WO2013099585A1 - Method for manufacturing glass substrate for information storage medium - Google Patents

Method for manufacturing glass substrate for information storage medium Download PDF

Info

Publication number
WO2013099585A1
WO2013099585A1 PCT/JP2012/082015 JP2012082015W WO2013099585A1 WO 2013099585 A1 WO2013099585 A1 WO 2013099585A1 JP 2012082015 W JP2012082015 W JP 2012082015W WO 2013099585 A1 WO2013099585 A1 WO 2013099585A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
polishing
base plate
glass
glass base
Prior art date
Application number
PCT/JP2012/082015
Other languages
French (fr)
Japanese (ja)
Inventor
葉月 中江
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013099585A1 publication Critical patent/WO2013099585A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present invention relates to a method for manufacturing a glass substrate for information recording media, and in particular, manufacturing a glass substrate for information recording media mounted as part of an information recording medium in an information recording device such as a hard disk drive (HDD). Regarding the method.
  • an information recording device such as a hard disk drive (HDD).
  • Information recording devices such as hard disk drives are built in various devices such as computers.
  • Such an information recording apparatus is equipped with an information recording medium such as a magnetic disk formed in a disk shape.
  • the information recording medium is manufactured by forming a magnetic recording layer for magnetic recording on the main surface of a glass or aluminum substrate.
  • a glass substrate used for manufacturing an information recording medium is referred to as an information recording medium glass substrate (hereinafter also simply referred to as a glass substrate).
  • a method for manufacturing a glass substrate for an information recording medium is disclosed in, for example, Japanese Patent Application Laid-Open No. 2010-165420 (Patent Document 1).
  • Information storage devices such as hard disk drives are expanding their usage and usage environment year by year.
  • the demands on information recording devices for increasing capacity, impact resistance, heat resistance, and the like tend to increase year by year.
  • various things are required also for the glass substrate for information recording media.
  • a glass substrate is required to have high cleanliness and high smoothness.
  • the glass substrate is required not to deteriorate in characteristics under various usage environments.
  • chemical strengthening treatment also referred to as ion exchange treatment
  • ions on the surface layer of the glass substrate are exchanged for ions having an ion radius larger than the ions.
  • the chemical strengthening treatment is performed after the precision polishing process for the glass base plate.
  • a precision polishing step may be performed after the chemical strengthening treatment.
  • the chemical strengthening treatment is performed after the rough polishing process is performed using cerium oxide or zirconium oxide.
  • precision polishing is performed using colloidal silica or the like.
  • abrasive grains remaining on the surface of the glass substrate are washed away using a cleaning liquid containing a strong acid or HF after the rough polishing step. After performing rough polishing on the surface of the glass substrate, polishing abrasive grains remaining on the surface of the glass substrate are washed away (referred to as a rinsing step).
  • the present inventors have found that some of the glass substrates obtained in this way are inferior in impact resistance. Specifically, the present inventors conducted a drop impact test under a certain condition (for example, a high temperature and high humidity state) on an information recording apparatus in which the glass substrate is mounted as an information recording medium. It was found that the impact resistance of the glass substrate obtained was lowered.
  • a certain condition for example, a high temperature and high humidity state
  • the present invention is a glass for an information recording medium capable of suppressing the impact resistance of the obtained glass substrate from being lowered even when a chemical strengthening treatment is performed after the rough polishing step and before the precision polishing step.
  • An object is to provide a method for manufacturing a substrate.
  • a method for producing a glass substrate for an information recording medium provides a polishing machine including a polishing pad, and a glass base plate containing a polishing liquid containing any one of cerium oxide, zirconium oxide, or zirconium silicate as abrasive grains.
  • a step of performing rough polishing by sliding the polishing pad against the surface of the glass base plate while removing the glass base plate after the rough polishing from the polishing pad, While supplying an acidic cleaning liquid to the surface of the glass base plate, acid cleaning is performed on the surface of the glass base plate, and alkali metal ions contained in the glass base plate after the acid cleaning are included.
  • the cleaning liquid used in the acid cleaning step includes sulfuric acid and / or hydrofluoric acid.
  • the chemical strengthening salt used in the step of forming the compressive stress layer includes sodium ions and potassium ions.
  • the information recording medium capable of suppressing the impact resistance of the obtained glass substrate from being lowered.
  • a method for producing a glass substrate for use can be obtained.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. It is a flowchart figure which shows each process of the manufacturing method of the glass substrate for information recording media in embodiment.
  • FIG. 1 is a perspective view showing the information recording apparatus 30.
  • the information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
  • the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28.
  • a spindle motor (not shown) is installed on the upper surface of the housing 20.
  • An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28.
  • the information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm.
  • a compression stress layer 12 see FIG. 5
  • a magnetic recording layer 14 see FIGS. 4 and 5 are formed on the glass substrate 1. To be manufactured.
  • the arm 23 is attached so as to be swingable around the vertical axis 24.
  • a suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23.
  • a head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
  • a voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21.
  • the voice coil 25 is clamped by a magnet (not shown) provided on the housing 20.
  • a voice coil motor 26 is constituted by the voice coil 25 and the magnet.
  • a predetermined current is supplied to the voice coil 25.
  • the arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet.
  • the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1.
  • the head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10.
  • a magnetic head (not shown) provided on the head slider 21 performs a seek operation.
  • the head slider 21 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10.
  • the information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
  • FIG. 2 is a plan view showing glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) has a main surface 2, a main surface 3, It has the inner peripheral end surface 4, the hole 5, and the outer peripheral end surface 6, and is formed in a disk shape as a whole.
  • the hole 5 is provided so as to penetrate from one main surface 2 toward the other main surface 3.
  • a chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4.
  • a chamfered portion 8 (chamfer portion) is formed between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6, a chamfered portion 8 (chamfer portion) is formed.
  • the size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch.
  • the thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage.
  • the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm.
  • the thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate.
  • FIG. 4 is a plan view showing an information recording medium 10 provided with a glass substrate 1 as an information recording medium.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG.
  • the information recording medium 10 includes a glass substrate 1, a compressive stress layer 12, and a magnetic recording layer 14.
  • the compressive stress layer 12 is formed so as to cover the main surfaces 2 and 3, the inner peripheral end face 4, and the outer peripheral end face 6 of the glass substrate 1.
  • the magnetic recording layer 14 is formed so as to cover a predetermined region on the main surfaces 2 and 3 of the compressive stress layer 12.
  • the magnetic recording layer 14 is formed on both the compressive stress layer 12 formed on the main surface 2 and the compressive stress layer 12 formed on the main surface 3 (both sides). Is formed.
  • the magnetic recording layer 14 may be provided only on the compression stress layer 12 (one side) formed on the main surface 2, or on the compression stress layer 12 (one side) formed on the main surface 3. It may be provided.
  • the magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method).
  • the magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
  • the thickness of the magnetic recording layer 14 is about 0.3 ⁇ m to 1.2 ⁇ m for the spin coating method, about 0.04 ⁇ m to 0.08 ⁇ m for the sputtering method, and about 0.05 ⁇ m to about the electroless plating method. 0.1 ⁇ m. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
  • a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used.
  • the surface of the magnetic recording layer 14 may be thinly coated with a lubricant.
  • a lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
  • the magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary.
  • the underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • the underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked.
  • a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
  • Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
  • Another protective layer may be formed on the protective layer or instead of the protective layer.
  • tetraalkoxylane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon oxide (SiO 2 ) layer. It may be formed.
  • the glass substrate manufacturing method S100 in the present embodiment includes a plate-like glass forming step S10, a first lapping step S20, a cut-out forming step S30, a second lapping step S40, an end surface polishing step S50, a rough polishing step S60, and a cleaning step S65. , A chemical strengthening step S70, a precision polishing step S80, and a scrub cleaning step S90.
  • the magnetic thin film forming step S200 is performed on the glass substrate obtained through the scrub cleaning step S90. Through the magnetic thin film forming step S200, the information recording medium 10 (see FIGS. 4 and 5) is obtained.
  • the details of the steps S10 to S90 constituting the glass substrate manufacturing method S100 will be described in order.
  • a glass sheet is manufactured using a known glass forming method such as a direct press method, a float method, a down draw method, a redraw method, or a fusion method using molten glass as a material.
  • the direct press method can be directly molded from a melted glass into a target glass molded product, and thus is suitable for producing a large amount of plate-like glass having the same shape.
  • molten glass is supplied to a press mold and pressed with a press mold while the glass is in a softened state to form a sheet glass.
  • amorphous glass can be used as the material of the glass base plate.
  • chemical strengthening can be appropriately performed, and a glass substrate for an information recording medium excellent in flatness of the main surface and substrate strength can be provided.
  • First lapping step S20 In the first lapping step S20, lapping (grinding) is performed on the surface of the sheet glass.
  • the lapping process is performed using alumina free abrasive grains by a double-sided lapping apparatus using a planetary gear mechanism. Specifically, the lapping platen is pressed from above and below on both sides of the plate glass, a grinding liquid containing free abrasive grains is supplied onto the main surface of the plate glass, and these are moved relatively to perform lapping. Do. By this lapping process, a sheet glass having a flat main surface can be obtained.
  • the plate glass is cut using a diamond cutter, and a disk-shaped glass base plate is cut out from the plate glass.
  • a cylindrical diamond drill is used to form an inner hole at the center of the glass base plate to form an annular glass base plate (coring process). Thereafter, the inner peripheral end face and the outer peripheral end face are ground with a diamond grindstone and subjected to predetermined chamfering (forming, chamfering).
  • Step S40 In the second lapping step S40, lapping is performed on both main surfaces of the obtained glass base plate in the same manner as in the first lapping step.
  • the fine uneven shape formed on the main surface in the cut-out and forming step S30, which is the previous step can be removed in advance, and the rough polishing step S60 to be performed later can be performed in a short time. Can be completed.
  • End face polishing step S50 In the end face polishing step S50, the inner peripheral end face and the outer peripheral end face of the glass base plate are polished using a polishing brush having a spiral brush bristle material. While supplying the polishing slurry between the polishing brush and each end face of the glass base plate, the polishing brush is rotated in contact with each end face. With the glass base plate immersed in the polishing liquid, the polishing brush may be rotated in contact with each end face.
  • the glass base plate whose inner peripheral end face and outer peripheral end face are polished has its main surface roughly polished in a plurality of times. For example, the main surface is polished twice in the first and second rough polishing steps. By gradually increasing the finishing accuracy of the glass base plate, a glass base plate having a highly smooth and flat surface can be obtained.
  • the first rough polishing step is mainly intended to remove scratches and distortions remaining on the main surface in the lapping step described above, and the second rough polishing step It is intended to finish in a mirror shape.
  • the rough polishing step S60 is performed on both main surfaces of the glass base plate so as to efficiently obtain the surface roughness of the glass base plate finally required in the subsequent precision polishing step S80.
  • this is a step of performing rough polishing using a polishing slurry. It does not specifically limit as a grinding
  • a double-side polishing machine 40 shown in FIG. 7 was used.
  • the double-side polishing machine 40 includes a lower surface plate 41 and an upper surface plate 42 that are provided opposite to each other in the vertical direction. Polishing pads 43 and 44 are fixed to opposing surfaces of the lower surface plate 41 and the upper surface plate 42, respectively.
  • the glass base plate 1 is held in the holding hole of the carrier 45 and is sandwiched between the lower surface plate 41 and the upper surface plate 42.
  • the lower surface plate 41 and the upper surface plate 42 are rotated by a drive source (not shown).
  • the rotation drive of the lower surface plate 41 and the upper surface plate 42 is controlled by the control device 48.
  • the first main surface and the second main surface of the glass base plate 1 are simultaneously polished by the upper and lower polishing pads 43 and 44.
  • polishing slurry is supplied from the abrasive supply device 46.
  • the abrasive supply device 46 is one place, but is not limited thereto, and the position and the number thereof can be arbitrarily configured.
  • the polishing liquid (polishing slurry) used may contain cerium oxide, zirconium oxide, zirconium silicate or the like as abrasive grains.
  • the concentration of cerium oxide in the polishing liquid is, for example, about 5% to 10%.
  • the machining allowance for the surface of the glass base plate to be polished is, for example, 10 ⁇ m to 30 ⁇ m.
  • the surface Ra of the glass base plate after rough polishing is, for example, about 3 to 10 mm. As described above, the main surface of the glass base plate 1 is roughly polished. After the rough polishing, the glass base plate 1 is acid cleaned using sulfuric acid or hydrofluoric acid.
  • cleaning step S65 Referring again to FIG. 6, after the rough polishing step S60, the glass base plate 1 is subjected to a cleaning process using an acidic cleaning liquid.
  • the purpose of this cleaning treatment is to remove from the surface of the glass base plate 1 any of cerium oxide, zirconium oxide, or zirconium silicate used as a polishing slurry in the rough polishing step S60, which is the previous step. .
  • the surface of the glass substrate 1 is etched using a cleaning liquid containing sulfuric acid or hydrofluoric acid. Wash while.
  • a polishing slurry such as cerium oxide, zirconium oxide, or zirconium silicate adhering to the surface of the glass base plate is appropriately removed by a strongly acidic cleaning solution such as sulfuric acid and / or hydrofluoric acid.
  • a so-called rinse process is not performed after the rough polishing process S60 and before the cleaning process S65.
  • the glass base plate 1 is removed from the polishing pad as it is with the polishing liquid sufficiently adhered thereto.
  • the glass base plate 1 is removed from the polishing pad of the double-side polishing machine while in contact with a polishing liquid (or other liquid) having a polishing abrasive concentration of 0.5 w% or more and 10 w% or less. Thereafter, the glass base plate 1 is cleaned using an acidic cleaning solution.
  • the cleaning liquid used in the cleaning step S65 varies depending on the chemical resistance of the glass base plate, but a concentration of about 1% to 30% is preferable for sulfuric acid, and 0.2% to 5% for hydrofluoric acid. A concentration of about is preferred. Cleaning using these cleaning liquids may be performed while applying ultrasonic waves in a cleaning machine in which an aqueous solution is stored.
  • the frequency of the ultrasonic wave used at this time is preferably 78 kHz or higher.
  • the glass base plate 1 is chemically strengthened.
  • the chemical strengthening liquid for example, a mixed liquid of potassium nitrate (60%) and sodium sulfate (40%) can be used.
  • the chemical strengthening liquid is heated to, for example, 300 ° C. to 400 ° C.
  • the cleaned glass base plate 1 is preheated to 200 ° C. to 300 ° C., for example.
  • the glass base plate 1 is immersed in the chemical strengthening solution for 3 hours to 4 hours, for example.
  • the immersion is preferably performed in a state of being housed in a holder so that the plurality of glass base plates 1 are held at their respective end faces so that both main surfaces of the glass base plate 1 are chemically strengthened. .
  • the alkali metal ions lithium ions and sodium ions
  • the surface layer of the glass base plate 1 are chemically strengthened salts having relatively large ionic radii in the chemical strengthening solution ( Sodium ion and potassium ion).
  • a compressive stress layer having a thickness of, for example, 50 ⁇ m to 200 ⁇ m is formed on the surface layer of the glass base plate 1.
  • the surface of the glass base plate 1 is strengthened by the formation of the compressive stress layer, and the glass base plate 1 has good impact resistance.
  • the glass base plate 1 subjected to the chemical strengthening treatment is appropriately washed.
  • the glass base plate 1 is further cleaned with pure water or IPA (isopropyl alcohol) after being cleaned with sulfuric acid.
  • precision polishing step S80 After the chemical strengthening step S70, a precision polishing process is performed on the glass base plate 1.
  • the precision polishing step S80 is intended to finish the main surface of the glass base plate 1 in a mirror shape.
  • the precision polishing step S80 as in the above-described rough polishing step S60, the glass substrate 1 is precisely polished using a double-side polishing machine (see FIG. 7).
  • the composition of the polishing abrasive grains contained in the polishing liquid (slurry) used and the polishing pad used are different.
  • the particle size of the abrasive grains in the polishing liquid supplied to the surface of the glass base plate 1 on which the compressive stress layer is formed is made smaller than in the rough polishing step S60, and the hardness of the polishing pad is increased. Soften.
  • the polishing pad used in the precision polishing step S80 is, for example, a soft foam resin polisher.
  • the polishing liquid used in the precision polishing step S80 for example, colloidal silica having a finer particle size than the cerium oxide abrasive used in the rough polishing step S60 is used.
  • the particle size (primary) of the colloidal silica used in the precision polishing step S80 is preferably 15 nm to 80 nm. Precision polishing using colloidal silica increases the smoothness of the surface of the glass base plate.
  • the glass base plate 1 may be temporarily stored in water after being removed from the polishing pad of the double-side polishing machine. By storing in water, it is possible to reduce the amount of foreign matter such as polishing grits or free abrasive grains adhering to the glass base plate 1 after precision polishing while preventing the surface of the glass base plate 1 from drying after precision polishing. it can. After the glass base plate 1 is stored in water for a predetermined time, the glass base plate 1 is set in a scrub cleaning device, and the glass base plate 1 is scrubbed.
  • a cleaning liquid such as a detergent or pure water is used.
  • the pH of the cleaning solution used for scrub cleaning is preferably 9.0 or more and 12.2 or less. Within this range, the ⁇ potential can be easily adjusted and scrub cleaning can be performed efficiently.
  • both scrub cleaning with a detergent and scrub cleaning with pure water may be performed.
  • the glass base plate 1 By using a detergent and pure water, the glass base plate 1 can be more appropriately cleaned. The glass base plate 1 may be further rinsed with pure water between scrub cleaning with a detergent and scrub cleaning with pure water.
  • the glass base plate 1 may be further subjected to ultrasonic cleaning.
  • ultrasonic cleaning with chemicals such as sulfuric acid aqueous solution, ultrasonic cleaning with pure water, ultrasonic cleaning with detergent, ultrasonic cleaning with IPA, and / or steam drying with IPA Further, it may be performed.
  • the glass substrate manufacturing method S100 in the present embodiment is configured as described above. By using glass substrate manufacturing method S100, glass base plate 1 of the present embodiment shown in FIGS. 2 and 3 can be obtained.
  • Magnetic recording layers are formed on both main surfaces (or one of the main surfaces) of the glass base plate 1 that has been subjected to the scrub cleaning process.
  • the magnetic recording layer includes, for example, an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and an F system.
  • an adhesion layer made of a Cr alloy
  • a soft magnetic layer made of a CoFeZr alloy
  • an orientation control underlayer made of Ru
  • a perpendicular magnetic recording layer made of a CoCrPt alloy
  • a protective layer made of a C system
  • F system an F system
  • chemical strengthening treatment may be performed after the rough polishing step and before the precise polishing step. Also in the manufacturing method of the glass substrate in the present embodiment, chemical strengthening step S70 is performed after rough polishing step S60 and before precision polishing step S80.
  • the chemical strengthening step S70 is performed after the rough polishing step S60 and before the fine polishing step S80 as in the glass substrate manufacturing method S101 in the comparative example, the rough polishing is performed.
  • a rinsing step S62 is performed as a pre-step of the cleaning step S65 between the step S60 and the chemical strengthening step S70.
  • the rinsing step S62 is performed by supplying a rinsing cleaning liquid between the polishing pad and the glass base plate before the glass base plate is removed from the polishing pad of the double-side polishing machine.
  • a glass substrate manufactured using the glass substrate manufacturing method S101 of the comparative example is mounted on a hard disk, and a drop test is performed on the hard disk in a high-temperature and high-humidity environment.
  • the drop impact resistance of the hard disk provided with the glass substrate manufactured using the glass substrate manufacturing method S101 is the same as that of the glass substrate manufactured using the glass substrate manufacturing method S100 of the present embodiment. Lower than the hard disk provided.
  • the hard disk When the hard disk is placed in a high-temperature and high-humidity environment, the distribution of the thickness unevenness of the compressive stress layer is increased, so that the glass substrate manufactured using the glass substrate manufacturing method S101 of the comparative example is mounted. As a hard disk, the drop impact resistance is reduced.
  • the cause of the uneven distribution in a high temperature and humidity environment is considered as follows.
  • the compressive stress layer is gradually relaxed when the temperature is high, but the rate of relaxation varies depending on how the stress layer enters. Specifically, the relaxation rate proceeds faster as the internal stress is weaker. Since the thickness depends on internal stress, the thinner the thickness, the faster the relaxation. Therefore, when the stress relaxation is accelerated in a high-temperature and high-humidity environment, the unevenness of the compressive stress layer becomes more remarkable.
  • the present inventors have intensively studied which process causes the uneven thickness of the compressive stress layer, and the occurrence of the uneven thickness of the compressive stress layer is caused by the rough polishing process and the cleaning process. It was found that this was caused by a rinsing process performed during the period.
  • the rinsing step removes polishing abrasive grains remaining on the surface of the glass base plate after performing rough polishing with a liquid called slurry containing polishing abrasive grains. Done for. In general, it has been considered that a high cleanliness can be achieved by carrying out this rinsing step and then carrying out washing with an acidic washing solution.
  • the concentration (amount) of abrasive grains adhering to the glass base plate decreases.
  • the pressure applied from the polishing machine (polishing pad) to the surface of the glass base plate is a substantially constant value during the rinsing process. Accordingly, as the amount of abrasive grains remaining on the surface of the glass base plate in the rinsing step is gradually reduced, the dispersion of the pressure on the abrasive grains of the polishing pad is reduced, and the abrasive grains are removed from the polishing pad.
  • the pressure applied to each grain increases, and the pressure acting on the glass base plate of each grain of the abrasive grains gradually increases.
  • each abrasive grain comes into strong contact with the surface of the glass base plate.
  • acid cleaning with sulfuric acid or HF is performed in the cleaning step after the rough polishing step.
  • the surface of the glass substrate is preferentially eroded by the cleaning liquid prior to the removal of the deposits.
  • the surface shape of the preferentially eroded glass base plate exhibits irregularities.
  • the chemical strengthening step S70 which is a subsequent step, ion exchange is not performed uniformly in the unevenly formed portions, and the thickness of the formed compressive stress layer becomes uneven.
  • the abrasive grains remaining on the surface of the glass base plate are removed after the glass base plate is removed from the polishing pad of the double-side polishing machine without rinsing.
  • the surface of the glass base plate hardly receives pressure from the abrasive grains. Therefore, in this case, the abrasive grains hardly adhere firmly to the surface of the glass base plate, and the abrasive grains can be easily removed from the surface of the glass base plate.
  • the uneven thickness of the compressive stress layer as described above due to the rinsing process is not detected by the optical inspection machine, unlike the general unevenness. Since the unevenness of the thickness of the compressive stress layer as described above occurs locally, it does not affect the surface roughness of the glass base plate. Even if a glass substrate having uneven thickness of the compressive stress layer is incorporated in the hard disk, it does not cause a collision with the magnetic head, so there is no problem when it is used in a normal environment. However, when such a hard disk is placed in a hot and humid environment, as described above, the drop impact resistance is reduced.
  • the cleaning step S65 is performed without performing the rinse step. Since the abrasive grains do not adhere firmly to the surface of the glass base plate, the surface of the glass substrate is not preferentially affected by the cleaning liquid prior to the removal of the deposits in the cleaning step S65. As a result, the surface shape of the glass base plate does not exhibit irregularities, and ion exchange is performed uniformly in the chemical strengthening step S70 which is a subsequent step. Therefore, according to the glass substrate manufacturing method S100 in the present embodiment, the impact resistance of the obtained glass substrate is obtained even when the chemical strengthening treatment is performed after the rough polishing step and before the precision polishing step. It is possible to suppress the decrease.
  • Example 9 Referring to FIG. 9, the following experiment based on Examples 1 to 6 and Comparative Examples 1 and 2 was performed on the above-described embodiment. In Examples 1 to 6 and Comparative Examples 1 and 2, the process up to the end surface polishing step S50 (see FIG. 6) was performed in the same manner as in the above-described embodiment.
  • Example 1 In the rough polishing step S60 of Example 1, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. A foamed urethane pad was used as the polishing pad. The machining allowance for the surface of the glass base plate was 20 ⁇ m. Thereafter, the glass substrate was removed from the polishing pad in a state where the glass substrate was brought into contact with a solution containing 8.0% by weight of cerium oxide (polishing abrasive grains) (the rinsing step was not performed).
  • cleaning step S65 of Example 1 5% sulfuric acid was used as a cleaning liquid, and cleaning was performed while applying an ultrasonic wave of 80 kHz. After washing with ultrasonic waves, the glass base plate was dried with IPA vapor.
  • a mixture of Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) was prepared as a chemically strengthened salt.
  • the glass substrate was immersed in a chemically strengthened salt heated to 400 ° C., and ion exchange was performed for 6 hours. After removing the glass substrate from the chemically strengthened salt, the glass substrate was quenched and washed with warm water to remove nitrate from the surface of the glass substrate.
  • the subsequent steps are the same as those in the above embodiment.
  • Example 2 In the rough polishing step S60 of Example 2, as in Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Then, the glass substrate was removed from the polishing pad in the state which made the glass substrate contact the solution containing cerium oxide (abrasive grain) 5.0w% (the rinse process is not implemented). In the cleaning step S65, 1% concentration hydrofluoric acid was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above. In the chemical strengthening step S70, as in Example 1 described above, a chemical strengthening salt prepared by mixing Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) is prepared and subjected to chemical strengthening treatment. It was.
  • Example 3 In the rough polishing step S60 of Example 3, as in Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Thereafter, the glass substrate was removed from the polishing pad in a state where the glass substrate was brought into contact with a solution containing 0.5 w% of cerium oxide (polishing abrasive grains) (the rinsing step was not performed).
  • the cleaning step S65 1% concentration sulfuric acid was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above.
  • the chemical strengthening step S70 as in Example 1 described above, a chemical strengthening salt prepared by mixing Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) is prepared and subjected to chemical strengthening treatment. It was.
  • Example 4 In the rough polishing step S60 of Example 4, as in Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Thereafter, the glass substrate was removed from the polishing pad in a state where the glass substrate was brought into contact with a solution containing 0.5 w% of cerium oxide (polishing abrasive grains) (the rinsing step was not performed). In the cleaning step S65, 30% sulfuric acid was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above. In the chemical strengthening step S70, as in Example 1 described above, a chemical strengthening salt prepared by mixing Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) is performed. It was.
  • Example 5 In the rough polishing step S60 of Example 5, as in Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Thereafter, the glass substrate was removed from the polishing pad in a state where the glass substrate was brought into contact with a solution containing 10.0 w% of cerium oxide (polishing abrasive grains) (the rinsing step was not performed).
  • the cleaning step S65 5% concentration hydrofluoric acid was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above.
  • the chemical strengthening step S70 as in Example 1 described above, a chemical strengthening salt prepared by mixing Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) is prepared and subjected to chemical strengthening treatment. It was.
  • Example 6 In the rough polishing step S60 of Example 6, similarly to Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Thereafter, the glass substrate was removed from the polishing pad in a state where the glass substrate was brought into contact with a solution containing 0.5 w% of cerium oxide (polishing abrasive grains) (the rinsing step was not performed).
  • the cleaning step S65 1% concentration sulfuric acid was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above.
  • the chemical strengthening step S70 nitric acid K was prepared as a chemically strengthened salt, and the chemical strengthening treatment was performed in the same manner as in Example 1 described above.
  • Comparative Example 1 In the rough polishing step S60 of Comparative Example 1, as in Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Then, the glass substrate was removed from the polishing pad in a state where the glass substrate was brought into contact with a solution containing 0.01 w% cerium oxide (polishing abrasive grains) (rinsing step was performed). In the cleaning step S65, 5% concentration sulfuric acid was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above. In the chemical strengthening step S70, as in Example 1 described above, a chemical strengthening salt prepared by mixing Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) is prepared and subjected to chemical strengthening treatment. It was.
  • Comparative Example 2 In the rough polishing step S60 of Comparative Example 2, as in Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Then, the glass substrate was removed from the polishing pad in the state which made the glass substrate contact the solution containing cerium oxide (abrasive grain) 5.0w% (the rinse process is not implemented). In the cleaning step S65, 3% concentration sodium hydroxide was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above. In the chemical strengthening step S70, as in Example 1 described above, a chemical strengthening salt prepared by mixing Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) is prepared and subjected to chemical strengthening treatment. It was.
  • a magnetic recording layer was formed on the glass substrates obtained in Examples 1 to 6 and Comparative Examples 1 and 2, and each was incorporated into a hard disk.
  • the hard disk corresponding to each of Examples 1 to 6 and Comparative Examples 1 and 2 was allowed to stand for 96 hours at 200 ° C. in an RH 80% environment. Thereafter, the hard disks corresponding to each of Examples 1 to 6 and Comparative Examples 1 and 2 were dropped, and the drop impact resistance was evaluated.
  • the evaluation was B.
  • the evaluation was A.
  • the evaluation was S. Even when the load was 1300 G, when the glass substrate did not crack, it was evaluated as an evaluation SS.
  • the chemically strengthened salt used for the chemical strengthening treatment should contain at least sodium ions. This is because when the chemically strengthened salt contains sodium ions, the compressive stress layer is stably formed. It is considered that the ratio of potassium ion to sodium ion does not particularly affect the impact resistance of the glass substrate.
  • Comparative Example 1 when removing the glass substrate from the polishing pad, when the glass substrate is removed while contacting the cerium oxide (polishing abrasive grains) with a solution of less than 0.01 w% by performing a rinsing step, It can be seen that the drop impact resistance deteriorates.
  • Comparative Example 2 when removing the glass substrate from the polishing pad, even when the rinsing step is not performed, the polishing liquid is applied to the surface of the glass base plate by using a strong base (alkaline) cleaning liquid. It can be seen that since the ion exchange is not performed well in the remaining portion, the drop impact resistance deteriorates.

