WO2014103982A1 - Method for manufacturing glass substrate for information recording medium - Google Patents

Method for manufacturing glass substrate for information recording medium Download PDF

Info

Publication number
WO2014103982A1
WO2014103982A1 PCT/JP2013/084416 JP2013084416W WO2014103982A1 WO 2014103982 A1 WO2014103982 A1 WO 2014103982A1 JP 2013084416 W JP2013084416 W JP 2013084416W WO 2014103982 A1 WO2014103982 A1 WO 2014103982A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
ion exchange
information recording
layer
mass
Prior art date
Application number
PCT/JP2013/084416
Other languages
French (fr)
Japanese (ja)
Inventor
葉月 中江
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Publication of WO2014103982A1 publication Critical patent/WO2014103982A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the present invention relates to a method for producing a glass substrate for an information recording medium.
  • the reason why the information recording apparatus is required to have impact resistance is that it is necessary to mount the information recording apparatus on a portable device such as a laptop (laptop) personal computer.
  • a glass substrate (hereinafter simply referred to as a glass substrate) mounted on an information recording apparatus.
  • a high-hardness glass substrate is required to improve high smoothness and improve impact resistance in order to improve recording density.
  • the high hardness is to prevent the glass substrate from being deformed or damaged even when an impact is applied.
  • the flying height of the magnetic head is reduced because reading and writing of the recording is performed stably.
  • the flying of the magnetic head is performed by utilizing the air resistance when rotating at high speed.
  • the glass substrate needs to have high hardness, and a glass substrate that is difficult to break is demanded. This is because, for example, when used as a hard disk drive of a notebook (laptop) personal computer, the glass substrate is not damaged even when an external impact is applied.
  • Glass substrates are generally excellent in impact properties.
  • a so-called chemical strengthening step of providing a compressive stress layer on the surface layer of the glass substrate by exchanging ions on the surface layer of the glass substrate with large ions in the manufacturing process of the glass substrate It has come to be adopted (see JP 2008-108413 A (Patent Document 1)).
  • a glass substrate having heat resistance is used for an information recording apparatus. This is because it is necessary to read and write the record stably in order to cope with the higher density. Specifically, it is necessary to stabilize the magnetic material.
  • a glass substrate having heat resistance is a glass substrate having a high glass transition temperature (Tg), specifically, a glass transition temperature (Tg) of 650 ° C. or more.
  • a glass substrate for an information recording medium is manufactured using the above manufacturing method (see Patent Document 1) using a glass substrate having a high glass transition temperature (Tg) corresponding to further densification.
  • Tg glass transition temperature
  • An object of the present invention is to solve the above-mentioned problems, and in the manufacturing process of a glass substrate for information recording medium using a glass substrate having a high glass transition temperature (Tg), it is possible to suppress deterioration of the flatness of the glass substrate. It is providing the manufacturing process of the glass substrate for information recording media provided with a various manufacturing process.
  • the method for producing a glass substrate for information recording medium is a method for producing a glass substrate for information recording medium, the step of preparing a glass substrate having a glass transition temperature of 650 ° C. or higher, A chemical strengthening step for chemically strengthening the surface, wherein the chemical strengthening step maintains an ion exchange rate of 0.05 ⁇ m / min to 0.25 ⁇ m / min and has an ion exchange depth of less than 3 ⁇ m from the main surface.
  • the ion exchange of the ion exchange layer Na is replaced by K when the total of the mass in which Na is replaced by K and the mass in which Li is replaced by Na is 100%.
  • the ratio of the applied mass is 80 mass% (wt%) to 100 mass% (wt%).
  • the chemical strengthening step raises the temperature of the glass substrate under conditions of 0.5 ° C./min to 2 ° C./min.
  • the chemical strengthening step performs ion exchange of the ion exchange layer in 5 min to 30 min.
  • At least 0.05 ⁇ m or more from the main surface of the ion exchange layer formed on the glass substrate or a polishing step for removing all of the ion exchange layer are prepared.
  • the information in a manufacturing process of a glass substrate for an information recording medium using a glass substrate having a high glass transition temperature (Tg), the information includes a manufacturing process capable of suppressing deterioration in flatness of the glass substrate. It is possible to provide a manufacturing process of a glass substrate for a recording medium.
  • Tg glass transition temperature
  • FIG. 2 is a perspective view showing an information recording device 30.
  • FIG. It is a top view which shows the glass substrate 1 manufactured by the manufacturing method of the glass substrate for information recording media based on this Embodiment.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4.
  • FIG. 1 is a perspective view showing the information recording apparatus 30.
  • the information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
  • the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28.
  • a spindle motor (not shown) is installed on the upper surface of the housing 20.
  • An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28.
  • the information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm.
  • a compression stress layer 12 see FIG. 5
  • a magnetic recording layer 14 see FIGS. 4 and 5 are formed on the glass substrate 1. To be manufactured.
  • the arm 23 is attached so as to be swingable around the vertical axis 24.
  • a suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23.
  • a head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
  • a voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21.
  • the voice coil 25 is clamped by a magnet (not shown) provided on the housing 20.
  • a voice coil motor 26 is constituted by the voice coil 25 and the magnet.
  • a predetermined current is supplied to the voice coil 25.
  • the arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet.
  • the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1.
  • the head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10.
  • a magnetic head (not shown) provided on the head slider 21 performs a seek operation.
  • the head slider 21 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10.
  • the information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
  • FIG. 2 is a plan view showing glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) has a main surface 2, a main surface 3, It has the inner peripheral end surface 4, the hole 5, and the outer peripheral end surface 6, and is formed in a disk shape as a whole.
  • the hole 5 is provided so as to penetrate from one main surface 2 toward the other main surface 3.
  • a chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4.
  • a chamfered portion 8 (chamfer portion) is formed between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6, a chamfered portion 8 (chamfer portion) is formed.
  • the size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch.
  • the thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage.
  • the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm.
  • the thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate. From the viewpoint of increasing the hardness of the glass substrate, the Vickers hardness of the glass substrate 1 is preferably 610 kg / mm 2 or more.
  • the glass substrate may have any composition as long as the glass transition temperature (Tg) is 650 ° C. or higher, but in the chemical strengthening step (S70) described later, the aluminosilicate glass is subjected to stress due to ion exchange. It is preferable from the viewpoint of easily forming the layer. More preferably, when a glass having the following composition is used, a better stress layer can be easily formed.
  • the preferred glass substrate composition is, for example, SiO 2 is 50 mass (wt)% to 60 mass (wt)%, Al 2 O 3 is 12 mass (wt)% to 20 mass (wt)%, B 2 O 3 is 2 mass (wt)% to 7 mass (wt)%, P 2 O 5 is 0.1 mass (wt)% to 3 mass (wt)%, Na 2 O is 2 mass (wt)% ⁇ 6 mass (wt)%, MgO is 6 mass (wt)% to 12 mass (wt)%, CaO is 0.1 mass (wt)% to 3 mass (wt)%, ZnO is 3 mass ( wt)% to 8 mass (wt)%, TiO 2 is 3 mass (wt)% to 8 mass (wt)%, Li 2 O is 0 mass (wt)% to 4 mass (wt)%, Na 2 O is 2 mass (wt)% to 6 mass (wt)%, and K 2 O is 0 mass (wt)% to 3 mass (
  • FIG. 4 is a plan view showing an information recording medium 10 provided with a glass substrate 1 as an information recording medium.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG.
  • the information recording medium 10 includes a glass substrate 1, a compressive stress layer 12, and a magnetic recording layer 14.
  • the compressive stress layer 12 is formed so as to cover the main surfaces 2 and 3, the inner peripheral end face 4, and the outer peripheral end face 6 of the glass substrate 1.
  • the magnetic recording layer 14 is formed so as to cover a predetermined region on the main surfaces 2 and 3 of the compressive stress layer 12.
  • the magnetic recording layer 14 is formed on both the compressive stress layer 12 formed on the main surface 2 and the compressive stress layer 12 formed on the main surface 3 (both sides). Is formed.
  • the magnetic recording layer 14 may be provided only on the compression stress layer 12 (one side) formed on the main surface 2, or on the compression stress layer 12 (one side) formed on the main surface 3. It may be provided.
  • the magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method).
  • the magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
  • the thickness of the magnetic recording layer 14 is about 0.3 ⁇ m to 1.2 ⁇ m for the spin coating method, about 0.04 ⁇ m to 0.08 ⁇ m for the sputtering method, and about 0.05 ⁇ m to about the electroless plating method. 0.1 ⁇ m. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
  • a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used.
  • the surface of the magnetic recording layer 14 may be thinly coated with a lubricant.
  • a lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
  • the magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary.
  • the underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • the underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked.
  • a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
  • Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
  • protective layers may be formed on the protective layer or instead of the protective layer.
  • colloidal silica fine particles are dispersed and coated on a Cr layer with tetraalkoxylane diluted with an alcohol solvent, and then fired to form a silicon oxide (SiO2) layer. May be.
  • the glass substrate manufacturing method S100 in the present embodiment includes a plate-like glass forming step S10, a crystallization step S15, a cut-out forming step S20, a blasting step S30, a lapping step S40, an end surface polishing step S50, a rough polishing step S60, and a cleaning step.
  • S65, chemical strengthening process S70, precision polishing process S80, and scrub cleaning process S90 are provided.
  • the magnetic thin film forming step S200 is performed on the glass substrate obtained through the scrub cleaning step S90. Through the magnetic thin film forming step S200, the information recording medium 10 (see FIGS. 4 and 5) is obtained.
  • the details of the steps S10 to S90 constituting the glass substrate manufacturing method S100 will be described in order.
  • a glass sheet is manufactured using a known glass forming method such as a direct press method, a float method, a down draw method, a redraw method, or a fusion method using a molten glass as a material.
  • the direct press method can be directly molded from a melted glass into a target glass molded product, and thus is suitable for producing a large amount of plate-like glass having the same shape.
  • molten glass is supplied to a press mold and pressed with a press mold while the glass is in a softened state to form a sheet glass.
  • the Vickers hardness of the glass substrate 1 is 610 kg / mm 2 or more.
  • the glass transition temperature (Tg) is 650 ° C. or higher.
  • a material of the glass substrate for example, amorphous glass or crystallized glass can be used. When amorphous glass is used, chemical strengthening can be appropriately performed, and a glass substrate for an information recording medium excellent in flatness of the main surface and substrate strength can be provided.
  • Crystallization step S15 In the crystallization step S15, crystals are generated by heat-treating the glass substrate after the sheet glass forming step S10. This heat treatment is preferably performed in two stages. A nucleation step is performed at a first temperature, and then a crystal growth step is performed at a second temperature.
  • the first temperature in the nucleation step is preferably 600 ° C. to 750 ° C., and the treatment time is preferably 1 hour to 24 hours.
  • the second temperature in the crystal growth step is preferably 650 ° C. to 850 ° C., and the treatment time is preferably 1 hour to 24 hours.
  • the heat treatment at the first temperature and the second temperature can be performed without deteriorating the flatness of the glass substrate by alternately laminating ceramic setters and glass substrates.
  • Cut-out molding step S20 In the cut-out forming step S20, an inner hole is formed in the center of the glass substrate using a cylindrical diamond drill, and an annular glass substrate is formed (coring process). Thereafter, the inner peripheral end face and the outer peripheral end face are ground with a diamond grindstone and subjected to predetermined chamfering (forming, chamfering).
  • blasting step S30 a plurality of particles (abrasive grains) 200 are sprayed on the main surfaces 2 and 3 of the glass substrate 1 formed by the plate-like glass forming step S10, whereby the main of the glass substrate (glass substrate precursor) 1 Surfaces 2 and 3 are ground (first grinding).
  • lapping step S40 In the lapping step (second grinding step) S40, lapping (second grinding) is performed on the main surface of the glass substrate 1, for example, using a double-side polishing apparatus.
  • End face polishing step S50 In the end surface polishing step S50, the inner peripheral end surface and the outer peripheral end surface of the glass substrate 1 are polished using a polishing brush having a spiral brush bristle material. While supplying the polishing slurry between the polishing brush and each end surface of the glass substrate 1, the polishing brush is rotated in contact with each end surface. With the glass substrate 1 immersed in the polishing liquid, the polishing brush may be rotated in contact with each end face.
  • the glass substrate 1 whose inner peripheral end face and outer peripheral end face are polished has its main surfaces 2 and 3 polished roughly in a plurality of times.
  • the main surfaces 2 and 3 are polished in two steps of the first and second rough polishing steps.
  • the first rough polishing step is mainly intended to remove scratches and distortions remaining on the main surfaces 2 and 3 in the lapping step, and the second rough polishing step The purpose is to finish the main surfaces 2 and 3 in a mirror shape.
  • the glass substrate 1 is subjected to a cleaning process using an acidic cleaning liquid.
  • the purpose of this cleaning treatment is to remove from the surface of the glass substrate 1 any of cerium oxide, zirconium oxide, or zirconium silicate used as a polishing slurry in the rough polishing step S60, which is the previous step.
  • Chemical strengthening is obtained by forming a compressive stress by replacing ions contained in the glass composition with larger ions.
  • the ions to be substituted are mainly alkali metal ions.
  • the alkali metal ions generally used are substitution of Li with Na and substitution of Na with K.
  • the substitution of Li for Na tends to go deeper, and the compressive stress layer is formed relatively deeply.
  • the compressive stress value is relatively weak.
  • the replacement of Na with K is difficult to enter deeply and the compressive stress is shallow, but the compressive stress value is high.
  • the ion exchange layer means a layer in which ion exchange has been performed
  • the compressive stress layer means a layer in which compressive stress is generated due to the formation of the ion exchange layer. Therefore, the compressive stress layer includes an ion exchange layer, and the depth of the compressive stress layer from the glass substrate surface is deeper than the depth of the ion exchange layer from the glass substrate surface. Further, the ion exchange layer means a layer in which 10% or more of ions are exchanged for larger ions from the original composition of the glass substrate.
  • the ion exchange layer is increased in volume by ion exchange, so that compressive stress is generated and impact resistance is improved.
  • the impact resistance is affected by two points: “compressive stress strength” and “compressive stress depth”.
  • the ion exchange layer is formed rapidly (the ion exchange rate is increased), a very strong compressive stress is generated on the surface of the glass substrate.
  • the formed compressive stress layer has a large variation in “compressive stress strength” and “compressive stress depth”.
  • the “compression stress depth” is stably formed, but the “compression stress intensity” near the surface of the glass substrate is reduced. Since it is inferior, it will be inferior to impact resistance (it will be easy to generate a crack by an impact). Further, it becomes difficult to form the “compression stress depth” deeply.
  • the temperature of the glass substrate is preferably raised under the condition of 0.5 ° C./min to 2 ° C./min.
  • the chemical strengthening step may be performed in the ion exchange layer for 5 min to 30 min. Details will be described in Examples described later.
  • the immersion of the glass substrate 1 in the chemical strengthening solution is performed on the holder so that the plurality of glass substrates 1 are held at their respective end surfaces so that the entire main surfaces 2 and 3 of the glass substrate 1 are chemically strengthened. It is preferable to carry out the storage.
  • alkali metal ions lithium ions and sodium ions
  • salts sodium ions
  • potassium ions As a result, a compressive stress layer having a depth of, for example, 50 ⁇ m to 200 ⁇ m including the ion exchange layer is formed on the surface layer of the glass substrate 1.
  • the surface of the glass substrate 1 is strengthened by the formation of the compressive stress layer, and the glass substrate 1 has good impact resistance.
  • precision polishing step S80 After the chemical strengthening step S70, a precision polishing process is performed on the glass substrate 1.
  • the precision polishing step S80 is intended to finish the main surface of the glass substrate 1 in a mirror shape.
  • the precision polishing step S80 similarly to the rough polishing step S60 described above, the glass substrate 1 is precisely polished using a double-side polishing machine (see FIG. 11).
  • the composition of the polishing abrasive grains contained in the polishing liquid (slurry) used and the polishing pad used are different.
  • the grain size of the abrasive grains in the polishing liquid supplied to the main surfaces 2 and 3 of the glass substrate 1 on which the compressive stress layer is formed is made smaller than in the rough polishing step S60. Soften the hardness.
  • the polishing pad used in the precision polishing step S80 is, for example, a soft foam resin polisher.
  • the precision polishing step S80 uses loose abrasive grains, and includes a first polishing step with abrasive grains mainly composed of Ce and a second polishing step of polishing with abrasive grains mainly composed of Si.
  • the ion exchange layer formed on the glass substrate 1 may be at least 0.05 ⁇ m or more from the main surface, or all of the ion exchange layer may be removed.
  • the glass substrate 1 may be temporarily stored in water after being removed from the polishing pad of the double-side polishing machine. By storing in water, it is possible to reduce the amount of foreign matter such as polishing wrinkles or loose abrasive grains adhering to the glass substrate 1 after precision polishing while preventing the surface of the glass substrate 1 from drying after precision polishing. After the glass substrate 1 is stored in water for a predetermined time, the glass substrate 1 is set in a scrub cleaning device and scrub cleaning is performed on the glass substrate 1.
  • a cleaning liquid such as a detergent or pure water is used.
  • the pH of the cleaning solution used for scrub cleaning is preferably 9.0 or more and 12.2 or less. Within this range, the ⁇ potential can be easily adjusted and scrub cleaning can be performed efficiently.
  • both scrub cleaning with a detergent and scrub cleaning with pure water may be performed.
  • the glass substrate 1 By using a detergent and pure water, the glass substrate 1 can be more appropriately cleaned.
  • the glass substrate 1 may be further rinsed with pure water between scrub cleaning with a detergent and scrub cleaning with pure water.
  • the glass substrate 1 may be further subjected to ultrasonic cleaning.
  • ultrasonic cleaning with chemical solution such as sulfuric acid aqueous solution, ultrasonic cleaning with pure water, ultrasonic cleaning with detergent, ultrasonic cleaning with IPA, and / or steam drying with IPA, etc. Further, it may be performed.
  • the manufacturing method S100 of the glass substrate 1 in the present embodiment is configured as described above. By using manufacturing method S100 of glass substrate 1, glass substrate 1 of this embodiment shown in Drawing 2 and Drawing 3 can be obtained.
  • Magnetic thin film forming step S200 A magnetic recording layer is formed on the main surfaces 2 and 3 (or one of the main surfaces 2 and 3) of the glass substrate 1 after the scrub cleaning process is completed.
  • the magnetic recording layer includes, for example, an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and an F system.
  • an adhesion layer made of a Cr alloy
  • a soft magnetic layer made of a CoFeZr alloy
  • an orientation control underlayer made of Ru
  • a perpendicular magnetic recording layer made of a CoCrPt alloy
  • a protective layer made of a C system
  • F system an F system
  • a sheet glass forming step S10 a crystallization step S15, a cut forming step S20, a blasting step S30, a lapping step S40, an end face
  • polishing process S50 rough polishing process S60, cleaning process S65, precision polishing process S80, scrub cleaning process S90, and magnetic thin film forming process S200h.
  • the glass substrate 1 having the above composition was used as the glass substrate 1.
  • the glass transition temperature (Tg) is 650 ° C. and the crystallinity is 8%.
  • Example 1 In the chemical strengthening method in Example 1, a potassium nitrate solution was used as a chemical strengthening solution, and the glass substrate 1 was immersed in the potassium nitrate solution to chemically strengthen the glass substrate 1.
  • the temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was set to 450 ° C., then the temperature was increased at 1 ° C./min, and the treatment was performed at the maximum temperature of 470 ° C.
  • the treatment time was 20 minutes.
  • one glass substrate 1 being processed is extracted every minute, and EDX ((Energy Dispersive X-ray Spectroscopy) using SEM (Scanning Electron Microscope) is used. ): Energy dispersive X-ray spectroscopy))) and derived from the alkali metal signal intensity in the cross section of the glass substrate 1.
  • the ion exchange rate every 5 minutes is averaged.
  • the average ion exchange rate from 0 to 5 minutes ( ⁇ m / min) is 0.15 ⁇ m / min
  • the average ion exchange rate from 5 to 10 minutes ( ⁇ m / min) is 0.15 ⁇ m / min
  • the average ion exchange rate ( ⁇ m / min) between 10 minutes and 15 minutes is 0.1 ⁇ m / min
  • the average ion exchange rate between 15 minutes and 20 minutes ( ⁇ m / min) is 0.1 ⁇ m / min. is there.
  • Na was 100% by mass (wt%) (Na was 100% by mass (wt%) and was exchanged with K).
  • ion exchange in the ion exchange layer is performed when the total of “mass in which Na is replaced with K (A1)” and “mass in which Li is replaced with Na (A2)” is 100%. It means the ratio of “mass in which Na is replaced by K (A2)” ([A2 / (A1 + A2)] ⁇ 100%). Therefore, when Na is 100 mass% (wt%), ion exchange in the ion exchange layer means only when Na is replaced by K. The same applies hereinafter.
  • the ion exchange depth from the surface of the glass substrate 1 in Example 1 was 2.5 ⁇ m.
  • the evaluation of the drop impact test was “A”.
  • the evaluation of the flatness was “A”.
  • Evaluation of the flatness was performed by using NIDEC FT-17 manufactured by Mitutoyo Corporation for the information recording medium 10 obtained through the steps shown in FIG.
  • a flatness of less than 3 ⁇ m was evaluated as “A”
  • a flatness of 3 ⁇ m or more and less than 5 ⁇ m was evaluated as “B”
  • a flatness of 5 ⁇ m or more was evaluated as “C”.
  • the impact resistance test was evaluated by performing a drop impact test on the information recording apparatus 30 after mounting the information recording medium 10 obtained in the process shown in FIG. .
  • the drop test was performed on 100 information recording devices 30.
  • As a drop test when the information recording device 30 is dropped and an impact of 1200 G is applied to the information recording device 30 and the information recording medium 10 is taken out from the information recording device 30, the glass substrate 1 is not cracked or broken. It was judged.
  • the case where the glass substrate 1 has no cracks or defects is regarded as acceptable, the case where the acceptance ratio is 80% or more is “A”, the case where the acceptance ratio is 70% or more and less than 80% is “B”, and the acceptance ratio is less than 70%. Evaluated as “C”.
  • Example 2 In Example 2, the temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was set to 430 ° C., then the temperature was increased at 1 ° C./min, and the treatment was performed at the maximum temperature of 460 ° C. Other conditions are the same as those in the first embodiment. The treatment time was 30 minutes.
  • the ion exchange rate every 5 minutes is averaged.
  • the average ( ⁇ m / min) ion exchange rate between 0 and 5 minutes is 0.07 ⁇ m / min
  • the average ion exchange rate ( ⁇ m / min) between 5 and 10 minutes is 0.06 ⁇ m / min
  • the average ion exchange rate ( ⁇ m / min) between 10 minutes and 15 minutes is 0.06 ⁇ m / min
  • the average ion exchange rate between 15 minutes and 20 minutes ( ⁇ m / min) is 0.05 ⁇ m / min.
  • the average ion exchange rate ( ⁇ m / min) between 20 and 25 minutes is 0.05 ⁇ m / min
  • the average ion exchange rate between 25 and 30 minutes ( ⁇ m / min) is 0.05 ⁇ m / min. is there.
  • Na was 100% by mass (wt%)
  • Na was 100% by mass (wt%) and was exchanged with K).
  • the ion exchange depth from the surface of the glass substrate 1 in Example 2 was 1.7 ⁇ m.
  • the evaluation of the drop impact test was “B”.
  • the evaluation of the flatness was “A”.
  • Example 3 In Example 3, the temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was set to 460 ° C., then the temperature was increased at 2 ° C./min, and the treatment was performed at the maximum temperature of 480 ° C. Other conditions are the same as those in the first embodiment. The treatment time was 10 minutes.
  • the ion exchange rate every 5 minutes is averaged.
  • the average ion exchange rate from 0 to 5 minutes ( ⁇ m / min) is 0.2 ⁇ m / min, and the average ion exchange rate from 5 to 10 minutes ( ⁇ m / min) is 0.2 ⁇ m / min. is there.
  • Na was 100% by mass (wt%)
  • Na was 100% by mass (wt%) and was exchanged with K).
  • the ion exchange depth from the surface of the glass substrate 1 in Example 3 was 2 ⁇ m.
  • the evaluation of the drop impact test was “A”.
  • the evaluation of the flatness was “A”.
  • a strong acid salt mass ratio 9: 1 of potassium nitrate and sodium nitrate
  • the ion exchange rate every 5 minutes is averaged.
  • the average ion exchange rate from 0 to 5 minutes ( ⁇ m / min) is 0.12 ⁇ m / min
  • the average ion exchange rate from 5 to 10 minutes ( ⁇ m / min) is 0.12 ⁇ m / min
  • the average ion exchange rate ( ⁇ m / min) between 10 minutes and 15 minutes is 0.08 ⁇ m / min
  • the average ion exchange rate between 15 minutes and 20 minutes ( ⁇ m / min) is 0.08 ⁇ m / min. is there.
  • Na was 80.3% by mass (wt%). That is, 80.3% by mass (wt%) of Na was replaced with K, and 19.7% by mass (wt%) of Li was replaced with Na.
  • the ion exchange depth from the surface of the glass substrate 1 in Example 4 was 2 ⁇ m.
  • the evaluation of the drop impact test was “A”.
  • the evaluation of the flatness was “A”.
  • Example 5 In Example 5, the temperature of the chemical strengthening liquid immediately after immersion of the glass substrate 1 was set to 470 ° C., then the temperature was increased at 2 ° C./min, and the treatment was performed at the maximum temperature of 480 ° C. Other conditions are the same as those in the first embodiment. The treatment time was 5 minutes.
  • the ion exchange rate every 5 minutes is averaged.
  • the average ( ⁇ m / min) ion exchange rate between 0 and 5 minutes is 0.25 ⁇ m / min.
  • the ion exchange in the ion exchange layer was 100% Na (100% Na was exchanged for K).
  • the ion exchange depth from the surface of the glass substrate 1 was 1.25 ⁇ m.
  • the evaluation of the drop impact test was “A”.
  • the evaluation of the flatness was “B”.
  • Comparative Example 1 In Comparative Example 1, the temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was 480 ° C., and the temperature was maintained until the end of strengthening. Other conditions are the same as those in the first embodiment. The treatment time was 10 minutes.
  • the ion exchange rate every 5 minutes is averaged.
  • the average ion exchange rate from 0 to 5 minutes ( ⁇ m / min) is 0.35 ⁇ m / min, and the average ion exchange rate from 5 to 10 minutes ( ⁇ m / min) is 0.25 ⁇ m / min. is there.
  • the ion exchange in the ion exchange layer was 100% Na (100% Na was exchanged for K).
  • the ion exchange depth from the surface of the glass substrate 1 was 3 ⁇ m.
  • the evaluation of the drop impact test was “A”.
  • the evaluation of the flatness was “C”.
  • Comparative Example 2 In Comparative Example 2, the temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was 420 ° C., and the temperature was maintained until the end of strengthening. Other conditions are the same as those in the first embodiment. The treatment time was 30 minutes.
  • the ion exchange rate every 5 minutes is averaged.
  • the average ( ⁇ m / min) ion exchange rate between 0 and 5 minutes is 0.05 ⁇ m / min
  • the average ion exchange rate between 5 and 10 minutes ( ⁇ m / min) is 0.02 ⁇ m / min
  • the average ion exchange rate ( ⁇ m / min) between 10 minutes and 15 minutes is 0.02 ⁇ m / min
  • the average ion exchange rate between 15 minutes and 20 minutes ( ⁇ m / min) is 0.01 ⁇ m / min
  • the average ion exchange rate ( ⁇ m / min) between 20 minutes and 25 minutes is 0.01 ⁇ m / min
  • the average ion exchange rate between 25 minutes and 30 minutes ( ⁇ m / min) is 0.01 ⁇ m / min. is there.
  • the ion exchange in the ion exchange layer was 100% Na (100% Na was exchanged for K).
  • the ion exchange depth from the surface of the glass substrate 1 was 0.6 ⁇ m.
  • the evaluation of the drop impact test was “C”.
  • the evaluation of the flatness was “A”.
  • Example A In the chemical strengthening method in Example A, the glass substrate 1 was immersed in a strong acid salt (mass ratio 0.01: 0.99) of calcium nitrate and potassium nitrate to chemically strengthen the glass substrate 1. The temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was 470 ° C., and the temperature was maintained until the end of strengthening. Other conditions are the same as those in the first embodiment. The treatment time was 20 minutes.
  • a strong acid salt mass ratio 0.01: 0.99
  • the ion exchange rate every 5 minutes is averaged.
  • the average ion exchange rate ( ⁇ m / min) between 0 and 5 minutes is 0.1 ⁇ m / min, and the average ion exchange rate ( ⁇ m / min) between 5 and 10 minutes is 0.1 ⁇ m / min,
  • the average ion exchange rate ( ⁇ m / min) between 10 minutes and 15 minutes is 0.06 ⁇ m / min, and the average ion exchange rate between 15 minutes and 20 minutes ( ⁇ m / min) is 0.06 ⁇ m / min. is there.
  • the ion exchange in the ion exchange layer was 100% Na (100% by weight), and the ion exchange in the ion exchange layer was 100% by weight (wt%). )
  • the ion exchange depth from the surface of the glass substrate 1 was 1.6 ⁇ m.
  • the evaluation of the drop impact test was “B”.
  • the evaluation of the flatness was “A”.
  • Example B In the chemical strengthening method in Example B, the same chemical strengthening process as in Example 1 was performed, but this chemical strengthening process was performed after the precision polishing process S80.
  • the ion exchange depth from the surface of the glass substrate 1 was 2.5 ⁇ m.
  • the evaluation of the drop impact test was “B”.
  • the evaluation of the flatness was “B”.
  • Example C the glass substrate 1 was chemically strengthened by immersing the glass substrate 1 in the potassium nitrate solution using the potassium nitrate solution as the chemical strengthening solution as in the case of Example 1.
  • the temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was set to 460 ° C., and the temperature was maintained until the end of strengthening. Other conditions are the same as those in the first embodiment.
  • the treatment time was 4 minutes.
  • the ion exchange rate over 4 minutes is shown as an average.
  • the average ( ⁇ m / min) ion exchange rate between 0 and 4 minutes is 0.2 ⁇ m / min.
  • Na was 100% by mass (wt%) (Na was 100%).
  • the ion exchange depth from the surface of the glass substrate 1 was 0.8 ⁇ m.
  • the evaluation of the drop impact test was “B”.
  • the evaluation of the flatness was “B”.
  • Example D the glass substrate 1 was chemically strengthened by immersing the glass substrate 1 in the potassium nitrate solution and using the potassium nitrate solution as the chemical strengthening solution in the same manner as in Example 1.
  • the temperature immediately after the immersion of the glass substrate 1 was set to 430 ° C., then the temperature was increased at 1.0 ° C./min, and the treatment was performed at the maximum temperature of 470 ° C.
  • Other conditions are the same as those in the first embodiment.
  • the treatment time was 40 minutes.
  • the ion exchange rate every 5 minutes is averaged.
  • the average ( ⁇ m / min) ion exchange rate between 0 and 5 minutes is 0.08 ⁇ m / min
  • the average ion exchange rate between 5 and 10 minutes ( ⁇ m / min) is 0.07 ⁇ m / min
  • the average ( ⁇ m / min) ion exchange rate between 10 minutes and 15 minutes is 0.06 ⁇ m / min
  • the average ion exchange rate between 15 minutes and 20 minutes ( ⁇ m / min) is 0.06 ⁇ m / min
  • the average ion exchange rate ( ⁇ m / min) between 20 minutes and 25 minutes is 0.06 ⁇ m / min
  • the average ion exchange rate between 25 minutes and 30 minutes ( ⁇ m / min) is 0.05 ⁇ m / min.
  • the average ion exchange rate ( ⁇ m / min) between 30 and 35 minutes is 0.05 ⁇ m / min
  • the average ion exchange rate between 35 and 40 minutes ( ⁇ m / min) is 0.05 ⁇ m / min. is there.
  • Na was 100% by mass (wt%)
  • Na was 100% by mass (wt%) and was exchanged with K).
  • the ion exchange depth from the surface of the glass substrate 1 was 2.4 ⁇ m.
  • the evaluation of the drop impact test was “B”.
  • the evaluation of the flatness was “B”.
  • a glass substrate having a high glass transition temperature (Tg) is not subjected to ion exchange unless the treatment temperature is increased as compared with a glass substrate having a low glass transition temperature (Tg). Therefore, when the processing temperature is increased, the ion exchange rate (particularly near the surface of the glass substrate) is increased, and ion exchange is rapidly performed. As a result, the ion exchange layer was strongly formed on the main surface, thereby causing variations in the depth and strength of the compressive stress layer, thereby deteriorating the flatness of the glass substrate.
  • the chemical strengthening step includes a step of forming an ion exchange layer having a depth of less than 3 ⁇ m from the main surface while maintaining an ion exchange rate of 0.05 ⁇ m / min to 0.25 ⁇ m / min,
  • the ion exchange of the ion exchange layer is performed by using “mass where Na is replaced with K” when the sum of “mass where Na is replaced with K” and “mass where Li is replaced with Na” is 100%.
  • the ratio of is 80 mass% (wt%) to 100 mass% (wt%).
  • the temperature of the glass substrate is preferably raised under the condition of 0.5 ° C./min to 2 ° C./min.
  • the chemical strengthening step may be performed in the ion exchange layer for 5 to 30 minutes.
  • the chemical strengthening process consists of a balance between the application and relaxation of the stress strengthening layer. This is because when the time of the chemical strengthening step is long, relaxation is likely to occur, and thus the stress strengthening layer is hardly formed.
  • the ion exchange layer formed on the glass substrate is further provided with a polishing step for removing at least 0.05 ⁇ m or more from the main surface or all of the ion exchange layer. Thereby, the main surface is polished and the flatness can be improved.
  • the glass substrate may be crystallized glass.
  • the present embodiment can be applied to crystallized glass having a crystallinity of 20% or less.

