WO2013145461A1 - Method for producing hdd glass substrate - Google Patents

Method for producing hdd glass substrate Download PDF

Info

Publication number
WO2013145461A1
WO2013145461A1 PCT/JP2012/082492 JP2012082492W WO2013145461A1 WO 2013145461 A1 WO2013145461 A1 WO 2013145461A1 JP 2012082492 W JP2012082492 W JP 2012082492W WO 2013145461 A1 WO2013145461 A1 WO 2013145461A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
chemical strengthening
layer
glass
compressive stress
Prior art date
Application number
PCT/JP2012/082492
Other languages
French (fr)
Japanese (ja)
Inventor
大士 梶田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013145461A1 publication Critical patent/WO2013145461A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a method for manufacturing a glass substrate for an HDD (Hard Disk Drive), and more particularly to a method for manufacturing a glass substrate used for an HDD having a magnetic head flying height of 3 nm or less.
  • HDD Hard Disk Drive
  • HDDs are currently required to have impact resistance as the number of portable applications such as notebook personal computers and external HDDs increases.
  • ion exchange method the alkali element near the surface (surface layer) of the glass substrate is replaced with another alkali element having a diameter larger than that of the alkali element, and by the substitution, a compressive strain is generated on the surface of the glass substrate, A chemical strengthening layer (also referred to as a compressive stress layer) is formed.
  • Patent Document 1 discloses a conventional technique related to a chemical strengthening treatment of a glass substrate.
  • the present invention has been made in view of the above problems, and its main purpose is heat-assisted recording, which can suppress a change in shape of the glass substrate due to a change in compressive stress on the surface of the glass substrate during the high-temperature film forming process. It is providing the manufacturing method of the glass substrate for HDD of a system.
  • the method for manufacturing a glass substrate for HDD according to the present invention is a method for manufacturing a glass substrate for HDD of a thermally assisted recording method in which the flying height of the magnetic head is 3 nm or less, and a step of molding the glass substrate and a chemical strengthening treatment And a step of bringing the glass substrate into contact with the liquid, and the concentration of the alkaline earth metal contained in the chemical strengthening treatment liquid is 50 ppb or more and 10,000 ppb or less.
  • the temperature of the chemical strengthening treatment liquid is preferably 450 ° C. or higher.
  • the method for manufacturing a glass substrate for HDD of the present invention it is possible to suppress a change in shape of the glass substrate due to a change in compressive stress on the surface of the glass substrate during the high-temperature film forming process.
  • FIG. 1 is a perspective view showing the hard disk drive 30.
  • the hard disk drive 30 includes the information recording medium 10.
  • the information recording medium 10 is manufactured using the glass substrate 1 manufactured by the method for manufacturing a glass substrate for HDD (hereinafter also simply referred to as a glass substrate) in the embodiment.
  • the hard disk drive 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw 28. Is provided.
  • a spindle motor (not shown) is installed on the upper surface of the housing 20.
  • An information recording medium 10 such as a magnetic disk formed by applying a magnetic material to the glass substrate 1 is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28.
  • the information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm.
  • the information recording medium 10 is manufactured by forming a magnetic recording layer on the glass substrate 1.
  • the arm 23 is attached so as to be swingable around the vertical axis 24.
  • a suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23.
  • a head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
  • a voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21.
  • the voice coil 25 is clamped by a magnet (not shown) provided on the housing 20.
  • a voice coil motor 26 is constituted by the voice coil 25 and the magnet.
  • a predetermined current is supplied to the voice coil 25.
  • the arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet.
  • the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1.
  • the head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10.
  • a magnetic head (not shown) provided on the head slider 21 performs a seek operation.
  • the head slider 21 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10.
  • the hard disk drive 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
  • the flying height at which the magnetic head provided on the head slider 21 floats with respect to the surface of the information recording medium 10 is called flying height.
  • the flying height is 3 nm or less. That is, the distance between the information recording medium 10 in the thickness direction of the information recording medium 10 and the magnetic head when the information recording medium 10 is rotated is 3 nm or less.
  • the glass substrate 1 of the present embodiment is used for a heat-assisted recording type HDD capable of reducing the recording area of a medium.
  • a heat-assisted recording type HDD capable of reducing the recording area of a medium.
  • the distance between the magnetic head and the medium is reduced, and a flying height of 3 nm or less is defined as described above.
  • the read / write characteristics of the hard disk drive 30 can be improved and the recording density can be improved as compared with the conventional case.
  • FIG. 2 is a perspective view showing the glass substrate 1 used for the information recording medium 10 (see FIG. 3).
  • FIG. 3 is a perspective view showing the information recording medium 10 provided with the glass substrate 1.
  • the glass substrate 1 obtained by the manufacturing method of the glass substrate for information recording media based on this Embodiment and the information recording medium 10 provided with the glass substrate 1 are demonstrated.
  • a glass substrate 1 (information recording medium glass substrate) used for the information recording medium 10 has an annular disk shape with a circular hole 1H formed in the center.
  • the glass substrate 1 is suitable as the glass substrate 1 of the information recording medium 10 assembled to the hard disk drive 30, for example.
  • the circular disk-shaped glass substrate 1 has a front main surface 1A, a back main surface 1B, an inner peripheral end surface 1C, and an outer peripheral end surface 1D.
  • the size of the disk-shaped glass substrate 1 is not particularly limited, and may be a small-diameter disk having an outer diameter of 3.5 inches, 2.5 inches, 1.8 inches, or less, for example.
  • the thickness of the glass substrate 1 may be as thin as 2 mm, 1 mm, 0.8 mm, 0.635 mm, or less.
  • the thickness of the glass substrate 1 is a value calculated by averaging thickness values measured at a plurality of arbitrary points on the glass substrate 1.
  • the information recording medium 10 is configured by forming a magnetic film on the front main surface 1A of the glass substrate 1 and forming a magnetic thin film layer 2 including a magnetic recording layer. Is done.
  • the magnetic thin film layer 2 is formed only on the front main surface 1A, but the magnetic thin film layer 2 may also be formed on the back main surface 1B.
  • the magnetic thin film layer 2 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the front main surface 1A of the glass substrate 1 (spin coating method).
  • the magnetic thin film layer 2 may be formed on the front main surface 1A of the glass substrate 1 by a sputtering method or an electroless plating method.
  • the film thickness of the magnetic thin film layer 2 formed on the front main surface 1A of the glass substrate 1 is about 0.3 ⁇ m to 1.2 ⁇ m in the case of the spin coating method, about 0.04 ⁇ m to 0.08 ⁇ m in the case of the sputtering method, In the case of the electroless plating method, the thickness is about 0.05 ⁇ m to 0.1 ⁇ m. From the viewpoint of thinning and high density, the magnetic thin film layer 2 is preferably formed by sputtering or electroless plating.
  • the magnetic material used for the magnetic thin film layer 2 is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Co having high crystal anisotropy is basically used for the purpose of adjusting the residual magnetic flux density. A Co-based alloy to which Ni or Cr is added is suitable. Further, as a magnetic layer material suitable for heat-assisted recording, an FePt-based material may be used.
  • a lubricant may be thinly coated on the surface of the magnetic thin film layer 2 in order to improve the sliding of the magnetic recording head.
  • the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
  • an underlayer or a protective layer may be provided.
  • the underlayer in the information recording medium 10 is selected according to the magnetic film.
  • the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked.
  • a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
  • Examples of the protective layer for preventing wear and corrosion of the magnetic thin film layer 2 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be continuously formed together with an underlayer, a magnetic film and the like by an in-line type sputtering apparatus. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers.
  • Another protective layer may be formed on the protective layer or instead of the protective layer.
  • tetraalkoxysilane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon oxide (SiO 2 ) layer. It may be formed.
  • FIG. 4 is a flowchart showing a method for manufacturing a glass substrate in the embodiment.
  • the glass substrate manufacturing method in the present embodiment includes a forming step (step S10), a first lapping step (step S20), a shape processing step (step S30), an inner peripheral polishing step (step S40), and a second lapping step ( Glass obtained through step S50), outer periphery polishing step (step S60), first main surface polishing step (step S70), second main surface polishing step (step S80), and chemical strengthening step (step S90).
  • a magnetic film forming step (step S100) may be performed on the substrate (corresponding to the glass substrate 1 in FIG. 2).
  • the information recording medium 10 is obtained by the magnetic film forming step (step S100).
  • step S10 the glass material constituting the glass substrate is melted.
  • a glass raw material that is a raw material of the glass substrate
  • oxides, carbonates, nitrates, hydroxides, and the like corresponding to the raw materials of the respective components constituting the glass substrate 1 were weighed to a desired ratio and sufficiently mixed with powder.
  • Prepared ingredients are prepared. This blended raw material is put into a platinum crucible or the like in an electric furnace heated to 1300 to 1550 ° C., for example, 1400 ° C., and melted, and further clarification and stirring are performed.
  • aluminosilicate glass is used as the glass material.
  • the aluminosilicate glass is composed of 58 mass% to 75 mass% SiO 2 , 5 mass% to 23 mass% Al 2 O 3 , 3 mass% to 10 mass% Li 2 O, and 4 mass% to 13 mass. % Na 2 O as a main component.
  • the glass material is not limited to aluminosilicate glass, and may be any material such as soda lime glass or borosilicate glass.
  • the melted glass material is cast into a preheated mold and slowly cooled into a glass block. Subsequently, after being held at a temperature in the vicinity of the glass transition point for 1 to 3 hours, it is gradually cooled to remove strain.
  • the obtained glass block is sliced into a disk shape and cut out using a core drill with concentric inner and outer circumferences. Or after pouring molten glass on a lower mold
  • the glass blank material may be formed by cutting out sheet glass (plate glass) formed by a downdraw method or a float method.
  • a lapping process is performed on both main surfaces of the formed glass blank material for the purpose of improving dimensional accuracy and shape accuracy.
  • the two main surfaces of the glass blank material are the main surface that becomes the front main surface 1A and the main surface that becomes the back main surface 1B in FIG. Also called).
  • the lapping process is performed using a double-sided lapping device using a planetary gear mechanism. Specifically, the lapping platen is pressed from above and below on both main surfaces of the glass blank material, the grinding liquid is supplied onto both main surfaces, and the glass blank material and lapping platen are moved relative to each other for lapping. Processing is performed. By the lapping treatment, the approximate parallelism, flatness, thickness, etc. of the glass substrate are preliminarily adjusted, and a glass base material having an approximately flat main surface is obtained.
  • the surface accuracy of both surfaces of the glass blank material is 0 ⁇ m to 1 ⁇ m.
  • the surface roughness Rmax may be finished to about 6 ⁇ m.
  • a coring (inner peripheral cut) process is performed on the center portion of the glass blank material using a cylindrical diamond drill.
  • a coring process an annular glass substrate having a hole in the center is obtained.
  • the inner peripheral end face and the outer peripheral end face opposed to the hole in the central part are ground with a diamond grindstone so that the outer diameter is 65 mm and the inner diameter (the diameter of the circular hole 1H in the central part) is 20 mm.
  • Processing is performed.
  • the surface roughness of the end surface of the glass substrate at this time is about 2 ⁇ m in Rmax.
  • a glass substrate having an outer diameter of 65 mm is used for a 2.5-inch hard disk.
  • step S40 mirror polishing by brush polishing is performed on the inner peripheral end surface of the glass substrate. Specifically, by supplying a polishing liquid containing an abrasive to the polishing brush, placing the polishing brush in contact with the inner peripheral end surface of the glass substrate, and applying the polishing brush while rotating the glass substrate The inner peripheral end face of the glass substrate is polished.
  • the polishing brush is preferably made of one or more selected from the group consisting of aramid fibers, polybutylene terephthalate, and polypropylene.
  • step S50 the lapping process is performed on both main surfaces of the glass substrate in the same manner as in the first lapping process (step S20).
  • step S50 it is possible to remove in advance the fine irregularities such as fine scratches and protrusions formed on both main surfaces of the glass substrate in the coring or end face processing in the previous step. It is possible to shorten the polishing time of the main surface in the subsequent process.
  • step S60 the outer peripheral end surface of the glass substrate is subjected to mirror polishing by brush polishing. Specifically, by supplying a polishing liquid containing an abrasive to the polishing brush, placing the polishing brush in contact with the outer peripheral end surface of the glass substrate, and applying the polishing brush while rotating the glass substrate, The outer peripheral end surface of the glass substrate is polished.
  • polishing agent and polishing brush are selected similarly to the abrasive
  • a first main surface polishing step (step S70) is performed as a rough polishing step which is a first step in the main surface polishing step of the glass substrate.
  • the main purpose of the first main surface polishing step is to correct warpage of the glass substrate while removing scratches remaining on the main surface of the glass substrate in the lapping step described above.
  • the main surface is polished by a double-side polishing apparatus having a planetary gear mechanism.
  • polishing is performed using a polishing pad such as hard velor, urethane foam, or pitch-impregnated suede.
  • abrasive general cerium oxide abrasive grains are used.
  • a second main surface polishing step (step S80) is performed as a precision polishing step which is the second step of the main surface polishing step of the glass substrate.
  • the main surface is polished by a double-side polishing apparatus having a planetary gear mechanism. For example, polishing is performed using a polishing pad which is a soft polisher made of suede or velor.
  • abrasive general colloidal silica finer than the cerium oxide used in the first main surface polishing step is used.
  • step S90 the glass substrate that has finished the main surface polishing step described above is chemically strengthened.
  • a chemical strengthening treatment liquid containing a chemical strengthening salt is prepared, and the glass substrate is brought into contact with the chemical strengthening treatment liquid by immersing the glass substrate (precursor) in the chemical strengthening treatment liquid.
  • a compressive stress layer may be formed in a range from the glass substrate surface to about 150 ⁇ m to improve the rigidity of the glass substrate. In this way, a glass substrate corresponding to the glass substrate 1 shown in FIG. 2 is obtained.
  • the compressive stress layer may be removed from the main surface of the glass substrate after polishing, but even in this case, the inner peripheral side and the outer peripheral side end surface of the glass substrate The compressive stress layer remains after polishing.
  • the glass substrate that has been subjected to the chemical strengthening treatment is washed with at least one of water, acid, and alkali, and then the glass corresponding to the glass substrate 1 shown in FIG.
  • the magnetic thin film layer 2 is formed by forming a magnetic film on both main surfaces (or one of the main surfaces) of the substrate.
  • the magnetic thin film layer 2 is made of an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and an F system.
  • the lubricating layer is formed by sequentially forming a film.
  • the information recording medium in the present embodiment is an example of a perpendicular magnetic disk composed of a magnetic thin film layer.
  • the magnetic disk may be composed of a magnetic layer or the like as a so-called in-plane magnetic disk.
  • Step S90 Details of the “chemical strengthening step” in step S90 will be described below.
  • the alkali molten salt contained in the chemical strengthening treatment liquid potassium nitrate, sodium nitrate or a nitrate mixed with these, potassium sulfate, sodium sulfate or a sulfate mixed with these can be used.
  • alkali metal ions for example, lithium ions and sodium ions when using aluminosilicate glass
  • the ions are replaced with sodium ions and potassium ions having a large ion radius (ion exchange method). Due to the strain caused by the difference in ion radius, compressive stress is generated around the ion-exchanged region, and both main surfaces of the glass substrate precursor are strengthened in that region.
  • FIG. 5 is a schematic view showing a state before ion exchange of the glass substrate 1 in contact with the chemical strengthening treatment liquid 100.
  • the term “contact with the chemical strengthening treatment liquid” includes all aspects such as a case where the glass substrate is immersed in the chemical strengthening treatment liquid and a case where the chemical strengthening treatment liquid is sprayed on the glass substrate.
  • FIG. 5 schematically shows an aspect in which the surface layer portion of the glass substrate 1 is in contact with the chemical strengthening treatment liquid 100 and the surface layer portion contains lithium ions.
  • the chemical strengthening treatment liquid 100 is a potassium nitrate solution, and the chemical strengthening treatment liquid 100 contains potassium ions.
  • the chemical strengthening treatment liquid 100 of the present embodiment further contains a certain amount of alkaline earth metal Be, Mg, Ca, Sr or Ba.
  • alkaline earth metal Be Mg, Ca, Sr or Ba.
  • calcium ions are shown as an example of an alkaline earth metal.
  • concentration of the alkaline earth metal contained in the chemical strengthening treatment liquid 100 is 50 ppb or more and 10,000 ppb or less.
  • the alkaline earth metal in the chemically strengthened salt When a predetermined amount of alkaline earth metal is contained in the chemically strengthened salt, the alkaline earth metal in the chemically strengthened salt appropriately inhibits the ion exchange of the alkali metal ions. While relaxing the exchange rate, alkali metal ions are penetrated deep into the glass substrate to increase the thickness of the compressive stress layer, and the gradient of the compressive stress layer (change in compressive stress intensity from the surface layer to the deep part) is moderated. It becomes possible. When the alkaline earth metal is not contained in the chemically strengthened salt, the gradient of the compressive stress layer formed by ion exchange of alkali metal ions is increased.
  • the information recording medium 10 of the heat-assisted recording method it is necessary to perform a film formation process of the magnetic film on the main surface of the glass substrate at a high temperature. Heat is transferred to the extreme surface layer of the glass substrate with respect to the temperature rise of several minutes during film formation.
  • the compressive stress layer is formed by concentrating on a region where the depth of the surface layer of the glass substrate is small, alkali metal ions easily move during heating, and the compressive stress in the compressive stress layer easily changes. For this reason, relaxation of the compressive stress layer, that is, a phenomenon in which the compressive stress acting in the compressive stress layer on the surface of the glass substrate changes and the compressive strain is partially eliminated causes a change in the shape of the glass substrate.
  • a compressive stress layer having a gentle gradient compressive stress up to a deeper position of the glass substrate by containing an alkaline earth metal in the chemically strengthened salt. Since the amount of heat transferred to a deep position inside the glass substrate during heating is small, the compression stress in the compressive stress layer is hardly lowered at a deep position inside the glass substrate. Therefore, it is possible to suppress a change in the compressive stress layer during the high-temperature film forming process in the film forming process.
  • the concentration of the alkaline earth metal (Be, Mg, Ca, Sr, Ba) in the chemical strengthening treatment solution is less than 50 ppb, the effect of suppressing the change of the compressive stress layer in the film forming process cannot be sufficiently obtained.
  • concentration of the alkaline earth metal exceeds 10,000 ppb, the content of the alkaline earth metal is increased with respect to the alkali metal, so that it is difficult to obtain a desired compressive stress layer thickness. Therefore, an optimal compressive stress layer can be formed by setting the concentration of the alkaline earth metal contained in the chemical strengthening treatment liquid to 50 ppb or more and 10,000 ppb or less.
  • the chemical strengthening treatment liquid exhibits the effect of alkaline earth metal more remarkably as the temperature is higher. This is because if the chemical strengthening treatment liquid is at a high temperature, the ion exchange rate is improved, so that a compressive stress layer is likely to be formed on the surface layer of the glass substrate. This is because a compressive stress layer having a small gradient of compressive stress can be formed deeper in the glass substrate.
  • the temperature of the chemical strengthening treatment liquid 100 is desirably 450 ° C. or higher.
  • FIG. 6 is a schematic diagram showing a state after the ion exchange of the glass substrate 1 in contact with the chemical strengthening treatment liquid 100.
  • lithium ions existing on the surface layer of the glass substrate 1 come out into the chemical strengthening treatment liquid 100, and potassium ions present in the chemical strengthening treatment liquid 100 enter the glass substrate 1 after lithium ions come out. Then, ion exchange is performed.
  • Lithium ions have a relatively small ionic radius and a low bonding strength, and therefore easily come out of the glass substrate 1.
  • the potassium ions When potassium ions enter the glass substrate 1, the potassium ions have a relatively large ionic radius, so that compressive stress is generated in the glass substrate 1. Thereby, the strength of the glass substrate 1 is increased, and the glass substrate 1 having improved mechanical strength that is less likely to be damaged such as generation of cracks is produced.
  • Alkaline earth metals such as calcium ions contained in the chemical strengthening treatment solution 100 have characteristics that inhibit ion exchange of alkali metal ions and make it difficult for ion exchange to proceed.
  • An alkaline earth metal that hinders the chemical strengthening treatment is intentionally contained in the chemical strengthening treatment liquid 100, and the chemical strengthening treatment is performed under conditions where ion exchange is unlikely to occur.
  • a compressive stress layer having a gentle compressive stress gradient to a deeper position in the substrate 1 can be formed.
  • the alkali metal ions at a deep position away from the surface layer of the glass substrate 1 are not easily affected by heating in the subsequent heat treatment process, and are difficult to move even when heated. Therefore, in the deep position of the glass substrate 1, the fall of the compressive stress in a post process becomes difficult to occur. That is, changes in the compressive stress layer during the high-temperature film formation process in the film formation process can be suppressed.
  • the salt may be removed in the subsequent cleaning of the glass substrate 1. If possible, there will be no problem in the subsequent process. Further, when the main surface of the glass substrate 1 is polished after the ion exchange, naturally, no problem due to the salt occurs.
  • Example 1-3 and Comparative Example 1-6 A predetermined amount of the raw material powder was weighed into a platinum crucible, mixed, and then heated to 1550 ° C. in an electric furnace for melting. After the raw material was sufficiently melted, a platinum stirring blade was inserted into the glass melt and stirred for 1 hour. Thereafter, the stirring blade was taken out and allowed to stand for 30 minutes, and then a glass block was obtained by pouring the glass melt into a jig. Thereafter, the glass block was held in the vicinity of the glass transition point of each glass for 2 hours, and then slowly cooled to remove strain.
  • the obtained glass block was sliced into a disc shape having a thickness of about 1.5 mm and an outer diameter of 2.5 inches, and the inner and outer circumferences were concentrically cut out using a cutter. Then, rough polishing and precision polishing of both main surfaces were performed, and ion exchange treatment was performed by immersing in a 500 ° C. potassium nitrate chemical strengthening treatment solution containing a prescribed amount of Ca for 1 hour. Thereafter, cleaning was performed to prepare glass substrates for information recording media of Examples and Comparative Examples.
  • the compression stress layer was evaluated for the produced glass substrate for information recording medium.
  • the sample was taken out from the glass substrate after ion exchange by cutting 1 mm in width, and the thickness of the compressive stress layer was evaluated from the cross-sectional direction of the taken out sample.
  • a polarimeter (Shinko Seiki Co., Ltd.) was used as the measuring device.
  • a film formation process of Fe—Pt alloy was performed on the glass substrate at 600 ° C. for 3 minutes, and then the compression stress layer was evaluated and subjected to shape inspection.
  • the shape inspection was judged based on whether or not the glass substrate was deformed.
  • the presence / absence of deformation was determined by measuring the flatness of the glass substrate using a white light interference type surface shape measuring device Optiflat (manufactured by Phase Shift Technology).
  • the flatness of the glass substrate before film formation was all 5 ⁇ m or less.
  • FIG. 7 is a diagram showing experimental conditions and experimental results of Example 1-3 and Comparative Example 1-6.
  • the case where the flatness is 5 ⁇ m or less is evaluated as “no deformation”
  • the case where the flatness is more than 5 ⁇ m and less than 10 ⁇ m is evaluated as “small deformation”
  • the flatness is 10 ⁇ m or more.
  • Example 1-3 in which the Ca concentration in the chemical strengthening treatment solution was 50 ppb or more and 10000 ppb or less, a compressive stress layer having a thickness of 140 to 150 ⁇ m was obtained after ion exchange. The thickness of the stress layer did not change.
  • Comparative Example 1-3 in which the Ca concentration in the chemical strengthening treatment liquid is less than 50 ppb and in Comparative Example 4-6 in which the Ca concentration exceeds 10,000 ppb, the compressive stress after ion exchange is compared with Example 1-3. The thickness of the layer was small, and the thickness of the compressive stress layer was further reduced after film formation.
  • the glass substrate chemically strengthened with the Ca concentration contained in the chemical strengthening treatment liquid being 50 ppb or more and 10,000 ppb or less, a deep compressive stress layer is obtained by the chemical strengthening treatment, and the film is formed in a high temperature atmosphere. Later, the compressive stress layer did not change, and it was shown that there was no problem with the glass substrate shape.