Abstract

This method involves a step (S60) in which, while supplying to the surface of a glass substrate a polishing liquid containing, as abrasive grains, any of cerium oxide, zirconium oxide and zirconium silicate, the surface of the glass substrate is roughly polished by sliding contact with a polishing pad, a step (S65) in which, after the glass substrate has been removed from the polishing pad, the surface of the glass substrate is acid-washed while supplying an acidic cleaning liquid to the surface of the glass substrate, and a step (S70) for forming a compressive stress layer on the surface of the glass substrate after acid washing. When the glass substrate is removed from the polishing pad, said removal is performed with the glass substrate in a state in contact with the liquid having a 0.5-10w% abrasive grain concentration.

Description

情報記録媒体用ガラス基板の製造方法Manufacturing method of glass substrate for information recording medium
 本発明は、情報記録媒体用ガラス基板の製造方法に関し、特に、ハードディスクドライブ(HDD:Hard Disk Drive)などの情報記録装置に情報記録媒体の一部として搭載される情報記録媒体用ガラス基板の製造方法に関する。 The present invention relates to a method for manufacturing a glass substrate for information recording media, and in particular, manufacturing a glass substrate for information recording media mounted as part of an information recording medium in an information recording device such as a hard disk drive (HDD). Regarding the method.
 ハードディスクドライブ等の情報記録装置は、コンピューター等のさまざまな機器に内蔵されている。このような情報記録装置には、円盤状に形成された磁気ディスク等の情報記録媒体が搭載される。情報記録媒体は、ガラス製またはアルミ製の基板の主表面上に、磁気記録用の磁気記録層が成膜されることによって製造される。 Information recording devices such as hard disk drives are built in various devices such as computers. Such an information recording apparatus is equipped with an information recording medium such as a magnetic disk formed in a disk shape. The information recording medium is manufactured by forming a magnetic recording layer for magnetic recording on the main surface of a glass or aluminum substrate.
 情報記録媒体の製造に用いられるガラス製の基板は、情報記録媒体用ガラス基板(以下、単にガラス基板ともいう)という。情報記録媒体用ガラス基板の製造方法は、たとえば特開2010-165420号公報(特許文献1)に開示されている。 A glass substrate used for manufacturing an information recording medium is referred to as an information recording medium glass substrate (hereinafter also simply referred to as a glass substrate). A method for manufacturing a glass substrate for an information recording medium is disclosed in, for example, Japanese Patent Application Laid-Open No. 2010-165420 (Patent Document 1).
 ハードディスクドライブ等の情報記録装置は、使用用途および使用環境が年々拡大している。情報記録装置に対する大容量化、耐衝撃性、および耐熱性などの要求は、年々高まる傾向にある。この傾向に伴い、情報記録媒体用ガラス基板にも、様々なことが要求されている。たとえば、情報記録媒体の大容量化を達成するために、ガラス基板に対しては高清浄度および高平滑性が要求されている。さらに、ガラス基板に対しては、耐衝撃性の向上に加えて、様々な使用環境下でも特性が劣化しないこと等も要求されている。 Information storage devices such as hard disk drives are expanding their usage and usage environment year by year. The demands on information recording devices for increasing capacity, impact resistance, heat resistance, and the like tend to increase year by year. With this trend, various things are required also for the glass substrate for information recording media. For example, in order to achieve an increase in capacity of an information recording medium, a glass substrate is required to have high cleanliness and high smoothness. Furthermore, in addition to the improvement of impact resistance, the glass substrate is required not to deteriorate in characteristics under various usage environments.
 ガラス基板としての耐衝撃性を向上させるために、一般的には、化学強化処理(イオン交換処理ともいう)が行なわれる。化学強化処理においては、ガラス基板(ガラス素板)の表層のイオンが、そのイオンよりも大きいイオン半径を有するイオンに交換される。ガラス基板の表面に圧縮応力層が形成されることによって、ガラス基板としての耐衝撃性を向上させることが可能となる。 In order to improve impact resistance as a glass substrate, chemical strengthening treatment (also referred to as ion exchange treatment) is generally performed. In the chemical strengthening treatment, ions on the surface layer of the glass substrate (glass base plate) are exchanged for ions having an ion radius larger than the ions. By forming the compressive stress layer on the surface of the glass substrate, it becomes possible to improve the impact resistance as the glass substrate.
 一般的に、化学強化処理は、ガラス素板に対する精密研磨工程の後に行われる。近年では、ガラス基板の高平滑性に対する要求が高まるにつれて、化学強化処理後に精密研磨工程が行なわれることもある。この場合、ガラス基板の表面の平滑性を高めるために、酸化セリウムまたは酸化ジルコニウムなどを用いて粗研磨工程を行った後に、化学強化処理が行なわれる。化学強化処理の後、コロイダルシリカなどを用いて精密研磨が行なわれる。化学強化処理後に精密研磨工程が行なわれることにより、ガラス基板の表面は、表面粗さが1~2Åという高い平滑性を得ることが可能となる。 Generally, the chemical strengthening treatment is performed after the precision polishing process for the glass base plate. In recent years, as the demand for high smoothness of a glass substrate increases, a precision polishing step may be performed after the chemical strengthening treatment. In this case, in order to improve the smoothness of the surface of the glass substrate, the chemical strengthening treatment is performed after the rough polishing process is performed using cerium oxide or zirconium oxide. After the chemical strengthening treatment, precision polishing is performed using colloidal silica or the like. By performing a precision polishing step after the chemical strengthening treatment, the surface of the glass substrate can have a high smoothness with a surface roughness of 1 to 2 mm.
 一方で、ガラス基板の表面の清浄度を高めるために様々な洗浄方法も検討されている。たとえば、ガラス基板の表面の清浄度を高めるために、粗研磨工程後に、強酸またはHF等を含む洗浄液を用いてガラス基板の表面に残留している研磨砥粒を洗い流すことが行なわれている。ガラス基板の表面に粗研磨を実施した後、ガラス基板の表面に残留している研磨砥粒を洗い流すこと(リンス工程と称される)が行われている。 On the other hand, various cleaning methods are being studied in order to increase the cleanliness of the surface of the glass substrate. For example, in order to increase the cleanliness of the surface of the glass substrate, the abrasive grains remaining on the surface of the glass substrate are washed away using a cleaning liquid containing a strong acid or HF after the rough polishing step. After performing rough polishing on the surface of the glass substrate, polishing abrasive grains remaining on the surface of the glass substrate are washed away (referred to as a rinsing step).
特開2010-165420号公報JP 2010-165420 A
 粗研磨工程後のガラス基板に対してリンス工程を行なった後に、そのガラス基板に対して酸洗浄が行なわれ、さらにその酸洗浄後のガラス基板に対して化学強化処理が実施されたとする。本発明者らは、このようにして得られたガラス基板の中には、耐衝撃性に劣るものがあることがわかった。具体的には、本発明者らは、そのガラス基板を情報記録媒体として搭載する情報記録装置に対してある条件(たとえば高温多湿状態)の下で落下衝撃試験を行なったところ、上記のようにして得られたガラス基板は耐衝撃性が低下することがわかった。 Assume that after the rinsing process is performed on the glass substrate after the rough polishing process, the glass substrate is subjected to acid cleaning, and further the chemical strengthening treatment is performed on the glass substrate after the acid cleaning. The present inventors have found that some of the glass substrates obtained in this way are inferior in impact resistance. Specifically, the present inventors conducted a drop impact test under a certain condition (for example, a high temperature and high humidity state) on an information recording apparatus in which the glass substrate is mounted as an information recording medium. It was found that the impact resistance of the glass substrate obtained was lowered.
 本発明は、粗研磨工程後であって精密研磨工程の前に化学強化処理を行なう場合であっても、得られたガラス基板の耐衝撃性が低下することを抑制可能な情報記録媒体用ガラス基板の製造方法を提供することを目的とする。 The present invention is a glass for an information recording medium capable of suppressing the impact resistance of the obtained glass substrate from being lowered even when a chemical strengthening treatment is performed after the rough polishing step and before the precision polishing step. An object is to provide a method for manufacturing a substrate.
 本発明に基づく情報記録媒体用ガラス基板の製造方法は、研磨パッドを含む研磨機を準備し、酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムのいずれかを研磨砥粒として含む研磨液をガラス素板の表面に供給しつつ、上記ガラス素板の上記表面に対して上記研磨パッドを摺接させて粗研磨を行なう工程と、上記研磨パッドから上記粗研磨後の上記ガラス素板を取り外した後、上記ガラス素板の上記表面に酸性の洗浄液を供給しつつ、上記ガラス素板の上記表面に対して酸洗浄を行なう工程と、上記酸洗浄後の上記ガラス素板に含有されるアルカリ金属イオンをそのイオン半径よりも大きいイオン半径を有する化学強化塩にイオン交換することによって、上記ガラス素板の上記表面に圧縮応力層を形成する工程と、を備え、上記研磨パッドから上記粗研磨後の上記ガラス素板を取り外す際には、上記ガラス素板は、上記研磨砥粒の濃度が0.5w%以上10w%以下の液体と接触した状態で上記研磨機の上記研磨パッドから取り外される。 A method for producing a glass substrate for an information recording medium according to the present invention provides a polishing machine including a polishing pad, and a glass base plate containing a polishing liquid containing any one of cerium oxide, zirconium oxide, or zirconium silicate as abrasive grains. A step of performing rough polishing by sliding the polishing pad against the surface of the glass base plate while removing the glass base plate after the rough polishing from the polishing pad, While supplying an acidic cleaning liquid to the surface of the glass base plate, acid cleaning is performed on the surface of the glass base plate, and alkali metal ions contained in the glass base plate after the acid cleaning are included. Forming a compressive stress layer on the surface of the glass base plate by ion exchange with a chemically strengthened salt having an ionic radius larger than the ionic radius, and When the glass base plate after the rough polishing is removed from the polishing pad, the glass base plate is in contact with a liquid having a concentration of the polishing abrasive grains of 0.5 w% to 10 w%. Removed from the polishing pad.
 好ましくは、上記酸洗浄を行なう工程に用いられる上記洗浄液は、硫酸およびまたはフッ化水素酸を含む。好ましくは、上記圧縮応力層を形成する工程に用いられる上記化学強化塩は、ナトリウムイオンとカリウムイオンとを含む。 Preferably, the cleaning liquid used in the acid cleaning step includes sulfuric acid and / or hydrofluoric acid. Preferably, the chemical strengthening salt used in the step of forming the compressive stress layer includes sodium ions and potassium ions.
 本発明によれば、粗研磨工程後であって精密研磨工程の前に化学強化処理を行なう場合であっても、得られたガラス基板の耐衝撃性が低下することを抑制可能な情報記録媒体用ガラス基板の製造方法を得ることができる。 According to the present invention, even when the chemical strengthening treatment is performed after the rough polishing step and before the precision polishing step, the information recording medium capable of suppressing the impact resistance of the obtained glass substrate from being lowered. A method for producing a glass substrate for use can be obtained.
実施の形態における情報記録媒体用ガラス基板の製造方法を使用することによって製造されたガラス基板を備える情報記録装置を示す斜視図である。It is a perspective view which shows an information recording device provided with the glass substrate manufactured by using the manufacturing method of the glass substrate for information recording media in embodiment. 実施の形態における情報記録媒体用ガラス基板の製造方法によって製造されたガラス基板を示す平面図である。It is a top view which shows the glass substrate manufactured by the manufacturing method of the glass substrate for information recording media in embodiment. 図2中のIII-III線に沿った矢視断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 情報記録媒体として、実施の形態における情報記録媒体用ガラス基板の製造方法によって製造されたガラス基板を備えた情報記録媒体を示す平面図である。It is a top view which shows the information recording medium provided with the glass substrate manufactured by the manufacturing method of the glass substrate for information recording media in embodiment as an information recording medium. 図4中のV-V線に沿った矢視断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. 実施の形態における情報記録媒体用ガラス基板の製造方法の各工程を示すフローチャート図である。It is a flowchart figure which shows each process of the manufacturing method of the glass substrate for information recording media in embodiment. 実施の形態における情報記録媒体用ガラス基板の製造方法の粗研磨工程に用いられる両面研磨機を示す断面図である。It is sectional drawing which shows the double-side polish machine used for the rough polishing process of the manufacturing method of the glass substrate for information recording media in embodiment. 比較例における情報記録媒体用ガラス基板の製造方法の各工程を示すフローチャート図である。It is a flowchart figure which shows each process of the manufacturing method of the glass substrate for information recording media in a comparative example. 実施の形態に関して行なった実験例の実験条件および実験結果を示す図である。It is a figure which shows the experimental condition and experimental result of the experiment example performed regarding embodiment.
 本発明に基づいた実施の形態および各実施例について、以下、図面を参照しながら説明する。実施の形態および各実施例の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態および各実施例の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。 Embodiments and examples based on the present invention will be described below with reference to the drawings. In the description of the embodiments and the examples, when the number, amount, and the like are referred to, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the description of the embodiment and each example, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 [実施の形態]
 (情報記録装置30)
 図1を参照して、まず、情報記録装置30について説明する。図1は、情報記録装置30を示す斜視図である。情報記録装置30は、実施の形態における情報記録媒体用ガラス基板(以下、単にガラス基板ともいう)の製造方法によって製造されたガラス基板1を、情報記録媒体10として備える。
[Embodiment]
(Information recording device 30)
First, the information recording device 30 will be described with reference to FIG. FIG. 1 is a perspective view showing the information recording apparatus 30. The information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
 具体的には、情報記録装置30は、情報記録媒体10、筐体20、ヘッドスライダー21、サスペンション22、アーム23、垂直軸24、ボイスコイル25、ボイスコイルモーター26、クランプ部材27、および固定ネジ28を備える。筐体20の上面上には、スピンドルモーター(図示せず)が設置される。 Specifically, the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28. A spindle motor (not shown) is installed on the upper surface of the housing 20.
 磁気ディスクなどの情報記録媒体10は、クランプ部材27および固定ネジ28によって、上記のスピンドルモーターに回転可能に固定される。情報記録媒体10は、このスピンドルモーターによって、たとえば数千rpmの回転数で回転駆動される。詳細は図4および図5を参照して後述されるが、情報記録媒体10は、ガラス基板1に圧縮応力層12(図5参照)および磁気記録層14(図4および図5参照)が形成されることによって製造される。 An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28. The information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm. Although details will be described later with reference to FIGS. 4 and 5, in the information recording medium 10, a compression stress layer 12 (see FIG. 5) and a magnetic recording layer 14 (see FIGS. 4 and 5) are formed on the glass substrate 1. To be manufactured.
 アーム23は、垂直軸24回りに揺動可能に取り付けられる。アーム23の先端には、板バネ(片持ち梁)状に形成されたサスペンション22が取り付けられる。サスペンション22の先端には、ヘッドスライダー21が情報記録媒体10を挟み込むように取り付けられる。 The arm 23 is attached so as to be swingable around the vertical axis 24. A suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23. A head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
 アーム23のヘッドスライダー21とは反対側には、ボイスコイル25が取り付けられる。ボイスコイル25は、筐体20上に設けられたマグネット(図示せず)によって挟持される。ボイスコイル25およびこのマグネットにより、ボイスコイルモーター26が構成される。 A voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21. The voice coil 25 is clamped by a magnet (not shown) provided on the housing 20. A voice coil motor 26 is constituted by the voice coil 25 and the magnet.
 ボイスコイル25には所定の電流が供給される。アーム23は、ボイスコイル25に流れる電流と上記マグネットの磁場とにより発生する電磁力の作用によって、垂直軸24回りに揺動する。アーム23の揺動によって、サスペンション22およびヘッドスライダー21も矢印AR1方向に揺動する。ヘッドスライダー21は、情報記録媒体10の表面上および裏面上を、情報記録媒体10の半径方向に往復移動する。ヘッドスライダー21に設けられた磁気ヘッド(図示せず)はシーク動作を行なう。 A predetermined current is supplied to the voice coil 25. The arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet. As the arm 23 swings, the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1. The head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10. A magnetic head (not shown) provided on the head slider 21 performs a seek operation.
 当該シーク動作が行なわれる一方で、ヘッドスライダー21は、情報記録媒体10の回転に伴って発生する空気流により、浮揚力を受ける。当該浮揚力とサスペンション22の弾性力(押圧力)とのバランスによって、ヘッドスライダー21は情報記録媒体10の表面に対して一定の浮上量で走行する。当該走行によって、ヘッドスライダー21に設けられた磁気ヘッドは、情報記録媒体10内の所定のトラックに対して情報(データ)の記録および再生を行なうことが可能となる。ガラス基板1が情報記録媒体10を構成する部材の一部として搭載される情報記録装置30は、以上のように構成される。 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10. The information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
 (ガラス基板1)
 図2は、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって製造されるガラス基板1を示す平面図である。図3は、図2中のIII-III線に沿った矢視断面図である。
(Glass substrate 1)
FIG. 2 is a plan view showing glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment. 3 is a cross-sectional view taken along the line III-III in FIG.
 図2および図3に示すように、情報記録媒体10(図4および図5参照)にその一部として用いられるガラス基板1(情報記録媒体用ガラス基板)は、主表面2、主表面3、内周端面4、孔5、および外周端面6を有し、全体として円盤状に形成される。孔5は、一方の主表面2から他方の主表面3に向かって貫通するように設けられる。主表面2と内周端面4との間、および、主表面3と内周端面4との間には、面取部7がそれぞれ形成される。主表面2と外周端面6との間、および、主表面3と外周端面6との間には、面取部8(チャンファー部)が形成される。 As shown in FIGS. 2 and 3, the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) has a main surface 2, a main surface 3, It has the inner peripheral end surface 4, the hole 5, and the outer peripheral end surface 6, and is formed in a disk shape as a whole. The hole 5 is provided so as to penetrate from one main surface 2 toward the other main surface 3. A chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4. Between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6, a chamfered portion 8 (chamfer portion) is formed.
 ガラス基板1の大きさは、たとえば0.8インチ、1.0インチ、1.8インチ、2.5インチ、または3.5インチである。ガラス基板の厚さは、破損防止の観点から、たとえば0.30mm~2.2mmである。本実施の形態におけるガラス基板の大きさは、外径が約64mm、内径が約20mm、厚さが約0.8mmである。ガラス基板の厚さとは、ガラス基板上の点対象となる任意の複数の点で測定した値の平均によって算出される値である。 The size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch. The thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage. In the present embodiment, the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm. The thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate.
 (情報記録媒体10)
 図4は、情報記録媒体としてガラス基板1を備えた情報記録媒体10を示す平面図である。図5は、図4中のV-V線に沿った矢視断面図である。
(Information recording medium 10)
FIG. 4 is a plan view showing an information recording medium 10 provided with a glass substrate 1 as an information recording medium. FIG. 5 is a cross-sectional view taken along the line VV in FIG.
 図4および図5に示すように、情報記録媒体10は、ガラス基板1と、圧縮応力層12と、磁気記録層14とを含む。圧縮応力層12は、ガラス基板1の主表面2,3、内周端面4、および外周端面6を覆うように形成される。磁気記録層14は、圧縮応力層12の主表面2,3上の所定の領域を覆うように形成される。ガラス基板1の内周端面4上に圧縮応力層12が形成されることによって、内周端面4の内側に孔15が形成される。孔15を利用して、情報記録媒体10は筐体20(図1参照)上に設けられたスピンドルモーターに対して固定される。 4 and 5, the information recording medium 10 includes a glass substrate 1, a compressive stress layer 12, and a magnetic recording layer 14. The compressive stress layer 12 is formed so as to cover the main surfaces 2 and 3, the inner peripheral end face 4, and the outer peripheral end face 6 of the glass substrate 1. The magnetic recording layer 14 is formed so as to cover a predetermined region on the main surfaces 2 and 3 of the compressive stress layer 12. By forming the compressive stress layer 12 on the inner peripheral end face 4 of the glass substrate 1, a hole 15 is formed inside the inner peripheral end face 4. The information recording medium 10 is fixed to a spindle motor provided on the housing 20 (see FIG. 1) using the holes 15.
 図5に示す情報記録媒体10においては、主表面2上に形成された圧縮応力層12と主表面3上に形成された圧縮応力層12との双方(両面)の上に、磁気記録層14が形成されている。磁気記録層14は、主表面2上に形成された圧縮応力層12の上(片面)にのみ設けられていてもよく、主表面3上に形成された圧縮応力層12の上(片面)に設けられていてもよい。 In the information recording medium 10 shown in FIG. 5, the magnetic recording layer 14 is formed on both the compressive stress layer 12 formed on the main surface 2 and the compressive stress layer 12 formed on the main surface 3 (both sides). Is formed. The magnetic recording layer 14 may be provided only on the compression stress layer 12 (one side) formed on the main surface 2, or on the compression stress layer 12 (one side) formed on the main surface 3. It may be provided.
 磁気記録層14は、磁性粒子を分散させた熱硬化性樹脂をガラス基板1の主表面2,3上の圧縮応力層12にスピンコートすることによって形成される(スピンコート法)。磁気記録層14は、ガラス基板1の主表面2,3上の圧縮応力層12に対して実施されるスパッタリング法または無電解めっき法等により形成されてもよい。 The magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method). The magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
 磁気記録層14の膜厚は、スピンコート法の場合は約0.3μm~1.2μm、スパッタリング法の場合は約0.04μm~0.08μm、無電解めっき法の場合は約0.05μm~0.1μmである。薄膜化および高密度化の観点からは、磁気記録層14はスパッタリング法または無電解めっき法によって形成されるとよい。 The thickness of the magnetic recording layer 14 is about 0.3 μm to 1.2 μm for the spin coating method, about 0.04 μm to 0.08 μm for the sputtering method, and about 0.05 μm to about the electroless plating method. 0.1 μm. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
 磁気記録層14に用いる磁性材料としては、高い保持力を得る目的で結晶異方性の高いCoを主成分とし、残留磁束密度を調整する目的でNiまたはCrを加えたCo系合金などを付加的に用いることが好適である。 As a magnetic material used for the magnetic recording layer 14, a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used.
 磁気ヘッドの滑りをよくするために、磁気記録層14の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、たとえば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。 In order to improve the sliding of the magnetic head, the surface of the magnetic recording layer 14 may be thinly coated with a lubricant. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
 磁気記録層14には、必要に応じて下地層または保護層を設けてもよい。情報記録媒体10における下地層は、磁性膜の種類に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、またはNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。 The magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary. The underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
 磁気記録層14に設ける下地層は、単層に限らず、同一または異種の層を積層した複数層構造としても構わない。たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、または、NiAl/CrV等の多層下地層としてもよい。 The underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
 磁気記録層14の摩耗および腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、またはシリカ層が挙げられる。これらの保護層は、下地層および磁性膜など共にインライン型スパッタ装置で連続して形成されることができる。これらの保護層は、単層としてもよく、または、同一若しくは異種の層からなる多層構成としてもよい。 Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
 上記保護層上に、あるいは上記保護層に代えて、他の保護層を形成してもよい。たとえば、上記保護層に代えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO)層を形成してもよい。 Another protective layer may be formed on the protective layer or instead of the protective layer. For example, in place of the protective layer, tetraalkoxylane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon oxide (SiO 2 ) layer. It may be formed.
 (ガラス基板の製造方法)
 次に、図6に示すフローチャート図を用いて、本実施の形態におけるガラス基板(情報記録媒体用ガラス基板)の製造方法S100について説明する。本実施の形態におけるガラス基板の製造方法S100は、板状ガラス成形工程S10、第1ラッピング工程S20、切り出し成形工程S30、第2ラッピング工程S40、端面研磨工程S50、粗研磨工程S60、洗浄工程S65、化学強化工程S70、精密研磨工程S80、および、スクラブ洗浄工程S90を備える。
(Glass substrate manufacturing method)
Next, the manufacturing method S100 of the glass substrate (glass substrate for information recording media) in this Embodiment is demonstrated using the flowchart figure shown in FIG. The glass substrate manufacturing method S100 in the present embodiment includes a plate-like glass forming step S10, a first lapping step S20, a cut-out forming step S30, a second lapping step S40, an end surface polishing step S50, a rough polishing step S60, and a cleaning step S65. , A chemical strengthening step S70, a precision polishing step S80, and a scrub cleaning step S90.
 スクラブ洗浄工程S90を経ることによって得られたガラス基板に対して、磁気薄膜形成工程S200が実施される。磁気薄膜形成工程S200を経ることによって、情報記録媒体10(図4および図5参照)が得られる。以下、ガラス基板の製造方法S100を構成する各工程S10~S90の詳細について順に説明する。 The magnetic thin film forming step S200 is performed on the glass substrate obtained through the scrub cleaning step S90. Through the magnetic thin film forming step S200, the information recording medium 10 (see FIGS. 4 and 5) is obtained. Hereinafter, the details of the steps S10 to S90 constituting the glass substrate manufacturing method S100 will be described in order.
 (板状ガラス成形工程S10)
 まず、板状ガラス成形工程S10において、溶融ガラスを材料として、ダイレクトプレス法、フロート法、ダウンドロー法、リドロー法、またはフュージョン法など、公知の成形方法を用いて、板状ガラスを製造する。これらのうち、ダイレクトプレス法は、溶解したガラスから目的とするガラス成形品に直接的に成形できるため、同一の形状を有する板状ガラスを多量に生産する場合に好適である。ダイレクトプレス法では、溶融ガラスをプレス成形型に供給し、このガラスが軟化状態にある間にプレス成形型でプレスして板状ガラスを成形する。
(Plate-shaped glass forming step S10)
First, in the glass sheet forming step S10, a glass sheet is manufactured using a known glass forming method such as a direct press method, a float method, a down draw method, a redraw method, or a fusion method using molten glass as a material. Among these, the direct press method can be directly molded from a melted glass into a target glass molded product, and thus is suitable for producing a large amount of plate-like glass having the same shape. In the direct press method, molten glass is supplied to a press mold and pressed with a press mold while the glass is in a softened state to form a sheet glass.
 ガラス素板の材質としては、たとえばアモルファスガラスを利用できる。アモルファスガラスを用いる場合、化学強化を適切に施すことができるとともに、主表面の平坦性および基板強度において優れた情報記録媒体用ガラス基板を提供することが可能となる。 For example, amorphous glass can be used as the material of the glass base plate. When amorphous glass is used, chemical strengthening can be appropriately performed, and a glass substrate for an information recording medium excellent in flatness of the main surface and substrate strength can be provided.
 (第1ラッピング工程S20)
 第1ラッピング工程S20においては、板状ガラスの表面に対してラッピング(研削)加工を行なう。ラッピング加工は、遊星歯車機構を利用した両面ラッピング装置により、アルミナ系遊離砥粒を用いて行なう。具体的には、板状ガラスの両面に上下からラップ定盤を押圧させ、遊離砥粒を含む研削液を板状ガラスの主表面上に供給し、これらを相対的に移動させてラッピング加工を行う。このラッピング加工により、平坦な主表面を有する板状ガラスを得ることができる。
(First lapping step S20)
In the first lapping step S20, lapping (grinding) is performed on the surface of the sheet glass. The lapping process is performed using alumina free abrasive grains by a double-sided lapping apparatus using a planetary gear mechanism. Specifically, the lapping platen is pressed from above and below on both sides of the plate glass, a grinding liquid containing free abrasive grains is supplied onto the main surface of the plate glass, and these are moved relatively to perform lapping. Do. By this lapping process, a sheet glass having a flat main surface can be obtained.
 (切り出し成形工程S30)
 切り出し成形工程S30においては、ダイヤモンドカッターを用いて板状ガラスを切断し、この板状ガラスから円盤状のガラス素板を切り出す。切り出し成形工程S30では、円筒状のダイヤモンドドリルを用いて、このガラス素板の中心部に内孔を形成し、円環状のガラス素板を成形する(コアリング加工)。その後、内周端面および外周端面をダイヤモンド砥石によって研削し、所定の面取り加工を施す(フォーミング、チャンファリング)。
(Cut-out molding step S30)
In the cut-out forming step S30, the plate glass is cut using a diamond cutter, and a disk-shaped glass base plate is cut out from the plate glass. In the cut-out forming step S30, a cylindrical diamond drill is used to form an inner hole at the center of the glass base plate to form an annular glass base plate (coring process). Thereafter, the inner peripheral end face and the outer peripheral end face are ground with a diamond grindstone and subjected to predetermined chamfering (forming, chamfering).
 (第2ラッピング工程S40)
 第2ラッピング工程S40においては、得られたガラス素板の両主表面に対して、第1ラッピング工程と同様にラッピング加工を行う。第2ラッピング工程S40を行うことにより、前工程である切り出し成形工程S30において主表面に形成された微細な凹凸形状を予め除去しておくことができ、後に実施される粗研磨工程S60を短時間で完了させることが可能になる。
(Second wrapping step S40)
In the second lapping step S40, lapping is performed on both main surfaces of the obtained glass base plate in the same manner as in the first lapping step. By performing the second lapping step S40, the fine uneven shape formed on the main surface in the cut-out and forming step S30, which is the previous step, can be removed in advance, and the rough polishing step S60 to be performed later can be performed in a short time. Can be completed.
 (端面研磨工程S50)
 端面研磨工程S50においては、ガラス素板の内周端面および外周端面が、螺旋状のブラシ毛材を有する研磨ブラシを用いて研磨される。研磨ブラシとガラス素板の各端面との間に研磨スラリーを供給しつつ、研磨ブラシを各端面に当接させた状態で回転させる。ガラス素板を研磨液の中に浸漬した状態で、研磨ブラシを各端面に当接させた状態で回転させてもよい。
(End face polishing step S50)
In the end face polishing step S50, the inner peripheral end face and the outer peripheral end face of the glass base plate are polished using a polishing brush having a spiral brush bristle material. While supplying the polishing slurry between the polishing brush and each end face of the glass base plate, the polishing brush is rotated in contact with each end face. With the glass base plate immersed in the polishing liquid, the polishing brush may be rotated in contact with each end face.
 (粗研磨工程S60)
 内周端面および外周端面が研磨されたガラス素板は、複数回に分けて主表面が粗く研磨される。たとえば、第1および第2粗研磨工程の2回にわけて、主表面が研磨される。徐々にガラス素板の仕上がり精度を高めることにより、平滑性および平坦性の高い表面を有するガラス素板を得ることができる。2回に分けて粗研磨を行なう場合、第1粗研磨工程は、前述のラッピング工程において主表面に残留したキズおよび歪みを除去することを主たる目的とし、第2粗研磨工程は、主表面を鏡面状に仕上げることを目的としている。
(Rough polishing step S60)
The glass base plate whose inner peripheral end face and outer peripheral end face are polished has its main surface roughly polished in a plurality of times. For example, the main surface is polished twice in the first and second rough polishing steps. By gradually increasing the finishing accuracy of the glass base plate, a glass base plate having a highly smooth and flat surface can be obtained. When rough polishing is performed in two steps, the first rough polishing step is mainly intended to remove scratches and distortions remaining on the main surface in the lapping step described above, and the second rough polishing step It is intended to finish in a mirror shape.
 図7を参照して、粗研磨工程S60は、後続する精密研磨工程S80において最終的に必要とされるガラス素板の面粗さが効率よく得られるように、ガラス素板の両主表面に対して研磨スラリーを用いて粗研磨を行なう工程である。この工程で採用される研磨方法としては特に限定されず、両面研磨機を用いて研磨することが可能である。 Referring to FIG. 7, the rough polishing step S60 is performed on both main surfaces of the glass base plate so as to efficiently obtain the surface roughness of the glass base plate finally required in the subsequent precision polishing step S80. In contrast, this is a step of performing rough polishing using a polishing slurry. It does not specifically limit as a grinding | polishing method employ | adopted at this process, It is possible to grind | polish using a double-side polisher.
 本実施の形態においては、図7に示す両面研磨機40を用いた。両面研磨機40は、上下に相対向して設けられた下定盤41と上定盤42とを備える。下定盤41および上定盤42の対向面には、それぞれ研磨パッド43,44が固定されている。 In this embodiment, a double-side polishing machine 40 shown in FIG. 7 was used. The double-side polishing machine 40 includes a lower surface plate 41 and an upper surface plate 42 that are provided opposite to each other in the vertical direction. Polishing pads 43 and 44 are fixed to opposing surfaces of the lower surface plate 41 and the upper surface plate 42, respectively.
 ガラス素板1は、キャリア45の保持孔に保持され、下定盤41と上定盤42との間に挟まれる。下定盤41および上定盤42は駆動源(図示省略)によって回転される。下定盤41および上定盤42の回転駆動は、制御装置48により制御される。ガラス素板1がキャリア45の保持孔によって保持された状態で、上下の研磨パッド43,44によりガラス素板1の第1主表面および第2主表面が同時に研磨される。研磨時には、研磨剤供給装置46から研磨スラリーが供給される。図7において研磨剤供給装置46は一ヶ所であるがそれに限るものではなく、その位置と個数とは任意に構成することができる。 The glass base plate 1 is held in the holding hole of the carrier 45 and is sandwiched between the lower surface plate 41 and the upper surface plate 42. The lower surface plate 41 and the upper surface plate 42 are rotated by a drive source (not shown). The rotation drive of the lower surface plate 41 and the upper surface plate 42 is controlled by the control device 48. In a state where the glass base plate 1 is held by the holding holes of the carrier 45, the first main surface and the second main surface of the glass base plate 1 are simultaneously polished by the upper and lower polishing pads 43 and 44. At the time of polishing, polishing slurry is supplied from the abrasive supply device 46. In FIG. 7, the abrasive supply device 46 is one place, but is not limited thereto, and the position and the number thereof can be arbitrarily configured.
 粗研磨工程S60の際、使用される研磨液(研磨スラリー)は、酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムなどを研磨砥粒として含むとよい。研磨液中の酸化セリウムの濃度は、たとえば5%~10%程度である。研磨するガラス素板の表面に対する取り代は、たとえば10μm~30μmである。粗研磨によって、ガラス素板の表面のうねりおよび粗さを低く抑えることができる。粗研磨によって、ガラス素板の内周端面および外周端面の形状などを整えることもできる。粗研磨後のガラス素板の表面Raは、たとえば3~10Å程度となる。以上のようにして、ガラス素板1の主表面が粗研磨される。当該粗研磨の後、ガラス素板1は、硫酸もしくはフッ化水素酸などを用いて酸洗浄される。 In the rough polishing step S60, the polishing liquid (polishing slurry) used may contain cerium oxide, zirconium oxide, zirconium silicate or the like as abrasive grains. The concentration of cerium oxide in the polishing liquid is, for example, about 5% to 10%. The machining allowance for the surface of the glass base plate to be polished is, for example, 10 μm to 30 μm. By rough polishing, the surface undulation and roughness of the glass base plate can be kept low. By rough polishing, the shape of the inner peripheral end face and the outer peripheral end face of the glass base plate can be adjusted. The surface Ra of the glass base plate after rough polishing is, for example, about 3 to 10 mm. As described above, the main surface of the glass base plate 1 is roughly polished. After the rough polishing, the glass base plate 1 is acid cleaned using sulfuric acid or hydrofluoric acid.
 (洗浄工程S65)
 図6を再び参照して、粗研磨工程S60の後、ガラス素板1に対して酸性の洗浄液を用いた洗浄処理が実施される。この洗浄処理は、前工程である粗研磨工程S60において研磨スラリーとして使用されていた酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムのいずれかを、ガラス素板1の表面から除去することを目的としている。
(Washing step S65)
Referring again to FIG. 6, after the rough polishing step S60, the glass base plate 1 is subjected to a cleaning process using an acidic cleaning liquid. The purpose of this cleaning treatment is to remove from the surface of the glass base plate 1 any of cerium oxide, zirconium oxide, or zirconium silicate used as a polishing slurry in the rough polishing step S60, which is the previous step. .
 具体的には、粗研磨工程S60において使用した研磨パッドから粗研磨後のガラス素板1を取り外した後、硫酸およびまたはフッ化水素酸などを含む洗浄液を用いてガラス素板1の表面をエッチングしながら洗浄する。ガラス素板の表面に付着していた酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムなどの研磨スラリーは、硫酸およびまたはフッ化水素酸などの強酸性の洗浄液によって適切に除去される。 Specifically, after removing the glass substrate 1 after the rough polishing from the polishing pad used in the rough polishing step S60, the surface of the glass substrate 1 is etched using a cleaning liquid containing sulfuric acid or hydrofluoric acid. Wash while. A polishing slurry such as cerium oxide, zirconium oxide, or zirconium silicate adhering to the surface of the glass base plate is appropriately removed by a strongly acidic cleaning solution such as sulfuric acid and / or hydrofluoric acid.
 本実施の形態のガラス基板の製造方法S100においては、粗研磨工程S60の後であって洗浄工程S65の前に、いわゆるリンス工程は実施されない。研磨パッドから粗研磨後のガラス素板1を取り外す際には、ガラス素板1は、研磨液が十分に付着した状態で研磨パッドからそのまま取り外される。ガラス素板1は、研磨砥粒の濃度が0.5w%以上10w%以下の研磨液(若しくは他の液体)と接触した状態のままで、両面研磨機の研磨パッドから取り外される。その後、ガラス素板1は酸性の洗浄液を用いて洗浄される。 In the glass substrate manufacturing method S100 of the present embodiment, a so-called rinse process is not performed after the rough polishing process S60 and before the cleaning process S65. When removing the glass base plate 1 after rough polishing from the polishing pad, the glass base plate 1 is removed from the polishing pad as it is with the polishing liquid sufficiently adhered thereto. The glass base plate 1 is removed from the polishing pad of the double-side polishing machine while in contact with a polishing liquid (or other liquid) having a polishing abrasive concentration of 0.5 w% or more and 10 w% or less. Thereafter, the glass base plate 1 is cleaned using an acidic cleaning solution.
 洗浄工程S65において用いられる洗浄液は、ガラス素板の耐化学性によっても異なるが、硫酸であれば1%~30%程度の濃度が好ましく、フッ化水素酸であれば0.2%~5%程度の濃度が好ましい。これらの洗浄液を用いた洗浄は、水溶液が貯留された洗浄機の中で超音波を印加しながら行なわれるとよい。この際に用いられる超音波の周波数は、78kHz以上であることが好ましい。 The cleaning liquid used in the cleaning step S65 varies depending on the chemical resistance of the glass base plate, but a concentration of about 1% to 30% is preferable for sulfuric acid, and 0.2% to 5% for hydrofluoric acid. A concentration of about is preferred. Cleaning using these cleaning liquids may be performed while applying ultrasonic waves in a cleaning machine in which an aqueous solution is stored. The frequency of the ultrasonic wave used at this time is preferably 78 kHz or higher.
 (化学強化工程S70)
 洗浄工程S65の後、ガラス素板1は化学強化される。化学強化液としては、たとえば硝酸カリウム(60%)と硫酸ナトリウム(40%)との混合液を用いることができる。化学強化液は、たとえば300℃~400℃に加熱される。洗浄したガラス素板1は、たとえば200℃~300℃に予熱される。ガラス素板1は、化学強化液中にたとえば3時間~4時間浸漬される。
(Chemical strengthening step S70)
After the cleaning step S65, the glass base plate 1 is chemically strengthened. As the chemical strengthening liquid, for example, a mixed liquid of potassium nitrate (60%) and sodium sulfate (40%) can be used. The chemical strengthening liquid is heated to, for example, 300 ° C. to 400 ° C. The cleaned glass base plate 1 is preheated to 200 ° C. to 300 ° C., for example. The glass base plate 1 is immersed in the chemical strengthening solution for 3 hours to 4 hours, for example.
 浸漬の際には、ガラス素板1の両主表面全体が化学強化されるように、複数のガラス素板1が各々の端面で保持されるように、ホルダーに収納した状態で行うことが好ましい。ガラス素板1を化学強化液中に浸漬することによって、ガラス素板1の表層のアルカリ金属イオン(リチウムイオンおよびナトリウムイオン)が、化学強化液中のイオン半径が相対的に大きい化学強化塩(ナトリウムイオンおよびカリウムイオン)に置換される。これにより、ガラス素板1の表層にはたとえば50μm~200μmの厚さを有する圧縮応力層が形成される。 The immersion is preferably performed in a state of being housed in a holder so that the plurality of glass base plates 1 are held at their respective end faces so that both main surfaces of the glass base plate 1 are chemically strengthened. . By immersing the glass base plate 1 in the chemical strengthening solution, the alkali metal ions (lithium ions and sodium ions) on the surface layer of the glass base plate 1 are chemically strengthened salts having relatively large ionic radii in the chemical strengthening solution ( Sodium ion and potassium ion). Thereby, a compressive stress layer having a thickness of, for example, 50 μm to 200 μm is formed on the surface layer of the glass base plate 1.
 圧縮応力層の形成によってガラス素板1の表面が強化され、ガラス素板1は、良好な耐衝撃性を有することとなる。化学強化処理されたガラス素板1は、適宜洗浄される。たとえば、ガラス素板1は、硫酸で洗浄された後に、純水またはIPA(イソプロピルアルコール)等を用いてさらに洗浄される。 The surface of the glass base plate 1 is strengthened by the formation of the compressive stress layer, and the glass base plate 1 has good impact resistance. The glass base plate 1 subjected to the chemical strengthening treatment is appropriately washed. For example, the glass base plate 1 is further cleaned with pure water or IPA (isopropyl alcohol) after being cleaned with sulfuric acid.
 (精密研磨工程S80)
 化学強化工程S70の後、ガラス素板1に対して精密研磨処理が実施される。精密研磨工程S80は、ガラス素板1の主表面を鏡面状に仕上げることを目的としている。精密研磨工程S80では、上述の粗研磨工程S60と同様に、両面研磨機(図7参照)を用いてガラス素板1に対する精密研磨が行われる。
(Precision polishing step S80)
After the chemical strengthening step S70, a precision polishing process is performed on the glass base plate 1. The precision polishing step S80 is intended to finish the main surface of the glass base plate 1 in a mirror shape. In the precision polishing step S80, as in the above-described rough polishing step S60, the glass substrate 1 is precisely polished using a double-side polishing machine (see FIG. 7).
 精密研磨工程S80と上記の粗研磨工程S60とでは、使用される研磨液(スラリー)に含有される研磨砥粒、および、使用される研磨パッドの組成が異なる。精密研磨工程S80では、粗研磨工程S60よりも、圧縮応力層が形成されたガラス素板1の表面に供給される研磨液中の研磨砥粒の粒径を小さくし、研磨パッドの硬さを柔らかくする。 In the fine polishing step S80 and the rough polishing step S60, the composition of the polishing abrasive grains contained in the polishing liquid (slurry) used and the polishing pad used are different. In the precision polishing step S80, the particle size of the abrasive grains in the polishing liquid supplied to the surface of the glass base plate 1 on which the compressive stress layer is formed is made smaller than in the rough polishing step S60, and the hardness of the polishing pad is increased. Soften.
 精密研磨工程S80に用いられる研磨パッドとしては、たとえば軟質発泡樹脂ポリッシャーである。精密研磨工程S80に用いられる研磨液としては、たとえば、粗研磨工程S60で用いる酸化セリウム砥粒よりも微細な粒径を有するコロイダルシリカが用いられる。精密研磨工程S80に用いられるコロイダルシリカの粒径(1次)は、15nm~80nmであることが好ましい。コロイダルシリカを用いた精密研磨によって、ガラス素板の表面の平滑性が高くなる。 The polishing pad used in the precision polishing step S80 is, for example, a soft foam resin polisher. As the polishing liquid used in the precision polishing step S80, for example, colloidal silica having a finer particle size than the cerium oxide abrasive used in the rough polishing step S60 is used. The particle size (primary) of the colloidal silica used in the precision polishing step S80 is preferably 15 nm to 80 nm. Precision polishing using colloidal silica increases the smoothness of the surface of the glass base plate.
 (スクラブ洗浄工程S90)
 精密研磨工程S80の後、ガラス素板1に対してスクラブ洗浄処理が実施される。具体的には、精密研磨工程S80において使用した研磨パッドから精密研磨後のガラス素板1を取り外した後、ガラス素板1の表面に洗浄液を供給しつつ、圧縮応力層が形成されたガラス素板1の表面に対してスクラブ洗浄装置を用いてスクラブ洗浄を行なう。
(Scrub cleaning step S90)
After the precision polishing step S80, a scrub cleaning process is performed on the glass base plate 1. Specifically, after the glass base plate 1 after the precision polishing is removed from the polishing pad used in the precision polishing step S80, the glass base plate on which the compressive stress layer is formed while supplying a cleaning solution to the surface of the glass base plate 1 Scrub cleaning is performed on the surface of the plate 1 using a scrub cleaning device.
 ガラス素板1は、両面研磨機の研磨パッドから取り外された後、一時的に水中保管されてもよい。水中保管により、精密研磨後にガラス素板1の表面が乾燥することを防ぎつつ、精密研磨後のガラス素板1に付着している研磨滓または遊離砥粒等の異物の量を低減することができる。所定の時間だけガラス素板1を水中保管した後、ガラス素板1をスクラブ洗浄装置にセットし、ガラス素板1に対するスクラブ洗浄を行う。 The glass base plate 1 may be temporarily stored in water after being removed from the polishing pad of the double-side polishing machine. By storing in water, it is possible to reduce the amount of foreign matter such as polishing grits or free abrasive grains adhering to the glass base plate 1 after precision polishing while preventing the surface of the glass base plate 1 from drying after precision polishing. it can. After the glass base plate 1 is stored in water for a predetermined time, the glass base plate 1 is set in a scrub cleaning device, and the glass base plate 1 is scrubbed.
 スクラブ洗浄としては、たとえば、洗剤または純水等の洗浄液が用いられる。スクラブ洗浄に用いられる洗浄液のpHは、9.0以上12.2以下であるとよい。この範囲内であれば、ζ電位を容易に調整でき、効率的にスクラブ洗浄を行なうことが可能となる。スクラブ洗浄としては、洗剤によるスクラブ洗浄と、純水によるスクラブ洗浄との双方を行ってもよい。洗剤および純水を用いることによって、より適切にガラス素板1を洗浄できる。洗剤によるスクラブ洗浄と純水によるスクラブ洗浄との間に、ガラス素板1を純水でさらにリンス処理してもよい。 As the scrub cleaning, for example, a cleaning liquid such as a detergent or pure water is used. The pH of the cleaning solution used for scrub cleaning is preferably 9.0 or more and 12.2 or less. Within this range, the ζ potential can be easily adjusted and scrub cleaning can be performed efficiently. As scrub cleaning, both scrub cleaning with a detergent and scrub cleaning with pure water may be performed. By using a detergent and pure water, the glass base plate 1 can be more appropriately cleaned. The glass base plate 1 may be further rinsed with pure water between scrub cleaning with a detergent and scrub cleaning with pure water.
 スクラブ洗浄を行った後に、ガラス素板1に対して超音波洗浄をさらに行ってもよい。洗剤および純水によるスクラブ洗浄を行った後に、硫酸水溶液等の薬液による超音波洗浄、純水による超音波洗浄、洗剤による超音波洗浄、IPAによる超音波洗浄、およびまたは、IPAによる蒸気乾燥等を更に行ってもよい。 After the scrub cleaning, the glass base plate 1 may be further subjected to ultrasonic cleaning. After scrub cleaning with detergent and pure water, ultrasonic cleaning with chemicals such as sulfuric acid aqueous solution, ultrasonic cleaning with pure water, ultrasonic cleaning with detergent, ultrasonic cleaning with IPA, and / or steam drying with IPA Further, it may be performed.
 本実施の形態におけるガラス基板の製造方法S100としては、以上のように構成される。ガラス基板の製造方法S100を使用することによって、図2および図3に示す本実施の形態のガラス素板1を得ることができる。 The glass substrate manufacturing method S100 in the present embodiment is configured as described above. By using glass substrate manufacturing method S100, glass base plate 1 of the present embodiment shown in FIGS. 2 and 3 can be obtained.
 (磁気薄膜形成工程S200)
 スクラブ洗浄処理が完了したガラス素板1の両主表面(またはいずれか一方の主表面)に対し、磁気記録層が形成される。磁気記録層は、たとえば、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系からなる保護層、およびF系からなる潤滑層が順次成膜されることによって形成される。磁気記録層の形成によって、図4および図5に示す情報記録媒体10を得ることができる。
(Magnetic thin film forming step S200)
Magnetic recording layers are formed on both main surfaces (or one of the main surfaces) of the glass base plate 1 that has been subjected to the scrub cleaning process. The magnetic recording layer includes, for example, an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and an F system. Are formed by sequentially forming the lubricating layer. By forming the magnetic recording layer, the information recording medium 10 shown in FIGS. 4 and 5 can be obtained.
 (作用・効果)
 冒頭に述べたように、ガラス基板の表面の高平滑性と耐衝撃性とを両立するために、粗研磨工程後であって精密研磨工程の前に化学強化処理が行なわれる場合がある。本実施の形態におけるガラス基板の製造方法においても、粗研磨工程S60後であって精密研磨工程S80の前に化学強化工程S70が行なわれる。
(Action / Effect)
As described at the beginning, in order to achieve both high smoothness and impact resistance on the surface of the glass substrate, chemical strengthening treatment may be performed after the rough polishing step and before the precise polishing step. Also in the manufacturing method of the glass substrate in the present embodiment, chemical strengthening step S70 is performed after rough polishing step S60 and before precision polishing step S80.
 図8を参照して、ここで、比較例におけるガラス基板の製造方法S101のように、粗研磨工程S60後であって精密研磨工程S80の前に化学強化工程S70が行なわれる場合に、粗研磨工程S60と化学強化工程S70との間の洗浄工程S65の前工程として、リンス工程S62が行なわれたとする。リンス工程S62は、両面研磨機の研磨パッドからガラス素板が取り外される前に、研磨パッドとガラス素板との間にリンス用の洗浄液が供給されて行なわれるものである。 Referring to FIG. 8, here, when the chemical strengthening step S70 is performed after the rough polishing step S60 and before the fine polishing step S80 as in the glass substrate manufacturing method S101 in the comparative example, the rough polishing is performed. Assume that a rinsing step S62 is performed as a pre-step of the cleaning step S65 between the step S60 and the chemical strengthening step S70. The rinsing step S62 is performed by supplying a rinsing cleaning liquid between the polishing pad and the glass base plate before the glass base plate is removed from the polishing pad of the double-side polishing machine.
 比較例のガラス基板の製造方法S101を使用して製造されたガラス基板をハードディスクに搭載し、そのハードディスクに対して高温多湿の環境下で落下試験を行なったとする。この場合、ガラス基板の製造方法S101を使用して製造されたガラス基板を備えたハードディスクの耐落下衝撃性は、本実施の形態のガラス基板の製造方法S100を使用して製造されたガラス基板を備えたハードディスクに比べて低くなる。 Suppose that a glass substrate manufactured using the glass substrate manufacturing method S101 of the comparative example is mounted on a hard disk, and a drop test is performed on the hard disk in a high-temperature and high-humidity environment. In this case, the drop impact resistance of the hard disk provided with the glass substrate manufactured using the glass substrate manufacturing method S101 is the same as that of the glass substrate manufactured using the glass substrate manufacturing method S100 of the present embodiment. Lower than the hard disk provided.
 本発明者らはこの基板について調査したところ、ガラス基板の製造方法S101を使用して製造されたガラス基板の表面には、圧縮応力層の厚さにムラが存在していることがわかった。ハードディスクが高温多湿の環境下に置かれた際、圧縮応力層の厚さのムラの分布が大きくなることにより、比較例のガラス基板の製造方法S101を使用して製造されたガラス基板を搭載するハードディスクとしては、耐落下衝撃が低下することとなる。 The inventors investigated this substrate and found that there was unevenness in the thickness of the compressive stress layer on the surface of the glass substrate manufactured using the glass substrate manufacturing method S101. When the hard disk is placed in a high-temperature and high-humidity environment, the distribution of the thickness unevenness of the compressive stress layer is increased, so that the glass substrate manufactured using the glass substrate manufacturing method S101 of the comparative example is mounted. As a hard disk, the drop impact resistance is reduced.
 高温多湿の環境下にてムラの分布が大きくなる原因は、以下のように考えられる。圧縮応力層は温度が高い場合徐々に緩和されるが、応力層の入り方によって緩和の速度が異なる。具体的には緩和速度は内部応力が弱いほど早く進行する。厚さは内部応力に依存しているため、厚みが薄いほど緩和が早い。そのため、高温多湿の環境下で加速的に応力緩和が進むと圧縮応力層のムラがより顕著となる。 The cause of the uneven distribution in a high temperature and humidity environment is considered as follows. The compressive stress layer is gradually relaxed when the temperature is high, but the rate of relaxation varies depending on how the stress layer enters. Specifically, the relaxation rate proceeds faster as the internal stress is weaker. Since the thickness depends on internal stress, the thinner the thickness, the faster the relaxation. Therefore, when the stress relaxation is accelerated in a high-temperature and high-humidity environment, the unevenness of the compressive stress layer becomes more remarkable.
 本発明者らは、圧縮応力層の厚さのムラがどの工程が原因で発生しているかを鋭意考察したところ、この圧縮応力層の厚さのムラの発生は、粗研磨工程と洗浄工程との間に行なわれるリンス工程に起因していることがわかった。 The present inventors have intensively studied which process causes the uneven thickness of the compressive stress layer, and the occurrence of the uneven thickness of the compressive stress layer is caused by the rough polishing process and the cleaning process. It was found that this was caused by a rinsing process performed during the period.
 比較例のガラス基板の製造方法S101のように、リンス工程は、研磨砥粒を含んだスラリーと呼ばれる液体にて粗研磨を行った後に、ガラス素板の表面に残存した研磨砥粒を除去するために行われる。一般的には、このリンス工程を行なった後、酸性の洗浄液を用いて洗浄を引き続き行うことにより、高い清浄度を達成できると考えられていた。 As in the manufacturing method S101 of the glass substrate of the comparative example, the rinsing step removes polishing abrasive grains remaining on the surface of the glass base plate after performing rough polishing with a liquid called slurry containing polishing abrasive grains. Done for. In general, it has been considered that a high cleanliness can be achieved by carrying out this rinsing step and then carrying out washing with an acidic washing solution.
 ここで、リンス工程を行うことで、ガラス素板に付着している研磨砥粒の濃度(量)は低下する。一方で、研磨機(研磨パッド)からガラス素板の表面へ付与される圧力は、リンス工程が行なわれている最中は略一定の値である。したがって、リンス工程においてガラス素板の表面に残留している研磨砥粒の量が徐々に減少することに伴って、研磨パッドの研磨砥粒に対する圧力の分散が減り、研磨パッドから研磨砥粒の1粒1粒(一次粒子でも二次粒子でも同様)に付与される圧力が増加することとなって、研磨砥粒の1粒1粒のガラス素板に作用する圧力も次第に高くなる。 Here, by performing the rinsing step, the concentration (amount) of abrasive grains adhering to the glass base plate decreases. On the other hand, the pressure applied from the polishing machine (polishing pad) to the surface of the glass base plate is a substantially constant value during the rinsing process. Accordingly, as the amount of abrasive grains remaining on the surface of the glass base plate in the rinsing step is gradually reduced, the dispersion of the pressure on the abrasive grains of the polishing pad is reduced, and the abrasive grains are removed from the polishing pad. The pressure applied to each grain (same for both primary and secondary particles) increases, and the pressure acting on the glass base plate of each grain of the abrasive grains gradually increases.
 研磨砥粒の濃度が低くなるにつれて、1粒1粒の研磨砥粒としてはその分強くガラス素板の表面に接触することとなる。ガラス素板に対する高い清浄度を得るため、粗研磨工程後の洗浄工程においては、硫酸またはHFなどによる酸洗浄が行われる。この際、ガラス素板の表面に、少量の研磨砥粒が強く付着している場合、付着物の除去よりも先に、ガラス基板の表面が洗浄液によって優先的に侵されてしまう。結果として、この優先的に侵されたガラス素板の表面形状は、凹凸を呈することとなる。後工程である化学強化工程S70において、凹凸状に形成された箇所ではイオン交換が均一に実施されなくなり、形成される圧縮応力層の厚さにムラが生じる。 As the concentration of the polishing abrasive grains decreases, each abrasive grain comes into strong contact with the surface of the glass base plate. In order to obtain a high cleanliness for the glass base plate, acid cleaning with sulfuric acid or HF is performed in the cleaning step after the rough polishing step. At this time, when a small amount of abrasive grains strongly adheres to the surface of the glass base plate, the surface of the glass substrate is preferentially eroded by the cleaning liquid prior to the removal of the deposits. As a result, the surface shape of the preferentially eroded glass base plate exhibits irregularities. In the chemical strengthening step S70, which is a subsequent step, ion exchange is not performed uniformly in the unevenly formed portions, and the thickness of the formed compressive stress layer becomes uneven.
 したがって、上記のような比較例のガラス基板の製造方法S101を使用して製造されたガラス基板を搭載したハードディスクが高温多湿の環境下に置かれた際、圧縮応力層の厚さのムラの分布が大きくなることにより、そのガラス基板を搭載するハードディスクとしては、耐落下衝撃が低下することとなる。 Therefore, when the hard disk mounted with the glass substrate manufactured using the glass substrate manufacturing method S101 of the comparative example as described above is placed in a high temperature and high humidity environment, the thickness distribution of the compressive stress layer is uneven. As a result, the drop impact resistance of the hard disk on which the glass substrate is mounted is reduced.
 本実施の形態のガラス基板の製造方法S100のように、両面研磨機の研磨パッドからガラス素板をリンス処理せずに取り外した後にガラス素板の表面上に残留している研磨砥粒が除去される場合、ガラス素板の表面は研磨砥粒からの圧力を受けることがほとんどない。したがってこの場合、研磨砥粒がガラス素板の表面に強固に付着することはほとんどなく、研磨砥粒はガラス素板の表面から容易に除去されることができる。 As in the glass substrate manufacturing method S100 of the present embodiment, the abrasive grains remaining on the surface of the glass base plate are removed after the glass base plate is removed from the polishing pad of the double-side polishing machine without rinsing. In this case, the surface of the glass base plate hardly receives pressure from the abrasive grains. Therefore, in this case, the abrasive grains hardly adhere firmly to the surface of the glass base plate, and the abrasive grains can be easily removed from the surface of the glass base plate.
 リンス工程に起因して発生する上記のような圧縮応力層の厚さのムラは、一般的なムラと違って、光学検査機では検知されない。上記のような圧縮応力層の厚さのムラは局所的に発生するため、ガラス素板の表面粗さなどにも影響しない。圧縮応力層の厚さのムラを有するガラス基板をハードディスクに組み込んでも、磁気ヘッドと衝突を起こすこともないため、通常の環境下で使用する際には問題ない。しかし、そのようなハードディスクが高温多湿の環境下に置かれた場合、上記したように、耐落下衝撃性の低下につながることとなる。 The uneven thickness of the compressive stress layer as described above due to the rinsing process is not detected by the optical inspection machine, unlike the general unevenness. Since the unevenness of the thickness of the compressive stress layer as described above occurs locally, it does not affect the surface roughness of the glass base plate. Even if a glass substrate having uneven thickness of the compressive stress layer is incorporated in the hard disk, it does not cause a collision with the magnetic head, so there is no problem when it is used in a normal environment. However, when such a hard disk is placed in a hot and humid environment, as described above, the drop impact resistance is reduced.
 これに対して、本実施の形態におけるガラス基板の製造方法S100においては、粗研磨工程S60が実施された後、リンス工程を実施することなく洗浄工程S65が行なわれる。研磨砥粒がガラス素板の表面に強固に付着することがないため、洗浄工程S65において付着物の除去よりも先に、ガラス基板の表面が洗浄液によって優先的に侵されてしまうことがない。結果として、ガラス素板の表面形状が凹凸を呈することがなく、後工程である化学強化工程S70において、イオン交換が均一に実施される。したがって本実施の形態におけるガラス基板の製造方法S100によれば、粗研磨工程後であって精密研磨工程の前に化学強化処理を行なう場合であっても、得られたガラス基板の耐衝撃性が低下することを抑制することが可能となる。 On the other hand, in the glass substrate manufacturing method S100 in the present embodiment, after the rough polishing step S60 is performed, the cleaning step S65 is performed without performing the rinse step. Since the abrasive grains do not adhere firmly to the surface of the glass base plate, the surface of the glass substrate is not preferentially affected by the cleaning liquid prior to the removal of the deposits in the cleaning step S65. As a result, the surface shape of the glass base plate does not exhibit irregularities, and ion exchange is performed uniformly in the chemical strengthening step S70 which is a subsequent step. Therefore, according to the glass substrate manufacturing method S100 in the present embodiment, the impact resistance of the obtained glass substrate is obtained even when the chemical strengthening treatment is performed after the rough polishing step and before the precision polishing step. It is possible to suppress the decrease.
 [実験例]
 図9を参照して、上述の実施の形態に関し、実施例1~6および比較例1,2に基づく下記の実験を行なった。実施例1~6および比較例1,2においては、これらのすべてに共通して、上述の実施の形態と同様に端面研磨工程S50(図6参照)までを実施した。
[Experimental example]
Referring to FIG. 9, the following experiment based on Examples 1 to 6 and Comparative Examples 1 and 2 was performed on the above-described embodiment. In Examples 1 to 6 and Comparative Examples 1 and 2, the process up to the end surface polishing step S50 (see FIG. 6) was performed in the same manner as in the above-described embodiment.
 (実施例1)
 実施例1の粗研磨工程S60においては、酸化セリウム濃度が10w%の研磨スラリーを用いて粗研磨を行った。研磨パッドには、発泡ウレタンのパッドを使用した。ガラス素板の表面に対する取り代は、20μmとした。その後、酸化セリウム(研磨砥粒)を8.0w%含む溶液にガラス基板を接触させた状態で、研磨パッドからガラス基板を取り外した(リンス工程は実施していない)。
Example 1
In the rough polishing step S60 of Example 1, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. A foamed urethane pad was used as the polishing pad. The machining allowance for the surface of the glass base plate was 20 μm. Thereafter, the glass substrate was removed from the polishing pad in a state where the glass substrate was brought into contact with a solution containing 8.0% by weight of cerium oxide (polishing abrasive grains) (the rinsing step was not performed).
 実施例1の洗浄工程S65においては、洗浄液として5%濃度の硫酸を使用し、80kHzの超音波を印加しながら洗浄を行った。超音波による洗浄後、ガラス素板をIPAベーパーにて乾燥させた。 In cleaning step S65 of Example 1, 5% sulfuric acid was used as a cleaning liquid, and cleaning was performed while applying an ultrasonic wave of 80 kHz. After washing with ultrasonic waves, the glass base plate was dried with IPA vapor.
 実施例1の化学強化工程S70においては、硝酸Naと硝酸Kとを5:5(モル比)の割合で混合させたものを化学強化塩として準備した。400℃に加熱した化学強化塩の中にガラス基板を浸漬し、6時間イオン交換を行った。ガラス基板を化学強化塩から取り出した後、ガラス基板を急冷し、温水にて洗浄して硝酸塩をガラス基板の表面から取り除いた。以降の各工程は、上述の実施の形態と同様である。 In the chemical strengthening step S70 of Example 1, a mixture of Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) was prepared as a chemically strengthened salt. The glass substrate was immersed in a chemically strengthened salt heated to 400 ° C., and ion exchange was performed for 6 hours. After removing the glass substrate from the chemically strengthened salt, the glass substrate was quenched and washed with warm water to remove nitrate from the surface of the glass substrate. The subsequent steps are the same as those in the above embodiment.
 (実施例2)
 実施例2の粗研磨工程S60においては、上述の実施例1と同様に、酸化セリウム濃度が10w%の研磨スラリーを用いて粗研磨を行った。その後、酸化セリウム(研磨砥粒)を5.0w%含む溶液にガラス基板を接触させた状態で、研磨パッドからガラス基板を取り外した(リンス工程は実施していない)。洗浄工程S65においては、洗浄液として1%濃度のフッ化水素酸を使用し、上述の実施例1と同様に洗浄を行った。化学強化工程S70においては、上述の実施例1と同様に、硝酸Naと硝酸Kとを5:5(モル比)の割合で混合させたものを化学強化塩として準備して化学強化処理を行なった。
(Example 2)
In the rough polishing step S60 of Example 2, as in Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Then, the glass substrate was removed from the polishing pad in the state which made the glass substrate contact the solution containing cerium oxide (abrasive grain) 5.0w% (the rinse process is not implemented). In the cleaning step S65, 1% concentration hydrofluoric acid was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above. In the chemical strengthening step S70, as in Example 1 described above, a chemical strengthening salt prepared by mixing Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) is prepared and subjected to chemical strengthening treatment. It was.
 (実施例3)
 実施例3の粗研磨工程S60においては、上述の実施例1と同様に、酸化セリウム濃度が10w%の研磨スラリーを用いて粗研磨を行った。その後、酸化セリウム(研磨砥粒)を0.5w%含む溶液にガラス基板を接触させた状態で、研磨パッドからガラス基板を取り外した(リンス工程は実施していない)。洗浄工程S65においては、洗浄液として1%濃度の硫酸を使用し、上述の実施例1と同様に洗浄を行った。化学強化工程S70においては、上述の実施例1と同様に、硝酸Naと硝酸Kとを5:5(モル比)の割合で混合させたものを化学強化塩として準備して化学強化処理を行なった。
(Example 3)
In the rough polishing step S60 of Example 3, as in Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Thereafter, the glass substrate was removed from the polishing pad in a state where the glass substrate was brought into contact with a solution containing 0.5 w% of cerium oxide (polishing abrasive grains) (the rinsing step was not performed). In the cleaning step S65, 1% concentration sulfuric acid was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above. In the chemical strengthening step S70, as in Example 1 described above, a chemical strengthening salt prepared by mixing Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) is prepared and subjected to chemical strengthening treatment. It was.
 (実施例4)
 実施例4の粗研磨工程S60においては、上述の実施例1と同様に、酸化セリウム濃度が10w%の研磨スラリーを用いて粗研磨を行った。その後、酸化セリウム(研磨砥粒)を0.5w%含む溶液にガラス基板を接触させた状態で、研磨パッドからガラス基板を取り外した(リンス工程は実施していない)。洗浄工程S65においては、洗浄液として30%濃度の硫酸を使用し、上述の実施例1と同様に洗浄を行った。化学強化工程S70においては、上述の実施例1と同様に、硝酸Naと硝酸Kとを5:5(モル比)の割合で混合させたものを化学強化塩として準備して化学強化処理を行なった。
(Example 4)
In the rough polishing step S60 of Example 4, as in Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Thereafter, the glass substrate was removed from the polishing pad in a state where the glass substrate was brought into contact with a solution containing 0.5 w% of cerium oxide (polishing abrasive grains) (the rinsing step was not performed). In the cleaning step S65, 30% sulfuric acid was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above. In the chemical strengthening step S70, as in Example 1 described above, a chemical strengthening salt prepared by mixing Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) is performed. It was.
 (実施例5)
 実施例5の粗研磨工程S60においては、上述の実施例1と同様に、酸化セリウム濃度が10w%の研磨スラリーを用いて粗研磨を行った。その後、酸化セリウム(研磨砥粒)を10.0w%含む溶液にガラス基板を接触させた状態で、研磨パッドからガラス基板を取り外した(リンス工程は実施していない)。洗浄工程S65においては、洗浄液として5%濃度のフッ化水素酸を使用し、上述の実施例1と同様に洗浄を行った。化学強化工程S70においては、上述の実施例1と同様に、硝酸Naと硝酸Kとを5:5(モル比)の割合で混合させたものを化学強化塩として準備して化学強化処理を行なった。
(Example 5)
In the rough polishing step S60 of Example 5, as in Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Thereafter, the glass substrate was removed from the polishing pad in a state where the glass substrate was brought into contact with a solution containing 10.0 w% of cerium oxide (polishing abrasive grains) (the rinsing step was not performed). In the cleaning step S65, 5% concentration hydrofluoric acid was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above. In the chemical strengthening step S70, as in Example 1 described above, a chemical strengthening salt prepared by mixing Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) is prepared and subjected to chemical strengthening treatment. It was.
 (実施例6)
 実施例6の粗研磨工程S60においては、上述の実施例1と同様に、酸化セリウム濃度が10w%の研磨スラリーを用いて粗研磨を行った。その後、酸化セリウム(研磨砥粒)を0.5w%含む溶液にガラス基板を接触させた状態で、研磨パッドからガラス基板を取り外した(リンス工程は実施していない)。洗浄工程S65においては、洗浄液として1%濃度の硫酸を使用し、上述の実施例1と同様に洗浄を行った。化学強化工程S70においては、硝酸Kを化学強化塩として準備して、上述の実施例1と同様に化学強化処理を行なった。
(Example 6)
In the rough polishing step S60 of Example 6, similarly to Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Thereafter, the glass substrate was removed from the polishing pad in a state where the glass substrate was brought into contact with a solution containing 0.5 w% of cerium oxide (polishing abrasive grains) (the rinsing step was not performed). In the cleaning step S65, 1% concentration sulfuric acid was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above. In the chemical strengthening step S70, nitric acid K was prepared as a chemically strengthened salt, and the chemical strengthening treatment was performed in the same manner as in Example 1 described above.
 (比較例1)
 比較例1の粗研磨工程S60においては、上述の実施例1と同様に、酸化セリウム濃度が10w%の研磨スラリーを用いて粗研磨を行った。その後、酸化セリウム(研磨砥粒)を0.01w%含む溶液にガラス基板を接触させた状態で、研磨パッドからガラス基板を取り外した(リンス工程を実施した)。洗浄工程S65においては、洗浄液として5%濃度の硫酸を使用し、上述の実施例1と同様に洗浄を行った。化学強化工程S70においては、上述の実施例1と同様に、硝酸Naと硝酸Kとを5:5(モル比)の割合で混合させたものを化学強化塩として準備して化学強化処理を行なった。
(Comparative Example 1)
In the rough polishing step S60 of Comparative Example 1, as in Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Then, the glass substrate was removed from the polishing pad in a state where the glass substrate was brought into contact with a solution containing 0.01 w% cerium oxide (polishing abrasive grains) (rinsing step was performed). In the cleaning step S65, 5% concentration sulfuric acid was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above. In the chemical strengthening step S70, as in Example 1 described above, a chemical strengthening salt prepared by mixing Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) is prepared and subjected to chemical strengthening treatment. It was.
 (比較例2)
 比較例2の粗研磨工程S60においては、上述の実施例1と同様に、酸化セリウム濃度が10w%の研磨スラリーを用いて粗研磨を行った。その後、酸化セリウム(研磨砥粒)を5.0w%含む溶液にガラス基板を接触させた状態で、研磨パッドからガラス基板を取り外した(リンス工程は実施していない)。洗浄工程S65においては、洗浄液として3%濃度の水酸化ナトリウムを使用し、上述の実施例1と同様に洗浄を行った。化学強化工程S70においては、上述の実施例1と同様に、硝酸Naと硝酸Kとを5:5(モル比)の割合で混合させたものを化学強化塩として準備して化学強化処理を行なった。
(Comparative Example 2)
In the rough polishing step S60 of Comparative Example 2, as in Example 1 described above, rough polishing was performed using a polishing slurry having a cerium oxide concentration of 10 w%. Then, the glass substrate was removed from the polishing pad in the state which made the glass substrate contact the solution containing cerium oxide (abrasive grain) 5.0w% (the rinse process is not implemented). In the cleaning step S65, 3% concentration sodium hydroxide was used as the cleaning liquid, and cleaning was performed in the same manner as in Example 1 described above. In the chemical strengthening step S70, as in Example 1 described above, a chemical strengthening salt prepared by mixing Na nitrate and nitric acid K at a ratio of 5: 5 (molar ratio) is prepared and subjected to chemical strengthening treatment. It was.
 (耐衝撃性試験結果)
 実施例1~6および比較例1,2によって得られたガラス基板に対して磁気記録層の成膜処理を行ない、それぞれハードディスクに組み込んだ。実施例1~6および比較例1,2の各々に対応するハードディスクを、200℃でRH80%の環境下で96時間放置した。その後、実施例1~6および比較例1,2の各々に対応するハードディスクをそれぞれ落下させ、耐落下衝撃性について評価した。
(Impact resistance test results)
A magnetic recording layer was formed on the glass substrates obtained in Examples 1 to 6 and Comparative Examples 1 and 2, and each was incorporated into a hard disk. The hard disk corresponding to each of Examples 1 to 6 and Comparative Examples 1 and 2 was allowed to stand for 96 hours at 200 ° C. in an RH 80% environment. Thereafter, the hard disks corresponding to each of Examples 1 to 6 and Comparative Examples 1 and 2 were dropped, and the drop impact resistance was evaluated.
 荷重が1100Gの際にガラス基板に割れが生じた場合、評価Bとした。荷重が1200Gの際にガラス基板に割れが生じた場合、評価Aとした。荷重が1300Gの際にガラス基板に割れが生じた場合、評価Sとした。荷重が1300Gの際でもガラス基板に割れが生じない場合、評価SSとした。 When the glass substrate was cracked when the load was 1100 G, the evaluation was B. When a crack occurred in the glass substrate when the load was 1200 G, the evaluation was A. When a crack occurred in the glass substrate when the load was 1300 G, the evaluation was S. Even when the load was 1300 G, when the glass substrate did not crack, it was evaluated as an evaluation SS.
 図9に示す結果から、化学強化処理に用いられる化学強化塩は、少なくともナトリウムイオンを含む方が良いと考えられる。化学強化塩にナトリウムイオンが含まれる場合、圧縮応力層が安定して形成されるためである。カリウムイオンとナトリウムイオンとの比率は、ガラス基板の耐衝撃性には特に影響しないと考えられる。 From the results shown in FIG. 9, it is considered that the chemically strengthened salt used for the chemical strengthening treatment should contain at least sodium ions. This is because when the chemically strengthened salt contains sodium ions, the compressive stress layer is stably formed. It is considered that the ratio of potassium ion to sodium ion does not particularly affect the impact resistance of the glass substrate.
 比較例1に示すように、研磨パッドからガラス基板を取り外す際、リンス工程を実施してガラス基板を酸化セリウム(研磨砥粒)を0.01w%未満の溶液に接触させながら取り外す場合には、耐落下衝撃性が悪化することがわかる。比較例2に示すように、研磨パッドからガラス基板を取り外す際、リンス工程を実施しない場合であっても、強塩基(アルカリ)性の洗浄液を用いることにより、ガラス素板の表面に研磨液が残留し、残った部分でイオン交換が良好に行われないため、耐落下衝撃性が悪化することがわかる。 As shown in Comparative Example 1, when removing the glass substrate from the polishing pad, when the glass substrate is removed while contacting the cerium oxide (polishing abrasive grains) with a solution of less than 0.01 w% by performing a rinsing step, It can be seen that the drop impact resistance deteriorates. As shown in Comparative Example 2, when removing the glass substrate from the polishing pad, even when the rinsing step is not performed, the polishing liquid is applied to the surface of the glass base plate by using a strong base (alkaline) cleaning liquid. It can be seen that since the ion exchange is not performed well in the remaining portion, the drop impact resistance deteriorates.
 以上、本発明に基づいた実施の形態および各実施例について説明したが、今回開示された実施の形態および各実施例はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although embodiment and each Example based on this invention were described, embodiment and each Example disclosed this time are illustrations in all points, and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ガラス基板(ガラス素板)、2,3 主表面、4 内周端面、5,15 孔、6 外周端面、7,8 面取部、10 情報記録媒体、12 圧縮応力層、14 磁気記録層、20 筐体、21 ヘッドスライダー、22 サスペンション、23 アーム、24 垂直軸、25 ボイスコイル、26 ボイスコイルモーター、27 クランプ部材、28 固定ネジ、30 情報記録装置、40 両面研磨機、41 下定盤、42 上定盤、43,44 研磨パッド、45 キャリア、46 研磨剤供給装置、48 制御装置。 DESCRIPTION OF SYMBOLS 1 Glass substrate (glass base plate), 2, 3 main surface, 4 inner peripheral end surface, 5,15 hole, 6 outer peripheral end surface, 7,8 chamfer, 10 information recording medium, 12 compressive stress layer, 14 magnetic recording layer , 20 housing, 21 head slider, 22 suspension, 23 arm, 24 vertical axis, 25 voice coil, 26 voice coil motor, 27 clamp member, 28 fixing screw, 30 information recording device, 40 double-side polishing machine, 41 lower surface plate, 42 Upper surface plate, 43, 44 polishing pad, 45 carrier, 46 abrasive supply device, 48 control device.

Claims (3)

  1.  研磨パッドを含む研磨機を準備し、酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムのいずれかを研磨砥粒として含む研磨液をガラス素板の表面に供給しつつ、前記ガラス素板の前記表面に対して前記研磨パッドを摺接させて粗研磨を行なう工程と、
     前記研磨パッドから前記粗研磨後の前記ガラス素板を取り外した後、前記ガラス素板の前記表面に酸性の洗浄液を供給しつつ、前記ガラス素板の前記表面に対して酸洗浄を行なう工程と、
     前記酸洗浄後の前記ガラス素板に含有されるアルカリ金属イオンをそのイオン半径よりも大きいイオン半径を有する化学強化塩にイオン交換することによって、前記ガラス素板の前記表面に圧縮応力層を形成する工程と、を備え、
     前記研磨パッドから前記粗研磨後の前記ガラス素板を取り外す際には、前記ガラス素板は、前記研磨砥粒の濃度が0.5w%以上10w%以下の液体と接触した状態で前記研磨機の前記研磨パッドから取り外される、
    情報記録媒体用ガラス基板の製造方法。
    A polishing machine including a polishing pad is prepared, and a polishing liquid containing any one of cerium oxide, zirconium oxide, or zirconium silicate as abrasive grains is supplied to the surface of the glass base plate, and the surface of the glass base plate is supplied. A process of performing rough polishing by sliding the polishing pad against,
    Removing the glass base plate after the rough polishing from the polishing pad, and then performing acid cleaning on the surface of the glass base plate while supplying an acidic cleaning solution to the surface of the glass base plate; ,
    A compression stress layer is formed on the surface of the glass base plate by ion exchange of alkali metal ions contained in the glass base plate after the acid cleaning with a chemically strengthened salt having an ionic radius larger than the ion radius. And comprising the steps of:
    When removing the glass substrate after the rough polishing from the polishing pad, the glass substrate is in contact with a liquid having a concentration of the abrasive grains of 0.5 w% to 10 w%. Removed from the polishing pad of
    A method for producing a glass substrate for an information recording medium.
  2.  前記酸洗浄を行なう工程に用いられる前記洗浄液は、硫酸およびまたはフッ化水素酸を含む、
    請求項1に記載の情報記録媒体用ガラス基板の製造方法。
    The cleaning liquid used in the acid cleaning step includes sulfuric acid and / or hydrofluoric acid,
    The manufacturing method of the glass substrate for information recording media of Claim 1.
  3.  前記圧縮応力層を形成する工程に用いられる前記化学強化塩は、ナトリウムイオンとカリウムイオンとを含む、
    請求項1または2に記載の情報記録媒体用ガラス基板の製造方法。
    The chemical strengthening salt used in the step of forming the compressive stress layer includes sodium ions and potassium ions.
    The manufacturing method of the glass substrate for information recording media of Claim 1 or 2.
PCT/JP2012/082015 2011-12-28 2012-12-11 Method for manufacturing glass substrate for information storage medium WO2013099585A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-287798 2011-12-28
JP2011287798 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099585A1 true WO2013099585A1 (en) 2013-07-04

Family

ID=48697078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082015 WO2013099585A1 (en) 2011-12-28 2012-12-11 Method for manufacturing glass substrate for information storage medium

Country Status (2)

Country Link
JP (1) JPWO2013099585A1 (en)
WO (1) WO2013099585A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348338A (en) * 1999-03-30 2000-12-15 Hoya Corp Production of glassy substrate for information recording medium and information recording medium
JP2003036522A (en) * 1998-08-19 2003-02-07 Hoya Corp Glass substrate for magnetic recording medium, magnetic recording medium, and its manufacturing method
JP2005108306A (en) * 2003-09-29 2005-04-21 Hoya Corp Chemical reinforcement treatment method of glass substrate for magnetic disk, manufacturing method of chemically reinforced glass substrate for magnetic disk, and manufacturing method of magnetic disk
JP2011154773A (en) * 2009-12-29 2011-08-11 Hoya Corp Method for manufacturing magnetic disk glass substrate, and magnetic disk glass substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036522A (en) * 1998-08-19 2003-02-07 Hoya Corp Glass substrate for magnetic recording medium, magnetic recording medium, and its manufacturing method
JP2000348338A (en) * 1999-03-30 2000-12-15 Hoya Corp Production of glassy substrate for information recording medium and information recording medium
JP2005108306A (en) * 2003-09-29 2005-04-21 Hoya Corp Chemical reinforcement treatment method of glass substrate for magnetic disk, manufacturing method of chemically reinforced glass substrate for magnetic disk, and manufacturing method of magnetic disk
JP2011154773A (en) * 2009-12-29 2011-08-11 Hoya Corp Method for manufacturing magnetic disk glass substrate, and magnetic disk glass substrate

Also Published As

Publication number Publication date
JPWO2013099585A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5037975B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2012142044A (en) Method for manufacturing glass substrate for information recording medium and information recording medium
JP2008080482A (en) Manufacturing method and manufacturing device for magnetic disk glass substrate, magnetic disk glass substrate, magnetic disk manufacturing method, and magnetic disk
JP2007111852A (en) Manufacturing method for glass substrate for magnetic disk, manufacturing method for magnetic disk, and abrasive cloth
JP4860580B2 (en) Magnetic disk substrate and magnetic disk
JP6423935B2 (en) Manufacturing method of glass substrate for information recording medium and polishing brush
JP4612600B2 (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP2007090452A (en) Manufacturing method of glass substrate for magnetic disc and manufacturing method of magnetic disc
WO2013099584A1 (en) Method of manufacturing glass substrate for information recording medium
WO2014148421A1 (en) Method for producing glass substrate for information recording medium
WO2013099585A1 (en) Method for manufacturing glass substrate for information storage medium
WO2013099656A1 (en) Glass substrate for information recording medium and method for producing same
JP5461936B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6328052B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing information recording medium, and polishing pad
JP6088534B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing information recording medium, and disk-shaped glass substrate
JP5897959B2 (en) Manufacturing method of glass substrate for information recording medium
JP5886108B2 (en) Manufacturing method of glass substrate for information recording medium
WO2014050496A1 (en) Method for producing glass substrate for information recording medium
JP5036323B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate holder
WO2014050495A1 (en) Method for producing glass substrate for information recording medium
JP3766424B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
WO2012132073A1 (en) Method for manufacturing glass substrate for information recording medium, and information recording medium
WO2014103982A1 (en) Method for manufacturing glass substrate for information recording medium
JP2014071913A (en) Method for manufacturing glass substrate for information recording medium
WO2015041011A1 (en) Method for manufacturing glass substrate for information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551580

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861949

Country of ref document: EP

Kind code of ref document: A1