WO2013146028A1 - 自動変速機装置 - Google Patents

自動変速機装置 Download PDF

Info

Publication number
WO2013146028A1
WO2013146028A1 PCT/JP2013/055054 JP2013055054W WO2013146028A1 WO 2013146028 A1 WO2013146028 A1 WO 2013146028A1 JP 2013055054 W JP2013055054 W JP 2013055054W WO 2013146028 A1 WO2013146028 A1 WO 2013146028A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
clutch
rotating element
planetary gear
automatic transmission
Prior art date
Application number
PCT/JP2013/055054
Other languages
English (en)
French (fr)
Inventor
政弘 大竹
融 左右田
糟谷 悟
宣和 池
加藤 博
慎司 大板
森瀬 勝
Original Assignee
アイシン・エィ・ダブリュ株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, トヨタ自動車株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112013000739.8T priority Critical patent/DE112013000739T5/de
Priority to JP2014507556A priority patent/JP5860139B2/ja
Priority to CN201380009971.6A priority patent/CN104114905A/zh
Priority to US14/379,141 priority patent/US20150031494A1/en
Publication of WO2013146028A1 publication Critical patent/WO2013146028A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H2003/442Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion comprising two or more sets of orbital gears arranged in a single plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0065Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising nine forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2012Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with four sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2046Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with six engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2064Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using at least one positive clutch, e.g. dog clutch