Abstract

Provided is a method that is for producing an HDD glass substrate having a thermally assisted recording method and that is able to suppress a decrease in compressive stress of the glass substrate surface during high-temperature film formation processing. The method for producing an HDD glass substrate having a thermally assisted recording method and having an amount of magnetic head floatation of no greater than 3 nm is provided with: a step for forming the glass substrate (1); and a step for contacting the glass substrate (1) to a chemical strengthening treatment liquid. The concentration of alkaline earth metals contained in the chemical strengthening treatment liquid (100) is 50-10,000 ppb inclusive.

Description

HDD用ガラス基板の製造方法Manufacturing method of glass substrate for HDD
 本発明は、HDD(Hard Disk Drive)用のガラス基板の製造方法に関し、特に、磁気ヘッドの浮上量が3nm以下であるHDDに用いられるガラス基板の製造方法に関する。 The present invention relates to a method for manufacturing a glass substrate for an HDD (Hard Disk Drive), and more particularly to a method for manufacturing a glass substrate used for an HDD having a magnetic head flying height of 3 nm or less.
 近年、HDDの記憶容量の飛躍的な増大に伴い、媒体の1ビットあたりの記録面積を小さくしていくことが必要不可欠となっている。媒体の記録面積の減少に比例して記録用の磁性粒子サイズも微細化しなければならず、微細化により記録した磁化の向きを一方向に保つエネルギーが小さくなり、熱エネルギーの影響を受けやすくなるという問題がある。 In recent years, with a dramatic increase in the storage capacity of HDDs, it has become indispensable to reduce the recording area per bit of the medium. In proportion to the reduction in the recording area of the medium, the size of the magnetic particles for recording must be reduced, and the energy to maintain the direction of magnetization recorded in one direction is reduced due to the reduction in size, making it more susceptible to thermal energy. There is a problem.
 そこで、磁化の向きを安定化させるために磁性粒子を磁気異方性エネルギーの高いFe-Pt系磁性材料に変える必要がある。このFe-Pt系磁性材料は、記録媒体を形成するための製造工程における成膜時において、高温熱処理を施すことが必要である。そのため、高温熱処理に耐えられる耐熱性の高いガラス基板を製造することが必要不可欠となっている。Fe-Pt系磁性材料の高温熱処理に関する従来の技術は、たとえば喜々津哲他「FePtCu高密度HDD媒体材料」、東芝レビュー57巻9号、2002年9月、p54-p57(非特許文献1)に開示されている。 Therefore, in order to stabilize the magnetization direction, it is necessary to change the magnetic particles to an Fe—Pt magnetic material having a high magnetic anisotropy energy. This Fe—Pt-based magnetic material needs to be subjected to high-temperature heat treatment during film formation in the manufacturing process for forming the recording medium. Therefore, it is indispensable to manufacture a glass substrate with high heat resistance that can withstand high-temperature heat treatment. Conventional techniques relating to high-temperature heat treatment of Fe—Pt magnetic materials are described in, for example, Ketsutsu et al., “FePtCu high-density HDD medium material”, Toshiba Review 57, No. 9, September 2002, p54-p57 (Non-patent Document 1). It is disclosed.
 ところで、現在HDDには、記録密度の向上に加え、ノートパソコンや外付けHDD等の持ち運び用途が増加することに伴って耐衝撃性が求められている。そこで、ガラス基板の機械的強度を向上させ耐衝撃性を向上させるために、ガラス基板に化学強化処理を施す手法がある。いわゆるイオン交換法によって、ガラス基板の表面(表層)付近のアルカリ元素を、当該アルカリ元素よりも径の大きい他のアルカリ元素と置換し、当該置換によって、ガラス基板の表面に圧縮歪みを発生させ、化学強化層(圧縮応力層ともいう)を形成する。ガラス基板の化学強化処理に関する従来の技術は、たとえば特開2002-121051号公報(特許文献1)に開示されている。 By the way, in addition to the improvement in recording density, HDDs are currently required to have impact resistance as the number of portable applications such as notebook personal computers and external HDDs increases. In order to improve the mechanical strength of the glass substrate and improve the impact resistance, there is a method of subjecting the glass substrate to chemical strengthening treatment. By so-called ion exchange method, the alkali element near the surface (surface layer) of the glass substrate is replaced with another alkali element having a diameter larger than that of the alkali element, and by the substitution, a compressive strain is generated on the surface of the glass substrate, A chemical strengthening layer (also referred to as a compressive stress layer) is formed. For example, Japanese Unexamined Patent Application Publication No. 2002-121051 (Patent Document 1) discloses a conventional technique related to a chemical strengthening treatment of a glass substrate.
特開2002-121051号公報JP 2002-121051 A
 HDD用の情報記録媒体において1Tb/in相当の高密度記録を実現するための技術として、熱アシスト記録方式が有望視されている。しかし、熱アシスト記録方式では、ガラス基板の主表面上への磁性膜の成膜処理を高温で行なう必要がある。そのため、耐衝撃性向上のために化学強化処理の施されたガラス基板を使用しても、高温下での熱処理中に圧縮応力層が緩和し、圧縮応力にばらつきが発生した結果、ガラス基板の形状変化が発生する問題があった。 As a technique for realizing high-density recording equivalent to 1 Tb / in 2 in an HDD information recording medium, a heat-assisted recording method is promising. However, in the heat-assisted recording method, it is necessary to perform the film forming process on the main surface of the glass substrate at a high temperature. Therefore, even if a glass substrate that has been chemically strengthened to improve impact resistance is used, the compressive stress layer relaxes during the heat treatment at high temperatures, resulting in variations in the compressive stress. There was a problem that shape change occurred.
 本発明は上記の課題に鑑みてなされたものであり、その主たる目的は、高温成膜処理中にガラス基板表面の圧縮応力が変化してガラス基板が形状変化することを抑制できる、熱アシスト記録方式のHDD用ガラス基板の製造方法を提供することである。 The present invention has been made in view of the above problems, and its main purpose is heat-assisted recording, which can suppress a change in shape of the glass substrate due to a change in compressive stress on the surface of the glass substrate during the high-temperature film forming process. It is providing the manufacturing method of the glass substrate for HDD of a system.
 本発明に係るHDD用ガラス基板の製造方法は、磁気ヘッドの浮上量が3nm以下である熱アシスト記録方式のHDD用ガラス基板の製造方法であって、ガラス基板を成形する工程と、化学強化処理液にガラス基板を接触させる工程と、を備え、化学強化処理液に含まれるアルカリ土類金属の濃度が50ppb以上10000ppb以下である。 The method for manufacturing a glass substrate for HDD according to the present invention is a method for manufacturing a glass substrate for HDD of a thermally assisted recording method in which the flying height of the magnetic head is 3 nm or less, and a step of molding the glass substrate and a chemical strengthening treatment And a step of bringing the glass substrate into contact with the liquid, and the concentration of the alkaline earth metal contained in the chemical strengthening treatment liquid is 50 ppb or more and 10,000 ppb or less.
 上記製造方法において好ましくは、化学強化処理液の温度が450℃以上である。 In the above production method, the temperature of the chemical strengthening treatment liquid is preferably 450 ° C. or higher.
 本発明のHDD用ガラス基板の製造方法によれば、高温成膜処理中にガラス基板表面の圧縮応力が変化してガラス基板が形状変化することを、抑制することができる。 According to the method for manufacturing a glass substrate for HDD of the present invention, it is possible to suppress a change in shape of the glass substrate due to a change in compressive stress on the surface of the glass substrate during the high-temperature film forming process.
実施の形態におけるHDD用ガラス基板の製造方法によって製造されたガラス基板を備えるHDDを示す斜視図である。It is a perspective view which shows HDD provided with the glass substrate manufactured by the manufacturing method of the glass substrate for HDD in embodiment. 実施の形態におけるガラス基板の製造方法によって得られるガラス基板を示す斜視図である。It is a perspective view which shows the glass substrate obtained by the manufacturing method of the glass substrate in embodiment. 実施の形態におけるガラス基板の製造方法によって得られるガラス基板を備えた情報記録媒体を示す斜視図である。It is a perspective view which shows the information recording medium provided with the glass substrate obtained by the manufacturing method of the glass substrate in embodiment. 実施の形態におけるガラス基板の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the glass substrate in embodiment. 化学強化処理液に接触するガラス基板のイオン交換前の状態を示す模式図である。It is a schematic diagram which shows the state before ion exchange of the glass substrate which contacts a chemical strengthening process liquid. 化学強化処理液に接触するガラス基板のイオン交換後の状態を示す模式図である。It is a schematic diagram which shows the state after ion exchange of the glass substrate which contacts a chemical strengthening process liquid. 実施例および比較例の実験条件および実験結果を示す図である。It is a figure which shows the experimental condition and experimental result of an Example and a comparative example.
 本発明に基づいた実施の形態および実施例について、以下、図面を参照しながら説明する。実施の形態および各実施例の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態および各実施例の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。 Embodiments and examples based on the present invention will be described below with reference to the drawings. In the description of the embodiments and the examples, when the number, amount, and the like are referred to, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the description of the embodiment and each example, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 [ハードディスクドライブ30]
 図1を参照して、まず、情報記録装置の一例であるハードディスクドライブ30について説明する。図1は、ハードディスクドライブ30を示す斜視図である。ハードディスクドライブ30は、情報記録媒体10を備える。情報記録媒体10は、実施の形態におけるHDD用ガラス基板(以下、単にガラス基板ともいう)の製造方法によって製造されたガラス基板1を用いて、作製される。
[Hard Disk Drive 30]
With reference to FIG. 1, first, a hard disk drive 30 which is an example of an information recording apparatus will be described. FIG. 1 is a perspective view showing the hard disk drive 30. The hard disk drive 30 includes the information recording medium 10. The information recording medium 10 is manufactured using the glass substrate 1 manufactured by the method for manufacturing a glass substrate for HDD (hereinafter also simply referred to as a glass substrate) in the embodiment.
 具体的には、ハードディスクドライブ30は、情報記録媒体10、筐体20、ヘッドスライダー21、サスペンション22、アーム23、垂直軸24、ボイスコイル25、ボイスコイルモーター26、クランプ部材27、および固定ネジ28を備える。筐体20の上面上には、スピンドルモーター(図示せず)が設置される。 Specifically, the hard disk drive 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw 28. Is provided. A spindle motor (not shown) is installed on the upper surface of the housing 20.
 ガラス基板1に磁性体を塗布して形成された磁気ディスクなどの情報記録媒体10は、クランプ部材27および固定ネジ28によって、上記のスピンドルモーターに回転可能に固定される。情報記録媒体10は、このスピンドルモーターによって、たとえば数千rpmの回転数で回転駆動される。情報記録媒体10は、ガラス基板1に磁気記録層が形成されることによって製造される。 An information recording medium 10 such as a magnetic disk formed by applying a magnetic material to the glass substrate 1 is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28. The information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm. The information recording medium 10 is manufactured by forming a magnetic recording layer on the glass substrate 1.
 アーム23は、垂直軸24回りに揺動可能に取り付けられる。アーム23の先端には、板バネ(片持ち梁)状に形成されたサスペンション22が取り付けられる。サスペンション22の先端には、ヘッドスライダー21が情報記録媒体10を挟み込むように取り付けられる。 The arm 23 is attached so as to be swingable around the vertical axis 24. A suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23. A head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
