WO2013145630A1 - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
WO2013145630A1
WO2013145630A1 PCT/JP2013/001831 JP2013001831W WO2013145630A1 WO 2013145630 A1 WO2013145630 A1 WO 2013145630A1 JP 2013001831 W JP2013001831 W JP 2013001831W WO 2013145630 A1 WO2013145630 A1 WO 2013145630A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas discharge
forming apparatus
central
film forming
Prior art date
Application number
PCT/JP2013/001831
Other languages
English (en)
French (fr)
Inventor
斉藤 哲也
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US14/388,307 priority Critical patent/US9441293B2/en
Priority to KR1020147030423A priority patent/KR101657388B1/ko
Publication of WO2013145630A1 publication Critical patent/WO2013145630A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45506Turbulent flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally

Definitions

  • the present invention relates to a film forming apparatus that forms a film by sequentially supplying a plurality of types of reaction gases that react with each other to a substrate.
  • a method for forming a film on a substrate for example, a semiconductor wafer (hereinafter referred to as “wafer”), a so-called ALD (Atomic Layer Deposition) method or MLD that sequentially supplies a plurality of types of reactive gases to the wafer.
  • a method called (Multi Layer Deposition) method is known.
  • Patent Document 1 a cylindrical intermediate dispersion is arranged at the center of a dispersion guide having an inclined surface structure that is divergent from the center toward the outer periphery, and each of the side and bottom surfaces of the intermediate dispersion is arranged.
  • a thin film forming apparatus is described in which gas is introduced into a dispersion guide through a plurality of openings.
  • JP 2005-113268 A Paragraph 0071
  • FIGS. 1A and 1B JP-A-7-22323 paragraphs 0003 and 0018
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a film forming apparatus capable of forming a film having a high dispersibility of a reaction gas and good in-plane uniformity. .
  • the film forming apparatus sequentially supplies a plurality of types of reaction gases that react with each other to a substrate in a processing chamber that is a vacuum atmosphere, and between the supply of one reaction gas and the supply of the next reaction gas.
  • a film forming apparatus for performing a film forming process by supplying a replacement gas to A placement unit provided in the processing chamber, on which a substrate is placed; A ceiling part that is provided facing the mounting part and has an inclined surface structure having a shape that spreads from the center toward the outer periphery; and An exhaust section for evacuating the processing chamber; A central gas discharge part disposed above the central part of the substrate placed on the placement part, and formed with a gas discharge port for spreading the gas outward in the lateral direction; An ambient gas supply unit disposed so as to surround the central gas discharge unit at a position above the center of the substrate and above the peripheral edge of the substrate. , The ambient gas supply part has a plurality of gas discharge ports formed along the circumferential direction so as to spread the gas in the lateral
  • the film forming apparatus described above may have the following features.
  • the gas discharge ports of the central gas discharge portion are formed along the circumferential direction so as to discharge gas toward the outside in the lateral direction. Further, the gas discharge ports of the ambient gas supply part are formed so as to discharge gas in the lateral direction toward the outer peripheral side and the central part side of the substrate.
  • the surrounding gas supply unit includes an annular part formed in an annular shape so as to surround the central gas discharge part, and the gas discharge ports are respectively provided on an inner peripheral surface side and an outer peripheral surface side of the annular part. Formed at intervals along the direction.
  • the annular portion is formed in a hollow shape, and includes a plurality of gas dispersion portions provided in the annular portion at intervals in the circumferential direction. Moreover, each gas dispersion
  • the ambient gas supply unit is composed of a plurality of gas dispersion units arranged at intervals from each other so as to surround the central gas discharge unit, and the gas discharge ports extend along the circumferential direction of each gas dispersion unit. It must be formed at intervals.
  • the central gas discharge part or the gas dispersion part protrudes from the ceiling part toward the processing chamber, and a head part in which a plurality of gas discharge ports are formed at intervals along the circumferential direction, and in the head part And a swirl flow forming part that forms a swirl flow of gas swirling along a direction in which the gas discharge ports are arranged.
  • the present invention is such that gas is discharged from a central gas discharge portion disposed above the central portion of the substrate so as to spread outward in the lateral direction, and is above the outer peripheral side of the central portion, From the surrounding gas supply part arranged so as to surround the central gas discharge part at a position closer to the center than above the peripheral edge, it spreads laterally toward the outer peripheral side and the central part side of the substrate when viewed in a plane. Gas is discharged. As a result, since the reaction gas is uniformly supplied into the space below the ceiling, a film with high in-plane uniformity can be formed on the substrate.
  • FIG. 2 is a partially enlarged longitudinal sectional view of the film forming apparatus.
  • FIG. It is a perspective view of the top plate member provided in the film forming apparatus. It is sectional drawing of the gas disperser provided in the said top-plate member. It is sectional drawing which shows the other example of the said gas distributor. It is a 1st explanatory view showing an operation of the film deposition system. It is the 2nd explanatory view showing an operation of the film deposition system. It is the 3rd explanatory view showing an operation of the film deposition system. It is a 4th explanatory view showing an operation of the film deposition system.
  • This film forming apparatus is a circular substrate to be formed, and for example, on the surface of a wafer W having a diameter of 300 mm, titanium chloride (TiCl 4 ) gas (raw material gas) and ammonia (NH 3 ) gas (which react with each other) (Nitriding gas) is alternately supplied to form a titanium nitride (TiN) film by an ALD (MLD) method.
  • TiCl 4 titanium chloride
  • NH 3 ammonia
  • MLD ALD
  • the film forming apparatus is made of a metal such as aluminum, and is a vacuum container having a substantially circular planar shape.
  • the processing container 1 constituting the processing chamber and the processing container 1 are provided in the processing container 1.
  • a mounting table (mounting unit) 2 on which the wafer W is mounted, and a top plate member 31 provided so as to face the mounting table 2 and forming a processing space 313 between the mounting table 2 and It is equipped with.
  • a loading / unloading port 11 for allowing a wafer transfer mechanism provided in an external vacuum transfer path to enter the processing vessel 1 when the wafer W is transferred to and from the mounting table 2 on the side surface of the processing vessel 1.
  • a gate valve 12 for opening and closing the loading / unloading port 11 is provided.
  • An exhaust duct 13 made of a metal such as aluminum and having a vertical cross-sectional shape curved in an annular shape at a position above the loading / unloading port 11 constitutes the main body of the processing vessel 1. It is provided so as to be stacked on the side wall. A slit-like opening 131 extending in the circumferential direction is formed on the inner peripheral surface of the exhaust duct 13, and the gas flowing out from the processing space 313 is exhausted into the exhaust duct 13 through the opening 131.
  • the An exhaust port 132 is formed on the outer wall surface of the exhaust duct 13, and an exhaust unit 65 including a vacuum pump is connected to the exhaust port 132.
  • the exhaust port 132 and the exhaust unit 65 correspond to an exhaust unit that evacuates the processing space 313.
  • the mounting table 2 is disposed at a position inside the exhaust duct 13.
  • the mounting table 2 is made of a disk that is slightly larger than the wafer W, and is made of a ceramic such as aluminum nitride (AlN) or quartz glass (SiO 2 ), or a metal such as aluminum (Al) or Hastelloy (registered trademark).
  • an electrostatic chuck (not shown) for fixing the wafer W in the mounting area on the upper surface side of the mounting table 2 may be provided.
  • description of the heater 21 is abbreviate
  • the mounting table 2 is provided with a cover member 22 configured to cover the outer peripheral side region of the mounting region and the side peripheral surface of the mounting table 2 in the circumferential direction.
  • the cover member 22 is made of alumina, for example, and is formed in a substantially cylindrical shape with upper and lower ends opened, and the upper end of the cover member 22 is bent inward in the horizontal direction over the circumferential direction.
  • the bent portion is locked at the peripheral portion of the mounting table 2, and the thickness dimension of the bent portion is larger than the thickness dimension (0.8 mm) of the wafer W, for example, 3 mm within a range of 1 mm to 5 mm. It has become.
  • a support member 23 that passes through the bottom surface of the mounting table 2 and extends in the vertical direction is connected to the center of the lower surface side of the mounting table 2.
  • the lower end portion of the support member 23 is connected to the elevating mechanism 24 via a plate-like support plate 232 disposed horizontally on the lower side of the processing container 1.
  • the elevating mechanism 24 has a delivery position (indicated by a one-dot chain line in FIG. 1) for delivering the wafer W to and from the wafer transfer mechanism that has entered from the carry-in / out port 11, and an upper side of the delivery position.
  • the mounting table 2 is moved up and down between a processing position where film formation on the wafer W is performed.