Abstract

This method for manufacturing a glass substrate for an information recording medium is provided with a step of preparing a glass substrate having a glass transition temperature of 650°C or higher, and a chemical strengthening step of chemically strengthening the principal face of the glass substrate. The chemical strengthening step includes a step of forming an ion- exchange layer of less than 3 μm in depth from the principal face while maintaining an ion-exchange rate of 0.05 μm/min to 0.25 μm/min, ion exchange in the ion-exchange layer being such that, when a sum total of a mass of Na replaced by K and a mass of Li repl aced by Na is assumed to be 100%, the percentage of a mass of Na replaced by K is 80 mass% (wt%) to 100 mass% (wt%).

Description

情報記録媒体用ガラス基板の製造方法Manufacturing method of glass substrate for information recording medium
 本発明は、情報記録媒体用ガラス基板の製造方法に関する。 The present invention relates to a method for producing a glass substrate for an information recording medium.
今日、情報記録装置(ハードディスクドライブ(HDD)等)は、様々な装置に内蔵されるようになってきている。情報記録装置に求められている性能も多様化している。特に、更なる記録密度向上と耐衝撃性向上の要求は今まで以上に厳しいものになってきている。 Today, information recording devices (hard disk drives (HDD) and the like) have been built into various devices. The performance required for information recording devices is also diversifying. In particular, demands for further improvements in recording density and impact resistance have become more severe than ever.
 情報記録装置に耐衝撃性が求められている理由としては、ノート型(ラップトップ型)パーソナルコンピュータなどのポータブルな機器に、情報記録装置を搭載する必要があるからである。 The reason why the information recording apparatus is required to have impact resistance is that it is necessary to mount the information recording apparatus on a portable device such as a laptop (laptop) personal computer.
 情報記録装置に搭載されているガラス基板(以下、単にガラス基板と称する)においても、増々の品質向上が求められている。具体的には、記録密度向上のために高平滑性の向上、および耐衝撃性の向上のために、高硬度のガラス基板が求められる。 Further improvement in quality is demanded for a glass substrate (hereinafter simply referred to as a glass substrate) mounted on an information recording apparatus. Specifically, a high-hardness glass substrate is required to improve high smoothness and improve impact resistance in order to improve recording density.
 平滑性は、記録の読み書きを行なう磁気ヘッドの浮上安定性に影響する。高硬度は、たとえば衝撃が加わったりしても、ガラス基板に変形や破損がないようにするためである。 Smoothness affects the flying stability of a magnetic head that reads and writes data. The high hardness is to prevent the glass substrate from being deformed or damaged even when an impact is applied.
 情報記録装置の記録容量を増やすためには、1bitあたりの記録容量(単位あたりの記録容量)を増やす必要がある。その場合、記録の読み書きを安定して行なうため、磁気ヘッドの浮上量が低下する。磁気ヘッドの浮上は、高速回転する際の空気抵抗を利用して行なっている。 In order to increase the recording capacity of the information recording apparatus, it is necessary to increase the recording capacity per 1 bit (recording capacity per unit). In that case, the flying height of the magnetic head is reduced because reading and writing of the recording is performed stably. The flying of the magnetic head is performed by utilizing the air resistance when rotating at high speed.
 ガラス基板の平滑性が悪い場合、この空気抵抗にばらつきが生じる。その結果、磁気ヘッドの浮上量が不安定になる。ガラス基板の平滑性が極端に悪いと、ガラス基板と磁気ヘッドとが衝突するおそれがある。 When the smoothness of the glass substrate is poor, this air resistance varies. As a result, the flying height of the magnetic head becomes unstable. If the smoothness of the glass substrate is extremely bad, the glass substrate and the magnetic head may collide.
 また、ガラス基板は高硬度である必要もあり、割れにくいガラス基板が求められている。これは、たとえば、ノート型(ラップトップ型)パーソナルコンピュータのハードディスクドライブとして使用する場合に、外部から衝撃が加わっても、ガラス基板が破損しないようにするためである。 Also, the glass substrate needs to have high hardness, and a glass substrate that is difficult to break is demanded. This is because, for example, when used as a hard disk drive of a notebook (laptop) personal computer, the glass substrate is not damaged even when an external impact is applied.
 ガラス基板は、一般的に衝撃性に優れている。しかし、より割れにくいガラス基板にするために、ガラス基板の製造工程において、ガラス基板の表層のイオンを大きいイオンと交換させることにより、ガラス基板の表層に、圧縮応力層を設けるいわゆる化学強化工程が採用されるようになってきている(特開2008-108413号公報(特許文献1)参照)。 Glass substrates are generally excellent in impact properties. However, in order to make the glass substrate more difficult to break, a so-called chemical strengthening step of providing a compressive stress layer on the surface layer of the glass substrate by exchanging ions on the surface layer of the glass substrate with large ions in the manufacturing process of the glass substrate It has come to be adopted (see JP 2008-108413 A (Patent Document 1)).
特開2008-108413号公報JP 2008-108413 A
 近年は上記に加えて、耐熱性を有するガラス基板が情報記録装置に用いられる。これは、高密度化に対応するために安定して記録の読み書きを行なう必要があるためである。具体的には、磁性体を安定化させる必要がある。 In recent years, in addition to the above, a glass substrate having heat resistance is used for an information recording apparatus. This is because it is necessary to read and write the record stably in order to cope with the higher density. Specifically, it is necessary to stabilize the magnetic material.
 磁性体をガラス基板に製膜する際にこれまでより高温での処理が必須となる。高温での処理で、ガラス基板が変形した場合は上記のように平滑性の問題が発生する。よって、高温での処理に耐えられるガラス基板、つまり耐熱性を有するガラス基板を用いる必要がある。一般的に耐熱性があるガラス基板とは、ガラス転移温度(Tg)が高いガラス基板、具体的には、ガラス転移温度(Tg)が650度以上である。 When forming a magnetic material on a glass substrate, it is essential to process at a higher temperature than before. When the glass substrate is deformed by high-temperature processing, the problem of smoothness occurs as described above. Therefore, it is necessary to use a glass substrate that can withstand high-temperature processing, that is, a glass substrate having heat resistance. Generally, a glass substrate having heat resistance is a glass substrate having a high glass transition temperature (Tg), specifically, a glass transition temperature (Tg) of 650 ° C. or more.
 ここで、更なる高密度化に対応するガラス転移温度(Tg)が高いガラス基板を用いて、上記製造方法(特許文献1参照)を採用して情報記録媒体用ガラス基板を製造し、この情報記録媒体用ガラス基板を情報記録装置に搭載したところ、記録の読み書きが不安定になることがあった。 Here, a glass substrate for an information recording medium is manufactured using the above manufacturing method (see Patent Document 1) using a glass substrate having a high glass transition temperature (Tg) corresponding to further densification. When a glass substrate for a recording medium is mounted on an information recording apparatus, reading and writing of the recording may become unstable.
 原因を調査したところ、一部の情報記録媒体用ガラス基板において、平坦度が悪化していることがわかった。さらに、発明者により、鋭意考察したところ、ガラス転移温度(Tg)が高いガラス基板を化学強化する工程において、急激なイオン交換が行なわれており、それによってガラス基板に形成される圧縮応力層の深さや強さがばらつくことで、平坦度が悪化したガラス基板が製造されていることが分かった。 Investigating the cause revealed that the flatness of some glass substrates for information recording media deteriorated. Furthermore, as a result of diligent consideration by the inventor, in the process of chemically strengthening a glass substrate having a high glass transition temperature (Tg), rapid ion exchange is performed, whereby a compressive stress layer formed on the glass substrate. It turned out that the glass substrate with which the flatness deteriorated was manufactured by varying the depth and strength.
 本発明の目的は、上記課題を解決するため、ガラス転移温度(Tg)が高いガラス基板を用いた情報記録媒体用ガラス基板の製造工程において、ガラス基板の平坦度の悪化を抑制することが可能な製造工程を備える、情報記録媒体用ガラス基板の製造工程を提供することにある。 An object of the present invention is to solve the above-mentioned problems, and in the manufacturing process of a glass substrate for information recording medium using a glass substrate having a high glass transition temperature (Tg), it is possible to suppress deterioration of the flatness of the glass substrate. It is providing the manufacturing process of the glass substrate for information recording media provided with a various manufacturing process.
 本発明に係る情報記録媒体用ガラス基板の製造方法は、情報記録媒体用ガラス基板の製造方法であって、ガラス転移温度が、650℃以上のガラス基板を準備する工程と、上記ガラス基板の主表面を化学強化する化学強化工程とを備え、上記化学強化工程は、0.05μm/min~0.25μm/minのイオン交換速度を保ちながら、上記主表面からの深さが3μm未満のイオン交換層を形成する工程を含み、上記イオン交換層のイオン交換は、NaがKに置換された質量とLiがNaに置換された質量との合計を100%とした際の、NaがKに置換された質量の割合が、80質量%(wt%)~100質量%(wt%)である。 The method for producing a glass substrate for information recording medium according to the present invention is a method for producing a glass substrate for information recording medium, the step of preparing a glass substrate having a glass transition temperature of 650 ° C. or higher, A chemical strengthening step for chemically strengthening the surface, wherein the chemical strengthening step maintains an ion exchange rate of 0.05 μm / min to 0.25 μm / min and has an ion exchange depth of less than 3 μm from the main surface. In the ion exchange of the ion exchange layer, Na is replaced by K when the total of the mass in which Na is replaced by K and the mass in which Li is replaced by Na is 100%. The ratio of the applied mass is 80 mass% (wt%) to 100 mass% (wt%).
 1つの実施態様では、上記化学強化工程は、0.5℃/min~2℃/minの条件で、上記ガラス基板の昇温を行なう。 In one embodiment, the chemical strengthening step raises the temperature of the glass substrate under conditions of 0.5 ° C./min to 2 ° C./min.
 1つの実施態様では、上記化学強化工程は、5min~30minで、上記イオン交換層のイオン交換を行なう。 In one embodiment, the chemical strengthening step performs ion exchange of the ion exchange layer in 5 min to 30 min.
 1つの実施態様では、上記化学強化工程の後に、上記ガラス基板に形成された上記イオン交換層を、少なくとも上記主表面から0.05μm以上、または、上記イオン交換層の全てを除去する研磨工程をさらに備える。 In one embodiment, after the chemical strengthening step, at least 0.05 μm or more from the main surface of the ion exchange layer formed on the glass substrate or a polishing step for removing all of the ion exchange layer. Further prepare.
 本発明によれば、ガラス転移温度(Tg)が高いガラス基板を用いた情報記録媒体用ガラス基板の製造工程において、ガラス基板の平坦度の悪化を抑制することが可能な製造工程を備える、情報記録媒体用ガラス基板の製造工程を提供することを可能とする。 According to the present invention, in a manufacturing process of a glass substrate for an information recording medium using a glass substrate having a high glass transition temperature (Tg), the information includes a manufacturing process capable of suppressing deterioration in flatness of the glass substrate. It is possible to provide a manufacturing process of a glass substrate for a recording medium.
情報記録装置30を示す斜視図である。2 is a perspective view showing an information recording device 30. FIG. 本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって製造されるガラス基板1を示す平面図である。It is a top view which shows the glass substrate 1 manufactured by the manufacturing method of the glass substrate for information recording media based on this Embodiment. 図2中のIII-III線に沿った矢視断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 情報記録媒体としてガラス基板1を備えた情報記録媒体10を示す平面図である。It is a top view which shows the information recording medium 10 provided with the glass substrate 1 as an information recording medium. 図4中のV-V線に沿った矢視断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. ガラス基板の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a glass substrate. 実施例1から5、および比較例1、2の平坦度の評価結果を示す図である。It is a figure which shows the evaluation result of the flatness of Examples 1 to 5 and Comparative Examples 1 and 2. 実施例AからDの平坦度の評価結果を示す図である。It is a figure which shows the evaluation result of the flatness of Example A to D.
 本発明に基づいた実施の形態および各実施例について、以下、図面を参照しながら説明する。実施の形態および各実施例の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態および各実施例の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。 Embodiments and examples based on the present invention will be described below with reference to the drawings. In the description of the embodiments and the examples, when the number, amount, and the like are referred to, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the description of the embodiment and each example, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 [実施の形態]
 (情報記録装置30)
 図1を参照して、まず、情報記録装置30について説明する。図1は、情報記録装置30を示す斜視図である。情報記録装置30は、実施の形態における情報記録媒体用ガラス基板(以下、単にガラス基板ともいう)の製造方法によって製造されたガラス基板1を、情報記録媒体10として備える。
[Embodiment]
(Information recording device 30)
First, the information recording device 30 will be described with reference to FIG. FIG. 1 is a perspective view showing the information recording apparatus 30. The information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
 具体的には、情報記録装置30は、情報記録媒体10、筐体20、ヘッドスライダー21、サスペンション22、アーム23、垂直軸24、ボイスコイル25、ボイスコイルモーター26、クランプ部材27、および固定ネジ28を備える。筐体20の上面上には、スピンドルモーター(図示せず)が設置される。 Specifically, the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28. A spindle motor (not shown) is installed on the upper surface of the housing 20.
 磁気ディスクなどの情報記録媒体10は、クランプ部材27および固定ネジ28によって、上記のスピンドルモーターに回転可能に固定される。情報記録媒体10は、このスピンドルモーターによって、たとえば数千rpmの回転数で回転駆動される。詳細は図4および図5を参照して後述されるが、情報記録媒体10は、ガラス基板1に圧縮応力層12(図5参照)および磁気記録層14(図4および図5参照)が形成されることによって製造される。 An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28. The information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm. Although details will be described later with reference to FIGS. 4 and 5, in the information recording medium 10, a compression stress layer 12 (see FIG. 5) and a magnetic recording layer 14 (see FIGS. 4 and 5) are formed on the glass substrate 1. To be manufactured.
 アーム23は、垂直軸24回りに揺動可能に取り付けられる。アーム23の先端には、板バネ(片持ち梁)状に形成されたサスペンション22が取り付けられる。サスペンション22の先端には、ヘッドスライダー21が情報記録媒体10を挟み込むように取り付けられる。 The arm 23 is attached so as to be swingable around the vertical axis 24. A suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23. A head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
 アーム23のヘッドスライダー21とは反対側には、ボイスコイル25が取り付けられる。ボイスコイル25は、筐体20上に設けられたマグネット(図示せず)によって挟持される。ボイスコイル25およびこのマグネットにより、ボイスコイルモーター26が構成される。 A voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21. The voice coil 25 is clamped by a magnet (not shown) provided on the housing 20. A voice coil motor 26 is constituted by the voice coil 25 and the magnet.