 アーム23のヘッドスライダー21とは反対側には、ボイスコイル25が取り付けられる。ボイスコイル25は、筐体20上に設けられたマグネット(図示せず)によって挟持される。ボイスコイル25およびこのマグネットにより、ボイスコイルモーター26が構成される。 A voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21. The voice coil 25 is clamped by a magnet (not shown) provided on the housing 20. A voice coil motor 26 is constituted by the voice coil 25 and the magnet.
 ボイスコイル25には所定の電流が供給される。アーム23は、ボイスコイル25に流れる電流と上記マグネットの磁場とにより発生する電磁力の作用によって、垂直軸24回りに揺動する。アーム23の揺動によって、サスペンション22およびヘッドスライダー21も矢印AR1方向に揺動する。ヘッドスライダー21は、情報記録媒体10の表面上および裏面上を、情報記録媒体10の半径方向に往復移動する。ヘッドスライダー21に設けられた磁気ヘッド(図示せず)はシーク動作を行なう。 A predetermined current is supplied to the voice coil 25. The arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet. As the arm 23 swings, the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1. The head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10. A magnetic head (not shown) provided on the head slider 21 performs a seek operation.
 当該シーク動作が行なわれる一方で、ヘッドスライダー21は、情報記録媒体10の回転に伴って発生する空気流により、浮揚力を受ける。当該浮揚力とサスペンション22の弾性力(押圧力)とのバランスによって、ヘッドスライダー21は情報記録媒体10の表面に対して一定の浮上量で走行する。当該走行によって、ヘッドスライダー21に設けられた磁気ヘッドは、情報記録媒体10内の所定のトラックに対して情報(データ)の記録および再生を行なうことが可能となる。ガラス基板1が情報記録媒体10を構成する部材の一部として搭載されるハードディスクドライブ30は、以上のように構成される。 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10. The hard disk drive 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
 ヘッドスライダー21に設けられる磁気ヘッドが情報記録媒体10の表面に対して浮上する浮上量は、フライングハイトと呼称される。本実施の形態のハードディスクドライブ30では、フライングハイトは3nm以下である。すなわち、情報記録媒体10の回転時における、情報記録媒体10の厚み方向の情報記録媒体10と磁気ヘッドとの間隔は、3nm以下である。 The flying height at which the magnetic head provided on the head slider 21 floats with respect to the surface of the information recording medium 10 is called flying height. In the hard disk drive 30 of the present embodiment, the flying height is 3 nm or less. That is, the distance between the information recording medium 10 in the thickness direction of the information recording medium 10 and the magnetic head when the information recording medium 10 is rotated is 3 nm or less.
 本実施の形態のガラス基板1は、媒体の記録面積を低減することが可能な熱アシスト記録方式のHDDに用いられる。微小な記録領域でのリード/ライト機能を向上するために、磁気ヘッドと媒体との距離が小さくなっており、上述したように3nm以下のフライングハイトが規定されている。これにより、従来と比較してハードディスクドライブ30のリード/ライト特性を向上させて記録密度を向上させることが可能になっている。 The glass substrate 1 of the present embodiment is used for a heat-assisted recording type HDD capable of reducing the recording area of a medium. In order to improve the read / write function in a minute recording area, the distance between the magnetic head and the medium is reduced, and a flying height of 3 nm or less is defined as described above. As a result, the read / write characteristics of the hard disk drive 30 can be improved and the recording density can be improved as compared with the conventional case.
 [ガラス基板1・情報記録媒体10]
 図2は、情報記録媒体10(図3参照)に用いられるガラス基板1を示す斜視図である。図3は、ガラス基板1を備えた情報記録媒体10を示す斜視図である。図2および図3を参照して、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって得られるガラス基板1、およびガラス基板1を備えた情報記録媒体10について説明する。
[Glass substrate 1 / information recording medium 10]
FIG. 2 is a perspective view showing the glass substrate 1 used for the information recording medium 10 (see FIG. 3). FIG. 3 is a perspective view showing the information recording medium 10 provided with the glass substrate 1. With reference to FIG. 2 and FIG. 3, the glass substrate 1 obtained by the manufacturing method of the glass substrate for information recording media based on this Embodiment and the information recording medium 10 provided with the glass substrate 1 are demonstrated.
 図2に示すように、情報記録媒体10に用いられるガラス基板1(情報記録媒体用ガラス基板)は、中心に円孔1Hが形成された環状の円板形状を呈している。ガラス基板1が円盤状の形状を有することにより、たとえばハードディスクドライブ30に組み付けられる情報記録媒体10のガラス基板1として適したものになる。円形ディスク形状のガラス基板1は、表主表面1A、裏主表面1B、内周端面1C、および外周端面1Dを有している。 As shown in FIG. 2, a glass substrate 1 (information recording medium glass substrate) used for the information recording medium 10 has an annular disk shape with a circular hole 1H formed in the center. When the glass substrate 1 has a disc shape, the glass substrate 1 is suitable as the glass substrate 1 of the information recording medium 10 assembled to the hard disk drive 30, for example. The circular disk-shaped glass substrate 1 has a front main surface 1A, a back main surface 1B, an inner peripheral end surface 1C, and an outer peripheral end surface 1D.
 円盤状のガラス基板1の大きさは特に限定されず、たとえば外径3.5インチ、2.5インチ、1.8インチ、またはそれ以下の小径ディスクであってもよい。ガラス基板1の厚さは、2mm、1mm、0.8mm、0.635mm、またはそれ以下の薄型であってもよい。なおガラス基板1の厚さとは、ガラス基板1上の点対象となる任意の複数の点で測定した厚さの値の平均によって算出される値である。 The size of the disk-shaped glass substrate 1 is not particularly limited, and may be a small-diameter disk having an outer diameter of 3.5 inches, 2.5 inches, 1.8 inches, or less, for example. The thickness of the glass substrate 1 may be as thin as 2 mm, 1 mm, 0.8 mm, 0.635 mm, or less. The thickness of the glass substrate 1 is a value calculated by averaging thickness values measured at a plurality of arbitrary points on the glass substrate 1.
 図3に示すように、情報記録媒体10は、上記したガラス基板1の表主表面1A上に磁性膜が成膜されて、磁気記録層を含む磁気薄膜層2が形成されることによって、構成される。図3中では、表主表面1A上にのみ磁気薄膜層2が形成されているが、裏主表面1B上にも磁気薄膜層2が形成されていてもよい。 As shown in FIG. 3, the information recording medium 10 is configured by forming a magnetic film on the front main surface 1A of the glass substrate 1 and forming a magnetic thin film layer 2 including a magnetic recording layer. Is done. In FIG. 3, the magnetic thin film layer 2 is formed only on the front main surface 1A, but the magnetic thin film layer 2 may also be formed on the back main surface 1B.
 磁気薄膜層2は、磁性粒子を分散させた熱硬化性樹脂をガラス基板1の表主表面1A上にスピンコートすることによって形成される(スピンコート法)。磁気薄膜層2は、ガラス基板1の表主表面1Aに対してスパッタリング法、または無電解めっき法などにより形成されてもよい。 The magnetic thin film layer 2 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the front main surface 1A of the glass substrate 1 (spin coating method). The magnetic thin film layer 2 may be formed on the front main surface 1A of the glass substrate 1 by a sputtering method or an electroless plating method.
 ガラス基板1の表主表面1Aに形成される磁気薄膜層2の膜厚は、スピンコート法の場合は約0.3μm~1.2μm、スパッタリング法の場合は約0.04μm~0.08μm、無電解めっき法の場合は約0.05μm~0.1μmである。薄膜化および高密度化の観点からは、磁気薄膜層2はスパッタリング法または無電解めっき法によって形成されるとよい。 The film thickness of the magnetic thin film layer 2 formed on the front main surface 1A of the glass substrate 1 is about 0.3 μm to 1.2 μm in the case of the spin coating method, about 0.04 μm to 0.08 μm in the case of the sputtering method, In the case of the electroless plating method, the thickness is about 0.05 μm to 0.1 μm. From the viewpoint of thinning and high density, the magnetic thin film layer 2 is preferably formed by sputtering or electroless plating.
 磁気薄膜層2に用いる磁性材料としては、特に限定はなく従来公知のものが使用できるが、高い保持力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などが好適である。また、熱アシスト記録用に好適な磁性層材料として、FePt系の材料が用いられてもよい。 The magnetic material used for the magnetic thin film layer 2 is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Co having high crystal anisotropy is basically used for the purpose of adjusting the residual magnetic flux density. A Co-based alloy to which Ni or Cr is added is suitable. Further, as a magnetic layer material suitable for heat-assisted recording, an FePt-based material may be used.
 また、磁気記録ヘッドの滑りをよくするために磁気薄膜層2の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、たとえば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。 Further, a lubricant may be thinly coated on the surface of the magnetic thin film layer 2 in order to improve the sliding of the magnetic recording head. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
 さらに、必要により下地層や保護層を設けてもよい。情報記録媒体10における下地層は磁性膜に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、またはNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。 Furthermore, if necessary, an underlayer or a protective layer may be provided. The underlayer in the information recording medium 10 is selected according to the magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
 また、下地層は単層とは限らず、同一または異種の層を積層した複数層構造としても構わない。たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrVなどの多層下地層としてもよい。 Also, the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
 磁気薄膜層2の摩耗や腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。これらの保護層は、下地層、磁性膜などと共にインライン型スパッタ装置で連続して形成できる。また、これらの保護層は、単層としてもよく、あるいは、同一または異種の層からなる多層構成としてもよい。 Examples of the protective layer for preventing wear and corrosion of the magnetic thin film layer 2 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be continuously formed together with an underlayer, a magnetic film and the like by an in-line type sputtering apparatus. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers.
 上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。たとえば、上記保護層に替えて、Cr層の上にテトラアルコキシシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO)層を形成してもよい。 Another protective layer may be formed on the protective layer or instead of the protective layer. For example, in place of the protective layer, tetraalkoxysilane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon oxide (SiO 2 ) layer. It may be formed.
 [ガラス基板の製造方法]
 次に、図4に示すフローチャートを用いて、本実施の形態におけるガラス基板(情報記録媒体用ガラス基板)の製造方法について説明する。図4は、実施の形態におけるガラス基板の製造方法を示すフローチャートである。
[Glass substrate manufacturing method]
Next, the manufacturing method of the glass substrate (glass substrate for information recording media) in this Embodiment is demonstrated using the flowchart shown in FIG. FIG. 4 is a flowchart showing a method for manufacturing a glass substrate in the embodiment.
 本実施の形態におけるガラス基板の製造方法は、成形工程(ステップS10)、第一ラッピング工程(ステップS20)、形状加工工程(ステップS30)、内周研磨工程(ステップS40)、第二ラッピング工程(ステップS50)、外周研磨工程(ステップS60)、第一主表面研磨工程(ステップS70)、第二主表面研磨工程(ステップS80)、および化学強化工程(ステップS90)を経ることによって得られたガラス基板(図2におけるガラス基板1に相当)に対して、磁性膜形成工程(ステップS100)が実施されてもよい。磁性膜形成工程(ステップS100)によって、情報記録媒体10が得られる。 The glass substrate manufacturing method in the present embodiment includes a forming step (step S10), a first lapping step (step S20), a shape processing step (step S30), an inner peripheral polishing step (step S40), and a second lapping step ( Glass obtained through step S50), outer periphery polishing step (step S60), first main surface polishing step (step S70), second main surface polishing step (step S80), and chemical strengthening step (step S90). A magnetic film forming step (step S100) may be performed on the substrate (corresponding to the glass substrate 1 in FIG. 2). The information recording medium 10 is obtained by the magnetic film forming step (step S100).
 以下、これらの各ステップS10~S100について順に説明する。以下には、各ステップS10~S100間に適宜行なわれる簡易的な洗浄については記載していない。 Hereinafter, each of these steps S10 to S100 will be described in order. In the following, simple cleaning that is appropriately performed between steps S10 to S100 is not described.