  • a bellows 231 that separates the atmosphere in the processing container 1 from the outside and expands and contracts as the support plate 232 moves up and down is provided.
  • the support member 23 is provided so as to cover the outer side in the circumferential direction.
  • three support pins 25 are provided to support and lift the wafer W from the lower surface side when the wafer W is transferred to and from an external wafer transfer mechanism.
  • the support pin 25 is connected to an elevating mechanism 26 and can be moved up and down, and protrudes and sinks from the upper surface of the mounting table 2 through a through hole 201 that penetrates the mounting table 2 in the vertical direction, thereby The wafer W is transferred between the two.
  • a disk-like support plate 32 is provided on the upper surface side of the exhaust duct 13 so as to close the circular opening, and the inside of the processing vessel 1 is kept airtight between the exhaust duct 13 and the support plate 32.
  • An O-ring 133 is provided on the lower surface side of the support plate 32.
  • a metal top plate member 31 for supplying a reaction gas and a replacement gas to a processing space 313 described later is provided on the lower surface side of the support plate 32.
  • the top plate member 31 is attached to the support plate 32 by bolts 323. The support is fixed.
  • a concave portion is formed on the lower surface side of the top plate member 31, and the central region of the concave portion is flat.
  • an inclined surface having a shape that widens toward the outer peripheral side from the center side is formed.
  • a flat rim 314 is provided on the outer side of the inclined surface.
  • the top plate member 31 When the mounting table 2 is raised to the processing position, the top plate member 31 is disposed so that the upper surface of the cover member 22 provided on the mounting table 2 and the lower surface of the rim 314 face each other with a gap therebetween. .
  • a space surrounded by the concave portion of the top plate member 31 and the upper surface of the mounting table 2 is a processing space 313 in which film formation on the wafer W is performed.
  • the top plate member 31 provided with the recess constitutes the ceiling of the film forming apparatus.
  • the height position of the processing position is set so that a gap of height h is formed between the lower surface of the rim 314 of the top plate member 31 and the upper surface of the bent portion of the cover member 22. Is set.
  • the opening 131 of the exhaust duct 13 opens toward this gap.
  • the height h of the gap between the rim 314 and the cover member 22 is set to 0.5 mm in the range of 0.2 mm to 10.0 mm, for example.
  • a central gas discharge portion 4b for discharging gas into the processing space 313 is provided in the central portion of the recess, and around the central gas discharge portion 4b
  • eight gas dispersion portions 4a are arranged in an annular shape at intervals.
  • the central gas discharge part 4b and the gas dispersion part 4a are constituted by a gas distributor 4 having a common structure.
  • the structure of the gas distributor 4 will be described with reference to the cross-sectional views of FIGS. 4 (a) to 4 (c).
  • FIGS. 4A to 4C show cross-sectional views of a gas dispersion part 4a covered with an ambient gas supply part 5 described later, but the central gas discharge part 4b of this example is Except for the point which is not covered with the gas supply part 5, it has the same structure as the gas dispersion
  • the gas distributor 4 is provided on the head portion 41 so as to close the cylindrical head portion 41 having a hollow inside and the opening formed on the upper surface side of the head portion 41, A swirl flow forming unit 40 for introducing gas into the head unit 41 in a swirl flow.
  • the head portion 41 is a flat cylindrical metal member, and is provided in the recess so as to protrude downward from the lower surface of the top plate member 31.
  • a plurality of gas discharge ports 42 are formed on the side surface of the cylindrical head portion 41 at intervals in the circumferential direction.
  • three or more gas discharge ports 42 are preferably provided, and in this example, eight gas discharge ports 42 are provided.
  • the lower surface of the head portion 41 is closed and the gas discharge port 42 is not provided, while the upper surface side of the head portion 41 is open and connected to the swirl flow forming portion 40.
  • the swirl flow forming portion 40 is a double cylindrical metal member in which an inner cylinder portion 44 having a diameter smaller than that of the outer cylinder portion 43 is disposed inside the cylindrical outer cylinder portion 43, and the outer cylinder portion The lower end portion of 43 and the lower end portion of the inner cylinder portion 44 are connected by a connecting portion 451. Further, the upper end portion of the inner cylinder portion 44 protrudes so as to extend upward from the upper end portion of the outer cylinder portion 43.
  • the top plate member 31 is provided with an insertion hole formed along the upper end portion of the inner tube portion 44 and the outer surface shape of the outer tube portion 43.
  • each gas disperser 4 is arrange
  • a male screw and a female screw are cut on the outer peripheral surface of the outer cylindrical portion 43 and the inner peripheral surface of the insertion hole, respectively, so that the outer cylindrical portion 43 inserted into the insertion hole becomes the top plate member. 31 is supported and fixed.
  • the upper surface of the inner cylinder part 44 is opened toward the gas supply path 312 formed in the top plate member 31, and the gas flows into the inner cylinder part 44 through this opening part.
  • a partition plate 441 is provided at a height position on the upper side of the inner cylinder portion 44 from the lower end portion to about one third of the length direction of the inner cylinder portion 44, and the gas that has flowed into the inner cylinder portion 44. Is prevented from flowing out directly to the head portion 41.
  • An upper side introduction path 442 for introducing gas into the annular space 45 formed between the inner cylinder portion 44 and the outer cylinder portion 43 is provided in the wall portion of the inner cylinder portion 44 above the partition plate 441. It has been.
  • the annular space 45 is a space surrounded by the outer peripheral surface of the inner cylindrical portion 44, the inner peripheral surface of the outer cylindrical portion 43, the upper surface of the connecting portion 451, and the wall surface of the insertion hole (top plate member 31). Gas is introduced into the annular space 45 from the 312 through the upper side introduction path 442.
  • a lower side introduction path 46 for introducing the gas in the annular space 45 to the lower side of the partition plate 441 is formed in the wall portion of the inner cylinder portion 44 on the lower side of the partition plate 441.
  • the lower side introduction path 46 allows gas to flow along the tangential direction of the inner wall of the inner cylindrical portion 44, as shown in a cross section at the position AA ′ where the lower side introduction path 46 is formed. For example, four are formed so as to be introduced.
  • the gas that has entered the inner cylinder portion 44 from the lower side introduction path 46 flows through the space below the partition plate 441 along the inner wall of the inner cylinder portion 44, thereby forming a swirling flow.
  • the position where the upper side introduction path 442 is formed is indicated by a broken line. It is not necessary to provide a plurality of lower side introduction paths 46. For example, in one lower side introduction path 46, a swirl flow is formed simply by introducing gas along the tangential direction of the inner wall of the inner cylindrical portion 44. Can do.
  • a guide wall 47 having a divergent shape that gradually expands downward is formed in the inner cylindrical portion 44 on the lower side of the partition plate 441, and the swirling flow of the gas introduced from the lower side introduction path 46 It is guided by the guide wall 47 and flows into the head portion 41 while gradually expanding its diameter.
  • the gas flowing into the head portion 41 swirls inside the side wall of the head portion 41 along the direction in which the gas discharge ports 42 are arranged as shown in FIG. Gas is discharged uniformly in the direction. It is not essential to provide the swirl flow forming portion 40 in the gas distributor 4.
  • the gas may be directly introduced into the head portion 41 from the opening at the lower end of the gas supply path 312. .
  • the gas distributor 4 having the above-described configuration surrounds the central gas discharge part 4 b provided at the center part and the central gas discharge part 4 b along the circumferential direction. And 8 gas dispersion portions 4a arranged in an annular shape at intervals from each other. And the gas dispersion
  • the ambient gas supply unit 5 is a flat double cylindrical member (annular portion) including the inner peripheral wall 52 and the outer peripheral wall 53 of the peripheral gas supply unit 5, and is sandwiched between the inner peripheral wall 52 and the outer peripheral wall 53.
  • the lower surface of the space is closed with a bottom plate 54.
  • the upper surface of the space sandwiched between the inner peripheral wall 52 and the outer peripheral wall 53 is open, and the upper end of the inner peripheral wall 52 and the upper end of the outer peripheral wall 53 are groove portions formed on the lower surface side of the top plate member 31, respectively. Has been inserted inside.
  • male threads are cut on the inner peripheral surface of the upper end portion of the inner peripheral wall 52 and the outer peripheral surface of the upper end portion of the outer peripheral wall 53, and female grooves are inserted in the grooves into which the upper end portions of the inner peripheral wall 52 and outer peripheral wall 53 are inserted.
  • the screw is cut, and thereby the inner peripheral wall 52 and the outer peripheral wall 53 inserted into the groove are supported and fixed to the top plate member 31.
  • the inner peripheral wall 52 and the outer peripheral wall 53 have a planar shape of a space sandwiched between the peripheral walls 52 and 53 corresponding to a region where the gas dispersion portions 4 a are arranged in an annular shape. It is formed to have a shape.
