WO2013001723A1 - Method for producing hdd glass substrate - Google Patents

Method for producing hdd glass substrate Download PDF

Info

Publication number
WO2013001723A1
WO2013001723A1 PCT/JP2012/003664 JP2012003664W WO2013001723A1 WO 2013001723 A1 WO2013001723 A1 WO 2013001723A1 JP 2012003664 W JP2012003664 W JP 2012003664W WO 2013001723 A1 WO2013001723 A1 WO 2013001723A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass substrate
polishing
hdd
tir
Prior art date
Application number
PCT/JP2012/003664
Other languages
French (fr)
Japanese (ja)
Inventor
大士 梶田
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013001723A1 publication Critical patent/WO2013001723A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/02Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing in machines with rotary tables
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/088Flat discs

Definitions

  • the present invention relates to a method for manufacturing a glass substrate for HDD.
  • a magnetic information recording device is a device that records information on an information recording medium by using magnetism, light, magneto-optical, or the like.
  • a typical example is a hard disk drive (HDD) device.
  • a hard disk drive device is a device that magnetically records information on a magnetic disk as an information recording medium having a recording layer formed on a substrate by a magnetic head.
  • a so-called substrate a glass substrate is preferably used.
  • the hard disk drive device records information on the magnetic disk while rotating it at a high speed about several nanometers without rotating the magnetic head in contact with the magnetic disk. Furthermore, in recent years, the recording density of hard disks has been further improved, and accordingly, the difference between the magnetic head and the magnetic disk (hereinafter referred to as the head flying height) has been reduced. In particular, in a hard disk having a DFH (Dynamic Flying Height) mechanism, a head flying height of 3 nm or less has been developed. However, in the DFH mechanism, since the head flying height is extremely small, there is a frequent problem that the magnetic head and the magnetic disk collide with each other to cause a head crash.
  • DFH Dynamic Flying Height
  • a glass intermediate formed body called glass blanks is made by a direct press method in which molten glass is pressed with a mold, and the glass blanks are subjected to grinding, polishing, etc. There is a method to finish the substrate.
  • the glass substrate manufactured by this direct press method is known to be excellent in parallelism and flatness, but even if such a glass substrate is used, the problems such as the head crash described above have not been solved. .
  • Patent Document 1 the direct press method is applied and the press finishes before the temperature distribution on the press molding surface becomes uniform, or the parallelism and flatness of the glass substrate using a method of setting the press time to 2 seconds or less.
  • a technique is disclosed in which the degree is improved and brought close to the shape and dimensions of the glass substrate at the time of glass blanks.
  • these molding methods only focus on the surface shape of the glass substrate and do not take into account the internal distortion of the glass substrate, so when mounted on a hard disk having a DFH mechanism, a head crash or read / write error occurs. Was supposed to occur.
  • the present invention has been made in view of the above prior art, and is excellent in reducing head flying height, head crash, and read / write error when a glass substrate is mounted on a hard disk drive having a DFH mechanism. It aims at providing the manufacturing method of the glass substrate for HDD.
  • a method for manufacturing a glass substrate for HDD includes a method for manufacturing a glass substrate for HDD comprising a molten glass supply step, a press molding step, a heat treatment step, a coring step, a grinding step, a polishing step, and a cleaning step.
  • a is, 1.0 nm in the coring step, when the radius of the glass blank before the grinding process was r 1, the circumferential direction one round of the retardation TIR at the position of 0.75 r 1 from the center of the glass blank It is characterized by the following adjustment.
  • FIG. 1 is a schematic view showing an example of a molding die for glass blanks and a press machine.
  • FIG. 2 is a perspective view of a rotary table on which a glass blank forming press is disposed.
  • FIG. 3 is a schematic diagram for explaining a molten glass supply step for supplying molten glass to a lower mold of a glass blank forming mold.
  • FIG. 4 is a schematic view showing a pressurizing step of pressurizing the molten glass with a glass blanks molding die.
  • FIG. 5 is a schematic view of glass blanks after the coring step.
  • FIG. 6 is a schematic view showing an example of a glass substrate for HDD manufactured by the method for manufacturing a glass substrate for HDD of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing an example of a polishing apparatus used in a rough polishing step and a precision polishing step in the method for manufacturing a glass substrate for HDD according to the present embodiment.
  • FIG. 8 is a partial cross-sectional perspective view showing a magnetic disk which is an example of a magnetic recording medium using the glass substrate for HDD manufactured by the method for manufacturing the glass substrate for HDD according to the present embodiment.
  • the inventors of the present invention focused on the circumferential strain of glass blanks produced by the direct press method (hereinafter referred to as “circumferential retardation TIR”) and conducted extensive studies.
  • the manufacturing method of the glass substrate for HDD of this embodiment is a manufacturing method of the glass substrate for HDD provided with a molten glass supply process, a press molding process, a heat treatment process, a coring process, a grinding process, a polishing process, and a washing process, in the coring step, when the radius of the glass blank before the grinding process was r 1, to adjust the center of the glass blank in the circumferential direction one round of the retardation TIR at the position of 0.75 r 1 below 1.0nm It is characterized by that.
  • Examples of the method for producing a glass substrate for HDD include a method including a molten glass supply process, a press molding process, a heat treatment process, a coring process, a grinding process, a polishing process, and a cleaning process. And it is preferable to employ
  • an end surface polishing step may be employed between the grinding step and the polishing step.
  • the cleaning process may be employed after the rough polishing process, may be employed after the precision polishing process, or may be employed after the rough polishing process and the precision polishing process.
  • the manufacturing method of this invention manufactures the glass blanks which are the intermediate molded objects of the glass substrate for HDD by the direct press method. These glass blanks are generally manufactured by supplying molten glass and press-molding while cooling the molten glass. In the glass blank manufacturing method of the present invention, in addition to the above steps, if necessary, heat treatment is performed to correct the flatness of the glass blanks and remove internal distortion.
  • FIG. 1 is a schematic diagram of a mold and a press for producing the glass blanks of the present invention by press molding.
  • the press 1 for forming glass blanks is supplied with molten glass, and includes a lower mold 5 and a lower part 7 having a first molding surface 6 for pressurizing the supplied molten glass, and a lower mold 5. It has an upper die 3 and a press machine upper part 2 provided with a second molding surface 4 for pressurizing molten glass with one molding surface 6.
  • FIG. 2 is a perspective view showing a mechanism in which glass blanks are press-molded by the press machine lower part 7 and the press machine upper part 2 arranged on the rotary table 9.
  • the press machine lower part 7 is embedded in the rotary table 9 side by side in the circumferential direction.
  • the rotary table 9 is provided so as to be able to be driven to rotate around the rotary shaft 8 at a specific speed v (m / s).
  • the lower mold 5 of the mold is installed on the lower part 7 of the press machine.
  • the molten glass 23 is supplied to the lower mold 5 by the outflow nozzle 21.
  • the lower mold 5 supplied with the molten glass 23 is transferred by the rotary table 9 together with the press machine lower part 7.
  • the upper mold 3 installed in the upper part 2 of the press machine at another position is lowered to the position of the lower mold 5 and presses the molten glass 23.
  • a plurality of heaters are installed inside the mold.
  • the heater is preferably arranged in one or more rounds and concentrically so as to be arranged at a uniform angle in the circumferential direction in terms of easy temperature control of the mold.
  • a plurality of heaters may or may not be disposed in the press machine lower part 7 in the same manner as the press machine upper part 2.
  • the heater is preferably arranged in the lower part 7 of the press depending on the pressurizing time to be pressed.
  • the manufacturing process of the glass blanks in the present invention mainly includes a molten glass supply process for supplying molten glass to the first molding surface 6 formed on the lower mold 5 and a second molding surface formed on the upper mold 3. 4 and a pressurizing step of obtaining glass blanks by cooling the molten glass supplied to the first molding surface 6 while pressurizing it.
  • a molten glass supply process is a process of supplying molten glass to the 1st shaping
  • FIG. 3 is a schematic diagram showing the lower mold 5 and the molten glass 23 in the molten glass supply process. First, the molten glass 23 flows out from the outflow nozzle 21 and is supplied to the lower mold 5 (FIG. 3A).
  • the viscosity ⁇ of the molten glass 23 immediately after being supplied satisfies the condition of log 10 ⁇ > 2.6 dPa ⁇ s.
  • the viscosity ⁇ satisfies such a condition
  • the rotation speed of the turntable 9 is within a specific range
  • the glass gob rotates without breaking its shape and can be press-molded.
  • the glass blanks have a small internal strain.
  • the viscosity ⁇ satisfies the condition of log 10 ⁇ ⁇ 2.6 dPa ⁇ s
  • the glass gob may break the shape.
  • there is a possibility that the distortion in the circumferential direction of the glass blanks after press molding may be decentered or uneven in the circumferential direction.
  • the blade 22 cuts the molten glass 23 and separates the molten glass 23 (FIG. 3B).
  • the molten glass 23 supplied in the molten glass supply step comes into contact with the center portion of the first molding surface 6 (see FIG. 4), and cooling starts mainly by heat radiation from the center.
  • the lower mold 5 is temperature-controlled and heated to a predetermined temperature in advance.
  • Tg glass transition temperature of the molten glass 23
  • the glass molding needs to be performed in a temperature range from Tg to Tg ⁇ 100 (° C.).
  • Tg-100 ° C.
  • the flatness of the glass substrate deteriorates, wrinkles are generated on the transfer surface, and damage due to thermal shock occurs.
  • Tg + 100 ° C.
  • the temperature of the lower mold 5 is controlled so that the molten glass 23 becomes Tg ⁇ 100 (° C.).
  • the temperature of the upper mold 3 also needs to be controlled.
  • the upper mold 3 is heated in the same range as the temperature of the lower mold 5 described above.
  • the heating means of the lower mold 5 and the upper mold 3 are heaters embedded in the press machine in contact with them.
  • the set temperature of the heater can be adjusted to a predetermined temperature.
  • a cartridge heater and a burner are preferably used as the mold heating means.
  • the cartridge heater is particularly preferable because it is not affected by the atmosphere and the temperature control of the mold is simpler.
  • the method of reducing the retardation TIR in the circumferential direction of the glass blanks is not limited to the method of arranging the plurality of heaters in the circumferential direction inside the press machine, and the glass blanks are directly changed by changing the mold material in the circumferential direction.
  • a method for controlling the temperature, a method for managing the pressure applied to the press machine in the circumferential direction, and the like can be employed.
  • the glass blanks are cooled by pressurizing the molten glass 23 supplied to the first molding surface 6 on the first molding surface 6 and the second molding surface 4 formed on the upper mold 3.
  • 10 is a step of obtaining 10.
  • FIG. 4 is a schematic diagram showing the glass blanks molding die 1 and the glass blanks 10 in the pressurizing step.
  • the lower mold 5 to which the molten glass 23 (see FIG. 3A) is supplied in the molten glass supply process rotates the rotary table to a position facing the upper mold 3 at a speed of 0.3 m / s or less. If the speed of the rotary table exceeds 0.3 m / s, the glass gob may lose its shape, and the distortion in the circumferential direction after press molding may be eccentric, or the circumferential direction may be uneven.
  • the molten glass is pressurized with the first molding surface 6 of the lower mold 5 and the second molding surface 4 of the upper mold 3.
  • the molten glass 23 spreads by pressurization and contacts the peripheral portion of the first molding surface 3.
  • the molten glass 23 is cooled and solidified by dissipating heat from the contact surface with the first molding surface 3 and the second molding surface 4, thereby forming the glass blanks 10.
  • the upper mold 3 is heated to a predetermined temperature in the same manner as the lower mold 5.
  • the heating temperature and heating means are the same as in the case of the lower mold 5 described above.
  • the heating temperature may be the same as or different from the lower mold 5.
  • a pressurizing means for applying a load to the lower mold 5 and the upper mold 3 to pressurize the molten glass a known pressurizing means can be appropriately selected and used.
  • the pressurizing means for example, an air cylinder, a hydraulic cylinder, an electric cylinder using a servo motor, or the like can be used.
  • the upper mold 3 is separated from the glass blanks 10, and the glass blanks 10 are taken out from the lower mold 5 with an adsorbing member or the like.
  • the heat treatment step is a step of performing heat treatment for the purpose of correcting flatness and removing internal strain.
  • the heat treatment is performed by using a setter (alumina, zirconia, etc.), and alternately stacking with glass blanks and putting them in a heat treatment furnace.
  • the heat treatment of the glass blank needs to be performed in a temperature range of Tg to Tg + 100 (° C.).
  • Tg temperature range of glass blanks
  • Tg + 100 ° C.
  • a particularly preferable temperature range for correcting the flatness and removing the internal strain is Tg to Tg + 70 ° C.
  • the coring step is a step of forming a glass blank (perforated blanks material) by forming an inner hole (through hole) using a diamond core drill at the center of the surface of the blanks material obtained by the above-described step. It is.
  • the center of the glass blanks is determined by this coring process.
  • a glass blank shall mean the glass molding before finishing a coring process and performing the grinding process of a main plane.
  • FIG. 5 the top view which looked at the glass blanks 10 obtained by the said process from one surface is shown.
  • the radius from the center of the glass blank 10 is r 1 and the radius of the inner hole is r 0 .
  • r 1 the radius of 0.75 r 1 measured in retardation TIR measurement method described later by the one-dot chain line
  • a two-dot chain line the position of (2r 0 + r 1) / 3.
  • the retardation TIR is an index representing the strain (internal strain) of the glass molded product (glass blank 10).
  • PA-100 manufactured by Photonics Lattice
  • PA-100 was used for distortion at a point of 0.75r 1 and (2r 0 + r 1 ) / 3 from the central hole of the glass blank.
  • the circumferential retardation TIR When the circumferential retardation TIR is set to 1.0 nm or less, it becomes easy to cope with low head flying and high-speed rotation in an HDD incorporating the obtained glass substrate, and recording and reproduction can be performed stably.
  • the circumferential retardation TIR is preferably 0.5 nm or less. Further, if the circumferential retardation TIR is larger than 1.0 nm, the shape of the obtained glass substrate becomes unstable, and it becomes difficult to stably control the distance between the head of the HDD and the recording medium. There is a risk that write errors will increase, and in some cases, recording / playback may become impossible due to contact between the head and the recording medium.
  • the linear velocity of the head is different between the inside and the outside of the recording medium, and the lift force acts on the head due to the air flow generated by the high-speed rotation of the disk. For this reason, since the flying height of the head is reduced inside the disk, the inner portion of the glass molded product 10 is required to further reduce the circumferential direction TIR than the outer portion.
  • the head flying in the HDD using the glass substrate obtained when the retardation TIR for one circumference in the circumferential direction at the position (2r 0 + r 1 ) / 3 from the center of the glass molding is 0.5 nm or less can be reduced. It is preferable because it is easy to cope with high-speed rotation and recording / reproduction can be performed stably, and more preferably 0.3 nm or less.
  • the retardation TIR at the position is larger than 0.5 nm, it is difficult to stably control the distance between the head and the recording medium in the HDD using the obtained glass substrate, and read / write errors increase. In some cases, recording / reproduction may be impossible due to contact between the head and the recording medium.
  • the circumferential retardation TIR is created within a predetermined range when forming the glass blanks, the circumferential TIR of the glass substrate for HDD manufactured through the subsequent steps can be reduced.
  • the circumferential direction TIR can be controlled by controlling the strain in the circumferential direction before the grinding / polishing step, that is, in the state of the glass blank.
  • the circumferential direction TIR is an index representing the variation in flatness when the flatness of the glass substrate is measured once in the circumferential direction, unlike the above-described circumferential retardation TIR.
  • the circumferential direction TIR is a method of measuring the surface shape using interference of white light (for example, a method of measuring using Phase Shift Technology Optiflat) or a laser beam obliquely with respect to the surface to be measured. Can be obtained with a higher reflectivity than the normal incidence method, and can be measured even on rough surfaces (for example, a measurement method using Flatmaster FM100XRA manufactured by TROPE). Good.
  • the glass substrate for HDD can be manufactured by adding the grinding process, the grinding
  • FIG. 6 is a diagram showing an example of a glass substrate for HDD manufactured by the method for manufacturing a glass substrate for HDD of the present invention.
  • 6A is a perspective view
  • FIG. 6B is a cross-sectional view.
  • the glass substrate 30 for HDD is a disk-shaped glass substrate in which a center hole 33 is formed, and has a main surface 31, an outer peripheral end surface 34, and an inner peripheral end surface 35.
  • Chamfered portions 36 and 37 are formed on the outer peripheral end surface 34 and the inner peripheral end surface 35, respectively.
  • the grinding step is a step of processing the glass substrate into a predetermined plate thickness. Specifically, the process etc. which grind
  • examples of the first grinding step include a step of making the glass substrate have a substantially uniform flatness.
  • the second grinding step includes a step of grinding the roughened main surface of the glass substrate using a fixed abrasive polishing pad.
  • a roughened glass substrate is set in a grinding device, and a three-dimensional fixed abrasive with a surface pattern such as diamond tile is used, so that the glass substrate The surface can be ground.
  • the surface roughness Ra of the glass substrate used in the polishing process performed by the second grinding process is preferably 0.10 ⁇ m or less, and more preferably 0.05 ⁇ m or less.
  • the grinding step is usually performed after producing glass blanks, but may be performed after the coring step or may be performed a plurality of times.
  • the rough polishing step is a step of rough polishing the surface of the glass substrate that has been subjected to the grinding step. This rough polishing is intended to remove scratches and distortions remaining in the above-described grinding process, and is performed using the following polishing method.
  • the surface to be polished in the rough polishing step is a main surface and / or an end surface.
  • the main end surface is a surface parallel to the surface direction of the glass substrate.
  • the end surface is a surface composed of an inner peripheral end surface and an outer peripheral end surface.
  • an inner peripheral end surface is a surface which has an inclination with respect to the surface of an inner peripheral side perpendicular
  • the outer peripheral end surface is a surface that is inclined on the outer peripheral side, the surface perpendicular to the surface direction of the glass substrate and the surface direction of the glass substrate.
  • the polishing apparatus used in the rough polishing step is not particularly limited as long as it is a polishing apparatus used for manufacturing a glass substrate.
  • a polishing apparatus 11 as shown in FIG. FIG. 7 is a schematic cross-sectional view showing an example of the polishing apparatus 11 used in the rough polishing step and the precision polishing step in the method for manufacturing a glass substrate for HDD according to this embodiment.
  • the polishing apparatus 11 includes an apparatus main body 11a and a polishing liquid supply unit 11b that supplies a polishing liquid to the apparatus main body 11a.
  • the apparatus main body 11a includes a disk-shaped upper surface plate 12 and a disk-shaped lower surface plate 13, and they are arranged at intervals in the vertical direction so that they are parallel to each other. Then, the upper surface plate 12 and the lower surface plate 13 rotate in opposite directions.
  • a polishing pad 15 for polishing both the front and back surfaces of the glass blanks 10 is attached to each of the opposing surfaces of the upper surface plate 12 and the lower surface plate 13.
  • the polishing pad 15 used in this rough polishing process is not particularly limited. Specifically, for example, a hard polishing pad made of polyurethane or the like can be used as the polishing pad 15.
  • a plurality of rotatable carriers 14 are provided between the upper surface plate 12 and the lower surface plate 13.
  • the carrier 14 is provided with a plurality of base plate holding holes 51, and the glass blanks 10 can be fitted and disposed in the base plate holding holes 51.
  • the carrier 14 may include 100 base plate holding holes 51 so that 100 glass blanks 10 can be fitted and arranged. If it does so, 100 glass blanks 10 can be processed by one process (1 batch).
  • the carrier 14 sandwiched between the upper surface plate 12 and the lower surface plate 13 via the polishing pad 15 holds the plurality of glass blanks 10 and rotates with respect to the rotation centers of the upper surface plate 12 and the lower surface plate 13. Revolve in the same direction as the lower surface plate 13.
  • the disk-shaped upper surface plate 12 and the disk-shaped lower surface plate 13 can be operated by separate driving.
  • the polishing slurry 16 is supplied between the upper surface plate 12 and the glass blanks 10 and between the lower surface plate 13 and the glass blanks 10, thereby the glass blanks 10. Rough polishing can be performed.
  • the polishing slurry supply unit 11b includes a liquid storage unit 110 and a liquid recovery unit 120.
  • the liquid reservoir 110 includes a liquid reservoir main body 110a and a liquid supply pipe 110b having a discharge port 110e extending from the liquid reservoir main body 110a to the apparatus main body 11a.
  • the liquid recovery unit 120 includes a liquid recovery unit main body 120a, a liquid recovery pipe 120b extended from the liquid recovery unit main body 120a to the apparatus main body 11a, and a liquid extended from the liquid recovery unit main body 120a to the liquid storage unit 110. And a return pipe 120c.
  • the polishing slurry 16 put in the liquid storage unit main body 110a is supplied from the discharge port 110e of the liquid supply pipe 110b to the apparatus main body part 11a, and from the apparatus main body part 11a via the liquid recovery pipe 120b, the liquid recovery part main body 120a.
  • the recovered polishing slurry 16 is returned to the liquid storage part 110 via the liquid return pipe 120c and can be supplied again to the apparatus main body part 11a.
  • polishing pad 15 used here is a foam of synthetic resin such as urethane or polyester containing a cerium oxide abrasive.
  • the polishing agent used in the polishing step performed before the chemical strengthening treatment step increases the polishing rate and sufficiently smoothes the polished glass substrate when the CeO 2 content is high and the alkaline earth metal content is low. It is thought that it can be increased. Also for the polishing pad, as in the case of the above-mentioned abrasive, by using a material containing a large amount of CeO 2 and a small amount of alkaline earth metal, the polishing rate is increased and the smoothness of the glass substrate after polishing is improved. It is thought that it can be sufficiently increased.
  • the use of an abrasive having a high CeO 2 content is considered to be due to the following reasons that the polishing rate can be increased and the smoothness of the polished glass substrate can be sufficiently enhanced.
  • the Si—O bonds existing on the surface of the glass substrate are replaced with Ce—O bonds. Conceivable. This bond is easily decomposed, but it is considered that the bond with Si is difficult to form again. Therefore, it is considered that when an abrasive having a high CeO 2 content is used, the polishing rate can be increased and the smoothness of the polished glass substrate can be sufficiently increased.
  • an abrasive and a polishing pad having a high CeO 2 content and a low alkaline earth metal content not only the smoothness can be sufficiently improved, but also a glass substrate after polishing. It is considered that the adhesion of alkaline earth metal to is suppressed. It is considered that uniform chemical strengthening is achieved by applying a chemical strengthening treatment step to such a glass substrate in which adhesion of alkaline earth metal is suppressed.
  • the alkaline earth metal When polishing with a polishing liquid in which the abrasive is dispersed in water, the alkaline earth metal is dissolved even when the alkaline earth metal is contained in the water. It is considered that the alkaline earth metal contained in the abrasive is less likely to adhere to the surface and is likely to adhere to the surface of the glass substrate. Therefore, it is considered that the adhesion of alkaline earth metal to the glass substrate after polishing can be sufficiently suppressed by using an abrasive with less alkaline earth metal.
  • the CeO 2 content is preferably as high as possible. Namely, rare earth oxide contained in the abrasive, it is preferred that all are CeO 2. This is considered to be because CeO 2 has the most influence on the polishing properties of the glass substrate. Further, the lower the alkaline earth metal content, the better. If the alkaline earth metal contained in the abrasive is small, it is considered that inhibition of the chemical strengthening treatment process by the alkaline earth metal is suppressed.
  • the content of CeO 2 is, to the abrasive total amount is preferably 90 mass% or more.
  • the glass substrate for HDD excellent in impact resistance can be manufactured, the polishing rate can be further increased, and the glass substrate for HDD having higher smoothness can be manufactured.
  • the content of alkaline earth metal that can hinder the chemical strengthening treatment process is small, and the content of CeO 2 that improves the polishing property is simply large relative to the rare earth oxide contained in the abrasive. Rather, it is thought to be due to the fact that the amount is large relative to the total amount of abrasive.
  • the polishing liquid is in a state where the acidic polishing agent is dispersed in a solvent such as water, and the content of CeO 2 is 3 to 15% by mass with respect to the total amount of the polishing liquid. Is preferred.
  • the glass substrate for HDD excellent in impact resistance can be manufactured, the polishing rate can be further increased, and the glass substrate for HDD having higher smoothness can be manufactured.
  • the polishing liquid in which the abrasive is dispersed in water as described above, since the alkaline earth metal is dissolved even if the alkaline earth metal is contained in the water, the glass substrate It is considered that the alkaline earth metal contained in the abrasive is likely to adhere to the surface of the glass substrate. Therefore, it is considered that the use of an abrasive having a small amount of alkaline earth metal can sufficiently suppress the adhesion of alkaline earth metal to the polished glass substrate.
  • the abrasive has a maximum particle size distribution measured by the laser diffraction scattering method of 3.5 ⁇ m or less, and a cumulative 50 volume% diameter D50 in the particle size distribution measured by the laser diffraction scattering method is 0.4 to 0.4. It is preferable that it is 1.6 ⁇ m.
  • the polishing rate tends to decrease.
  • the particle size of the abrasive is too large, scratches that can be formed on the glass substrate by polishing tend to occur.
  • the maximum value in the particle size distribution measured by the laser diffraction scattering method is a cumulative curve obtained by setting the total volume of the powder population obtained by measurement with a laser diffraction particle size distribution measuring apparatus as 100%. It means the particle diameter of the point that is the maximum value of the curve. D50 means the particle diameter at which the cumulative curve is 50% when the total volume of the powder population obtained by measurement with a laser diffraction particle size distribution measuring device is 100%, and the cumulative curve is 50%. To do.
  • the polishing liquid is preferably a polishing liquid having a fluorine content of 5% by mass or less in the rough polishing step.
  • the polishing pad 15 can contain zirconium silicate, zirconium oxide, manganese oxide, iron oxide, aluminum oxide, silicon carbide, or silicon dioxide in addition to cerium oxide.
  • zirconium silicate is used. It is more preferable to make it contain.
  • the blending amount of cerium oxide in the polishing pad is preferably 10 to 30% by mass and more preferably 15 to 25% by mass with respect to the total amount of the polishing pad.
  • the polishing pad according to the present embodiment is manufactured by the following method, for example.
  • a resin solution and abrasive grains are mixed to produce an abrasive dispersion.
  • the abrasive dispersion is cured using a molding die to form a plate-like block in which the abrasive grains are fixed inside and on the surface. Subsequently, after the block is taken out of the mold, both sides of the block are ground and processed to a predetermined thickness.
  • the resin solution and the abrasive grains are mixed, and this mixed liquid is depressurized and defoamed to produce a foam-free abrasive dispersion.
  • the foam-free abrasive dispersion is cured using a mold to form a plate-like block in which the abrasive grains are fixed inside and on the surface of the non-foamed body. Subsequently, after the block is taken out from the mold, both sides of the block are ground and processed to a predetermined thickness.
  • the precision polishing process is a mirror polishing process that finishes a smooth mirror surface having a surface roughness (Rmax) of about 6 nm or less, for example, while maintaining the flat and smooth main surface obtained in the rough polishing process.
  • This precision polishing step is performed, for example, by using a polishing apparatus similar to that used in the rough polishing step and replacing the polishing pad from a hard polishing pad to a soft polishing pad.
  • the surface to be polished in the precision polishing step is the main surface, similar to the surface to be polished in the rough polishing step.
  • an abrasive that causes less scratching even if the polishing performance is lower than that used in the rough polishing process is used.
  • an abrasive containing silica-based abrasive grains (colloidal silica) having a particle diameter lower than that of the abrasive used in the rough polishing step is used.
  • the average particle diameter of the silica-based abrasive is preferably about 20 nm.
  • polishing agent is supplied to a glass substrate, a polishing pad and a glass substrate are slid relatively, and the surface of a glass substrate is mirror-polished.
  • the surface roughness Ra of the HDD glass substrate after the precision polishing step is preferably 0.1 to 5 mm. If it is in such a range, while having the smoothness required as a glass substrate for a magnetic recording medium, the head is prevented from adsorbing on an excessively smooth magnetic disk, and the head is configured as a hard disk drive device. Can be stably levitated.
  • the cleaning step is a step of cleaning the glass substrate that has been subjected to the rough polishing step or the precise polishing step.
  • the glass substrate after the rough polishing by the rough polishing step is preferably cleaned by a cleaning step.
  • the glass substrate is washed with an alkaline detergent having a pH of 13 or more, and the glass substrate is rinsed.
  • the glass substrate is washed with an acid detergent having a pH of 1 or less, and the glass substrate is rinsed.
  • the glass substrate is cleaned using a hydrofluoric acid (HF) solution.
  • HF hydrofluoric acid
  • the abrasive is first dispersed and removed with an alkaline detergent, then the abrasive is dissolved and removed with an acid detergent, and finally the glass substrate is etched with HF to remove the abrasive that is deeply stuck in the glass substrate. It is.
  • the washing step is preferably performed in separate tanks for alkali washing, acid washing, and HF washing.
  • efficient washing may not be possible.
  • the acid detergent and HF are put in the same tank, the etching rate of HF decreases at a place where there is a lot of abrasive, so that there is a tendency that the inside of the substrate cannot be etched uniformly.
  • a surfactant, a dispersing agent, a chelating agent, a reducing material, and the like may be added to these detergents.
  • it is preferable to apply an ultrasonic wave to each washing tank and to use deaerated water for each detergent.
  • the glass substrate is immersed in a cleaning solution containing 1% by mass of HF and 3% by mass of sulfuric acid. At that time, an ultrasonic vibration of 80 kHz is applied to the cleaning liquid. Thereafter, the glass substrate is taken out. And the taken-out glass substrate is immersed in a neutral detergent liquid. At that time, 120 kHz ultrasonic vibration is applied to the neutral detergent solution. Finally, the glass substrate is taken out, rinsed with pure water, and dried IPA.
  • the glass substrate after the cleaning step the alkaline earth metal remaining on the surface thereof, is preferably 10 ng / cm 2 or less, more preferably 5 ng / cm 2 or less.
  • the glass substrate for hard disks excellent in impact resistance can be obtained. This is considered to be due to the small amount of alkaline earth metal adhering to the surface of the glass substrate subjected to the chemical strengthening treatment step, which can inhibit the chemical strengthening treatment step. Therefore, it is considered that chemical strengthening occurs uniformly on the entire surface of the glass substrate, and a glass substrate for hard disk that is superior in impact resistance can be obtained. That is, if there is too much alkaline earth metal remaining on the surface of the glass substrate after the cleaning step, the chemical strengthening treatment step is not suitably performed, and the impact resistance of the obtained glass substrate cannot be sufficiently increased. There is a case.
  • the glass substrate after the rough polishing is washed so that the amount of cerium oxide on the surface of the glass substrate is 0.125 ng / cm 2 or less.
  • the amount of cerium oxide on the surface of the glass substrate is too large, there is a tendency that the flatness of the glass substrate cannot be improved.
  • the chemical strengthening treatment step includes, for example, a step of immersing a glass substrate in a chemical strengthening treatment solution.
  • a chemical strengthening layer can be formed in the surface of a glass substrate, for example, a 5 micrometer area
  • a chemical strengthening layer By forming a chemical strengthening layer, impact resistance, vibration resistance, heat resistance, etc. can be improved.
  • alkali metal ions such as lithium ions and sodium ions contained in the glass substrate are potassium ions having a larger ion radius. It is carried out by an ion exchange method that substitutes alkali metal ions such as. Due to the strain caused by the difference in ion radius, compressive stress is generated in the ion-exchanged region, and the surface of the glass substrate is strengthened.
  • the chemical strengthening treatment step in the present invention may be performed after the coring step, after the grinding step, after the rough polishing step, or after the precision polishing step, and may be performed a plurality of times depending on the composition of the glass. Good.
  • this invention is applied especially suitably.
  • the reinforcing layer is suitably formed by this chemical strengthening treatment step by using a raw material having the following glass composition as the raw material of the glass substrate.
  • Glass composition SiO 2 : 55 to 75% by mass, Al 2 O 3 : 5 to 18% by mass, Li 2 O: 1 to 10% by mass, Na 2 O: 3 to 15% by mass, K 2 O: 0.1 to 5% by mass, However, the total amount of Li 2 O + Na 2 O + K 2 O: 10 to 25% by mass, MgO: 0.1 to 5% by mass, CaO: 0.1 to 5% by mass, ZrO 2 : 0 to 8% by mass
  • the content of Na 2 O is large, and the sodium ions of this Na 2 O are added to the chemical strengthening treatment liquid. It is thought that it is easily exchanged for contained potassium ions.
  • the polishing agent used in the polishing step before the chemical strengthening treatment step here the rough polishing step, is an abrasive having the above composition, the alkaline earth metal adhering to the surface of the glass substrate is used. The amount is small and the chemical strengthening is considered to be uniform. Therefore, a glass substrate excellent in impact resistance can be produced by performing a precision polishing step on a glass substrate that has been subjected to suitable chemical strengthening as in this embodiment.
  • the chemical strengthening treatment liquid is not particularly limited as long as it is a chemical strengthening treatment liquid used in the chemical strengthening treatment step in the method of manufacturing a glass substrate for hard disk.
  • a chemical strengthening treatment liquid for example, a melt containing potassium ions, a melt containing potassium ions or sodium ions, or the like can be used.
  • melts obtained by melting potassium nitrate, sodium nitrate, potassium carbonate, sodium carbonate, and the like examples include melts obtained by melting potassium nitrate, sodium nitrate, potassium carbonate, sodium carbonate, and the like.
  • a mixed solution obtained by mixing approximately the same amount of a melt obtained by melting potassium nitrate and a melt obtained by melting sodium nitrate is preferable.
  • FIG. 8 is a partial cross-sectional perspective view showing a magnetic disk as an example of a magnetic recording medium using a glass substrate for HDD manufactured by the manufacturing method according to the present embodiment.
  • the magnetic disk D includes a magnetic film 102 formed on the main surface of a circular HDD glass substrate 101.
  • the magnetic film 102 can be formed by a known conventional means.
  • the magnetic film 102 is formed by, for example, a forming method (spin coating method) in which a thermosetting resin in which magnetic particles are dispersed is spin-coated on the HDD glass substrate 101, or a HDD glass substrate 101.
  • It can be formed by a formation method (sputtering method) for forming the magnetic film 102 by sputtering, a formation method (electroless plating method) for forming the magnetic film 102 by electroless plating on the glass substrate 101 for HDD, or the like. .
  • the thickness of the magnetic film 102 is about 0.3 to 1.2 ⁇ m when formed by spin coating, and about 0.04 to 0.08 ⁇ m when formed by sputtering. When formed by electrolytic plating, the thickness is about 0.05 to 0.1 ⁇ m. From the viewpoint of thinning and densification, it is preferably formed by sputtering or electroless plating.
  • the magnetic material used for the magnetic film 102 can be any known material and is not particularly limited.
  • the magnetic material is preferably, for example, a Co-based alloy based on Co having high crystal anisotropy in order to obtain a high coercive force, and Ni or Cr added for the purpose of adjusting the residual magnetic flux density.
  • the magnetic material may be CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, CoNiPt, CoNiCrPt, CoNiCrTa, CoCrPtB, CoCrPtSiO, or the like whose main component is Co.
  • the magnetic film 102 has a multilayer structure (for example, CoPtCr / CrMo / CoPtCr, CoCrPtTa / CrMo / CoCrPtTa, etc.) divided by a nonmagnetic film (for example, Cr, CrMo, CrV, etc.) in order to reduce noise.
  • a multilayer structure for example, CoPtCr / CrMo / CoPtCr, CoCrPtTa / CrMo / CoCrPtTa, etc.
  • ferrite or iron - may be a rare earth, also, Fe in a non-magnetic film made of SiO 2, BN, etc., Co, FeCo, CoNiPt and the like
  • a granular material having a structure in which the magnetic particles are dispersed may be used.
  • either an inner surface type or a vertical type recording format may be used for recording on the magnetic film 102.
  • the surface of the magnetic film 102 may be thinly coated with a lubricant.
  • a lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a freon-based solvent.
  • an underlayer or a protective layer may be provided for the magnetic film 102.
  • the underlayer in the magnetic disk D is appropriately selected according to the magnetic film 102.
  • the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • the material of the underlayer is preferably Cr alone or a Cr alloy from the viewpoint of improving magnetic characteristics.
  • the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked.
  • Examples of such an underlayer having a multilayer structure include multilayer underlayers such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, and NiAl / CrV.
  • Examples of the protective layer that prevents wear and corrosion of the magnetic film 102 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be continuously formed with the underlayer and the magnetic film 102 by an in-line sputtering apparatus. These protective layers may be a single layer, or may be a multi-layer structure composed of the same or different layers.
  • a SiO 2 layer may be formed on the Cr layer.
  • Such a SiO 2 layer is formed by dispersing and applying colloidal silica fine particles in a tetraalkoxysilane diluted with an alcohol-based solvent on the Cr layer and further baking.
  • the HDD glass substrate 101 is formed with the above-described composition, so that information can be recorded and reproduced with high reliability over a long period of time. Can do.
  • the HDD glass substrate 101 in this embodiment is used as a magnetic recording medium.
  • the present invention is not limited to this, and the HDD glass substrate 101 in this embodiment is a magneto-optical disk. It can also be used for optical discs and the like.
  • the manufacturing method of the glass substrate for HDD by one aspect of this invention is a manufacturing method of the glass substrate for HDD provided with a molten glass supply process, a press molding process, a heat treatment process, a coring process, a grinding process, a polishing process, and a washing process.
  • Te in the coring process, the radius of the glass blank before the grinding process when the r 1, the circumferential direction one round of the retardation TIR at the position of 0.75 r 1 from the center of the glass blanks below 1.0nm It is characterized by adjusting.
  • the method for producing a glass substrate for HDD of the present invention it is possible to provide a method for producing a glass substrate for HDD which is excellent in reducing the head flying height, reducing head crashes and read / write errors.
  • the retardation TIR for one round in the circumferential direction at a position (2r 0 + r 1 ) / 3 from the center of the glass molded product is 0.5 nm or less. It is preferable to adjust to.
  • the present invention can easily cope with low head flying and high-speed rotation in an HDD using the obtained glass substrate, and can stably perform recording and reproduction. .
  • the present invention can further produce a glass substrate for hard disk having more excellent impact resistance by providing a chemical strengthening treatment step.
  • the viscosity of the molten glass immediately after supplying the molten glass in the molten glass supply step eta is, satisfies the condition of log 10 ⁇ > 2.6dPa ⁇ s
  • the press machine is arranged in the press molding process It is preferable to adjust the rotation speed of the rotary table to 0.3 m / s or less.
  • the glass gob can be rotated and pressed without breaking the shape, and the internal distortion of the obtained glass blanks can be reduced.
  • the circumferential direction TIR of the glass substrate manufactured by subjecting the glass blanks after the retardation TIR measurement to a grinding process, a polishing process, and a cleaning process was measured.
  • both main surfaces of the glass blanks were roughly polished using a double-side polishing machine (Hamai Sangyo Co., Ltd., 16B type).
  • a polishing pad in which diamond abrasive grains having an average primary particle diameter of 9 ⁇ m were embedded in a resin pad was used, and water and coolant mixed at 9: 1 were used as polishing water.
  • the weight was 200 g / cm 2 .
  • the amount of abrasive slurry added was 4.5 L / min.
  • a circular center hole having a diameter of about 19.6 mm was formed in the center of the blank using a core drill equipped with a cylindrical diamond grindstone. Using a drum-shaped diamond grindstone, the outer peripheral end surface and the inner peripheral end surface of the blanks were processed to have an inner diameter and an outer diameter of 65 mm in outer diameter and 20 mm in inner diameter.
  • polishing step 100 blanks were stacked, and in this state, the outer peripheral end surface and the inner peripheral end surface of the blanks were polished using an end surface polishing machine (manufactured by Hadano Machinery Co., Ltd., TKV-1). Nylon fiber having a diameter of 0.2 mm was used as the brush hair of the polishing machine.
  • polishing liquid a slurry containing cerium oxide having an average primary particle diameter of 3 ⁇ m as abrasive grains (polishing liquid component) was used.
  • both main surfaces of the glass substrate were subjected to rough polishing using a double-side polishing machine (manufactured by Hamai Sangyo Co., Ltd., 16B type).
  • the polishing pad was a urethane foam pad
  • the abrasive grains were cerium oxide abrasive grains having an average primary particle size of 1 ⁇ m
  • the mixing ratio of water and cerium oxide was 80:20.
  • pH was adjusted with the adjustment liquid containing a sulfuric acid.
  • the load was 100 g / cm 2 .
  • the amount of abrasive slurry added was 8000 mL / min.
  • both main surfaces of the glass substrate were polished more precisely using a double-side polishing machine (Hamai Sangyo Co., Ltd., 16B type).
  • abrasive slurry colloidal silica having an average primary particle diameter of 20 nm was dispersed in water as abrasive grains to form a slurry, and the mixing ratio of water and colloidal silica was 80:20.
  • pH was adjusted with the adjustment liquid containing a sulfuric acid.
  • the load was 120 g / cm 2 .
  • the amount of abrasive slurry added was 500 mL / min. In this step, 100 batches of glass substrates were processed into 5 batches. Ra of the obtained glass substrate was 2 or less.
  • the glass substrate was scrubbed.
  • a cleaning liquid a liquid obtained by diluting KOH and NaOH mixed at a mass ratio of 1: 1 with ultrapure water (DI water) and adding a nonionic surfactant to enhance the cleaning performance is obtained.
  • DI water ultrapure water
  • the cleaning liquid was supplied by spraying. After scrub cleaning, in order to remove the cleaning liquid remaining on the surface of the glass substrate, a water rinse cleaning process is performed in an ultrasonic bath for 2 minutes, an IPA cleaning process is performed in an ultrasonic bath for 2 minutes, and finally the glass substrate is cleaned with IPA vapor. The surface of was dried.
  • the circumferential TIR measurement was performed using an Optiflat manufactured by Phase Shift Technology, which measures the surface shape using white light interference.
  • the measurement location in the circumferential direction TIR was set to a position of 0.75r 1 and a position of (r 1 + 2r 2 ) / 3, similarly to the position of the retardation TIR measurement.
  • Example 3 Glass blanks, which had been eccentric in advance, were manufactured by the same manufacturing method as in Example 2 except that an inner hole was formed at the center of the eccentricity in the coring process, and the circumferential retardation TIR of the glass blanks was measured. did. Moreover, the circumferential direction TIR of the glass substrate which gave the processing process was measured.
  • the glass blanks, in which the strain was eccentric, were formed with an inner hole at the center of the eccentricity of the strain in the coring step, and further partially heat-treated with Tg using a heater. Except these processes, it manufactured with the manufacturing method similar to Example 1, and measured the circumferential direction retardation TIR of glass blanks. Moreover, the circumferential direction TIR of the glass substrate which gave the processing process was measured.
  • Example 5 It manufactured with the manufacturing method similar to Example 1 except having employ
  • potassium nitrate was melted at 400 ° C., and the glass substrate was immersed for 1 hour.
  • a magnetic film was formed on the glass substrates of Examples 1 to 5 and Comparative Examples 1 and 2 and mounted on the HDD, and the read / write characteristics were evaluated.
  • the magnetic film was made of a Co—Cr alloy by sputtering, and the film thickness was 15 nm.
  • the number of errors was measured by rotating the number of revolutions of the HDD spindle at 15,000 rpm for 5 minutes. The number of tests is 25, and Table 2 shows the test evaluation of the average value of errors per sheet.
  • the pressure step was performed so that the viscosity ⁇ of the molten glass was a condition of log 10 ⁇ > 2.6 dPa ⁇ s and the rotation speed of the rotary table was 0.3 m / s or less.
  • the circumferential retardation TIR at the position of 0.75r 1 and (2r 0 + r 1 ) / 3 at the time of glass blank production was 1.0 nm or less and 0.5 nm or less, respectively.
  • the position of 0.75 r 1 also circumferentially TIR at the glass substrate production, and at the position of (2r 0 + r 1) / 3, respectively 1. It was as small as 0 nm or less and 0.5 nm or less. Therefore, since the circumferential direction TIR was small, the read / write evaluation when the magnetic film was formed on the glass substrate of Example 1 and mounted on the HDD was excellent.
  • Example 2 which had a slightly lower viscosity than the molten glass of Example 1, the shape of the molten glass was tilted due to the speed of the rotary table after being transferred by the rotary table. The circumferential distortion caused by this could be eliminated by heat treatment using a heater.
  • the glass blanks thus prepared had a circumferential retardation TIR at a position of 0.75r 1 and a position of (2r 0 + r 1 ) / 3 of 1.0 nm or less and 0.5 nm or less, respectively.
  • the test was also excellent as in Example 1.
  • Example 3 was a molten glass having the same viscosity as that of Example 2, and was transferred at the same rotational speed.
  • the distortion was provided when the coring was formed, and the center of the inner hole was provided so as to be a position with no distortion in the circumferential direction of the glass substrate.
  • the circumferential retardation TIR at the position of 0.75r 1 at the time of glass blank production was 1.0 nm or less, but the circumferential retardation TIR at the position of (2r 0 + r 1 ) / 3 was It exceeded 0.5 nm, and it was in a range where there was no problem as a product.
  • Example 4 the pressure step is performed so that the viscosity ⁇ of the molten glass is log 10 ⁇ > 2.6 dPa ⁇ s, and the rotation speed of the rotary table is 0.3 m / s or less, and At the time of forming the coring, the center of the inner hole was provided so as to be a portion having no distortion with respect to the circumferential direction of the glass substrate, and the distortion in the circumferential direction was eliminated by heat treatment of the heater.
  • the circumferential retardation TIR at the position of 0.75r 1 and the position of (2r 0 + r 1 ) / 3 at the time of glass blanks production becomes extremely small, respectively.
  • the direction TIR was also very small. Accordingly, since the circumferential direction TIR is extremely small compared to the first to third embodiments, the read / write evaluation when the magnetic film is formed on the glass substrate of the fourth embodiment and mounted on the HDD is very excellent. It was.
  • Example 5 employing the chemical strengthening treatment step, the position of 0.75 r 1 during Similarly glass blank produced as in Example 1, and (2r 0 + r 1) / 3 in the circumferential direction of the retardation TIR at the position Were 1.0 nm or less and 0.5 nm or less, respectively.
  • the circumferential retardation TIR of the glass blanks By making the circumferential retardation TIR of the glass blanks small, 1.0 nm or less at the position of 0.75r 1 and the position of (2r 0 + r 1 ) / 3 also in the circumferential direction TIR at the time of glass substrate production It was as small as 0.5 nm or less. Therefore, since the circumferential direction TIR is small, the read / write evaluation when the magnetic film was formed on the glass substrate of Example 5 and mounted on the HDD was excellent as in the case of Example 1.
  • Comparative Example 1 having a slightly lower viscosity than the molten glass of Example 1 and Comparative Example using a lower viscosity than the molten glass of Example 1 and further increasing the rotational speed
  • the circumferential retardation TIR was 1.0 nm or less and exceeded 5 nm, respectively, and accordingly the circumferential TIR of the glass substrate also became a large value, and the read / write test. The result was very inferior.

Abstract

This method for producing an HDD glass substrate is provided with a glass fusion step, a press-molding step, a heat treatment step, a coring step, a grinding step, a polishing step, and a cleaning step, and is characterized by the retardation (TIR) of one circuit in the peripheral direction at a position that is 0.75r1 from the center of the glass blanks produced in the coring step before the grinding step, where r1 is the radius of the glass blanks, being no greater than 1.0 nm. The present invention is able to provide a method for producing an HDD glass substrate that is superior in reducing read/write errors and head crashes and reducing the amount of head floatation when the glass substrate is loaded in a hard disk drive having a DFH mechanism.

Description

HDD用ガラス基板の製造方法Manufacturing method of glass substrate for HDD
 本発明は、HDD用ガラス基板の製造方法に関する。 The present invention relates to a method for manufacturing a glass substrate for HDD.
 磁気情報記録装置は、磁気、光及び光磁気等を利用することによって、情報を情報記録媒体に記録させる装置である。その代表的なものとしては、例えば、ハードディスクドライブ(HDD)装置等が挙げられる。ハードディスクドライブ装置は、基板上に記録層を形成した情報記録媒体としての磁気ディスクに対し、磁気ヘッドによって磁気的に情報を記録する装置である。このような情報記録媒体の基材、いわゆるサブストレートとしては、ガラス基板が好適に用いられている。 A magnetic information recording device is a device that records information on an information recording medium by using magnetism, light, magneto-optical, or the like. A typical example is a hard disk drive (HDD) device. A hard disk drive device is a device that magnetically records information on a magnetic disk as an information recording medium having a recording layer formed on a substrate by a magnetic head. As a base material of such an information recording medium, a so-called substrate, a glass substrate is preferably used.
 また、ハードディスクドライブ装置は、磁気ヘッドを磁気ディスクに接触することなく、磁気ディスクに対し僅か数nm程度浮上させ、高速回転させながら磁気ディスクに情報を記録させている。さらに、近年においては、ますますハードディスクの記録密度が向上しており、それに伴って磁気ヘッドと磁気ディスクの差(以下、ヘッド浮上量という。)が小さくなってきている。特に、DFH(Dynamic Flying Height)機構を有するようなハードディスクにおいては、ヘッド浮上量が3nm以下のものが開発されている。しかしながら、DFH機構においては、ヘッド浮上量が極めて小さいために、磁気ヘッドと磁気ディスクとが衝突してヘッドクラッシュを生じるといった問題が頻発している。 In addition, the hard disk drive device records information on the magnetic disk while rotating it at a high speed about several nanometers without rotating the magnetic head in contact with the magnetic disk. Furthermore, in recent years, the recording density of hard disks has been further improved, and accordingly, the difference between the magnetic head and the magnetic disk (hereinafter referred to as the head flying height) has been reduced. In particular, in a hard disk having a DFH (Dynamic Flying Height) mechanism, a head flying height of 3 nm or less has been developed. However, in the DFH mechanism, since the head flying height is extremely small, there is a frequent problem that the magnetic head and the magnetic disk collide with each other to cause a head crash.
 一方でガラス基板を作製する方法としては、溶融されたガラスを金型で加圧するダイレクトプレス法によりガラスブランクスといわれるガラス製の中間成形体を作り、このガラスブランクスに研削・研磨等を施してガラス基板に仕上げる方法がある。このダイレクトプレス法によって製造されたガラス基板は、平行性や平坦性に優れることで知られているが、このようなガラス基板を用いても、上述したヘッドクラッシュ等の問題が解消されていなかった。 On the other hand, as a method of producing a glass substrate, a glass intermediate formed body called glass blanks is made by a direct press method in which molten glass is pressed with a mold, and the glass blanks are subjected to grinding, polishing, etc. There is a method to finish the substrate. The glass substrate manufactured by this direct press method is known to be excellent in parallelism and flatness, but even if such a glass substrate is used, the problems such as the head crash described above have not been solved. .
 特許文献1には、ダイレクトプレス法を応用し、プレス成形面の温度分布が均一になる前にプレスを終了する、又はプレス時間を2秒以下にする方法を用いてガラス基板の平行度及び平坦度を向上させ、ガラスブランクスの時点でガラスサブストレートの形状・寸法に近づけておくという技術が開示されている。しかし、これらの成形方法においては、ガラス基板の表面形状に着目するだけであって、ガラス基板の内部歪みにまで考慮されていないために、DFH機構を有するハードディスクに搭載するとヘッドクラッシュやリードライトエラーが発生するものとなっていた。 In Patent Document 1, the direct press method is applied and the press finishes before the temperature distribution on the press molding surface becomes uniform, or the parallelism and flatness of the glass substrate using a method of setting the press time to 2 seconds or less. A technique is disclosed in which the degree is improved and brought close to the shape and dimensions of the glass substrate at the time of glass blanks. However, these molding methods only focus on the surface shape of the glass substrate and do not take into account the internal distortion of the glass substrate, so when mounted on a hard disk having a DFH mechanism, a head crash or read / write error occurs. Was supposed to occur.
特開2004-161564号公報JP 2004-161564 A
 本発明は、前記従来技術に鑑みてなされたものであり、DFH機構を有するハードディスクドライブにガラス基板を搭載した場合におけるヘッド浮上量の低減化、ヘッドクラッシュ、及びリードライトエラーの低減化に優れたHDD用ガラス基板の製造方法を提供することを目的とする。 The present invention has been made in view of the above prior art, and is excellent in reducing head flying height, head crash, and read / write error when a glass substrate is mounted on a hard disk drive having a DFH mechanism. It aims at providing the manufacturing method of the glass substrate for HDD.
 すなわち、本発明の一局面によるHDD用ガラス基板の製造方法は、溶融ガラス供給工程、プレス成形工程、熱処理工程、コアリング工程、研削工程、研磨工程、洗浄工程を備えるHDD用ガラス基板の製造方法であって、前記コアリング工程において、研削工程前のガラスブランクスの半径をrとしたとき、該ガラスブランクスの中心から0.75rの位置における周方向1周分のリタデーションTIRを1.0nm以下に調整することを特徴とする。 That is, a method for manufacturing a glass substrate for HDD according to one aspect of the present invention includes a method for manufacturing a glass substrate for HDD comprising a molten glass supply step, a press molding step, a heat treatment step, a coring step, a grinding step, a polishing step, and a cleaning step. a is, 1.0 nm in the coring step, when the radius of the glass blank before the grinding process was r 1, the circumferential direction one round of the retardation TIR at the position of 0.75 r 1 from the center of the glass blank It is characterized by the following adjustment.
図1は、ガラスブランクスの成形用金型及びプレス機の例を示す模式図である。FIG. 1 is a schematic view showing an example of a molding die for glass blanks and a press machine. 図2は、ガラスブランクス成形用プレス機が配置された回転テーブルの斜視図である。FIG. 2 is a perspective view of a rotary table on which a glass blank forming press is disposed. 図3は、ガラスブランクス成形用金型の下型に溶融ガラスを供給する溶融ガラス供給工程を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a molten glass supply step for supplying molten glass to a lower mold of a glass blank forming mold. 図4は、ガラスブランクス成形用金型により溶融ガラスを加圧する加圧工程を示す模式図である。FIG. 4 is a schematic view showing a pressurizing step of pressurizing the molten glass with a glass blanks molding die. 図5は、コアリング工程後のガラスブランクスの模式図である。FIG. 5 is a schematic view of glass blanks after the coring step. 図6は、本発明のHDD用ガラス基板の製造方法によって製造したHDD用ガラス基板の一例を示す模式図である。FIG. 6 is a schematic view showing an example of a glass substrate for HDD manufactured by the method for manufacturing a glass substrate for HDD of the present invention. 図7は、本実施形態に係るHDD用ガラス基板の製造方法における粗研磨工程や精密研磨工程で用いる研磨装置の一例を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing an example of a polishing apparatus used in a rough polishing step and a precision polishing step in the method for manufacturing a glass substrate for HDD according to the present embodiment. 図8は、本実施形態に係るHDD用ガラス基板の製造方法により製造されたHDD用ガラス基板を用いた磁気記録媒体の一例である磁気ディスクを示す一部断面斜視図である。FIG. 8 is a partial cross-sectional perspective view showing a magnetic disk which is an example of a magnetic recording medium using the glass substrate for HDD manufactured by the method for manufacturing the glass substrate for HDD according to the present embodiment.
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described, but the present invention is not limited thereto.
 本発明者らは、ダイレクトプレス法によって作製されたガラスブランクスの周方向の歪み(以下、周方向のリタデーションTIR(Total Indicated Runout)という)に着目し、鋭意検討を行った。 The inventors of the present invention focused on the circumferential strain of glass blanks produced by the direct press method (hereinafter referred to as “circumferential retardation TIR”) and conducted extensive studies.
 この結果、中間成形体時点におけるガラスブランクスの周方向のリタデーションTIRを極力小さくさせるようにダイレクトプレス法によって意図的に作製することで、HDDにおけるヘッド浮上量の低減化、ヘッドクラッシュ、及びリードライトエラーの低減化に優れたHDD用ガラス基板を製造し得ることを見出した。 As a result, by reducing the head flying height in HDD, head crash, and read / write error by intentionally making it by direct press method so that the retardation TIR in the circumferential direction of the glass blanks at the time of the intermediate molded body is minimized. It has been found that a glass substrate for HDD excellent in reducing the amount can be produced.
 本実施形態のHDD用ガラス基板の製造方法は、溶融ガラス供給工程、プレス成形工程、熱処理工程、コアリング工程、研削工程、研磨工程、洗浄工程を備えるHDD用ガラス基板の製造方法であって、前記コアリング工程において、研削工程前のガラスブランクスの半径をrとしたとき、該ガラスブランクスの中心から0.75rの位置における周方向1周分のリタデーションTIRを1.0nm以下に調整することを特徴とする。 The manufacturing method of the glass substrate for HDD of this embodiment is a manufacturing method of the glass substrate for HDD provided with a molten glass supply process, a press molding process, a heat treatment process, a coring process, a grinding process, a polishing process, and a washing process, in the coring step, when the radius of the glass blank before the grinding process was r 1, to adjust the center of the glass blank in the circumferential direction one round of the retardation TIR at the position of 0.75 r 1 below 1.0nm It is characterized by that.
 HDD用ガラス基板の製造方法としては、溶融ガラス供給工程、プレス成形工程、熱処理工程、コアリング工程、研削工程、研磨工程、及び洗浄工程等を備える方法等が挙げられる。そして、上記工程の他に、化学強化処理工程を1回又は複数回採用することが好ましく、該化学強化処理工程は、コアリング工程、研削工程、研磨工程の後のいずれにおいて採用してもよい。また、研削工程についても、1回又は複数回採用してもよく、コアリング工程後に採用してもよい。 Examples of the method for producing a glass substrate for HDD include a method including a molten glass supply process, a press molding process, a heat treatment process, a coring process, a grinding process, a polishing process, and a cleaning process. And it is preferable to employ | adopt a chemical strengthening process process once or several times besides the said process, and this chemical strengthening process process may be employ | adopted in any after a coring process, a grinding process, and a grinding | polishing process. . Also, the grinding process may be employed once or a plurality of times, or after the coring process.
 さらに、上記以外の工程を備える方法であってもよい。例えば、研削工程と研磨工程との間に、端面研磨工程を採用してもよい。特に、洗浄工程については、粗研磨工程の後に採用してもよく、精密研磨工程の後に採用してもよく、さらに粗研磨工程及び精密研磨工程の後にそれぞれ採用してもよい。 Furthermore, a method including steps other than those described above may be used. For example, an end surface polishing step may be employed between the grinding step and the polishing step. In particular, the cleaning process may be employed after the rough polishing process, may be employed after the precision polishing process, or may be employed after the rough polishing process and the precision polishing process.
 <ガラスブランクスの製造>
 まず、本発明の製造方法は、ダイレクトプレス法により、HDD用ガラス基板の中間成形体であるガラスブランクスを製造する。このガラスブランクスは、一般的に、溶融ガラスを供給し、その溶融ガラスを冷却しながら加圧成形して製造される。本発明のガラスブランクスの製造方法は、上記の工程の他に、必要な場合には、前記ガラスブランクスの平坦度を修正し、内部歪みを除去するために熱処理が施される。
<Manufacture of glass blanks>
First, the manufacturing method of this invention manufactures the glass blanks which are the intermediate molded objects of the glass substrate for HDD by the direct press method. These glass blanks are generally manufactured by supplying molten glass and press-molding while cooling the molten glass. In the glass blank manufacturing method of the present invention, in addition to the above steps, if necessary, heat treatment is performed to correct the flatness of the glass blanks and remove internal distortion.
 図1は、本発明のガラスブランクスをプレス成形で作成するための金型及びプレス機の模式図である。ガラスブランクス成形用のプレス機1は、溶融ガラスが供給され、供給された該溶融ガラスを加圧するための第1の成形面6を備える下型5及びプレス機下部7と、下型5の第1の成形面6との間で溶融ガラスを加圧するための第2の成形面4を備える上型3及びプレス機上部2とを有している。 FIG. 1 is a schematic diagram of a mold and a press for producing the glass blanks of the present invention by press molding. The press 1 for forming glass blanks is supplied with molten glass, and includes a lower mold 5 and a lower part 7 having a first molding surface 6 for pressurizing the supplied molten glass, and a lower mold 5. It has an upper die 3 and a press machine upper part 2 provided with a second molding surface 4 for pressurizing molten glass with one molding surface 6.
 図2は、回転テーブル9に並べられたプレス機下部7とプレス機上部2によってガラスブランクスをプレス成形される機構を表した斜視図である。プレス機下部7は、回転テーブル9に円周方向に並べて埋設されている。該回転テーブル9は、回転軸8の周りを特定の速度v(m/s)にて回転駆動可能となるように設けられている。 FIG. 2 is a perspective view showing a mechanism in which glass blanks are press-molded by the press machine lower part 7 and the press machine upper part 2 arranged on the rotary table 9. The press machine lower part 7 is embedded in the rotary table 9 side by side in the circumferential direction. The rotary table 9 is provided so as to be able to be driven to rotate around the rotary shaft 8 at a specific speed v (m / s).
 またプレス機下部7の上に金型の下型5が設置されている。回転テーブル9の所定の位置において溶融ガラス23が流出ノズル21によって下型5へ供給される。溶融ガラス23が供給された下型5は、プレス機下部7とともに回転テーブル9によって移送される。別の位置においてプレス機上部2に設置された上型3は、下型5の位置まで下降し、溶融ガラス23を加圧する。 Also, the lower mold 5 of the mold is installed on the lower part 7 of the press machine. At a predetermined position of the rotary table 9, the molten glass 23 is supplied to the lower mold 5 by the outflow nozzle 21. The lower mold 5 supplied with the molten glass 23 is transferred by the rotary table 9 together with the press machine lower part 7. The upper mold 3 installed in the upper part 2 of the press machine at another position is lowered to the position of the lower mold 5 and presses the molten glass 23.
 金型の内部には、複数のヒーター(図示せず)が埋め込まれるように設置されている。該ヒーターは、周方向に均一角度で配置されるように、一周又は複数周状であって同心円状に埋め込まれていることが、金型の温度制御をしやすいという点で好ましい。なお、プレス機下部7には、前記プレス機上部2と同様に複数のヒーターを配置されていてもよいし配置されていなくてもよい。ヒーターは、プレスされる加圧時間によってはプレス機下部7に配置されていた方が好ましい。 A plurality of heaters (not shown) are installed inside the mold. The heater is preferably arranged in one or more rounds and concentrically so as to be arranged at a uniform angle in the circumferential direction in terms of easy temperature control of the mold. Note that a plurality of heaters may or may not be disposed in the press machine lower part 7 in the same manner as the press machine upper part 2. The heater is preferably arranged in the lower part 7 of the press depending on the pressurizing time to be pressed.
 よって、本発明におけるガラスブランクスの製造工程は、主として下型5に形成された第1の成形面6に溶融ガラスを供給する溶融ガラス供給工程と、上型3に形成された第2の成形面4で、第1の成形面6に供給された溶融ガラスを加圧しながら冷却してガラスブランクスを得る加圧工程とを備えるものである。 Therefore, the manufacturing process of the glass blanks in the present invention mainly includes a molten glass supply process for supplying molten glass to the first molding surface 6 formed on the lower mold 5 and a second molding surface formed on the upper mold 3. 4 and a pressurizing step of obtaining glass blanks by cooling the molten glass supplied to the first molding surface 6 while pressurizing it.
 (溶融ガラス供給工程)
 溶融ガラス供給工程は、下型に形成された第1の成形面に溶融ガラスを供給する工程である。図3は、溶融ガラス供給工程における下型5と溶融ガラス23等を示す模式図である。まず、流出ノズル21から溶融ガラス23を流出して下型5に供給する(図3(a))。
(Molten glass supply process)
A molten glass supply process is a process of supplying molten glass to the 1st shaping | molding surface formed in the lower mold | type. FIG. 3 is a schematic diagram showing the lower mold 5 and the molten glass 23 in the molten glass supply process. First, the molten glass 23 flows out from the outflow nozzle 21 and is supplied to the lower mold 5 (FIG. 3A).
 本発明において、この供給された直後の溶融ガラス23の粘度ηは、log10η>2.6dPa・sの条件を満たす。前記粘度ηがこのような条件を満たす場合、回転テーブル9の回転速度が特定の範囲内であれば、ガラスゴブは形状を崩さず回転しプレス成形が可能となる。その結果、ガラスブランクスは内部歪みの小さいものとなる。しかしながら、粘度ηがlog10η≦2.6dPa・sの条件を満たすと、ガラスゴブが形状を崩す可能性がある。その結果、プレス成型後のガラスブランクスの周方向の歪みが偏心してしまう恐れや、周方向に不均一となってしまう可能性がある。 In the present invention, the viscosity η of the molten glass 23 immediately after being supplied satisfies the condition of log 10 η> 2.6 dPa · s. When the viscosity η satisfies such a condition, if the rotation speed of the turntable 9 is within a specific range, the glass gob rotates without breaking its shape and can be press-molded. As a result, the glass blanks have a small internal strain. However, if the viscosity η satisfies the condition of log 10 η ≦ 2.6 dPa · s, the glass gob may break the shape. As a result, there is a possibility that the distortion in the circumferential direction of the glass blanks after press molding may be decentered or uneven in the circumferential direction.
 その後、溶融ガラス23が所定量に達するとブレード22によって溶融ガラス23を切断し、溶融ガラス23を分離する(図3(b))。溶融ガラス供給工程において供給された溶融ガラス23は第1の成形面6(図4参照)の中心部と接触し、主にそこからの放熱によって冷却が始まる。 Thereafter, when the molten glass 23 reaches a predetermined amount, the blade 22 cuts the molten glass 23 and separates the molten glass 23 (FIG. 3B). The molten glass 23 supplied in the molten glass supply step comes into contact with the center portion of the first molding surface 6 (see FIG. 4), and cooling starts mainly by heat radiation from the center.
 下型5は温度制御されており、予め所定温度に加熱されている。溶融ガラス23のガラス転移温度をTgとすると、ガラス成形は、TgからTg±100(℃)の温度範囲で行われる必要がある。Tg-100(℃)より低い温度である場合、ガラス基板の平面度が悪化したり、転写面へのしわの発生、熱衝撃による破損等の問題が起こる。また、Tg+100(℃)より高い温度の場合、ガラスとの融着が発生したり、金型の劣化が著しくなることから好ましくない。そのため、下型5の温度は、溶融ガラス23がTg±100(℃)となるように制御されている。 The lower mold 5 is temperature-controlled and heated to a predetermined temperature in advance. When the glass transition temperature of the molten glass 23 is Tg, the glass molding needs to be performed in a temperature range from Tg to Tg ± 100 (° C.). When the temperature is lower than Tg-100 (° C.), the flatness of the glass substrate deteriorates, wrinkles are generated on the transfer surface, and damage due to thermal shock occurs. Moreover, when the temperature is higher than Tg + 100 (° C.), it is not preferable because fusion with the glass occurs or the mold deteriorates remarkably. Therefore, the temperature of the lower mold 5 is controlled so that the molten glass 23 becomes Tg ± 100 (° C.).
 また、プレス機上部2にもヒーターが設置されている場合には、上型3についても温度制御されている必要がある。上型3は、上述の下型5の温度と同じ範囲で加熱しておく。 In addition, when a heater is also installed in the upper part 2 of the press machine, the temperature of the upper mold 3 also needs to be controlled. The upper mold 3 is heated in the same range as the temperature of the lower mold 5 described above.
 下型5及び上型3の加熱手段は、これらに接触するプレス機の内部に埋め込まれたヒーターである。該ヒーターの設定温度は、所定の温度に調節することができる。また、金型の加熱手段としてはカートリッジヒーター、バーナーが好適に用いられる。これらの中でも、大気による影響を受けず金型の温度制御がより簡便であるという理由からカートリッジヒーターが特に好ましい。 The heating means of the lower mold 5 and the upper mold 3 are heaters embedded in the press machine in contact with them. The set temperature of the heater can be adjusted to a predetermined temperature. Further, a cartridge heater and a burner are preferably used as the mold heating means. Among these, the cartridge heater is particularly preferable because it is not affected by the atmosphere and the temperature control of the mold is simpler.
 なお、ガラスブランクスの周方向のリタデーションTIRを小さくする方法としては、前述の複数のヒーターをプレス機内部の周方向に配置させる方法に限られず、金型材質を周方向で変化させガラスブランクスを直接温度制御する方法、プレス機にかける圧力を周方向で管理する方法等を採用することができる。 The method of reducing the retardation TIR in the circumferential direction of the glass blanks is not limited to the method of arranging the plurality of heaters in the circumferential direction inside the press machine, and the glass blanks are directly changed by changing the mold material in the circumferential direction. A method for controlling the temperature, a method for managing the pressure applied to the press machine in the circumferential direction, and the like can be employed.
 (加圧工程)
 加圧工程は、第1の成形面6、及び上型3に形成された第2の成形面4で、第1の成形面6に供給された溶融ガラス23を加圧しながら冷却してガラスブランクス10を得る工程である。
(Pressure process)
In the pressing step, the glass blanks are cooled by pressurizing the molten glass 23 supplied to the first molding surface 6 on the first molding surface 6 and the second molding surface 4 formed on the upper mold 3. 10 is a step of obtaining 10.
 図4は、加圧工程におけるガラスブランクス成形用金型1とガラスブランクス10を示す模式図である。溶融ガラス供給工程において溶融ガラス23(図3(a)参照)が供給された下型5は、上型3と対向する位置まで0.3m/s以下の速度で回転テーブルを回転移動する。前記回転テーブルの速度が0.3m/sを超えると、ガラスゴブが形状を崩し、プレス成型後の周方向の歪みが偏心してしまう恐れや、周方向に不均一となってしまう可能性がある。 FIG. 4 is a schematic diagram showing the glass blanks molding die 1 and the glass blanks 10 in the pressurizing step. The lower mold 5 to which the molten glass 23 (see FIG. 3A) is supplied in the molten glass supply process rotates the rotary table to a position facing the upper mold 3 at a speed of 0.3 m / s or less. If the speed of the rotary table exceeds 0.3 m / s, the glass gob may lose its shape, and the distortion in the circumferential direction after press molding may be eccentric, or the circumferential direction may be uneven.
 その後、下型5の第1の成形面6と、上型3の第2の成形面4とで溶融ガラスを加圧する。溶融ガラス23は、加圧によって広がって第1の成形面3の周辺部にも接触する。溶融ガラス23は第1の成形面3及び第2の成形面4との接触面から放熱することによって冷却・固化し、ガラスブランクス10となる。 Thereafter, the molten glass is pressurized with the first molding surface 6 of the lower mold 5 and the second molding surface 4 of the upper mold 3. The molten glass 23 spreads by pressurization and contacts the peripheral portion of the first molding surface 3. The molten glass 23 is cooled and solidified by dissipating heat from the contact surface with the first molding surface 3 and the second molding surface 4, thereby forming the glass blanks 10.
 なお、上型3は、下型5と同様に所定温度に加熱されている。加熱温度や加熱手段については上述の下型5の場合と同様である。加熱温度は下型5と同じであっても良いし異なっていても良い。 The upper mold 3 is heated to a predetermined temperature in the same manner as the lower mold 5. The heating temperature and heating means are the same as in the case of the lower mold 5 described above. The heating temperature may be the same as or different from the lower mold 5.
 下型5と上型3に荷重を負荷して溶融ガラスを加圧するための加圧手段は、公知の加圧手段を適宜選択して用いることができる。加圧手段は、例えば、エアシリンダ、油圧シリンダ、サーボモータを用いた電動シリンダ等を用いることができる。 As a pressurizing means for applying a load to the lower mold 5 and the upper mold 3 to pressurize the molten glass, a known pressurizing means can be appropriately selected and used. As the pressurizing means, for example, an air cylinder, a hydraulic cylinder, an electric cylinder using a servo motor, or the like can be used.
 次に上型3をガラスブランクス10から離間させ、吸着部材等で下型5からガラスブランクス10を取り出す。 Next, the upper mold 3 is separated from the glass blanks 10, and the glass blanks 10 are taken out from the lower mold 5 with an adsorbing member or the like.
 (熱処理工程)
 熱処理工程は、平坦度の修正、及び内部歪みの除去を目的として熱処理を行う工程である。熱処理にはセッター(アルミナ、ジルコニア等)を用い、ガラスブランクスと交互に積み重ねて熱処理炉に入れることで行う。ガラスブランクスの熱処理は、TgからTg+100(℃)の温度範囲で行われる必要がある。Tgより低い温度で熱処理を行う場合、ガラスブランクスの平坦度を修正をすることができない。一方、Tg+100(℃)より高い温度で熱処理を行う場合、ガラスブランクスの形状の悪化を招き、さらにセッターとの間で融着が発生する可能性も高まる。なお、平坦度の修正、及び内部歪みの除去を行うのに特に好ましい温度範囲は、Tg~Tg+70℃である。
(Heat treatment process)
The heat treatment step is a step of performing heat treatment for the purpose of correcting flatness and removing internal strain. The heat treatment is performed by using a setter (alumina, zirconia, etc.), and alternately stacking with glass blanks and putting them in a heat treatment furnace. The heat treatment of the glass blank needs to be performed in a temperature range of Tg to Tg + 100 (° C.). When heat treatment is performed at a temperature lower than Tg, the flatness of the glass blanks cannot be corrected. On the other hand, when heat treatment is performed at a temperature higher than Tg + 100 (° C.), the shape of the glass blanks is deteriorated, and the possibility of fusion with the setter is increased. A particularly preferable temperature range for correcting the flatness and removing the internal strain is Tg to Tg + 70 ° C.
 <コアリング工程>
 コアリング工程とは、上述の工程によって得られたブランクス材の表面の中心部にダイヤモンドコアドリルを用いて内孔(貫通孔)を形成し、ガラスブランクス(孔あきブランクス材)を作製する工程のことである。このコアリング工程によって、ガラスブランクスの中心が決定される。本発明において、ガラスブランクスとは、コアリング工程を終えて、主平面の研削工程が行われる前のガラス成形物を意味するものとする。
<Coring process>
The coring step is a step of forming a glass blank (perforated blanks material) by forming an inner hole (through hole) using a diamond core drill at the center of the surface of the blanks material obtained by the above-described step. It is. The center of the glass blanks is determined by this coring process. In this invention, a glass blank shall mean the glass molding before finishing a coring process and performing the grinding process of a main plane.
 図5に、前記工程によって得られたガラスブランクス10を一方の表面から見た上面図を示す。本発明ではこのガラスブランクス10の中心からの半径をr、内孔の半径をrとする。そして、後述するリタデーションTIR測定方法において測定される0.75rの位置を一点鎖線で記し、(2r+r)/3の位置を二点鎖線で記す。 In FIG. 5, the top view which looked at the glass blanks 10 obtained by the said process from one surface is shown. In the present invention, the radius from the center of the glass blank 10 is r 1 and the radius of the inner hole is r 0 . Then, describing the position of 0.75 r 1 measured in retardation TIR measurement method described later by the one-dot chain line, denoted by a two-dot chain line the position of (2r 0 + r 1) / 3.
 <リタデーション測定>
 前述の工程及び後述する工程を含む製造方法によって得られる本発明のHDD用ガラス基板がヘッド浮上量の低減化、ヘッドクラッシュ、及びリードライトエラーの低減化に優れたものであるためには、上述の工程によって得られたドーナツ状のガラス成形物(ガラスブランクス10)の中心から0.75rの位置における周方向1周分のリタデーションTIRが1.0nm以下であることが必要不可欠となる。
<Retardation measurement>
In order that the glass substrate for HDD of the present invention obtained by the manufacturing method including the above-described steps and the steps described later is excellent in reducing head flying height, head crash, and read / write error, It is indispensable that the retardation TIR for one round in the circumferential direction at a position of 0.75r 1 from the center of the doughnut-shaped glass molded product (glass blanks 10) obtained by the step is 1.0 nm or less.
 リタデーションTIRとは、ガラス成形物(ガラスブランクス10)の歪み(内部歪み)を表す指標である。リタデーションTIRの測定方法としては、前記ガラスブランクスの中心孔より0.75rの位置、及び(2r+r)/3の位置の点における歪みを、PA-100(フォトニクスラティス社製)を用いてガラスブランクスに直線偏光を通過させ、通過後の偏光状態の変化を観察する方法を採用することができる。そしてこの点から同心円状に、1周測定した際のリタデーション量のばらつき(最大値と最小値の差)を本発明における周方向リタデーションTIRと定義する。 The retardation TIR is an index representing the strain (internal strain) of the glass molded product (glass blank 10). As a measuring method of retardation TIR, PA-100 (manufactured by Photonics Lattice) was used for distortion at a point of 0.75r 1 and (2r 0 + r 1 ) / 3 from the central hole of the glass blank. Thus, it is possible to adopt a method of allowing linearly polarized light to pass through the glass blank and observing the change in the polarization state after the passage. From this point, the variation in retardation amount (difference between the maximum value and the minimum value) when measuring one round concentrically is defined as the circumferential retardation TIR in the present invention.
 前記周方向リタデーションTIRを1.0nm以下にすると、得られるガラス基板を組み込んだHDDにおけるヘッドの低浮上化や高速回転への対応が容易になり、安定して記録・再生を行うことができる。周方向リタデーションTIRは、0.5nm以下であることが好ましい。また、周方向リタデーションTIRが1.0nmより大きいと、得られるガラス基板の形状が不安定となるため、HDDのヘッドと記録媒体との距離を安定して制御することが困難となってリード/ライトエラーが増加してしまったり、場合によってはヘッドと記録媒体との接触により一部記録・再生が不可能となってしまうおそれがある。 When the circumferential retardation TIR is set to 1.0 nm or less, it becomes easy to cope with low head flying and high-speed rotation in an HDD incorporating the obtained glass substrate, and recording and reproduction can be performed stably. The circumferential retardation TIR is preferably 0.5 nm or less. Further, if the circumferential retardation TIR is larger than 1.0 nm, the shape of the obtained glass substrate becomes unstable, and it becomes difficult to stably control the distance between the head of the HDD and the recording medium. There is a risk that write errors will increase, and in some cases, recording / playback may become impossible due to contact between the head and the recording medium.
 また、HDDでは、ヘッドの線速度が記録媒体の内側と外側とで異なっており、ディスクの高速回転で発生する空気流によってヘッドに揚力が働き浮上している。そのため、ディスクの内側ではヘッドの浮上量が小さくなるため、ガラス成形物10の内側部分は外側部分よりも更に周方向TIRを低減させることが要求される。 Further, in the HDD, the linear velocity of the head is different between the inside and the outside of the recording medium, and the lift force acts on the head due to the air flow generated by the high-speed rotation of the disk. For this reason, since the flying height of the head is reduced inside the disk, the inner portion of the glass molded product 10 is required to further reduce the circumferential direction TIR than the outer portion.
 つまり、ガラス成形物の中心から(2r+r)/3の位置における周方向1周分のリタデーションTIRが0.5nm以下であると得られるガラス基板を用いたHDDにおけるヘッドの低浮上化や高速回転への対応が容易になり、安定して記録・再生を行うことができるため好ましく、0.3nm以下であることがより好ましい。また、当該位置におけるリタデーションTIRが0.5nmより大きいと、得られるガラス基板を用いたHDDにおけるヘッドと記録媒体との距離を安定して制御することが困難となってリード/ライトエラーが増加してしまったり、場合によってはヘッドと記録媒体との接触により一部記録・再生が不可能となってしまうおそれがある。 In other words, the head flying in the HDD using the glass substrate obtained when the retardation TIR for one circumference in the circumferential direction at the position (2r 0 + r 1 ) / 3 from the center of the glass molding is 0.5 nm or less can be reduced. It is preferable because it is easy to cope with high-speed rotation and recording / reproduction can be performed stably, and more preferably 0.3 nm or less. In addition, if the retardation TIR at the position is larger than 0.5 nm, it is difficult to stably control the distance between the head and the recording medium in the HDD using the obtained glass substrate, and read / write errors increase. In some cases, recording / reproduction may be impossible due to contact between the head and the recording medium.
 このように、リタデーションTIRを小さく抑えることで、記録媒体の形状に起因した上記課題に対応できるのみでなく、通常のHDDで一般に用いられているような周方向に線状で押しつけるクランプ方式において、クランプによって発生する記録媒体の歪を小さくすることができ、ヘッドと基板の接触の危険を一層回避することができる。 In this way, by suppressing the retardation TIR to be small, not only can the above-mentioned problems caused by the shape of the recording medium be dealt with, but also in a clamp method that presses linearly in the circumferential direction as commonly used in ordinary HDDs, The distortion of the recording medium generated by the clamp can be reduced, and the risk of contact between the head and the substrate can be further avoided.
 以上のように、ガラスブランクス形成時において周方向のリタデーションTIRを所定の範囲内に作成すれば、以後の工程を経て製造されたHDD用ガラス基板の周方向TIRについても小さくすることができる。 As described above, if the circumferential retardation TIR is created within a predetermined range when forming the glass blanks, the circumferential TIR of the glass substrate for HDD manufactured through the subsequent steps can be reduced.
 従来においては、ガラス基板の周方向TIRを改善するために研削・研磨工程で形状修正することによって対処していたが、研削・研磨工程で形状を修正した場合、成形段階での内部歪みや板厚がブランクスの周方向で均等ではないため、一部において所望の周方向TIRを達成するのが困難な場合があった。そして、ガラス基板の周方向TIRを低減させようとすると、加工取り代が増加することで所望の厚みより薄肉化してしまったり、加工コストが膨大化したりする問題が生じていた。そこで、研削・研磨工程を施す前、つまりガラスブランクスの状態で周方向の歪みを制御することで、周方向TIRを制御することが可能であることが本発明において明確になった。 In the past, in order to improve the circumferential direction TIR of the glass substrate, it was dealt with by correcting the shape in the grinding / polishing process, but when the shape was corrected in the grinding / polishing process, internal distortion and plate in the molding stage were corrected. Since the thickness is not uniform in the circumferential direction of the blanks, it may be difficult to achieve a desired circumferential direction TIR in part. When trying to reduce the circumferential direction TIR of the glass substrate, there has been a problem that the machining allowance increases, resulting in a reduction in thickness from a desired thickness or an increase in processing cost. Thus, it has become clear in the present invention that the circumferential direction TIR can be controlled by controlling the strain in the circumferential direction before the grinding / polishing step, that is, in the state of the glass blank.
 ここで、周方向TIRとは、前述の周方向リタデーションTIRとは異なり、ガラス基板の平坦度を周方向に1周測定した際の平坦度のばらつきを表す指標である。 Here, the circumferential direction TIR is an index representing the variation in flatness when the flatness of the glass substrate is measured once in the circumferential direction, unlike the above-described circumferential retardation TIR.
 なお、周方向TIRは、白色光の干渉を利用して表面形状を測定する方式(例えば、Phase Shift Technology社製Optiflatを使用して測定する方式)や、被測定面に対して斜めにレーザ光を入射することで垂直入射方式に比べ高い反射率を得ることができ、粗い面形状においても測定が可能な方式(例えば、TROPEL社製FlatMaster FM100XRAを使用して測定する方式)などにより測定すればよい。 Note that the circumferential direction TIR is a method of measuring the surface shape using interference of white light (for example, a method of measuring using Phase Shift Technology Optiflat) or a laser beam obliquely with respect to the surface to be measured. Can be obtained with a higher reflectivity than the normal incidence method, and can be measured even on rough surfaces (for example, a measurement method using Flatmaster FM100XRA manufactured by TROPE). Good.
 <HDD用ガラス基板の製造>
 上述の工程によって製造されたガラスブランクスに、後述する研削工程、研磨工程、洗浄工程、化学強化処理工程等を加えることによりHDD用ガラス基板を製造することができる。
<Manufacture of glass substrates for HDD>
The glass substrate for HDD can be manufactured by adding the grinding process, the grinding | polishing process, the washing | cleaning process, the chemical strengthening process, etc. which are mentioned later to the glass blank manufactured by the above-mentioned process.
 図6は、本発明のHDD用ガラス基板の製造方法によって製造したHDD用ガラス基板の1例を示す図である。図6(a)は斜視図、図6(b)は断面図である。HDD用ガラス基板30は中心穴33が形成された円板状のガラス基板であって、主表面31、外周端面34、内周端面35を有している。外周端面34と内周端面35には、それぞれ面取り部36、37が形成されている。 FIG. 6 is a diagram showing an example of a glass substrate for HDD manufactured by the method for manufacturing a glass substrate for HDD of the present invention. 6A is a perspective view, and FIG. 6B is a cross-sectional view. The glass substrate 30 for HDD is a disk-shaped glass substrate in which a center hole 33 is formed, and has a main surface 31, an outer peripheral end surface 34, and an inner peripheral end surface 35. Chamfered portions 36 and 37 are formed on the outer peripheral end surface 34 and the inner peripheral end surface 35, respectively.
 <研削工程>
 研削工程とは、前記ガラス基板を所定の板厚に加工する工程である。具体的には、前記ガラスブランクスの両面を酸性の研削液を用いて研削(ラッピング)加工する工程等が挙げられる。このように加工することによって、ガラス基板の平行度、平坦度及び厚みを調整することができる。また、この研削工程は、1回であってもよいし、2回以上であってもよい。例えば、2回行う場合、1回目の研削工程(第1研削工程)で、ガラス基板の平行度、平坦度及び厚みを予備調整し、2回目の研削工程(第2研削工程)で、ガラス基板の平行度、平坦度及び厚みを微調整することが可能となる。
<Grinding process>
The grinding step is a step of processing the glass substrate into a predetermined plate thickness. Specifically, the process etc. which grind | polish (lapping) the both surfaces of the said glass blanks using an acidic grinding liquid are mentioned. By processing in this way, the parallelism, flatness and thickness of the glass substrate can be adjusted. Moreover, this grinding process may be performed once or twice or more. For example, when it is performed twice, the parallelism, flatness and thickness of the glass substrate are preliminarily adjusted in the first grinding step (first grinding step), and the glass substrate in the second grinding step (second grinding step). It is possible to finely adjust the parallelism, flatness and thickness of the film.
 より具体的には、前記第1研削工程としては、ガラス基板が略均一の平坦度となるようにする工程等が挙げられる。 More specifically, examples of the first grinding step include a step of making the glass substrate have a substantially uniform flatness.
 また、前記第2研削工程としては、粗面化されたガラス基板の主表面を、さらに固定砥粒研磨パッドを用いて研削する工程等が挙げられる。この第2研削工程においては、例えば、粗面化されたガラス基板を研削装置にセットし、ダイヤモンドタイル(Diamond Tile)のような表面模様付きの三次元固定研磨物を用いることで、ガラス基板の表面を研削することができる。 The second grinding step includes a step of grinding the roughened main surface of the glass substrate using a fixed abrasive polishing pad. In this second grinding step, for example, a roughened glass substrate is set in a grinding device, and a three-dimensional fixed abrasive with a surface pattern such as diamond tile is used, so that the glass substrate The surface can be ground.
 前記第2研削工程を施すと、後述する粗研磨工程にて行われる研磨を効率良く行うことができる。また、第2研削工程によって施された研磨工程に用いるガラス基板の表面粗さRaは0.10μm以下であることが好ましく、0.05μm以下であることがより好ましい。 When the second grinding step is performed, polishing performed in a rough polishing step described later can be efficiently performed. Further, the surface roughness Ra of the glass substrate used in the polishing process performed by the second grinding process is preferably 0.10 μm or less, and more preferably 0.05 μm or less.
 前記研削工程は、通常ガラスブランクスを製造した後に行われるが、前記コアリング工程後にも行ってもよく、複数回にわたって行ってもよい。 The grinding step is usually performed after producing glass blanks, but may be performed after the coring step or may be performed a plurality of times.
 <粗研磨工程>
 前記粗研磨工程(一次研磨工程)は、前記研削工程が施されたガラス基板の表面に粗研磨を施す工程である。この粗研磨は、上述した研削工程で残留した傷や歪みの除去を目的とするもので、下記の研磨方法を用いて実施する。
<Rough polishing process>
The rough polishing step (primary polishing step) is a step of rough polishing the surface of the glass substrate that has been subjected to the grinding step. This rough polishing is intended to remove scratches and distortions remaining in the above-described grinding process, and is performed using the following polishing method.
 なお、前記粗研磨工程で研磨する表面は、主表面及び/又は端面である。主端面とは、ガラス基板の面方向に平行な面である。端面とは内周端面と外周端面とからなる面のことである。また、内周端面とは、内周側の、ガラス基板の面方向に垂直な面及びガラス基板の面方向に対して傾斜を有する面である。また、外周端面とは、外周側の、ガラス基板の面方向に垂直な面及びガラス基板の面方向に対して傾斜を有する面である。 The surface to be polished in the rough polishing step is a main surface and / or an end surface. The main end surface is a surface parallel to the surface direction of the glass substrate. The end surface is a surface composed of an inner peripheral end surface and an outer peripheral end surface. Moreover, an inner peripheral end surface is a surface which has an inclination with respect to the surface of an inner peripheral side perpendicular | vertical to the surface direction of a glass substrate, and the surface direction of a glass substrate. Further, the outer peripheral end surface is a surface that is inclined on the outer peripheral side, the surface perpendicular to the surface direction of the glass substrate and the surface direction of the glass substrate.
 粗研磨工程で用いる研磨装置は、ガラス基板の製造に用いる研磨装置であれば、特に限定されない。具体的には、図7に示すような研磨装置11が挙げられる。なお、図7は、本実施形態に係るHDD用ガラス基板の製造方法における粗研磨工程や精密研磨工程で用いる研磨装置11の一例を示す概略断面図である。 The polishing apparatus used in the rough polishing step is not particularly limited as long as it is a polishing apparatus used for manufacturing a glass substrate. Specifically, a polishing apparatus 11 as shown in FIG. FIG. 7 is a schematic cross-sectional view showing an example of the polishing apparatus 11 used in the rough polishing step and the precision polishing step in the method for manufacturing a glass substrate for HDD according to this embodiment.
 図7に示すような研磨装置11は、両面同時研削可能な装置である。また、この研磨装置11は、装置本体部11aと、装置本体部11aに研磨液を供給する研磨液供給部11bとを備えている。 7 is an apparatus capable of simultaneous grinding on both sides. The polishing apparatus 11 includes an apparatus main body 11a and a polishing liquid supply unit 11b that supplies a polishing liquid to the apparatus main body 11a.
 装置本体部11aは、円盤状の上定盤12と円盤状の下定盤13とを備えており、それらが互いに平行になるように上下に間隔を隔てて配置されている。そして、上定盤12と下定盤13とが、互いに逆方向に回転する。 The apparatus main body 11a includes a disk-shaped upper surface plate 12 and a disk-shaped lower surface plate 13, and they are arranged at intervals in the vertical direction so that they are parallel to each other. Then, the upper surface plate 12 and the lower surface plate 13 rotate in opposite directions.
 この上定盤12と下定盤13との対向するそれぞれの面にガラスブランクス10の表裏の両面を研磨するための研磨パッド15が貼り付けられている。この粗研磨工程で使用する研磨パッド15は、特に限定されない。研磨パッド15としては、具体的には、例えば、ポリウレタン製の硬質研磨パッド等を使用することができる。 A polishing pad 15 for polishing both the front and back surfaces of the glass blanks 10 is attached to each of the opposing surfaces of the upper surface plate 12 and the lower surface plate 13. The polishing pad 15 used in this rough polishing process is not particularly limited. Specifically, for example, a hard polishing pad made of polyurethane or the like can be used as the polishing pad 15.
 また、上定盤12と下定盤13との間には、回転可能な複数のキャリア14が設けられている。このキャリア14は、複数の素板保持用孔51が設けられており、この素板保持用孔51にガラスブランクス10を嵌め込んで配置することができる。キャリア14としては、例えば、素板保持用孔51を100個有していて、100枚のガラスブランクス10を嵌め込んで配置できるように構成されていてもよい。そうすると、1回の処理(1バッチ)で100枚のガラスブランクス10を処理できる。 Further, a plurality of rotatable carriers 14 are provided between the upper surface plate 12 and the lower surface plate 13. The carrier 14 is provided with a plurality of base plate holding holes 51, and the glass blanks 10 can be fitted and disposed in the base plate holding holes 51. For example, the carrier 14 may include 100 base plate holding holes 51 so that 100 glass blanks 10 can be fitted and arranged. If it does so, 100 glass blanks 10 can be processed by one process (1 batch).
 研磨パッド15を介して上定盤12、下定盤13に挟まれているキャリア14は、複数のガラスブランクス10を保持した状態で、自転しながら上定盤12、下定盤13の回転中心に対して下定盤13と同じ方向に公転する。なお、円盤状の上定盤12と円盤状の下定盤13とは、別駆動で動作することができる。このように動作している研磨装置11において、研磨スラリー16を上定盤12とガラスブランクス10との間、及び下定盤13とガラスブランクス10との間、それぞれに供給することでガラスブランクス10の粗研磨を行うことができる。 The carrier 14 sandwiched between the upper surface plate 12 and the lower surface plate 13 via the polishing pad 15 holds the plurality of glass blanks 10 and rotates with respect to the rotation centers of the upper surface plate 12 and the lower surface plate 13. Revolve in the same direction as the lower surface plate 13. The disk-shaped upper surface plate 12 and the disk-shaped lower surface plate 13 can be operated by separate driving. In the polishing apparatus 11 operating in this way, the polishing slurry 16 is supplied between the upper surface plate 12 and the glass blanks 10 and between the lower surface plate 13 and the glass blanks 10, thereby the glass blanks 10. Rough polishing can be performed.
 研磨スラリー供給部11bは、液貯留部110と液回収部120とを備えている。液貯留部110は、液貯留部本体110aと、液貯留部本体110aから装置本体部11aに延ばされた吐出口110eを有する液供給管110bとを備えている。液回収部120は、液回収部本体120aと、液回収部本体120aから装置本体部11aに延ばされた液回収管120bと、液回収部本体120aから液貯留部110に延ばされた液戻し管120cとを備えている。 The polishing slurry supply unit 11b includes a liquid storage unit 110 and a liquid recovery unit 120. The liquid reservoir 110 includes a liquid reservoir main body 110a and a liquid supply pipe 110b having a discharge port 110e extending from the liquid reservoir main body 110a to the apparatus main body 11a. The liquid recovery unit 120 includes a liquid recovery unit main body 120a, a liquid recovery pipe 120b extended from the liquid recovery unit main body 120a to the apparatus main body 11a, and a liquid extended from the liquid recovery unit main body 120a to the liquid storage unit 110. And a return pipe 120c.
 そして、液貯留部本体110aに入れられた研磨スラリー16は、液供給管110bの吐出口110eから装置本体部11aに供給され、装置本体部11aから液回収管120bを介して液回収部本体120aに回収される。また、回収された研磨スラリー16は、液戻し管120cを介して液貯留部110に戻され、再度、装置本体部11aに供給可能とされている。 Then, the polishing slurry 16 put in the liquid storage unit main body 110a is supplied from the discharge port 110e of the liquid supply pipe 110b to the apparatus main body part 11a, and from the apparatus main body part 11a via the liquid recovery pipe 120b, the liquid recovery part main body 120a. To be recovered. The recovered polishing slurry 16 is returned to the liquid storage part 110 via the liquid return pipe 120c and can be supplied again to the apparatus main body part 11a.
 また、ここで用いる研磨パッド15は、ウレタンやポリエステル等の合成樹脂の発泡体に、酸化セリウム研磨剤を含有させたものである。 Further, the polishing pad 15 used here is a foam of synthetic resin such as urethane or polyester containing a cerium oxide abrasive.
 化学強化処理工程の前に行われる研磨工程において用いられる研磨剤は、CeOの含有量が多く、アルカリ土類金属の少ないものの場合、研磨速度を高め、研磨後のガラス基板の平滑性を充分に高めることができると考えられる。また、研磨パッドについても、前記研磨剤の場合と同様に、CeOの含有量が多く、アルカリ土類金属の少ないものを用いることによって、研磨速度を高め、研磨後のガラス基板の平滑性を充分に高めることができると考えられる。 The polishing agent used in the polishing step performed before the chemical strengthening treatment step increases the polishing rate and sufficiently smoothes the polished glass substrate when the CeO 2 content is high and the alkaline earth metal content is low. It is thought that it can be increased. Also for the polishing pad, as in the case of the above-mentioned abrasive, by using a material containing a large amount of CeO 2 and a small amount of alkaline earth metal, the polishing rate is increased and the smoothness of the glass substrate after polishing is improved. It is thought that it can be sufficiently increased.
 CeOの含有量が多い研磨剤を用いると、研磨速度を高め、研磨後のガラス基板の平滑性を充分に高めることができる理由としては、以下のような理由によると考えられる。まず、研磨の際にガラス基板の表面に圧力が加わった状態で、ガラス基板とCeOとが接触すると、ガラス基板の表面に存在するSi-Oの結合が、Ce-Oの結合に置き換わると考えられる。そして、この結合は、容易に分解するが、Siとの結合が再度形成されにくいと考えられる。よって、CeOの含有量が多い研磨剤を用いると、研磨速度を高め、研磨後のガラス基板の平滑性を充分に高めることができると考えられる。 The use of an abrasive having a high CeO 2 content is considered to be due to the following reasons that the polishing rate can be increased and the smoothness of the polished glass substrate can be sufficiently enhanced. First, when the glass substrate and CeO 2 come into contact with each other with the pressure applied to the surface of the glass substrate during polishing, the Si—O bonds existing on the surface of the glass substrate are replaced with Ce—O bonds. Conceivable. This bond is easily decomposed, but it is considered that the bond with Si is difficult to form again. Therefore, it is considered that when an abrasive having a high CeO 2 content is used, the polishing rate can be increased and the smoothness of the polished glass substrate can be sufficiently increased.
 そして、このようなCeOの含有量が多い研磨剤及び研磨パッドであって、アルカリ土類金属の少ないものを用いることによって、平滑性を充分に高めることができるだけではなく、研磨後のガラス基板に対するアルカリ土類金属の付着が抑制されると考えられる。このようなアルカリ土類金属の付着が抑制されたガラス基板に対して、化学強化処理工程を施すことによって、均一な化学強化がなされると考えられる。 Further, by using an abrasive and a polishing pad having a high CeO 2 content and a low alkaline earth metal content, not only the smoothness can be sufficiently improved, but also a glass substrate after polishing. It is considered that the adhesion of alkaline earth metal to is suppressed. It is considered that uniform chemical strengthening is achieved by applying a chemical strengthening treatment step to such a glass substrate in which adhesion of alkaline earth metal is suppressed.
 なお、前記研磨剤を水に分散させた状態の研磨液を用いて研磨する際、前記水にアルカリ土類金属が含有されていても、アルカリ土類金属が溶解しているため、ガラス基板の表面に付着しにくく、研磨剤に含まれるアルカリ土類金属が、ガラス基板の表面に付着しやすいと考えられる。よって、アルカリ土類金属の少ない研磨剤を用いることによって、研磨後のガラス基板に対するアルカリ土類金属の付着を充分に抑制できると考えられる。 When polishing with a polishing liquid in which the abrasive is dispersed in water, the alkaline earth metal is dissolved even when the alkaline earth metal is contained in the water. It is considered that the alkaline earth metal contained in the abrasive is less likely to adhere to the surface and is likely to adhere to the surface of the glass substrate. Therefore, it is considered that the adhesion of alkaline earth metal to the glass substrate after polishing can be sufficiently suppressed by using an abrasive with less alkaline earth metal.
 また、CeOの含有量は、高ければ高いほど好ましい。すなわち、研磨剤に含有する希土類酸化物が、全てCeOであることが好ましい。このことは、CeOがガラス基板の研磨性に最も影響することによると考えられる。また、アルカリ土類金属の含有量は、低ければ低いほど好ましい。前記研磨剤に含まれるアルカリ土類金属が少なければ、アルカリ土類金属による化学強化処理工程の阻害が抑制されることによると考えられる。 The CeO 2 content is preferably as high as possible. Namely, rare earth oxide contained in the abrasive, it is preferred that all are CeO 2. This is considered to be because CeO 2 has the most influence on the polishing properties of the glass substrate. Further, the lower the alkaline earth metal content, the better. If the alkaline earth metal contained in the abrasive is small, it is considered that inhibition of the chemical strengthening treatment process by the alkaline earth metal is suppressed.
 また、CeOの含有量が、前記研磨剤全量に対して、90質量%以上であることが好ましい。そうすることによって、耐衝撃性に優れたHDD用ガラス基板を製造でき、さらに、研磨速度をより高めることができ、平滑性のより高いHDD用ガラス基板を製造することができる。このことは、化学強化処理工程を阻害しうるアルカリ土類金属の含有量が少なく、さらに、研磨性を高めるCeOの含有量が、研磨剤に含有される希土類酸化物に対して単に多いだけではなく、研磨剤全量に対しても多いことによると考えられる。 Further, the content of CeO 2 is, to the abrasive total amount is preferably 90 mass% or more. By doing so, the glass substrate for HDD excellent in impact resistance can be manufactured, the polishing rate can be further increased, and the glass substrate for HDD having higher smoothness can be manufactured. This means that the content of alkaline earth metal that can hinder the chemical strengthening treatment process is small, and the content of CeO 2 that improves the polishing property is simply large relative to the rare earth oxide contained in the abrasive. Rather, it is thought to be due to the fact that the amount is large relative to the total amount of abrasive.
 また、前記研磨液は、前記酸性の研磨剤を水等の溶媒に分散させた状態のものであり、CeOの含有量が、前記研磨液全量に対して、3~15質量%であることが好ましい。そうすることによって、耐衝撃性に優れたHDD用ガラス基板を製造でき、さらに、研磨速度をより高めることができ、平滑性のより高いHDD用ガラス基板を製造することができる。また、前記研磨剤を水に分散させた状態の研磨液の場合、上述したように、前記水にアルカリ土類金属が含有されていても、アルカリ土類金属が溶解しているため、ガラス基板の表面に付着しにくく、研磨剤に含まれるアルカリ土類金属が、ガラス基板の表面に付着しやすいと考えられる。よって、前記研磨剤として、アルカリ土類金属の少ないものを用いることによって、研磨後のガラス基板に対するアルカリ土類金属の付着を充分に抑制できると考えられる。 Further, the polishing liquid is in a state where the acidic polishing agent is dispersed in a solvent such as water, and the content of CeO 2 is 3 to 15% by mass with respect to the total amount of the polishing liquid. Is preferred. By doing so, the glass substrate for HDD excellent in impact resistance can be manufactured, the polishing rate can be further increased, and the glass substrate for HDD having higher smoothness can be manufactured. Further, in the case of the polishing liquid in which the abrasive is dispersed in water, as described above, since the alkaline earth metal is dissolved even if the alkaline earth metal is contained in the water, the glass substrate It is considered that the alkaline earth metal contained in the abrasive is likely to adhere to the surface of the glass substrate. Therefore, it is considered that the use of an abrasive having a small amount of alkaline earth metal can sufficiently suppress the adhesion of alkaline earth metal to the polished glass substrate.
 また、前記研磨剤が、レーザ回折散乱法で測定された粒度分布における最大値が3.5μm以下であり、レーザ回折散乱法で測定された粒度分布における累積50体積%径D50が0.4~1.6μmであることが好ましい。 The abrasive has a maximum particle size distribution measured by the laser diffraction scattering method of 3.5 μm or less, and a cumulative 50 volume% diameter D50 in the particle size distribution measured by the laser diffraction scattering method is 0.4 to 0.4. It is preferable that it is 1.6 μm.
 前記研磨剤の粒径が小さすぎると、研磨速度が低下する傾向がある。前記研磨剤の粒径が大きすぎると、研磨によってガラス基板上に形成されうる傷が発生しやすくなる。 If the particle size of the abrasive is too small, the polishing rate tends to decrease. When the particle size of the abrasive is too large, scratches that can be formed on the glass substrate by polishing tend to occur.
 なお、レーザ回折散乱法で測定された粒度分布における最大値とは、レーザ回折式粒度分布測定装置にて測定して得られる粉体の集団の全体積を100%として累積カーブを求め、その累積カーブの最大値となる点の粒子径を意味する。また、D50とは、レーザ回折式粒度分布測定装置にて測定して得られる粉体の集団の全体積を100%として累積カーブを求め、その累積カーブが50%となる点の粒子径を意味する。 The maximum value in the particle size distribution measured by the laser diffraction scattering method is a cumulative curve obtained by setting the total volume of the powder population obtained by measurement with a laser diffraction particle size distribution measuring apparatus as 100%. It means the particle diameter of the point that is the maximum value of the curve. D50 means the particle diameter at which the cumulative curve is 50% when the total volume of the powder population obtained by measurement with a laser diffraction particle size distribution measuring device is 100%, and the cumulative curve is 50%. To do.
 また、前記研磨液としては、粗研磨工程では、フッ素含有量が5質量%以下の研磨液であることが好ましい。 Further, the polishing liquid is preferably a polishing liquid having a fluorine content of 5% by mass or less in the rough polishing step.
 また、前記研磨パッド15は、酸化セリウムの他に、ケイ酸ジルコニウム、酸化ジルコニウム、酸化マンガン、酸化鉄、酸化アルミニウム、炭化ケイ素又は二酸化ケイ素を含有させることができ、これらのなかでもケイ酸ジルコニウムを含有させることがより好ましい。 The polishing pad 15 can contain zirconium silicate, zirconium oxide, manganese oxide, iron oxide, aluminum oxide, silicon carbide, or silicon dioxide in addition to cerium oxide. Among these, zirconium silicate is used. It is more preferable to make it contain.
 前記研磨パッドにおける酸化セリウムの配合量は、研磨パッド全量に対して10~30質量%であることが好ましく、15~25質量%であることがより好ましい。 The blending amount of cerium oxide in the polishing pad is preferably 10 to 30% by mass and more preferably 15 to 25% by mass with respect to the total amount of the polishing pad.
 本実施形態に係る研磨パッドは、例えば以下のような方法において製造される。 The polishing pad according to the present embodiment is manufactured by the following method, for example.
 まず、樹脂溶液と砥粒とを混合して、砥粒分散液を製造する。次に、成形型を使用して該砥粒分散液を硬化させ、内部及び表面に砥粒を固定した板状のブロックを成形させる。続いて、該ブロックを成形型から取り出した後、ブロックの両面を研削し所定の厚さに加工する。 First, a resin solution and abrasive grains are mixed to produce an abrasive dispersion. Next, the abrasive dispersion is cured using a molding die to form a plate-like block in which the abrasive grains are fixed inside and on the surface. Subsequently, after the block is taken out of the mold, both sides of the block are ground and processed to a predetermined thickness.
 そして、より好適には、まず、樹脂溶液と砥粒とを混合し、この混合液を減圧して脱泡して、無泡砥粒分散液を製造する。次に、成形型を使用して該無泡砥粒分散液を硬化させ、無発泡体の内部及び表面に砥粒を固定した板状のブロックを成形させる。続いて、該ブロックを成形型から取り出した後、ブロックの両面を研削し、所定の厚さに加工する。 More preferably, first, the resin solution and the abrasive grains are mixed, and this mixed liquid is depressurized and defoamed to produce a foam-free abrasive dispersion. Next, the foam-free abrasive dispersion is cured using a mold to form a plate-like block in which the abrasive grains are fixed inside and on the surface of the non-foamed body. Subsequently, after the block is taken out from the mold, both sides of the block are ground and processed to a predetermined thickness.
 <精密研磨工程(二次研磨工程)>
 精密研磨工程は、前記粗研磨工程で得られた平坦平滑な主表面を維持しつつ、例えば、主表面の表面粗さ(Rmax)が6nm程度以下である平滑な鏡面に仕上げる鏡面研磨処理である。この精密研磨工程は、例えば、上記粗研磨工程で使用したものと同様の研磨装置を用い、研磨パッドを硬質研磨パッドから軟質研磨パッドに取り替えて行われる。なお、前記精密研磨工程で研磨する表面は、前記粗研磨工程で研磨する表面と同様、主表面である。
<Precision polishing process (secondary polishing process)>
The precision polishing process is a mirror polishing process that finishes a smooth mirror surface having a surface roughness (Rmax) of about 6 nm or less, for example, while maintaining the flat and smooth main surface obtained in the rough polishing process. . This precision polishing step is performed, for example, by using a polishing apparatus similar to that used in the rough polishing step and replacing the polishing pad from a hard polishing pad to a soft polishing pad. The surface to be polished in the precision polishing step is the main surface, similar to the surface to be polished in the rough polishing step.
 また、精密研磨工程で用いる研磨剤としては、粗研磨工程で用いた研磨剤より、研磨性が低くても、傷の発生がより少なくなる研磨剤が用いられる。具体的には、例えば、粗研磨工程で用いた研磨剤より、粒子径が低いシリカ系の砥粒(コロイダルシリカ)を含む研磨剤等が用いられる。このシリカ系の砥粒の平均粒子径としては、20nm程度であることが好ましい。そして、前記研磨剤を含む研磨スラリー液をガラス基板に供給し、研磨パッドとガラス基板とを相対的に摺動させて、ガラス基板の表面を鏡面研磨する。 Further, as the abrasive used in the precision polishing process, an abrasive that causes less scratching even if the polishing performance is lower than that used in the rough polishing process is used. Specifically, for example, an abrasive containing silica-based abrasive grains (colloidal silica) having a particle diameter lower than that of the abrasive used in the rough polishing step is used. The average particle diameter of the silica-based abrasive is preferably about 20 nm. And the polishing slurry liquid containing the said abrasive | polishing agent is supplied to a glass substrate, a polishing pad and a glass substrate are slid relatively, and the surface of a glass substrate is mirror-polished.
 前記精密研磨工程後のHDD用ガラス基板の表面粗さRaは0.1~5Åであることが好ましい。このような範囲であれば、磁気記録媒体用のガラス基板として必要な平滑性を持ちながら、過剰に平滑な磁気ディスク上で発生するヘッドの吸着を抑制し、ハードディスクドライブ装置として構成した際にヘッドが安定して浮上動作することが可能となる。 The surface roughness Ra of the HDD glass substrate after the precision polishing step is preferably 0.1 to 5 mm. If it is in such a range, while having the smoothness required as a glass substrate for a magnetic recording medium, the head is prevented from adsorbing on an excessively smooth magnetic disk, and the head is configured as a hard disk drive device. Can be stably levitated.
 <洗浄工程>
 洗浄工程は、前記粗研磨工程または前記精密研磨工程が施されたガラス基板を洗浄する工程である。
<Washing process>
The cleaning step is a step of cleaning the glass substrate that has been subjected to the rough polishing step or the precise polishing step.
 前記粗研磨工程による粗研磨後のガラス基板は、洗浄工程によって洗浄することが好ましい。例えば、pH13以上のアルカリ洗剤を用いて、ガラス基板の洗浄を行い、ガラス基板にリンスを行う。次に、pH1以下の酸系洗剤を用いて、ガラス基板の洗浄を行い、ガラス基板にリンスを行う。最後に、フッ化水素酸(HF)溶液を用いて、ガラス基板の洗浄を行う。酸化セリウムを用いた研磨に関しては、アルカリ洗浄、酸洗浄、HF洗浄の順で洗浄を行うことが最も効率的である。これは、まずアルカリ洗剤で研磨剤を分散除去し、次に酸洗剤で研磨剤を溶解除去し、最後に、HFによってガラス基板をエッチングし、ガラス基板に深く刺さっている研磨剤を除去するためである。 The glass substrate after the rough polishing by the rough polishing step is preferably cleaned by a cleaning step. For example, the glass substrate is washed with an alkaline detergent having a pH of 13 or more, and the glass substrate is rinsed. Next, the glass substrate is washed with an acid detergent having a pH of 1 or less, and the glass substrate is rinsed. Finally, the glass substrate is cleaned using a hydrofluoric acid (HF) solution. For polishing using cerium oxide, it is most efficient to perform cleaning in the order of alkali cleaning, acid cleaning, and HF cleaning. This is because the abrasive is first dispersed and removed with an alkaline detergent, then the abrasive is dissolved and removed with an acid detergent, and finally the glass substrate is etched with HF to remove the abrasive that is deeply stuck in the glass substrate. It is.
 前記洗浄工程は、アルカリ洗浄、酸洗浄、HF洗浄において、それぞれ別の槽で行うことが好ましい。これらの洗浄を単一の槽で行った場合には、効率的な洗浄ができない場合がある。特に、酸洗剤とHFを同一槽に入れた場合、HFのエッチング速度は、研磨剤の多い場所で低下するため、基板内を均一にエッチングできなくなる傾向がある。また、各洗浄の後にリンス槽を用いることが好ましい。これらの洗剤には、場合によって界面活性剤、分散材、キレート剤、還元材などを添加しても良い。また、各洗浄槽には、超音波を印加し、それぞれの洗剤には脱気水を使用することが好ましい。 The washing step is preferably performed in separate tanks for alkali washing, acid washing, and HF washing. When these washings are performed in a single tank, efficient washing may not be possible. In particular, when the acid detergent and HF are put in the same tank, the etching rate of HF decreases at a place where there is a lot of abrasive, so that there is a tendency that the inside of the substrate cannot be etched uniformly. Moreover, it is preferable to use a rinse tank after each washing. In some cases, a surfactant, a dispersing agent, a chelating agent, a reducing material, and the like may be added to these detergents. Moreover, it is preferable to apply an ultrasonic wave to each washing tank and to use deaerated water for each detergent.
 また、他の方法としては、まず、HFが1質量%、硫酸が3質量%の洗浄液にガラス基板を浸漬させる。その際、その洗浄液に、80kHzの超音波振動を印加させる。その後、ガラス基板を取り出す。そして、取り出したガラス基板を中性洗剤液に浸漬させる。その際、その中性洗剤液に、120kHzの超音波振動を印加させる。最後に、ガラス基板を取り出し、純水でリンスを行い、IPA乾燥させる。 As another method, first, the glass substrate is immersed in a cleaning solution containing 1% by mass of HF and 3% by mass of sulfuric acid. At that time, an ultrasonic vibration of 80 kHz is applied to the cleaning liquid. Thereafter, the glass substrate is taken out. And the taken-out glass substrate is immersed in a neutral detergent liquid. At that time, 120 kHz ultrasonic vibration is applied to the neutral detergent solution. Finally, the glass substrate is taken out, rinsed with pure water, and dried IPA.
 また、前記洗浄工程後のガラス基板は、その表面に残存したアルカリ土類金属が、10ng/cm以下であることが好ましく、5ng/cm以下であることがより好ましい。そうすることによって、耐衝撃性により優れたハードディスク用ガラス基板を得ることができる。このことは、化学強化処理工程を施すガラス基板の表面に、化学強化処理工程を阻害しうるアルカリ土類金属の付着量が少ないことによると考えられる。よって、化学強化がガラス基板全面に均一に起こり、耐衝撃性により優れたハードディスク用ガラス基板を得ることができると考えられる。すなわち、記洗浄工程後のガラス基板の表面に残存したアルカリ土類金属が多すぎると、化学強化処理工程が好適に行われずに、得られたガラス基板の耐衝撃性を充分に高めることができない場合がある。 The glass substrate after the cleaning step, the alkaline earth metal remaining on the surface thereof, is preferably 10 ng / cm 2 or less, more preferably 5 ng / cm 2 or less. By doing so, the glass substrate for hard disks excellent in impact resistance can be obtained. This is considered to be due to the small amount of alkaline earth metal adhering to the surface of the glass substrate subjected to the chemical strengthening treatment step, which can inhibit the chemical strengthening treatment step. Therefore, it is considered that chemical strengthening occurs uniformly on the entire surface of the glass substrate, and a glass substrate for hard disk that is superior in impact resistance can be obtained. That is, if there is too much alkaline earth metal remaining on the surface of the glass substrate after the cleaning step, the chemical strengthening treatment step is not suitably performed, and the impact resistance of the obtained glass substrate cannot be sufficiently increased. There is a case.
 また、前記洗浄工程後のガラス基板の表面に残存したアルカリ土類金属は、少なければ少ないほど好ましい。このことは、前記化学強化処理工程の前に、前記研磨工程で研磨されたガラス基板の表面に残存したアルカリ土類金属が、化学強化処理工程を阻害し、均一な化学強化を阻害すると考えられるからである。そして、本実施形態においては、前記洗浄工程後のガラス基板の表面に残存したアルカリ土類金属が、少なければ少ないほど好ましく、その量10ng/cm以下であれば、耐衝撃性により優れたハードディスク用ガラス基板を製造することができる。 Further, the smaller the amount of alkaline earth metal remaining on the surface of the glass substrate after the cleaning step, the better. This is considered that the alkaline earth metal remaining on the surface of the glass substrate polished in the polishing step before the chemical strengthening treatment step inhibits the chemical strengthening treatment step and inhibits uniform chemical strengthening. Because. In the present embodiment, the smaller the amount of alkaline earth metal remaining on the surface of the glass substrate after the cleaning step, the better, and if the amount is 10 ng / cm 2 or less, the hard disk is more excellent in impact resistance. Glass substrates can be manufactured.
 また、この粗研磨後のガラス基板の洗浄は、ガラス基板表面の酸化セリウム量が0.125ng/cm以下となるように行なわれる。ガラス基板表面の酸化セリウム量が多すぎると、ガラス基板の平坦度を良好にできない傾向がある。 The glass substrate after the rough polishing is washed so that the amount of cerium oxide on the surface of the glass substrate is 0.125 ng / cm 2 or less. When the amount of cerium oxide on the surface of the glass substrate is too large, there is a tendency that the flatness of the glass substrate cannot be improved.
 <化学強化処理工程>
 本発明の製造方法における化学強化処理工程は、公知の方法であれば、特に限定されない。具体的には、化学強化処理工程は、例えば、ガラス基板を化学強化処理液に浸漬させる工程等が挙げられる。そうすることによって、ガラス基板の表面、例えば、ガラス基板表面から5μmの領域に化学強化層を形成することができる。そして、化学強化層を形成することで耐衝撃性、耐振動性及び耐熱性等を向上させることができる。
<Chemical strengthening process>
If the chemical strengthening process in the manufacturing method of this invention is a well-known method, it will not specifically limit. Specifically, the chemical strengthening treatment step includes, for example, a step of immersing a glass substrate in a chemical strengthening treatment solution. By doing so, a chemical strengthening layer can be formed in the surface of a glass substrate, for example, a 5 micrometer area | region from the glass substrate surface. And by forming a chemical strengthening layer, impact resistance, vibration resistance, heat resistance, etc. can be improved.
 より詳しくは、化学強化処理工程は、加熱された化学強化処理液にガラス基板を浸漬させることによって、ガラス基板に含まれるリチウムイオンやナトリウムイオン等のアルカリ金属イオンをそれよりイオン半径の大きなカリウムイオン等のアルカリ金属イオンに置換するイオン交換法によって行われる。イオン半径の違いによって生じる歪みにより、イオン交換された領域に圧縮応力が発生し、ガラス基板の表面が強化される。 More specifically, in the chemical strengthening treatment step, by immersing the glass substrate in a heated chemical strengthening treatment liquid, alkali metal ions such as lithium ions and sodium ions contained in the glass substrate are potassium ions having a larger ion radius. It is carried out by an ion exchange method that substitutes alkali metal ions such as. Due to the strain caused by the difference in ion radius, compressive stress is generated in the ion-exchanged region, and the surface of the glass substrate is strengthened.
 また、本発明における化学強化処理工程は、前記のコアリング工程後、研削工程後、粗研磨工程後、精密研磨工程後のいずれにおいても行ってもよく、ガラスの組成によっては複数回行ってもよい。また、化学強化処理工程を行う場合、ガラスブランクスにおける板厚のばらつきによる最終的に得られるガラス基板の形状のばらつきへの影響が顕著となる為、本発明が特に好適に適用される。 Further, the chemical strengthening treatment step in the present invention may be performed after the coring step, after the grinding step, after the rough polishing step, or after the precision polishing step, and may be performed a plurality of times depending on the composition of the glass. Good. Moreover, when performing a chemical strengthening process, since the influence on the dispersion | variation in the shape of the glass substrate finally obtained by the dispersion | variation in the plate | board thickness in glass blanks becomes remarkable, this invention is applied especially suitably.
 本実施形態では、ガラス基板の原料として、下記のガラス組成の原料を用いることによって、この化学強化処理工程により、強化層が好適に形成されると考えられる。
(ガラス組成)
 SiO:55~75質量%、
 Al:5~18質量%、
 LiO:1~10質量%、
 NaO:3~15質量%、
 KO:0.1~5質量%、
  ただし、LiO+NaO+KOの総量:10~25質量%、
 MgO:0.1~5質量%、
 CaO:0.1~5質量%、
 ZrO:0~8質量%
In the present embodiment, it is considered that the reinforcing layer is suitably formed by this chemical strengthening treatment step by using a raw material having the following glass composition as the raw material of the glass substrate.
(Glass composition)
SiO 2 : 55 to 75% by mass,
Al 2 O 3 : 5 to 18% by mass,
Li 2 O: 1 to 10% by mass,
Na 2 O: 3 to 15% by mass,
K 2 O: 0.1 to 5% by mass,
However, the total amount of Li 2 O + Na 2 O + K 2 O: 10 to 25% by mass,
MgO: 0.1 to 5% by mass,
CaO: 0.1 to 5% by mass,
ZrO 2 : 0 to 8% by mass
 具体的には、ガラス基板のアルカリ成分であるLiO、NaO、及びKOのうち、NaOの含有量が多く、このNaOのナトリウムイオンが、化学強化処理液に含まれるカリウムイオンに交換されやすいためと考えられる。さらに、化学強化処理工程を施す前の研磨工程、ここでは粗研磨工程で用いる研磨剤が、上記のような組成の研磨剤であるので、ガラス基板の表面に付着しているアルカリ土類金属の量が少なく、化学強化が均一になされると考えられる。よって、本実施形態のように、好適な化学強化がなされたガラス基板に、精密研磨工程を行うことによって、耐衝撃性に優れたガラス基板を製造することができる。 Specifically, among the Li 2 O, Na 2 O, and K 2 O, which are alkali components of the glass substrate, the content of Na 2 O is large, and the sodium ions of this Na 2 O are added to the chemical strengthening treatment liquid. It is thought that it is easily exchanged for contained potassium ions. Furthermore, since the polishing agent used in the polishing step before the chemical strengthening treatment step, here the rough polishing step, is an abrasive having the above composition, the alkaline earth metal adhering to the surface of the glass substrate is used. The amount is small and the chemical strengthening is considered to be uniform. Therefore, a glass substrate excellent in impact resistance can be produced by performing a precision polishing step on a glass substrate that has been subjected to suitable chemical strengthening as in this embodiment.
 化学強化処理液としては、ハードディスク用ガラス基板の製造方法における化学強化処理工程で用いられる化学強化処理液であれば、特に限定されない。具体的には、化学強化処理液は、例えば、カリウムイオンを含む溶融液、及びカリウムイオンやナトリウムイオンを含む溶融液等を用いることができる。 The chemical strengthening treatment liquid is not particularly limited as long as it is a chemical strengthening treatment liquid used in the chemical strengthening treatment step in the method of manufacturing a glass substrate for hard disk. Specifically, as the chemical strengthening treatment liquid, for example, a melt containing potassium ions, a melt containing potassium ions or sodium ions, or the like can be used.
 これらの溶融液としては、例えば、硝酸カリウム、硝酸ナトリウム、炭酸カリウム、及び炭酸ナトリウム等を溶融させて得られた溶融液等が挙げられる。この中でも、硝酸カリウムを溶融させて得られた溶融液と硝酸ナトリウムを溶融させて得られた溶融液とを組み合わせて用いることが、融点が低く、ガラス基板の変形を防止する観点から好ましい。その際、硝酸カリウムを溶融させて得られた溶融液と硝酸ナトリウムを溶融させて得られた溶融液とを、ほぼ同量ずつの混合させた混合液が好ましい。 Examples of these melts include melts obtained by melting potassium nitrate, sodium nitrate, potassium carbonate, sodium carbonate, and the like. Among these, it is preferable to use a combination of a melt obtained by melting potassium nitrate and a melt obtained by melting sodium nitrate from the viewpoint of low melting point and preventing deformation of the glass substrate. At that time, a mixed solution obtained by mixing approximately the same amount of a melt obtained by melting potassium nitrate and a melt obtained by melting sodium nitrate is preferable.
 (成膜工程)
 図8は、本実施形態に係る製造方法により製造されたHDD用ガラス基板を用いた磁気記録媒体の一例である磁気ディスクを示す一部断面斜視図である。この磁気ディスクDは、円形のHDD用ガラス基板101の主表面に形成された磁性膜102を備えている。磁性膜102は、公知の常套手段により形成することができる。磁性膜102は、例えば、磁性粒子を分散させた熱硬化性樹脂をHDD用ガラス基板101上にスピンコートすることによって磁性膜102を形成する形成方法(スピンコート法)や、HDD用ガラス基板101上にスパッタリングによって磁性膜102を形成する形成方法(スパッタリング法)や、HDD用ガラス基板101上に無電解めっきによって磁性膜102を形成する形成方法(無電解めっき法)等により形成することができる。
(Film formation process)
FIG. 8 is a partial cross-sectional perspective view showing a magnetic disk as an example of a magnetic recording medium using a glass substrate for HDD manufactured by the manufacturing method according to the present embodiment. The magnetic disk D includes a magnetic film 102 formed on the main surface of a circular HDD glass substrate 101. The magnetic film 102 can be formed by a known conventional means. The magnetic film 102 is formed by, for example, a forming method (spin coating method) in which a thermosetting resin in which magnetic particles are dispersed is spin-coated on the HDD glass substrate 101, or a HDD glass substrate 101. It can be formed by a formation method (sputtering method) for forming the magnetic film 102 by sputtering, a formation method (electroless plating method) for forming the magnetic film 102 by electroless plating on the glass substrate 101 for HDD, or the like. .
 磁性膜102の膜厚は、スピンコート法によって形成した場合では、約0.3~1.2μm程度であり、スパッタリング法によって形成した場合では、約0.04~0.08μm程度であり、無電解めっき法によって形成した場合では、約0.05~0.1μm程度である。薄膜化および高密度化の観点から、スパッタリング法または無電解めっき法により形成することが好ましい。 The thickness of the magnetic film 102 is about 0.3 to 1.2 μm when formed by spin coating, and about 0.04 to 0.08 μm when formed by sputtering. When formed by electrolytic plating, the thickness is about 0.05 to 0.1 μm. From the viewpoint of thinning and densification, it is preferably formed by sputtering or electroless plating.
 磁性膜102に用いる磁性材料は、公知の任意の材料を用いることができ、特に限定されない。磁性材料は、例えば、高い保持力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金等が好ましい。より具体的には、磁性材料は、Coを主成分とするCoPt、CoCr、CoNi、CoNiCr、CoCrTa、CoPtCr、CoNiPt、CoNiCrPt、CoNiCrTa、CoCrPtTa、CoCrPtB、CoCrPtSiO等を用いることができる。 The magnetic material used for the magnetic film 102 can be any known material and is not particularly limited. The magnetic material is preferably, for example, a Co-based alloy based on Co having high crystal anisotropy in order to obtain a high coercive force, and Ni or Cr added for the purpose of adjusting the residual magnetic flux density. More specifically, the magnetic material may be CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, CoNiPt, CoNiCrPt, CoNiCrTa, CoCrPtTa, CoCrPtB, CoCrPtSiO, or the like whose main component is Co.
 磁性膜102は、ノイズの低減を図るために、非磁性膜(例えば、Cr、CrMo、CrV等)で分割された多層構成(例えば、CoPtCr/CrMo/CoPtCr、CoCrPtTa/CrMo/CoCrPtTa等)であってもよい。磁性膜102に用いる磁性材料は、上記磁性材料の他、フェライト系や鉄-希土類系であってもよく、また、SiO、BN等からなる非磁性膜中にFe、Co、FeCo、CoNiPt等の磁性粒子を分散した構造のグラニュラー等であってもよい。また、磁性膜102への記録には、内面型および垂直型のいずれかの記録形式が用いられてよい。 The magnetic film 102 has a multilayer structure (for example, CoPtCr / CrMo / CoPtCr, CoCrPtTa / CrMo / CoCrPtTa, etc.) divided by a nonmagnetic film (for example, Cr, CrMo, CrV, etc.) in order to reduce noise. May be. Magnetic material used for the magnetic layer 102, in addition to the magnetic material, ferrite or iron - may be a rare earth, also, Fe in a non-magnetic film made of SiO 2, BN, etc., Co, FeCo, CoNiPt and the like A granular material having a structure in which the magnetic particles are dispersed may be used. In addition, for recording on the magnetic film 102, either an inner surface type or a vertical type recording format may be used.
 また、磁気ヘッドの滑りをよくするために、磁性膜102の表面には、潤滑剤が薄くコーティングされてもよい。潤滑剤として、例えば液体潤滑剤であるパーフルオロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。 Further, in order to improve the sliding of the magnetic head, the surface of the magnetic film 102 may be thinly coated with a lubricant. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a freon-based solvent.
 さらに必要により磁性膜102に対し下地層や保護層が設けられてもよい。磁気ディスクDにおける下地層は、磁性膜102に応じて適宜に選択される。下地層の材料として、例えば、Cr、Mo、Ta、Ti、W、V、B、Al、Ni等の非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。例えば、Coを主成分とする磁性膜102の場合には、下地層の材料は、磁気特性向上等の観点からCr単体やCr合金であることが好ましい。 Further, if necessary, an underlayer or a protective layer may be provided for the magnetic film 102. The underlayer in the magnetic disk D is appropriately selected according to the magnetic film 102. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni. For example, in the case of the magnetic film 102 containing Co as a main component, the material of the underlayer is preferably Cr alone or a Cr alloy from the viewpoint of improving magnetic characteristics.
 また、下地層は、単層とは限らず、同一または異種の層を積層した複数層構造であってもよい。このような複数層構造の下地層は、例えば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層が挙げられる。磁性膜102の摩耗や腐食を防止する保護層として、例えば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層等が挙げられる。これら保護層は、下地層および磁性膜102と共にインライン型スパッタ装置で連続して形成することができる。また、これら保護層は、単層としてもよく、あるいは、同一または異種の層からなる複数層構成であってもよい。 Further, the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked. Examples of such an underlayer having a multilayer structure include multilayer underlayers such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, and NiAl / CrV. Examples of the protective layer that prevents wear and corrosion of the magnetic film 102 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be continuously formed with the underlayer and the magnetic film 102 by an in-line sputtering apparatus. These protective layers may be a single layer, or may be a multi-layer structure composed of the same or different layers.
 なお、上記保護層上に、または、上記保護層に代えて、他の保護層が形成されてもよい。例えば、上記保護層に代えて、Cr層の上にSiO層が形成されてもよい。このようなSiO層は、Cr層の上にテトラアルコキシシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成することによって形成される。 Note that another protective layer may be formed on the protective layer or instead of the protective layer. For example, instead of the protective layer, a SiO 2 layer may be formed on the Cr layer. Such a SiO 2 layer is formed by dispersing and applying colloidal silica fine particles in a tetraalkoxysilane diluted with an alcohol-based solvent on the Cr layer and further baking.
 このような本実施形態におけるHDD用ガラス基板101を基体とした磁気記録媒体は、HDD用ガラス基板101が上述した組成により形成されるので、情報の記録再生を長期に亘り高い信頼性で行うことができる。 In such a magnetic recording medium based on the HDD glass substrate 101 in the present embodiment, the HDD glass substrate 101 is formed with the above-described composition, so that information can be recorded and reproduced with high reliability over a long period of time. Can do.
 なお、上述では、本実施形態におけるHDD用ガラス基板101を磁気記録媒体に用いた場合について説明したが、これに限定されるものではなく、本実施形態におけるHDD用ガラス基板101は、光磁気ディスクや光ディスク等にも用いることが可能である。 In the above description, the HDD glass substrate 101 in this embodiment is used as a magnetic recording medium. However, the present invention is not limited to this, and the HDD glass substrate 101 in this embodiment is a magneto-optical disk. It can also be used for optical discs and the like.
 上記HDD用ガラス基板の製造方法の技術的特徴を下記にまとめる。 The technical characteristics of the above-described method for manufacturing a glass substrate for HDD are summarized below.
 本発明の一局面によるHDD用ガラス基板の製造方法は、溶融ガラス供給工程、プレス成形工程、熱処理工程、コアリング工程、研削工程、研磨工程、洗浄工程を備えるHDD用ガラス基板の製造方法であって、前記コアリング工程において、研削工程前のガラスブランクスの半径をrとしたとき、該ガラスブランクスの中心から0.75rの位置における周方向1周分のリタデーションTIRを1.0nm以下に調整することを特徴とする。 The manufacturing method of the glass substrate for HDD by one aspect of this invention is a manufacturing method of the glass substrate for HDD provided with a molten glass supply process, a press molding process, a heat treatment process, a coring process, a grinding process, a polishing process, and a washing process. Te, in the coring process, the radius of the glass blank before the grinding process when the r 1, the circumferential direction one round of the retardation TIR at the position of 0.75 r 1 from the center of the glass blanks below 1.0nm It is characterized by adjusting.
 本発明のHDD用ガラス基板の製造方法によれば、ヘッド浮上量の低減化、ヘッドクラッシュ及びリードライトエラーの低減化に優れたHDD用ガラス基板の製造方法を提供することができる。 According to the method for producing a glass substrate for HDD of the present invention, it is possible to provide a method for producing a glass substrate for HDD which is excellent in reducing the head flying height, reducing head crashes and read / write errors.
 上記製造方法において、前記ガラスブランクスの内孔の半径をrとしたとき、ガラス成形物の中心から(2r+r)/3の位置における周方向1周分のリタデーションTIRを0.5nm以下に調整することが好ましい。 In the above production method, when the radius of the inner hole of the glass blank is r 0 , the retardation TIR for one round in the circumferential direction at a position (2r 0 + r 1 ) / 3 from the center of the glass molded product is 0.5 nm or less. It is preferable to adjust to.
 本発明は、このような構成を採用することにより、得られるガラス基板を用いたHDDにおけるヘッドの低浮上化や高速回転への対応が容易になり、安定して記録・再生を行うことができる。 By adopting such a configuration, the present invention can easily cope with low head flying and high-speed rotation in an HDD using the obtained glass substrate, and can stably perform recording and reproduction. .
 上記製造方法において、さらに化学強化処理工程を備えることが好ましい。 In the above manufacturing method, it is preferable to further include a chemical strengthening treatment step.
 本発明は、さらに化学強化処理工程を備えることにより、より耐衝撃性に優れたハードディスク用ガラス基板を製造することができる。 The present invention can further produce a glass substrate for hard disk having more excellent impact resistance by providing a chemical strengthening treatment step.
 上記製造方法において、前記溶融ガラス供給工程における溶融ガラスを供給した直後の溶融ガラスの粘度ηが、log10η>2.6dPa・sの条件を満たし、前記プレス成形工程におけるプレス機が配置される回転テーブルの回転速度が0.3m/s以下に調整することが好ましい。 In the above manufacturing method, the viscosity of the molten glass immediately after supplying the molten glass in the molten glass supply step eta is, satisfies the condition of log 10 η> 2.6dPa · s, the press machine is arranged in the press molding process It is preferable to adjust the rotation speed of the rotary table to 0.3 m / s or less.
 本発明は、このような構成を採用することにより、ガラスゴブが形状を崩さず回転しプレス成形が可能となり、得られるガラスブランクスの内部歪みを小さくすることができる。 In the present invention, by adopting such a configuration, the glass gob can be rotated and pressed without breaking the shape, and the internal distortion of the obtained glass blanks can be reduced.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 (実施例1)
 表1に示すようなガラス組成を有するガラスを溶融し、供給した直後の粘度ηがlog10η=2.8dPa・sである溶融ガラスを用い、回転テーブルの速度が0.25m/sとなるように回転テーブルを回転させてプレス成形を行った。その後、熱処理工程、コアリング工程を施したガラスブランクスの周方向のリタデーションTIR測定を行った。得られたガラスブランクスの半径は33.2mmであり、厚みは1.05mmであった。
Example 1
Glass having a glass composition as shown in Table 1 is melted and a molten glass having a viscosity η immediately after being supplied is log 10 η = 2.8 dPa · s, and the speed of the rotary table is 0.25 m / s. Thus, the rotary table was rotated to perform press molding. Then, the retardation TIR measurement of the circumferential direction of the glass blanks which performed the heat processing process and the coring process was performed. The obtained glass blanks had a radius of 33.2 mm and a thickness of 1.05 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 前記リタデーションTIR測定としては、前記ガラスブランクスの中心孔より0.75rの位置、及び(2r+r)/3の位置の点における歪みを、PA-100(フォトニクスラティス社製)を用いてガラスブランクスに直線偏光を通過させ、通過後の偏光状態の変化を観察することにより測定した。そしてこの点から同心円状に、1周測定した際のリタデーション量のばらつき(最大値と最小値の差)を周方向リタデーションTIRと定義した。 For the retardation TIR measurement, distortion at a point of 0.75r 1 and (2r 0 + r 1 ) / 3 from the center hole of the glass blank was measured using PA-100 (manufactured by Photonics Lattice). The measurement was performed by passing linearly polarized light through a glass blank and observing the change in the polarization state after the passage. From this point, the variation in retardation amount (difference between the maximum value and the minimum value) when measuring one round concentrically was defined as the circumferential retardation TIR.
 前記リタデーションTIR測定後のガラスブランクスに、さらに研削工程、研磨工程、洗浄工程を施して製造したガラス基板の周方向TIRを測定した。 The circumferential direction TIR of the glass substrate manufactured by subjecting the glass blanks after the retardation TIR measurement to a grinding process, a polishing process, and a cleaning process was measured.
 研削工程では、ガラスブランクスの両主表面を、両面研磨機(浜井産業(株)製、16Bタイプ)を用いて粗研磨加工した。研磨パッドには平均一次粒子径9μmのダイヤモンド砥粒が樹脂パッドに埋没された研磨パッド用い、研磨水として水と冷却材を9:1で混合したものを用いた。また、加重は200g/cmとした。研磨剤スラリーの添加量は、4.5L/分とした。また、円筒状のダイヤモンド砥石を備えたコアドリルを用いてブランクスの中心部に直径が約19.6mmの円形の中心孔を開けた。鼓状のダイヤモンド砥石を用いて、ブランクスの外周端面および内周端面を、外径65mm、内径20mmに内・外径加工した。 In the grinding process, both main surfaces of the glass blanks were roughly polished using a double-side polishing machine (Hamai Sangyo Co., Ltd., 16B type). As the polishing pad, a polishing pad in which diamond abrasive grains having an average primary particle diameter of 9 μm were embedded in a resin pad was used, and water and coolant mixed at 9: 1 were used as polishing water. The weight was 200 g / cm 2 . The amount of abrasive slurry added was 4.5 L / min. In addition, a circular center hole having a diameter of about 19.6 mm was formed in the center of the blank using a core drill equipped with a cylindrical diamond grindstone. Using a drum-shaped diamond grindstone, the outer peripheral end surface and the inner peripheral end surface of the blanks were processed to have an inner diameter and an outer diameter of 65 mm in outer diameter and 20 mm in inner diameter.
 次いで、研磨工程では、ブランクスを100枚重ね、この状態で、ブランクスの外周端面および内周端面を、端面研磨機((株)舘野機械製作所製、TKV-1)を用いて研磨加工した。研磨機のブラシ毛として、直径が0.2mmのナイロン繊維を用いた。研磨液は、平均一次粒子径が3μmの酸化セリウムを砥粒(研磨液成分)として含有するスラリーを用いた。 Next, in the polishing step, 100 blanks were stacked, and in this state, the outer peripheral end surface and the inner peripheral end surface of the blanks were polished using an end surface polishing machine (manufactured by Hadano Machinery Co., Ltd., TKV-1). Nylon fiber having a diameter of 0.2 mm was used as the brush hair of the polishing machine. As the polishing liquid, a slurry containing cerium oxide having an average primary particle diameter of 3 μm as abrasive grains (polishing liquid component) was used.
 粗研磨工程として、ガラス基板の両主表面を、両面研磨機(浜井産業(株)製、16Bタイプ)を用いて粗研磨加工した。研磨パッドには発泡ウレタンパッドを、砥粒には平均一次粒子径1μmの酸化セリウム砥粒を用い、水と酸化セリウムとの混合比率は、80:20とした。さらに硫酸を含有する調整液でpHを調整した。また、加重は100g/cmとした。研磨剤スラリーの添加量は、8000mL/分とした。 As the rough polishing step, both main surfaces of the glass substrate were subjected to rough polishing using a double-side polishing machine (manufactured by Hamai Sangyo Co., Ltd., 16B type). The polishing pad was a urethane foam pad, the abrasive grains were cerium oxide abrasive grains having an average primary particle size of 1 μm, and the mixing ratio of water and cerium oxide was 80:20. Furthermore, pH was adjusted with the adjustment liquid containing a sulfuric acid. The load was 100 g / cm 2 . The amount of abrasive slurry added was 8000 mL / min.
 鏡面研磨工程として、ガラス基板の両主表面を、両面研磨機(浜井産業(株)製、16Bタイプ)を用いてさらに精密に研磨加工した。研磨剤スラリーは、平均一次粒子径が20nmのコロイダルシリカを砥粒として水に分散させてスラリー状にしたものを用い、水とコロイダルシリカとの混合比率は、80:20とした。さらに硫酸を含有する調整液でpHを調整した。また、加重は120g/cmとした。研磨剤スラリーの添加量は、500mL/分とした。本工程では、ガラス基板100枚を1バッチとし、5バッチずつ加工した。得られたガラス基板のRaは2Å以下であった。 As the mirror polishing step, both main surfaces of the glass substrate were polished more precisely using a double-side polishing machine (Hamai Sangyo Co., Ltd., 16B type). As the abrasive slurry, colloidal silica having an average primary particle diameter of 20 nm was dispersed in water as abrasive grains to form a slurry, and the mixing ratio of water and colloidal silica was 80:20. Furthermore, pH was adjusted with the adjustment liquid containing a sulfuric acid. The load was 120 g / cm 2 . The amount of abrasive slurry added was 500 mL / min. In this step, 100 batches of glass substrates were processed into 5 batches. Ra of the obtained glass substrate was 2 or less.
 洗浄工程として、ガラス基板をスクラブ洗浄した。洗浄液として、KOHとNaOHとを質量比で1:1に混合したものを超純水(DI水)で希釈し、洗浄能力を高めるために非イオン界面活性剤を添加して得られた液体を用いた。洗浄液の供給は、スプレー噴霧によって行った。スクラブ洗浄後、ガラス基板の表面に残る洗浄液を除去するために、水リンス洗浄工程を超音波槽で2分間行い、IPA洗浄工程を超音波槽で2分間行い、最後に、IPA蒸気によりガラス基板の表面を乾燥させた。 As a cleaning process, the glass substrate was scrubbed. As a cleaning liquid, a liquid obtained by diluting KOH and NaOH mixed at a mass ratio of 1: 1 with ultrapure water (DI water) and adding a nonionic surfactant to enhance the cleaning performance is obtained. Using. The cleaning liquid was supplied by spraying. After scrub cleaning, in order to remove the cleaning liquid remaining on the surface of the glass substrate, a water rinse cleaning process is performed in an ultrasonic bath for 2 minutes, an IPA cleaning process is performed in an ultrasonic bath for 2 minutes, and finally the glass substrate is cleaned with IPA vapor. The surface of was dried.
 前記周方向TIR測定としては、白色光の干渉を利用して表面形状を測定する方式の、Phase Shift Technology社製Optiflatを用いて測定した。周方向TIRの測定箇所は、上記リタデーションTIR測定の位置と同様に、0.75rの位置、及び(r+2r)/3の位置とした。 The circumferential TIR measurement was performed using an Optiflat manufactured by Phase Shift Technology, which measures the surface shape using white light interference. The measurement location in the circumferential direction TIR was set to a position of 0.75r 1 and a position of (r 1 + 2r 2 ) / 3, similarly to the position of the retardation TIR measurement.
 (実施例2)
 供給した直後の粘度ηがlog10η=2.4dPa・sである溶融ガラスを用い、熱処理工程前にリタデーションTIRを測定し、あらかじめ歪みが偏心していたガラスブランクスを、ヒーターを用いてTgで部分的に熱処理を行った。これらの処理以外は、実施例1と同様の製造方法で製造し、ガラスブランクスの周方向リタデーションTIRを測定した。また、加工工程を施したガラス基板の周方向TIRを測定した。
(Example 2)
Using molten glass with a viscosity η immediately after the supply of log 10 η = 2.4 dPa · s, measuring the retardation TIR before the heat treatment step, and preliminarily distorting the glass blanks with Tg using a heater Heat treatment was performed. Except these processes, it manufactured with the manufacturing method similar to Example 1, and measured the circumferential direction retardation TIR of glass blanks. Moreover, the circumferential direction TIR of the glass substrate which gave the processing process was measured.
 (実施例3)
 あらかじめ歪みが偏心していたガラスブランクスを、コアリング工程にて歪みの偏心の中心に内孔を形成させた以外は実施例2と同様の製造方法で製造し、ガラスブランクスの周方向リタデーションTIRを測定した。また、加工工程を施したガラス基板の周方向TIRを測定した。
(Example 3)
Glass blanks, which had been eccentric in advance, were manufactured by the same manufacturing method as in Example 2 except that an inner hole was formed at the center of the eccentricity in the coring process, and the circumferential retardation TIR of the glass blanks was measured. did. Moreover, the circumferential direction TIR of the glass substrate which gave the processing process was measured.
 (実施例4)
 供給した直後の粘度ηがlog10η=2.8dPa・sである溶融ガラスを用い、回転テーブルの速度を0.25m/sとなるように回転させてプレス成形工程を行った。歪みが偏心していたガラスブランクスを、コアリング工程にて歪みの偏心の中心に内孔を形成させ、さらにヒーターを用いてTgで部分的に熱処理を行った。これらの処理以外は、実施例1と同様の製造方法で製造し、ガラスブランクスの周方向リタデーションTIRを測定した。また、加工工程を施したガラス基板の周方向TIRを測定した。
(Example 4)
A press molding process was performed by using a molten glass having a viscosity η immediately after the supply of log 10 η = 2.8 dPa · s and rotating the speed of the rotary table to 0.25 m / s. The glass blanks, in which the strain was eccentric, were formed with an inner hole at the center of the eccentricity of the strain in the coring step, and further partially heat-treated with Tg using a heater. Except these processes, it manufactured with the manufacturing method similar to Example 1, and measured the circumferential direction retardation TIR of glass blanks. Moreover, the circumferential direction TIR of the glass substrate which gave the processing process was measured.
 (実施例5)
 粗研磨工程と鏡面研磨工程との間に、化学強化処理工程を採用した以外は、実施例1と同様の製造方法で製造し、ガラスブランクスの周方向リタデーションTIRを測定した。また、加工工程を施したガラス基板の周方向TIRを測定した。化学強化処理工程では、硝酸カリウムを400℃にて溶融し、ガラス基板を1時間浸漬させた。
(Example 5)
It manufactured with the manufacturing method similar to Example 1 except having employ | adopted the chemical strengthening process between the rough polishing process and the mirror polishing process, and measured the circumferential retardation TIR of the glass blanks. Moreover, the circumferential direction TIR of the glass substrate which gave the processing process was measured. In the chemical strengthening treatment step, potassium nitrate was melted at 400 ° C., and the glass substrate was immersed for 1 hour.
 (比較例1)
 供給した直後の粘度ηがlog10η=2.4dPa・sである溶融ガラスを用い、回転テーブルの速度を0.25m/sとなるように回転させてプレス成形工程を行った。その後、熱処理工程、コアリング工程を施したガラスブランクスの周方向のリタデーションTIR測定を行った。また、その後の加工工程を施したガラス基板の周方向TIRを測定した。
(Comparative Example 1)
The press molding process was performed by using a molten glass having a viscosity η immediately after the supply of log 10 η = 2.4 dPa · s and rotating the rotary table at a speed of 0.25 m / s. Then, the retardation TIR measurement of the circumferential direction of the glass blanks which performed the heat processing process and the coring process was performed. Moreover, the circumferential direction TIR of the glass substrate which gave the subsequent process process was measured.
 (比較例2)
 供給した直後の粘度ηがlog10η=2.0dPa・sである溶融ガラスを用い、回転テーブルの速度を0.40m/sとなるように回転させてプレス成形工程を行った。その後、熱処理工程、コアリング工程を施したガラスブランクスの周方向のリタデーションTIR測定を行った。また、その後の加工工程を施したガラス基板の周方向TIRを測定した。
(Comparative Example 2)
The press molding process was performed by using a molten glass having a viscosity η immediately after the supply of log 10 η = 2.0 dPa · s and rotating the speed of the rotary table to 0.40 m / s. Then, the retardation TIR measurement of the circumferential direction of the glass blanks which performed the heat processing process and the coring process was performed. Moreover, the circumferential direction TIR of the glass substrate which gave the subsequent process process was measured.
 (評価方法)
 以上の実施例1~5と比較例1~2のガラス基板に磁性膜を形成してHDDに搭載し、リード/ライト特性について評価を行った。磁性膜はCo-Cr合金をスパッタリング法により成膜し、膜厚は15nmとした。評価方法はHDDスピンドルの回転数を15,000rpmで5分間回転させ、エラー数を測定した。テスト数は25枚とし、1枚当たりのエラーの平均値のテスト評価を表2に示す。
(Evaluation methods)
A magnetic film was formed on the glass substrates of Examples 1 to 5 and Comparative Examples 1 and 2 and mounted on the HDD, and the read / write characteristics were evaluated. The magnetic film was made of a Co—Cr alloy by sputtering, and the film thickness was 15 nm. In the evaluation method, the number of errors was measured by rotating the number of revolutions of the HDD spindle at 15,000 rpm for 5 minutes. The number of tests is 25, and Table 2 shows the test evaluation of the average value of errors per sheet.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の実施例1~5、比較例1~2の各測定位置における周方向リタデーションTIR、及びリタデーションTIR、リード/ライトエラーのテスト評価を行った。結果を表3に示す。 Test evaluation of circumferential retardation TIR, retardation TIR, and read / write error at each measurement position in Examples 1 to 5 and Comparative Examples 1 and 2 was performed. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、溶融ガラスの粘度ηをlog10η>2.6dPa・sの条件とし、かつ回転テーブルの回転速度を0.3m/s以下となるように加圧工程を行った実施例1は、ガラスブランクス作製時において0.75rの位置、及び(2r+r)/3の位置における周方向リタデーションTIRは、それぞれ1.0nm以下、0.5nm以下となった。溶融ガラスの粘度をより高いものとし、さらに回転速度遅くすることで、下型に供給された比較的柔らかい溶融ガラスの形状がその回転の遠心力によって傾かず、これによって歪みが生じないからであると考えられる。 From the results of Table 3, the pressure step was performed so that the viscosity η of the molten glass was a condition of log 10 η> 2.6 dPa · s and the rotation speed of the rotary table was 0.3 m / s or less. In the case of No. 1 , the circumferential retardation TIR at the position of 0.75r 1 and (2r 0 + r 1 ) / 3 at the time of glass blank production was 1.0 nm or less and 0.5 nm or less, respectively. This is because by making the viscosity of the molten glass higher and further lowering the rotation speed, the shape of the relatively soft molten glass supplied to the lower mold is not tilted by the centrifugal force of the rotation, and thus no distortion occurs. it is conceivable that.
 よって、ガラスブランクスの周方向リタデーションTIRを小さなものとすることで、ガラス基板作製時における周方向TIRについても0.75rの位置、及び(2r+r)/3の位置において、それぞれ1.0nm以下、0.5nm以下と小さなものとなった。したがって、周方向TIRが小さいことから、実施例1のガラス基板に磁性膜を形成させてHDDに搭載した際のリード/ライト評価は優れたものとなった。 Therefore, by the circumferential retardation TIR glass blanks and small, the position of 0.75 r 1 also circumferentially TIR at the glass substrate production, and at the position of (2r 0 + r 1) / 3, respectively 1. It was as small as 0 nm or less and 0.5 nm or less. Therefore, since the circumferential direction TIR was small, the read / write evaluation when the magnetic film was formed on the glass substrate of Example 1 and mounted on the HDD was excellent.
 実施例1の溶融ガラスに比べて、やや粘度の低いものにした実施例2については、回転テーブルにて移送された後、回転テーブルの速度が原因となりその溶融ガラスの形状が傾いてしまった。これが原因となって生じた周方向の歪みは、ヒーターを用いて熱処理を行い解消することができた。このように作成されたガラスブランクスは、0.75rの位置、及び(2r+r)/3の位置における周方向リタデーションTIRは、それぞれ1.0nm以下、0.5nm以下となり、リード/ライトテストについても実施例1と同様に優れたものとなった。 In Example 2, which had a slightly lower viscosity than the molten glass of Example 1, the shape of the molten glass was tilted due to the speed of the rotary table after being transferred by the rotary table. The circumferential distortion caused by this could be eliminated by heat treatment using a heater. The glass blanks thus prepared had a circumferential retardation TIR at a position of 0.75r 1 and a position of (2r 0 + r 1 ) / 3 of 1.0 nm or less and 0.5 nm or less, respectively. The test was also excellent as in Example 1.
 また、実施例3は、実施例2と同様の粘度の溶融ガラスであって、同様の回転速度にて移送させた。しかし、実施例3ではその歪みをコアリング形成時にて内孔の中心を、ガラス基板の周方向に対してより歪みのない箇所となるように設けた。このようにすることで、ガラスブランクス作製時においての0.75rの位置における周方向リタデーションTIRは1.0nm以下となったが、(2r+r)/3の位置における周方向リタデーションTIRは0.5nmを超えるものとなり、製品としては問題のない範囲であった。 Further, Example 3 was a molten glass having the same viscosity as that of Example 2, and was transferred at the same rotational speed. However, in Example 3, the distortion was provided when the coring was formed, and the center of the inner hole was provided so as to be a position with no distortion in the circumferential direction of the glass substrate. By doing in this way, the circumferential retardation TIR at the position of 0.75r 1 at the time of glass blank production was 1.0 nm or less, but the circumferential retardation TIR at the position of (2r 0 + r 1 ) / 3 was It exceeded 0.5 nm, and it was in a range where there was no problem as a product.
 さらに、実施例4では溶融ガラスの粘度ηをlog10η>2.6dPa・sの条件とし、かつ回転テーブルの回転速度を0.3m/s以下となるように加圧工程を行い、かつ、コアリング形成時にて内孔の中心を、ガラス基板の周方向に対してより歪みのない箇所となるように設け、かつ周方向の歪みをヒーターの熱処理にて解消させた。このように処理したことで、ガラスブランクス作成時において0.75rの位置、及び(2r+r)/3の位置における周方向リタデーションTIRは、それぞれ著しく小さなものとなり、ガラス基板作成時における周方向TIRについても非常に小さなものとなった。したがって、周方向TIRが実施例1~3に比べて極めて小さいことから、実施例4のガラス基板に磁性膜を形成させてHDDに搭載した際のリード/ライト評価は非常に優れたものとなった。 Further, in Example 4, the pressure step is performed so that the viscosity η of the molten glass is log 10 η> 2.6 dPa · s, and the rotation speed of the rotary table is 0.3 m / s or less, and At the time of forming the coring, the center of the inner hole was provided so as to be a portion having no distortion with respect to the circumferential direction of the glass substrate, and the distortion in the circumferential direction was eliminated by heat treatment of the heater. By processing in this way, the circumferential retardation TIR at the position of 0.75r 1 and the position of (2r 0 + r 1 ) / 3 at the time of glass blanks production becomes extremely small, respectively. The direction TIR was also very small. Accordingly, since the circumferential direction TIR is extremely small compared to the first to third embodiments, the read / write evaluation when the magnetic film is formed on the glass substrate of the fourth embodiment and mounted on the HDD is very excellent. It was.
 また、化学強化処理工程を採用した実施例5については、実施例1と同様にガラスブランクス作製時において0.75rの位置、及び(2r+r)/3の位置における周方向のリタデーションTIRは、それぞれ1.0nm以下、0.5nm以下となった。ガラスブランクスの周方向リタデーションTIRを小さなものとすることで、ガラス基板作製時における周方向TIRについても0.75rの位置、及び(2r+r)/3の位置において、それぞれ1.0nm以下、0.5nm以下と小さなものとなった。したがって、周方向TIRが小さいことから、実施例5のガラス基板に磁性膜を形成させてHDDに搭載した際のリード/ライト評価は、実施例1の場合と同様に優れたものとなった。 As for Example 5 employing the chemical strengthening treatment step, the position of 0.75 r 1 during Similarly glass blank produced as in Example 1, and (2r 0 + r 1) / 3 in the circumferential direction of the retardation TIR at the position Were 1.0 nm or less and 0.5 nm or less, respectively. By making the circumferential retardation TIR of the glass blanks small, 1.0 nm or less at the position of 0.75r 1 and the position of (2r 0 + r 1 ) / 3 also in the circumferential direction TIR at the time of glass substrate production It was as small as 0.5 nm or less. Therefore, since the circumferential direction TIR is small, the read / write evaluation when the magnetic film was formed on the glass substrate of Example 5 and mounted on the HDD was excellent as in the case of Example 1.
 一方で、実施例1の溶融ガラスに比べてやや粘度の小さいものにした比較例1や、実施例1の溶融ガラスに比べてより粘度の小さいものを用い、さらに回転数も大きくさせた比較例1は、ガラスブランクスの歪み解消処理を行わなかったため、周方向リタデーションTIRは、それぞれ1.0nm以下、5nmを超えたものとなり、それに従ってガラス基板の周方向TIRについても大きな値となり、リードライトテストについても非常に劣る結果となった。 On the other hand, Comparative Example 1 having a slightly lower viscosity than the molten glass of Example 1 and Comparative Example using a lower viscosity than the molten glass of Example 1 and further increasing the rotational speed In No. 1, since the glass blanks were not subjected to distortion elimination processing, the circumferential retardation TIR was 1.0 nm or less and exceeded 5 nm, respectively, and accordingly the circumferential TIR of the glass substrate also became a large value, and the read / write test. The result was very inferior.
 1 成型用プレス機
 2 プレス機上部
 3 上型
 4 第2の成形面
 5 下型
 6 第1の成形面
 7 プレス機下部
 8 回転軸
 9 回転テーブル
 10 ガラスブランクス
 11 研磨装置
 12 上定盤
 13 下定盤
 16 研磨スラリー
 21 流出ノズル
 22 ブレード
 23 溶融ガラス
 101 HDD用ガラス基板
DESCRIPTION OF SYMBOLS 1 Molding press machine 2 Upper part of press machine 3 Upper mold | type 4 2nd shaping | molding surface 5 Lower mold | type 6 1st shaping | molding surface 7 Lower press machine 8 Rotating shaft 9 Turning table 10 Glass blanks 11 Polishing apparatus 12 Upper surface plate 13 Lower surface plate 16 Polishing slurry 21 Outflow nozzle 22 Blade 23 Molten glass 101 Glass substrate for HDD

Claims (4)

  1.  溶融ガラス供給工程、プレス成形工程、熱処理工程、コアリング工程、研削工程、研磨工程、洗浄工程を備えるHDD用ガラス基板の製造方法であって、
     前記コアリング工程において、研削工程前のガラスブランクスの半径をrとしたとき、該ガラスブランクスの中心から0.75rの位置における周方向1周分のリタデーションTIRを1.0nm以下に調整する、HDD用ガラス基板の製造方法。
    A manufacturing method of a glass substrate for HDD comprising a molten glass supply process, a press molding process, a heat treatment process, a coring process, a grinding process, a polishing process, and a cleaning process,
    In the coring step, when the radius of the glass blank before the grinding process was r 1, to adjust the center of the glass blank in the circumferential direction one round of the retardation TIR at the position of 0.75 r 1 below 1.0nm The manufacturing method of the glass substrate for HDD.
  2.  前記ガラスブランクスの内孔の半径をrとしたとき、ガラス成形物の中心から(2r+r)/3の位置における周方向1周分のリタデーションTIRを0.5nm以下に調整する、請求項1記載のHDD用ガラス基板の製造方法。 When the radius of the inner hole of the glass blank is r 0 , the retardation TIR for one round in the circumferential direction at a position (2r 0 + r 1 ) / 3 from the center of the glass molded product is adjusted to 0.5 nm or less. Item 2. A method for producing a glass substrate for HDD according to Item 1.
  3.  さらに化学強化処理工程を備える、請求項1または2記載のHDD用ガラス基板の製造方法。 The method for producing a glass substrate for HDD according to claim 1, further comprising a chemical strengthening treatment step.
  4.  前記溶融ガラス供給工程において、溶融ガラスを供給した直後の溶融ガラスの粘度ηが、log10η>2.6dPa・sの条件を満たし、
     前記プレス成形工程において、プレス機が配置される回転テーブルの回転速度が0.3m/s以下に調整する、請求項1~3のいずれか1項に記載のHDD用ガラス基板の製造方法。
    In the molten glass supply step, the viscosity η of the molten glass immediately after supplying the molten glass satisfies a condition of log 10 η> 2.6 dPa · s,
    The method for producing a glass substrate for an HDD according to any one of claims 1 to 3, wherein in the press molding step, a rotation speed of a rotary table on which a press machine is arranged is adjusted to 0.3 m / s or less.
PCT/JP2012/003664 2011-06-30 2012-06-05 Method for producing hdd glass substrate WO2013001723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-145421 2011-06-30
JP2011145421 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013001723A1 true WO2013001723A1 (en) 2013-01-03

Family

ID=47423655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003664 WO2013001723A1 (en) 2011-06-30 2012-06-05 Method for producing hdd glass substrate

Country Status (2)

Country Link
JP (1) JPWO2013001723A1 (en)
WO (1) WO2013001723A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531805A (en) * 2000-04-27 2003-10-28 カール−ツァイス−スティフツング Method for producing thin glassware and use of the method
JP2008226377A (en) * 2007-03-14 2008-09-25 Konica Minolta Opto Inc Method of reducing stress remaining on glass substrate blank material and blank material
JP2008287779A (en) * 2007-05-16 2008-11-27 Konica Minolta Opto Inc Method for manufacturing glass substrate for information recording medium, glass substrate for information recording medium, and magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531805A (en) * 2000-04-27 2003-10-28 カール−ツァイス−スティフツング Method for producing thin glassware and use of the method
JP2008226377A (en) * 2007-03-14 2008-09-25 Konica Minolta Opto Inc Method of reducing stress remaining on glass substrate blank material and blank material
JP2008287779A (en) * 2007-05-16 2008-11-27 Konica Minolta Opto Inc Method for manufacturing glass substrate for information recording medium, glass substrate for information recording medium, and magnetic recording medium

Also Published As

Publication number Publication date
JPWO2013001723A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP4998095B2 (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JP5321594B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
JP5577290B2 (en) Method for manufacturing glass substrate for magnetic information recording medium
JP3254157B2 (en) Glass substrate for recording medium, and recording medium using the substrate
WO2010041536A1 (en) Process for producing glass substrate, and process for producing magnetic recording medium
WO2010041537A1 (en) Process for producing glass substrate, and process for producing magnetic recording medium
WO2013001722A1 (en) Method for producing hdd glass substrate
JP2009087483A (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
WO2011021478A1 (en) Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium
WO2013001723A1 (en) Method for producing hdd glass substrate
JP2008204499A (en) Glass substrate for information recording medium and magnetic recording medium
WO2012043214A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
JP2012203960A (en) Manufacturing method for glass substrate for magnetic information recording medium
JP2012079365A (en) Method for manufacturing glass substrate for information recording medium
JP5636243B2 (en) Manufacturing method of glass substrate for information recording medium
JP5177328B2 (en) Method for manufacturing glass substrate for magnetic information recording medium
JP6104668B2 (en) Method for manufacturing glass substrate for information recording medium and carrier
JP5706250B2 (en) Glass substrate for HDD
JP5071603B2 (en) Method for manufacturing glass substrate for magnetic information recording medium
JP2010073289A (en) Substrate for magnetic disk and magnetic disk
JP2012203959A (en) Manufacturing method for glass substrate for magnetic information recording medium
WO2012042735A1 (en) Manufacturing method for glass substrate for information recording medium
JP5722618B2 (en) Method for manufacturing glass substrate for magnetic information recording medium
JP2013012282A (en) Method for manufacturing glass substrate for hdd

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804989

Country of ref document: EP

Kind code of ref document: A1