 (成形工程)
 成形工程(ステップS10)においては、ガラス基板を構成するガラス素材が溶融される。ガラス基板の原料であるガラス原料として、ガラス基板1を構成する各成分の原料として各々相当する酸化物、炭酸塩、硝酸塩、水酸化物などが所望の割合に秤量され粉末で充分に混合された調合原料が準備される。この調合原料が、1300~1550℃、たとえば1400℃に加熱された電気炉中の白金坩堝などに投入されて溶融され、さらに清澄および撹拌均質化が行なわれる。
(Molding process)
In the forming step (step S10), the glass material constituting the glass substrate is melted. As a glass raw material that is a raw material of the glass substrate, oxides, carbonates, nitrates, hydroxides, and the like corresponding to the raw materials of the respective components constituting the glass substrate 1 were weighed to a desired ratio and sufficiently mixed with powder. Prepared ingredients are prepared. This blended raw material is put into a platinum crucible or the like in an electric furnace heated to 1300 to 1550 ° C., for example, 1400 ° C., and melted, and further clarification and stirring are performed.
 ガラス素材は、たとえば一般的なアルミノシリケートガラスが用いられる。アルミノシリケートガラスは、58質量%~75質量%のSiOと、5質量%~23質量%のAlと、3質量%~10質量%のLiOと、4質量%~13質量%のNaOと、を主成分として含有する。ガラス素材は、アルミノシリケートガラスに限られるものではなく、ソーダライムガラス、ホウケイ酸ガラスなど、任意の素材であってもよい。 For example, general aluminosilicate glass is used as the glass material. The aluminosilicate glass is composed of 58 mass% to 75 mass% SiO 2 , 5 mass% to 23 mass% Al 2 O 3 , 3 mass% to 10 mass% Li 2 O, and 4 mass% to 13 mass. % Na 2 O as a main component. The glass material is not limited to aluminosilicate glass, and may be any material such as soda lime glass or borosilicate glass.
 溶融したガラス素材は、予め加熱された鋳型に鋳込まれ、徐冷してガラスブロックとされる。続いて、ガラス転移点付近の温度で1~3時間保持された後に、徐冷して歪み取りが行なわれる。得られたガラスブロックは、円盤形状にスライスされて、内周および外周を同心円としてコアドリルを用いて切り出される。または、溶融ガラスを下型上に流し込んだ後、上型および下型によってプレス成形して、円盤状に成形してもよい。このようにして、円盤状のガラスブランク材(ガラス母材)が成形される。ガラスブランク材は、ダウンドロー法またはフロート法によって形成されたシートガラス(板ガラス)を切り出すことによって形成されてもよい。 The melted glass material is cast into a preheated mold and slowly cooled into a glass block. Subsequently, after being held at a temperature in the vicinity of the glass transition point for 1 to 3 hours, it is gradually cooled to remove strain. The obtained glass block is sliced into a disk shape and cut out using a core drill with concentric inner and outer circumferences. Or after pouring molten glass on a lower mold | type, it press-molds with an upper mold | type and a lower mold | type, and you may shape | mold into a disk shape. In this way, a disk-shaped glass blank (glass base material) is formed. The glass blank material may be formed by cutting out sheet glass (plate glass) formed by a downdraw method or a float method.
 (第一ラッピング工程)
 次に、第一ラッピング工程(ステップS20)においては、成形されたガラスブランク材の両方の主表面に対して、寸法精度および形状精度の向上を目的として、ラップ研磨処理が施される。ガラスブランク材の両方の主表面とは、後述する各処理を経ることによって、図2における表主表面1Aとなる主表面および裏主表面1Bとなる主表面のことである(以下、両主表面ともいう)。
(First wrapping process)
Next, in the first lapping step (step S20), a lapping process is performed on both main surfaces of the formed glass blank material for the purpose of improving dimensional accuracy and shape accuracy. The two main surfaces of the glass blank material are the main surface that becomes the front main surface 1A and the main surface that becomes the back main surface 1B in FIG. Also called).
 ラップ研磨処理は、遊星歯車機構を利用した両面ラッピング装置を用いて行なわれる。具体的にはガラスブランク材の両主表面に上下からラップ定盤を押圧させ、研削液を両主表面上に供給し、ガラスブランク材とラップ定盤とを相対的に移動させて、ラップ研磨処理が行なわれる。ラップ研磨処理によって、ガラス基板としてのおおよその平行度、平坦度および厚みなどが予備調整され、おおよそ平坦な主表面を有するガラス母材が得られる。たとえば、粒度#400のアルミナ砥粒(粒径約40~60μm)を含有する研削液を用い、上定盤の荷重を100kg程度に設定することによって、ガラスブランク材の両面を面精度0μm~1μm、表面粗さRmaxで6μm程度に仕上げてもよい。 The lapping process is performed using a double-sided lapping device using a planetary gear mechanism. Specifically, the lapping platen is pressed from above and below on both main surfaces of the glass blank material, the grinding liquid is supplied onto both main surfaces, and the glass blank material and lapping platen are moved relative to each other for lapping. Processing is performed. By the lapping treatment, the approximate parallelism, flatness, thickness, etc. of the glass substrate are preliminarily adjusted, and a glass base material having an approximately flat main surface is obtained. For example, by using a grinding fluid containing alumina abrasive grains of particle size # 400 (particle size of about 40 to 60 μm) and setting the load of the upper surface plate to about 100 kg, the surface accuracy of both surfaces of the glass blank material is 0 μm to 1 μm. The surface roughness Rmax may be finished to about 6 μm.
 (形状加工工程)
 次に、形状加工工程(ステップS30)においては、円筒状のダイヤモンドドリルを用いて、ガラスブランク材の中心部に対してコアリング(内周カット)処理が施される。コアリング処理によって、中心部に孔の開いた円環状のガラス基板が得られる。その後、中心部の孔に対向する内周端面、および、外周端面を、ダイヤモンド砥石によって研削し、外径を65mm、内径(中心部の円孔1Hの直径)を20mmとした後、所定の面取り加工が実施される。このときのガラス基板の端面の面粗さは、Rmaxで2μm程度である。なお、一般的に、2.5インチ型のハードディスクには、外径が65mmのガラス基板が用いられる。
(Shaping process)
Next, in the shape processing step (step S30), a coring (inner peripheral cut) process is performed on the center portion of the glass blank material using a cylindrical diamond drill. By the coring process, an annular glass substrate having a hole in the center is obtained. Thereafter, the inner peripheral end face and the outer peripheral end face opposed to the hole in the central part are ground with a diamond grindstone so that the outer diameter is 65 mm and the inner diameter (the diameter of the circular hole 1H in the central part) is 20 mm. Processing is performed. The surface roughness of the end surface of the glass substrate at this time is about 2 μm in Rmax. In general, a glass substrate having an outer diameter of 65 mm is used for a 2.5-inch hard disk.
 (内周研磨工程)
 次に、内周研磨工程(ステップS40)においては、ガラス基板の内周端面について、ブラシ研磨による鏡面研磨が行なわれる。具体的には、研磨ブラシに研磨剤を含む研磨液を供給し、ガラス基板の内周端面に接触するように研磨ブラシを配置した上で、ガラス基板を回転させながら、研磨ブラシをあてることにより、ガラス基板の内周端面を研磨する。
(Inner grinding process)
Next, in the inner peripheral polishing step (step S40), mirror polishing by brush polishing is performed on the inner peripheral end surface of the glass substrate. Specifically, by supplying a polishing liquid containing an abrasive to the polishing brush, placing the polishing brush in contact with the inner peripheral end surface of the glass substrate, and applying the polishing brush while rotating the glass substrate The inner peripheral end face of the glass substrate is polished.
 上記の研磨剤としては、酸化セリウム、酸化ジルコニウム、および酸化アルミニウムからなる群より選択される1種以上からなるものを用いることが好ましい。上記の研磨ブラシは、アラミド系繊維、ポリブチレンテレフタレート、およびポリプロピレンからなる群より選択される1種以上からなることが好ましい。 As the above-mentioned abrasive, it is preferable to use one or more selected from the group consisting of cerium oxide, zirconium oxide, and aluminum oxide. The polishing brush is preferably made of one or more selected from the group consisting of aramid fibers, polybutylene terephthalate, and polypropylene.
 (第二ラッピング工程)
 次に、第二ラッピング工程(ステップS50)においては、ガラス基板の両主表面について、第一ラッピング工程(ステップS20)と同様に、ラップ研磨処理が施される。この第二ラッピング工程を行なうことにより、前工程のコアリングまたは端面加工においてガラス基板の両主表面に形成された微細なキズや突起物などの、微細な凹凸形状を予め除去しておくことができ、後工程の主表面の研磨時間を短縮することができる。
(Second wrapping process)
Next, in the second lapping process (step S50), the lapping process is performed on both main surfaces of the glass substrate in the same manner as in the first lapping process (step S20). By performing this second lapping step, it is possible to remove in advance the fine irregularities such as fine scratches and protrusions formed on both main surfaces of the glass substrate in the coring or end face processing in the previous step. It is possible to shorten the polishing time of the main surface in the subsequent process.
 (外周研磨工程)
 次に、外周研磨工程(ステップS60)においては、ガラス基板の外周端面について、ブラシ研磨による鏡面研磨が行なわれる。具体的には、研磨ブラシに研磨剤を含む研磨液を供給し、ガラス基板の外周端面に接触するように研磨ブラシを配置した上で、ガラス基板を回転させながら、研磨ブラシをあてることにより、ガラス基板の外周端面を研磨する。上記の研磨剤および研磨ブラシは、ガラス基板の内周端面の研磨の際に使用される研磨剤および研磨ブラシと同様に選定される。
(Outer periphery polishing process)
Next, in the outer peripheral polishing step (step S60), the outer peripheral end surface of the glass substrate is subjected to mirror polishing by brush polishing. Specifically, by supplying a polishing liquid containing an abrasive to the polishing brush, placing the polishing brush in contact with the outer peripheral end surface of the glass substrate, and applying the polishing brush while rotating the glass substrate, The outer peripheral end surface of the glass substrate is polished. Said abrasive | polishing agent and polishing brush are selected similarly to the abrasive | polishing agent and polishing brush used in the case of grinding | polishing of the internal peripheral end surface of a glass substrate.
 (第一主表面研磨工程)
 次に、ガラス基板の主表面研磨工程のうちの第一の工程である粗研磨工程として、第一主表面研磨工程(ステップS70)が行なわれる。第一主表面研磨工程は、前述のラッピング工程においてガラス基板の主表面に残留したキズを除去しつつ、ガラス基板の反りを矯正することを主目的とする。第一主表面研磨工程においては、遊星歯車機構を有する両面研磨装置により主表面の研磨が行なわれる。たとえば、硬質ベロア、ウレタン発泡、またはピッチ含浸スウェードなどの研磨パッドを用いて研磨が行なわれる。研磨剤としては、一般的な酸化セリウム砥粒が用いられる。
(First main surface polishing process)
Next, a first main surface polishing step (step S70) is performed as a rough polishing step which is a first step in the main surface polishing step of the glass substrate. The main purpose of the first main surface polishing step is to correct warpage of the glass substrate while removing scratches remaining on the main surface of the glass substrate in the lapping step described above. In the first main surface polishing step, the main surface is polished by a double-side polishing apparatus having a planetary gear mechanism. For example, polishing is performed using a polishing pad such as hard velor, urethane foam, or pitch-impregnated suede. As the abrasive, general cerium oxide abrasive grains are used.
 (第二主表面研磨工程)
 次に、ガラス基板の主表面研磨工程のうちの第二の工程である精密研磨工程として、第二主表面研磨工程(ステップS80)が行なわれる。第二主表面研磨工程は、ガラス基板の主表面を被覆する際、またはガラス基板を分別する際などに、ガラス基板の主表面上に発生した微小欠陥などを解消して鏡面状に仕上げること、および、ガラス基板の反りを解消して所望の平坦度に仕上げることを目的とする。第二主表面研磨工程においては、遊星歯車機構を有する両面研磨装置により主表面の研磨が行なわれる。たとえば、スウェードまたはベロアを素材とする軟質ポリッシャである研磨パッドを用いて研磨が行なわれる。研磨剤としては、第一主表面研磨工程で用いた酸化セリウムよりも微細な、一般的なコロイダルシリカが用いられる。
(Second main surface polishing step)
Next, a second main surface polishing step (step S80) is performed as a precision polishing step which is the second step of the main surface polishing step of the glass substrate. In the second main surface polishing step, when coating the main surface of the glass substrate, or when separating the glass substrate, etc., the fine defects generated on the main surface of the glass substrate are eliminated to finish it in a mirror shape, And it aims at eliminating the curvature of a glass substrate and finishing to desired flatness. In the second main surface polishing step, the main surface is polished by a double-side polishing apparatus having a planetary gear mechanism. For example, polishing is performed using a polishing pad which is a soft polisher made of suede or velor. As the abrasive, general colloidal silica finer than the cerium oxide used in the first main surface polishing step is used.