  • the surrounding gas supply part 5 is attached to the lower surface of the top plate member 31, so that the inside of the hollow surrounding gas supply part 5 (the inner peripheral wall 52, the outer peripheral wall 53, the bottom plate 54, and the top plate member 31 is surrounded).
  • distribution part 4a is arrange
  • the inner peripheral wall 52 and the outer peripheral wall 53 extend in the lateral direction to the position on the base end side (upper side) supported by the top plate member 31.
  • a plurality of slit-like gas discharge ports 511 and 512 are formed at intervals from each other along the circumferential direction of the peripheral walls 52 and 53.
  • the horizontal distance from the center of the central gas discharge part 4b to the inner peripheral wall 52 of the surrounding gas supply part 5 is x 1
  • the horizontal distance to the outer peripheral wall 53 is x 2 ( x 2 > x 1 )
  • the radius of the wafer W is r
  • the value of x 1 / r is in the range of 0.13 to 0.6
  • the value of x 2 / r is in the range of 0.26 to 0.73. It is preferable to configure the ambient gas supply unit 5 so that If the value of x 1 / r is smaller than 0.13 or the value of x 2 / r is smaller than 0.26, the gas concentration at the center of the wafer W becomes too high, which is not preferable.
  • the gas concentration in the peripheral portion of the wafer W becomes too high, which is not preferable.
  • Gas is discharged from the gas discharge ports 42, 511, and 512 provided in the central gas discharge unit 4 b and the peripheral gas supply unit 5 on the inner peripheral wall 52 side and the outer peripheral wall 53 side, respectively, at positions separated in the diameter direction of the wafer W. As a result, gas is supplied uniformly over a wide range.
  • the height t 1 from the upper surface of the wafer W on the mounting table 2 to the gas discharge port 42 of the central gas discharge unit 4 b and the height t 2 to the gas discharge ports 511 and 512 of the surrounding gas supply unit 5 are as follows: It is about 10 to 50 mm, more preferably about 15 to 20 mm. If this height is greater than 50 mm, the gas replacement efficiency is reduced. On the other hand, if the height is less than 10 mm, there is no space for the central gas discharge part 4b and the surrounding gas supply part 5 or gas flows in the processing space 313. It becomes difficult to flow.
  • the top plate member 31 provided with the central gas discharge part 4b and the gas dispersion part 4a supplies gas to each gas distributor 4 (central gas discharge part 4b, gas dispersion part 4a).
  • a gas supply path 312 is formed. These gas supply paths 312 are connected to a gas diffusion space 311 formed between the upper surface of the top plate member 31 and the lower surface of the support plate 32.
  • the support plate 32 has an ammonia supply path 321 for supplying ammonia gas and replacement nitrogen gas to the diffusion space 311, and titanium chloride gas and replacement nitrogen gas to the diffusion space 311.
  • a titanium chloride supply path 322 is formed for supplying water.
  • the ammonia supply path 321 and the titanium chloride supply path 322 are connected to an ammonia gas supply unit 62 and a titanium chloride gas supply unit 64 via pipes. , 63.
  • Each pipe is provided with an open / close valve 602 for supplying / discharging gas and a flow rate adjusting unit 601 for adjusting a gas supply amount.
  • the nitrogen gas supply units 61 and 63 are shown separately in FIG. 1, but a common nitrogen supply source may be used for them.
  • the film forming apparatus having the above-described configuration is connected to the control unit 7 as shown in FIG.
  • the control unit 7 includes, for example, a computer having a CPU and a storage unit (not shown).
  • the storage unit operates the film forming apparatus, that is, raises the wafer W mounted on the mounting table 2 to the processing position, thereby processing space.
  • a group of steps (commands) regarding control until the reactive gas and the replacement gas are supplied in the predetermined order in 313 to form the TiN film, and the wafer W on which the film has been formed is unloaded.
  • the assembled program is recorded.
  • This program is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and installed in the computer therefrom.
  • the operation of the film forming apparatus will be described with reference to FIGS.
  • the mounting table 2 is lowered to the delivery position.
  • the gate valve 12 is opened, the transfer arm of the wafer transfer mechanism is advanced, and the wafer W is transferred to and from the support pins 25.
  • the support pins 25 are lowered, and the wafer W is mounted on the mounting table 2 heated to the film forming temperature described above by the heater 21.
  • the gate valve 12 is closed to raise the mounting table 2 to the processing position, and after adjusting the pressure in the processing container 1, titanium chloride gas is supplied from the titanium chloride gas supply unit 64 (FIG. 6).
  • the supplied titanium chloride gas flows into each gas dispersion part 4a and the central gas discharge part 4b via the titanium chloride supply path 322 ⁇ the diffusion space 311 ⁇ the gas supply path 312.
  • the titanium chloride gas that has flowed into the central gas discharge part 4b is supplied to the processing space 313 via the gas discharge port.
  • the titanium chloride gas that has flowed into each gas dispersion portion 4 a flows into the surrounding gas supply portion 5 via the head portion 41, and further passes through gas discharge ports 511 and 512 formed in the surrounding gas supply portion 5. Is supplied into the processing space 313.
  • the titanium chloride gas supplied to the processing space 313 spreads radially in the processing space 313 in the radial direction from the central portion side to the outer peripheral portion side of the top plate member 31. Further, the titanium chloride gas flowing in the processing space 313 spreads downward and comes into contact with the surface of the wafer W on the mounting table 2 so that the titanium chloride gas is adsorbed on the wafer W. Then, the titanium chloride gas that flows in the processing space 313 and reaches the gap between the rim 314 and the cover member 22 flows into the processing container 1 from the gap, and then is discharged to the outside through the exhaust duct 13.
  • nitrogen gas which is a replacement gas, is supplied from the nitrogen gas supply unit 63 (FIG. 7). Nitrogen gas is supplied into the processing space 313 through the same path as the titanium chloride gas, and the titanium chloride gas in the path and the processing space 313 is replaced with nitrogen gas.
  • ammonia gas is supplied from the ammonia gas supply unit 62 (FIG. 8).
  • the supplied ammonia gas flows into each gas dispersion part 4a and the central gas discharge part 4b via the ammonia supply path 321 ⁇ the diffusion space 311 ⁇ the gas supply path 312.
  • the point that ammonia gas is supplied into the processing space 313 directly from the central gas discharge part 4b and from the gas dispersion part 4a via the ambient gas supply part 5 is the same as in the case of titanium chloride gas.
  • the ammonia gas flowing in the processing space 313 reaches the surface of the wafer W, the titanium chloride gas component previously adsorbed on the wafer W is nitrided to form titanium nitride. Thereafter, the gas supplied to the gas supply path 312 is switched to the replacement nitrogen gas from the nitrogen gas supply unit 61, and the ammonia gas in the ammonia gas supply path and the processing space 313 is replaced with nitrogen gas (FIG. 9).
  • TiN titanium nitride
  • the operation of the central gas discharge part 4b, the gas dispersion part 4a, and the surrounding gas supply part 5 when supplying the reaction gas and the replacement gas will be described with reference to FIG.
  • the gas supplied from the gas supply path 312 to the central gas discharge part 4b is processed outward in the lateral direction from a plurality of gas discharge ports 42 provided at intervals along the circumferential direction of the head part 41. It is uniformly discharged into the space 313.
  • the gas supplied from the gas supply path 312 to each gas dispersion portion 4a is supplied from the gas discharge ports 42 provided at intervals along the circumferential direction of the head portion 41 as in the case of the central gas discharge portion 4b. Then, it flows out uniformly into the surrounding gas supply section 5 toward the outside in the lateral direction.
  • the gas that has flowed out into the surrounding gas supply unit 5 spreads in the space of the surrounding gas supply unit 5 and from the gas discharge ports 511 provided at intervals along the circumferential direction of the inner peripheral wall 52 (inner peripheral surface).
  • the gas is uniformly ejected in the lateral direction toward the direction in which the central gas ejection part 4b is disposed. Further, gas is uniformly discharged in the lateral direction toward the outer peripheral side of the wafer W from the gas discharge ports 512 provided at intervals along the peripheral direction of the outer peripheral wall 53 (outer peripheral surface).
  • FIG. 10 when the top plate member 31 is viewed from the lower surface side, a state in which gas is discharged from the central gas discharge unit 4b, the gas dispersion unit 4a, and the surrounding gas supply unit 5 is indicated by broken lines.
  • the outer edge of the wafer W arranged on the lower side of FIG. If it demonstrates based on the positional relationship with the wafer W, the center gas discharge part 4b will be arrange
  • the ambient gas supply unit 5 is located above the portion on the outer peripheral side of the center portion of the wafer W, and is located on the inner peripheral surface (inner peripheral wall 52) side at a position closer to the center than above the peripheral edge of the wafer W.
  • the outlet 511 discharges gas in the lateral direction toward the central portion side of the wafer W
  • the gas discharge port 512 on the outer peripheral surface (outer peripheral wall 53) side discharges gas in the lateral direction toward the outer peripheral side of the wafer W.
  • the processing space 313 is uniformly dispersed from the central gas discharge part 4b provided at positions separated from each other in the radial direction of the wafer W and the surrounding gas supply part 5 surrounding the central gas discharge part 4b. Is supplied.
  • a reactive gas titanium chloride gas, ammonia gas
  • gas is distributed from a large number of gas discharge ports 42, 511, and 512 in the lateral direction.
  • the flow rate of the gas discharged from 511 and 512 becomes small.
  • the flow rate of the reaction gas when reaching the surface of the wafer W is reduced, and the in-plane uniformity of the film thickness is improved.
  • a replacement gas nitrogen gas
  • the gas is supplied in a state of being dispersed in advance over a wide area.
  • the reaction gas in the space 313 can be quickly removed and replaced with a replacement gas.
  • the supply of the titanium chloride gas and the supply of the ammonia gas are repeated, for example, several tens to several hundreds of times to form a titanium nitride film having a desired film thickness.
  • the mounting table 2 is lowered to the delivery position.
  • the gate valve 12 is opened to allow the transfer arm to enter, and the wafer W is transferred from the support pin 25 to the transfer arm in the reverse procedure to that at the time of transfer. After the film-formed wafer W is unloaded, the next wafer W is transferred. Wait for delivery.
  • the film forming apparatus has the following effects.
  • a gas is discharged from the central gas discharge part 4b disposed above the central part of the wafer W outward in the lateral direction, and is located above the outer peripheral side of the central part and above the peripheral edge of the wafer W.
  • the low-speed reaction gas is uniformly supplied into the processing space 313 below the top plate member 31, a film with high in-plane uniformity can be formed on the wafer W.
  • the surrounding gas supply unit 5 a may have a configuration in which fan-shaped divided units 50 having a planar shape divided in the circumferential direction are arranged annularly in the circumferential direction.
  • 10 and 11 show an example in which the surrounding gas supply units 5 and 5a are provided on the circumference of one virtual circle.
  • a plurality of these surrounding gas supply units 5 and 5a are arranged concentrically.
  • a plurality of gas dispersion portions 4a may be arranged in an annular shape in each of the surrounding gas supply portions 5 and 5a.
  • gas dispersion portions 4 a arranged in an annular shape so as to surround each other in the circumferential direction may be provided in an exposed state in the processing space 313. In this case, these gas dispersion parts 4 a correspond to the ambient gas supply part 5.
  • gas is directly directed to the space inside the surrounding gas supply part 5 from the opening at the lower end of the gas supply path 312. You may supply (FIG. 13).
  • the configuration of the discharge port 42 provided in the head portion 41 of the gas distributor 4 is not limited to that illustrated in FIG.
  • one slit extending in the circumferential direction of the side surface of the head portion 41 may be formed, and the side surface of the head portion 41 may be covered with a mesh-like member, and each mesh may be configured as a gas discharge port.
  • the central gas discharge part 4b may be constituted by a plurality of gas distributors 4, and a plurality of gas dispersions are provided in a concentrated area above the central part of the wafer W and inside the surrounding gas supply part 5.
  • Central gas discharge part 4b may be constituted by arranging vessel 4.
  • the gas distributor 4 may be configured using only the swirl flow forming portion 40 shown in FIGS. 4 (a) and 4 (b). .
  • the gas distributor which consists only of the swirl
  • the gas discharged from the exit (gas) of the lower side introduction path 46 is horizontal direction, forming a swirl
  • this gas distributor (swirl flow forming unit 40) is used as a gas dispersing unit of an ambient gas supply unit that is not provided with an annular portion, the gas dispersing unit (swirl flow forming unit 40) is spaced from each other so as to surround the central gas discharge unit.
  • Gas is discharged from each of the plurality of gas distributors while forming a swirl flow. Then, the gas of each swirl flow spreads and merges in the horizontal direction, and the gas spreads toward the outer peripheral side and the center side of the wafer W when viewed in a plane.
  • the opening at the lower end of the swirl flow forming portion 40 is a gas discharge port.
  • the shape of the top plate member 31 is not limited to the example shown in FIGS. 1 and 2 and the like.
  • a flat region is not provided in the center of the recess, and the periphery of the inclined surface extends from the center of the recess toward the periphery.
  • a gas supply unit 5 may be provided.
  • the top plate member 31 on which the rim 314 is not formed may be used.
  • the metal element is an element of the fourth period of the periodic table, such as Al, Si which is an element of the third period of the periodic table, etc.
  • the metal element is an element of the fourth period of the periodic table, such as Al, Si which is an element of the third period of the periodic table, etc.
  • elements of the fifth period of the periodic table such as Zr, Mo, Ru, Rh, Pd, Ag, etc.
  • elements of the sixth period of the periodic table A film containing an element such as Ba, Hf, Ta, W, Re, lr, or Pt may be formed.
  • Examples of the metal raw material to be adsorbed on the surface of the wafer W include a case where an organic metal compound or an inorganic metal compound of these metal elements is used as a reaction gas (raw material gas).
  • Specific examples of the metal raw material include, in addition to TiCl 4 described above, BTBAS ((Bistial Butylamino) silane), DCS (Dichlorosilane), HCD (Hexadichlorosilane), TMA (Trimethylaluminum), 3DMAS (Trisdimethyl). Aminosilane) and the like.
  • reaction to obtain a desired film by reacting the raw material gas adsorbed on the surface of the wafer W for example, an oxidation reaction using O 2 , O 3 , H 2 O, etc., H 2 , HCOOH, CH 3 COOH Reduction reaction using alcohols such as organic acids such as CH 3 OH, C 2 H 5 OH, etc., carbonization reaction using CH 4 , C 2 H 6 , C 2 H 4 , C 2 H 2 etc., NH 3
  • various reactions such as a nitriding reaction using NH 2 NH 2 , N 2 or the like may be used.
  • three types of reactive gases or four types of reactive gases may be used as the reactive gases.
  • three kinds of reaction gases may be deposited strontium titanate (SrTiO 3), and Sr (THD) 2 (strontium bis tetramethylheptanedionate isocyanatomethyl), for example Sr material, Ti (OiPr) 2 (THD) 2 (titanium bisisopropoxide bistetramethylheptanedionate) that is a Ti raw material and ozone gas that is an oxidizing gas thereof are used.
  • the gas is switched in the order of Sr source gas ⁇ replacement gas ⁇ oxidation gas ⁇ replacement gas ⁇ Ti source gas ⁇ replacement gas ⁇ oxidation gas ⁇ replacement gas.
  • the circular wafer W has been described as the substrate on which the film formation process is performed, the present invention may be applied to, for example, a rectangular glass substrate (LCD substrate).
  • a titanium nitride film and an ammonia gas were supplied into the processing space 313 to form a titanium nitride film, and the in-plane uniformity was measured.
  • A. Experimental conditions Example 1 As shown in FIG. 2 and FIG. 10, titanium nitride is formed using a top plate member 31 including a central gas discharge part 4 b, a gas dispersion part 4 a, and an ambient gas supply part 5 including an annular part. A film was formed. The film thickness of the formed film was measured with a spectroscopic ellipsometric film thickness meter, and the in-plane uniformity (Mm value) was calculated by the following equation (1).
  • Example 2 As shown in FIG. 12, without providing an annular part as the surrounding gas supply part 5, the central gas discharge part 4b and the surrounding gas supply part 5 including the gas dispersion part 4a are arranged. A titanium nitride film was formed using the member 31, and the in-plane uniformity was calculated by the same method as in Example 1. The arrangement of the gas dispersion part 4a when the top plate member 31 is viewed in a plane is the same as that of the gas dispersion part 4a shown in FIG. (Comparative example 1) As shown in FIG. 14, it forms into a film using the top plate member 31 provided with the one gas supply path 312 opened toward the center part of a lower surface side, and is the same method as Example 1 The in-plane uniformity was calculated.
  • FIGS. 15 (a) to 15 (c) show the film thickness displacement of the films formed in Examples 1 and 2 and Comparative Example 1, respectively.
  • the horizontal axis represents the position in the diameter direction of the wafer W
  • the vertical axis represents the relative change in film thickness with respect to the Mm value.
  • the Mm value is 2.2% in Example 1 in which the gas dispersion part 4a is arranged in the surrounding gas supply part 5 formed of an annular part.
  • the Mm value is 4.1%, and high in-plane uniformity within 5% is achieved in all cases. It was. Further, when Example 1 and Example 2 are compared, the in-plane uniformity of Example 1 in which the gas dispersion part 4a is arranged inside the surrounding gas supply part 5 is high.
  • Comparative Example 1 in which the gas is supplied from the opening provided in the central portion of the top plate member 31, the film thickness at the lower position of the opening to which the gas is supplied is the largest, and as it goes toward the outer peripheral side of the wafer W, A mountain-shaped film thickness distribution in which the film thickness decreases rapidly was confirmed.
  • the Mm value of Comparative Example 1 was 11%, which was more than twice the required value (5%). This is presumably because the amount of adsorption of the source gas has changed between the region where the reaction gas reaches the wafer W at a high speed and the region outside the region.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】反応ガスの分散性が高く、面内均一性の良好な膜を成膜可能な成膜装置を提供する。 【解決手段】真空雰囲気である処理室内の載置部2と天井部31との間に載置される基板Wに対して複数種類の反応ガスや置換用のガスを順番に供給して成膜処理を行う成膜装置において、中央ガス吐出部4bは、基板Wの中央部上方に配置され、横方向外側に向けてガスを広げるためのガス吐出口42が形成され、周囲ガス供給部5は、前記中央ガス吐出部4bを囲むように配置され、平面でみたときに基板Wの外周側及び中央部側に向けて各々横方向にガスを広げるように周方向に沿って形成された複数のガス吐出口511、512を有する。

Description

成膜装置
 本発明は、基板に対して互いに反応する複数種類の反応ガスを順番に供給して膜を形成する成膜装置に関する。
 基板である例えば半導体ウエハ(以下「ウエハ」と言う)に膜を成膜する手法として、互いに反応する複数種類の反応ガスをウエハに対して順番に供給するいわゆるALD(Atomic Layer Deposition)法やMLD(Multi Layer Deposition)法などと呼ばれる方法が知られている。
 このような成膜方法においてウエハに反応ガスを供給する種々のガス供給機構が提案されている。例えば特許文献1には、中央から外周に向けて末広がりの形状の傾斜面構造を有する分散ガイドの中央部に、円筒型の中間分散体を配置し、この中間分散体の側面及び底面の各々に複数設けられた開孔を介して分散ガイド内にガスを導入する薄膜形成装置が記載されている。
 また引用文献2には、中央から外周に向けて末広がりの形状の傾斜面構造を有すると共に、この傾斜面の傾きが異なる2つのホーンを入れ子状に配置し、内側のホーン及び内側のホーンと外側のホーンとに囲まれた空間から各々ガスを下方側へ向けて導入する気相成長装置が記載されている。
 一方で近年は、ナノメートルのオーダーで成膜される膜のウエハ面内における均一性(例えば後述のM-m値)を5%程度以内とすることが要求される場合がある。しかしながら、引用文献1、2に記載されているように、分散ガイドやホーンの中央部から集中的に反応ガスを供給する手法では、このような高精度な面内均一性を実現することが難しい。
特開2005-113268号公報:段落0071、図1A、1B 特開平7-22323号公報:段落0003、0018、図1、8
 本発明はこのような事情に鑑みてなされたものであり、その目的は、反応ガスの分散性が高く、面内均一性の良好な膜を成膜可能な成膜装置を提供することにある。
 本発明に係る成膜装置は、真空雰囲気である処理室内の基板に対して互いに反応する複数種類の反応ガスを順番に供給し、一の反応ガスの供給と次の反応ガスの供給との間に置換用のガスを供給して成膜処理を行う成膜装置において、
 前記処理室に設けられ、基板が載置される載置部と、
 前記載置部に対向して設けられ、中央から外周に向けて末広がりの形状の傾斜面構造を有する天井部と、
 前記処理室内の真空排気を行う排気部と、
 前記載置部に載置された基板の中央部上方に配置され、横方向外側に向けてガスを広げるためのガス吐出口が形成された中央ガス吐出部と、
 前記基板の中央部よりも外周側の部位の上方であって、当該基板の周縁上方よりも中央よりの位置にて前記中央ガス吐出部を囲むように配置された周囲ガス供給部と、を備え、
 前記周囲ガス供給部は、平面でみたときに基板の外周側及び中央部側に向けて各々横方向にガスを広げるように周方向に沿って形成された複数のガス吐出口を有することを特徴とする。
 上述の成膜装置は以下の特徴を備えていてもよい。 
 (a)前記中央ガス吐出部のガス吐出口は、横方向外側に向けてガスを吐出するように周方向に沿って形成されていること。また、前記周囲ガス供給部のガス吐出口は、前記基板の外周側及び中央部側に向けて各々横方向にガスを吐出するように形成されていること。
 (b)前記周囲ガス供給部は、前記中央ガス吐出部を囲むように環状に形成された環状部を備え、前記ガス吐出口は、当該環状部の内周面側及び外周面側に各々周方向に沿って間隔をおいて形成されていること。 
 (c)(b)において前記環状部は、中空状に形成され、この環状部内に周方向に間隔をおいて設けられた複数のガス分散部を備えていること。また各ガス分散部は、当該ガス分散部の周方向に沿って間隔をおいて設けられ、前記環状部内にガスを流出するための複数のガス吐出口を備えていること。
 (d)前記周囲ガス供給部は、前記中央ガス吐出部を囲むように互いに間隔をおいて配置された複数のガス分散部からなり、前記ガス吐出口は各ガス分散部の周方向に沿って間隔をおいて複数形成されていること。
 (e)前記中央ガス吐出部またはガス分散部は、前記天井部から処理室内へ向けて突出し、周方向に沿って間隔をおいてガス吐出口が複数形成されたヘッド部と、このヘッド部内に、前記ガス吐出口が並ぶ方向に沿って旋回するガスの旋回流を形成する旋回流形成部と、を備えること。
 本発明は、基板の中央部上方に配置された中央ガス吐出部からは横方向外側へ向けて広がるようにガスが吐出され、また前記中央部よりも外周側の上方であって、当該基板の周縁上方よりも中央よりの位置にて前記中央ガス吐出部を囲むように配置された周囲ガス供給部からは、平面でみたときに基板の外周側及び中央部側に向けて各々横方向に広がるようにガスが吐出される。この結果、前記天井部の下方側の空間内に均一に反応ガスが供給されるので、面内均一性の高い膜を基板上に成膜することができる。
本発明に係わる成膜装置の縦断面図である。 前記成膜装置の一部拡大縦断面図である。 前記成膜装置に設けられている天板部材の斜視図である。 前記天板部材に設けられているガス分散器の断面図である。 前記ガス分散器他の例を示す断面図である。 前記成膜装置の作用を示す第1の説明図である。 前記成膜装置の作用を示す第2の説明図である。 前記成膜装置の作用を示す第3の説明図である。 前記成膜装置の作用を示す第4の説明図である。 前記天板部材に設けられたガス吐出部からガスが供給される様子を示した説明図である。 環状部からなる周囲ガス供給部の他の例を示す平面図である。 他の例に係わる成膜装置の縦断側面図である。 さらに他の例に係わる成膜装置の縦断側面図である。 比較例に係わる成膜装置の縦断側面図である。 実施例及び比較例に係わる成膜結果を示す説明図である。
 本発明の実施の形態に係わる成膜装置の構成について、図1~図4、図10を参照して説明する。本成膜装置は、成膜対象となる円形の基板であり、例えば直径が300mmのウエハWの表面に、互いに反応する塩化チタン(TiCl)ガス(原料ガス)とアンモニア(NH)ガス(窒化ガス)とを交互に供給してALD(MLD)法により窒化チタン(TiN)膜を成膜する装置として構成されている。
 図1、図2に示すように成膜装置は、アルミニウム等の金属により構成され、平面形状が概ね円形の真空容器であり、処理室を構成する処理容器1と、この処理容器1内に設けられ、ウエハWが載置される載置台(載置部)2と、載置台2と対向するように設けられ、載置台2との間に処理空間313を形成するための天板部材31と、を備えている。処理容器1の側面には、載置台2との間でウエハWの受け渡しを行う際に、外部の真空搬送路に設けられたウエハ搬送機構を処理容器1内に進入させるための搬入出口11と、この搬入出口11を開閉するゲートバルブ12とが設けられている。
 前記搬入出口11よりも上部側の位置には、アルミニウム等の金属からなり、縦断面の形状が角型のダクトを円環状に湾曲させて構成した排気ダクト13が、処理容器1の本体を構成する側壁の上に積み重なるように設けられている。排気ダクト13の内周面には、周方向に沿って伸びるスリット状の開口部131が形成されており、処理空間313から流れ出たガスはこの開口部131を介して排気ダクト13内に排気される。排気ダクト13の外壁面には排気口132が形成されており、この排気口132には真空ポンプなどからなる排気部65が接続されている。排気口132や排気部65は、処理空間313内の真空排気を行う排気部に相当する。
 処理容器1内には、前記排気ダクト13の内側の位置に、載置台2が配置されている。載置台2は、ウエハWよりも一回り大きい円板からなり、例えば窒化アルミニウム(AlN)、石英ガラス(SiO)等のセラミックスやアルミニウム(Al)、ハステロイ(登録商標)等の金属により構成されている。載置台2の内部には、ウエハWを例えば350℃~450℃の成膜温度に加熱するためのヒーター21が埋設されている。また必要に応じて、ウエハWを当該載置台2の上面側の載置領域内に固定するための図示しない静電チャックが設けられても良い。なお、図1以外の縦断面図においてはヒーター21の記載は省略してある。
 この載置台2には、前記載置領域の外周側の領域、及び載置台2の側周面を周方向に亘って覆うように構成されたカバー部材22が設けられている。カバー部材22は例えばアルミナなどからなり、上下端が各々開口する概略円筒形状に形成されると共に、その上端部は、周方向に亘って、内側に向かって水平方向に屈曲している。この屈曲部は、載置台2の周縁部にて係止されており、当該屈曲部の厚み寸法は、ウエハWの厚み寸法(0.8mm)よりも厚く、例えば1mm~5mmの範囲内の3mmとなっている。
 載置台2の下面側中央部には、載置台2の底面を貫通し、上下方向に伸びる支持部材23が接続されている。この支持部材23の下端部は、処理容器1の下方側に水平に配置された板状の支持板232を介して昇降機構24に接続されている。昇降機構24は、搬入出口11から進入してきたウエハ搬送機構との間でウエハWを受け渡す受け渡し位置(図1に一点鎖線で記載してある)と、この受け渡し位置の上方側であって、ウエハWへの成膜が行われる処理位置との間で載置台2を昇降させる。
 この支持部材23が貫通する載置台2の底面と、支持板232との間には、処理容器1内の雰囲気を外部と区画し、支持板232の昇降動作に伴って伸び縮みするベローズ231が、前記支持部材23を周方向の外部側から覆うように設けられている。
 載置台2の下方側には、外部のウエハ搬送機構とのウエハWの受け渡し時に、ウエハWを下面側から支持して持ち上げる例えば3本の支持ピン25が設けられている。支持ピン25は、昇降機構26に接続されて昇降自在となっており、載置台2を上下方向に貫通する貫通孔201を介して載置台2の上面から突没することにより、ウエハ搬送機構との間でのウエハWの受け渡しを行う。
 排気ダクト13の上面側には、円形の開口を塞ぐように円板状の支持板32が設けられており、これら排気ダクト13と支持板32との間には処理容器1内を気密に保つためのOリング133が設けられている。支持板32の下面側には、後述の処理空間313に反応ガスや置換ガスを供給するための金属製の天板部材31が設けられており、天板部材31はボルト323によって支持板32に支持固定されている。
 天板部材31の下面側には凹部が形成されており、この凹部の中央側の領域は平坦になっている。この平坦な領域の外周側には、中央側から外周側へ向けて末広がりの形状の傾斜面が形成されている。この傾斜面のさらに外側には、平坦なリム314が設けられている。
 載置台2を処理位置まで上昇させたとき、天板部材31は、載置台2に設けられたカバー部材22の上面と、リム314の下面とが隙間を介して互いに対向するように配置される。天板部材31の凹部と載置台2の上面とによって囲まれた空間は、ウエハWに対する成膜が行われる処理空間313となる。前記凹部が設けられた天板部材31は、本成膜装置の天井部を構成している。
 また図2に示すように、天板部材31のリム314の下面と、カバー部材22の屈曲部の上面との間には高さhの隙間が形成されるように処理位置の高さ位置が設定されている。前記排気ダクト13の開口部131は、この隙間に向けて開口している。リム314とカバー部材22との隙間の高さhは、例えば0.2mm~10.0mmの範囲の0.5mmに設定される。
 天板部材31を下方側から平面でみたとき、凹部の中央部には処理空間313内へガスを吐出する中央ガス吐出部4bが設けられており、またこの中央ガス吐出部4bの周囲には、例えば8個のガス分散部4aが間隔をおいて円環状に配置されている。本成膜装置において、これら中央ガス吐出部4b、ガス分散部4aは共通の構造を有するガス分散器4によって構成されている。以下、図4(a)~(c)の断面図を参照しながらガス分散器4の構造を説明する。ここで、図4(a)~(c)には、後述の周囲ガス供給部5によって覆われたガス分散部4aの断面図が示されているが、本例の中央ガス吐出部4bは周囲ガス供給部5によって覆われていない点以外は、ガス分散部4aと共通の構成を備えている。