 ボイスコイル25には所定の電流が供給される。アーム23は、ボイスコイル25に流れる電流と上記マグネットの磁場とにより発生する電磁力の作用によって、垂直軸24回りに揺動する。アーム23の揺動によって、サスペンション22およびヘッドスライダー21も矢印AR1方向に揺動する。ヘッドスライダー21は、情報記録媒体10の表面上および裏面上を、情報記録媒体10の半径方向に往復移動する。ヘッドスライダー21に設けられた磁気ヘッド(図示せず)はシーク動作を行なう。 A predetermined current is supplied to the voice coil 25. The arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet. As the arm 23 swings, the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1. The head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10. A magnetic head (not shown) provided on the head slider 21 performs a seek operation.
 当該シーク動作が行なわれる一方で、ヘッドスライダー21は、情報記録媒体10の回転に伴って発生する空気流により、浮揚力を受ける。当該浮揚力とサスペンション22の弾性力(押圧力)とのバランスによって、ヘッドスライダー21は情報記録媒体10の表面に対して一定の浮上量で走行する。当該走行によって、ヘッドスライダー21に設けられた磁気ヘッドは、情報記録媒体10内の所定のトラックに対して情報(データ)の記録および再生を行なうことが可能となる。ガラス基板1が情報記録媒体10を構成する部材の一部として搭載される情報記録装置30は、以上のように構成される。 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10. The information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
 (ガラス基板1)
 図2は、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって製造されるガラス基板1を示す平面図である。図3は、図2中のIII-III線に沿った矢視断面図である。
(Glass substrate 1)
FIG. 2 is a plan view showing glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment. 3 is a cross-sectional view taken along the line III-III in FIG.
 図2および図3に示すように、情報記録媒体10(図4および図5参照)にその一部として用いられるガラス基板1(情報記録媒体用ガラス基板)は、主表面2、主表面3、内周端面4、孔5、および外周端面6を有し、全体として円盤状に形成される。孔5は、一方の主表面2から他方の主表面3に向かって貫通するように設けられる。主表面2と内周端面4との間、および、主表面3と内周端面4との間には、面取部7がそれぞれ形成される。主表面2と外周端面6との間、および、主表面3と外周端面6との間には、面取部8(チャンファー部)が形成される。 As shown in FIGS. 2 and 3, the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) has a main surface 2, a main surface 3, It has the inner peripheral end surface 4, the hole 5, and the outer peripheral end surface 6, and is formed in a disk shape as a whole. The hole 5 is provided so as to penetrate from one main surface 2 toward the other main surface 3. A chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4. Between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6, a chamfered portion 8 (chamfer portion) is formed.
 ガラス基板1の大きさは、たとえば0.8インチ、1.0インチ、1.8インチ、2.5インチ、または3.5インチである。ガラス基板の厚さは、破損防止の観点から、たとえば0.30mm~2.2mmである。本実施の形態におけるガラス基板の大きさは、外径が約64mm、内径が約20mm、厚さが約0.8mmである。ガラス基板の厚さとは、ガラス基板上の点対象となる任意の複数の点で測定した値の平均によって算出される値である。ガラス基板の高硬度化の観点から、ガラス基板1のビッカース硬度は、610kg/mm以上であるとよい。 The size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch. The thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage. In the present embodiment, the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm. The thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate. From the viewpoint of increasing the hardness of the glass substrate, the Vickers hardness of the glass substrate 1 is preferably 610 kg / mm 2 or more.
 ガラス基板には、ガラス転移温度(Tg)が、650℃以上のガラスであれば、どのような組成でも構わないが、後述の化学強化工程(S70)において、アルミノシリケートガラスが、イオン交換による応力層を形成しやすい観点から好ましい。さらに好ましくは以下の組成のガラスを用いると、より良好な応力層を形成しやすくなるからである。 The glass substrate may have any composition as long as the glass transition temperature (Tg) is 650 ° C. or higher, but in the chemical strengthening step (S70) described later, the aluminosilicate glass is subjected to stress due to ion exchange. It is preferable from the viewpoint of easily forming the layer. More preferably, when a glass having the following composition is used, a better stress layer can be easily formed.
 好ましいガラス基板の組成は、例えば、SiOが、50質量(wt)%~60質量(wt)%、Alが、12質量(wt)%~20質量(wt)%、Bが、2質量(wt)%~7質量(wt)%、Pが、0.1質量(wt)%~3質量(wt)%、NaOが、2質量(wt)%~6質量(wt)%、MgOが、6質量(wt)%~12質量(wt)%、CaOが、0.1質量(wt)%~3質量(wt)%、ZnOが、3質量(wt)%~8質量(wt)%、TiOが、3質量(wt)%~8質量(wt)%、LiOが、0質量(wt)%~4質量(wt)%、NaOが、2質量(wt)%~6質量(wt)%、KOが、0質量(wt)%~3質量(wt)%である。 The preferred glass substrate composition is, for example, SiO 2 is 50 mass (wt)% to 60 mass (wt)%, Al 2 O 3 is 12 mass (wt)% to 20 mass (wt)%, B 2 O 3 is 2 mass (wt)% to 7 mass (wt)%, P 2 O 5 is 0.1 mass (wt)% to 3 mass (wt)%, Na 2 O is 2 mass (wt)% ~ 6 mass (wt)%, MgO is 6 mass (wt)% to 12 mass (wt)%, CaO is 0.1 mass (wt)% to 3 mass (wt)%, ZnO is 3 mass ( wt)% to 8 mass (wt)%, TiO 2 is 3 mass (wt)% to 8 mass (wt)%, Li 2 O is 0 mass (wt)% to 4 mass (wt)%, Na 2 O is 2 mass (wt)% to 6 mass (wt)%, and K 2 O is 0 mass (wt)% to 3 mass (wt)%.
 (情報記録媒体10)
 図4は、情報記録媒体としてガラス基板1を備えた情報記録媒体10を示す平面図である。図5は、図4中のV-V線に沿った矢視断面図である。
(Information recording medium 10)
FIG. 4 is a plan view showing an information recording medium 10 provided with a glass substrate 1 as an information recording medium. FIG. 5 is a cross-sectional view taken along the line VV in FIG.
 図4および図5に示すように、情報記録媒体10は、ガラス基板1と、圧縮応力層12と、磁気記録層14とを含む。圧縮応力層12は、ガラス基板1の主表面2,3、内周端面4、および外周端面6を覆うように形成される。磁気記録層14は、圧縮応力層12の主表面2,3上の所定の領域を覆うように形成される。ガラス基板1の内周端面4上に圧縮応力層12が形成されることによって、内周端面4の内側に孔15が形成される。孔15を利用して、情報記録媒体10は筐体20(図1参照)上に設けられたスピンドルモーターに対して固定される。 4 and 5, the information recording medium 10 includes a glass substrate 1, a compressive stress layer 12, and a magnetic recording layer 14. The compressive stress layer 12 is formed so as to cover the main surfaces 2 and 3, the inner peripheral end face 4, and the outer peripheral end face 6 of the glass substrate 1. The magnetic recording layer 14 is formed so as to cover a predetermined region on the main surfaces 2 and 3 of the compressive stress layer 12. By forming the compressive stress layer 12 on the inner peripheral end face 4 of the glass substrate 1, a hole 15 is formed inside the inner peripheral end face 4. The information recording medium 10 is fixed to a spindle motor provided on the housing 20 (see FIG. 1) using the holes 15.
 図5に示す情報記録媒体10においては、主表面2上に形成された圧縮応力層12と主表面3上に形成された圧縮応力層12との双方(両面)の上に、磁気記録層14が形成されている。磁気記録層14は、主表面2上に形成された圧縮応力層12の上(片面)にのみ設けられていてもよく、主表面3上に形成された圧縮応力層12の上(片面)に設けられていてもよい。 In the information recording medium 10 shown in FIG. 5, the magnetic recording layer 14 is formed on both the compressive stress layer 12 formed on the main surface 2 and the compressive stress layer 12 formed on the main surface 3 (both sides). Is formed. The magnetic recording layer 14 may be provided only on the compression stress layer 12 (one side) formed on the main surface 2, or on the compression stress layer 12 (one side) formed on the main surface 3. It may be provided.
 磁気記録層14は、磁性粒子を分散させた熱硬化性樹脂をガラス基板1の主表面2,3上の圧縮応力層12にスピンコートすることによって形成される(スピンコート法)。磁気記録層14は、ガラス基板1の主表面2,3上の圧縮応力層12に対して実施されるスパッタリング法または無電解めっき法等により形成されてもよい。 The magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method). The magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
 磁気記録層14の膜厚は、スピンコート法の場合は約0.3μm~1.2μm、スパッタリング法の場合は約0.04μm~0.08μm、無電解めっき法の場合は約0.05μm~0.1μmである。薄膜化および高密度化の観点からは、磁気記録層14はスパッタリング法または無電解めっき法によって形成されるとよい。 The thickness of the magnetic recording layer 14 is about 0.3 μm to 1.2 μm for the spin coating method, about 0.04 μm to 0.08 μm for the sputtering method, and about 0.05 μm to about the electroless plating method. 0.1 μm. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
 磁気記録層14に用いる磁性材料としては、高い保持力を得る目的で結晶異方性の高いCoを主成分とし、残留磁束密度を調整する目的でNiまたはCrを加えたCo系合金などを付加的に用いることが好適である。 As a magnetic material used for the magnetic recording layer 14, a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used.
 磁気ヘッドの滑りをよくするために、磁気記録層14の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、たとえば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。 In order to improve the sliding of the magnetic head, the surface of the magnetic recording layer 14 may be thinly coated with a lubricant. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
 磁気記録層14には、必要に応じて下地層または保護層を設けてもよい。情報記録媒体10における下地層は、磁性膜の種類に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、またはNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。 The magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary. The underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
 磁気記録層14に設ける下地層は、単層に限らず、同一または異種の層を積層した複数層構造としても構わない。たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、または、NiAl/CrV等の多層下地層としてもよい。 The underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
 磁気記録層14の摩耗および腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、またはシリカ層が挙げられる。これらの保護層は、下地層および磁性膜など共にインライン型スパッタ装置で連続して形成されることができる。これらの保護層は、単層としてもよく、または、同一若しくは異種の層からなる多層構成としてもよい。 Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
 上記保護層上に、あるいは上記保護層に代えて、他の保護層を形成してもよい。たとえば、上記保護層に代えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO2)層を形成してもよい。 Other protective layers may be formed on the protective layer or instead of the protective layer. For example, instead of the protective layer, colloidal silica fine particles are dispersed and coated on a Cr layer with tetraalkoxylane diluted with an alcohol solvent, and then fired to form a silicon oxide (SiO2) layer. May be.
 (ガラス基板の製造方法)
 次に、図6に示すフローチャート図を用いて、本実施の形態におけるガラス基板(情報記録媒体用ガラス基板)の製造方法S100について説明する。本実施の形態におけるガラス基板の製造方法S100は、板状ガラス成形工程S10、結晶化工程S15、切り出し成形工程S20、ブラスト工程S30、ラッピング工程S40、端面研磨工程S50、粗研磨工程S60、洗浄工程S65、化学強化工程S70、精密研磨工程S80、および、スクラブ洗浄工程S90を備える。
(Glass substrate manufacturing method)
Next, the manufacturing method S100 of the glass substrate (glass substrate for information recording media) in this Embodiment is demonstrated using the flowchart figure shown in FIG. The glass substrate manufacturing method S100 in the present embodiment includes a plate-like glass forming step S10, a crystallization step S15, a cut-out forming step S20, a blasting step S30, a lapping step S40, an end surface polishing step S50, a rough polishing step S60, and a cleaning step. S65, chemical strengthening process S70, precision polishing process S80, and scrub cleaning process S90 are provided.
 スクラブ洗浄工程S90を経ることによって得られたガラス基板に対して、磁気薄膜形成工程S200が実施される。磁気薄膜形成工程S200を経ることによって、情報記録媒体10(図4および図5参照)が得られる。以下、ガラス基板の製造方法S100を構成する各工程S10~S90の詳細について順に説明する。 The magnetic thin film forming step S200 is performed on the glass substrate obtained through the scrub cleaning step S90. Through the magnetic thin film forming step S200, the information recording medium 10 (see FIGS. 4 and 5) is obtained. Hereinafter, the details of the steps S10 to S90 constituting the glass substrate manufacturing method S100 will be described in order.
 (板状ガラス成形工程S10)
 まず、板状ガラス成形工程S10において、溶融ガラスを材料として、ダイレクトプレス法、フロート法、ダウンドロー法、リドロー法、またはフュージョン法など、公知の成形方法を用いて、板状ガラスを製造する。これらのうち、ダイレクトプレス法は、溶解したガラスから目的とするガラス成形品に直接的に成形できるため、同一の形状を有する板状ガラスを多量に生産する場合に好適である。ダイレクトプレス法では、溶融ガラスをプレス成形型に供給し、このガラスが軟化状態にある間にプレス成形型でプレスして板状ガラスを成形する。
(Plate-shaped glass forming step S10)
First, in the glass sheet forming step S10, a glass sheet is manufactured using a known glass forming method such as a direct press method, a float method, a down draw method, a redraw method, or a fusion method using a molten glass as a material. Among these, the direct press method can be directly molded from a melted glass into a target glass molded product, and thus is suitable for producing a large amount of plate-like glass having the same shape. In the direct press method, molten glass is supplied to a press mold and pressed with a press mold while the glass is in a softened state to form a sheet glass.
 ガラス基板1のビッカース硬度は、610kg/mm2以上である。ガラス転移温度(Tg)は、650℃以上である。ガラス基板の材質としては、たとえばアモルファスガラス、結晶化ガラスを利用できる。アモルファスガラスを用いる場合、化学強化を適切に施すことができるとともに、主表面の平坦性および基板強度において優れた情報記録媒体用ガラス基板を提供することが可能となる。 The Vickers hardness of the glass substrate 1 is 610 kg / mm 2 or more. The glass transition temperature (Tg) is 650 ° C. or higher. As a material of the glass substrate, for example, amorphous glass or crystallized glass can be used. When amorphous glass is used, chemical strengthening can be appropriately performed, and a glass substrate for an information recording medium excellent in flatness of the main surface and substrate strength can be provided.
 (結晶化工程S15)
 結晶化工程S15においては、上記板状ガラス成形工程S10の後に、ガラ基板を熱処理することにより結晶を生成させる。この熱処理は2段階で実施することが好ましい。第1の温度にて核形成工程を行い、その後、第2の温度で結晶成長工程を行なう。
(Crystallization step S15)
In the crystallization step S15, crystals are generated by heat-treating the glass substrate after the sheet glass forming step S10. This heat treatment is preferably performed in two stages. A nucleation step is performed at a first temperature, and then a crystal growth step is performed at a second temperature.
 核形成工程における第1の温度は、600℃~750℃が好ましく、処理時間は1時間~24時間が好ましい。結晶成長工程における第2の温度は、650℃~850℃が好ましく、処理時間は1時間~24時間が好ましい。 The first temperature in the nucleation step is preferably 600 ° C. to 750 ° C., and the treatment time is preferably 1 hour to 24 hours. The second temperature in the crystal growth step is preferably 650 ° C. to 850 ° C., and the treatment time is preferably 1 hour to 24 hours.
 また、第1の温度および第2の温度における熱処理は、セラミック製のセッターとガラス基板とを交互に重ねて処理することで、ガラス基板の平坦度を悪化させずに行なうことができる。 Further, the heat treatment at the first temperature and the second temperature can be performed without deteriorating the flatness of the glass substrate by alternately laminating ceramic setters and glass substrates.
 (切り出し成形工程S20)
 切り出し成形工程S20においては、円筒状のダイヤモンドドリルを用いて、このガラス基板の中心部に内孔を形成し、円環状のガラス基板を成形する(コアリング加工)。その後、内周端面および外周端面をダイヤモンド砥石によって研削し、所定の面取り加工を施す(フォーミング、チャンファリング)。
(Cut-out molding step S20)
In the cut-out forming step S20, an inner hole is formed in the center of the glass substrate using a cylindrical diamond drill, and an annular glass substrate is formed (coring process). Thereafter, the inner peripheral end face and the outer peripheral end face are ground with a diamond grindstone and subjected to predetermined chamfering (forming, chamfering).
 (ブラスト工程S30)
 ブラスト工程S30においては、板状ガラス成形工程S10によって形成されたガラス基板1の主表面2,3に複数の粒子(砥粒)200を吹き付けることによって、ガラス基板(ガラス基板前駆体)1の主表面2,3の研削を行なう(第1研削)。
(Blasting process S30)
In the blasting step S30, a plurality of particles (abrasive grains) 200 are sprayed on the main surfaces 2 and 3 of the glass substrate 1 formed by the plate-like glass forming step S10, whereby the main of the glass substrate (glass substrate precursor) 1 Surfaces 2 and 3 are ground (first grinding).
 (ラッピング工程S40)
 ラッピング工程(第2研削工程)S40においては、たとえば両面研磨装置を用いて、ガラス基板1の主表面にラッピング(第2研削)を施す。