 (化学強化工程)
 次に、化学強化工程(ステップS90)においては、上述した主表面研磨工程を終えたガラス基板に化学強化が施される。ガラス基板が洗浄された後、化学強化塩を含有する化学強化処理液を準備し、化学強化処理液中にガラス基板(前駆体)を浸漬するなどにより化学強化処理液にガラス基板を接触させることによって、ガラス基板を化学強化する。たとえば、ガラス基板の両主表面において、ガラス基板表面から約150μmまでの範囲に圧縮応力層を形成し、ガラス基板の剛性を向上させてもよい。このようにして、図2に示すガラス基板1に相当するガラス基板が得られる。いずれかの研磨工程の前に化学強化処理を施すことで、研磨後にガラス基板の主表面から圧縮応力層が除去されてもよいが、この場合でも、ガラス基板の内周側および外周側端面には研磨後にも引続き圧縮応力層が残存する。
(Chemical strengthening process)
Next, in the chemical strengthening step (step S90), the glass substrate that has finished the main surface polishing step described above is chemically strengthened. After the glass substrate is washed, a chemical strengthening treatment liquid containing a chemical strengthening salt is prepared, and the glass substrate is brought into contact with the chemical strengthening treatment liquid by immersing the glass substrate (precursor) in the chemical strengthening treatment liquid. To chemically strengthen the glass substrate. For example, on both main surfaces of the glass substrate, a compressive stress layer may be formed in a range from the glass substrate surface to about 150 μm to improve the rigidity of the glass substrate. In this way, a glass substrate corresponding to the glass substrate 1 shown in FIG. 2 is obtained. By applying chemical strengthening treatment before any polishing step, the compressive stress layer may be removed from the main surface of the glass substrate after polishing, but even in this case, the inner peripheral side and the outer peripheral side end surface of the glass substrate The compressive stress layer remains after polishing.
 (磁性膜形成工程)
 最後に、磁性膜形成工程(ステップS100)においては、化学強化処理が完了したガラス基板を、水、酸およびアルカリの少なくとも1つの液で洗浄した後に、図2に示すガラス基板1に相当するガラス基板の両主表面(またはいずれか一方の主表面)に対し、磁性膜が形成されることにより、磁気薄膜層2が形成される。磁気薄膜層2は、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系からなる保護層、およびF系からなる潤滑層が順次成膜されることによって形成される。磁気薄膜層の形成によって、図3に示す情報記録媒体10に相当する垂直磁気記録ディスクを得ることができる。
(Magnetic film forming process)
Finally, in the magnetic film forming step (step S100), the glass substrate that has been subjected to the chemical strengthening treatment is washed with at least one of water, acid, and alkali, and then the glass corresponding to the glass substrate 1 shown in FIG. The magnetic thin film layer 2 is formed by forming a magnetic film on both main surfaces (or one of the main surfaces) of the substrate. The magnetic thin film layer 2 is made of an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and an F system. The lubricating layer is formed by sequentially forming a film. By forming the magnetic thin film layer, a perpendicular magnetic recording disk corresponding to the information recording medium 10 shown in FIG. 3 can be obtained.
 本実施の形態における情報記録媒体は、磁気薄膜層から構成される垂直磁気ディスクの一例である。磁気ディスクは、いわゆる面内磁気ディスクとして磁性層などから構成されてもよい。 The information recording medium in the present embodiment is an example of a perpendicular magnetic disk composed of a magnetic thin film layer. The magnetic disk may be composed of a magnetic layer or the like as a so-called in-plane magnetic disk.
 (ステップS90の「化学強化工程」の詳細)
 以下、ステップS90の「化学強化工程」の詳細について説明する。化学強化処理液に含有されるアルカリ溶融塩としては、硝酸カリウム、硝酸ナトリウムもしくはこれらを混合した硝酸塩、または、硫酸カリウム、硫酸ナトリウムもしくはこれらを混合した硫酸塩などが使用できる。
(Details of “Chemical Strengthening Process” in Step S90)
Details of the “chemical strengthening step” in step S90 will be described below. As the alkali molten salt contained in the chemical strengthening treatment liquid, potassium nitrate, sodium nitrate or a nitrate mixed with these, potassium sulfate, sodium sulfate or a sulfate mixed with these can be used.
 化学強化処理の結果、ガラス基板前駆体の表面に存在するアルカリ金属イオン(たとえば、アルミノシリケートガラス使用の場合、リチウムイオンおよびナトリウムイオン)が、化学強化処理液中に含まれる、これらのイオンに比べてイオン半径の大きいナトリウムイオンおよびカリウムイオンにそれぞれ置換される(イオン交換法)。イオン半径の違いによって生じる歪みにより、イオン交換された領域を中心に圧縮応力が発生し、その領域においてガラス基板前駆体の両主表面が強化される。 As a result of the chemical strengthening treatment, alkali metal ions (for example, lithium ions and sodium ions when using aluminosilicate glass) present on the surface of the glass substrate precursor are compared to these ions contained in the chemical strengthening treatment liquid. Thus, the ions are replaced with sodium ions and potassium ions having a large ion radius (ion exchange method). Due to the strain caused by the difference in ion radius, compressive stress is generated around the ion-exchanged region, and both main surfaces of the glass substrate precursor are strengthened in that region.
 図5は、化学強化処理液100に接触するガラス基板1のイオン交換前の状態を示す模式図である。なお、「化学強化処理液に接触」とは、化学強化処理液中にガラス基板を浸漬する場合のほか、化学強化処理液をガラス基板に吹き掛ける場合など、あらゆる態様が含まれる。図5には、ガラス基板1の表層部分が化学強化処理液100に接触し、当該表層部分にリチウムイオンが含まれている態様が模式的に示されている。化学強化処理液100は硝酸カリウム溶液であり、化学強化処理液100中にはカリウムイオンが含まれている。 FIG. 5 is a schematic view showing a state before ion exchange of the glass substrate 1 in contact with the chemical strengthening treatment liquid 100. The term “contact with the chemical strengthening treatment liquid” includes all aspects such as a case where the glass substrate is immersed in the chemical strengthening treatment liquid and a case where the chemical strengthening treatment liquid is sprayed on the glass substrate. FIG. 5 schematically shows an aspect in which the surface layer portion of the glass substrate 1 is in contact with the chemical strengthening treatment liquid 100 and the surface layer portion contains lithium ions. The chemical strengthening treatment liquid 100 is a potassium nitrate solution, and the chemical strengthening treatment liquid 100 contains potassium ions.
 本実施の形態の化学強化処理液100にはさらに、アルカリ土類金属であるBe,Mg,Ca,SrまたはBaが一定量含まれる。図5中には、アルカリ土類金属の例としてカルシウムイオンが示されている。化学強化処理液100に含まれるアルカリ土類金属の濃度は、50ppb以上10000ppb以下である。 The chemical strengthening treatment liquid 100 of the present embodiment further contains a certain amount of alkaline earth metal Be, Mg, Ca, Sr or Ba. In FIG. 5, calcium ions are shown as an example of an alkaline earth metal. The concentration of the alkaline earth metal contained in the chemical strengthening treatment liquid 100 is 50 ppb or more and 10,000 ppb or less.
 アルカリ土類金属を化学強化塩中に所定の量だけ含有させると、化学強化塩中のアルカリ土類金属がアルカリ金属イオンのイオン交換を適度に阻害する為、ガラス表層に侵入するアルカリ金属イオンの交換速度を緩和させながら、ガラス基板の深くまでアルカリ金属イオンを侵入させて圧縮応力層の厚みを大きく、且つ、圧縮応力層の勾配(表層から深部への圧縮応力強度の変化)を緩やかにすることが可能になる。アルカリ土類金属を化学強化塩中に含有させない場合、アルカリ金属イオンのイオン交換によって形成される圧縮応力層の勾配が大きくなる。 When a predetermined amount of alkaline earth metal is contained in the chemically strengthened salt, the alkaline earth metal in the chemically strengthened salt appropriately inhibits the ion exchange of the alkali metal ions. While relaxing the exchange rate, alkali metal ions are penetrated deep into the glass substrate to increase the thickness of the compressive stress layer, and the gradient of the compressive stress layer (change in compressive stress intensity from the surface layer to the deep part) is moderated. It becomes possible. When the alkaline earth metal is not contained in the chemically strengthened salt, the gradient of the compressive stress layer formed by ion exchange of alkali metal ions is increased.
 熱アシスト記録方式の情報記録媒体10の製造の際、ガラス基板の主表面上への磁性膜の成膜処理を高温で行なう必要がある。成膜時の数分程度の昇温に対して、ガラス基板の極表層に熱が伝わる。ガラス基板の表層の深さが小さい領域に集中して圧縮応力層が形成されると、加熱時にアルカリ金属イオンが動きやすくなり、圧縮応力層内の圧縮応力が変化しやすくなる。そのため、圧縮応力層の緩和、すなわち、ガラス基板表面の圧縮応力層内に作用する圧縮応力が変化し圧縮歪みが部分的に解消されることによりガラス基板の形状が変化する現象が発生する。 When manufacturing the information recording medium 10 of the heat-assisted recording method, it is necessary to perform a film formation process of the magnetic film on the main surface of the glass substrate at a high temperature. Heat is transferred to the extreme surface layer of the glass substrate with respect to the temperature rise of several minutes during film formation. When the compressive stress layer is formed by concentrating on a region where the depth of the surface layer of the glass substrate is small, alkali metal ions easily move during heating, and the compressive stress in the compressive stress layer easily changes. For this reason, relaxation of the compressive stress layer, that is, a phenomenon in which the compressive stress acting in the compressive stress layer on the surface of the glass substrate changes and the compressive strain is partially eliminated causes a change in the shape of the glass substrate.
 本実施の形態の製造方法では、アルカリ土類金属を化学強化塩中に含有することでガラス基板のより深い位置までゆるやかな勾配の圧縮応力を有する圧縮応力層を形成することが可能になる。加熱時にガラス基板内部の深い位置まで伝達される熱量は小さいので、ガラス基板内部の深い位置では圧縮応力層内の圧縮応力の低下は起きにくい。そのため、成膜工程での高温成膜処理中における圧縮応力層の変化を抑制することができる。 In the manufacturing method of the present embodiment, it is possible to form a compressive stress layer having a gentle gradient compressive stress up to a deeper position of the glass substrate by containing an alkaline earth metal in the chemically strengthened salt. Since the amount of heat transferred to a deep position inside the glass substrate during heating is small, the compression stress in the compressive stress layer is hardly lowered at a deep position inside the glass substrate. Therefore, it is possible to suppress a change in the compressive stress layer during the high-temperature film forming process in the film forming process.
 化学強化処理液中のアルカリ土類金属(Be,Mg,Ca,Sr,Ba)の濃度が50ppb未満では、成膜工程での圧縮応力層の変化を抑制する効果が十分に得られない。また、アルカリ土類金属の濃度が10000ppbを超えると、アルカリ土類金属の含有量がアルカリ金属に対して多くなるため、所望の圧縮応力層の厚みを得ることが困難となる。したがって、化学強化処理液に含まれるアルカリ土類金属の濃度を50ppb以上10000ppb以下とすることで、最適な圧縮応力層を形成することができる。 If the concentration of the alkaline earth metal (Be, Mg, Ca, Sr, Ba) in the chemical strengthening treatment solution is less than 50 ppb, the effect of suppressing the change of the compressive stress layer in the film forming process cannot be sufficiently obtained. On the other hand, when the concentration of the alkaline earth metal exceeds 10,000 ppb, the content of the alkaline earth metal is increased with respect to the alkali metal, so that it is difficult to obtain a desired compressive stress layer thickness. Therefore, an optimal compressive stress layer can be formed by setting the concentration of the alkaline earth metal contained in the chemical strengthening treatment liquid to 50 ppb or more and 10,000 ppb or less.
 また、化学強化処理液は、高温であるほどアルカリ土類金属の効果がより顕著に発揮される。これは、化学強化処理液が高温であればイオン交換速度が向上するのでガラス基板の表層に圧縮応力層が形成されやすくなるが、アルカリ土類金属を含有させることによりアルカリ金属イオンのイオン交換速度を低減できるので、ガラス基板のより深い位置にまで圧縮応力の勾配が小さい圧縮応力層を形成できることに因る。具体的には、化学強化処理液100の温度が450℃以上であることが望ましい。 Moreover, the chemical strengthening treatment liquid exhibits the effect of alkaline earth metal more remarkably as the temperature is higher. This is because if the chemical strengthening treatment liquid is at a high temperature, the ion exchange rate is improved, so that a compressive stress layer is likely to be formed on the surface layer of the glass substrate. This is because a compressive stress layer having a small gradient of compressive stress can be formed deeper in the glass substrate. Specifically, the temperature of the chemical strengthening treatment liquid 100 is desirably 450 ° C. or higher.
 図6は、化学強化処理液100に接触するガラス基板1のイオン交換後の状態を示す模式図である。図5においてガラス基板1の表層に存在したリチウムイオンが化学強化処理液100中に出ていき、リチウムイオンが出た後に化学強化処理液100中に存在するカリウムイオンがガラス基板1内に入り込むことで、イオン交換が行なわれる。リチウムイオンは相対的にイオン半径が小さく結合強度が低いため、ガラス基板1から出ていき易い。カリウムイオンがガラス基板1に侵入すると、カリウムイオンは相対的にイオン半径が大きいので、ガラス基板1に圧縮応力が発生する。これにより、ガラス基板1の強度が高められ、ひびの発生などの破損の生じにくい機械的強度の向上したガラス基板1が作製される。 FIG. 6 is a schematic diagram showing a state after the ion exchange of the glass substrate 1 in contact with the chemical strengthening treatment liquid 100. In FIG. 5, lithium ions existing on the surface layer of the glass substrate 1 come out into the chemical strengthening treatment liquid 100, and potassium ions present in the chemical strengthening treatment liquid 100 enter the glass substrate 1 after lithium ions come out. Then, ion exchange is performed. Lithium ions have a relatively small ionic radius and a low bonding strength, and therefore easily come out of the glass substrate 1. When potassium ions enter the glass substrate 1, the potassium ions have a relatively large ionic radius, so that compressive stress is generated in the glass substrate 1. Thereby, the strength of the glass substrate 1 is increased, and the glass substrate 1 having improved mechanical strength that is less likely to be damaged such as generation of cracks is produced.
 化学強化処理液100中に含有されるカルシウムイオンなどのアルカリ土類金属は、アルカリ金属イオンのイオン交換を阻害し、イオン交換が進みづらくする特性を有する。化学強化処理の妨げとなるアルカリ土類金属を化学強化処理液100中に敢えて含有させ、イオン交換が起きにくい条件で化学強化処理を施すことにより、圧縮応力が基板表面に集中することなく、ガラス基板1内のより深い位置まで緩やかな圧縮応力の勾配を有する圧縮応力層を形成することができる。 Alkaline earth metals such as calcium ions contained in the chemical strengthening treatment solution 100 have characteristics that inhibit ion exchange of alkali metal ions and make it difficult for ion exchange to proceed. An alkaline earth metal that hinders the chemical strengthening treatment is intentionally contained in the chemical strengthening treatment liquid 100, and the chemical strengthening treatment is performed under conditions where ion exchange is unlikely to occur. A compressive stress layer having a gentle compressive stress gradient to a deeper position in the substrate 1 can be formed.
 ガラス基板1の表層から離れた深い位置にあるアルカリ金属イオンは、その後の熱処理工程での加熱の影響を受けにくく、加熱を受けても移動しにくい。そのため、ガラス基板1の深い位置では、後工程での圧縮応力の低下が起きにくくなる。すなわち、成膜工程での高温成膜処理中における圧縮応力層の変化を抑制することができる。 The alkali metal ions at a deep position away from the surface layer of the glass substrate 1 are not easily affected by heating in the subsequent heat treatment process, and are difficult to move even when heated. Therefore, in the deep position of the glass substrate 1, the fall of the compressive stress in a post process becomes difficult to occur. That is, changes in the compressive stress layer during the high-temperature film formation process in the film formation process can be suppressed.
 なお、化学強化処理液100中に含有されるMg,Caなどのアルカリ土類金属がガラス基板1の表面に何らかの塩として析出した場合でも、その後のガラス基板1の洗浄において当該塩を落とすことができれば、後工程において問題になることはない。また、イオン交換後にガラス基板1の主表面を研磨する場合には、当然ながら当該塩による問題は何ら発生しないことになる。 In addition, even when alkaline earth metals such as Mg and Ca contained in the chemical strengthening treatment liquid 100 are precipitated as some salt on the surface of the glass substrate 1, the salt may be removed in the subsequent cleaning of the glass substrate 1. If possible, there will be no problem in the subsequent process. Further, when the main surface of the glass substrate 1 is polished after the ion exchange, naturally, no problem due to the salt occurs.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 <実施例1-3および比較例1-6>
 所定量の原料粉末を白金製るつぼに秤量して入れ、混合した後、電気炉中で1550℃に加熱し融解した。原料が充分に融解したのち、白金製の撹拌羽をガラス融液に挿入し、1時間撹拌した。その後、撹拌羽を取り出し、30分間静置した後、治具にガラス融液を流しこむことによってガラスブロックを得た。その後、各ガラスのガラス転移点付近でガラスブロックを2時間保持した後、徐冷して歪取りを行なった。得られたガラスブロックを厚み約1.5mm、外径2.5インチの円盤形状にスライスし、内周、外周を同心円としてカッターを用いて切り出した。そして、両主表面の粗研磨および精密研磨を行ない、規定の量のCaを含有させた500℃の硝酸カリウム化学強化処理液に1時間浸漬させて、イオン交換処理を行った。その後洗浄を行なうことにより、実施例および比較例の情報記録媒体用ガラス基板を作製した。
<Example 1-3 and Comparative Example 1-6>
A predetermined amount of the raw material powder was weighed into a platinum crucible, mixed, and then heated to 1550 ° C. in an electric furnace for melting. After the raw material was sufficiently melted, a platinum stirring blade was inserted into the glass melt and stirred for 1 hour. Thereafter, the stirring blade was taken out and allowed to stand for 30 minutes, and then a glass block was obtained by pouring the glass melt into a jig. Thereafter, the glass block was held in the vicinity of the glass transition point of each glass for 2 hours, and then slowly cooled to remove strain. The obtained glass block was sliced into a disc shape having a thickness of about 1.5 mm and an outer diameter of 2.5 inches, and the inner and outer circumferences were concentrically cut out using a cutter. Then, rough polishing and precision polishing of both main surfaces were performed, and ion exchange treatment was performed by immersing in a 500 ° C. potassium nitrate chemical strengthening treatment solution containing a prescribed amount of Ca for 1 hour. Thereafter, cleaning was performed to prepare glass substrates for information recording media of Examples and Comparative Examples.
 この作製した情報記録媒体用ガラス基板について、圧縮応力層の評価を行なった。イオン交換後のガラス基板から幅1mm分カットしてサンプルを取り出し、取り出したサンプルについて断面方向から圧縮応力層の厚みを評価した。測定装置はポーラリメータ(神港精機社)を使用した。 The compression stress layer was evaluated for the produced glass substrate for information recording medium. The sample was taken out from the glass substrate after ion exchange by cutting 1 mm in width, and the thickness of the compressive stress layer was evaluated from the cross-sectional direction of the taken out sample. A polarimeter (Shinko Seiki Co., Ltd.) was used as the measuring device.
 更にその後、ガラス基板に3分間600℃の条件でFe-Pt系合金の成膜処理を施してから、圧縮応力層の評価と形状検査とを行った。形状検査は、ガラス基板の変形発生の有無で判断した。変形発生の有無は、白色光干渉式表面形状測定機Optiflat(Phase Shift Technology社製)を用いてガラス基板の平坦度を測定することにより、判断した。尚、成膜前のガラス基板の平坦度はすべて5μm以下であった。 Further, after that, a film formation process of Fe—Pt alloy was performed on the glass substrate at 600 ° C. for 3 minutes, and then the compression stress layer was evaluated and subjected to shape inspection. The shape inspection was judged based on whether or not the glass substrate was deformed. The presence / absence of deformation was determined by measuring the flatness of the glass substrate using a white light interference type surface shape measuring device Optiflat (manufactured by Phase Shift Technology). The flatness of the glass substrate before film formation was all 5 μm or less.
 図7は、実施例1-3および比較例1-6の実験条件および実験結果を示す図である。図7中に示す形状検査の結果においては、平坦度5μm以下の場合を「変形無」と評価し、平坦度5μm超10μm未満の場合を「変形小」と評価し、平坦度10μm以上の場合を「変形大」と評価した。 FIG. 7 is a diagram showing experimental conditions and experimental results of Example 1-3 and Comparative Example 1-6. In the result of the shape inspection shown in FIG. 7, the case where the flatness is 5 μm or less is evaluated as “no deformation”, the case where the flatness is more than 5 μm and less than 10 μm is evaluated as “small deformation”, and the flatness is 10 μm or more. Was evaluated as “large deformation”.
 図7に示すように、化学強化処理液中のCa濃度を50ppb以上10000ppb以下とした実施例1-3では、イオン交換後に140-150μmの厚みの圧縮応力層が得られ、成膜後にも圧縮応力層の厚みは変化しなかった。一方、化学強化処理液中のCa濃度が50ppb未満の比較例1-3、および、Ca濃度が10000ppbを超える比較例4-6では、実施例1-3と比較してイオン交換後の圧縮応力層の厚みが小さく、成膜後には圧縮応力層の厚みがさらに低減していた。 As shown in FIG. 7, in Example 1-3 in which the Ca concentration in the chemical strengthening treatment solution was 50 ppb or more and 10000 ppb or less, a compressive stress layer having a thickness of 140 to 150 μm was obtained after ion exchange. The thickness of the stress layer did not change. On the other hand, in Comparative Example 1-3 in which the Ca concentration in the chemical strengthening treatment liquid is less than 50 ppb and in Comparative Example 4-6 in which the Ca concentration exceeds 10,000 ppb, the compressive stress after ion exchange is compared with Example 1-3. The thickness of the layer was small, and the thickness of the compressive stress layer was further reduced after film formation.
 実施例1-3の、成膜後に圧縮応力層の厚みに変化がないガラス基板には、形状検査において変形が見られなかった。一方、成膜後に圧縮応力層の厚みに変化があった比較例1-6のガラス基板では、形状検査によりガラス基板が変形していることが確認された。 For the glass substrate of Example 1-3 in which the thickness of the compressive stress layer did not change after film formation, no deformation was observed in the shape inspection. On the other hand, in the glass substrate of Comparative Example 1-6 in which the thickness of the compressive stress layer was changed after the film formation, it was confirmed by the shape inspection that the glass substrate was deformed.
 以上のように、化学強化処理液中に含有されるCa濃度を50ppb以上10000ppb以下として化学強化したガラス基板では、化学強化処理によって深い圧縮応力層が得られ、かつ、高温雰囲気下での成膜後にも圧縮応力層が変化することなく、ガラス基板形状にも問題がないことが示された。 As described above, in the glass substrate chemically strengthened with the Ca concentration contained in the chemical strengthening treatment liquid being 50 ppb or more and 10,000 ppb or less, a deep compressive stress layer is obtained by the chemical strengthening treatment, and the film is formed in a high temperature atmosphere. Later, the compressive stress layer did not change, and it was shown that there was no problem with the glass substrate shape.
 また、Ca以外のアルカリ土類金属であるBe,Mg,SrおよびBaについても同様に評価を行ったが、Caの場合と同様の傾向が得られた。 Further, Be, Mg, Sr and Ba, which are alkaline earth metals other than Ca, were similarly evaluated, but the same tendency as in the case of Ca was obtained.
 以上のように本発明の実施の形態について説明を行なったが、今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 As described above, the embodiment of the present invention has been described. However, it should be considered that the embodiment and example disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ガラス基板、10 情報記録媒体、30 ハードディスクドライブ、100 化学強化処理液。 1 glass substrate, 10 information recording medium, 30 hard disk drive, 100 chemical strengthening treatment liquid.

Claims (2)

  1.  磁気ヘッドの浮上量が3nm以下である熱アシスト記録方式のHDD用ガラス基板の製造方法であって、
     ガラス基板を成形する工程と、
     化学強化処理液に前記ガラス基板を接触させる工程と、を備え、
     前記化学強化処理液に含まれるアルカリ土類金属の濃度が50ppb以上10000ppb以下である、HDD用ガラス基板の製造方法。
    A method of manufacturing a glass substrate for HDD of a thermally assisted recording method in which the flying height of a magnetic head is 3 nm or less,
    Forming a glass substrate;
    A step of bringing the glass substrate into contact with a chemical strengthening treatment liquid,
    The manufacturing method of the glass substrate for HDD whose density | concentration of the alkaline-earth metal contained in the said chemical strengthening process liquid is 50 ppb or more and 10,000 ppb or less.
  2.  前記化学強化処理液の温度が450℃以上である、請求項1に記載のHDD用ガラス基板の製造方法。 The manufacturing method of the glass substrate for HDD of Claim 1 whose temperature of the said chemical strengthening process liquid is 450 degreeC or more.
PCT/JP2012/082492 2012-03-28 2012-12-14 Method for producing hdd glass substrate WO2013145461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012073873 2012-03-28
JP2012-073873 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013145461A1 true WO2013145461A1 (en) 2013-10-03

Family

ID=49258794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082492 WO2013145461A1 (en) 2012-03-28 2012-12-14 Method for producing hdd glass substrate

Country Status (1)

Country Link
WO (1) WO2013145461A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192239A (en) * 1999-12-28 2001-07-17 Asahi Techno Glass Corp Method for manufacturing strengthened glass, strengthened glass and glass substrate
JP2002121051A (en) * 2000-10-10 2002-04-23 Hoya Corp Method for producing glass substrate for information recording medium, and method for producing information recording medium
WO2004041740A1 (en) * 2002-11-07 2004-05-21 Hoya Corporation Substrate for information recording medium, information recording medium and method for manufacturing same
JP2004161537A (en) * 2002-11-13 2004-06-10 Central Glass Co Ltd Method of manufacturing chemically strengthened glass
JP2007284339A (en) * 2006-03-24 2007-11-01 Hoya Corp Method for producing magnetic disk glass substrate and method for producing magnetic disk
JP2008108412A (en) * 2006-09-29 2008-05-08 Hoya Corp Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
WO2009096120A1 (en) * 2008-01-28 2009-08-06 Asahi Glass Company, Limited Glass for substrate for data storage medium, glass substrate for data storage medium, and magnetic disk
JP2011246313A (en) * 2010-05-28 2011-12-08 Konica Minolta Opto Inc Method of manufacturing glass substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192239A (en) * 1999-12-28 2001-07-17 Asahi Techno Glass Corp Method for manufacturing strengthened glass, strengthened glass and glass substrate
JP2002121051A (en) * 2000-10-10 2002-04-23 Hoya Corp Method for producing glass substrate for information recording medium, and method for producing information recording medium
WO2004041740A1 (en) * 2002-11-07 2004-05-21 Hoya Corporation Substrate for information recording medium, information recording medium and method for manufacturing same
JP2004161537A (en) * 2002-11-13 2004-06-10 Central Glass Co Ltd Method of manufacturing chemically strengthened glass
JP2007284339A (en) * 2006-03-24 2007-11-01 Hoya Corp Method for producing magnetic disk glass substrate and method for producing magnetic disk
JP2008108412A (en) * 2006-09-29 2008-05-08 Hoya Corp Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
WO2009096120A1 (en) * 2008-01-28 2009-08-06 Asahi Glass Company, Limited Glass for substrate for data storage medium, glass substrate for data storage medium, and magnetic disk
JP2011246313A (en) * 2010-05-28 2011-12-08 Konica Minolta Opto Inc Method of manufacturing glass substrate

Similar Documents

Publication Publication Date Title
US10607647B2 (en) Magnetic disk substrate with specified changes in height or depth between adjacent raised or lowered portions and an offset portion on a main surface within a range of 92.0 to 97.0% in a radial direction from a center, a magnetic disk with substrate and magnetic disk device
US8728638B2 (en) Magnetic disk substrate, method for manufacturing the same, and magnetic disk
JP4860580B2 (en) Magnetic disk substrate and magnetic disk
JP6029740B2 (en) Glass substrate for information recording medium and information recording medium
JP5898381B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND MAGNETIC DISC DEVICE
JP5978394B2 (en) Manufacturing method of plate glass, manufacturing method of glass substrate for information recording medium, and manufacturing method of information recording medium
WO2013145461A1 (en) Method for producing hdd glass substrate
JP4771981B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2015060614A (en) Method for manufacturing glass substrate for information recording medium
JP5235916B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and magnetic disk
JP5392075B2 (en) Information recording device
WO2013047190A1 (en) Production method for glass substrate for information recording medium
WO2013001722A1 (en) Method for producing hdd glass substrate
JP6170557B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, grinding wheel
JP5714892B2 (en) Manufacturing method of glass substrate
WO2013099584A1 (en) Method of manufacturing glass substrate for information recording medium
WO2014156795A1 (en) Glass substrate for information recording media and method for producing same
WO2014103982A1 (en) Method for manufacturing glass substrate for information recording medium
JP4912929B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
WO2013001723A1 (en) Method for producing hdd glass substrate
WO2013099585A1 (en) Method for manufacturing glass substrate for information storage medium
JP2008226407A (en) Manufacturing method and chemical strengthening device of substrate for magnetic disk, and manufacturing method of magnetic disk
WO2013047288A1 (en) Production method for glass substrate for information recording medium
JP2015011733A (en) Manufacturing method of glass substrate for information recording medium
WO2013047286A1 (en) Production method for glass substrate for information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP