitted light having a desired angular distribution can be easily obtained.
- the same effects as those of the first to third embodiments can be obtained.
- FIG. 16 is a cross-sectional view showing the viewing angle widening film of this embodiment.
- the same reference numerals are given to the same components as those used in the first embodiment, and detailed description thereof will be omitted.
- the plurality of light shielding layers 40 have the same dimensions.
- the dimensions of the plurality of light shielding layers 92 are different, and the inclination angles of the side surfaces 93c of the light transmission portions 93 are different. That is, when viewing the entire plurality of light transmission portions 93, the plurality of light shielding layers 92 have a plurality of types of dimensions, and the side surfaces 93 c of the plurality of light transmission portions 93 have a plurality of types of inclination angles.
- Other configurations are the same as those of the first embodiment.
- the first to third described above can reduce the time and labor required for the design change when adjusting the aperture ratio, and can easily obtain the emitted light having the desired angular distribution. The same effect as the embodiment can be obtained.
- the viewing angle widening film 91 of the present embodiment since the inclination angles of the side surfaces 93c of the plurality of light transmission portions 93 are different from each other, the light emission angle distribution is changed to a plurality of inclination angles of the side surfaces 93c. Interpolation between the light transmission parts 93 can be widened. As a result, when the liquid crystal display device is observed while changing the angle, the luminance changes gently according to the observation angle, and the viewing angle characteristics can be improved.
- the inclination angle of the side surface 93c of the light transmission part 93 was made into multiple types, a brightness
- FIG. 17 is a cross-sectional view of the viewing angle widening film of this embodiment.
- the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- the side surface 44c of the light transmitting portion 44 has a constant inclination angle.
- the side surface 97c of the light transmitting portion 97 which is a portion other than the light shielding layer 96, protrudes from the light emitting end surface 97a to the light incident end surface 97b.
- the curve is gently curved and the angle of inclination varies depending on the location.
- Other configurations are the same as those of the first embodiment.
- the first to fourth aspects described above can reduce the time and labor required for a design change when adjusting the aperture ratio, and make it easier to obtain emitted light having a desired angular distribution. The same effect as the embodiment can be obtained.
- the side surface 93c has a plurality of kinds of inclination angles in the plurality of light transmission portions 93 as a whole.
- the inclination angle varies depending on the location of the side surface 96c even in each light transmitting portion 96. For this reason, the light emission angle distribution is widened as compared with the case where the side surface inclination angle is constant. Thereby, the luminance changes gently according to the observation angle, and the viewing angle characteristics can be improved.
- FIGS. 18A and 18B The basic configuration of the liquid crystal display device of this embodiment is the same as that of the first embodiment, and only the configuration of the viewing angle widening film is different from that of the first embodiment. Therefore, in this embodiment, description of the basic composition of a liquid crystal display device is abbreviate
- 18A is a plan view showing the liquid crystal display device 100 of the present embodiment
- FIG. 18B is a cross-sectional view taken along the line AA ′ of FIG. 18A.
- symbol is attached
- the viewing angle widening film 101 includes a region where the light shielding layer 102 and the hollow portion 103 are present and a region where the light transmitting portion 104 is present as the visual field according to the first embodiment. It is reversed compared to the corner enlargement film. That is, the viewing angle widening film 7 of the first embodiment has the frustoconical light transmitting portion 44, whereas the viewing angle widening film 101 of the present embodiment is a base material in the frustoconical space.
- a light shielding layer 102 is provided in a portion in contact with 39, and a hollow portion 103 is provided in the other portion.
- the light transmission portion 104 is provided in a region other than the formation region of the light shielding layer 102.
- the light shielding layer 102 of the present embodiment is provided over the entire surface of the base material 39, and is provided with a plurality of circular openings 102h, and a circular light shielding layer 102 is further provided inside each opening 102h. Yes. Therefore, the planar shape of each opening 102h is an annular shape.
- the first graphic that is the outer shape of the opening 102h and the second graphic that is the outer shape of the light shielding layer 102 are both circles 106a and 106b.
- the outer edge of the opening 102h and the outer edge of the inner light shielding layer 102 are arranged concentrically.
- the plurality of openings 102h are arranged periodically, but the plurality of openings 102h may be arranged aperiodically. In the present embodiment, the plurality of openings 102h have the same dimensions, but the plurality of openings 102h may have different dimensions.
- the method of designing the pattern of the light shielding layer 102 differs from 1st Embodiment.
- a first stage of pattern design a plurality of first circles 106a (first graphics) to be openings 102h are arranged in a predetermined area.
- the second circle 106b second graphic that becomes the light shielding layer 102 is arranged so as to be enclosed in the first circle 106a.
- the aperture ratio is 70%, for example.
- the size and number of the first circle 106a are set.
- the area corresponding to the decrease in the aperture ratio of 10% is distributed to all the first circles 106a, and the dimensions of the second circles 106b are set.
- the aperture ratio is based on the assumption that all the inside of the first circle 106a is an opening. 70% can be reduced to 60% to achieve the desired aperture ratio.
- the light shielding layer 102 is formed on the base material based on the designed pattern.
- the following steps are the same as those in the first embodiment.
- the first to fifth aspects described above can reduce the time and labor required for a design change when adjusting the aperture ratio, and make it easier to obtain emitted light having a desired angular distribution. The same effect as the embodiment can be obtained.
- the opening 102h has an annular shape
- the first graphic forming the outer shape of the opening 102h and the second graphic forming the shape of the light shielding layer 102 are both circles 106a. 106b.
- the first figure forming the outer shape of the opening 109h is a circle 110a
- the second shape forming the shape of the light shielding layer 109 is an ellipse 110b.
- the circle 110a and the ellipse 110b are arranged concentrically. That is, the first graphic is an isotropic shape and the second graphic is an anisotropic shape.
- the ellipse 110b forming the light shielding layer 109 is arranged in the x-axis direction and the minor axis in the y-axis direction so as to be horizontally long in FIG. 19A.
- the plurality of openings 109h are regularly arranged, but may be randomly arranged.
- the viewing angle widening film of this modification has anisotropic light diffusion characteristics.
- the first graphic forming the outer shape of the opening 109h is the circle 110a
- the second graphic forming the shape of the light shielding layer 109 is the ellipse 110b.
- the first figure forming the outer shape of the opening 113h and the second figure forming the shape of the light shielding layer 113 are both elliptical.
- 114a and 114b are both elliptical.
- the two ellipses 114a and 114b are arranged concentrically.
- the plurality of openings 113 h are regularly arranged on the base material 39.
- the first figure forming the outer shape of the opening 117h is an ellipse 118a
- the second figure forming the shape of the light shielding layer 117 is a circle 118b. is there.
- the ellipse 118a and the circle 118b are arranged concentrically.
- the plurality of openings 117 h are regularly arranged on the base material 39.
- the viewing angle widening films of the first to third modifications it is possible to reduce the time and labor required for a design change when adjusting the aperture ratio, and it is easy to obtain emitted light having a desired angular distribution.
- the same effects as in the sixth embodiment can be obtained.
- the viewing angle widening films of the second and third modified examples since at least one of the first graphic and the second graphic has an anisotropic shape, anisotropic light diffusion characteristics are obtained. An effect similar to that of the first modified example in which the viewing angle widening film can be realized can be obtained.
- a plurality of openings 120h1 and 120h2 may be provided inside one light shielding layer 120.
- an isotropic opening 120h1 and an anisotropic opening 120h2 may be mixed.
- two openings 120h1 and 120h2 are provided inside the circular light shielding layer 120, one opening 120h1 is circular (isotropic shape), and one opening 120h2 is oval. It has a shape (anisotropic shape).
- two openings are provided here, three or more openings may be provided.
- a plurality of light shielding layers 122a and 122b may be provided inside one opening 122h.
- an isotropic light shielding layer 122a and an anisotropic light shielding layer 122b may be mixed.
- two light shielding layers 122a and 122b are provided inside a circular opening 122h, one light shielding layer 122a is circular (isotropic shape), and one light shielding layer 122b is elliptical. It has a shape (anisotropic shape).
- two light shielding layers are provided here, three or more light shielding layers may be provided.
- the light shielding layer 126 provided with 126h, the light shielding layer 128 provided with the rectangular opening 128h inside the circle, the light shielding layer 130 provided with the rectangular opening 130h inside the rectangle, and the like may be used.
- an opening 132h in which two circles are connected and an elliptical light shielding layer 132 is provided on the inside thereof, and a light shielding layer having a shape in which two circles are connected inside one circle.
- an opening 134h provided with 134, an opening 136h provided with a rectangular light shielding layer 136 inside a circle, an opening 138h provided with a rectangular light shielding layer 138 inside a rectangle, or the like may be used.
- the second graphic does not have to be completely enclosed inside the first graphic.
- a circle 140a which is the first graphic
- a circle 140b which is the second graphic, partially overlap, and a portion surrounded by the two circles 140a and 140b is a light shielding layer 141. It may be.
- the light shielding layer does not have to be a completely closed ring.
- the light shielding layer 142 may have a shape in which a part of the ring is interrupted.
- the major axis direction and minor axis direction of both ellipses do not necessarily have to coincide.
- the major axis direction of the ellipse 144b that becomes the opening 143h may be orthogonal to the major axis direction of the ellipse 144a that becomes the outer shape of the light shielding layer 143.
- a circle 145a as the first graphic part and two circles 145b1 and 145b2 as the second graphic partly overlap each other, and a part surrounded by each graphic becomes a light shielding layer 146. It may be.
- a circle 147a as the first graphic and a circle 147b as the second graphic partially overlap, and a portion surrounded by the two circles 147a and 147b is an opening 148h. It may be.
- an opening 149h having a shape in which a part of the ring is interrupted may be used.
- the long axis direction of the ellipse 151b that becomes the light shielding layer 150 is the long axis direction of the ellipse 151a that becomes the outer shape of the opening 150h as in the opening 150h shown in FIG. 23C. They may be orthogonal.
- a circle 152a as the first graphic part and two circles 152b1 and 152b2 as the second graphic partly overlap each other, and a part surrounded by each graphic becomes an opening 153h. It may be.
- a light scattering film 156 (light scattering layer) may be disposed on the viewing side of the base material 39 of the viewing angle widening film 7. According to this configuration, the light emitted from the base material 39 is scattered by the light scattering film 156. Therefore, a gentle angular distribution can be obtained without the angular distribution of emitted light being biased to a specific angle.
- the light scattering layer does not necessarily have to be handled individually as a film, and may be formed in a layer shape. In that case, the light scattering layer is not necessarily disposed on the outermost surface, and may be disposed on the light emission side with respect to the light transmitting portion 44.
- the technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
- an example of a liquid crystal display device is given as the display body.
- the present invention is not limited to this, and the present invention may be applied to an organic electroluminescence display device, a plasma display, or the like.
- the viewing angle expansion film and the liquid crystal display body do not necessarily need to contact.
- another optical film or an optical component may be inserted between the viewing angle widening film and the liquid crystal display.
- a viewing angle expansion film and a liquid crystal display body may exist in the position which left
- a polarizing plate is unnecessary, so that the viewing angle widening film and the polarizing plate do not come into contact with each other.
- an antireflection layer As a configuration in which at least one of an antireflection layer, a polarizing filter layer, an antistatic layer, an antiglare treatment layer, and an antifouling treatment layer is provided on the viewing side of the base material of the viewing angle widening film in the above embodiment. Also good. According to this configuration, it is possible to add a function to reduce external light reflection, a function to prevent the adhesion of dust and dirt, a function to prevent scratches, and the like according to the type of layer provided on the viewing side of the substrate. Further, it is possible to prevent deterioration of viewing angle characteristics with time.
- the specific configuration relating to the arrangement and shape of the light transmission part and the light shielding layer, the dimensions and materials of each part of the viewing angle widening film, the manufacturing conditions in the manufacturing process, and the like are not limited to the above embodiment, and can be changed as appropriate. .
- the present invention is applicable to various display devices such as liquid crystal display devices, organic electroluminescence display devices, and plasma displays.
- base material 40, 61, 64, 69, 73, 78, 82, 85, 88, 92, 96, 102, 109, 113, 117, 120, 122a, 122b, 124, 126, 128, 130, 132, 134, 136, 138, 141, 142, 143, 146, 150 ...
- light shielding layer 40h, 61h, 64h, 69h, 78h, 82h, 85h, 88h, 102h, 109h, 113h, 117h, 120h1, 120h2, 122 , 124h, 126h, 128h, 130h, 132h, 134h, 136h, 138h, 143h, 148h, 149h, 150h, 153h ... opening, 41 ... transparent resin layer (light transmissive material layer), 43, 103 ... hollow part, 44, 70, 93, 97, 104 ... light transmission part, 45a, 62a, 65a, 74a, 106a, 140a, 145a, 147a, 152a ...
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
Abstract
Description
本願は、2012年3月28日に、日本に出願された特願2012-075135号に基づき優先権を主張し、その内容をここに援用する。
以下、本発明の第1実施形態について、図1~図7Bを用いて説明する。
本実施形態では、表示体として透過型の液晶パネルを備えた液晶表示装置の例を挙げて説明する。
なお、以下の全ての図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
本実施形態の液晶表示装置1(表示装置)は、図1および図2Bに示すように、バックライト2(光源)と第1偏光板3と第1位相差板13と液晶パネル4(光変調素子)と第2位相差板8と第2偏光板5とを有する液晶表示体6(表示体)と、視野角拡大フィルム7(視野角拡大部材、光拡散部材)と、から構成されている。図1および図2Bでは、液晶パネル4を模式的に1枚の板状に図示しているが、その詳細な構造については後で図3を用いて説明する。観察者は、視野角拡大フィルム7が配置された図2Bにおける液晶表示装置1の上側から表示を見ることになる。よって、以下の説明では、視野角拡大フィルム7が配置された側を視認側と称し、バックライト2が配置された側を背面側と称する。
ここでは、アクティブマトリクス方式の透過型液晶パネルを一例に挙げて説明するが、本発明に適用可能な液晶パネルはアクティブマトリクス方式の透過型液晶パネルに限るものではない。本発明に適用可能な液晶パネルは、例えば半透過型(透過・反射兼用型)液晶パネルや反射型液晶パネルであっても良く、更には、各画素がスイッチング用薄膜トランジスタ(Thin Film Transistor,以下、TFTと略記する)を備えていない単純マトリクス方式の液晶パネルであっても良い。
液晶パネル4は、図3に示すように、スイッチング素子基板としてのTFT基板9と、TFT基板9に対向して配置されたカラーフィルター基板10と、TFT基板9とカラーフィルター基板10との間に挟持された液晶層11と、を有している。液晶層11は、TFT基板9と、カラーフィルター基板10と、TFT基板9とカラーフィルター基板10とを所定の間隔をおいて貼り合わせる枠状のシール部材(図示せず)と、によって囲まれた空間内に封入されている。本実施形態の液晶パネル4は、例えばVA(Vertical Alignment,垂直配向)モードで表示を行うものであり、液晶層11には誘電率異方性が負の垂直配向液晶が用いられる。TFT基板9とカラーフィルター基板10との間には、これら基板間の間隔を一定に保持するための球状のスペーサー12が配置されている。なお、表示モードについては、上記のVAモードに限らず、TN(Twisted Nematic)モード、STN(Super Twisted Nematic)モード、IPS(In-Plane Switching)モード等を用いることができる。
ゲート絶縁膜20上には、半導体層15と対向するようにゲート電極16が形成されている。ゲート電極16の材料としては、例えばW(タングステン)/TaN(窒化タンタル)の積層膜、Mo(モリブデン)、Ti(チタン)、Al(アルミニウム)等が用いられる。
視野角拡大フィルム7は、図1および図2Bに示すように、基材39と、基材39の一面(視認側と反対側の面)に形成された複数の遮光層40と、基材39の一面に形成された透明樹脂層41(光透過性材料層)と、から構成されている。この視野角拡大フィルム7は、図2Bに示すように、透明樹脂層41が設けられた側を第2偏光板5に向け、基材39の側を視認側に向けた姿勢で第2偏光板5上に粘着層42により固定されている。
本実施形態の場合、第1の円45aの中心と第2の円45bの中心とは一致している。すなわち、遮光層40の内側に開口部40hが同心状に配置されている。
また、透明樹脂層41の全光線透過率は、JIS K7361-1の規定で90%以上が好ましい。全光線透過率が90%以上であると、十分な透明性が得られる。透明樹脂層41の層厚は遮光層40の厚さよりも十分大きく設定されている。本実施形態の場合、透明樹脂層41の層厚は一例として25μm程度であり、遮光層40の層厚は一例として1μm程度である。
以下では、視野角拡大フィルム7の製造工程を中心に説明する。
液晶表示体6の製造工程の概略を先に説明すると、最初に、TFT基板9とカラーフィルター基板10をそれぞれ作製する。その後、TFT基板9のTFT19が形成された側の面とカラーフィルター基板10のカラーフィルター31が形成された側の面とを対向させて配置し、TFT基板9とカラーフィルター基板10とをシール部材を介して貼り合わせる。その後、TFT基板9とカラーフィルター基板10とシール部材とによって囲まれた空間内に液晶を注入する。そして、このようにしてできた液晶パネル4の両面に、光学接着剤等を用いて第1位相差板13、第1偏光板3、第2位相差板8、第2偏光板4をそれぞれ貼り合わせる。以上の工程を経て、液晶表示体6が完成する。
なお、TFT基板9やカラーフィルター基板10の製造方法には従来から公知の方法が用いられるため、説明を省略する。
図6Aに示すように、厚さが100μmのポリエチレンテレフタレート(PET)の基材39を準備し、印刷法を用いて、基材39の一面に遮光層材料としてカーボンが含有された黒色樹脂、もしくは黒色インクからなる厚さ1μmの遮光層40をローラー46から基材39上に転写する。
次いで、上記の塗膜48を形成した基材39をホットプレート上に載置し、温度95℃で塗膜48のプリベークを行う。これにより、透明ネガレジスト中の溶媒が揮発する。
その後、上記の塗膜48を形成した基材39をホットプレート上に載置し、温度95℃で塗膜48のポストエクスポージャーベイク(PEB)を行う。
以上の工程により、本実施形態の液晶表示装置1が完成する。
図7Aに示すように、液晶表示体6から射出され、視野角拡大フィルム7に入射した光のうち、光透過部44の中心付近において光入射端面44bに対して略垂直に入射した光L1は、光透過部44の側面44cで全反射することなく、光透過部44をそのまま直進して透過する。また、光透過部44の周縁部において光入射端面44bに対して略垂直に入射した光L2は、臨界角よりも大きい入射角で光透過部の側面44cに入射するため、光透過部44の側面44cで全反射する。全反射した光は、その後、光透過部44の光射出端面44aでさらに屈折し、光射出端面44aの法線方向に対して大きな角度をなす方向に射出される。一方、光透過部44の光入射端面44bに対して斜めに入射した光L3は、臨界角よりも小さい入射角で光透過部44の側面44cに入射する。そのため、光L3は、光透過部44の側面44cを透過し、遮光層40で吸収される。
本実施形態の視野角拡大フィルム7は、このような光を遮光層40でカットすることで表示のコントラストを高めることができる。
上記実施形態では、図2Aに示すように、複数の遮光層40は規則的に配置されている。この構成に代えて、本変形例の視野角拡大フィルム50では、図8に示すように、平面形状が円環状の複数の遮光層40が基材39上にランダムに配置されている。それに伴い、複数の遮光層40と同一の位置に形成される複数の中空部も基材39上にランダムに配置される。
最初に、図9Aに示すように、基材と同形の矩形領域51の全体を縦m個(例えば6個)、横n個(例えば6個)からなるm×n個(例えば36個)の小領域52に分割する。
上記第1変形例の視野角拡大フィルム50は、全ての遮光層40に開口部40hが設けられていた。この構成に代えて、本変形例の視野角拡大フィルム55では、図10Aに示すように、一部の遮光層40に開口部40hが設けられ、残りの遮光層40には開口部40hが設けられていない。複数の遮光層40は、基材39上にランダムに配置されている。
上記第2変形例の視野角拡大フィルム55は、複数の遮光層40が全て点在して配置されていた。この構成に代えて、本変形例の視野角拡大フィルム57では、図10Bに示すように、一部の遮光層40については、隣接する遮光層40同士が連結されている。
複数の遮光層40は、基材39上にランダムに配置されている。
上記第2変形例の視野角拡大フィルム55は、遮光層40の内側に開口部40hが同心状に配置されていた。この構成に代えて、本変形例の視野角拡大フィルム59では、図10Cに示すように、遮光層40の内側に開口部40hが偏心して配置されている。すなわち、遮光層40の輪郭を構成する第1の円45aの中心と第2の円45bの中心とが一致していない。複数の遮光層40は、基材39上にランダムに配置されている。
上記実施形態の視野角拡大フィルム7においては、個々の遮光層の平面形状が円環状であった。この構成に代えて、本変形例では、図11Aに示すように、個々の遮光層61の平面形状が正方形環状である。すなわち、遮光層61の外形を構成する第1の正方形62aの内側に、開口部61hの外形を構成する第2の正方形62bが同心状に配置されている。なお、上述の変形例と同様、一部の遮光層61にのみ開口部61hが設けられていてもよい。また、遮光層61の内側に開口部61hが偏心して設けられていてもよい。
本変形例では、図11Bに示すように、個々の遮光層64の平面形状が正八角形環状である。すなわち、遮光層64の外形を構成する第1の正八角形65aの内側に、開口部64hの外形を構成する第2の正八角形65bが同心状に配置されている。なお、上述の変形例と同様、一部の遮光層64にのみ開口部64hが設けられていてもよい。また、遮光層64の内側に開口部が偏心して設けられていてもよい。
以下、本発明の第2実施形態について、図12A、図12Bを用いて説明する。
本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、視野角拡大フィルムの遮光層の構成が第1実施形態と異なるのみである。したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、視野角拡大フィルムについてのみ説明する。
図12Aは、本実施形態の液晶表示装置67を示す斜視図である。図12Bは、本実施形態の視野角拡大フィルム68の平面図である。
また、図12A、図12Bにおいて、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、その詳細な説明は省略する。
以下、本発明の第3実施形態について、図13を用いて説明する。
本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、視野角拡大フィルムの遮光層の構成が第1実施形態と異なるのみである。したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、視野角拡大フィルムについてのみ説明する。
図13は、本実施形態の視野角拡大フィルムの平面図である。
また、図13において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、その詳細な説明は省略する。
上記実施形態の視野角拡大フィルム72では、遮光層73の外形をなす第1の図形が円であり、開口部73hの形状をなす第2の図形が楕円であった。この構成に代えて、本変形例の視野角拡大フィルム77では、図14Aに示すように、遮光層78の外形をなす第1の図形、開口部78hの形状をなす第2の図形がともに楕円である。2つの楕円79a,79bは同心状に配置されている。複数の遮光層78は、基材39上に規則的に配置されている。
本変形例の視野角拡大フィルム81では、図14Bに示すように、遮光層82の外形をなす第1の図形が楕円83aであり、開口部82hの形状をなす第2の図形が円83bである。楕円83aと円83bとは同心状に配置されている。複数の遮光層82は、基材39上に規則的に配置されている。
第1変形例の視野角拡大フィルム77では、遮光層78の外形をなす第1の図形、開口部78hの形状をなす第2の図形がともに楕円79a,79bであった。これに対して、本変形例では、図15Aに示すように、遮光層85の外形をなす第1の図形、開口部85hの形状をなす第2の図形がともに長方形86a,86bである。2つの長方形86a,86bは同心状に配置されている。なお、図15Aでは遮光層78を縦長に配置しているが、遮光層78を横長に配置してもよい。
本変形例では、図15Bに示すように、遮光層88の外形をなす第1の図形、開口部88hの形状をなす第2の図形がともに細長の八角形89a,89bである。2つの八角形89a,89bは同心状に配置されている。なお、図15Bでは遮光層88を縦長に配置しているが、遮光層88を横長に配置してもよい。
以下、本発明の第4実施形態について、図16を用いて説明する。
本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、視野角拡大フィルムの光透過部の形状が第1実施形態と異なるのみである。したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、視野角拡大フィルムについてのみ説明する。
図16は、本実施形態の視野角拡大フィルムを示す断面図である。図16において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明は省略する。
以下、本発明の第5実施形態について、図17を用いて説明する。
本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、視野角拡大フィルムの光透過部の形状が第1実施形態と異なるのみである。したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、視野角拡大フィルムについてのみ説明する。
図17は、本実施形態の視野角拡大フィルムの断面図である。図17において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明は省略する。
以下、本発明の第6実施形態について、図18A、図18Bを用いて説明する。
本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、視野角拡大フィルムの構成が第1実施形態と異なるのみである。したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、視野角拡大フィルムについてのみ説明する。
図18Aは、本実施形態の液晶表示装置100を示す平面図であり、図18Bは、図18AのA-A’線に沿う断面図である。図18A、図18Bにおいて、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、詳細な説明は省略する。
パターン設計の第1段階として、開口部102hとなる複数の第1の円106a(第1の図形)を所定の領域内に点在して配置する。次に、第2段階として、遮光層102となる第2の円106b(第2の図形)を、第1の円106aに内包されるように配置する。
上記第6実施形態の視野角拡大フィルム101においては、開口部102hが円環状であり、開口部102hの外形をなす第1の図形、遮光層102の形状をなす第2の図形がともに円106a,106bであった。これに対して、本変形例の視野角拡大フィルム108においては、図19Aに示すように、開口部109hの外形をなす第1の図形が円110aであり、遮光層109の形状をなす第2の図形が楕円110bである。円110aと楕円110bとは同心状に配置されている。すなわち、第1の図形は等方性の形状であり、第2の図形は異方性の形状である。遮光層109をなす楕円110bは、図19Aにおいて横長となるように、長軸がx軸方向、短軸がy軸方向に配置されている。
第6実施形態と同様、複数の開口部109hは規則的に配置されているが、ランダムに配置されていてもよい。
上記第1変形例の視野角拡大フィルム108では、開口部109hの外形をなす第1の図形が円110aであり、遮光層109の形状をなす第2の図形が楕円110bであった。この構成に代えて、本変形例の視野角拡大フィルム112では、図19Bに示すように、開口部113hの外形をなす第1の図形、遮光層113の形状をなす第2の図形がともに楕円114a,114bである。2つの楕円114a,114bは同心状に配置されている。複数の開口部113hは、基材39上に規則的に配置されている。
本変形例の視野角拡大フィルム116では、図19Cに示すように、開口部117hの外形をなす第1の図形が楕円118aであり、遮光層117の形状をなす第2の図形が円118bである。楕円118aと円118bは同心状に配置されている。複数の開口部117hは、基材39上に規則的に配置されている。
例えば図20(A)に示すように、一つの遮光層120の内側に複数の開口部120h1,120h2を設けてもよい。その場合、等方性形状の開口部120h1と異方性形状の開口部120h2とを混在させてもよい。本変形例の視野角拡大フィルムでは、円形の遮光層120の内側に2個の開口部120h1,120h2を設け、一つの開口部120h1を円形(等方性形状)、一つの開口部120h2を楕円形(異方性形状)としている。ここでは2個の開口部を設けたが、3個以上の開口部を設けてもよい。
例えば、視野角拡大フィルムと液晶表示体との間に他の光学フィルムや光学部品等が挿入されていても良い。あるいは、視野角拡大フィルムと液晶表示体とが離れた位置にあっても良い。また、有機エレクトロルミネッセンス表示装置、プラズマディスプレイ等の場合には偏光板が不要であるため、視野角拡大フィルムと偏光板とが接触することはない。
Claims (25)
- 光透過性を有する基材と、前記基材の一面に点在する複数の遮光層と、前記基材の前記一面に設けられ、前記遮光層よりも厚い光透過性材料層と、を備え、
前記基材の前記一面の法線方向から見て、前記複数の遮光層のうちの少なくとも一部の遮光層が、第1の図形と前記第1の図形に内包される第2の図形とによって囲まれた平面形状、もしくは、第1の図形の少なくとも一部と前記第1の図形に一部重なるように配置された第2の図形の少なくとも一部とによって囲まれた平面形状を有し、
前記遮光層の形成領域に、前記基材の前記一面に平行な平面で切断したときの断面積が前記遮光層側で大きく、前記遮光層から離れるにつれて漸次小さくなる形状の中空部が設けられ、
前記光透過性材料層の前記中空部以外の部分が光透過部とされたことを特徴とする光拡散部材。 - 前記複数の遮光層が、前記基材の前記一面の法線方向から見て非周期的に配置されていることを特徴とする請求項1に記載の光拡散部材。
- 前記複数の遮光層のうち、少なくとも一つの遮光層の寸法が他の遮光層の寸法と異なることを特徴とする請求項1または2に記載の光拡散部材。
- 光透過性を有する基材と、前記基材の一面に形成された遮光層と、前記遮光層の形成領域に点在する複数の開口部と、前記複数の開口部の形成領域に設けられ、前記遮光層よりも厚い光透過性材料層と、を備え、
前記基材の前記一面の法線方向から見て、前記複数の開口部のうちの少なくとも一部の開口部が、第1の図形と前記第1の図形に内包される第2の図形とによって囲まれた平面形状、もしくは、第1の図形の少なくとも一部と前記第1の図形に一部重なるように配置された第2の図形の少なくとも一部とによって囲まれた平面形状を有し、
前記遮光層の形成領域に、前記基材の前記一面に平行な平面で切断したときの断面積が前記遮光層側で大きく、前記遮光層から離れるにつれて漸次小さくなる形状の中空部が設けられ、
前記光透過性材料層の前記中空部以外の部分が光透過部とされたことを特徴とする光拡散部材。 - 前記複数の開口部が、前記基材の前記一面の法線方向から見て非周期的に配置されていることを特徴とする請求項4に記載の光拡散部材。
- 前記複数の開口部のうち、少なくとも一つの開口部の寸法が他の開口部の寸法と異なることを特徴とする請求項4または5に記載の光拡散部材。
- 前記第1の図形と前記第2の図形とが同一の形状であることを特徴とする請求項1ないし6のいずれか一項に記載の光拡散部材。
- 前記第1の図形の内側に前記第2の図形が同心状に配置されていることを特徴とする請求項1ないし7のいずれか一項に記載の光拡散部材。
- 前記第1の図形の内側に前記第2の図形が偏心して配置されていることを特徴とする請求項1ないし7のいずれか一項に記載の光拡散部材。
- 前記第1の図形の内側における前記第2の図形の位置が前記複数の第1の図形にわたって非規則的であることを特徴とする請求項9に記載の光拡散部材。
- 前記第1の図形と前記第2の図形との少なくとも一方が、等方性形状であることを特徴とする請求項1ないし10のいずれか一項に記載の光拡散部材。
- 前記第1の図形と前記第2の図形との少なくとも一方が、異方性形状であることを特徴とする請求項1ないし11のいずれか一項に記載の光拡散部材。
- 一つの前記第1の図形の内側に複数の前記第2の図形が配置されていることを特徴とする請求項1ないし12のいずれか一項に記載の光拡散部材。
- 一つの前記第1の図形の内側に配置された前記複数の第2の図形が、等方性形状の前記第2の図形と異方性形状の前記第2の図形とを含むことを特徴とする請求項13に記載の光拡散部材。
- 前記中空部に空気が存在していることを特徴とする請求項1ないし14のいずれか一項に記載の光拡散部材。
- 前記光透過部よりも光射出側の位置に光散乱層が設けられていることを特徴とする請求項1ないし15のいずれか一項に記載の光拡散部材。
- 前記遮光層が光吸収性材料からなることを特徴とする請求項1ないし16のいずれか一項に記載の光拡散部材。
- 前記光吸収性材料が、黒色樹脂、黒色インク、金属単体、および金属単体と金属酸化物との積層膜のいずれかで構成されていることを特徴とする請求項17に記載の光拡散部材。
- 複数の前記光透過部のうち、少なくとも一つの光透過部の側面の傾斜角度が他の光透過部の側面の傾斜角度と異なることを特徴とする請求項1ないし18のいずれか一項に記載の光拡散部材。
- 複数の前記光透過部のうち、少なくとも一つの光透過部の側面の傾斜角度が場所によって異なることを特徴とする請求項1ないし19のいずれか一項に記載の光拡散部材。
- 複数の第1の図形を所定の領域内に点在して配置する工程と、
前記第1の図形に内包されるように、もしくは、前記第1の図形に一部重なるように複数の第2の図形を配置し、前記第1の図形の少なくとも一部と前記第2の図形の少なくとも一部とによって囲まれた平面形状を有する複数のパターンを設計する工程と、
光透過性を有する基材の一面に、前記パターンに対応した複数の遮光層を形成する工程と、
前記基材の前記一面に、前記複数の遮光層を覆うように光透過性を有するネガ型感光性樹脂層を形成する工程と、
前記遮光層および前記ネガ型感光性樹脂層を形成した前記基材の前記一面と反対側の面から、前記遮光層の非形成領域の前記基材を通して前記ネガ型感光性樹脂層に対して拡散光を照射する工程と、
前記拡散光の照射が終わった前記ネガ型感光性樹脂層を現像し、前記ネガ型感光性樹脂層における前記遮光層の形成領域に、前記基材の一面に平行な平面で切断した断面積が前記遮光層側で大きく、前記遮光層から離れるにつれて漸次小さくなる形状の中空部を形成する工程と、
を備えたことを特徴とする光拡散部材の製造方法。 - 複数の第1の図形を所定の領域内に点在して配置する工程と、
前記第1の図形に内包されるように、もしくは、前記第1の図形に一部重なるように複数の第2の図形を配置し、前記第1の図形の少なくとも一部と前記第2の図形の少なくとも一部とによって囲まれた平面形状を有する複数のパターンを設計する工程と、
光透過性を有する基材の一面に、前記パターンに対応した複数の開口部を有する遮光層を形成する工程と、
前記基材の前記一面に、前記複数の開口部を覆うように光透過性を有するネガ型感光性樹脂層を形成する工程と、
前記遮光層および前記ネガ型感光性樹脂層を形成した前記基材の前記一面と反対側の面から、前記開口部の前記基材を通して前記ネガ型感光性樹脂層に対して拡散光を照射する工程と、
前記拡散光の照射が終わった前記ネガ型感光性樹脂層を現像し、前記ネガ型感光性樹脂層における前記遮光層の形成領域に、前記基材の一面に平行な平面で切断した断面積が前記遮光層側で大きく、前記遮光層から離れるにつれて漸次小さくなる形状の中空部を形成する工程と、
を備えたことを特徴とする光拡散部材の製造方法。 - 表示体と、前記表示体の視認側に設けられ、前記表示体から入射される光の角度分布を入射前よりも広げた状態にして光を射出させる視野角拡大部材と、を備え、
前記視野角拡大部材が、請求項1ないし20のいずれか一項に記載の光拡散部材で構成されていることを特徴とする表示装置。 - 前記表示体が、光源と、前記光源からの光を変調する光変調素子と、を有し、
前記光源が指向性を有する光を射出することを特徴とする請求項23に記載の表示装置。 - 前記表示体が液晶表示素子であることを特徴とする請求項23または24に記載の表示装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014507631A JP5863215B2 (ja) | 2012-03-28 | 2013-03-12 | 光拡散部材およびその製造方法、表示装置 |
US14/382,859 US9279919B2 (en) | 2012-03-28 | 2013-03-12 | Light diffusing member comprising hollow portions and a plurality of light-shielding layers dotted on one surface of a base material, method for manufacturing the same and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-075135 | 2012-03-28 | ||
JP2012075135 | 2012-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146230A1 true WO2013146230A1 (ja) | 2013-10-03 |
Family
ID=49259498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/056811 WO2013146230A1 (ja) | 2012-03-28 | 2013-03-12 | 光拡散部材およびその製造方法、表示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9279919B2 (ja) |
JP (1) | JP5863215B2 (ja) |
WO (1) | WO2013146230A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022536215A (ja) * | 2018-07-19 | 2022-08-15 | イソルグ | 角度フィルタ、及び角度フィルタを製造する方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014024814A1 (ja) * | 2012-08-10 | 2014-02-13 | シャープ株式会社 | 液晶表示装置 |
US10162214B2 (en) * | 2014-05-21 | 2018-12-25 | Sharp Kabushiki Kaisha | Liquid crystal display device, optical control member, and base material for manufacturing optical control member |
US10754185B2 (en) | 2015-07-10 | 2020-08-25 | Zeon Corporation | Viewing angle expansion film, polarizing plate, and liquid crystal display device |
KR102362436B1 (ko) | 2015-09-22 | 2022-02-14 | 삼성디스플레이 주식회사 | 액정 표시 장치 |
CN105629354A (zh) | 2016-01-04 | 2016-06-01 | 京东方科技集团股份有限公司 | 防窥膜及其制造方法和显示装置 |
WO2017150165A1 (ja) * | 2016-02-29 | 2017-09-08 | 帝人フィルムソリューション株式会社 | 農業ハウス、この農業ハウスを用いた植物の栽培方法および熱線反射フィルム構造体 |
US11373386B2 (en) * | 2017-04-17 | 2022-06-28 | Boe Technology Group Co., Ltd. | Pattern identification device and display apparatus |
WO2018198483A1 (ja) * | 2017-04-27 | 2018-11-01 | ソニー株式会社 | 光学部材、表示装置および照明装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003500684A (ja) * | 1999-05-20 | 2003-01-07 | ツムトーベル シュタッフ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 光線を反射させるための光学要素、およびその製造方法 |
JP2003504691A (ja) * | 1999-07-07 | 2003-02-04 | スリーエム イノベイティブ プロパティズ カンパニー | 内部反射を用いた背面投射スクリーンおよびその製法 |
JP2004004148A (ja) * | 2001-05-14 | 2004-01-08 | Dainippon Printing Co Ltd | プロジェクションスクリーン用シート、光拡散シート、及びプロジェクションスクリーン |
JP2005189303A (ja) * | 2003-12-24 | 2005-07-14 | Hitachi Chem Co Ltd | 光学シート、面状光源装置及び液晶表示装置 |
JP2005202182A (ja) * | 2004-01-16 | 2005-07-28 | Toppan Printing Co Ltd | プリズムシート及び光拡散シート並びに透過型スクリーン |
WO2007026776A1 (ja) * | 2005-08-30 | 2007-03-08 | Mitsubishi Rayon Co., Ltd. | 光偏向シートとその製造方法 |
JP2009086682A (ja) * | 2008-12-16 | 2009-04-23 | Dainippon Printing Co Ltd | 二次元視野角拡大部材および表示装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2007123134A1 (ja) * | 2006-04-17 | 2009-09-03 | パナソニック株式会社 | 液晶表示モジュール、波長分散性拡散シートおよび液晶表示装置 |
US7478913B2 (en) * | 2006-11-15 | 2009-01-20 | 3M Innovative Properties | Back-lit displays with high illumination uniformity |
US7956954B2 (en) * | 2008-05-28 | 2011-06-07 | Lg Electronics Inc. | Optical sheet, backlight unit, and liquid crystal display |
TWI410713B (zh) * | 2008-11-06 | 2013-10-01 | Ind Tech Res Inst | 背光模組與液晶顯示器 |
CN102308232B (zh) * | 2008-12-05 | 2014-02-19 | 凸版印刷株式会社 | 光学部件、照明装置及显示装置 |
KR101291901B1 (ko) * | 2009-08-05 | 2013-07-31 | 엘지디스플레이 주식회사 | 액정표시장치 |
-
2013
- 2013-03-12 JP JP2014507631A patent/JP5863215B2/ja not_active Expired - Fee Related
- 2013-03-12 US US14/382,859 patent/US9279919B2/en not_active Expired - Fee Related
- 2013-03-12 WO PCT/JP2013/056811 patent/WO2013146230A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003500684A (ja) * | 1999-05-20 | 2003-01-07 | ツムトーベル シュタッフ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 光線を反射させるための光学要素、およびその製造方法 |
JP2003504691A (ja) * | 1999-07-07 | 2003-02-04 | スリーエム イノベイティブ プロパティズ カンパニー | 内部反射を用いた背面投射スクリーンおよびその製法 |
JP2004004148A (ja) * | 2001-05-14 | 2004-01-08 | Dainippon Printing Co Ltd | プロジェクションスクリーン用シート、光拡散シート、及びプロジェクションスクリーン |
JP2005189303A (ja) * | 2003-12-24 | 2005-07-14 | Hitachi Chem Co Ltd | 光学シート、面状光源装置及び液晶表示装置 |
JP2005202182A (ja) * | 2004-01-16 | 2005-07-28 | Toppan Printing Co Ltd | プリズムシート及び光拡散シート並びに透過型スクリーン |
WO2007026776A1 (ja) * | 2005-08-30 | 2007-03-08 | Mitsubishi Rayon Co., Ltd. | 光偏向シートとその製造方法 |
JP2009086682A (ja) * | 2008-12-16 | 2009-04-23 | Dainippon Printing Co Ltd | 二次元視野角拡大部材および表示装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022536215A (ja) * | 2018-07-19 | 2022-08-15 | イソルグ | 角度フィルタ、及び角度フィルタを製造する方法 |
Also Published As
Publication number | Publication date |
---|---|
US9279919B2 (en) | 2016-03-08 |
JP5863215B2 (ja) | 2016-02-16 |
JPWO2013146230A1 (ja) | 2015-12-10 |
US20150042934A1 (en) | 2015-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5863215B2 (ja) | 光拡散部材およびその製造方法、表示装置 | |
JP6249420B2 (ja) | 光拡散部材およびその製造方法、表示装置およびその製造方法 | |
JP6136059B2 (ja) | 液晶表示装置、光制御フィルム、表示装置 | |
WO2012086424A1 (ja) | 光拡散部材およびその製造方法、表示装置 | |
WO2012118137A1 (ja) | 光拡散部材およびその製造方法、表示装置 | |
WO2013146353A1 (ja) | 光制御フィルム、表示装置、および光制御フィルムの製造方法 | |
WO2012053501A1 (ja) | 光拡散部材およびその製造方法、表示装置 | |
WO2012081410A1 (ja) | 光拡散部材およびその製造方法、表示装置 | |
JP5943265B2 (ja) | 液晶表示装置 | |
JP5908089B2 (ja) | 光拡散タッチパネルおよびその製造方法、表示装置 | |
WO2012157517A1 (ja) | 光拡散部材およびその製造方法、表示装置 | |
JP6167429B2 (ja) | 液晶表示装置及び液晶表示装置の製造方法 | |
WO2012157511A1 (ja) | 光拡散部材およびその製造方法、表示装置 | |
JP6212825B2 (ja) | 偏光板付き光拡散部材、偏光板付き光拡散部材の製造方法、及び表示装置 | |
JP6103377B2 (ja) | 表示装置及びその製造方法 | |
WO2014092017A1 (ja) | 光拡散部材及び表示装置 | |
JP6101981B2 (ja) | 偏光板付き光拡散部材および表示装置 | |
WO2016084676A1 (ja) | 液晶表示装置及び光制御部材 | |
JP2015094776A (ja) | 光拡散部材および表示装置 | |
JP2013225008A (ja) | 光制御フィルム、表示装置、および光制御フィルムの製造方法 | |
WO2016158834A1 (ja) | 光配向部材、照明装置、液晶表示装置および光配向部材の製造方法 | |
JP2013222157A (ja) | 光拡散部材および表示装置 | |
JP2013228528A (ja) | 光制御フィルム、表示装置、および光制御フィルムの製造方法 | |
JP2018036652A (ja) | 表示装置 | |
JP2017097123A (ja) | 液晶表示装置および光制御部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13767254 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014507631 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14382859 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13767254 Country of ref document: EP Kind code of ref document: A1 |