(Lapping step S40)
In the lapping step (second grinding step) S40, lapping (second grinding) is performed on the main surface of the glass substrate 1, for example, using a double-side polishing apparatus.
 (端面研磨工程S50)
 端面研磨工程S50においては、ガラス基板1の内周端面および外周端面が、螺旋状のブラシ毛材を有する研磨ブラシを用いて研磨される。研磨ブラシとガラス基板1の各端面との間に研磨スラリーを供給しつつ、研磨ブラシを各端面に当接させた状態で回転させる。ガラス基板1を研磨液の中に浸漬した状態で、研磨ブラシを各端面に当接させた状態で回転させてもよい。
(End face polishing step S50)
In the end surface polishing step S50, the inner peripheral end surface and the outer peripheral end surface of the glass substrate 1 are polished using a polishing brush having a spiral brush bristle material. While supplying the polishing slurry between the polishing brush and each end surface of the glass substrate 1, the polishing brush is rotated in contact with each end surface. With the glass substrate 1 immersed in the polishing liquid, the polishing brush may be rotated in contact with each end face.
 (粗研磨工程S60)
 内周端面および外周端面が研磨されたガラス基板1は、複数回に分けて主表面2,3が粗く研磨される。たとえば、第1および第2粗研磨工程の2回にわけて、主表面2,3が研磨される。徐々にガラス基板1の仕上がり精度を高めることにより、平滑性および平坦性の高い表面を有するガラス基板1を得ることができる。2回に分けて粗研磨を行なう場合、第1粗研磨工程は、前述のラッピング工程において主表面2,3に残留したキズおよび歪みを除去することを主たる目的とし、第2粗研磨工程は、主表面2,3を鏡面状に仕上げることを目的としている。
(Rough polishing step S60)
The glass substrate 1 whose inner peripheral end face and outer peripheral end face are polished has its main surfaces 2 and 3 polished roughly in a plurality of times. For example, the main surfaces 2 and 3 are polished in two steps of the first and second rough polishing steps. By gradually increasing the finishing accuracy of the glass substrate 1, the glass substrate 1 having a highly smooth and flat surface can be obtained. When performing rough polishing in two steps, the first rough polishing step is mainly intended to remove scratches and distortions remaining on the main surfaces 2 and 3 in the lapping step, and the second rough polishing step The purpose is to finish the main surfaces 2 and 3 in a mirror shape.
 (洗浄工程S65)
 上記粗研磨工程S60の後、ガラス基板1に対して酸性の洗浄液を用いた洗浄処理が実施される。この洗浄処理は、前工程である粗研磨工程S60において研磨スラリーとして使用されていた酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムのいずれかを、ガラス基板1の表面から除去することを目的としている。
(Washing step S65)
After the rough polishing step S60, the glass substrate 1 is subjected to a cleaning process using an acidic cleaning liquid. The purpose of this cleaning treatment is to remove from the surface of the glass substrate 1 any of cerium oxide, zirconium oxide, or zirconium silicate used as a polishing slurry in the rough polishing step S60, which is the previous step.
 (化学強化工程S70)
 洗浄工程S65の後、ガラス基板1は化学強化される。化学強化工程で用いる化学強化液については、後述の実施例において説明する。
(Chemical strengthening step S70)
After the cleaning step S65, the glass substrate 1 is chemically strengthened. The chemical strengthening solution used in the chemical strengthening step will be described in the examples described later.
 ここで、化学強化されるイオンについて、以下説明する。化学強化は、ガラス組成中に含まれているイオンをそれより大きいイオンに置換することで圧縮応力を形成することにより得られる。置換されるイオンについては一般的にアルカリ金属のイオンが主である。 Here, the ions that are chemically strengthened will be described below. Chemical strengthening is obtained by forming a compressive stress by replacing ions contained in the glass composition with larger ions. Generally, the ions to be substituted are mainly alkali metal ions.
 これはアルカリ金属が他のイオンよりガラス中での拡散速度に優れているため比較的深い部分までイオン交換が行なわれるためである。たとえば、アルカリ土類金属の場合、イオン交換を実施しようとしても1μmの深さ以上ではイオン交換されないため、所望の圧縮応力層が得られない。 This is because ion exchange is performed up to a relatively deep portion because alkali metals have a higher diffusion rate in glass than other ions. For example, in the case of an alkaline earth metal, even if it is attempted to carry out the ion exchange, since the ion exchange is not performed at a depth of 1 μm or more, a desired compressive stress layer cannot be obtained.
 アルカリ金属のイオンの中で一般的に使用されるのはLiのNaへの置換と、NaのKへの置換である。この場合、LiのNaへの置換は、深く入る傾向にあり、圧縮応力層は比較的深く形成される。しかし、圧縮応力値としては比較的弱い。一方、NaのKへの置換は、深くまで入りづらく、圧縮応力は浅く形成されるが、圧縮応力値として高い。一般的には圧縮層が深く入るほど、圧縮応力値が高いほどガラス基板の平坦度が悪化しやすくなる。 Among the alkali metal ions, generally used are substitution of Li with Na and substitution of Na with K. In this case, the substitution of Li for Na tends to go deeper, and the compressive stress layer is formed relatively deeply. However, the compressive stress value is relatively weak. On the other hand, the replacement of Na with K is difficult to enter deeply and the compressive stress is shallow, but the compressive stress value is high. Generally, the deeper the compression layer is, the higher the compressive stress value is, and the flatness of the glass substrate is likely to deteriorate.
 イオン交換層は、イオン交換が行なわれた層を意味し、圧縮応力層は、イオン交換層の形成により圧縮応力が発生している層を意味する。よって、圧縮応力層はイオン交換層を含み、圧縮応力層のガラス基板表面からの深さは、イオン交換層のガラス基板表面からの深さよりも深くなる。また、イオン交換層とは、本来のガラス基板の組成から10%以上のイオンがそれよりも大きいイオンに交換されている層を意味する。 The ion exchange layer means a layer in which ion exchange has been performed, and the compressive stress layer means a layer in which compressive stress is generated due to the formation of the ion exchange layer. Therefore, the compressive stress layer includes an ion exchange layer, and the depth of the compressive stress layer from the glass substrate surface is deeper than the depth of the ion exchange layer from the glass substrate surface. Further, the ion exchange layer means a layer in which 10% or more of ions are exchanged for larger ions from the original composition of the glass substrate.
 イオン交換層は、イオン交換によって体積が増えることにより、圧縮応力が発生し耐衝撃性が向上する。耐衝撃性に影響を及ぼすのは、「圧縮応力強さ」と「圧縮応力深さ」の2点である。イオン交換層を急激に形成する(イオン交換速度を速くする)と非常に強い圧縮応力がガラス基板の表面に発生する。しかし、形成された圧縮応力層は、「圧縮応力強さ」および「圧縮応力深さ」のばらつきが大きい。 The ion exchange layer is increased in volume by ion exchange, so that compressive stress is generated and impact resistance is improved. The impact resistance is affected by two points: “compressive stress strength” and “compressive stress depth”. When the ion exchange layer is formed rapidly (the ion exchange rate is increased), a very strong compressive stress is generated on the surface of the glass substrate. However, the formed compressive stress layer has a large variation in “compressive stress strength” and “compressive stress depth”.
 逆に、イオン交換層をさらにゆっくり形成する(イオン交換速度を遅くする)と、「圧縮応力深さ」は安定して形成されるが、ガラス基板の表面付近での「圧縮応力強さ」が劣るため、耐衝撃性に劣ることになる(衝撃によって亀裂が発生しやすくなる。)。また、「圧縮応力深さ」を深く形成され難くなる。 Conversely, if the ion exchange layer is formed more slowly (the ion exchange rate is reduced), the “compression stress depth” is stably formed, but the “compression stress intensity” near the surface of the glass substrate is reduced. Since it is inferior, it will be inferior to impact resistance (it will be easy to generate a crack by an impact). Further, it becomes difficult to form the “compression stress depth” deeply.
 そこで、実施の形態においては、この化学強化工程S70においては、0.05μm/min~0.25μm/minのイオン交換速度を保ちながら、ガラス基板の主表面からの深さが3μm未満のイオン交換層を形成する工程を含み、このイオン交換層のイオン交換されるイオンの80%~100%をNaとしている。 Therefore, in the embodiment, in this chemical strengthening step S70, ion exchange with a depth from the main surface of the glass substrate of less than 3 μm while maintaining an ion exchange rate of 0.05 μm / min to 0.25 μm / min. 80% to 100% of ions to be ion-exchanged in this ion-exchange layer are Na.
 これにより、ガラス転移温度(Tg)は、650℃以上であるガラス基板を用いた場合であっても、「圧縮応力強さ」と「圧縮応力深さ」の両面において満足させることにより、耐熱性のガラス基板でも安定した耐衝撃性および平坦度に優れたガラス基板の実現を可能としている。 As a result, even when a glass substrate having a glass transition temperature (Tg) of 650 ° C. or higher is used, heat resistance is achieved by satisfying both “compression stress strength” and “compression stress depth”. This makes it possible to realize a stable glass substrate with excellent impact resistance and flatness.
 なお、化学強化工程は、0.5℃/min~2℃/minの条件で、ガラス基板の昇温を行なうとよい。また、化学強化工程は、5min~30minで、イオン交換層のイオン交換を行なうとよい。詳細については、後述の実施例において説明する。 In the chemical strengthening step, the temperature of the glass substrate is preferably raised under the condition of 0.5 ° C./min to 2 ° C./min. In addition, the chemical strengthening step may be performed in the ion exchange layer for 5 min to 30 min. Details will be described in Examples described later.
 ガラス基板1の化学強化液中への浸漬は、ガラス基板1の主表面2,3の全体が化学強化されるように、複数のガラス基板1が各々の端面で保持されるように、ホルダーに収納した状態で行なうことが好ましい。 The immersion of the glass substrate 1 in the chemical strengthening solution is performed on the holder so that the plurality of glass substrates 1 are held at their respective end surfaces so that the entire main surfaces 2 and 3 of the glass substrate 1 are chemically strengthened. It is preferable to carry out the storage.
 ガラス基板1を化学強化液中に浸漬することによって、ガラス基板1の表層のアルカリ金属イオン(リチウムイオンおよびナトリウムイオン)が、化学強化液中のイオン半径が相対的に大きい化学強化塩(ナトリウムイオンおよびカリウムイオン)に置換される。これにより、ガラス基板1の表層には、イオン交換層を含むたとえば50μm~200μmの深さの圧縮応力層が形成される。 By immersing the glass substrate 1 in the chemical strengthening solution, alkali metal ions (lithium ions and sodium ions) on the surface layer of the glass substrate 1 are chemically strengthened salts (sodium ions) having a relatively large ion radius in the chemical strengthening solution. And potassium ions). As a result, a compressive stress layer having a depth of, for example, 50 μm to 200 μm including the ion exchange layer is formed on the surface layer of the glass substrate 1.
 圧縮応力層の形成によってガラス基板1の表面が強化され、ガラス基板1は、良好な耐衝撃性を有することとなる。 The surface of the glass substrate 1 is strengthened by the formation of the compressive stress layer, and the glass substrate 1 has good impact resistance.
 (精密研磨工程S80)
 化学強化工程S70の後、ガラス基板1に対して精密研磨処理が実施される。精密研磨工程S80は、ガラス基板1の主表面を鏡面状に仕上げることを目的としている。精密研磨工程S80では、上述の粗研磨工程S60と同様に、両面研磨機(図11参照)を用いてガラス基板1に対する精密研磨が行なわれる。
(Precision polishing step S80)
After the chemical strengthening step S70, a precision polishing process is performed on the glass substrate 1. The precision polishing step S80 is intended to finish the main surface of the glass substrate 1 in a mirror shape. In the precision polishing step S80, similarly to the rough polishing step S60 described above, the glass substrate 1 is precisely polished using a double-side polishing machine (see FIG. 11).
 精密研磨工程S80と上記の粗研磨工程S60とでは、使用される研磨液(スラリー)に含有される研磨砥粒、および、使用される研磨パッドの組成が異なる。精密研磨工程S80では、粗研磨工程S60よりも、圧縮応力層が形成されたガラス基板1の主表面2,3に供給される研磨液中の研磨砥粒の粒径を小さくし、研磨パッドの硬さを柔らかくする。 In the fine polishing step S80 and the rough polishing step S60, the composition of the polishing abrasive grains contained in the polishing liquid (slurry) used and the polishing pad used are different. In the precision polishing step S80, the grain size of the abrasive grains in the polishing liquid supplied to the main surfaces 2 and 3 of the glass substrate 1 on which the compressive stress layer is formed is made smaller than in the rough polishing step S60. Soften the hardness.
 精密研磨工程S80に用いられる研磨パッドとしては、たとえば軟質発泡樹脂ポリッシャーである。精密研磨工程S80においては、遊離砥粒が用いられ、Ceを主成分とする砥粒で第1研磨工程と、Siを主成分とする砥粒で研磨する第2研磨工程とを含む。 The polishing pad used in the precision polishing step S80 is, for example, a soft foam resin polisher. The precision polishing step S80 uses loose abrasive grains, and includes a first polishing step with abrasive grains mainly composed of Ce and a second polishing step of polishing with abrasive grains mainly composed of Si.
 なお、ガラス基板1に形成されたイオン交換層を、少なくとも主表面から0.05μm以上、または、イオン交換層の全てを除去するとよい。 The ion exchange layer formed on the glass substrate 1 may be at least 0.05 μm or more from the main surface, or all of the ion exchange layer may be removed.
 (スクラブ洗浄工程S90)
 精密研磨工程S80の後、ガラス基板1に対してスクラブ洗浄処理が実施される。具体的には、精密研磨工程S80において使用した研磨パッドから精密研磨後のガラス基板1を取り外した後、ガラス基板1の表面に洗浄液を供給しつつ、圧縮応力層が形成されたガラス基板1の表面に対してスクラブ洗浄装置を用いてスクラブ洗浄を行なう。
(Scrub cleaning step S90)
After the precision polishing step S80, a scrub cleaning process is performed on the glass substrate 1. Specifically, the glass substrate 1 after the precision polishing is removed from the polishing pad used in the precision polishing step S80, and then the cleaning liquid is supplied to the surface of the glass substrate 1 while the compression stress layer is formed. Scrub cleaning is performed on the surface using a scrub cleaning device.
 ガラス基板1は、両面研磨機の研磨パッドから取り外された後、一時的に水中保管されてもよい。水中保管により、精密研磨後にガラス基板1の表面が乾燥することを防ぎつつ、精密研磨後のガラス基板1に付着している研磨滓または遊離砥粒等の異物の量を低減することができる。所定の時間だけガラス基板1を水中保管した後、ガラス基板1をスクラブ洗浄装置にセットし、ガラス基板1に対するスクラブ洗浄を行なう。 The glass substrate 1 may be temporarily stored in water after being removed from the polishing pad of the double-side polishing machine. By storing in water, it is possible to reduce the amount of foreign matter such as polishing wrinkles or loose abrasive grains adhering to the glass substrate 1 after precision polishing while preventing the surface of the glass substrate 1 from drying after precision polishing. After the glass substrate 1 is stored in water for a predetermined time, the glass substrate 1 is set in a scrub cleaning device and scrub cleaning is performed on the glass substrate 1.
 スクラブ洗浄としては、たとえば、洗剤または純水等の洗浄液が用いられる。スクラブ洗浄に用いられる洗浄液のpHは、9.0以上12.2以下であるとよい。この範囲内であれば、ζ電位を容易に調整でき、効率的にスクラブ洗浄を行なうことが可能となる。スクラブ洗浄としては、洗剤によるスクラブ洗浄と、純水によるスクラブ洗浄との双方を行なってもよい。洗剤および純水を用いることによって、より適切にガラス基板1を洗浄できる。洗剤によるスクラブ洗浄と純水によるスクラブ洗浄との間に、ガラス基板1を純水でさらにリンス処理してもよい。 As the scrub cleaning, for example, a cleaning liquid such as a detergent or pure water is used. The pH of the cleaning solution used for scrub cleaning is preferably 9.0 or more and 12.2 or less. Within this range, the ζ potential can be easily adjusted and scrub cleaning can be performed efficiently. As scrub cleaning, both scrub cleaning with a detergent and scrub cleaning with pure water may be performed. By using a detergent and pure water, the glass substrate 1 can be more appropriately cleaned. The glass substrate 1 may be further rinsed with pure water between scrub cleaning with a detergent and scrub cleaning with pure water.