Definitions

  • the present invention relates to an automatic transmission apparatus that shifts the power input to an input member and outputs it to an output member.
  • the conventional automatic transmission device 901 as the background art includes sun gears 911, 921, 931, and 941 as external gears and ring gears 913, 923, 933, and 943 as internal gears.
  • the sun gear 911 and the sun gear 921 are connected by a first connecting element 951, the ring gear 913 and the carrier 912 are connected by a second connecting element 952, and the ring gear 923, the carrier 932, and the carrier 942 are connected by a third connecting element 953.
  • the fourth planetary gear mechanism 940 is formed on the outer peripheral side of the third planetary gear mechanism 930, and the ring gear 933 and the sun gear 941 are connected by a fourth connecting element 954.
  • the sun gear 931 is connected to the input shaft 903 via the clutch C1 and is connected to the case 902 via the brake B1, and the second connecting element 852 is connected to the input shaft 903 via the clutch C2. Yes.
  • the third coupling element 953 is connected to the input shaft 903 via the dog clutch DC
  • the first coupling element 951 is connected to the case 902 via the dog brake DB
  • the fourth planetary gear mechanism 940 Ring gear 943 is connected to case 902 via brake B902.
  • An output gear 904 is connected to the ring gear 913 of the first planetary gear mechanism 910.
  • the gear ratios ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 of the first to fourth planetary gear mechanisms 910, 920, 930, and 940 (the number of sun gear teeth / ring gear of each planetary gear mechanism).
  • the number of teeth) is set to 0.36, 0.36, 0.56, and 0.66.
  • the gear ratio width calculated as the gear ratio of the first forward speed (lowest speed) / the gear ratio of the ninth forward speed (highest speed) is 10.02.
  • the clutch C1, the clutch C2, and the brake B2 are engaged and the dog clutch DC, the dog brake DB, and the brake B1 are disengaged at the ninth forward speed, which is the highest speed. Therefore, all (four) of the first to fourth planetary gear mechanisms 910, 920, 930, and 940 operate as gear mechanisms for transmitting torque from the input shaft 903 to the output gear 904. Further, at the eighth forward speed, which is one stage before the highest speed stage, the clutch C2, the brake B1, and the brake B2 are engaged, and the clutch C1, the dog clutch DC, and the dog brake DB are released. To transmit torque from 903 to the output gear 904, the first planetary gear mechanism 910 and the second planetary gear mechanism 920 operate as a gear mechanism.
  • an automatic transmission device when an automatic transmission is constituted by four planetary gear mechanisms and a plurality of clutches and brakes, there are many ways to connect the rotating elements of the four planetary gear mechanisms and to attach a plurality of clutches and brakes. There are some that can function as an automatic transmission device and some that cannot function depending on the connection and installation. In addition, the loss due to gear meshing decreases when the number of planetary gear mechanisms that operate to transmit torque from the input side to the output side at the highest speed stage on the forward side or the previous gear stage decreases. Transmission efficiency increases.
  • the automatic transmission apparatus is mainly intended to propose a new automatic transmission apparatus including four planetary gear mechanisms, three clutches, and three brakes, and to improve torque transmission efficiency. For further purposes.
  • the automatic transmission apparatus of the present invention employs the following means in order to achieve at least the above-mentioned main object.
  • the automatic transmission device of the present invention is An automatic transmission device that shifts the power input to the input member and outputs it to the output member, A first planetary gear mechanism having a first rotating element, a second rotating element, and a third rotating element in order of arrangement at intervals corresponding to the gear ratio in the velocity diagram; A second planetary gear mechanism having a fourth rotating element, a fifth rotating element, and a sixth rotating element in order of arrangement at intervals corresponding to the gear ratio in the velocity diagram; A third planetary gear mechanism having a seventh rotating element, an eighth rotating element, and a ninth rotating element in the order of arrangement at intervals corresponding to the gear ratio in the velocity diagram; A fourth planetary gear mechanism having a tenth rotating element, an eleventh rotating element, and a twelfth rotating element in the order of arrangement at intervals corresponding to the gear ratio in the velocity diagram; A first connecting element that connects the first rotating element, the sixth rotating element, and the eleventh rotating element; A second connecting element connecting the second rotating element and the ninth rotating element; A third connecting element
  • the first planetary element having the first rotating element, the second rotating element, and the third rotating element in the arrangement order at intervals corresponding to the gear ratio in the velocity diagram as the three rotating elements.
  • a fourth planetary gear mechanism having a tenth rotating element, an eleventh rotating element, and a twelfth rotating element in order of arrangement at intervals corresponding to the gear ratio in the first, sixth, and eleventh rotating elements.
  • the second coupling element and the tenth rotating element are connected via the first clutch
  • the fifth rotating element and the twelfth rotating element are connected via the second clutch
  • the fourth clutch is connected via the third clutch.
  • Connecting the rotating element and the tenth rotating element; connecting the first brake to the fifth rotating element; connecting the second brake to the fourth rotating element; connecting the third brake to the seventh rotating element; Is connected to the tenth rotating element and the output member is connected to the third coupling element.
  • an automatic transmission that can function by four planetary gear mechanisms, three clutches, and three brakes can be configured.
  • the first forward speed to the ninth forward speed and the reverse speed can be configured as follows.
  • the first forward speed is formed by engaging the second clutch, the first brake, and the third brake and releasing the first clutch, the third clutch, and the second brake.
  • the second forward speed is formed by engaging the second clutch, the second brake, and the third brake and releasing the first clutch, the third clutch, and the first brake.
  • the third forward speed is formed by engaging the second clutch, the third clutch, and the third brake and releasing the first clutch, the first brake, and the second brake.
  • the fourth forward speed is formed by engaging the first clutch, the third clutch, and the third brake and releasing the second clutch, the first brake, and the second brake.
  • the fifth forward speed is formed by engaging the first clutch, the second clutch, and the third clutch and releasing the first brake, the second brake, and the third brake.
  • the sixth forward speed is formed by engaging the first clutch, the second clutch, and the second brake and releasing the third clutch, the first brake, and the third brake.
  • the seventh forward speed is formed by engaging the first clutch, the second clutch, and the first brake and releasing the third clutch, the second brake, and the third brake.
  • the eighth forward speed is formed by engaging the first clutch, the first brake, and the second brake and releasing the second clutch, the third clutch, and the third brake. To do.
  • the ninth forward speed is formed by engaging the first clutch, the third clutch, and the first brake and releasing the second clutch, the second brake, and the third brake.
  • the reverse gear is formed by engaging the third clutch, the first brake, and the third brake and releasing the first clutch, the second clutch, and the second brake. If it carries out like this, it can be set as the apparatus which can carry out gear shifting from the 1st forward gear to the 9th forward gear and the reverse gear by four planetary gear mechanisms, three clutches and three brakes.
  • the first clutch, the third clutch, and the first brake are engaged, and the second clutch, the second brake, and the third brake are released.
  • the third planetary gear mechanism is not involved in torque transmission between the input member and the output member because the seventh rotating element is released by releasing the third brake.
  • the fourth planetary gear mechanism is not involved in torque transmission between the input member and the output member because the twelfth rotating element is released by releasing the second clutch. Therefore, at the ninth forward speed, the first planetary gear mechanism and the second planetary gear mechanism operate as a gear mechanism for torque transmission between the input member and the output member.
  • the first clutch, the first brake, and the second brake are engaged, and the second clutch, the third clutch, and the third brake are released.
  • the third planetary gear mechanism is not involved in torque transmission between the input member and the output member because the seventh rotating element is released by releasing the third brake.
  • the second planetary gear mechanism since the fifth rotating element and the fourth rotating element are fixed to the case in a non-rotatable manner by the engagement of the first brake and the second brake, both rotating elements can rotate.
  • the gear mechanism does not operate for torque transmission between the input member and the output member.
  • the fourth planetary gear mechanism is not involved in torque transmission between the input member and the output member because the twelfth rotating element is released by releasing the second clutch.
  • the eighth forward speed only one of the first planetary gear mechanisms operates as a gear mechanism for torque transmission between the input member and the output member.
  • the number of planetary gear mechanisms that operate as a gear mechanism for torque transmission between the input member and the output member is two for the nine forward speeds of the highest speed stage, and the eight forward speeds before the highest speed stage. Since the number of gears is one, the torque is higher than that of the conventional automatic transmission device, which is four in the ninth forward speed at the highest speed and two in the eighth forward speed before the highest speed.
  • the number of planetary gear mechanisms that operate as gear mechanisms for transmission can be reduced, loss due to gear meshing can be reduced, and torque transmission efficiency can be increased. That is, torque transmission efficiency can be improved as compared with the conventional automatic transmission device.
  • the first planetary gear mechanism, the second planetary gear mechanism, the third planetary gear mechanism, and the fourth planetary gear mechanism are each a sun gear and a ring gear. It is configured as a single pinion type planetary gear mechanism having a carrier as the three rotating elements, and the first rotating element, the fourth rotating element, the seventh rotating element, and the tenth rotating element are all
  • the second rotating element, the fifth rotating element, the eighth rotating element, and the eleventh rotating element are carriers, and the third rotating element, the sixth rotating element, and the ninth rotating element. Both the rotating element and the twelfth rotating element may be ring gears.
  • the first planetary gear mechanism may be configured on the outer peripheral side of the second planetary gear mechanism. If it carries out like this, although it becomes large about a radial direction, it can be shortened about an axial direction. That is, it can be made the same as the axial length of the automatic transmission device by three planetary gear mechanisms.
  • the fourth planetary gear mechanism, the first planetary gear mechanism, the second planetary gear mechanism, and the third planetary gear mechanism are arranged in this order. It can also be.
  • the third brake may be configured as a dog brake.
  • the dog brake is susceptible to shock when engaged, and synchronous control is required to synchronize the rotation.
  • the third brake is engaged continuously from the first forward speed to the fourth forward speed and moves forward from the fifth forward speed. Since the release continues up to the ninth gear, engagement and release are not repeated frequently, and the frequency of occurrence of synchronous control is low. For this reason, even if the dog brake is employed, the deterioration of the shift feeling is suppressed.
  • FIG. It is a block diagram which shows the outline of a structure of the automatic transmission apparatus 1 of an Example.
  • 3 is an operation table of the automatic transmission device 1.
  • 3 is a speed diagram of the automatic transmission device 1.
  • FIG. It is a block diagram which shows the outline of a structure of the automatic transmission apparatus 1B of a modification. It is a block diagram which shows the outline of a structure of the automatic transmission apparatus 101 of a modification. It is a block diagram which shows the outline of a structure of the automatic transmission apparatus 901 of a prior art example. It is an operation
  • FIG. 1 is a block diagram showing an outline of the configuration of an automatic transmission device 1 as an embodiment of the present invention.
  • the automatic transmission device 1 of the embodiment includes four single pinion planetary gear mechanisms 10, 20, 30, 40, three clutches C1 to C3, and three brakes B1 to B3, and is not shown in the drawing.
  • a starting device such as a torque converter (not shown)
  • It is configured as a stepped transmission mechanism that inputs from the input shaft (input shaft) 3 and shifts the input power to output it to the output gear 4.
  • the power output to the output gear 4 is output to the left and right drive wheels 7a and 7b via the gear mechanism 5 and the differential gear 6.
  • the gear mechanism 5 includes a counter shaft 5a having a rotation shaft arranged parallel to the rotation shaft of the output gear 4, a counter driven gear 5b that is attached to the counter shaft 5a and meshes with the output gear 4, and a differential that is also attached to the counter shaft 5a.
  • the differential drive gear 5c meshes with the ring gear of the gear 6.
  • the lower side of the input shaft 3 in the drawing mainly shows the connection relationship between the output gear 4 and the gear mechanism 5 in the configuration of the automatic transmission device 1, and the others are omitted.
  • the mechanisms 30 are arranged in this order.
  • the first planetary gear mechanism 10 is disposed on the outer peripheral side of the second planetary gear mechanism 20.
  • the first planetary gear mechanism 10 includes a sun gear 11 as an external gear, a ring gear 13 as an internal gear disposed concentrically with the sun gear 11, and a plurality of gears meshed with the sun gear 11 and meshed with the ring gear 13.
  • a pinion gear 14 and a carrier 12 that couples and holds the plurality of pinion gears 14 so as to rotate and revolve freely. Since the first planetary gear mechanism 10 is configured as a single pinion type planetary gear mechanism, the three rotating elements, the sun gear 11, the ring gear 13, and the carrier 12, are spaced at intervals corresponding to the gear ratio in the velocity diagram. ,
  • the gear ratio ⁇ 1 (the number of teeth of the sun gear 11 / the number of teeth of the ring gear 13) of the first planetary gear mechanism 10 is set to 0.60, for example.
  • the second planetary gear mechanism 20 includes a sun gear 21 as an external gear, a ring gear 23 as an internal gear arranged concentrically with the sun gear 21, and a plurality of gears meshed with the sun gear 21 and meshed with the ring gear 23.
  • a pinion gear 24 and a carrier 22 that couples and holds the plurality of pinion gears 24 so as to rotate and revolve freely are provided. Since the second planetary gear mechanism 20 is configured as a single pinion type planetary gear mechanism, the three rotating elements, the sun gear 21, the ring gear 23, and the carrier 22, are spaced at intervals corresponding to the gear ratio in the velocity diagram. , The sun gear 21, the carrier 22, and the ring gear 23.
  • the gear ratio ⁇ 2 of the second planetary gear mechanism 20 (the number of teeth of the sun gear 21 / the number of teeth of the ring gear 23) is set to 0.45, for example.
  • the third planetary gear mechanism 30 includes a sun gear 31 as an external gear, a ring gear 33 as an internal gear disposed concentrically with the sun gear 31, and a plurality of gears meshed with the sun gear 31 and meshed with the ring gear 33.
  • a pinion gear 34 and a carrier 32 that couples and holds the plurality of pinion gears 34 so as to rotate and revolve freely. Since the third planetary gear mechanism 30 is configured as a single pinion type planetary gear mechanism, the three rotating elements, the sun gear 31, the ring gear 33, and the carrier 32, are spaced at intervals corresponding to the gear ratio in the velocity diagram. , The sun gear 31, the carrier 32, and the ring gear 33.
  • the gear ratio ⁇ 3 of the third planetary gear mechanism 30 (the number of teeth of the sun gear 31 / the number of teeth of the ring gear 33) is set to 0.35, for example.
  • the fourth planetary gear mechanism 40 includes a sun gear 41 as an external gear, a ring gear 43 as an internal gear arranged concentrically with the sun gear 41, and a plurality of gears meshed with the sun gear 41 and meshed with the ring gear 43.
  • a pinion gear 44 and a carrier 42 that couples and holds the plurality of pinion gears 44 so as to rotate and revolve freely. Since the fourth planetary gear mechanism 40 is configured as a single pinion type planetary gear mechanism, the three rotating elements, the sun gear 41, the ring gear 43, and the carrier 42, are spaced at intervals corresponding to the gear ratio in the velocity diagram. Are arranged in the order of the sun gear 41, the carrier 42, and the ring gear 43.
  • the gear ratio ⁇ 4 (the number of teeth of the sun gear 41 / the number of teeth of the ring gear 43) of the fourth planetary gear mechanism 40 is set to 0.50, for example.
  • the sun gear 11 of the first planetary gear mechanism 10 is connected to the ring gear 23 of the second planetary gear mechanism 20 and the carrier 42 of the fourth planetary gear mechanism 40 by the first connecting element 51.
  • the carrier 22 of the mechanism 10 is connected to the ring gear 33 of the third planetary gear mechanism 30 by the second connecting element 52.
  • the ring gear 13 of the first planetary gear mechanism 10 is connected to the carrier 32 of the third planetary gear mechanism 30 by the third connecting element 53.
  • the first planetary gear mechanism 10 is disposed on the outer peripheral side of the second planetary gear mechanism 20.
  • the first connecting element 51 is an element that connects the ring gear 23 and the sun gear 11 of the first planetary gear mechanism 10 radially on the outer peripheral side of the ring gear 23 located on the outermost periphery of the second planetary gear mechanism 20. At the same time, it is an element that connects these and the carrier 42 of the fourth planetary gear mechanism 40.
  • the second coupling element 52 (carrier 12, ring gear 33) of the automatic transmission device 1 is connected to the sun gear 41 of the fourth planetary gear mechanism 40 via the clutch C1, and the second planetary gear mechanism 40 is connected.
  • the carrier 22 of the gear mechanism 20 is connected to the ring gear 43 of the fourth planetary gear mechanism 40 via the clutch C2.
  • the sun gear 21 of the second planetary gear mechanism 20 is connected to the sun gear 41 of the fourth planetary gear mechanism 40 via the clutch C3.
  • the carrier 22 of the second planetary gear mechanism 20 is connected to the case (automatic transmission device case) 2 via the brake B1, and the sun gear 21 of the second planetary gear mechanism 20 is connected to the case via the brake B2. 2 is connected.
  • the sun gear 31 of the third planetary gear mechanism 30 is connected to the case 2 via the brake B3.
  • the input shaft 3 is connected to the sun gear 41 of the fourth planetary gear mechanism 40, and the output gear 4 is connected to the third connecting element 53 (ring gear 13, carrier 32).
  • the three clutches C1 to C3 and the three brakes B1 to B3 are all configured as hydraulically driven friction clutches and friction brakes that are engaged by pressing the friction plate with a piston.
  • the automatic transmission device 1 has the first forward speed to the ninth forward speed by a combination of engagement and release of the three clutches C1 to C3 and engagement and release of the three brakes B1 to B3.
  • the reverse gear can be switched.
  • FIG. 2 shows an operation table of the automatic transmission device 1
  • FIG. 3 shows a velocity diagram of the first to fourth planetary gear mechanisms 10, 20, 30, 40 of the automatic transmission device 1. 3, in order from the left, the speed diagram of the first planetary gear mechanism 10, the speed diagram of the second planetary gear mechanism 20, the speed diagram of the third planetary gear mechanism 30, and the fourth planetary gear.
  • a speed diagram of the mechanism 40 is shown, and all speed diagrams are arranged in the order of the sun gear, the carrier, and the ring gear from the left.
  • FIG. 2 shows an operation table of the automatic transmission device 1
  • FIG. 3 shows a velocity diagram of the first to fourth planetary gear mechanisms 10, 20, 30, 40 of the automatic transmission device 1. 3, in order from the left, the speed diagram of the first planetary gear mechanism 10, the speed diagram of
  • the first forward speed to the ninth forward speed and the reverse speed are formed as follows.
  • the gear ratio (the rotational speed of the input shaft 3 / the rotational speed of the output gear 4) is 0 as the gear ratios ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 of the first to fourth planetary gear mechanisms 10, 20, 30, and 40.
  • the case where 60, 0.45, 0.35, 0.50 was used was shown.
  • the first forward speed can be formed by engaging the clutch C2, the brake B1, and the brake B3 and releasing the clutch C1, the clutch C3, and the brake B2, and the gear ratio is 5.800.
  • the second forward speed can be established by engaging the clutch C2, the brake B2, and the brake B3 and releasing the clutch C1, the clutch C3, and the brake B1, and the gear ratio is 3.133.
  • the third forward speed can be established by engaging the clutch C2, the clutch C3, and the brake B3 and releasing the clutch C1, the brake B1, and the brake B2, and has a gear ratio of 1.933.
  • the fourth forward speed can be formed by engaging the clutch C1, the clutch C3, and the brake B3 and releasing the clutch C2, the brake B1, and the brake B2, and the gear ratio is 1.350. Become.
  • the fifth forward speed can be established by engaging the clutch C1, the clutch C2, and the clutch C3 and releasing the brake B1, the brake B2, and the brake B3, and the gear ratio is 1.000.
  • the sixth forward speed can be formed by engaging the clutch C1, the clutch C2, and the brake B2 and releasing the clutch C3, the brake B1, and the brake B3, and the gear ratio is 0.813.
  • the seventh forward speed can be formed by engaging the clutch C1, the clutch C2, and the brake B1 and releasing the clutch C3, the brake B2, and the brake B3, and the gear ratio is 0.714. Become.
  • the eighth forward speed can be formed by engaging the clutch C1, the brake B1, and the brake B2 and releasing the clutch C2, the clutch C3, and the brake B3, and the gear ratio is 0.625. Become. At the eighth forward speed, the third planetary gear mechanism 30 is not involved in torque transmission between the input shaft 3 and the output gear 4 because the sun gear 31 is released by releasing the brake B3. The fourth planetary gear mechanism 40 is not involved in torque transmission between the input shaft 3 and the output gear 4 because the ring gear 43 is released by releasing the clutch C2.
  • the ninth forward speed can be established by engaging the clutch C1, the clutch C3, and the brake B1, and releasing the clutch C2, the brake B2, and the brake B3, and the gear ratio is 0.535. Become.
  • the third planetary gear mechanism 30 is not involved in torque transmission between the input shaft 3 and the output gear 4 because the sun gear 31 is released by releasing the brake B3.
  • the fourth planetary gear mechanism 40 is not involved in torque transmission between the input shaft 3 and the output gear 4 because the ring gear 43 is released by releasing the clutch C2.
  • the first planetary gear mechanism 10 and the second planetary gear mechanism 20 operate as gear mechanisms for torque transmission between the input shaft 3 and the output gear 4.
  • the reverse gear can be formed by engaging the clutch C3, the brake B1, and the brake B3 and releasing the clutch C1, the clutch C2, and the brake B2, and the gear ratio is ⁇ 4.296. .
  • the gear ratios ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 of the first to fourth planetary gear mechanisms 10, 20, 30, 40 are 0.60, 0.45, 0.35, 0.
  • the 9th forward speed which is the highest speed, is used for transmitting torque between the input shaft 3 and the output gear 4 in the first planetary gear mechanism 10 and the second planetary gear mechanism 20.
  • the two act as a gear mechanism.
  • the first to fourth planetary gear mechanisms 910, 910 are used for torque transmission between the input shaft 903 and the output gear 904. All (four) of 920, 930, and 940 are activated. Therefore, in the automatic transmission device 1 of the embodiment, the number of planetary gear mechanisms that operate for torque transmission at the highest speed is reduced as compared to the automatic transmission device 901 of the conventional example.
  • the loss due to gear meshing can be reduced and the torque transmission efficiency can be increased as compared with the automatic transmission device 901 of the conventional example.
  • the eighth forward speed which is one speed before the highest speed of the automatic transmission device 1 according to the embodiment, only one of the first planetary gear mechanisms 10 is used for torque transmission between the input shaft 3 and the output gear 4. Operates as a gear mechanism.
  • the eighth forward speed that is one prior to the highest speed of the conventional automatic transmission device 901 shown in FIG. 6, the first planetary gear mechanism 910 is used for torque transmission between the input shaft 903 and the output gear 904.
  • the second planetary gear mechanism 920 operate.
  • the number of planetary gear mechanisms that operate for torque transmission at the highest speed is reduced as compared to the automatic transmission device 901 of the conventional example.
  • the loss due to gear meshing can be reduced and the torque transmission efficiency can be increased as compared with the automatic transmission device 901 of the conventional example.
  • the highest speed stage and the previous speed stage are used for relatively high speed traveling, for example, cruise traveling on a highway.
  • the torque transmission efficiency in high-speed traveling can be increased, and the fuel efficiency of the vehicle can be improved.
  • the gear ratios ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 of the first to fourth planetary gear mechanisms 10, 20, 30, and 40 are 0.60, 0.45, 0.35, 0. Considering the number of rotations of each rotating element constituting each planetary gear mechanism in the case of using 50 and the automatic transmission device 901 of the conventional example shown in FIG.
  • each of the three rotating elements (sun gears 11, 21, 31, 41, carrier 12 constituting the first to fourth planetary gear mechanisms 10, 20, 30, 40 is provided.
  • 22, 32, 42, ring gears 13, 23, 33, 43) is approximately 4.4 times the rotational speed of the input shaft 3, but the conventional automatic transmission device 901 has a maximum rotational speed. Is approximately 5.5 times the rotational speed of the input shaft 903. Therefore, in the automatic transmission device 1 of the embodiment, the rotational speed of the rotating element that is the maximum rotational speed can be reduced as compared with the automatic transmission device 901 of the conventional example.
  • the automatic transmission device 1 according to the embodiment can improve the durability of the device as compared with the automatic transmission device 901 of the conventional example, and can be used for heat treatment and surface treatment for ensuring durability. Necessary cost can be suppressed.
  • the maximum rotational speed of the pinion gears 14, 24, 34, 44 of the first to fourth planetary gear mechanisms 10, 20, 30, 40 is the rotational speed of the input shaft 3. Although it is about 4.4 times, in the conventional automatic transmission device 901, the maximum rotation speed of the pinion gear is about 4.8 times the rotation speed of the input shaft 903. Therefore, in the automatic transmission device 1 of the embodiment, the maximum number of rotations of the pinion gears 14, 24, 34, and 44 can be made lower than that of the automatic transmission device 901 of the conventional example. In particular, at the first forward speed where the rotational speed of the input shaft 3 increases, the pinion gears 14, 24, 34, of the first to fourth planetary gear mechanisms 10, 20, 30, 40 in the automatic transmission device 1 of the embodiment are provided.
  • the maximum rotational speed of 44 is about 1.3 times that of the input shaft 3, but in the conventional automatic transmission device 901, the maximum rotational speed of the pinion gear is about 2.7 times the rotational speed of the input shaft 903.
  • the automatic transmission device 1 according to the embodiment can improve the durability of components such as bearings and pinion side washers as compared with the automatic transmission device 901 of the conventional example, and can ensure durability. Costs required for heat treatment and surface treatment can be suppressed.
  • the maximum value of the relative rotational speed of the engagement elements (clutch C1 to C3, brake B1 to B3) is 4.4 times the rotational speed of the input shaft 3.
  • the maximum value of the relative rotational speed is 5.5 times the rotational speed of the input shaft 903. Therefore, in the automatic transmission device 1 according to the embodiment, the maximum value of the relative rotational speeds of the engagement elements can be reduced as compared with the automatic transmission device 901 according to the conventional example.
  • a wet multi-plate clutch or a wet multi-plate brake that is normally used as an engagement element can be used, compared with the conventional automatic transmission device 901 that uses a dog clutch or a dog brake.
  • the controllability at the time of shifting can be improved, and the shock at the time of shifting can be reduced.
  • the single pinion type first to fourth planetary gear mechanisms 10, 20, 30, 40, the three clutches C1 to C3, and the three brakes B1 to B3 are used.
  • B3 and the sun gear 11 of the first planetary gear mechanism 10 is connected to the ring gear 23 of the second planetary gear mechanism 20 and the carrier 42 of the fourth planetary gear mechanism 40 by the first connecting element 51
  • the carrier 22 of the planetary gear mechanism 10 is connected to the ring gear 33 of the third planetary gear mechanism 30 by the second connecting element 52
  • the ring gear 13 of the first planetary gear mechanism 10 is connected to the third planetary gear by the third connecting element 53.
  • the second coupling element 52 (carrier 12, ring gear 33) is coupled to the sun gear 41 of the fourth planetary gear mechanism 40 via the clutch C1, and coupled to the carrier 32 of the mechanism 30.
  • the carrier 22 of the planetary gear mechanism 20 is connected to the ring gear 43 of the fourth planetary gear mechanism 40 via the clutch C2, and the sun gear 21 of the second planetary gear mechanism 20 is connected to the fourth planetary gear mechanism 40 via the clutch C3.
  • the carrier 22 of the second planetary gear mechanism 20 is connected to the case 2 via the brake B1, and the sun gear 21 of the second planetary gear mechanism 20 is connected to the case 2 via the brake B2.
  • the sun gear 31 of the third planetary gear mechanism 30 is connected to the case 2 via the brake B3, the sun gear 41 of the fourth planetary gear mechanism 40 is connected to the input shaft 3, and the third coupling element 53 (ring gear 13, By connecting the carrier 32) to the output gear 4, an automatic transmission device capable of shifting from the first forward speed to the ninth forward speed and the reverse speed can be configured.
  • the ninth forward speed as the highest speed is formed by engaging the clutch C1, the clutch C3, and the brake B1, and releasing the clutch C2, the brake B2, and the brake B3.
  • the planetary gear mechanism that operates as a gear for torque transmission between the input shaft 3 and the output gear 4 is the first planetary gear mechanism 10 and the second planetary gear mechanism 20, and the 9-speed forward speed of the highest speed stage.
  • all (four) of the first to fourth planetary gear mechanisms 910, 920, 930, 940 are operated for torque transmission between the input shaft 903 and the output gear 904.
  • the number of planetary gear mechanisms that operate for torque transmission at the highest speed stage can be reduced, loss due to gear meshing can be reduced, and torque transmission efficiency can be increased.
  • the clutch C1, the brake B1, and the brake B2 are engaged and the clutch C2, the clutch C3, and the brake B3 are disengaged at the eighth forward speed that is one step before the highest speed stage.
  • the planetary gear mechanism that operates as a gear for torque transmission between the input shaft 3 and the output gear 4 is only one of the first planetary gear mechanisms 10, and the advancing one before the highest speed stage.
  • the eighth speed stage compared with the conventional automatic transmission device 901 in which two of the first planetary gear mechanism 910 and the second planetary gear mechanism 920 operate to transmit torque between the input shaft 903 and the output gear 904, It is possible to reduce the number of planetary gear mechanisms that operate for torque transmission in the gear stage immediately before the high speed stage, reduce loss due to gear meshing, and increase torque transmission efficiency. That. As a result, torque transmission efficiency in the automatic transmission device can be improved.
  • the first planetary gear mechanism 10 is arranged on the outer peripheral side of the second planetary gear mechanism 20, as compared with a configuration in which four planetary gear mechanisms are arranged side by side. Although it becomes larger in the radial direction, it can be shortened in the axial direction. That is, it can be made the same as the axial length of the automatic transmission device in which the three planetary gear mechanisms are arranged side by side.
  • the maximum number of rotations in each of the three rotating elements constituting the first to fourth planetary gear mechanisms 10, 20, 30, and 40 is higher than that of the automatic transmission device 901 of the conventional example. Therefore, compared to the automatic transmission device 901 of the conventional example, the durability of the device can be improved and the cost required for heat treatment and surface treatment for ensuring the durability can be suppressed. .
  • the maximum number of rotations of the pinion gears 14, 24, 34, 44 of the first to fourth planetary gear mechanisms 10, 20, 30, 40 is the same as that of the conventional automatic transmission device. Since it is lower than 901, the durability of the apparatus can be improved and the cost required for heat treatment and surface treatment for ensuring durability can be suppressed.
  • the maximum value of the relative rotational speed of the engagement element is lower than that of the automatic transmission device 901 of the conventional example.
  • the controllability at the time of shifting can be improved and the shock at the time of shifting can be reduced as compared with the automatic transmission device 901 of the conventional example.
  • FIG. 4 shows an automatic transmission device 1B which is a modification of the automatic transmission device 1 in which the brake B3 is configured as a dog brake.
  • the operation table and speed diagram of the automatic transmission device 1B according to the modification are the same as those in FIGS.
  • the dog brake is susceptible to shock when engaged, and synchronous control is required to synchronize the rotation.
  • the brake B3 is continuously engaged from the first forward speed to the fourth forward speed, and from the fifth forward speed to the forward 9 speed. Since the release is continued up to the speed stage, the engagement and release are not repeated frequently, and the frequency of occurrence of the synchronous control is low. For this reason, even if the dog brake is employed, the deterioration of the shift feeling is suppressed.
  • the engine is mounted on a vehicle (for example, a front engine front drive type) in which the engine is disposed horizontally (in the left-right direction of the vehicle). It may be mounted on a vehicle of a type (for example, front engine rear drive type) arranged in the vehicle front-rear direction.
  • the first planetary gear mechanism 10 the second planetary gear mechanism 20, and the third planetary gear of the automatic transmission apparatus 1 of FIG.
  • the fourth planetary gear mechanism 40, the clutches C1 to C3, and the brakes B1 to B3 intact the input shaft 3 extends through the shaft center to the opposite side (left side in FIGS. 1 and 5).
  • a hollow rotating shaft 4a for transmitting the rotation to the output shaft 4b opposite to the input shaft 3 (right side in FIGS. 1 and 5) is connected to the ring gear 13 of the first planetary gear mechanism 10 And it is sufficient.
  • the gear ratios ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 of the first to fourth planetary gear mechanisms 10, 20, 30, 40 are 0.60, 0.45, 0.35, 0. ..50 is used, but the gear ratios ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 are not limited to these values.
  • the first to fourth planetary gear mechanisms 10, 20, 30, and 40 are all configured as single-pinion planetary gear mechanisms.
  • a part or all of the planetary gear mechanisms 10, 20, 30, 40 may be configured as a double pinion planetary gear mechanism.
  • the first forward speed 9 Although configured as an automatic transmission device capable of a speed and a reverse speed, an 8-speed shift or a plurality of shift speeds excluding any one of the 9-speed shifts from the first forward speed to the ninth forward speed It is also possible to use an automatic transmission device capable of shifting to the seventh speed or less and reverse gears except for.
  • the input shaft (input shaft) 3 corresponds to an “input member”
  • the output gear 4 corresponds to an “output member”
  • the first planetary gear mechanism 10 corresponds to a “first planetary gear mechanism”.
  • the sun gear 11 corresponds to the “first rotating element”
  • the carrier 12 corresponds to the “second rotating element”
  • the ring gear 13 corresponds to the “third rotating element”
  • the second planetary gear mechanism 20 corresponds to “ It corresponds to the “second planetary gear mechanism”
  • the sun gear 21 corresponds to the “fourth rotating element”
  • the carrier 22 corresponds to the “fifth rotating element”
  • the ring gear 23 corresponds to the “sixth rotating element”
  • the third planetary gear mechanism 30 corresponds to the “third planetary gear mechanism”
  • the sun gear 31 corresponds to the “seventh rotating element”
  • the carrier 32 corresponds to the “eighth rotating element”
  • the ring gear 33
  • the fourth planetary gear mechanism 40 corresponds to the “fourth planetary gear mechanism 40”.
  • the star gear mechanism corresponds to the “star gear element”
  • the sun gear 41 corresponds to the “tenth rotation element”
  • the carrier 42 corresponds to the “eleventh rotation element”
  • the ring gear 43 corresponds to the “twelfth rotation element”
  • the first connection
  • the element 51 corresponds to the “first connecting element”
  • the second connecting element 52 corresponds to the “second connecting element”
  • the third connecting element 53 corresponds to the “third connecting element”
  • the clutch C1 is set to the “first connecting element”.
  • the clutch C2 corresponds to the “second clutch”
  • the clutch C3 corresponds to the “third clutch”
  • the brake B1 corresponds to the “first brake”
  • the brake B2 corresponds to the “second brake”.
  • "And the brake B3 corresponds to a" third brake ".
  • the present invention can be used in the manufacturing industry of automatic transmission devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Transmission Devices (AREA)

Abstract

第1の遊星歯車機構10のサンギヤ11,キャリア12,リングギヤ13を第2の遊星歯車機構20のリングギヤ23および第4の遊星歯車機構40のキャリア42,第3の遊星歯車機構30のリングギヤ33,キャリア32に連結し、クラッチC1によりキャリア12とサンギヤ41を接続し、クラッチC2によりキャリア22とリングギヤ43を接続し、クラッチC3によりサンギヤ21とサンギヤ41を接続し、ブレーキB1,B2,B3をキャリア22,サンギヤ21,サンギヤ31に接続し、入力軸3をサンギヤ41に接続し、出力ギヤ4をリングギヤ13に接続する。これにより、前進1速段から前進9速段および後進段に変速可能な自動変速機装置を構成することができる。

Description

自動変速機装置
 本発明は、入力部材に入力された動力を変速して出力部材に出力する自動変速機装置に関する。
 従来、この種の自動変速機装置としては、4つの遊星歯車機構と、3つのクラッチと3つのブレーキとにより前進9速段と後進段とを形成可能なものが提案されている(例えば、特許文献1参照)。この装置の構成を図5に示す。背景技術としての従来例の自動変速機装置901は、図示するように、いずれも、外歯歯車としてのサンギヤ911,921,931,941と、内歯歯車としてのリングギヤ913,923,933,943と、複数のピニオンギヤ914,924,934,944を連結して自転かつ公転自在に保持するキャリア912,922,932,942からなるシングルピニオン式の第1ないし第4の遊星歯車機構910,920,930,940を備える。サンギヤ911とサンギヤ921は第1連結要素951により連結されており、リングギヤ913とキャリア912は第2連結要素952により連結されており、リングギヤ923とキャリア932とキャリア942は第3連結要素953により連結されている。第4の遊星歯車機構940は、第3の遊星歯車機構930の外周側に形成されており、リングギヤ933とサンギヤ941は第4連結要素954により連結されている。また、サンギヤ931は、クラッチC1を介して入力軸903に接続されると共にブレーキB1を介してケース902に接続されており、第2連結要素852はクラッチC2を介して入力軸903に接続されている。さらに、第3連結要素953は、ドグクラッチDCを介して入力軸903に接続されており、第1連結要素951はドグブレーキDBを介してケース902に接続されており、第4の遊星歯車機構940のリングギヤ943はブレーキB902を介してケース902に接続されている。そして、第1の遊星歯車機構910のリングギヤ913に出力ギヤ904が接続されている。
 この従来例の自動変速機装置901では、第1ないし第4の遊星歯車機構910,920,930,940のギヤ比λ1,λ2,λ3,λ4(各遊星歯車機構におけるサンギヤの歯数/リングギヤの歯数)は、0.36,0.36,0.56,0.66に設定されており、図6の作動表に示すように、前進1速段から前進9速段と後進段を形成し、前進1速段(最低速段)のギヤ比/前進9速段(最高速段)のギヤ比として計算されるギヤ比幅は10.02となっている。
 また、従来例の自動変速機装置901では、最高速段である前進9速段は、クラッチC1とクラッチC2とブレーキB2とが係合されており、ドグクラッチDCとドグブレーキDBとブレーキB1とが解放されているから、入力軸903から出力ギヤ904へのトルクの伝達には第1ないし第4の遊星歯車機構910,920,930,940の全て(4つ)が歯車機構として作動する。また、最高速段の1つ前の前進8速段では、クラッチC2とブレーキB1とブレーキB2とが係合されており、クラッチC1とドグクラッチDCとドグブレーキDBとが解放されているから、入力軸903から出力ギヤ904へのトルクの伝達には第1の遊星歯車機構910と第2の遊星歯車機構920の2つが歯車機構として作動する。
特表2011-513662号公報
 こうした自動変速機装置では、4つの遊星歯車機構と複数のクラッチやブレーキとによって自動変速機を構成する場合、4つの遊星歯車機構の各回転要素の接続や複数のクラッチやブレーキの取り付け方は多数存在し、接続や取り付け方によっては自動変速機装置として機能することができるものと機能することができないものとが存在する。また、前進側の最高速段やその1つ前の変速段における入力側から出力側へのトルク伝達に作動する遊星歯車機構の数が少ない方がギヤの噛み合いによる損失が低下するため、トルクの伝達効率が高くなる。
 本発明の自動変速機装置は、4つの遊星歯車機構と3つのクラッチと3つのブレーキによる新たな自動変速機装置を提案することを主目的とし、更に、トルクの伝達効率の向上を図ることを更なる目的とする。
 本発明の自動変速機装置は、少なくとも上述の主目的を達成するために以下の手段を採った。
 本発明の自動変速機装置は、
 入力部材に入力された動力を変速して出力部材に出力する自動変速機装置であって、
 速度線図におけるギヤ比に対応する間隔での並び順に第1回転要素と第2回転要素と第3回転要素とを有する第1の遊星歯車機構と、
 速度線図におけるギヤ比に対応する間隔での並び順に第4回転要素と第5回転要素と第6回転要素とを有する第2の遊星歯車機構と、
 速度線図におけるギヤ比に対応する間隔での並び順に第7回転要素と第8回転要素と第9回転要素とを有する第3の遊星歯車機構と、
 速度線図におけるギヤ比に対応する間隔での並び順に第10回転要素と第11回転要素と第12回転要素とを有する第4の遊星歯車機構と、
 前記第1回転要素と前記第6回転要素と前記第11回転要素とを連結する第1連結要素と、
 前記第2回転要素と前記第9回転要素とを連結する第2連結要素と、
 前記第3回転要素と前記第8回転要素とを連結する第3連結要素と、
 前記第2連結要素と前記第10回転要素とを係合すると共に該係合を解放する第1クラッチと、
 前記第5回転要素と前記第12回転要素とを係合すると共に該係合を解放する第2クラッチと、
 前記第4回転要素と前記第10回転要素とを係合すると共に該係合を解放する第3クラッチと、
 前記第5回転要素を自動変速機装置ケースに固定可能に係合すると共に該係合を解放する第1ブレーキと、
 前記第4回転要素を前記自動変速機装置ケースに固定可能に係合すると共に該係合を解放する第2ブレーキと、
 前記第7回転要素を前記自動変速機装置ケースに固定可能に係合すると共に該係合を解放する第3ブレーキと、
 を備え、
 前記入力部材を前記第10回転要素に接続し、
 前記出力部材を前記第3連結要素に接続してなる、
 ことを特徴とする。
 この本発明の自動変速機装置では、3つの回転要素として速度線図におけるギヤ比に対応する間隔での並び順に第1回転要素と第2回転要素と第3回転要素とを有する第1の遊星歯車機構と、3つの回転要素として速度線図におけるギヤ比に対応する間隔での並び順に第4回転要素と第5回転要素と第6回転要素とを有する第2の遊星歯車機構と、3つの回転要素として速度線図におけるギヤ比に対応する間隔での並び順に第7回転要素と第8回転要素と第9回転要素とを有する第3の遊星歯車機構と、3つの回転要素として速度線図におけるギヤ比に対応する間隔での並び順に第10回転要素と第11回転要素と第12回転要素とを有する第4の遊星歯車機構とを備え、第1回転要素と第6回転要素と第11回転要素とを第1連結要素により連結し、第2回転要素と第9回転要素とを第2連結要素により連結し、第3回転要素と第8回転要素とを第3連結要素により連結する。そして、第1クラッチを介して第2連結要素と第10回転要素とを接続し、第2クラッチを介して第5回転要素と第12回転要素とを接続し、第3クラッチを介して第4回転要素と第10回転要素とを接続し、第1ブレーキを第5回転要素に接続し、第2ブレーキを第4回転要素に接続し、第3ブレーキを第7回転要素に接続し、入力部材を第10回転要素に接続し、出力部材を第3連結要素に接続する。これにより、4つの遊星歯車機構と3つのクラッチと3つのブレーキとにより機能可能な自動変速装置を構成することができる。
 こうした本発明の自動変速機装置において、前進1速段から前進9速段および後進段を以下のように構成することができる。
(1)前進1速段は、前記第2クラッチと前記第1ブレーキと前記第3ブレーキとを係合すると共に前記第1クラッチと前記第3クラッチと前記第2ブレーキとを解放することにより形成する。
(2)前進2速段は、前記第2クラッチと前記第2ブレーキと前記第3ブレーキとを係合すると共に前記第1クラッチと前記第3クラッチと前記第1ブレーキとを解放することにより形成する。
(3)前進3速段は、前記第2クラッチと前記第3クラッチと前記第3ブレーキとを係合すると共に前記第1クラッチと前記第1ブレーキと前記第2ブレーキとを解放することにより形成する。
(4)前進4速段は、前記第1クラッチと前記第3クラッチと前記第3ブレーキとを係合すると共に前記第2クラッチと前記第1ブレーキと前記第2ブレーキとを解放することにより形成する。
(5)前進5速段は、前記第1クラッチと前記第2クラッチと前記第3クラッチとを係合すると共に前記第1ブレーキと前記第2ブレーキと前記第3ブレーキとを解放することにより形成する。
(6)前進6速段は、前記第1クラッチと前記第2クラッチと前記第2ブレーキとを係合すると共に前記第3クラッチと前記第1ブレーキと前記第3ブレーキとを解放することにより形成する。
(7)前進7速段は、前記第1クラッチと前記第2クラッチと前記第1ブレーキとを係合すると共に前記第3クラッチと前記第2ブレーキと前記第3ブレーキとを解放することにより形成する。
(8)前進8速段は、前記第1クラッチと前記第1ブレーキと前記第2ブレーキとを係合すると共に前記第2クラッチと前記第3クラッチと前記第3ブレーキとを解放することにより形成する。
(9)前進9速段は、前記第1クラッチと前記第3クラッチと前記第1ブレーキとを係合すると共に前記第2クラッチと前記第2ブレーキと前記第3ブレーキとを解放することにより形成する。
(10)後進段は、前記第3クラッチと前記第1ブレーキと前記第3ブレーキとを係合すると共に前記第1クラッチと前記第2クラッチと前記第2ブレーキとを解放することにより形成する。
 こうすれば、4つの遊星歯車機構と3つのクラッチと3つのブレーキにより前進1速段から前進9速段および後進段の変速が可能な装置とすることができる。
 上述したように、最高速段の前進9速段では、第1クラッチと第3クラッチと第1ブレーキとを係合すると共に第2クラッチと第2ブレーキと第3ブレーキとを解放する。第3の遊星歯車機構は、第3ブレーキの解放により第7回転要素が解放されるから、入力部材と出力部材とにおけるトルク伝達には関与しない。第4の遊星歯車機構は、第2クラッチの解放により第12回転要素が解放されるから、入力部材と出力部材とにおけるトルク伝達には関与しない。したがって、前進9速段では、入力部材と出力部材とにおけるトルク伝達には第1の遊星歯車機構と第2の遊星歯車機構の2つが歯車機構として作動することになる。また、最高速段の1つ前の前進8速段では、第1クラッチと第1ブレーキと第2ブレーキとを係合すると共に第2クラッチと第3クラッチと第3ブレーキとを解放する。第3の遊星歯車機構は、第3ブレーキの解放により第7回転要素が解放されるから、入力部材と出力部材とにおけるトルク伝達には関与しない。第2の遊星歯車機構は、第1ブレーキと第2ブレーキの係合により第5回転要素と第4回転要素とがケースに回転不能に固定されるから、いずれの回転要素も回転することができず、入力部材と出力部材とにおけるトルク伝達には歯車機構として作動しない。第4の遊星歯車機構は、第2クラッチの解放により第12回転要素が解放されるから、入力部材と出力部材とにおけるトルク伝達には関与しない。したがって、前進8速段では、入力部材と出力部材とにおけるトルク伝達には第1の遊星歯車機構の1つだけが歯車機構として作動することになる。以上の説明から、入力部材と出力部材とにおけるトルク伝達に歯車機構として作動する遊星歯車機構の数は、最高速段の前進9速段では2つで最高速段の1つ前の前進8速段では1つであるから、最高速段の前進9速段で4つで最高速段の1つ前の前進8速段で2つである従来例の自動変速機装置に比して、トルク伝達に歯車機構として作動する遊星歯車機構の数を少なくすることができ、ギヤの噛み合いによる損失を低下させ、トルクの伝達効率を高くすることができる。即ち、従来例の自動変速機装置に比して、トルクの伝達効率を向上させることができる。
 上述の本発明の自動変速機装置において、前記第1の遊星歯車機構と前記第2の遊星歯車機構と前記第3の遊星歯車機構と前記第4の遊星歯車機構は、いずれもサンギヤとリングギヤとキャリアとを前記3つの回転要素とするシングルピニオン式の遊星歯車機構として構成されてなり、前記第1回転要素と前記第4回転要素と前記第7回転要素と前記第10回転要素は、いずれもサンギヤであり、前記第2回転要素と前記第5回転要素と前記第8回転要素と前記第11回転要素は、いずれもキャリアであり、前記第3回転要素と前記第6回転要素と前記第9回転要素と前記第12回転要素は、いずれもリングギヤである、ことを特徴とするものとすることもできる。
 さらに、本発明の自動変速機装置において、前記第1の遊星歯車機構は前記第2の遊星歯車機構の外周側に構成されてなる、ものとすることもできる。こうすれば、径方向については大きくなるものの、軸方向については短くすることことができる。即ち、3つの遊星歯車機構による自動変速機装置の軸方向の長さと同様にすることができる。
 あるいは、本発明の自動変速機装置において、前記第4の遊星歯車機構,前記第1の遊星歯車機構および前記第2の遊星歯車機構,前記第3の遊星歯車機構の順に配置されてなる、ものとすることもできる。
 また、本発明の自動変速機装置において、前記第3ブレーキはドグブレーキとして構成されてなる、ものとすることもできる。ドグブレーキは係合時にショックが生じやすく、回転を同期させる同期制御が必要となるが、第3ブレーキは前進1速段から前進4速段まで係合が連続していると共に前進5速段から前進9速段まで解放が連続しているから、係合と解放が頻繁に繰り返されることがなく、同期制御が発生する頻度が少ない。このため、ドグブレーキを採用しても変速フィーリングの悪化は抑制される。
実施例の自動変速機装置1の構成の概略を示す構成図である。 自動変速機装置1の作動表である。 自動変速機装置1の速度線図である。 変形例の自動変速機装置1Bの構成の概略を示す構成図である。 変形例の自動変速機装置101の構成の概略を示す構成図である。 従来例の自動変速機装置901の構成の概略を示す構成図である。 従来例の自動変速機装置901の作動表である。
 次に、本発明の実施の形態を実施例を用いて説明する。
 図1は本発明の一実施例としての自動変速機装置1の構成の概略を示す構成図である。実施例の自動変速機装置1は、4つのシングルピニオン式の遊星歯車機構10,20,30,40と、3つのクラッチC1~C3と、3つのブレーキB1~B3とを備え、図示しない内燃機関としてのエンジンが横置き(車両の左右方向に)配置されたタイプ(例えば、フロントエンジンフロントドライブ式)の車両に搭載されており、エンジンからの動力を図示しないトルクコンバータなどの発進装置を介して入力軸(インプットシャフト)3から入力すると共に入力した動力を変速して出力ギヤ4に出力する有段変速機構として構成されている。出力ギヤ4に出力された動力は、ギヤ機構5とデファレンシャルギヤ6とを介して左右の駆動輪7a,7bに出力される。ギヤ機構5は、回転軸が出力ギヤ4の回転軸と平行に配置されたカウンタシャフト5aと、カウンタシャフト5aに取り付けられ出力ギヤ4と噛合するカウンタドリブンギヤ5bと、同じくカウンタシャフト5aに取り付けられデファレンシャルギヤ6のリングギヤと噛合するデファレンシャルドライブギヤ5cとにより構成されている。なお、図1では、図中の入力軸3の下側については自動変速機装置1の構成のうち出力ギヤ4とギヤ機構5との接続関係を中心に示し、他は省略した。
 実施例の自動変速装置1では、図1に示すように、入力軸3側から第4の遊星歯車機構40,第1の遊星歯車機構10および第2の遊星歯車機構20,第3の遊星歯車機構30の順に配置されている。また、第1の遊星歯車機構10は、第2の遊星歯車機構20の外周側に配置されている。
 第1の遊星歯車機構10は、外歯歯車としてのサンギヤ11と、このサンギヤ11と同心円上に配置された内歯歯車としてのリングギヤ13と、サンギヤ11に噛合すると共にリングギヤ13に噛合する複数のピニオンギヤ14と、複数のピニオンギヤ14を連結して自転かつ公転自在に保持するキャリア12とを備える。第1の遊星歯車機構10は、シングルピニオン式の遊星歯車機構として構成されているから、3つの回転要素であるサンギヤ11,リングギヤ13,キャリア12は、速度線図におけるギヤ比に対応する間隔での並び順に示すと、サンギヤ11,キャリア12,リングギヤ13となる。第1の遊星歯車機構10のギヤ比λ1(サンギヤ11の歯数/リングギヤ13の歯数)は、例えば0.60に設定されている。
 第2の遊星歯車機構20は、外歯歯車としてのサンギヤ21と、このサンギヤ21と同心円上に配置された内歯歯車としてのリングギヤ23と、サンギヤ21に噛合すると共にリングギヤ23に噛合する複数のピニオンギヤ24と、複数のピニオンギヤ24を連結して自転かつ公転自在に保持するキャリア22とを備える。第2の遊星歯車機構20は、シングルピニオン式の遊星歯車機構として構成されているから、3つの回転要素であるサンギヤ21,リングギヤ23,キャリア22は、速度線図におけるギヤ比に対応する間隔での並び順に示すと、サンギヤ21,キャリア22,リングギヤ23となる。第2の遊星歯車機構20のギヤ比λ2(サンギヤ21の歯数/リングギヤ23の歯数)は、例えば0.45に設定されている。
 第3の遊星歯車機構30は、外歯歯車としてのサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車としてのリングギヤ33と、サンギヤ31に噛合すると共にリングギヤ33に噛合する複数のピニオンギヤ34と、複数のピニオンギヤ34を連結して自転かつ公転自在に保持するキャリア32とを備える。第3の遊星歯車機構30は、シングルピニオン式の遊星歯車機構として構成されているから、3つの回転要素であるサンギヤ31,リングギヤ33,キャリア32は、速度線図におけるギヤ比に対応する間隔での並び順に示すと、サンギヤ31,キャリア32,リングギヤ33となる。第3の遊星歯車機構30のギヤ比λ3(サンギヤ31の歯数/リングギヤ33の歯数)は、例えば0.35に設定されている。
 第4の遊星歯車機構40は、外歯歯車としてのサンギヤ41と、このサンギヤ41と同心円上に配置された内歯歯車としてのリングギヤ43と、サンギヤ41に噛合すると共にリングギヤ43に噛合する複数のピニオンギヤ44と、複数のピニオンギヤ44を連結して自転かつ公転自在に保持するキャリア42とを備える。第4の遊星歯車機構40は、シングルピニオン式の遊星歯車機構として構成されているから、3つの回転要素であるサンギヤ41,リングギヤ43,キャリア42は、速度線図におけるギヤ比に対応する間隔での並び順に示すと、サンギヤ41,キャリア42,リングギヤ43となる。第4の遊星歯車機構40のギヤ比λ4(サンギヤ41の歯数/リングギヤ43の歯数)は、例えば0.50に設定されている。
 第1の遊星歯車機構10のサンギヤ11は、第1連結要素51により第2の遊星歯車機構20のリングギヤ23と第4の遊星歯車機構40のキャリア42に連結されており、第1の遊星歯車機構10のキャリア22は、第2連結要素52により第3の遊星歯車機構30のリングギヤ33に連結されている。また、第1の遊星歯車機構10のリングギヤ13は、第3連結要素53により第3の遊星歯車機構30のキャリア32に連結されている。上述したように、実施例の自動変速機装置1は、第1の遊星歯車機構10を第2の遊星歯車機構20の外周側に配置している。即ち、第2の遊星歯車機構20のリングギヤ23の外周側に外歯歯車を形成して第1の遊星歯車機構10のサンギヤ11とし、リングギヤ23と第1連結要素51とサンギヤ11とを一体のものとして形成しているのである。従って、第1連結要素51は、第2の遊星歯車機構20の最外周に位置するリングギヤ23の外周側で径方向にリングギヤ23と第1の遊星歯車機構10のサンギヤ11とを連結する要素であると共にこれらと第4の遊星歯車機構40のキャリア42とを連結する要素でもある。
 また、実施例の自動変速機装置1の第2連結要素52(キャリア12,リングギヤ33)は、クラッチC1を介して第4の遊星歯車機構40のサンギヤ41に接続されており、第2の遊星歯車機構20のキャリア22は、クラッチC2を介して第4の遊星歯車機構40のリングギヤ43に接続されている。また、第2の遊星歯車機構20のサンギヤ21は、クラッチC3を介して第4の遊星歯車機構40のサンギヤ41に接続されている。第2の遊星歯車機構20のキャリア22は、ブレーキB1を介してケース(自動変速機装置ケース)2に接続されており、第2の遊星歯車機構20のサンギヤ21は、ブレーキB2を介してケース2に接続されている。また、第3の遊星歯車機構30のサンギヤ31は、ブレーキB3を介してケース2に接続されている。そして、第4の遊星歯車機構40のサンギヤ41に入力軸3が接続されており、第3連結要素53(リングギヤ13,キャリア32)に出力ギヤ4が接続されている。ここで、3つのクラッチC1~C3と3つのブレーキB1~B3は、実施例では、いずれも摩擦プレートをピストンで押圧することにより係合する油圧駆動の摩擦クラッチや摩擦ブレーキとして構成されている。
 こうして構成された実施例の自動変速機装置1は、3つのクラッチC1~C3の係合と解放および3つのブレーキB1~B3の係合と解放の組み合わせにより前進1速段から前進9速段と後進段とを切り替えることができる。図2に自動変速機装置1の作動表を示し、図3に自動変速機装置1の第1ないし第4の遊星歯車機構10,20,30,40の速度線図を示す。図3には、左から順に、第1の遊星歯車機構10の速度線図,第2の遊星歯車機構20の速度線図,第3の遊星歯車機構30の速度線図,第4の遊星歯車機構40の速度線図を示し、いずれの速度線図も左からサンギヤ,キャリア,リングギヤの順に並んでいる。また、図3中、「1st」は前進1速段を示し、「2nd」は前進2速段を示し、「3rd」は前進3速段を示し、「4th」~「9th」は前進4速段~前進9速段を示し、「Rev」は後進段を示している。「λ1」~「λ4」は各遊星歯車機構のギヤ比を示し、「B1」,「B2」,「B3」はブレーキB1~B3を示している。「入力」は入力軸3の接続位置を示し、「出力」は出力ギヤ4の接続位置を示している。
 実施例の自動変速機装置1では、図2に示するように、以下のように前進1速段から前進9速段と後進段とを形成する。なお、ギヤ比(入力軸3の回転数/出力ギヤ4の回転数)は、第1ないし第4の遊星歯車機構10,20,30,40のギヤ比λ1,λ2,λ3,λ4として0.60,0.45,0.35,0.50を用いた場合を示した。
(1)前進1速段は、クラッチC2とブレーキB1とブレーキB3とを係合すると共にクラッチC1とクラッチC3とブレーキB2とを解放することにより形成することができ、ギヤ比は5.800となる。
(2)前進2速段は、クラッチC2とブレーキB2とブレーキB3とを係合すると共にクラッチC1とクラッチC3とブレーキB1とを解放することにより形成することができ、ギヤ比は3.133となる。
(3)前進3速段は、クラッチC2とクラッチC3とブレーキB3とを係合すると共にクラッチC1とブレーキB1とブレーキB2とを解放することにより形成することができ、ギヤ比は1.933となる。
(4)前進4速段は、クラッチC1とクラッチC3とブレーキB3とを係合すると共にクラッチC2とブレーキB1とブレーキB2とを解放することにより形成することができ、ギヤ比は1.350となる。
(5)前進5速段は、クラッチC1とクラッチC2とクラッチC3とを係合すると共にブレーキB1とブレーキB2とブレーキB3とを解放することにより形成することができ、ギヤ比は1.000となる。
(6)前進6速段は、クラッチC1とクラッチC2とブレーキB2とを係合すると共にクラッチC3とブレーキB1とブレーキB3とを解放することにより形成することができ、ギヤ比は0.813となる。
(7)前進7速段は、クラッチC1とクラッチC2とブレーキB1とを係合すると共にクラッチC3とブレーキB2とブレーキB3とを解放することにより形成することができ、ギヤ比は0.714となる。
(8)前進8速段は、クラッチC1とブレーキB1とブレーキB2とを係合すると共にクラッチC2とクラッチC3とブレーキB3とを解放することにより形成することができ、ギヤ比は0.625となる。この前進8速段では、第3の遊星歯車機構30は、ブレーキB3の解放によりサンギヤ31が解放されるから、入力軸3と出力ギヤ4とにおけるトルク伝達には関与しない。第4の遊星歯車機構40は、クラッチC2の解放によりリングギヤ43が解放されるから、入力軸3と出力ギヤ4とにおけるトルク伝達には関与しない。第2の遊星歯車機構20は、ブレーキB1とブレーキB2の係合によりキャリア22とサンギヤ21とがケースに回転不能に固定されるから、いずれの回転要素も回転することができず、入力軸3と出力ギヤ4とにおけるトルク伝達には歯車機構として作動しない。したがって、前進8速段では、入力軸3と出力ギヤ4とにおけるトルク伝達には第1の遊星歯車機構10の1つだけが歯車機構として作動する。
(9)前進9速段は、クラッチC1とクラッチC3とブレーキB1とを係合すると共にクラッチC2とブレーキB2とブレーキB3とを解放することにより形成することができ、ギヤ比は0.535となる。この前進9速段では、第3の遊星歯車機構30は、ブレーキB3の解放によりサンギヤ31が解放されるから、入力軸3と出力ギヤ4とにおけるトルク伝達には関与しない。第4の遊星歯車機構40は、クラッチC2の解放によりリングギヤ43が解放されるから、入力軸3と出力ギヤ4とにおけるトルク伝達には関与しない。したがって、前進9速段では、入力軸3と出力ギヤ4とにおけるトルク伝達には第1の遊星歯車機構10と第2の遊星歯車機構20の2つが歯車機構として作動する。
(10)後進段は、クラッチC3とブレーキB1とブレーキB3とを係合すると共にクラッチC1とクラッチC2とブレーキB2とを解放することにより形成することができ、ギヤ比は-4.296となる。
 実施例の自動変速機装置1では、第1ないし第4の遊星歯車機構10,20,30,40のギヤ比λ1,λ2,λ3,λ4として0.60,0.45,0.35,0.50を用いた場合、前進1速段(最低速段)のギヤ比/前進9速段(最高速段)のギヤ比として計算されるギヤ比幅は、10.84(=5.800/0.535)となり、図6に示した従来例の自動変速機装置901のギヤ比幅の10.02より大きい。したがって、実施例の自動変速機装置1は、従来例の自動変速機装置901に比して、車両の加速性能を向上させることができると共に車両の燃費を向上させることができる。
 また、実施例の自動変速機装置1では、最高速段の前進9速段は、入力軸3と出力ギヤ4とにおけるトルク伝達には第1の遊星歯車機構10と第2の遊星歯車機構20の2つが歯車機構として作動する。一方、図6に示した従来例の自動変速機装置901の最高速段の前進9速段では、入力軸903と出力ギヤ904とにおけるトルク伝達には第1ないし第4の遊星歯車機構910,920,930,940の全て(4つ)が作動する。したがって、実施例の自動変速機装置1では、従来例の自動変速機装置901に比して、最高速段におけるトルク伝達に作動する遊星歯車機構の数を少なくしている。この結果、実施例の自動変速機装置1では、従来例の自動変速機装置901に比して、ギヤの噛み合いによる損失を低下させ、トルクの伝達効率を高くすることができる。また、実施例の自動変速機装置1の最高速段の1つ前の前進8速段では、入力軸3と出力ギヤ4とにおけるトルク伝達には、第1の遊星歯車機構10の1つだけが歯車機構として作動する。一方、図6に示した従来例の自動変速機装置901の最高速段の1つ前の前進8速段では、入力軸903と出力ギヤ904とにおけるトルク伝達には第1の遊星歯車機構910と第2の遊星歯車機構920の2つが作動する。したがって、実施例の自動変速機装置1では、従来例の自動変速機装置901に比して、最高速段におけるトルク伝達に作動する遊星歯車機構の数を少なくしている。この結果、実施例の自動変速機装置1では、従来例の自動変速機装置901に比して、ギヤの噛み合いによる損失を低下させ、トルクの伝達効率を高くすることができる。このように、最高速段やその1つ前の変速段は、自動変速機装置1が車両に搭載された場合、比較的高速走行、例えば高速道路の巡航走行の際に用いられるから、比較的高速走行におけるトルクの伝達効率を高くすることができ、車両の燃費の向上を図ることができる。
 実施例の自動変速機装置1で第1ないし第4の遊星歯車機構10,20,30,40のギヤ比λ1,λ2,λ3,λ4として0.60,0.45,0.35,0.50を用いた場合と図6に示した従来例の自動変速機装置901とにおける各遊星歯車機構を構成する各回転要素の回転数に対して考察すると、以下のようになる。
(1)実施例の自動変速機装置1では、第1ないし第4の遊星歯車機構10,20,30,40を構成するそれぞれの3つの回転要素(サンギヤ11,21,31,41,キャリア12,22,32,42,リングギヤ13,23,33,43)における最大回転数は入力軸3の回転数の約4.4倍となるが、従来例の自動変速機装置901では、最大回転数は入力軸903の回転数の約5.5倍となる。したがって、実施例の自動変速機装置1では、従来例の自動変速機装置901に比して、最大回転数となる回転要素の回転数を低くすることができる。この結果、実施例の自動変速機装置1は、従来例の自動変速機装置901に比して、装置の耐久性を向上させることができると共に、耐久性確保のための熱処理や表面処理などに必要なコストを抑制することができる。
(2)実施例の自動変速機装置1では、第1ないし第4の遊星歯車機構10,20,30,40のピニオンギヤ14,24,34,44の最大回転数は入力軸3の回転数の約4.4倍となるが、従来例の自動変速機装置901では、ピニオンギヤの最大回転数は入力軸903の回転数の約4.8倍となる。したがって、実施例の自動変速機装置1では、従来例の自動変速機装置901に比して、ピニオンギヤ14,24,34,44の最大回転数を低くすることができる。特に、入力軸3の回転数が大きくなる前進1速段では、実施例の自動変速機装置1における第1ないし第4の遊星歯車機構10,20,30,40のピニオンギヤ14,24,34,44の最大回転数は入力軸3の約1.3倍となるが、従来例の自動変速機装置901では、ピニオンギヤの最大回転数は入力軸903の回転数の約2.7倍となる。この結果、実施例の自動変速機装置1は、従来例の自動変速機装置901に比して、ベアリングやピニオンサイドワッシャなどの部品の耐久性を向上させることができると共に耐久性確保のための熱処理や表面処理などに必要なコストを抑制することができる。
(3)実施例の自動変速機装置1では、係合要素(クラッチC1~C3,ブレーキB1~B3)の相対回転数の最大値は入力軸3の回転数の4.4倍となるが、従来例の自動変速機装置901では、相対回転数の最大値は入力軸903の回転数の5.5倍となる。したがって、実施例の自動変速機装置1では、従来例の自動変速機装置901に比して、係合要素の相対回転数の最大値を小さくすることができる。この結果、実施例の自動変速機装置1では、係合要素として通常用いられる湿式多板クラッチや湿式多板ブレーキを用いることができ、ドグクラッチやドグブレーキを用いる従来例の自動変速機装置901に比して、変速時の制御性を良好なものとすることができると共に、変速時のショックを低減することができる。
 以上説明した実施例の自動変速機装置1によれば、シングルピニオン式の第1ないし第4の遊星歯車機構10,20,30,40と、3つのクラッチC1~C3と、3つのブレーキB1~B3とを備え、第1の遊星歯車機構10のサンギヤ11を第1連結要素51により第2の遊星歯車機構20のリングギヤ23と第4の遊星歯車機構40のキャリア42に連結し、第1の遊星歯車機構10のキャリア22を第2連結要素52により第3の遊星歯車機構30のリングギヤ33に連結し、第1の遊星歯車機構10のリングギヤ13を第3連結要素53により第3の遊星歯車機構30のキャリア32に連結し、第2連結要素52(キャリア12,リングギヤ33)をクラッチC1を介して第4の遊星歯車機構40のサンギヤ41に接続し、第2の遊星歯車機構20のキャリア22をクラッチC2を介して第4の遊星歯車機構40のリングギヤ43に接続し、第2の遊星歯車機構20のサンギヤ21をクラッチC3を介して第4の遊星歯車機構40のサンギヤ41に接続し、第2の遊星歯車機構20のキャリア22をブレーキB1を介してケース2に接続し、第2の遊星歯車機構20のサンギヤ21をブレーキB2を介してケース2に接続し、第3の遊星歯車機構30のサンギヤ31をブレーキB3を介してケース2に接続し、第4の遊星歯車機構40のサンギヤ41を入力軸3に接続し、第3連結要素53(リングギヤ13,キャリア32)を出力ギヤ4に接続することにより、前進1速段から前進9速段および後進段に変速可能な自動変速機装置を構成することができる。
 実施例の自動変速機装置1では、最高速段としての前進9速段をクラッチC1とクラッチC3とブレーキB1とを係合すると共にクラッチC2とブレーキB2とブレーキB3とを解放することにより形成することにより、入力軸3と出力ギヤ4とにおけるトルク伝達に歯車として作動する遊星歯車機構を第1の遊星歯車機構10と第2の遊星歯車機構20の2つとし、最高速段の前進9速段では入力軸903と出力ギヤ904とにおけるトルク伝達に第1ないし第4の遊星歯車機構910,920,930,940の全て(4つ)が作動する従来例の自動変速機装置901に比して、最高速段におけるトルク伝達に作動する遊星歯車機構の数を少なくすることができ、ギヤの噛み合いによる損失を低下させ、トルクの伝達効率を高くすることができる。また、実施例の自動変速機装置1では、最高速段の1つ前の前進8速段をクラッチC1とブレーキB1とブレーキB2とを係合すると共にクラッチC2とクラッチC3とブレーキB3とを解放することにより形成することにより、入力軸3と出力ギヤ4とにおけるトルク伝達に歯車として作動する遊星歯車機構を第1の遊星歯車機構10の1つだけとし、最高速段の1つ前の前進8速段では入力軸903と出力ギヤ904とにおけるトルク伝達に第1の遊星歯車機構910と第2の遊星歯車機構920の2つが作動する従来例の自動変速機装置901に比して、最高速段の1つ前の変速段におけるトルク伝達に作動する遊星歯車機構の数を少なくすることができ、ギヤの噛み合いによる損失を低下させ、トルクの伝達効率を高くすることができる。これらの結果、自動変速機装置におけるトルクの伝達効率を向上させることができる。
 実施例の自動変速機装置1では、第1の遊星歯車機構10を第2の遊星歯車機構20の外周側に配置しているから、4つの遊星歯車機構を横並びに配置したものに比して、径方向については大きくなるものの、軸方向については短くすることができる。即ち、3つの遊星歯車機構を横並びに配置した自動変速機装置の軸方向の長さと同様にすることができる。
 実施例の自動変速機装置1では、第1ないし第4の遊星歯車機構10,20,30,40を構成するそれぞれの3つの回転要素における最大回転数は従来例の自動変速機装置901に比して低いから、従来例の自動変速機装置901に比して、装置の耐久性を向上させることができると共に耐久性確保のための熱処理や表面処理などに必要なコストを抑制することができる。また、実施例の自動変速機装置1では、第1ないし第4の遊星歯車機構10,20,30,40のピニオンギヤ14,24,34,44の最大回転数は、従来例の自動変速機装置901に比して低いから、装置の耐久性を向上させることができると共に耐久性確保のための熱処理や表面処理などに必要なコストを抑制することができる。さらに、実施例の自動変速機装置1では、係合要素の相対回転数の最大値は、従来例の自動変速機装置901に比して低いから、係合要素として通常用いられる湿式多板クラッチや湿式多板ブレーキを用いたときには、従来例の自動変速機装置901に比して、変速時の制御性を良好なものとすることができると共に、変速時のショックを低減することができる。
 実施例の自動変速機装置1では、3つのクラッチC1~C3のすべてを摩擦クラッチとして構成すると共に3つのブレーキB1~B3のすべてを摩擦ブレーキとして構成するものとしたが、一部のクラッチやブレーキを摩擦クラッチや摩擦ブレーキに代えてドグクラッチやドグブレーキによって構成するものとしてもよい。ブレーキB3をドグブレーキとして構成した自動変速機装置1に対する変形例の自動変速機装置1Bを図4に示す。変形例の自動変速機装置1Bの作動表および速度線図は図2,図3と同一である。ドグブレーキは係合時にショックが生じやすく、回転を同期させる同期制御が必要となるが、ブレーキB3は前進1速段から前進4速段まで係合が連続していると共に前進5速段から前進9速段まで解放が連続しているから、係合と解放が頻繁に繰り返されることがなく、同期制御が発生する頻度が少ない。このため、ドグブレーキを採用しても変速フィーリングの悪化は抑制される。
 実施例の自動変速機装置1では、エンジンが横置き(車両の左右方向に)配置されたタイプ(例えば、フロントエンジンフロントドライブ式)の車両に搭載されるものとしたが、エンジンが縦置き(車両の前後方向に)配置されたタイプ(例えば、フロントエンジンリヤドライブ式)の車両に搭載されるものとしてもよい。この場合、図5に例示する変形例の自動変速機装置101のように、図1の自動変速機装置1の第1の遊星歯車機構10,第2の遊星歯車機構20,第3の遊星歯車機構30,第4の遊星歯車機構40,クラッチC1~C3,ブレーキB1~B3の配置や接続はそのままに、入力軸3を軸中心を貫いて反対側(図1,5中の左側)に延出すると共に、第1の遊星歯車機構10のリングギヤ13にその回転を入力軸3とは反対側(図1,5中の右側)の出力軸4bに伝達する中空の回転シャフト4aを接続するものとすればよい。
 実施例の自動変速機装置1では、第1ないし第4の遊星歯車機構10,20,30,40のギヤ比λ1,λ2,λ3,λ4として0.60,0.45,0.35,0.50を用いたが、ギヤ比λ1,λ2,λ3,λ4はこの値に限定されるものではない。
 実施例の自動変速機装置1では、第1ないし第4の遊星歯車機構10,20,30,40を、いずれもシングルピニオン式の遊星歯車機構として構成するものとしたが、第1ないし第4の遊星歯車機構10,20,30,40のうち一部或いは全部をダブルピニオン式の遊星歯車機構として構成するものとしても構わない。
 実施例の自動変速機装置1では、3つのクラッチC1~C3と3つのブレーキB1~B3とのうち3つを係合すると共に他の3つを解放することにより、前進1速段から前進9速段と後進段が可能な自動変速機装置として構成したが、前進1速段から前進9速段の9速変速のうちのいずれか1つの変速段を除いた8速変速または複数の変速段を除いた7速変速以下の変速と後進段が可能な自動変速機装置としても構わない。
 ここで、実施例の主要な要素と発明の概要の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、入力軸(インプットシャフト)3が「入力部材」に相当し、出力ギヤ4が「出力部材」に相当し、第1の遊星歯車機構10が「第1の遊星歯車機構」に相当し、サンギヤ11が「第1回転要素」に相当し、キャリア12が「第2回転要素」に相当し、リングギヤ13が「第3回転要素」に相当し、第2の遊星歯車機構20が「第2の遊星歯車機構」に相当し、サンギヤ21が「第4回転要素」に相当し、キャリア22が「第5回転要素」に相当し、リングギヤ23が「第6回転要素」に相当し、第3の遊星歯車機構30が「第3の遊星歯車機構」に相当し、サンギヤ31が「第7回転要素」に相当し、キャリア32が「第8回転要素」に相当し、リングギヤ33が「第9回転要素」に相当し、第4の遊星歯車機構40が「第4の遊星歯車機構」に相当し、サンギヤ41が「第10回転要素」に相当し、キャリア42が「第11回転要素」に相当し、リングギヤ43が「第12回転要素」に相当し、第1連結要素51が「第1連結要素」に相当し、第2連結要素52が「第2連結要素」に相当し、第3連結要素53が「第3連結要素」に相当し、クラッチC1が「第1クラッチ」に相当し、クラッチC2が「第2クラッチ」に相当し、クラッチC3が「第3クラッチ」に相当し、ブレーキB1が「第1ブレーキ」に相当し、ブレーキB2が「第2ブレーキ」に相当し、ブレーキB3が「第3ブレーキ」に相当する。なお、実施例の主要な要素と発明の概要の欄に記載した発明の主要な要素との対応関係は、実施例が発明の概要の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、発明の概要の欄に記載した発明の要素を限定するものではない。即ち、発明の概要の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は発明の概要の欄に記載した発明の具体的な一例に過ぎないものである。
 以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
 本発明は、自動変速機装置の製造産業などに利用可能である。

Claims (6)

  1.  入力部材に入力された動力を変速して出力部材に出力する自動変速機装置であって、
     速度線図におけるギヤ比に対応する間隔での並び順に第1回転要素と第2回転要素と第3回転要素とを有する第1の遊星歯車機構と、
     速度線図におけるギヤ比に対応する間隔での並び順に第4回転要素と第5回転要素と第6回転要素とを有する第2の遊星歯車機構と、
     速度線図におけるギヤ比に対応する間隔での並び順に第7回転要素と第8回転要素と第9回転要素とを有する第3の遊星歯車機構と、
     速度線図におけるギヤ比に対応する間隔での並び順に第10回転要素と第11回転要素と第12回転要素とを有する第4の遊星歯車機構と、
     前記第1回転要素と前記第6回転要素と前記第11回転要素とを連結する第1連結要素と、
     前記第2回転要素と前記第9回転要素とを連結する第2連結要素と、
     前記第3回転要素と前記第8回転要素とを連結する第3連結要素と、
     前記第2連結要素と前記第10回転要素とを係合すると共に該係合を解放する第1クラッチと、
     前記第5回転要素と前記第12回転要素とを係合すると共に該係合を解放する第2クラッチと、
     前記第4回転要素と前記第10回転要素とを係合すると共に該係合を解放する第3クラッチと、
     前記第5回転要素を自動変速機装置ケースに固定可能に係合すると共に該係合を解放する第1ブレーキと、
     前記第4回転要素を前記自動変速機装置ケースに固定可能に係合すると共に該係合を解放する第2ブレーキと、
     前記第7回転要素を前記自動変速機装置ケースに固定可能に係合すると共に該係合を解放する第3ブレーキと、
     を備え、
     前記入力部材を前記第10回転要素に接続し、
     前記出力部材を前記第3連結要素に接続してなる、
     ことを特徴とする自動変速装置。
  2.  請求項1記載の自動変速機装置であって、
     前進1速段は、前記第2クラッチと前記第1ブレーキと前記第3ブレーキとを係合すると共に前記第1クラッチと前記第3クラッチと前記第2ブレーキとを解放することにより形成し、
     前進2速段は、前記第2クラッチと前記第2ブレーキと前記第3ブレーキとを係合すると共に前記第1クラッチと前記第3クラッチと前記第1ブレーキとを解放することにより形成し、
     前進3速段は、前記第2クラッチと前記第3クラッチと前記第3ブレーキとを係合すると共に前記第1クラッチと前記第1ブレーキと前記第2ブレーキとを解放することにより形成し、
     前進4速段は、前記第1クラッチと前記第3クラッチと前記第3ブレーキとを係合すると共に前記第2クラッチと前記第1ブレーキと前記第2ブレーキとを解放することにより形成し、
     前進5速段は、前記第1クラッチと前記第2クラッチと前記第3クラッチとを係合すると共に前記第1ブレーキと前記第2ブレーキと前記第3ブレーキとを解放することにより形成し、
     前進6速段は、前記第1クラッチと前記第2クラッチと前記第2ブレーキとを係合すると共に前記第3クラッチと前記第1ブレーキと前記第3ブレーキとを解放することにより形成し、
     前進7速段は、前記第1クラッチと前記第2クラッチと前記第1ブレーキとを係合すると共に前記第3クラッチと前記第2ブレーキと前記第3ブレーキとを解放することにより形成し、
     前進8速段は、前記第1クラッチと前記第1ブレーキと前記第2ブレーキとを係合すると共に前記第2クラッチと前記第3クラッチと前記第3ブレーキとを解放することにより形成し、
     前進9速段は、前記第1クラッチと前記第3クラッチと前記第1ブレーキとを係合すると共に前記第2クラッチと前記第2ブレーキと前記第3ブレーキとを解放することにより形成し、
     後進段は、前記第3クラッチと前記第1ブレーキと前記第3ブレーキとを係合すると共に前記第1クラッチと前記第2クラッチと前記第2ブレーキとを解放することにより形成する、
     ことを特徴とする自動変速機装置。
  3.  請求項1または2記載の自動変速機装置であって、
     前記第1の遊星歯車機構と前記第2の遊星歯車機構と前記第3の遊星歯車機構と前記第4の遊星歯車機構は、いずれもサンギヤとリングギヤとキャリアとを前記3つの回転要素とするシングルピニオン式の遊星歯車機構として構成されてなり、
     前記第1回転要素と前記第4回転要素と前記第7回転要素と前記第10回転要素は、いずれもサンギヤであり、
     前記第2回転要素と前記第5回転要素と前記第8回転要素と前記第11回転要素は、いずれもキャリアであり、
     前記第3回転要素と前記第6回転要素と前記第9回転要素と前記第12回転要素は、いずれもリングギヤである、
     ことを特徴とする自動変速機装置。
  4.  請求項1ないし3のうちのいずれか1つの請求項に記載の自動変速機装置であって、
     前記第1の遊星歯車機構は前記第2の遊星歯車機構の外周側に構成されてなる、
     ことを特徴とする自動変速機装置。
  5.  請求項1ないし4のうちのいずれか1つの請求項に記載の自動変速機装置であって、
     前記第4の遊星歯車機構,前記第1の遊星歯車機構および第2の遊星歯車機構,前記第3の遊星歯車機構の順に配置されてなる、
     ことを特徴とする自動変速機装置。
  6.  請求項1ないし5のうちのいずれか1つの請求項に記載の自動変速機装置であって、
     前記第3ブレーキはドグブレーキとして構成されてなる、
     ことを特徴とする自動変速機装置。
PCT/JP2013/055054 2012-03-27 2013-02-27 自動変速機装置 WO2013146028A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112013000739.8T DE112013000739T5 (de) 2012-03-27 2013-02-27 Automatikgetriebevorrichtung
JP2014507556A JP5860139B2 (ja) 2012-03-27 2013-02-27 自動変速機装置
CN201380009971.6A CN104114905A (zh) 2012-03-27 2013-02-27 自动变速器装置
US14/379,141 US20150031494A1 (en) 2012-03-27 2013-02-27 Automatic transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-071725 2012-03-27
JP2012071725 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013146028A1 true WO2013146028A1 (ja) 2013-10-03

Family

ID=49259304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055054 WO2013146028A1 (ja) 2012-03-27 2013-02-27 自動変速機装置

Country Status (5)

Country Link
US (1) US20150031494A1 (ja)
JP (1) JP5860139B2 (ja)
CN (1) CN104114905A (ja)
DE (1) DE112013000739T5 (ja)
WO (1) WO2013146028A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068436A (ja) * 2013-09-30 2015-04-13 マツダ株式会社 自動変速機
KR101836264B1 (ko) 2016-03-16 2018-03-08 현대자동차 주식회사 차량용 자동변속기의 유성기어트레인

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013000946T5 (de) * 2012-03-27 2014-10-30 Aisin Aw Co., Ltd. Automatikgetriebevorrichtung
DE102012207017A1 (de) * 2012-04-27 2013-10-31 Zf Friedrichshafen Ag Mehrstufengetriebe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264387A (ja) * 1996-03-26 1997-10-07 Toyota Motor Corp 自動変速機用歯車変速機構
JP2008534873A (ja) * 2005-03-31 2008-08-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 多段変速機
JP2008534865A (ja) * 2005-03-23 2008-08-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 多段変速機
JP2009293762A (ja) * 2008-06-09 2009-12-17 Kyowa Metal Work Co Ltd 多段変速遊星歯車列
DE102008041197A1 (de) * 2008-08-13 2010-02-18 Zf Friedrichshafen Ag Mehrstufengetriebe
JP2011080589A (ja) * 2009-09-09 2011-04-21 Honda Motor Co Ltd 自動変速機
JP2011513662A (ja) * 2008-02-28 2011-04-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 多段変速機
JP2011513661A (ja) * 2008-02-28 2011-04-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 多段変速機
JP2012097864A (ja) * 2010-11-04 2012-05-24 Honda Motor Co Ltd 自動変速機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226381B2 (en) * 2005-03-03 2007-06-05 General Motors Corporation Nine-speed transmissions with four planetary gear sets
US7204780B2 (en) * 2005-05-25 2007-04-17 General Motors Corporation Multi speed transmission
US7364527B2 (en) * 2005-09-23 2008-04-29 General Motors Corporation Nine speed automatic transmission with six torque-transmitting mechanisms
US7909726B2 (en) * 2007-02-08 2011-03-22 GM Global Technology Operations LLC Multi-speed transmission
US8038565B2 (en) * 2008-02-18 2011-10-18 GM Global Technology Operations LLC Multi-speed transmission
DE102008041213B4 (de) * 2008-08-13 2018-10-18 Zf Friedrichshafen Ag Mehrstufengetriebe
DE102008041207B4 (de) * 2008-08-13 2018-08-23 Zf Friedrichshafen Ag Mehrstufengetriebe
DE102008041198B4 (de) * 2008-08-13 2018-06-07 Zf Friedrichshafen Ag Mehrstufengetriebe
DE102009028672A1 (de) * 2009-08-20 2011-02-24 Zf Friedrichshafen Ag Mehrstufengetriebe
DE102010063632A1 (de) * 2010-12-21 2012-06-21 Zf Friedrichshafen Ag Mehrstufengetriebe in Planetenbauweise
US8961355B2 (en) * 2011-07-21 2015-02-24 Gm Global Technology Operations, Llc Method for controlling a multi-speed transmission having four planetary gear sets for producing at least nine gear speeds
US9188200B2 (en) * 2011-12-13 2015-11-17 Caterpillar Inc. Multi-speed transmission
US8920281B2 (en) * 2012-11-07 2014-12-30 Gm Global Technology Operations, Llc Multi-speed transmission

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264387A (ja) * 1996-03-26 1997-10-07 Toyota Motor Corp 自動変速機用歯車変速機構
JP2008534865A (ja) * 2005-03-23 2008-08-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 多段変速機
JP2008534873A (ja) * 2005-03-31 2008-08-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 多段変速機
JP2011513662A (ja) * 2008-02-28 2011-04-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 多段変速機
JP2011513661A (ja) * 2008-02-28 2011-04-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 多段変速機
JP2009293762A (ja) * 2008-06-09 2009-12-17 Kyowa Metal Work Co Ltd 多段変速遊星歯車列
DE102008041197A1 (de) * 2008-08-13 2010-02-18 Zf Friedrichshafen Ag Mehrstufengetriebe
JP2011080589A (ja) * 2009-09-09 2011-04-21 Honda Motor Co Ltd 自動変速機
JP2012097864A (ja) * 2010-11-04 2012-05-24 Honda Motor Co Ltd 自動変速機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068436A (ja) * 2013-09-30 2015-04-13 マツダ株式会社 自動変速機
KR101836264B1 (ko) 2016-03-16 2018-03-08 현대자동차 주식회사 차량용 자동변속기의 유성기어트레인
US10047831B2 (en) 2016-03-16 2018-08-14 Hyundai Motor Company Planetary gear train of automatic transmission for vehicles

Also Published As

Publication number Publication date
JP5860139B2 (ja) 2016-02-16
US20150031494A1 (en) 2015-01-29
DE112013000739T5 (de) 2014-10-23
CN104114905A (zh) 2014-10-22
JPWO2013146028A1 (ja) 2015-12-10

Similar Documents

Publication Publication Date Title
JP5860140B2 (ja) 自動変速機装置
WO2013146029A1 (ja) 自動変速機装置
JP6045996B2 (ja) 自動変速機装置
JP5860141B2 (ja) 自動変速機装置
JP5860138B2 (ja) 自動変速機装置
JP6008804B2 (ja) 自動変速機装置
JP2014035059A (ja) 自動変速機装置
JP5860139B2 (ja) 自動変速機装置
JP2014105849A (ja) 自動変速機装置
JP2014105848A (ja) 自動変速機装置
WO2013146025A1 (ja) 自動変速機装置
WO2013146030A1 (ja) 自動変速機装置
JP2014105850A (ja) 自動変速機装置
WO2013146026A1 (ja) 自動変速機装置
JP2014199093A (ja) 自動変速機装置
JP5833472B2 (ja) 自動変速機装置
JP2014199094A (ja) 自動変速機装置
JP5827913B2 (ja) 自動変速機装置
JP5715971B2 (ja) 自動変速機装置
WO2013129440A1 (ja) 自動変速機装置
WO2013129441A1 (ja) 自動変速機装置
JP2014105847A (ja) 自動変速機装置
JP5813037B2 (ja) 車両用自動変速機
JP5828853B2 (ja) 車両用自動変速機
JP2013181564A (ja) 自動変速機装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507556

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14379141

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013000739

Country of ref document: DE

Ref document number: 1120130007398

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768056

Country of ref document: EP

Kind code of ref document: A1