 図4(b)に示すようにガス分散器4は、内部が中空の円筒形状のヘッド部41と、ヘッド部41の上面側に形成された開口を塞ぐようにヘッド部41上に設けられ、ガスを旋回流にしてヘッド部41内に導入する旋回流形成部40と、を備えている。
 ヘッド部41は、扁平な円筒形状の金属製の部材であり、天板部材31の下面から下方側へ向けて突出するように前記凹部内に設けられている。円筒形状のヘッド部41の側面には、周方向に間隔をおいて設けられた複数のガス吐出口42が形成されている。ガス吐出口42は例えば3個以上設けることが好ましく、本例では8個設けられている。また、ヘッド部41の下面は塞がれていてガス吐出口42が設けられていない一方、ヘッド部41の上面側は開口していて、旋回流形成部40に接続されている。
 旋回流形成部40は、筒状の外筒部43の内側に、この外筒部43よりも直径の小さな内筒部44を配置した二重円筒形状の金属製の部材であり、外筒部43の下端部と内筒部44の下端部とは連結部451によって連結されている。また、内筒部44の上端部は外筒部43の上端部よりも上方側に伸び出すように突出している。一方、天板部材31側には内筒部44の上端部や外筒部43の外面形状に沿うように形成された挿入孔が設けられている。
 そして、外筒部43及び内筒部44が天板部材31の挿入孔内に挿入されることにより、予め設定された位置に各ガス分散器4が配置される。例えば外筒部43の外周面と前記挿入孔の内周面には各々、不図示の雄ネジ、雌ネジが切ってあり、これにより挿入孔内に挿入された外筒部43が天板部材31に支持、固定される。
 内筒部44の上面は、天板部材31内に形成されたガス供給路312に向けて開口しており、この開口部を介して内筒部44内にガスが流れ込む。一方、内筒部44の下端部から内筒部44の長さ方向3分の1程度の上方側の高さ位置には仕切板441が設けられており、内筒部44内に流れ込んだガスが直接、ヘッド部41へと流れ出ないようになっている。
 仕切板441の上方側の内筒部44の壁部には、内筒部44と外筒部43との間に形成される環状空間45にガスを導入するための上部側導入路442が設けられている。環状空間45は、内筒部44の外周面と外筒部43の内周面と連結部451の上面と挿入孔の壁面(天板部材31)とに囲まれた空間であり、ガス供給路312から上部側導入路442を介して環状空間45内にガスが導入される。
 前記仕切板441の下方側の内筒部44の壁部には、環状空間45内のガスを仕切板441の下方側に導入するための下部側導入路46が形成されている。図4(a)に、下部側導入路46が形成されているA-A’位置の横断面を示すように、下部側導入路46は内筒部44の内壁の接線方向に沿ってガスを導入するように、例えば4本形成されている。下部側導入路46から内筒部44内に進入したガスは、内筒部44の内壁に沿って仕切板441の下方側の空間を流れ、これにより旋回流が形成される。ここで、図4(a)の横断面図には、上部側導入路442の形成される位置が破線で示されている。なお、下部側導入路46は複数本設けなくてもよく、例えば1本の下部側導入路46にて、内筒部44の内壁の接線方向に沿ってガスを導入するだけでも旋回流を形成することはできる。
 仕切板441の下方側の内筒部44には、下方側へ向けて次第に広がる末広がりの形状の案内壁47が形成されており、下部側導入路46から導入されたガスの旋回流は、この案内壁47に案内されてその径を徐々に広げながらヘッド部41内に流れ込む。この結果、ヘッド部41内に流れ込んだガスは、図4(c)に示すようにガス吐出口42の並ぶ方向に沿ってヘッド部41の側壁の内側を旋回し、各ガス吐出口42から横方向へ向けて均一にガスが吐出される。なお、ガス分散器4に旋回流形成部40を設けることは必須ではなく、例えば図5に示すようにガス供給路312の下端の開口部から直接ヘッド部41内にガスが導入されてもよい。
 上記構成を備えたガス分散器4は、図3、図10に示すように、中央部に1個設けられた中央ガス吐出部4bと、この中央ガス吐出部4bを周方向に沿って囲むように互いに間隔をおいて円環状に配置された8個のガス分散部4aとを各々構成している。そして円環状に配置されたガス分散部4aは、共通の周囲ガス供給部5によって覆われている。本例では、8個のガス分散部4aが設けられているが、ガス分散部4aは、少なくとも3個設けられていればよい。
 周囲ガス供給部5は、当該周囲ガス供給部5の内周壁52及び外周壁53を備える扁平な二重円筒状の部材(環状部)であり、これら内周壁52と外周壁53とに挟まれた空間の下面は、底板54で塞がれている。一方、内周壁52と外周壁53とに挟まれた空間の上面は開口しており、内周壁52の上端及び外周壁53の上端部は、各々天板部材31の下面側に形成された溝部内に挿入されている。例えば内周壁52の上端部の内周面や外周壁53の上端部の外周面には雄ネジが切られており、これら内周壁52、外周壁53の上端部が挿入される溝部には雌ネジが切られていて、これにより溝部内に挿入された内周壁52や外周壁53が天板部材31に支持、固定される。
 図3、図10に示すように、内周壁52及び外周壁53は、これらの周壁52、53によって挟まれた空間の平面形状が、ガス分散部4aが円環状に配置された領域に対応した形状となるように形成されている。そして、周囲ガス供給部5が天板部材31の下面に取り付けられることにより、中空状の周囲ガス供給部5の内側(内周壁52、外周壁53、底板54及び天板部材31で囲まれた空間内)に各ガス分散部4aが配置される(図2、図4(b))。
 図3、図4(b)、図10に示すように、内周壁52、外周壁53には、天板部材31に支持された基端部側(上部側)の位置に、横方向に伸びるスリット状のガス吐出口511、512が、各周壁52、53の周方向に沿って、互いに間隔をおいて複数形成されている。各ガス分散部4aから周囲ガス供給部5内に流入したガスは、この周囲ガス供給部5内を拡散し、各ガス吐出口511、512から横方向に吐出されて処理空間313に流れ込む。
 ここで図2に示すように、中央ガス吐出部4bの中心から、周囲ガス供給部5の内周壁52までの水平方向の距離をx、外周壁53までの水平方向の距離をx(x>x)、ウエハWの半径をrとしたとき、x/rの値が0.13~0.6の範囲、x/rの値が0.26~0.73の範囲となるように周囲ガス供給部5を構成することが好ましい。x/rの値が0.13よりも小さいまたは、x/rの値が0.26よりも小さい場合はウエハWの中心部のガス濃度が高くなりすぎてしまい好ましくない。また、x/rの値が0.6よりも大きいまたは、x/rの値が0.73よりも大きい場合はウエハWの周辺部のガス濃度が高くなりすぎてしまい好ましくない。中央ガス吐出部4b、周囲ガス供給部5の内周壁52側、外周壁53側に各々設けられたガス吐出口42、511、512より、ウエハWの直径方向に離れた位置にガスが吐出されることにより、広い範囲に均一にガスが供給される。
 また、載置台2上のウエハWの上面から、中央ガス吐出部4bのガス吐出口42までの高さt、及び周囲ガス供給部5のガス吐出口511、512までの高さtは、10~50mm程度であり、より好ましくは15~20mm程度に設定される。この高さが50mmよりも大きくなると、ガスの置換効率が低下する一方、10mmよりも小さくなると、中央ガス吐出部4bや周囲ガス供給部5を設けるスペースがなくなったり、処理空間313内をガスが流れにくくなったりする。
 中央ガス吐出部4b、ガス分散部4aが設けられた天板部材31には、図2に示すように、各ガス分散器4(中央ガス吐出部4b、ガス分散部4a)へガスを供給するためのガス供給路312が形成されている。これらのガス供給路312は、天板部材31の上面と支持板32の下面との間に形成されたガスの拡散空間311に接続されている。
 図1に示すように支持板32には、前記拡散空間311にアンモニアガス及び置換用の窒素ガスを供給するためのアンモニア供給路321、及び同じく拡散空間311に塩化チタンガス及び置換用の窒素ガスを供給するための塩化チタン供給路322が形成されている。アンモニア供給路321及び塩化チタン供給路322は、配管を介してアンモニアガス供給部62、塩化チタンガス供給部64に接続されており、これらの配管は、各々途中で分岐して窒素ガス供給部61、63に接続されている。各配管には、ガスの給断を行う開閉バルブ602と、ガス供給量の調整を行う流量調整部601とが設けられている。なお図示の便宜上、図1において窒素ガス供給部61、63は別々に示したが、これらは共通の窒素供給源を用いてもよい。
 以上に説明した構成を備えた成膜装置は、図1に示すように制御部7と接続されている。制御部7は例えば図示しないCPUと記憶部とを備えたコンピュータからなり、記憶部には成膜装置の作用、即ち載置台2上に載置されたウエハWを処理位置まで上昇させ、処理空間313内に予め決められた順番で反応ガス及び置換用のガスを供給してTiNの成膜を実行し、成膜が行われたウエハWを搬出するまでの制御についてのステップ(命令)群が組まれたプログラムが記録されている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリーカード等の記憶媒体に格納され、そこからコンピュータにインストールされる。
 続いて、本成膜装置の作用について図6~図10を参照しながら説明する。はじめに、予め処理容器1内を真空雰囲気に減圧した後、載置台2を受け渡し位置まで降下させる。そして、ゲートバルブ12を開放し、ウエハ搬送機構の搬送アームを進入させ、支持ピン25との間でウエハWの受け渡しを行う。しかる後、支持ピン25を降下させ、ヒーター21によって既述の成膜温度に加熱された載置台2上にウエハWを載置する。
 次いで、ゲートバルブ12を閉じ、載置台2を処理位置まで上昇させると共に、処理容器1内の圧力調整を行った後、塩化チタンガス供給部64より塩化チタンガスを供給する(図6)。供給された塩化チタンガスは、塩化チタン供給路322→拡散空間311→ガス供給路312を介して、各ガス分散部4a、中央ガス吐出部4bへ流れ込む。
 中央ガス吐出部4b内に流れ込んだ塩化チタンガスは、ガス吐出口42を介して処理空間313に供給される。一方、各ガス分散部4a内に流れ込んだ塩化チタンガスは、ヘッド部41を介して周囲ガス供給部5内に流入し、さらに周囲ガス供給部5に形成されたガス吐出口511、512を介して処理空間313内に供給される。
 処理空間313に供給された塩化チタンガスは、天板部材31の中央部側から外周部側へ向け、処理空間313を径方向に放射状に広がっていく。また、処理空間313内を流れる塩化チタンガスは、下方側に向けても広がり、載置台2上のウエハWの表面に接触すると、塩化チタンガスはウエハWに吸着する。そして、処理空間313内を流れ、リム314とカバー部材22との間の隙間に到達した塩化チタンガスは、当該隙間から処理容器1内に流れ出た後、排気ダクト13を介して外部へ排出される。
 次に、塩化チタンガスの供給を停止すると共に、窒素ガス供給部63から置換用のガスである窒素ガスを供給する(図7)。窒素ガスは、塩化チタンガスと同様の経路を通って処理空間313内に供給され、当該経路及び処理空間313内の塩化チタンガスが窒素ガスと置換される。
 その後、窒素ガスの供給を停止し、アンモニアガス供給部62からアンモニアガスを供給する(図8)。供給されたアンモニアガスは、アンモニア供給路321→拡散空間311→ガス供給路312を介して、各ガス分散部4a、中央ガス吐出部4bへ流れ込む。そして、中央ガス吐出部4bからは直接、ガス分散部4aからは周囲ガス供給部5を介して処理空間313内にアンモニアガスが供給される点は、塩化チタンガスの場合と同様である。
 処理空間313内を流れるアンモニアガスがウエハWの表面に到達すると、先にウエハWに吸着している塩化チタンガスの成分を窒化して窒化チタンが形成される。しかる後、ガス供給路312に供給されるガスを窒素ガス供給部61からの置換用の窒素ガスに切り替えて、アンモニアガスの供給経路及び処理空間313内のアンモニアガスを窒素ガスと置換する(図9)。
 このようにして、塩化チタンガス→窒素ガス→アンモニアガス→窒素ガスの順番で反応ガス(塩化チタンガス、アンモニアガス)と置換用のガス(窒素ガス)とを繰り返し供給することにより、ウエハWの表面に窒化チタン(TiN)の分子層が積層され、窒化チタンの膜が成膜される。
 次に、図10を参照しながら、これら反応ガスや置換用のガスの供給時における中央ガス吐出部4b、ガス分散部4a及び周囲ガス供給部5の作用を説明する。まず、ガス供給路312から中央ガス吐出部4bに供給されたガスは、ヘッド部41の周方向に沿って間隔をおいて設けられた複数のガス吐出口42から、横方向外側へ向けて処理空間313内に均一に吐出される。
 一方、ガス供給路312から各ガス分散部4aに供給されたガスは、中央ガス吐出部4bの場合と同様にヘッド部41の周方向に沿って間隔をおいて設けられたガス吐出口42から、横方向外側へ向けて周囲ガス供給部5内に均一に流出する。
 周囲ガス供給部5内に流出したガスは、当該周囲ガス供給部5の空間内を広がり、内周壁52(内周面)の周方向に沿って間隔をおいて設けられたガス吐出口511からは、中央ガス吐出部4bが配置されている方向へ向けて横方向に均一にガスが吐出される。また外周壁53(外周面)の周方向に沿って間隔をおいて設けられたガス吐出口512からは、ウエハWの外周側へ向けて横方向に均一にガスが吐出される。
 図10には、天板部材31を下面側からみたとき、中央ガス吐出部4b、ガス分散部4a及び周囲ガス供給部5からガスが吐出される様子を破線で示し、またこの天板部材31の下方側に配置されるウエハWの外縁を一点鎖線で示してある。ウエハWとの位置関係に基づいて説明すると、中央ガス吐出部4bは、載置台2上のウエハWの中央部の上方に配置され、この位置から横方向外側へ向けてガスを吐出する。周囲ガス供給部5はウエハWの中央部よりも外周側の部位の上方であって、当該ウエハWの周縁上方よりも中央よりの位置にて、内周面(内周壁52)側のガス吐出口511はウエハWの中央部側に向けて横方向にガスを吐出し、外周面(外周壁53)側のガス吐出口512はウエハWの外周側に向けて横方向にガスを吐出する。
 このように処理空間313には、ウエハWの径方向に互いに離れた位置に設けられた中央ガス吐出部4bとこの中央ガス吐出部4bを囲む周囲ガス供給部5とから分散して均一にガスが供給される。そして、このように多数のガス吐出口42、511、512から分散して横方向にガスを供給することにより、反応ガス(塩化チタンガス、アンモニアガス)の場合には、各ガス吐出口42、511、512から吐出されるガスの流量が小さくなる。この結果、ウエハWの表面に到達する際の反応ガスの流速が低くなり、膜厚の面内均一性が向上する。
 一方、置換用のガス(窒素ガス)の場合には、処理空間313内の容量に対して十分な流量を供給することで、広い領域に予め分散させた状態でガスが供給されるので、処理空間313内の反応ガスを速やかに排除し、置換用のガスと置換することができる。
 こうして塩化チタンガスの供給とアンモニアガスの供給とを例えば数十回~数百回繰り返し、所望の膜厚の窒化チタンの膜を成膜したら、置換用の窒素ガスを供給して最後のアンモニアガスを排出した後、載置台2を受け渡し位置まで降下させる。そしてゲートバルブ12を開いて搬送アームを進入させ、搬入時とは逆の手順で支持ピン25から搬送アームにウエハWを受け渡し、成膜後のウエハWを搬出させた後、次のウエハWの搬入を待つ。
 本実施の形態に係わる成膜装置によれば以下の効果がある。ウエハWの中央部上方に配置された中央ガス吐出部4bからは横方向外側へ向けてガスが吐出され、また前記中央部よりも外周側の上方であって、ウエハWの周縁上方よりも中央よりの位置にて、中央ガス吐出部4bを囲むように配置された周囲ガス供給部5からは、平面でみたときにウエハWの外周側及び中央部側に向けて各々横方向にガスが吐出される。この結果、天板部材31の下方側の処理空間313内に均一に低速の反応ガスが供給されるので、面内均一性の高い膜をウエハW上に成膜することができる。
 ここで図11に示した例のように、周囲ガス供給部5aは周方向に分割された平面形状が扇型の分割ユニット50を周方向に環状に並べた構成としてもよい。また、図10や図11には、これら周囲ガス供給部5、5aを1つの仮想円の周上に設けた例を示したが、これら周囲ガス供給部5、5aを同心円状に複数個配置し、各周囲ガス供給部5、5a内に複数のガス分散部4aを円環状に配置してもよい。
 また周囲ガス供給部5、5aとして、扁平な二重円筒状の部材(環状部)を設けることは、必須の要件ではなく、図12の成膜装置に示すように、中央ガス吐出部4bを周方向に囲むように互いに間隔をおいて円環状に配置されたガス分散部4aを処理空間313内に剥き出しの状態で設けてもよい。この場合には、これらガス分散部4aが周囲ガス供給部5に相当する。また、これとは反対に、周囲ガス供給部5の内側にガス分散部4a設けずに、ガス供給路312の下端の開口部から直接、周囲ガス供給部5の内部の空間に向けてガスを供給してもよい(図13)。
 この他、ガス分散器4のヘッド部41に設けられた吐出口42の構成は、図4に例示したものに限られない。例えばヘッド部41の側面の周方向に伸びる1本のスリットを形成し、このヘッド部41の側面を網目状の部材で覆い、各網目をガス吐出口として構成してもよい。さらに、中央ガス吐出部4bを複数個のガス分散器4にて構成してもよく、ウエハWの中央部上方であって周囲ガス供給部5の内側の集中した領域に、複数個のガス分散器4を配置することにより中央ガス吐出部4bを構成してもよい。
 また、ガス分散器4にヘッド部41を設けることも必須の要件ではなく、図4(a)、(b)に示した旋回流形成部40だけを用いてガス分散器を構成してもよい。このように旋回流形成部40のみからなるガス分散器を中央ガス吐出部として用いる場合には、下部側導入路46の出口(ガス)から吐出されたガスは、旋回流を形成しながら横方向外側に向けて広がる。またこのガス分散器(旋回流形成部40)を、環状部の設けられていない周囲ガス供給部のガス分散部として用いる場合には、中央ガス吐出部を囲むように互いに間隔をおいて配置された複数のガス分散器の各々から旋回流を形成しながらガスが吐出される。そして、各旋回流のガスが横方向に広がって合流し、平面でみたときにウエハWの外周側および中央部側に向けてガスが広がることになる。これらの場合には、旋回流形成部40の下端の開口がガス吐出口となる。
 この他、天板部材31の形状についても図1、図2等に示した例に限定されず、例えば凹部の中央に平坦な領域を設けず、凹部の中心から周縁へ向け広がる傾斜面に周囲ガス供給部5を設けてもよい。また、リム314が形成されていない天板部材31を用いてもよいことは勿論である。
 さらに本発明の成膜装置では、既述のTiN膜の成膜の他に、金属元素、例えば周期表の第3周期の元素であるAl、Si等、周期表の第4周期の元素であるTi、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge等、周期表の第5周期の元素であるZr、Mo、Ru、Rh、Pd、Ag等、周期表の第6周期の元素であるBa、Hf、Ta、W、Re、lr、Pt等の元素を含む膜を成膜してもよい。ウエハW表面に吸着させる金属原料としては、これらの金属元素の有機金属化合物や無機金属化合物などを反応ガス(原料ガス)として用いる場合が挙げられる。金属原料の具体例としては、上述のTiClの他に、BTBAS((ビスターシャルブチルアミノ)シラン)、DCS(ジクロロシラン)、HCD(ヘキサジクロロシラン)、TMA(トリメチルアルミニウム)、3DMAS(トリスジメチルアミノシラン)などが挙げられる。
 また、ウエハWの表面に吸着した原料ガスを反応させて、所望の膜を得る反応には、例えばO、O、HO等を利用した酸化反応、H、HCOOH、CHCOOH等の有機酸、CHOH、COH等のアルコール類等を利用した還元反応、CH、C、C、C等を利用した炭化反応、NH、NHNH、N等を利用した窒化反応等の各種反応を利用してもよい。
 更に、反応ガスとして、3種類の反応ガスや4種類の反応ガスを用いてもよい。例えば3種類の反応ガスを用いる場合の例としては、チタン酸ストロンチウム(SrTiO)を成膜する場合があり、例えばSr原料であるSr(THD)(ストロンチウムビステトラメチルヘプタンジオナト)と、Ti原料であるTi(OiPr)(THD)(チタニウムビスイソプロポキサイドビステトラメチルヘプタンジオナト)と、これらの酸化ガスであるオゾンガスが用いられる。この場合には、Sr原料ガス→置換用のガス→酸化ガス→置換用のガス→Ti原料ガス→置換用のガス→酸化ガス→置換用のガスの順でガスが切り替えられる。また、成膜処理を行う基板として円形のウエハWについて説明したが、例えば矩形のガラス基板(LCD用基板)に対して本発明を適用してもよい。
 (実験)
 異なるタイプの天板部材31を備えた成膜装置を用い、処理空間313内に塩化チタンガスとアンモニアガスを供給して窒化チタンの膜を成膜し、その面内均一性を測定した。 
A.実験条件 
 (実施例1) 図2、図10に示したように、中央ガス吐出部4b、ガス分散部4a、及び環状部からなる周囲ガス供給部5を備えた天板部材31を用いて窒化チタンの膜を成膜した。成膜された膜の膜厚を分光エリプソメトリー式の膜厚計により測定し、下記(1)式により面内均一性(M-m値)を計算した。 
(M-m値)={(最大膜厚(M値)-最小膜厚(m値)) 
           /(2×平均膜厚)}×100(%)…(1) 
 (実施例2) 図12に示すように、周囲ガス供給部5として環状部を設けずに、中央ガス吐出部4bと、ガス分散部4aからなる周囲ガス供給部5とが配置された天板部材31を用いて窒化チタンの膜を成膜し、実施例1と同様の手法により面内均一性を計算した。天板部材31を平面でみたときのガス分散部4aの配置は、図10に示したガス分散部4aと同様である。 
 (比較例1) 図14に示すように、下面側の中央部に向けて開口する1本のガス供給路312を備えた天板部材31を用いて成膜し、実施例1と同様の手法により面内均一性を計算した。
B.実験結果 
 実施例1、2及び比較例1にて成膜された膜の膜厚の変位を図15(a)~(c)に各々示す。各図の横軸は、ウエハWの直径方向の位置であり、縦軸は、M-m値に対する膜厚の相対的な変化を示している。
 図15(a)、(b)に示した結果によれば、環状部からなる周囲ガス供給部5内にガス分散部4aを配置した実施例1ではM-m値が2.2%となる一方、ガス分散部4aを円環状に配置して周囲ガス供給部5を構成した実施例2ではM-m値が4.1%となり、いずれも5%以内の高い面内均一性が達成された。また、実施例1と実施例2とを比較すると、周囲ガス供給部5の内側にガス分散部4aを配置した実施例1の面内均一性が高くなっている。
 一方、天板部材31の中央部に設けられた開口からガスを供給した比較例1では、ガスが供給される開口部の下方位置の膜厚が最も厚く、ウエハWの外周側へ向かうに従って、膜厚が急激に薄くなる山状の膜厚分布が確認された。そして、比較例1のM-m値は、11%となり、要求値(5%)の2倍以上になった。これは、反応ガスが高速でウエハWに到達する領域と、その外側の領域との間で原料ガスの吸着量が変化してしまったためであると考えられる。

Claims (8)

  1.  真空雰囲気である処理室内の基板に対して互いに反応する複数種類の反応ガスを順番に供給し、一の反応ガスの供給と次の反応ガスの供給との間に置換用のガスを供給して成膜処理を行う成膜装置において、
     前記処理室に設けられ、基板が載置される載置部と、
     前記載置部に対向して設けられ、中央から外周に向けて末広がりの形状の傾斜面構造を有する天井部と、
     前記処理室内の真空排気を行う排気部と、
     前記載置部に載置された基板の中央部上方に配置され、横方向外側に向けてガスを広げるためのガス吐出口が形成された中央ガス吐出部と、
     前記基板の中央部よりも外周側の部位の上方であって、当該基板の周縁上方よりも中央よりの位置にて前記中央ガス吐出部を囲むように配置された周囲ガス供給部と、を備え、
     前記周囲ガス供給部は、平面でみたときに基板の外周側及び中央部側に向けて各々横方向にガスを広げるように周方向に沿って形成された複数のガス吐出口を有することを特徴とする成膜装置。
  2.  前記中央ガス吐出部のガス吐出口は、横方向外側に向けてガスを吐出するように周方向に沿って形成されていることを特徴とする請求項1に記載の成膜装置。
  3.  前記周囲ガス供給部のガス吐出口は、前記基板の外周側及び中央部側に向けて各々横方向にガスを吐出するように形成されていることを特徴とする請求項1に記載の成膜装置。
  4.  前記周囲ガス供給部は、前記中央ガス吐出部を囲むように環状に形成された環状部を備え、前記ガス吐出口は、当該環状部の内周面側及び外周面側に各々周方向に沿って間隔をおいて形成されていることを特徴とする請求項3に記載の成膜装置。
  5.  前記環状部は、中空状に形成され、この環状部内に周方向に間隔をおいて設けられた複数のガス分散部を備えていることを特徴とする請求項4に記載の成膜装置。
  6.  前記各ガス分散部は、当該ガス分散部の周方向に沿って間隔をおいて設けられ、前記環状部内にガスを流出するための複数のガス吐出口を備えていることを特徴とする請求項5に記載の成膜装置。
  7.  前記周囲ガス供給部は、前記中央ガス吐出部を囲むように互いに間隔をおいて配置された複数のガス分散部からなり、前記ガス吐出口は各ガス分散部の周方向に沿って間隔をおいて複数形成されていることを特徴とする請求項1に記載の成膜装置。
  8.  前記中央ガス吐出部またはガス分散部は、前記天井部から処理室内へ向けて突出し、周方向に沿って間隔をおいてガス吐出口が複数形成されたヘッド部と、このヘッド部内に、前記ガス吐出口が並ぶ方向に沿って旋回するガスの旋回流を形成する旋回流形成部と、を備えることを特徴とする請求項1に記載の成膜装置。
     
     
     
     
PCT/JP2013/001831 2012-03-30 2013-03-18 成膜装置 WO2013145630A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/388,307 US9441293B2 (en) 2012-03-30 2013-03-18 Film-forming apparatus
KR1020147030423A KR101657388B1 (ko) 2012-03-30 2013-03-18 성막 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012081729A JP5929429B2 (ja) 2012-03-30 2012-03-30 成膜装置
JP2012-081729 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013145630A1 true WO2013145630A1 (ja) 2013-10-03

Family

ID=49258944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001831 WO2013145630A1 (ja) 2012-03-30 2013-03-18 成膜装置

Country Status (5)

Country Link
US (1) US9441293B2 (ja)
JP (1) JP5929429B2 (ja)
KR (1) KR101657388B1 (ja)
TW (1) TWI568880B (ja)
WO (1) WO2013145630A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160177445A1 (en) * 2014-12-22 2016-06-23 Tokyo Electron Limited Film forming apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423885B1 (en) 1999-08-13 2002-07-23 Commonwealth Scientific And Industrial Research Organization (Csiro) Methods for obtaining modified phenotypes in plant cells
JP6379550B2 (ja) * 2014-03-18 2018-08-29 東京エレクトロン株式会社 成膜装置
JP6359913B2 (ja) 2014-08-12 2018-07-18 東京エレクトロン株式会社 処理装置
US10167552B2 (en) * 2015-02-05 2019-01-01 Lam Research Ag Spin chuck with rotating gas showerhead
JP2016156094A (ja) * 2016-04-28 2016-09-01 東京エレクトロン株式会社 成膜装置
JP6792786B2 (ja) * 2016-06-20 2020-12-02 東京エレクトロン株式会社 ガス混合装置および基板処理装置
JP6696322B2 (ja) * 2016-06-24 2020-05-20 東京エレクトロン株式会社 ガス処理装置、ガス処理方法及び記憶媒体
JP6988083B2 (ja) * 2016-12-21 2022-01-05 東京エレクトロン株式会社 ガス処理装置及びガス処理方法
KR102117664B1 (ko) 2019-07-22 2020-06-01 민경동 기능성 잡초 제거기
US11236424B2 (en) * 2019-11-01 2022-02-01 Applied Materials, Inc. Process kit for improving edge film thickness uniformity on a substrate
US20220178029A1 (en) * 2020-12-03 2022-06-09 Tokyo Electron Limited Deposition apparatus and deposition method
CN117248193A (zh) * 2023-11-16 2023-12-19 江苏微导纳米科技股份有限公司 镀膜腔室以及镀膜设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124424A (ja) * 2006-10-16 2008-05-29 Tokyo Electron Ltd プラズマ成膜装置及びプラズマ成膜方法
JP2008251946A (ja) * 2007-03-30 2008-10-16 Nuflare Technology Inc 気相成長装置及び気相成長方法
JP2009224775A (ja) * 2008-02-20 2009-10-01 Tokyo Electron Ltd ガス供給装置、成膜装置及び成膜方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165311A (en) * 1991-06-27 2000-12-26 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna
JP2500773B2 (ja) 1993-06-30 1996-05-29 日本電気株式会社 気相成長装置
US6013155A (en) * 1996-06-28 2000-01-11 Lam Research Corporation Gas injection system for plasma processing
US6444039B1 (en) * 2000-03-07 2002-09-03 Simplus Systems Corporation Three-dimensional showerhead apparatus
US7408225B2 (en) * 2003-10-09 2008-08-05 Asm Japan K.K. Apparatus and method for forming thin film using upstream and downstream exhaust mechanisms
US8123902B2 (en) * 2007-03-21 2012-02-28 Applied Materials, Inc. Gas flow diffuser
US8110068B2 (en) * 2008-03-20 2012-02-07 Novellus Systems, Inc. Gas flow distribution receptacles, plasma generator systems, and methods for performing plasma stripping processes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124424A (ja) * 2006-10-16 2008-05-29 Tokyo Electron Ltd プラズマ成膜装置及びプラズマ成膜方法
JP2008251946A (ja) * 2007-03-30 2008-10-16 Nuflare Technology Inc 気相成長装置及び気相成長方法
JP2009224775A (ja) * 2008-02-20 2009-10-01 Tokyo Electron Ltd ガス供給装置、成膜装置及び成膜方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160177445A1 (en) * 2014-12-22 2016-06-23 Tokyo Electron Limited Film forming apparatus
US10612141B2 (en) * 2014-12-22 2020-04-07 Tokyo Electron Limited Film forming apparatus

Also Published As

Publication number Publication date
US9441293B2 (en) 2016-09-13
US20150047567A1 (en) 2015-02-19
KR101657388B1 (ko) 2016-09-13
KR20140141701A (ko) 2014-12-10
TWI568880B (zh) 2017-02-01
JP5929429B2 (ja) 2016-06-08
TW201348507A (zh) 2013-12-01
JP2013209722A (ja) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5929429B2 (ja) 成膜装置
JP6123208B2 (ja) 成膜装置
JP6379550B2 (ja) 成膜装置
KR101204614B1 (ko) 가스 공급 장치, 성막 장치, 및 성막 방법
JP5347294B2 (ja) 成膜装置、成膜方法及び記憶媒体
US20100272895A1 (en) Film deposition apparatus, film deposition method, storage medium, and gas supply apparatus
JP6503730B2 (ja) 成膜装置
JP2014074190A (ja) 成膜装置
JP2009088232A (ja) ガス供給装置
WO2016063670A1 (ja) 成膜装置及び成膜方法
TW202117065A (zh) 氣體導入構造、熱處理裝置及氣體供給方法
JP6308318B2 (ja) 成膜装置
JP2016156094A (ja) 成膜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14388307

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147030423

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13769177

Country of ref document: EP

Kind code of ref document: A1