 スクラブ洗浄を行なった後に、ガラス基板1に対して超音波洗浄をさらに行なってもよい。洗剤および純水によるスクラブ洗浄を行なった後に、硫酸水溶液等の薬液による超音波洗浄、純水による超音波洗浄、洗剤による超音波洗浄、IPAによる超音波洗浄、およびまたは、IPAによる蒸気乾燥等を更に行なってもよい。 After the scrub cleaning, the glass substrate 1 may be further subjected to ultrasonic cleaning. After scrub cleaning with detergent and pure water, ultrasonic cleaning with chemical solution such as sulfuric acid aqueous solution, ultrasonic cleaning with pure water, ultrasonic cleaning with detergent, ultrasonic cleaning with IPA, and / or steam drying with IPA, etc. Further, it may be performed.
 本実施の形態におけるガラス基板1の製造方法S100としては、以上のように構成される。ガラス基板1の製造方法S100を使用することによって、図2および図3に示す本実施の形態のガラス基板1を得ることができる。 The manufacturing method S100 of the glass substrate 1 in the present embodiment is configured as described above. By using manufacturing method S100 of glass substrate 1, glass substrate 1 of this embodiment shown in Drawing 2 and Drawing 3 can be obtained.
 (磁気薄膜形成工程S200)
 スクラブ洗浄処理が完了したガラス基板1の主表面2,3(またはいずれか一方の主表面2,3)に対し、磁気記録層が形成される。磁気記録層は、たとえば、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系からなる保護層、およびF系からなる潤滑層が順次成膜されることによって形成される。磁気記録層の形成によって、図4および図5に示す情報記録媒体10を得ることができる。
(Magnetic thin film forming step S200)
A magnetic recording layer is formed on the main surfaces 2 and 3 (or one of the main surfaces 2 and 3) of the glass substrate 1 after the scrub cleaning process is completed. The magnetic recording layer includes, for example, an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and an F system. Are formed by sequentially forming the lubricating layer. By forming the magnetic recording layer, the information recording medium 10 shown in FIGS. 4 and 5 can be obtained.
 以下に示す各実施例および比較例においては、図6に示す、化学強化工程S70を除き、板状ガラス成形工程S10、結晶化工程S15、切り出し成形工程S20、ブラスト工程S30、ラッピング工程S40、端面研磨工程S50、粗研磨工程S60、洗浄工程S65、精密研磨工程S80、スクラブ洗浄工程S90、および磁気薄膜形成工程S200hは、同じ工程を採用している。 In each of the following examples and comparative examples, except for the chemical strengthening step S70 shown in FIG. 6, a sheet glass forming step S10, a crystallization step S15, a cut forming step S20, a blasting step S30, a lapping step S40, an end face The same process is adopted for polishing process S50, rough polishing process S60, cleaning process S65, precision polishing process S80, scrub cleaning process S90, and magnetic thin film forming process S200h.
 ガラス基板1としては、上記組成を有するガラス基板1を用いた。ガラス転移温度(Tg)は、650℃、結晶化度8%である。 The glass substrate 1 having the above composition was used as the glass substrate 1. The glass transition temperature (Tg) is 650 ° C. and the crystallinity is 8%.
 (実施例1)
 実施例1における化学強化方法は、化学強化液として硝酸カリウム溶液を用い、硝酸カリウム溶液中にガラス基板1を浸漬して、ガラス基板1の化学強化を行なった。ガラス基板1の浸漬直後の化学強化液の温度を450℃とし、その後1℃/minで温度を上げ、最高温度470℃にて処理した。処理時間は20分間であった。
(Example 1)
In the chemical strengthening method in Example 1, a potassium nitrate solution was used as a chemical strengthening solution, and the glass substrate 1 was immersed in the potassium nitrate solution to chemically strengthen the glass substrate 1. The temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was set to 450 ° C., then the temperature was increased at 1 ° C./min, and the treatment was performed at the maximum temperature of 470 ° C. The treatment time was 20 minutes.
 なお、イオン交換速度は、処理しているガラス基板1を1分ごとに1枚抜き取りし、SEM((Scanning Electron Microscope):走査型電子顕微鏡)を用いた、EDX((Energy Dispersive X-ray Spectroscopy):エネルギー分散型X線分光法))にて、ガラス基板1の断面のアルカリ金属の信号強度から導き出した。 As for the ion exchange rate, one glass substrate 1 being processed is extracted every minute, and EDX ((Energy Dispersive X-ray Spectroscopy) using SEM (Scanning Electron Microscope) is used. ): Energy dispersive X-ray spectroscopy))) and derived from the alkali metal signal intensity in the cross section of the glass substrate 1.
 図7に示す表においては、5分ごとのイオン交換速度を平均して表している。0分から5分の間のイオン交換速度の平均(μm/min)は、0.15μm/min、5分から10分の間のイオン交換速度の平均(μm/min)は、0.15μm/min、10分から15分の間のイオン交換速度の平均(μm/min)は、0.1μm/min、15分から20分の間のイオン交換速度の平均(μm/min)は、0.1μm/minである。イオン交換層におけるイオン交換は、Naが100質量%(wt%)であった(Naが100質量%(wt%)、Kに交換された)。 In the table shown in FIG. 7, the ion exchange rate every 5 minutes is averaged. The average ion exchange rate from 0 to 5 minutes (μm / min) is 0.15 μm / min, the average ion exchange rate from 5 to 10 minutes (μm / min) is 0.15 μm / min, The average ion exchange rate (μm / min) between 10 minutes and 15 minutes is 0.1 μm / min, and the average ion exchange rate between 15 minutes and 20 minutes (μm / min) is 0.1 μm / min. is there. In the ion exchange in the ion exchange layer, Na was 100% by mass (wt%) (Na was 100% by mass (wt%) and was exchanged with K).
 ここで、イオン交換層におけるイオン交換は、「NaがKに置換された質量(A1)」と、「LiがNaに置換された質量(A2)」との合計を100%とした際の、「NaがKに置換された質量(A2)」の割合を意味する([A2/(A1+A2)]×100%)。したがって、Naが100質量%(wt%)の場合には、イオン交換層におけるイオン交換は、NaがKに置換された場合のみを意味する。以下、同様である。 Here, ion exchange in the ion exchange layer is performed when the total of “mass in which Na is replaced with K (A1)” and “mass in which Li is replaced with Na (A2)” is 100%. It means the ratio of “mass in which Na is replaced by K (A2)” ([A2 / (A1 + A2)] × 100%). Therefore, when Na is 100 mass% (wt%), ion exchange in the ion exchange layer means only when Na is replaced by K. The same applies hereinafter.
 図7に示すように、実施例1におけるガラス基板1の表面からのイオン交換深さは、2.5μmであった。落下衝撃性試験の評価は「A」であった。平坦度の評価は「A」であった。 As shown in FIG. 7, the ion exchange depth from the surface of the glass substrate 1 in Example 1 was 2.5 μm. The evaluation of the drop impact test was “A”. The evaluation of the flatness was “A”.
 平坦度の評価は、図6に示す工程を経て得られた、情報記録媒体10に対して、ミツトヨ社製 NIDEC FT-17を用いて、平坦度を測定した。平坦度3μm未満を「A」と評価し、平坦度3μm以上5μm未満を「B」と評価し、平坦度5μm以上を「C」と評価した。 Evaluation of the flatness was performed by using NIDEC FT-17 manufactured by Mitutoyo Corporation for the information recording medium 10 obtained through the steps shown in FIG. A flatness of less than 3 μm was evaluated as “A”, a flatness of 3 μm or more and less than 5 μm was evaluated as “B”, and a flatness of 5 μm or more was evaluated as “C”.
 ここで、耐衝撃性試験の評価は、図6に示す工程を経て得られた、情報記録媒体10を情報記録装置30に搭載した後に、情報記録装置30に対して落下衝撃性試験を行なった。なお、落下試験は100個の情報記録装置30に対して行なった。落下試験としては、情報記録装置30を落下させて情報記録装置30に1200Gの衝撃を加え、情報記録装置30から情報記録媒体10を取りだした際に、ガラス基板1に割れや欠損がないかで判断した。 Here, the impact resistance test was evaluated by performing a drop impact test on the information recording apparatus 30 after mounting the information recording medium 10 obtained in the process shown in FIG. . The drop test was performed on 100 information recording devices 30. As a drop test, when the information recording device 30 is dropped and an impact of 1200 G is applied to the information recording device 30 and the information recording medium 10 is taken out from the information recording device 30, the glass substrate 1 is not cracked or broken. It was judged.
 ガラス基板1に割れや欠損がない場合を合格とし、合格割合が80%以上の場合を「A」、合格割合が70%以上80%未満の場合を「B」、合格割合が70%未満を「C」と評価した。 The case where the glass substrate 1 has no cracks or defects is regarded as acceptable, the case where the acceptance ratio is 80% or more is “A”, the case where the acceptance ratio is 70% or more and less than 80% is “B”, and the acceptance ratio is less than 70%. Evaluated as “C”.
 以下、各実施例および各比較例における、落下衝撃性試験の評価および平坦度の評価は同じである。 Hereinafter, the evaluation of the drop impact test and the evaluation of the flatness in each example and each comparative example are the same.
 (実施例2)
 実施例2においては、ガラス基板1の浸漬直後の化学強化液の温度を430℃とし、その後1℃/minで温度を上昇させ、最高温度460℃にて処理した。その他の条件は、実施例1と同じである。処理時間は、30分間であった。
(Example 2)
In Example 2, the temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was set to 430 ° C., then the temperature was increased at 1 ° C./min, and the treatment was performed at the maximum temperature of 460 ° C. Other conditions are the same as those in the first embodiment. The treatment time was 30 minutes.
 図7に示す表においては、5分ごとのイオン交換速度を平均して表している。0分から5分の間のイオン交換速度の平均(μm/min)は、0.07μm/min、5分から10分の間のイオン交換速度の平均(μm/min)は、0.06μm/min、10分から15分の間のイオン交換速度の平均(μm/min)は、0.06μm/min、15分から20分の間のイオン交換速度の平均(μm/min)は、0.05μm/min、20分から25分の間のイオン交換速度の平均(μm/min)は、0.05μm/min、25分から30分の間のイオン交換速度の平均(μm/min)は、0.05μm/minである。イオン交換層におけるイオン交換は、Naが100質量%(wt%)であった(Naが100質量%(wt%)、Kに交換された)。 In the table shown in FIG. 7, the ion exchange rate every 5 minutes is averaged. The average (μm / min) ion exchange rate between 0 and 5 minutes is 0.07 μm / min, the average ion exchange rate (μm / min) between 5 and 10 minutes is 0.06 μm / min, The average ion exchange rate (μm / min) between 10 minutes and 15 minutes is 0.06 μm / min, and the average ion exchange rate between 15 minutes and 20 minutes (μm / min) is 0.05 μm / min. The average ion exchange rate (μm / min) between 20 and 25 minutes is 0.05 μm / min, and the average ion exchange rate between 25 and 30 minutes (μm / min) is 0.05 μm / min. is there. In the ion exchange in the ion exchange layer, Na was 100% by mass (wt%) (Na was 100% by mass (wt%) and was exchanged with K).
 図7に示すように、実施例2におけるガラス基板1の表面からのイオン交換深さは、1.7μmであった。落下衝撃性試験の評価は「B」であった。平坦度の評価は「A」であった。 As shown in FIG. 7, the ion exchange depth from the surface of the glass substrate 1 in Example 2 was 1.7 μm. The evaluation of the drop impact test was “B”. The evaluation of the flatness was “A”.
 (実施例3)
 実施例3においては、ガラス基板1の浸漬直後の化学強化液の温度を460℃とし、その後2℃/minで温度を上昇させ、最高温度480℃にて処理した。その他の条件は、実施例1と同じである。処理時間は、10分間であった。
(Example 3)
In Example 3, the temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was set to 460 ° C., then the temperature was increased at 2 ° C./min, and the treatment was performed at the maximum temperature of 480 ° C. Other conditions are the same as those in the first embodiment. The treatment time was 10 minutes.
 図7に示す表においては、5分ごとのイオン交換速度を平均して表している。0分から5分の間のイオン交換速度の平均(μm/min)は、0.2μm/min、5分から10分の間のイオン交換速度の平均(μm/min)は、0.2μm/minである。イオン交換層におけるイオン交換は、Naが100質量%(wt%)であった(Naが100質量%(wt%)、Kに交換された)。 In the table shown in FIG. 7, the ion exchange rate every 5 minutes is averaged. The average ion exchange rate from 0 to 5 minutes (μm / min) is 0.2 μm / min, and the average ion exchange rate from 5 to 10 minutes (μm / min) is 0.2 μm / min. is there. In the ion exchange in the ion exchange layer, Na was 100% by mass (wt%) (Na was 100% by mass (wt%) and was exchanged with K).
 図7に示すように、実施例3におけるガラス基板1の表面からのイオン交換深さは、2μmであった。落下衝撃性試験の評価は「A」であった。平坦度の評価は「A」であった。 As shown in FIG. 7, the ion exchange depth from the surface of the glass substrate 1 in Example 3 was 2 μm. The evaluation of the drop impact test was “A”. The evaluation of the flatness was “A”.
 (実施例4)
 実施例4における化学強化方法は、化学強化液として、硝酸カリウムと硝酸ナトリウムとの強酸塩(質量比9:1)を用い、この化学強化液中にガラス基板1を浸漬して、ガラス基板1の化学強化を行なった。ガラス基板1の浸漬直後の化学強化液の温度を430℃とし、強化終了までその温度を維持した。SEMを用いたEDXでの測定結果は、K:Na=8:2であった。処理時間は、10分間であった。
Example 4
The chemical strengthening method in Example 4 uses a strong acid salt (mass ratio 9: 1) of potassium nitrate and sodium nitrate as the chemical strengthening solution, and the glass substrate 1 is immersed in the chemical strengthening solution. Chemical strengthening was performed. The temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was set to 430 ° C., and the temperature was maintained until the end of strengthening. The measurement result by EDX using SEM was K: Na = 8: 2. The treatment time was 10 minutes.
 図7に示す表においては、5分ごとのイオン交換速度を平均して表している。0分から5分の間のイオン交換速度の平均(μm/min)は、0.12μm/min、5分から10分の間のイオン交換速度の平均(μm/min)は、0.12μm/min、10分から15分の間のイオン交換速度の平均(μm/min)は、0.08μm/min、15分から20分の間のイオン交換速度の平均(μm/min)は、0.08μm/minである。イオン交換層におけるイオン交換は、Naが80.3質量%(wt%)であった。つまり、80.3質量%(wt%)が、NaがKに置換され、19.7質量%(wt%)が、LiがNaに置換された。 In the table shown in FIG. 7, the ion exchange rate every 5 minutes is averaged. The average ion exchange rate from 0 to 5 minutes (μm / min) is 0.12 μm / min, the average ion exchange rate from 5 to 10 minutes (μm / min) is 0.12 μm / min, The average ion exchange rate (μm / min) between 10 minutes and 15 minutes is 0.08 μm / min, and the average ion exchange rate between 15 minutes and 20 minutes (μm / min) is 0.08 μm / min. is there. In the ion exchange in the ion exchange layer, Na was 80.3% by mass (wt%). That is, 80.3% by mass (wt%) of Na was replaced with K, and 19.7% by mass (wt%) of Li was replaced with Na.
 図7に示すように、実施例4におけるガラス基板1の表面からのイオン交換深さは、2μmであった。落下衝撃性試験の評価は「A」であった。平坦度の評価は「A」であった。 As shown in FIG. 7, the ion exchange depth from the surface of the glass substrate 1 in Example 4 was 2 μm. The evaluation of the drop impact test was “A”. The evaluation of the flatness was “A”.
 (実施例5)
 実施例5においては、ガラス基板1の浸漬直後の化学強化液の温度を470℃とし、その後2℃/minで温度を上昇させ、最高温度480℃にて処理した。その他の条件は、実施例1と同じである。処理時間は、5分間であった。
(Example 5)
In Example 5, the temperature of the chemical strengthening liquid immediately after immersion of the glass substrate 1 was set to 470 ° C., then the temperature was increased at 2 ° C./min, and the treatment was performed at the maximum temperature of 480 ° C. Other conditions are the same as those in the first embodiment. The treatment time was 5 minutes.
 図7に示す表においては、5分ごとのイオン交換速度を平均して表している。0分から5分の間のイオン交換速度の平均(μm/min)は、0.25μm/minである。イオン交換層におけるイオン交換は、Naが100%であった(Naが100%、Kに交換された)。 In the table shown in FIG. 7, the ion exchange rate every 5 minutes is averaged. The average (μm / min) ion exchange rate between 0 and 5 minutes is 0.25 μm / min. The ion exchange in the ion exchange layer was 100% Na (100% Na was exchanged for K).
 図7に示すように、ガラス基板1の表面からのイオン交換深さは、1.25μmであった。落下衝撃性試験の評価は「A」であった。平坦度の評価は「B」であった。 As shown in FIG. 7, the ion exchange depth from the surface of the glass substrate 1 was 1.25 μm. The evaluation of the drop impact test was “A”. The evaluation of the flatness was “B”.
 (比較例1)
 比較例1においては、ガラス基板1の浸漬直後の化学強化液の温度を480℃とし、強化終了までその温度を維持した。その他の条件は、実施例1と同じである。処理時間は、10分間であった。
(Comparative Example 1)
In Comparative Example 1, the temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was 480 ° C., and the temperature was maintained until the end of strengthening. Other conditions are the same as those in the first embodiment. The treatment time was 10 minutes.
 図7に示す表においては、5分ごとのイオン交換速度を平均して表している。0分から5分の間のイオン交換速度の平均(μm/min)は、0.35μm/min、5分から10分の間のイオン交換速度の平均(μm/min)は、0.25μm/minである。イオン交換層におけるイオン交換は、Naが100%であった(Naが100%、Kに交換された)。 In the table shown in FIG. 7, the ion exchange rate every 5 minutes is averaged. The average ion exchange rate from 0 to 5 minutes (μm / min) is 0.35 μm / min, and the average ion exchange rate from 5 to 10 minutes (μm / min) is 0.25 μm / min. is there. The ion exchange in the ion exchange layer was 100% Na (100% Na was exchanged for K).
 図7に示すように、ガラス基板1の表面からのイオン交換深さは、3μmであった。落下衝撃性試験の評価は「A」であった。平坦度の評価は「C」であった。 As shown in FIG. 7, the ion exchange depth from the surface of the glass substrate 1 was 3 μm. The evaluation of the drop impact test was “A”. The evaluation of the flatness was “C”.
 (比較例2)
 比較例2においては、ガラス基板1の浸漬直後の化学強化液の温度を420℃とし、強化終了までその温度を維持した。その他の条件は、実施例1と同じである。処理時間は、30分間であった。
(Comparative Example 2)
In Comparative Example 2, the temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was 420 ° C., and the temperature was maintained until the end of strengthening. Other conditions are the same as those in the first embodiment. The treatment time was 30 minutes.
 図7に示す表においては、5分ごとのイオン交換速度を平均して表している。0分から5分の間のイオン交換速度の平均(μm/min)は、0.05μm/min、5分から10分の間のイオン交換速度の平均(μm/min)は、0.02μm/min、10分から15分の間のイオン交換速度の平均(μm/min)は、0.02μm/min、15分から20分の間のイオン交換速度の平均(μm/min)は、0.01μm/min、20分から25分の間のイオン交換速度の平均(μm/min)は、0.01μm/min、25分から30分の間のイオン交換速度の平均(μm/min)は、0.01μm/minである。イオン交換層におけるイオン交換は、Naが100%であった(Naが100%、Kに交換された)。 In the table shown in FIG. 7, the ion exchange rate every 5 minutes is averaged. The average (μm / min) ion exchange rate between 0 and 5 minutes is 0.05 μm / min, the average ion exchange rate between 5 and 10 minutes (μm / min) is 0.02 μm / min, The average ion exchange rate (μm / min) between 10 minutes and 15 minutes is 0.02 μm / min, the average ion exchange rate between 15 minutes and 20 minutes (μm / min) is 0.01 μm / min, The average ion exchange rate (μm / min) between 20 minutes and 25 minutes is 0.01 μm / min, and the average ion exchange rate between 25 minutes and 30 minutes (μm / min) is 0.01 μm / min. is there. The ion exchange in the ion exchange layer was 100% Na (100% Na was exchanged for K).
 図7に示すように、ガラス基板1の表面からのイオン交換深さは、0.6μmであった。落下衝撃性試験の評価は「C」であった。平坦度の評価は「A」であった。 As shown in FIG. 7, the ion exchange depth from the surface of the glass substrate 1 was 0.6 μm. The evaluation of the drop impact test was “C”. The evaluation of the flatness was “A”.
 (実施例A)
 実施例Aにおける化学強化方法は、硝酸カルシウムと硝酸カリウムとの強酸塩(質量比0.01:0.99)中にガラス基板1を浸漬して、ガラス基板1の化学強化を行なった。ガラス基板1の浸漬直後の化学強化液の温度を470℃とし、強化終了までその温度を維持した。その他の条件は、実施例1と同じである。処理時間は、20分間であった。
(Example A)
In the chemical strengthening method in Example A, the glass substrate 1 was immersed in a strong acid salt (mass ratio 0.01: 0.99) of calcium nitrate and potassium nitrate to chemically strengthen the glass substrate 1. The temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was 470 ° C., and the temperature was maintained until the end of strengthening. Other conditions are the same as those in the first embodiment. The treatment time was 20 minutes.
 図8に示す表においては、5分ごとのイオン交換速度を平均して表している。0分から5分の間のイオン交換速度の平均(μm/min)は、0.1μm/min、5分から10分の間のイオン交換速度の平均(μm/min)は、0.1μm/min、10分から15分の間のイオン交換速度の平均(μm/min)は、0.06μm/min、15分から20分の間のイオン交換速度の平均(μm/min)は、0.06μm/minである。イオン交換層におけるイオン交換は、Naが100%であったイオン交換層におけるイオン交換は、Naが100質量%(wt%)であった(Naが100質量%(wt%)、Kに交換された)。 In the table shown in FIG. 8, the ion exchange rate every 5 minutes is averaged. The average ion exchange rate (μm / min) between 0 and 5 minutes is 0.1 μm / min, and the average ion exchange rate (μm / min) between 5 and 10 minutes is 0.1 μm / min, The average ion exchange rate (μm / min) between 10 minutes and 15 minutes is 0.06 μm / min, and the average ion exchange rate between 15 minutes and 20 minutes (μm / min) is 0.06 μm / min. is there. The ion exchange in the ion exchange layer was 100% Na (100% by weight), and the ion exchange in the ion exchange layer was 100% by weight (wt%). )
 図8に示すように、ガラス基板1の表面からのイオン交換深さは、1.6μmであった。落下衝撃性試験の評価は「B」であった。平坦度の評価は「A」であった。 As shown in FIG. 8, the ion exchange depth from the surface of the glass substrate 1 was 1.6 μm. The evaluation of the drop impact test was “B”. The evaluation of the flatness was “A”.
 (実施例B)
 実施例Bにおける化学強化方法は、実施例1と同様の化学強化工程を実施したが、この化学強化工程を精密研磨工程S80の後に実施した。
(Example B)
In the chemical strengthening method in Example B, the same chemical strengthening process as in Example 1 was performed, but this chemical strengthening process was performed after the precision polishing process S80.
 図8に示すように、ガラス基板1の表面からのイオン交換深さは、2.5μmであった。落下衝撃性試験の評価は「B」であった。平坦度の評価は「B」であった。 As shown in FIG. 8, the ion exchange depth from the surface of the glass substrate 1 was 2.5 μm. The evaluation of the drop impact test was “B”. The evaluation of the flatness was “B”.
 (実施例C)
 実施例Cにおいては、化学強化液として実施例1と同様に、化学強化液として硝酸カリウム溶液を用い、硝酸カリウム溶液中にガラス基板1を浸漬して、ガラス基板1の化学強化を行なった。ガラス基板1の浸漬直後の化学強化液の温度を460℃とし、強化終了までその温度を維持した。その他の条件は、実施例1と同じである。処理時間は、4分間であった。
(Example C)
In Example C, the glass substrate 1 was chemically strengthened by immersing the glass substrate 1 in the potassium nitrate solution using the potassium nitrate solution as the chemical strengthening solution as in the case of Example 1. The temperature of the chemical strengthening solution immediately after immersion of the glass substrate 1 was set to 460 ° C., and the temperature was maintained until the end of strengthening. Other conditions are the same as those in the first embodiment. The treatment time was 4 minutes.
 図8に示す表においては、4分間でのイオン交換速度を平均して表している。0分から4分の間のイオン交換速度の平均(μm/min)は、0.2μm/minであるイオン交換層におけるイオン交換は、Naが100質量%(wt%)であった(Naが100質量%(wt%)、Kに交換された)。 In the table shown in FIG. 8, the ion exchange rate over 4 minutes is shown as an average. The average (μm / min) ion exchange rate between 0 and 4 minutes is 0.2 μm / min. In the ion exchange in the ion exchange layer, Na was 100% by mass (wt%) (Na was 100%). Mass% (wt%), replaced with K).
 図8に示すように、ガラス基板1の表面からのイオン交換深さは、0.8μmであった。落下衝撃性試験の評価は「B」であった。平坦度の評価は「B」であった。 As shown in FIG. 8, the ion exchange depth from the surface of the glass substrate 1 was 0.8 μm. The evaluation of the drop impact test was “B”. The evaluation of the flatness was “B”.
 (実施例D)
 実施例Dにおいては、化学強化液として実施例1と同様に、化学強化液として硝酸カリウム溶液を用い、硝酸カリウム溶液中にガラス基板1を浸漬して、ガラス基板1の化学強化を行なった。ガラス基板1の浸漬直後の温度を430℃とし、その後、1.0℃/minで温度を上昇させ、最高温度470℃にて処理した。その他の条件は、実施例1と同じである。処理時間は、40分間であった。
(Example D)
In Example D, the glass substrate 1 was chemically strengthened by immersing the glass substrate 1 in the potassium nitrate solution and using the potassium nitrate solution as the chemical strengthening solution in the same manner as in Example 1. The temperature immediately after the immersion of the glass substrate 1 was set to 430 ° C., then the temperature was increased at 1.0 ° C./min, and the treatment was performed at the maximum temperature of 470 ° C. Other conditions are the same as those in the first embodiment. The treatment time was 40 minutes.
 図8に示す表においては、5分ごとのイオン交換速度を平均して表している。0分から5分の間のイオン交換速度の平均(μm/min)は、0.08μm/min、5分から10分の間のイオン交換速度の平均(μm/min)は、0.07μm/min、10分から15分の間のイオン交換速度の平均(μm/min)は、0.06μm/min、15分から20分の間のイオン交換速度の平均(μm/min)は、0.06μm/min、20分から25分の間のイオン交換速度の平均(μm/min)は、0.06μm/min、25分から30分の間のイオン交換速度の平均(μm/min)は、0.05μm/min、30分から35分の間のイオン交換速度の平均(μm/min)は、0.05μm/min、35分から40分の間のイオン交換速度の平均(μm/min)は、0.05μm/minである。イオン交換層におけるイオン交換は、Naが100質量%(wt%)であった(Naが100質量%(wt%)、Kに交換された)。 In the table shown in FIG. 8, the ion exchange rate every 5 minutes is averaged. The average (μm / min) ion exchange rate between 0 and 5 minutes is 0.08 μm / min, the average ion exchange rate between 5 and 10 minutes (μm / min) is 0.07 μm / min, The average (μm / min) ion exchange rate between 10 minutes and 15 minutes is 0.06 μm / min, the average ion exchange rate between 15 minutes and 20 minutes (μm / min) is 0.06 μm / min, The average ion exchange rate (μm / min) between 20 minutes and 25 minutes is 0.06 μm / min, and the average ion exchange rate between 25 minutes and 30 minutes (μm / min) is 0.05 μm / min. The average ion exchange rate (μm / min) between 30 and 35 minutes is 0.05 μm / min, and the average ion exchange rate between 35 and 40 minutes (μm / min) is 0.05 μm / min. is there. In the ion exchange in the ion exchange layer, Na was 100% by mass (wt%) (Na was 100% by mass (wt%) and was exchanged with K).
 図8に示すように、ガラス基板1の表面からのイオン交換深さは、2.4μmであった。落下衝撃性試験の評価は「B」であった。平坦度の評価は「B」であった。 As shown in FIG. 8, the ion exchange depth from the surface of the glass substrate 1 was 2.4 μm. The evaluation of the drop impact test was “B”. The evaluation of the flatness was “B”.
 以上、ガラス転移温度(Tg)が高いガラス基板は、ガラス転移温度(Tg)が低いガラス基板に比べ、処理温度を高くしなければイオン交換がなされない。そこで、処理温度を高くした場合、イオン交換速度(特に、ガラス基板の表面付近)が速くなり、急激にイオン交換がなされる。その結果、イオン交換層が主表面に強く形成されることにより、圧縮応力層の深さや強さにばらつきが発生し、それによりガラス基板の平坦度が悪化していた。 As described above, a glass substrate having a high glass transition temperature (Tg) is not subjected to ion exchange unless the treatment temperature is increased as compared with a glass substrate having a low glass transition temperature (Tg). Therefore, when the processing temperature is increased, the ion exchange rate (particularly near the surface of the glass substrate) is increased, and ion exchange is rapidly performed. As a result, the ion exchange layer was strongly formed on the main surface, thereby causing variations in the depth and strength of the compressive stress layer, thereby deteriorating the flatness of the glass substrate.
 しかし、本発明に基づいた上記実施の形態においては、急激なイオン交換を抑制するために、イオン交換を行なうイオンを限定し、さらにイオン交換速度をこれまでよりも遅くかつ均一にすることで、圧縮応力層の深さや強さのばらつきを抑制し、耐衝撃性を維持しながら平坦度が良好なガラス基板を得ることを可能としている。 However, in the above-described embodiment based on the present invention, in order to suppress rapid ion exchange, by limiting the ions that perform ion exchange, and further by making the ion exchange rate slower and more uniform than before, It is possible to obtain a glass substrate with good flatness while suppressing variations in depth and strength of the compressive stress layer and maintaining impact resistance.
 具体的には、化学強化工程においては、0.05μm/min~0.25μm/minのイオン交換速度を保ちながら、主表面からの深さが3μm未満のイオン交換層を形成する工程を含み、イオン交換層のイオン交換は、「NaがKに置換された質量」と「LiがNaに置換された質量」との合計を100%とした際の、「NaがKに置換された質量」の割合が、80質量%(wt%)~100質量%(wt%)である。 Specifically, the chemical strengthening step includes a step of forming an ion exchange layer having a depth of less than 3 μm from the main surface while maintaining an ion exchange rate of 0.05 μm / min to 0.25 μm / min, The ion exchange of the ion exchange layer is performed by using “mass where Na is replaced with K” when the sum of “mass where Na is replaced with K” and “mass where Li is replaced with Na” is 100%. The ratio of is 80 mass% (wt%) to 100 mass% (wt%).
 これにより、ガラス転移温度(Tg)が高いガラス基板を用いた情報記録媒体用ガラス基板の製造工程において、ガラス基板の平坦度の悪化を抑制することが可能となる。 Thereby, in the manufacturing process of the glass substrate for information recording medium using the glass substrate having a high glass transition temperature (Tg), it is possible to suppress the deterioration of the flatness of the glass substrate.
 また、化学強化工程は、0.5℃/min~2℃/minの条件で、ガラス基板の昇温を行なうとよい。 In the chemical strengthening step, the temperature of the glass substrate is preferably raised under the condition of 0.5 ° C./min to 2 ° C./min.
 また、化学強化工程は、5min~30minで、イオン交換層のイオン交換を行なうとよい。化学強化工程は、応力強化層の付与と緩和とのバランスで成り立っている。化学強化工程の時間が長くなると、緩和が起こりやすくなるため、応力強化層が形成されにくくなるからである。 In addition, the chemical strengthening step may be performed in the ion exchange layer for 5 to 30 minutes. The chemical strengthening process consists of a balance between the application and relaxation of the stress strengthening layer. This is because when the time of the chemical strengthening step is long, relaxation is likely to occur, and thus the stress strengthening layer is hardly formed.
 また、化学強化工程の後に、ガラス基板に形成されたイオン交換層を、少なくとも主表面から0.05μm以上、または、イオン交換層の全てを除去する研磨工程をさらに備えるとよい。これにより、主表面を研磨され平坦度をより良好にすることができる。 Further, after the chemical strengthening step, it is preferable that the ion exchange layer formed on the glass substrate is further provided with a polishing step for removing at least 0.05 μm or more from the main surface or all of the ion exchange layer. Thereby, the main surface is polished and the flatness can be improved.
 なお、本実施の形態では、ガラス基板は結晶化ガラスでもよい。特に結晶化度が20%以下の結晶化ガラスに本実施の形態を適用することができる。 In the present embodiment, the glass substrate may be crystallized glass. In particular, the present embodiment can be applied to crystallized glass having a crystallinity of 20% or less.
 以上、本発明に基づいた実施の形態および各実施例について説明したが、今回開示された実施の形態および各実施例はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although embodiment and each Example based on this invention were described, embodiment and each Example disclosed this time are illustrations in all points, and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 2,3 主表面、4 内周端面、5,15 孔、6 外周端面、7,8 面取部、10 情報記録媒体、12 圧縮応力層、14 磁気記録層、20 筐体21 ヘッドスライダー、22 サスペンション、23 アーム、24 垂直軸、25 ボイスコイル、26 ボイスコイルモーター、27 クランプ部材、28 固定ネジ、30 情報記録装置。 2, 3 main surface, 4 inner peripheral end surface, 5,15 hole, 6, outer peripheral end surface, 7,8 chamfered portion, 10 information recording medium, 12 compressive stress layer, 14 magnetic recording layer, 20 housing 21 head slider, 22 Suspension, 23 arm, 24 vertical axis, 25 voice coil, 26 voice coil motor, 27 clamp member, 28 fixing screw, 30 information recording device.

Claims (4)

  1.  情報記録媒体用ガラス基板の製造方法であって、
     ガラス転移温度が、650℃以上のガラス基板を準備する工程と、
     前記ガラス基板の主表面を化学強化する化学強化工程と、
    を備え、
     前記化学強化工程は、
     0.05μm/min~0.25μm/minのイオン交換速度を保ちながら、前記主表面からの深さが3μm未満のイオン交換層を形成する工程を含み、
     前記イオン交換層のイオン交換は、NaがKに置換された質量とLiがNaに置換された質量との合計を100%とした際の、NaがKに置換された質量の割合が、80質量%(wt%)~100質量%(wt%)である、
    情報記録媒体用ガラス基板の製造方法。
    A method for producing a glass substrate for an information recording medium, comprising:
    Preparing a glass substrate having a glass transition temperature of 650 ° C. or higher;
    A chemical strengthening step for chemically strengthening the main surface of the glass substrate;
    With
    The chemical strengthening step includes
    Forming an ion exchange layer having a depth of less than 3 μm from the main surface while maintaining an ion exchange rate of 0.05 μm / min to 0.25 μm / min,
    In the ion exchange of the ion exchange layer, the ratio of the mass in which Na is substituted with K when the sum of the mass in which Na is substituted with K and the mass in which Li is substituted with Na is 100% is 80%. Mass% (wt%) to 100 mass% (wt%),
    A method for producing a glass substrate for an information recording medium.
  2.  前記化学強化工程は、
     0.5℃/min~2℃/minの条件で、前記ガラス基板の昇温を行なう、請求項1に記載の情報記録媒体用ガラス基板の製造方法。
    The chemical strengthening step includes
    The method for producing a glass substrate for an information recording medium according to claim 1, wherein the temperature of the glass substrate is increased under the condition of 0.5 ° C / min to 2 ° C / min.
  3.  前記化学強化工程は、5min~30minで、前記イオン交換層のイオン交換を行なう、請求項1または2に記載の情報記録媒体用ガラス基板の製造方法。 3. The method for producing a glass substrate for an information recording medium according to claim 1, wherein the chemical strengthening step performs ion exchange of the ion exchange layer in 5 min to 30 min.
  4.  前記化学強化工程の後に、前記ガラス基板に形成された前記イオン交換層を、少なくとも前記主表面から0.05μm以上、または、前記イオン交換層の全てを除去する研磨工程をさらに備える、請求項1から3のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法。 2. The method further comprises a polishing step of removing at least 0.05 μm or more of the ion exchange layer from the main surface of the ion exchange layer formed on the glass substrate after the chemical strengthening step. 4. A method for producing a glass substrate for an information recording medium according to any one of items 1 to 3.
PCT/JP2013/084416 2012-12-27 2013-12-24 Method for manufacturing glass substrate for information recording medium WO2014103982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-285133 2012-12-27
JP2012285133 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103982A1 true WO2014103982A1 (en) 2014-07-03

Family

ID=51021064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084416 WO2014103982A1 (en) 2012-12-27 2013-12-24 Method for manufacturing glass substrate for information recording medium

Country Status (1)

Country Link
WO (1) WO2014103982A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001180975A (en) * 1999-07-07 2001-07-03 Hoya Corp Substrate for information recording medium comprising crystallized glass and the information recording medium
JP2004288228A (en) * 2003-01-31 2004-10-14 Hoya Corp Substrate for information recording medium, information recording medium, and its manufacturing method
WO2008062656A1 (en) * 2006-11-22 2008-05-29 Konica Minolta Opto, Inc. Glass substrate for information recording medium, method for manufacturing glass substrate for information recording medium, and information recording medium
JP2008140497A (en) * 2006-12-04 2008-06-19 Konica Minolta Opto Inc Manufacturing method of glass substrate for recording medium, glass substrate for recording medium and recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001180975A (en) * 1999-07-07 2001-07-03 Hoya Corp Substrate for information recording medium comprising crystallized glass and the information recording medium
JP2004288228A (en) * 2003-01-31 2004-10-14 Hoya Corp Substrate for information recording medium, information recording medium, and its manufacturing method
WO2008062656A1 (en) * 2006-11-22 2008-05-29 Konica Minolta Opto, Inc. Glass substrate for information recording medium, method for manufacturing glass substrate for information recording medium, and information recording medium
JP2008140497A (en) * 2006-12-04 2008-06-19 Konica Minolta Opto Inc Manufacturing method of glass substrate for recording medium, glass substrate for recording medium and recording medium

Similar Documents

Publication Publication Date Title
US8728638B2 (en) Magnetic disk substrate, method for manufacturing the same, and magnetic disk
JP2014188668A (en) Method of manufacturing glass substrate
JP6029740B2 (en) Glass substrate for information recording medium and information recording medium
JP5978394B2 (en) Manufacturing method of plate glass, manufacturing method of glass substrate for information recording medium, and manufacturing method of information recording medium
WO2014103982A1 (en) Method for manufacturing glass substrate for information recording medium
JP5695068B2 (en) Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium
JP2015060614A (en) Method for manufacturing glass substrate for information recording medium
JP6170557B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, grinding wheel
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
JP5492276B2 (en) Glass substrate for magnetic disk and magnetic disk
JP2017228340A (en) Method of manufacturing glass substrate for information recording medium and polishing brush
JP5706250B2 (en) Glass substrate for HDD
JP2010108598A (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and magnetic disk
WO2013099584A1 (en) Method of manufacturing glass substrate for information recording medium
JP6088534B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing information recording medium, and disk-shaped glass substrate
WO2013099585A1 (en) Method for manufacturing glass substrate for information storage medium
WO2013145461A1 (en) Method for producing hdd glass substrate
JP6196976B2 (en) Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, and glass substrate for information recording medium
WO2013047287A1 (en) Production method for glass substrate for information recording medium
WO2015041011A1 (en) Method for manufacturing glass substrate for information recording medium
WO2014050495A1 (en) Method for producing glass substrate for information recording medium
WO2013047286A1 (en) Production method for glass substrate for information recording medium
WO2013047288A1 (en) Production method for glass substrate for information recording medium
WO2014050496A1 (en) Method for producing glass substrate for information recording medium
JP2015011733A (en) Manufacturing method of glass substrate for information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP