JP6196976B2 - Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, and glass substrate for information recording medium - Google Patents

Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, and glass substrate for information recording medium Download PDF

Info

Publication number
JP6196976B2
JP6196976B2 JP2014536624A JP2014536624A JP6196976B2 JP 6196976 B2 JP6196976 B2 JP 6196976B2 JP 2014536624 A JP2014536624 A JP 2014536624A JP 2014536624 A JP2014536624 A JP 2014536624A JP 6196976 B2 JP6196976 B2 JP 6196976B2
Authority
JP
Japan
Prior art keywords
information recording
glass substrate
recording medium
solution
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014536624A
Other languages
Japanese (ja)
Other versions
JPWO2014045654A1 (en
Inventor
典子 島津
典子 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of JPWO2014045654A1 publication Critical patent/JPWO2014045654A1/en
Application granted granted Critical
Publication of JP6196976B2 publication Critical patent/JP6196976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass

Description

本発明は、情報記録媒体用ガラス基板の製造方法、情報記録媒体の製造方法、および、情報記録媒体用ガラス基板に関する。 The present invention relates to a method for manufacturing a glass substrate for information recording medium, a method for manufacturing an information recording medium, and a glass substrate for information recording medium .

コンピュータなどに用いられる情報記録媒体(磁気ディスク記録媒体)には、従来からアルミニウム基板またはガラス基板が用いられている。これらの基板上に磁気薄膜層が形成され、磁気薄膜層を磁気ヘッドで磁化することにより、磁気薄膜層に情報が記録される。   Conventionally, an aluminum substrate or a glass substrate is used as an information recording medium (magnetic disk recording medium) used in a computer or the like. A magnetic thin film layer is formed on these substrates, and information is recorded on the magnetic thin film layer by magnetizing the magnetic thin film layer with a magnetic head.

近年、ハードディスクドライブ(HDD)装置においては、記録密度が増々高密度化されてきている。記録密度の高密度化により、情報記録媒体(メディア)と情報記録媒体上を浮上しながら記録の読み書きを行なうヘッドとのギャップ(フライングハイト)は数nm程度にまで狭小化している。   In recent years, in a hard disk drive (HDD) device, the recording density has been increased. As the recording density is increased, the gap (flying height) between the information recording medium (medium) and the head that reads and writes the recording while floating on the information recording medium is reduced to about several nanometers.

フライングハイトが小さくなるにつれて、情報記録媒体をハードディスクドライブ装置に用いた場合の、媒体に記録されたデータにアクセスする際のリードエラーおよび/またはライトエラー、磁気ヘッドが媒体表面に衝突するヘッドクラッシュなどの問題が発生しやすくなっている。   As the flying height becomes smaller, when an information recording medium is used in a hard disk drive device, a read error and / or a write error when accessing data recorded on the medium, a head crash where the magnetic head collides with the medium surface, etc. The problem is more likely to occur.

そのため、情報記録媒体用ガラス基板に求められる清浄性は非常に高く、例えば研磨材、異物を確実に除去するために研磨工程後に、液体と接触させて付着物を除去しやすくした後でスクラブ洗浄を行なう等で対応してきた。   Therefore, the cleanliness required for the glass substrate for information recording media is very high. For example, in order to reliably remove abrasives and foreign matters, after the polishing process, it is contacted with liquid to facilitate removal of deposits and then scrub cleaning. I have responded by doing.

特許第4623210号Patent No. 4623210

しかし、次世代の630Gbit/inch以上の面記録密度に対応した情報記録媒体用ガラス基板において、平滑性、清浄性に問題がないにもかかわらず、磁気薄膜層を形成して情報記録媒体とされた場合において電磁変換特性(SNR)が低下し、読み取り精度を低下させてしまうという問題が発生した。However, in the information recording medium glass substrate corresponding to the next-generation surface recording density of 630 Gbit / inch 2 or more, a magnetic thin film layer is formed and the information recording medium is formed even though there is no problem in smoothness and cleanliness. In such a case, there has been a problem that the electromagnetic conversion characteristic (SNR) is lowered and the reading accuracy is lowered.

このような問題を精査したところ、メディアメーカーで行われる、更に清浄性を上げるために磁性膜形成前にアルカリ性の溶液で情報記録媒体用ガラス基板を洗浄し、基板上のわずかなパーティクルも除去するという工程において、わずかにガラス成分が溶出し、表面状態が変化してしまうために、その後、スパッタリング等で磁気薄膜層を形成する際の条件にバラツキが発生し、上記の問題が起こっていることが分かった。   After scrutinizing such problems, the glass substrate for information recording media is washed with an alkaline solution before the magnetic film is formed to further increase the cleanliness, which is performed by a media manufacturer, and the slight particles on the substrate are also removed. In this process, the glass component elutes slightly and the surface state changes, so that the conditions when forming the magnetic thin film layer by sputtering or the like are subsequently varied, and the above problem has occurred. I understood.

本発明は、上記のような課題に鑑みてなされたものであって、その目的は、清浄性を上げるために磁性膜形成前にアルカリ性の溶液で情報記録媒体用ガラス基板を洗浄したとしても、表面状態が変化することを抑制することができる情報記録媒体用ガラス基板の製造方法、情報記録媒体の製造方法、および、情報記録媒体用ガラス基板を提供することである。 The present invention has been made in view of the above problems, and its purpose is to clean the information recording medium glass substrate with an alkaline solution before forming the magnetic film in order to improve cleanliness. An object of the present invention is to provide a method for manufacturing a glass substrate for an information recording medium, a method for manufacturing an information recording medium, and a glass substrate for an information recording medium that can suppress changes in the surface state.

本発明に係る情報記録媒体用ガラス基板の製造方法の一の局面は、情報記録媒体に用いられる情報記録媒体用ガラス基板の製造方法である。上記情報記録媒体用ガラス基板の製造方法は、ガラス部材の主表面を酸性のコロイダルシリカを含む研磨液で精密研磨する精密研磨工程と、精密研磨工程後に、溶液に5分以上浸漬させる第1浸漬工程と、第1浸漬工程後にガラス部材に超音波洗浄を施す超音波洗浄工程とを備える。上記精密研磨工程において精密研磨されたガラス部材の表面粗さRaは、1μm2の測定範囲において、3.0Å以下である。上記第1浸漬工程の溶液のpHは、6.5以上8.5以下である。
本発明に係る情報記録媒体用ガラス基板の製造方法の他の局面は、情報記録媒体に用いられる情報記録媒体用ガラス基板の製造方法である。ガラス部材の主表面を酸性のコロイダルシリカを含む研磨液で精密研磨する精密研磨工程と、上記精密研磨工程後に、溶液に浸漬させる第1浸漬工程と、上記第1浸漬工程後に上記ガラス部材に超音波洗浄を施す超音波洗浄工程とを備える。上記精密研磨工程において精密研磨された上記ガラス部材の表面粗さRaは、1μm2の測定範囲において、3.0Å以下であり、上記第1浸漬工程は、40℃、pH11の水酸化ナトリウム溶液に30分浸漬させるアルカリ処理の前後において主表面のRaをAFMで測定したときに、上記アルカリ処理の前後のRaの変化が0.45Å以下となるように浸漬する工程である。
One aspect of the information recording method of manufacturing a glass substrate for a medium according to the present invention is a method of manufacturing a glass substrate for an information recording medium used in the information recording medium. The process for producing a glass substrate for the information recording medium includes a precision polishing step of precision polishing a main surface of the glass member in a polishing solution containing an acid of the colloidal silica, after the precision polishing step, the dipping solution over 5 minutes 1 An immersion process and an ultrasonic cleaning process for ultrasonically cleaning the glass member after the first immersion process are provided. The surface roughness Ra of the glass member precisely polished in the precision polishing step is 3.0 mm or less in a measurement range of 1 μm 2. The pH of the solution in the first immersion process is 6.5 or more and 8.5 or less.
Another aspect of the method for producing a glass substrate for information recording medium according to the present invention is a method for producing a glass substrate for information recording medium used for an information recording medium. A precision polishing step in which the main surface of the glass member is precisely polished with a polishing liquid containing acidic colloidal silica, a first immersion step in which the main surface of the glass member is immersed in a solution after the precision polishing step, and the glass member in excess after the first immersion step. An ultrasonic cleaning process for performing sonic cleaning. The surface roughness Ra of the glass member precisely polished in the precision polishing step is 3.0 mm or less in a measurement range of 1 μm 2, and the first immersion step is performed in a sodium hydroxide solution at 40 ° C. and pH 11 to 30%. This is a step of immersing so that the change in Ra before and after the alkali treatment is 0.45 mm or less when the Ra of the main surface is measured by AFM before and after the alkali treatment for partial immersion.

好ましくは、上記超音波洗浄工程後に、ガラス部材をpH6.5以上8.5以下の溶液に5分以上浸漬する第2浸漬工程をさらに備える。好ましくは、上記超音波洗浄工程後にガラス部材にスクラブ洗浄を施すスクラブ洗浄工程と、スクラブ洗浄工程後に、pH6.5以上8.5以下の溶液に5分以上浸漬させる第3浸漬工程とさらに備える。   Preferably, the method further includes a second dipping step of dipping the glass member in a solution having a pH of 6.5 or more and 8.5 or less for 5 minutes or more after the ultrasonic cleaning step. Preferably, a scrub cleaning step of scrubbing the glass member after the ultrasonic cleaning step, and a third immersion step of immersing in a solution having a pH of 6.5 or more and 8.5 or less for 5 minutes or more after the scrub cleaning step are further provided.

好ましくは、上記溶液のpHが6.5を下回ると、pHが6.5以上8.5以下となるように、溶液に調整剤を添加する工程をさらに備える。好ましくは、上記第1浸漬工程の溶液のpHは7以上8以下である。好ましくは、上記第1浸漬工程における浸漬時間は、120分以下である。
本発明に係る情報記録媒体の製造方法は、上述のいずれかに記載の情報記録媒体用ガラス基板の製造方法により得られた情報記録媒体用ガラス基板の主表面上に、少なくとも磁性膜を形成する工程を有する。
本発明に係る情報記録媒体用ガラス基板は、40℃、pH11の水酸化ナトリウム溶液で30分浸漬させるアルカリ処理の前後において主表面のRaをAFMで測定したときに、前記アルカリ処理の前後のRaの変化が0.45Å以下である。
Preferably, the method further includes a step of adding a conditioner to the solution so that the pH becomes 6.5 or more and 8.5 or less when the pH of the solution is lower than 6.5. Preferably, the pH of the solution in the first immersion step is 7 or more and 8 or less. Preferably, the immersion time in the first immersion step is 120 minutes or less.
In the method for producing an information recording medium according to the present invention, at least a magnetic film is formed on the main surface of the glass substrate for information recording medium obtained by the method for producing a glass substrate for information recording medium described above. Process.
The glass substrate for an information recording medium according to the present invention has a Ra before and after the alkali treatment when the Ra of the main surface is measured by AFM before and after the alkali treatment immersed in a sodium hydroxide solution at 40 ° C. and pH 11 for 30 minutes. Is less than 0.45 mm.

本発明によれば、浄性を上げるために磁性膜形成前にアルカリ性の溶液で情報記録媒体用ガラス基板を洗浄したとしても、表面状態が変化することを抑制することができる情報記録媒体用ガラス基板、情報記録媒体の製造方法、および、情報記録媒体用ガラス基板を提供することができる。 By the present invention lever, even when washing the glass substrate for information recording medium before the magnetic film formed in an alkaline solution to raise the Kiyoshisei, for an information recording medium capable of suppressing the surface state changes A glass substrate , a method for producing an information recording medium, and a glass substrate for an information recording medium can be provided .

情報記録媒体用ガラス基板1Gの斜視図である。It is a perspective view of glass substrate 1G for information recording media. 情報記録媒体の斜視図である。It is a perspective view of an information recording medium. ガラス基板1Gおよび情報記録媒体1の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the glass substrate 1G and the information recording medium 1.

以下に、本発明の実施の形態および実施例について説明する。同一または相当する部分に同一の参照符号を付し、その説明を繰返さない場合がある。以下に説明する実施の形態および実施例において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。以下の実施の形態において、各々の構成要素は、特に記載がある場合を除き、本発明にとって必ずしも必須のものではない。
(情報記録媒体1の構成)
図1および図2を参照して、情報記録媒体用ガラス基板1Gおよび情報記録媒体1の構成について説明する。図1は、情報記録媒体用ガラス基板1Gの斜視図、図2は、情報記録媒体の斜視図である。
Embodiments and examples of the present invention will be described below. The same or corresponding parts are denoted by the same reference symbols, and the description thereof may not be repeated. In the embodiments and examples described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the following embodiments, each component is not necessarily essential to the present invention unless otherwise specified.
(Configuration of information recording medium 1)
With reference to FIG. 1 and FIG. 2, the structure of the glass substrate 1G for information recording media and the information recording medium 1 is demonstrated. FIG. 1 is a perspective view of a glass substrate 1G for an information recording medium, and FIG. 2 is a perspective view of the information recording medium.

図1に示すように、情報記録媒体1に用いられる情報記録媒体用ガラス基板1G(以下、「ガラス基板1G」と称する。)は、中心に孔11が形成された環状の円板形状を呈している。ガラス基板1Gは、外周端面12、内周端面13、表主表面14、および裏主表面15を有している。ガラス基板1Gとしては、アモルファスガラス等を用い、たとえば、外径約65mm、内径約20mm、厚さ約0.8mm、表面粗さは、約2.0Å以下である。   As shown in FIG. 1, an information recording medium glass substrate 1G used for the information recording medium 1 (hereinafter referred to as “glass substrate 1G”) has an annular disk shape with a hole 11 formed in the center. ing. The glass substrate 1G has an outer peripheral end face 12, an inner peripheral end face 13, a front main surface 14, and a back main surface 15. As the glass substrate 1G, amorphous glass or the like is used. For example, the outer diameter is about 65 mm, the inner diameter is about 20 mm, the thickness is about 0.8 mm, and the surface roughness is about 2.0 mm or less.

ガラス基板1Gのインチサイズに特に限定はなく、0.8インチ、1.0インチ、1.8インチ、2.5インチ、3.5インチ各種ガラス基板1Gを、情報記録媒体用のディスクとして製造してもよい。   The inch size of the glass substrate 1G is not particularly limited, and various glass substrates 1G of 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, and 3.5 inch are manufactured as disks for information recording media. May be.

落下衝撃によるガラス基板1Gの割れに対して有効であることから、ガラス基板1Gの厚みは0.30mm〜2.2mmが好ましい。ここでいうガラス基板1Gの厚みとは基板上の点対象となる任意の何点かで測定した値の平均値を意味する。   The thickness of the glass substrate 1G is preferably 0.30 mm to 2.2 mm because it is effective against cracking of the glass substrate 1G due to drop impact. The thickness of the glass substrate 1 </ b> G here means an average value of values measured at some arbitrary points to be pointed on the substrate.

図2に示すように、情報記録媒体1は、上記したガラス基板1Gの表主表面14上に磁気薄膜層23が形成されている。図示では、表主表面14上にのみ磁気薄膜層23が形成されているが、裏主表面15上にも磁気薄膜層23を設けることも可能である。   As shown in FIG. 2, in the information recording medium 1, a magnetic thin film layer 23 is formed on the front main surface 14 of the glass substrate 1G. In the drawing, the magnetic thin film layer 23 is formed only on the front main surface 14, but it is also possible to provide the magnetic thin film layer 23 on the back main surface 15.

磁気薄膜層23の形成方法としては従来公知の方法を用いることができ、たとえば、磁性粒子を分散させた熱硬化性樹脂をガラス基板1G上にスピンコートして形成する方法、スパッタリングにより形成する方法、無電解めっきにより形成する方法が挙げられる。   As a method of forming the magnetic thin film layer 23, a conventionally known method can be used. For example, a method of spin-coating a thermosetting resin in which magnetic particles are dispersed on the glass substrate 1G, a method of forming by sputtering. The method of forming by electroless plating is mentioned.

スピンコート法での膜厚は約0.3〜1.2μm程度、スパッタリング法での膜厚は0.04〜0.08μm程度、無電解めっき法での膜厚は0.05〜0.1μm程度であり、薄膜化および高密度化の観点からはスパッタリング法および無電解めっき法による膜形成がよい。   The film thickness by spin coating is about 0.3 to 1.2 μm, the film thickness by sputtering is about 0.04 to 0.08 μm, and the film thickness by electroless plating is 0.05 to 0.1 μm. From the viewpoint of thinning and high density, film formation by sputtering and electroless plating is preferable.

磁気薄膜層23に用いる磁性材料としては、特に限定はなく従来公知のものが使用できるが、高い保持力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNi、Crを加えたCo系合金などが好適である。近年では、熱アシスト記録用に好適な磁性層材料として、FePt系の材料が用いられるようになってきている。   The magnetic material used for the magnetic thin film layer 23 is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Co having a high crystal anisotropy is basically used to adjust the residual magnetic flux density. Co-based alloys to which Ni and Cr are added are suitable. In recent years, FePt-based materials have been used as magnetic layer materials suitable for heat-assisted recording.

磁気ヘッドの滑りをよくするために磁気薄膜層23の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、例えば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。   In order to improve the sliding of the magnetic head, the surface of the magnetic thin film layer 23 may be thinly coated with a lubricant. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a freon-based solvent.

必要により下地層、保護層を設けてもよい。情報記録媒体1における下地層は磁性膜に応じて選択される。下地層の材料としては、例えば、Cr、Mo、Ta、Ti、W、V、B、Al、Niなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。   If necessary, an underlayer and a protective layer may be provided. The underlayer in the information recording medium 1 is selected according to the magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.

下地層は単層とは限らず、同一又は異種の層を積層した複数層構造としても構わない。例えば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層としてもよい。   The underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.

磁気薄膜層23の摩耗、腐食を防止する保護層としては、例えば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。保護層は、下地層、磁性膜など共にインライン型スパッタ装置で連続して形成できる。保護層は、単層としてもよく、あるいは、同一又は異種の層からなる多層構成としてもよい。   Examples of the protective layer for preventing wear and corrosion of the magnetic thin film layer 23 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. The protective layer can be formed continuously with an in-line sputtering apparatus, such as an underlayer and a magnetic film. The protective layer may be a single layer, or may have a multilayer structure composed of the same or different layers.

上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。例えば、上記保護層に替えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO2)層を形成してもよい。   Another protective layer may be formed on the protective layer or instead of the protective layer. For example, in place of the protective layer, colloidal silica fine particles are dispersed and coated on a Cr layer diluted with an alcohol-based solvent, and then fired to form a silicon oxide (SiO2) layer. May be.

上述のように、情報記録媒体用のガラス基板1Gは、製造後に梱包材料に密閉梱包されて流通された後、梱包材料から取り出されて磁気薄膜層23等が設けられるが、磁気薄膜層23等を設ける直前に、梱包時および運搬時に付着した微小パーティクルを除去したり、条件の違いによる表面状態の不均一性を解消する為に、アルカリ溶液等により洗浄処理が施される。   As described above, the glass substrate 1G for information recording medium is sealed and packaged in a packaging material after manufacture and then taken out from the packaging material and provided with the magnetic thin film layer 23 and the like. Immediately prior to providing, a cleaning process is performed with an alkaline solution or the like in order to remove minute particles adhering during packaging and transportation, or to eliminate surface state non-uniformity due to different conditions.

このようなアルカリ処理が施された場合であっても、当該情報記録媒体用ガラス基板を40℃、pH11の水酸化ナトリウム溶液で30分浸漬させるアルカリ処理を行った場合に、ガラス基板の主表面14,15のSiOH/Siの平均値が、0.20以上0.50以下となるような情報記録媒体用ガラス基板であれば、磁気記録面における記録密度630Gbit/平方インチ以上であるような記録密度が非常に高い情報記録媒体に用いられた場合であっても信号対雑音比(S/N比)の低下を十分に抑制可能である。   Even when such alkali treatment is performed, when the alkali treatment is performed in which the glass substrate for information recording medium is immersed in a sodium hydroxide solution at 40 ° C. and pH 11 for 30 minutes, the main surface of the glass substrate If the glass substrate for the information recording medium has an average value of SiOH / Si of 14 and 15 of 0.20 or more and 0.50 or less, the recording density on the magnetic recording surface is 630 Gbit / square inch or more. Even when used for an information recording medium having a very high density, it is possible to sufficiently suppress a decrease in the signal-to-noise ratio (S / N ratio).

次に、磁気薄膜層の形成前にアルカリ処理が施されたとしても、S/N比の低下を抑制することができるガラス基板の製造方法について説明する。   Next, a method of manufacturing a glass substrate that can suppress a decrease in the S / N ratio even when an alkali treatment is performed before the formation of the magnetic thin film layer will be described.

(ガラス基板1Gの製造工程)
次に、図3を参照して、本実施の形態に係るガラス基板1Gおよび情報記録媒体1の製造方法を説明する。図3は、ガラス基板1Gおよび情報記録媒体1の製造方法を示すフロー図である。
(Manufacturing process of glass substrate 1G)
Next, a method for manufacturing the glass substrate 1G and the information recording medium 1 according to the present embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing a method for manufacturing the glass substrate 1G and the information recording medium 1.

まず、ステップ10(以下、「S10」と略す。ステップ11以降も同様。)の「ガラス溶融工程」において、ガラス基板を構成するガラス素材を溶融する。   First, in the “glass melting step” of step 10 (hereinafter abbreviated as “S10”, the same applies to step 11 and subsequent steps), the glass material constituting the glass substrate is melted.

S11の「プレス成形工程」において、溶融させたガラス素材を上型および下型を用いたプレスによりガラス基板を作製した。使用したガラス組成は、一般的なアルミノシリケートガラスを用いた。ガラス基板の作製方法としては成形に限らず、公知の手法である板ガラスからの切り出し等でも構わず、ガラス組成もこれに限らない。   In the “press molding step” of S11, a glass substrate was produced by pressing the molten glass material using an upper mold and a lower mold. The glass composition used was a general aluminosilicate glass. The method for producing the glass substrate is not limited to molding, and may be cut out from plate glass, which is a known technique, and the glass composition is not limited thereto.

S12の「第1ラップ工程(第1研削工程)」において、ガラス基板の両主表面をラッピング加工した。この第1ラップ工程は、遊星歯車機構を利用した両面ラッピング装置を用いて行なった。具体的には、ガラス基板の両面に上下からラップ定盤を押圧させ、研削液をガラス基板の主表面上に供給し、これらを相対的に移動させてラッピング加工を行なった。このラッピング加工により、おおよそ平坦な主表面を有するガラス基板を得た。   In the “first lapping step (first grinding step)” of S12, both main surfaces of the glass substrate were lapped. This first lapping step was performed using a double-sided lapping device using a planetary gear mechanism. Specifically, the lapping platen was pressed on both surfaces of the glass substrate from above and below, the grinding liquid was supplied onto the main surface of the glass substrate, and these were moved relatively to perform lapping. By this lapping process, a glass substrate having a substantially flat main surface was obtained.

S13の「コアリング工程」において、円筒状のダイヤモンドドリルを用いて、ガラス基板の中心部に穴を形成し、円環状のガラス基板を作製した。ガラス基板の内周端面、および外周端面をダイヤモンド砥石によって研削し、所定の面取り加工を実施した。   In the “coring step” of S13, a cylindrical diamond drill was used to form a hole in the center of the glass substrate to produce an annular glass substrate. The inner peripheral end surface and the outer peripheral end surface of the glass substrate were ground with a diamond grindstone, and a predetermined chamfering process was performed.

S14の「第2ラップ工程(第2研削工程)」において、ガラス基板の両主表面について、上記第1ラップ工程(S12)と同様に、ラッピング加工を行なった。この第2ラップ工程を行なうことにより、前工程のコアリングおよび端面加工において主表面に形成された微細な凹凸形状を予め除去しておくことができる。その結果、後工程での主表面の研磨時間を短縮することができる。   In the “second lapping step (second grinding step)” of S14, lapping was performed on both main surfaces of the glass substrate in the same manner as in the first lapping step (S12). By performing the second lapping step, the fine uneven shape formed on the main surface in the coring and end face processing in the previous step can be removed in advance. As a result, the polishing time of the main surface in the subsequent process can be shortened.

S15の「内外周研磨工程」において、ガラス基板の外周端面について、ブラシ研磨による鏡面研磨を行なった。このとき研磨砥粒としては、一般的な酸化セリウム砥粒を含むスラリーを用いた。   In the “inner and outer periphery polishing step” of S15, the outer peripheral end surface of the glass substrate was subjected to mirror polishing by brush polishing. At this time, as the abrasive grains, a slurry containing general cerium oxide abrasive grains was used.

S16の「第1ポリッシュ工程(粗研磨工程)」において、主表面研磨を行なった。この第1ポリッシュ工程は、上述の第1および第2ラップ工程(S12,S14)において主表面に残留したキズおよび/または反りを矯正することを主目的とするものである。この第1ポリッシュ工程においては、遊星歯車機構を有する両面研磨装置により主表面の研磨を行なった。研磨剤としては、一般的な酸化セリウム砥粒を用いた。   In the “first polishing step (rough polishing step)” of S16, main surface polishing was performed. This first polishing step is mainly intended to correct scratches and / or warpage remaining on the main surface in the first and second lapping steps (S12, S14) described above. In the first polishing step, the main surface was polished by a double-side polishing apparatus having a planetary gear mechanism. As the abrasive, general cerium oxide abrasive grains were used.

S17の「化学強化工程」において、ガラス基板1Gの主表面に対して表面強化層を形成した。具体的には、300℃に加熱された硝酸カリウム(70%)と硝酸ナトリウム(30%)の混合溶液中に、ガラス基板1Gを約30分間接触させることによって化学強化を行なった。その結果、ガラス基板の内周端面および外周端面のリチウムイオンおよびナトリウムイオンが、化学強化溶液中のナトリウムイオンおよびカリウムイオンにそれぞれ置換され、圧縮応力層が形成されることでガラス基板の主表面及び端面が強化された。   In the “chemical strengthening step” of S17, a surface reinforcing layer was formed on the main surface of the glass substrate 1G. Specifically, chemical strengthening was performed by bringing the glass substrate 1G into contact with a mixed solution of potassium nitrate (70%) and sodium nitrate (30%) heated to 300 ° C. for about 30 minutes. As a result, the lithium ion and sodium ion on the inner peripheral end surface and outer peripheral end surface of the glass substrate are respectively replaced with sodium ions and potassium ions in the chemical strengthening solution, and a compressive stress layer is formed, thereby forming the main surface of the glass substrate and The end face was strengthened.

S18の「第2ポリッシュ工程(精密研磨工程)」において、主表面に精密研磨を施した。この第2ポリッシュ工程は上述までの工程で発生、残存している主表面上の微小欠陥等を解消して鏡面状に仕上げること、反りを解消し所望の平坦度に仕上げることを目的とする。この第2ポリッシュ工程は、遊星歯車機構を有する両面研磨装置により研磨を行なった。研磨剤としては、平滑面を得る為にpH4以下の酸性のコロイダルシリカを含む研磨液を用いた。研磨後のガラス基板1Gの主表面は、原子間力顕微鏡(AFM:Atomic Force Microscope)で測定すると、測定範囲が1μm四方(1μm)において表面粗さRa(測定範囲:1μm四方)が3.0Å以下である。In the “second polishing step (precise polishing step)” of S18, the main surface was subjected to precision polishing. This second polishing step aims to eliminate the fine defects on the main surface that have been generated and remain in the above-described steps and finish it in a mirror shape, to eliminate warpage and finish it to a desired flatness. In the second polishing step, polishing was performed by a double-side polishing apparatus having a planetary gear mechanism. As the abrasive, a polishing liquid containing acidic colloidal silica having a pH of 4 or less was used in order to obtain a smooth surface. When the main surface of the polished glass substrate 1G is measured with an atomic force microscope (AFM), the measurement range is 1 μm square (1 μm 2 ) and the surface roughness Ra (measurement range: 1 μm square) is 3. 0 or less.

仮に、ガラス基板1Gを酸性の溶液と接触させると、ガラス基板1G中からアルカリ成分が溶出し、骨格の歪んだ結合の非常に切れやすい状態になる。このような状態のガラス基板1Gでは、磁気薄膜層の形成前に施されるアルカリ洗浄によって表面状態が変化してしまう。研磨直後は、ガラス基板1Gは非常に活性化しており、結合も伸びて切れやすい状態になっている。この状態で酸性の溶液と接触させると、磁性膜形成前のアルカリ洗浄耐性が非常に低くなる。   If the glass substrate 1G is brought into contact with the acidic solution, the alkali component is eluted from the glass substrate 1G, and the skeleton is distorted and the bond is very easily broken. In the glass substrate 1G in such a state, the surface state changes due to the alkali cleaning performed before the formation of the magnetic thin film layer. Immediately after polishing, the glass substrate 1G is very activated, and the bonds are also stretched and easily broken. When contacted with an acidic solution in this state, the alkali cleaning resistance before the formation of the magnetic film becomes very low.

本実施の形態に係る製造方法においては、コロイダルシリカを用いた精密研磨では、コロイダルシリカの粒子径を研磨に用いるのに適したサイズに凝集させるために、酸性で使用する。その一方で、研磨によって常に古い表面部分が削られて、常に新しい表面が露出するので、アルカリ成分が流出した古い表層部分は、研磨によって除去され、順次、新たな表層部分が露出する。このため、本実施の形態に係る製造方法においては、表層のアルカリ成分が流出して結合強度が弱くなるといった問題は特にない。   In the manufacturing method according to the present embodiment, in precision polishing using colloidal silica, the particle diameter of colloidal silica is used in an acidic manner in order to agglomerate to a size suitable for use in polishing. On the other hand, since the old surface portion is always scraped by polishing and the new surface is always exposed, the old surface layer portion from which the alkali component has flowed out is removed by polishing, and the new surface layer portion is sequentially exposed. For this reason, in the manufacturing method which concerns on this Embodiment, there is no problem that the alkaline component of a surface layer flows out and a bond strength becomes weak.

S19の「第1浸漬工程」において、精密研磨が施されたガラス基板1GをpH6.5以上8.5以下の溶液に5分以上浸漬させる。溶液のpHは好ましくは、7以上8以下である。溶液にガラス基板1Gを浸漬させる浸漬時間は、120分以下である。第1浸漬工程で用いられる溶液のpHは測定されており、当該溶液のpHが6.5を下回ると、pHが6.5以上8.5以下となるように、溶液に調整剤を添加する。調整剤としては、アルカリ性の調整剤を溶液に供給する。   In the “first dipping step” of S19, the glass substrate 1G subjected to precision polishing is dipped in a solution having a pH of 6.5 or more and 8.5 or less for 5 minutes or more. The pH of the solution is preferably 7 or more and 8 or less. The immersion time for immersing the glass substrate 1G in the solution is 120 minutes or less. The pH of the solution used in the first immersion step is measured, and when the pH of the solution is below 6.5, an adjusting agent is added to the solution so that the pH is 6.5 or more and 8.5 or less. . As the adjusting agent, an alkaline adjusting agent is supplied to the solution.

S20の「超音波洗浄工程」において、第1浸漬工程後のガラス基板1Gに高周波を用いて超音波洗浄を施す。   In the “ultrasonic cleaning process” of S20, the glass substrate 1G after the first immersion process is subjected to ultrasonic cleaning using a high frequency.

S21の「第2浸漬工程」において、超音波洗浄が施されたガラス基板1GをpH6.5以上8.5以下の溶液に5分以上浸漬させる。溶液のpHは好ましくは、7以上8以下である。溶液にガラス基板1Gを浸漬させる浸漬時間は、120分以下である。第2浸漬工程で用いられる溶液のpHは測定されており、当該溶液のpHが6.5を下回ると、pHが6.5以上8.5以下となるように、溶液に調整剤を添加する。調整剤としては、アルカリ性の調整剤を溶液に供給する。   In the “second immersion step” of S21, the glass substrate 1G that has been subjected to ultrasonic cleaning is immersed in a solution having a pH of 6.5 or more and 8.5 or less for 5 minutes or more. The pH of the solution is preferably 7 or more and 8 or less. The immersion time for immersing the glass substrate 1G in the solution is 120 minutes or less. The pH of the solution used in the second immersing step is measured, and when the pH of the solution is below 6.5, an adjusting agent is added to the solution so that the pH is 6.5 or more and 8.5 or less. . As the adjusting agent, an alkaline adjusting agent is supplied to the solution.

S22の「スクラブ洗浄工程」において、スクラブ洗浄装置を用いて、第2浸漬工程が施されたガラス基板1Gにスクラブ洗浄を施す。   In the “scrub cleaning step” of S22, scrub cleaning is performed on the glass substrate 1G subjected to the second immersion step using a scrub cleaning device.

S23の「第3浸漬工程」において、スクラブ洗浄が施されたガラス基板1GをpH6.5以上8.5以下の溶液に5分以上浸漬させる。溶液のpHは好ましくは、7以上8以下である。溶液にガラス基板1Gを浸漬させる浸漬時間は、120分以下である。第3浸漬工程で用いられる溶液のpHは測定されており、当該溶液のpHが6.5を下回ると、pHが6.5以上8.5以下となるように、溶液に調整剤を添加する。調整剤としては、アルカリ性の調整剤を溶液に供給する。   In the “third immersion step” of S23, the glass substrate 1G that has been scrubbed is immersed in a solution having a pH of 6.5 or more and 8.5 or less for 5 minutes or more. The pH of the solution is preferably 7 or more and 8 or less. The immersion time for immersing the glass substrate 1G in the solution is 120 minutes or less. The pH of the solution used in the third immersing step is measured, and when the pH of the solution is below 6.5, an adjusting agent is added to the solution so that the pH is 6.5 or more and 8.5 or less. . As the adjusting agent, an alkaline adjusting agent is supplied to the solution.

S24の「最終洗浄工程(Final Cleaning)」において、ガラス基板の主表面、端面の最終洗浄を実施する。これによりガラス基板上に残存する付着物を除去する。最終洗浄工程は、ガラス基板の製造工程の最後に行われる工程であり、適宜乾燥工程も含むものである。   In the “Final Cleaning” of S24, final cleaning of the main surface and the end surface of the glass substrate is performed. Thereby, the deposits remaining on the glass substrate are removed. The final cleaning process is a process performed at the end of the glass substrate manufacturing process, and includes a drying process as appropriate.

本実施の形態におけるガラス基板の製造方法は、以上のように構成される。このガラス基板の製造方法を用いることで、図1に示すガラス基板1Gが得られる。その後、このようにして得られたガラス基板1Gにアルカリ洗浄が施され、その後、磁気薄膜層が形成される。   The manufacturing method of the glass substrate in this Embodiment is comprised as mentioned above. The glass substrate 1G shown in FIG. 1 is obtained by using this glass substrate manufacturing method. Thereafter, the glass substrate 1G thus obtained is subjected to alkali cleaning, and then a magnetic thin film layer is formed.

次に、上記のように構成されたガラス基板1Gによれば、アルカリ処理を施したとしても、信号対雑音比(S/N比)の低下を十分に抑制された情報記録媒体用ガラス基板を得ることができる。   Next, according to the glass substrate 1G configured as described above, the glass substrate for an information recording medium in which the decrease in the signal-to-noise ratio (S / N ratio) is sufficiently suppressed even when the alkali treatment is performed. Can be obtained.

本出願の実施例は、60〜65(mol%)のSiOと、8〜12(mol%)のAlと、5〜12(mol%)のNaOと、0〜3(mol%)のKOと、6〜10(mol%)のMgOと、0〜5(mol%)のCaOとを含むガラス組成を用いて検証した。但し、ガラス組成はこれに限定されるものではなく、情報記録媒体用ガラス基板に用いる全組成で適用可能である。Examples of the present application, and SiO 2 of 60 to 65 (mol%), and Al 2 O 3 of 8 to 12 (mol%), and Na 2 O of 5~12 (mol%), 0~3 ( (mol%) K 2 O, 6 to 10 (mol%) MgO, and verification was performed using a glass composition containing 0 to 5 (mol%) CaO. However, the glass composition is not limited to this and can be applied to all compositions used for the glass substrate for information recording media.

図3に示すS18の「第2ポリッシュ工程(精密研磨工程)」を施したガラス基板に「第1浸漬工程」を施すときに、pHが各種異なる溶液に10分間浸漬させ、その後、S20の「超音波洗浄工程」とS22の「スクラブ洗浄工程」とS24の「最終洗浄工程」とを経ることで、下記表1に示す実施例1〜3と、比較例1〜3とに係るガラス基板を作製した。   When the “first dipping step” is performed on the glass substrate subjected to the “second polishing step (precision polishing step)” of S18 shown in FIG. 3, the glass substrate is dipped for 10 minutes in various solutions having different pH values, and then “ By passing through the “ultrasonic cleaning process”, the “scrub cleaning process” in S22, and the “final cleaning process” in S24, the glass substrates according to Examples 1 to 3 and Comparative Examples 1 to 3 shown in Table 1 below are obtained. Produced.

下記表1は、各実施例1〜3および各比較例1〜3によって作製されたガラス基板、100枚から、10枚を抜き取り、原子間力顕微鏡(AFM:Atomic Force Microscope)でRa測定(測定範囲:1μm×1μm)を行った。その後、pH11のNaOH溶液(40℃)で30分処理し、再度AFMでRa測定(測定範囲:1μm×1μm)を行ない、処理前後のRa変化を評価した結果を示す。   Table 1 below shows 10 glass substrates prepared according to each of Examples 1 to 3 and Comparative Examples 1 to 3, and 10 samples were extracted and measured with an atomic force microscope (AFM). Range: 1 μm × 1 μm). Then, it processed for 30 minutes by NaOH solution (40 degreeC) of pH11, Ra measurement (measurement range: 1 micrometer x 1 micrometer) was performed again by AFM, and the result of having evaluated the Ra change before and behind a process is shown.

下記表1は、各実施例1〜3および各比較例1〜3によって作製されたガラス基板の残り90枚のうち20枚に磁気薄膜層を形成し、電磁変換特性を評価、基準基板に対するSNR変化値を比較した結果を示す。   Table 1 below shows that a magnetic thin film layer is formed on 20 out of the remaining 90 glass substrates produced in each of Examples 1 to 3 and Comparative Examples 1 to 3, and electromagnetic conversion characteristics are evaluated. The result of comparing the change values is shown.

ガラス基板は100枚単位(100枚/1バッチ)で製造され、同一バッチでのバラツキは小さい事ので、上記のような評価とした。   The glass substrate was manufactured in units of 100 sheets (100 sheets / 1 batch), and since the variation in the same batch was small, the above evaluation was made.

電磁変換特性評価を行なう場合には、まず、得られたガラス基板にアルカリ性の溶液でガラス基板を洗浄し、その後、磁性膜を形成することで、情報記録媒体を制作する。制作された情報記録媒体についてスピンスタンドを用いて磁気ヘッドによる記録再生特性を調べることにより行った。具体的には、記録周波数を変えて記録密度を変化させて信号を記録し、この信号の再生出力を読み取ることにより調べた。磁気ヘッドとしては、垂直記録用単磁極ヘッド(記録用)、GMRヘッド(再生用)が一体となった垂直記録用マージ型ヘッドを用いた。   When evaluating electromagnetic conversion characteristics, first, the glass substrate is washed with an alkaline solution on the obtained glass substrate, and then an information recording medium is produced by forming a magnetic film. The produced information recording medium was examined by examining the recording / reproducing characteristics of the magnetic head using a spin stand. Specifically, the recording was performed by changing the recording frequency to change the recording density, recording the signal, and reading the reproduction output of this signal. As the magnetic head, a perpendicular recording merge type head in which a single pole head for recording (for recording) and a GMR head (for reproduction) were integrated was used.

Figure 0006196976
Figure 0006196976

上記表1の判定基準として下記の「A」、「B」、「C」、「D」を採用した。「A」は、SNR変化が−0.1db以下であることを示す。「B」は、SNR変化が−0.11〜−0.20dbであることを示す。「C」は、SNR変化が−0.21〜−0.30dbであることを示す。「D」は、SNR変化が−0.31db以下であることを示す。   The following “A”, “B”, “C”, and “D” were adopted as judgment criteria in Table 1 above. “A” indicates that the SNR change is −0.1 db or less. “B” indicates that the SNR change is −0.11 to −0.20 db. “C” indicates that the SNR change is −0.21 to −0.30 db. “D” indicates that the SNR change is −0.31 db or less.

比較例1については、Ra変化は小さかったが、浸漬工程後のRaが高くなり規格外の物が発生した。比較例3についても、同様に浸漬工程後のRaが悪化していた。表1から第1浸漬工程の溶液は、pHが6.5以上8.5以下であることが好ましいことが分かる。第1浸漬工程の溶液は、好ましくは、pHが7以上8以下であることが分かる。   As for Comparative Example 1, although the Ra change was small, Ra after the dipping process was increased, and non-standard products were generated. Similarly, in Comparative Example 3, Ra after the dipping process was deteriorated. It can be seen from Table 1 that the solution in the first immersion step preferably has a pH of 6.5 or more and 8.5 or less. It can be seen that the solution in the first immersion step preferably has a pH of 7 or more and 8 or less.

次に、上記のS21の「第2浸漬工程」で用いる溶液のpHと、SNR変化およびRa変化との関係について検討した。具体的には、S19の「第1浸漬工程」において、pHが7の溶液に10分間浸漬させたガラス基板にS20の超音波洗浄を施した後に、各種のpHの溶液にガラス基板を浸漬し(S21の「第2浸漬工程」)、その後、S22の「スクラブ洗浄工程」とS24の「最終洗浄工程」とを経ることで、下記の実施例A,B,Cに係るガラス基板を作製した。   Next, the relationship between the pH of the solution used in the “second soaking step” of S21 and the SNR change and Ra change was examined. Specifically, in the “first soaking step” of S19, the glass substrate immersed in a solution of pH 7 for 10 minutes is subjected to ultrasonic cleaning of S20, and then the glass substrate is immersed in solutions of various pHs. (S21 "second dipping process"), and then through the "scrub cleaning process" in S22 and the "final cleaning process" in S24, glass substrates according to the following Examples A, B, and C were produced. .

Figure 0006196976
Figure 0006196976

上記表2は、実施例A,B,Cに係るガラス基板について、上記実施例1〜3および比較例1〜3と同様にSNR変化(db)およびRa変化を測定した結果を示す。判定基準として、下記の「AA」、「BB」、「CC」、「DD」を採用した。「AA」は、SNR変化が−0.1db以下であることを示す。「BB」は、SNR変化が−0.11〜−0.20dbであることを示す。「CC」は、SNR変化が−0.21〜−0.30dbであることを示す。「DD」は、SNR変化が−0.31db以下であることを示す。   Table 2 above shows the results of measuring the SNR change (db) and the Ra change for the glass substrates according to Examples A, B, and C in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 3. The following “AA”, “BB”, “CC”, “DD” were adopted as judgment criteria. “AA” indicates that the SNR change is −0.1 db or less. “BB” indicates that the SNR change is −0.11 to −0.20 db. “CC” indicates that the SNR change is −0.21 to −0.30 db. “DD” indicates that the SNR change is −0.31 db or less.

上記表2からも明らかなように、S19の「第1浸漬工程」において、pHが7の溶液に10分間浸漬させたガラス基板にS20の超音波洗浄を施した後に、pHが6.5以上8.5以下の溶液に10分浸漬し、S22の「スクラブ洗浄工程」とS24の「最終洗浄工程」とを経ることで得られたガラス基板によれば、電磁変換特性のよい情報記録媒体を得ることができることが分かる。   As apparent from Table 2 above, in the “first soaking step” of S19, the glass substrate immersed in the solution having a pH of 7 for 10 minutes was subjected to ultrasonic cleaning of S20, and then the pH was 6.5 or more. According to the glass substrate obtained by immersing in a solution of 8.5 or less for 10 minutes and passing through the “scrub cleaning process” in S22 and the “final cleaning process” in S24, an information recording medium with good electromagnetic characteristics can be obtained. It can be seen that it can be obtained.

次に、第3浸漬工程で用いられる溶液のpHと、NR変化およびRa変化との関係について検討した。具体的には、pHが7の溶液に10分間浸漬させる「第1浸漬工程(S19)」と、「超音波洗浄工程(S20)」と、pHが7の溶液に10分間浸漬する「第2浸漬工程(S21)」と、「スクラブ洗浄工程(S22)」とを経た後、各種のpHの溶液にガラス基板を浸漬し(「第3浸漬工程(S23)」)、その後、「最終洗浄工程(S24)」を経ることで、下記の実施例a、b、cに係るガラス基板を作製した。下記表3は、実施例a,b,cについて、上記実施例1〜3および比較例1〜3と同様にSNR変化(db)およびRa変化を測定した結果を示す。   Next, the relationship between the pH of the solution used in the third immersing step, NR change, and Ra change was examined. Specifically, “first soaking step (S19)” soaking in a solution with pH 7 for 10 minutes, “ultrasonic cleaning step (S20)”, and “second soaking in a solution with pH 7 for 10 minutes” After the “immersion step (S21)” and the “scrub cleaning step (S22)”, the glass substrate is immersed in various pH solutions (“third immersion step (S23)”). By passing (S24) ", the glass substrate which concerns on the following Example a, b, c was produced. Table 3 below shows the results of measuring the SNR change (db) and the Ra change for Examples a, b, and c as in Examples 1 to 3 and Comparative Examples 1 to 3.

Figure 0006196976
Figure 0006196976

判定基準として「AAA」、「BBB」、「CCC」、「DDD」、「EEE」を採用した。「AAA」はSNR変化が+であることを示す。「BBB」はSNR変化が0〜−0.1dbであることを示す。「CCC」は、SNR変化が−0.1〜−0.20dbであることを示す。「DDD」は、SNR変化が−0.21〜−0.30dbであることを示す。「EEE」は、SNR変化が−0.31db以下であることを示す。+と言うのは基準に比べてS/N比が向上したことを表す。   “AAA”, “BBB”, “CCC”, “DDD”, “EEE” were adopted as judgment criteria. “AAA” indicates that the SNR change is +. “BBB” indicates that the SNR change is 0 to −0.1 db. “CCC” indicates that the SNR change is −0.1 to −0.20 db. “DDD” indicates that the SNR change is −0.21 to −0.30 db. “EEE” indicates that the SNR change is −0.31 db or less. “+” Indicates that the S / N ratio is improved as compared with the standard.

上記表3からも明らかなように、実施例a,b,cのいずれにおいても、電磁変換特性のよい情報記録媒体となるガラス基板を得ることができることが分かる。   As is clear from Table 3 above, it can be seen that in any of Examples a, b, and c, a glass substrate serving as an information recording medium having good electromagnetic conversion characteristics can be obtained.

上記表1〜3に示すように、所定のpHの溶液を用いた浸漬工程を設ける事で、SNR低下の改善が認められる。特に、研磨工程および/またはスクラブ洗浄工程等、物理的な刺激を与える工程の後に浸漬工程を設けると高い効果が見られる。   As shown in Tables 1 to 3 above, improvement in SNR reduction is recognized by providing an immersion step using a solution having a predetermined pH. In particular, when an immersion process is provided after a process of applying physical stimulation such as a polishing process and / or a scrub cleaning process, a high effect can be seen.

次に、溶液の浸漬時間と、Ra変化(Å)およびSNR変化(db)との関係について検討した。   Next, the relationship between the immersion time of the solution and the Ra change (Å) and SNR change (db) was examined.

具体的には、図3に示すS18の「第2ポリッシュ工程(精密研磨工程)」を施したガラス基板に、pH7の溶液に浸漬する(「第1浸漬工程」)浸漬時間を各種変化させて、その後、S20の「超音波洗浄工程」とS22の「スクラブ洗浄工程」とS24の「最終洗浄工程」とを経ることで、下記表4に示す実施例i〜ivに係るガラス基板を作製した。   Specifically, the immersion time is changed variously in a glass substrate subjected to the “second polishing step (precision polishing step)” in S18 shown in FIG. 3 (“first immersion step”). Then, the glass substrate according to Examples i to iv shown in Table 4 below was manufactured through the “ultrasonic cleaning process” in S20, the “scrub cleaning process” in S22, and the “final cleaning process” in S24. .

Figure 0006196976
Figure 0006196976

判定基準は、「A1」「A2」「A3」「A4」「A5」を採用した。「A1」は、SNR変化が+であることを示す。「A2」は、SNR変化が0〜−0.1dbであることを示す。「A3」は、SNR変化が−0.11〜−0.20dbであることを示す。「A4」は、SNR変化が−0.21〜−0.30dbであることを示す。「A5」は、SNR変化が−0.31db以下であることを示す。   “A1”, “A2”, “A3”, “A4”, and “A5” were adopted as judgment criteria. “A1” indicates that the SNR change is +. “A2” indicates that the SNR change is 0 to −0.1 db. “A3” indicates that the SNR change is −0.11 to −0.20 db. “A4” indicates that the SNR change is −0.21 to −0.30 db. “A5” indicates that the SNR change is −0.31 db or less.

表4から明らかなように、第1浸漬工程における浸漬時間は、120分以下とするのが好ましいことが分かる。   As is apparent from Table 4, it is understood that the immersion time in the first immersion process is preferably 120 minutes or less.

以上、本発明の実施の形態および実施例について説明したが、今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、情報記録媒体用ガラス基板の製造方法、情報記録媒体の製造方法、および、情報記録媒体用ガラス基板に適用することができる。 The present invention can be applied to a method for producing a glass substrate for information recording medium, a method for producing an information recording medium, and a glass substrate for information recording medium .

1 情報記録媒体、1G 情報記録媒体用ガラス基板、12 外周端面、13 内周端面、14,15 主表面、23 磁気薄膜層。   DESCRIPTION OF SYMBOLS 1 Information recording medium, 1G Glass substrate for information recording media, 12 Outer peripheral end surface, 13 Inner peripheral end surface, 14, 15 Main surface, 23 Magnetic thin film layer.

Claims (10)

情報記録媒体に用いられる情報記録媒体用ガラス基板の製造方法であって、
ガラス部材の主表面を酸性のコロイダルシリカを含む研磨液で精密研磨する精密研磨工程と、
前記精密研磨工程後に、溶液に5分以上浸漬させる第1浸漬工程と、
前記第1浸漬工程後に前記ガラス部材に超音波洗浄を施す超音波洗浄工程と、
を備え、
前記精密研磨工程において精密研磨された前記ガラス部材の表面粗さRaは、1μm2の測定範囲において、3.0Å以下であり、
前記第1浸漬工程の前記溶液のpHは、6.5以上8.5以下であり、
前記溶液のpHが6.5を下回ると、pHが6.5以上8.5以下となるように、前記溶液に調整剤を添加する工程を備える、情報記録媒体用ガラス基板の製造方法。
A method for producing a glass substrate for an information recording medium used for an information recording medium,
A precision polishing step of precisely polishing the main surface of the glass member with a polishing liquid containing acidic colloidal silica;
A first immersion step of immersing in the solution for 5 minutes or more after the precision polishing step;
An ultrasonic cleaning step of performing ultrasonic cleaning on the glass member after the first immersion step;
With
The surface roughness Ra of the glass member precisely polished in the precision polishing step is 3.0 mm or less in a measurement range of 1 μm2,
PH of the solution of the first immersion step state, and are 6.5 to 8.5,
A method for producing a glass substrate for an information recording medium , comprising a step of adding a conditioner to the solution so that the pH becomes 6.5 or more and 8.5 or less when the pH of the solution is lower than 6.5 .
情報記録媒体に用いられる情報記録媒体用ガラス基板の製造方法であって、
ガラス部材の主表面を酸性のコロイダルシリカを含む研磨液で精密研磨する精密研磨工程と、
前記精密研磨工程後に、溶液に浸漬させる第1浸漬工程と、
前記第1浸漬工程後に前記ガラス部材に超音波洗浄を施す超音波洗浄工程と、
を備え、
前記精密研磨工程において精密研磨された前記ガラス部材の表面粗さRaは、1μm2の測定範囲において、3.0Å以下であり、
前記第1浸漬工程は、
40℃、pH11の水酸化ナトリウム溶液に30分浸漬させるアルカリ処理の前後において主表面のRaをAFMで測定したときに、前記アルカリ処理の前後のRaの変化が0.45Å以下となるように浸漬する工程である、
情報記録媒体用ガラス基板の製造方法。
A method for producing a glass substrate for an information recording medium used for an information recording medium,
A precision polishing step of precisely polishing the main surface of the glass member with a polishing liquid containing acidic colloidal silica;
A first dipping step of dipping in the solution after the precision polishing step;
An ultrasonic cleaning step of performing ultrasonic cleaning on the glass member after the first immersion step;
With
The surface roughness Ra of the glass member precisely polished in the precision polishing step is 3.0 mm or less in a measurement range of 1 μm2,
The first immersion step includes
Immersion so that the change in Ra before and after the alkali treatment is 0.45 mm or less when the Ra of the main surface is measured by AFM before and after the alkali treatment immersed in a sodium hydroxide solution at 40 ° C. and pH 11 for 30 minutes. Is the process of
A method for producing a glass substrate for an information recording medium.
前記超音波洗浄工程後に、前記ガラス部材をpH6.5以上8.5以下の溶液に5分以上浸漬する第2浸漬工程をさらに備えた、請求項1又は2に記載の情報記録媒体用ガラス基板の製造方法。   The glass substrate for information recording media according to claim 1 or 2, further comprising a second immersing step of immersing the glass member in a solution having a pH of 6.5 or more and 8.5 or less after the ultrasonic cleaning step for 5 minutes or more. Manufacturing method. 前記超音波洗浄工程後に前記ガラス部材にスクラブ洗浄を施すスクラブ洗浄工程と、
前記スクラブ洗浄工程後に、pH6.5以上8.5以下の溶液に5分以上浸漬させる第3浸漬工程と、
をさらに備えた、請求項1又は2に記載の情報記録媒体用ガラス基板の製造方法。
A scrub cleaning step of scrubbing the glass member after the ultrasonic cleaning step;
A third immersing step of immersing in a solution having a pH of 6.5 or more and 8.5 or less for 5 minutes or more after the scrub cleaning step;
The manufacturing method of the glass substrate for information recording media of Claim 1 or 2 further provided.
前記溶液のpHが6.5を下回ると、pHが6.5以上8.5以下となるように、前記溶液に調整剤を添加する工程をさらに備えた、請求項2に記載の情報記録媒体用ガラス基板の製造方法。 The information recording medium according to claim 2 , further comprising a step of adding a conditioner to the solution such that when the pH of the solution falls below 6.5, the pH becomes 6.5 or more and 8.5 or less. Method for manufacturing glass substrate. 前記第1浸漬工程の前記溶液のpHは7以上8以下である、請求項1又は2に記載の情報記録媒体用ガラス基板の製造方法。   The manufacturing method of the glass substrate for information recording media of Claim 1 or 2 whose pH of the said solution of a said 1st immersion process is 7-8. 前記第1浸漬工程における前記浸漬時間は、120分以下である、請求項1又は2に記載の情報記録媒体用ガラス基板の製造方法。   The method for producing a glass substrate for an information recording medium according to claim 1 or 2, wherein the immersion time in the first immersion step is 120 minutes or less. 請求項1から7のいずれかに記載の情報記録媒体用ガラス基板の製造方法により得られた情報記録媒体用ガラス基板の主表面上に、少なくとも磁性膜を形成する工程を有することを特徴とする情報記録媒体の製造方法。   It has the process of forming at least a magnetic film on the main surface of the glass substrate for information recording media obtained by the manufacturing method of the glass substrate for information recording media in any one of Claim 1 to 7 characterized by the above-mentioned. A method for manufacturing an information recording medium. 40℃、pH11の水酸化ナトリウム溶液で30分浸漬させるアルカリ処理の前後において主表面のRaをAFMで測定したときに、前記アルカリ処理の前後のRaの変化が0.45Å以下であることを特徴とする、情報記録媒体用ガラス基板。   When the Ra of the main surface is measured by AFM before and after the alkali treatment immersed in a sodium hydroxide solution at 40 ° C. and pH 11 for 30 minutes, the change in Ra before and after the alkali treatment is 0.45 mm or less. A glass substrate for an information recording medium. 当該情報記録媒体用ガラス基板は、アモルファスガラスであり、表面粗さが、2.0Å以下である、請求項9に記載の情報記録媒体用ガラス基板。The glass substrate for information recording media according to claim 9, wherein the glass substrate for information recording media is amorphous glass and has a surface roughness of 2.0 mm or less.
JP2014536624A 2012-09-20 2013-06-18 Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, and glass substrate for information recording medium Active JP6196976B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012206989 2012-09-20
JP2012206989 2012-09-20
PCT/JP2013/066707 WO2014045654A1 (en) 2012-09-20 2013-06-18 Method for producing glass substrate for information recording medium

Publications (2)

Publication Number Publication Date
JPWO2014045654A1 JPWO2014045654A1 (en) 2016-08-18
JP6196976B2 true JP6196976B2 (en) 2017-09-13

Family

ID=50340985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014536624A Active JP6196976B2 (en) 2012-09-20 2013-06-18 Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, and glass substrate for information recording medium

Country Status (5)

Country Link
JP (1) JP6196976B2 (en)
CN (1) CN104584128B (en)
MY (1) MY181715A (en)
SG (1) SG11201501492YA (en)
WO (1) WO2014045654A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311336A (en) * 1999-04-28 2000-11-07 Nippon Sheet Glass Co Ltd Manufacture of substrate for magnetic disk, substrate for magnetic disk resulted by this method and magnetic recording medium
JP2002074653A (en) * 2000-08-30 2002-03-15 Hoya Corp Method of manufacturing glass substrate for information recording medium and glass substrate for information recording medium as well as method of manufacturing information recording medium and information recording medium
WO2008004470A1 (en) * 2006-07-03 2008-01-10 Konica Minolta Opto, Inc. Method for manufacturing glass substrate for information recording medium
JP5192953B2 (en) * 2007-09-14 2013-05-08 三洋化成工業株式会社 Glass substrate cleaner for magnetic disk
SG184735A1 (en) * 2007-09-14 2012-10-30 Sanyo Chemical Ind Ltd Cleaning agent for electronic material
JP5752971B2 (en) * 2010-03-31 2015-07-22 Hoya株式会社 Manufacturing method of glass substrate for information recording medium
JP5975654B2 (en) * 2011-01-27 2016-08-23 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Also Published As

Publication number Publication date
CN104584128B (en) 2018-01-23
SG11201501492YA (en) 2015-05-28
WO2014045654A1 (en) 2014-03-27
MY181715A (en) 2021-01-04
JPWO2014045654A1 (en) 2016-08-18
CN104584128A (en) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2008004471A1 (en) Process for producing glass substrate, magnetic disc and process for manufacturing the same
JP5635078B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6105488B2 (en) Manufacturing method of glass substrate for information recording medium
JP5371667B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP4860580B2 (en) Magnetic disk substrate and magnetic disk
JP6196976B2 (en) Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, and glass substrate for information recording medium
JP5235916B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and magnetic disk
JP2014191851A (en) Manufacturing method of glass substrate for information recording medium
JP3564631B2 (en) A method for manufacturing a glass substrate for an information recording medium, a method for manufacturing an information recording medium, a method for manufacturing a glass substrate for a magnetic disk, and a method for manufacturing a magnetic disk.
JP6267115B2 (en) Information recording medium glass substrate, information recording medium glass substrate manufacturing method, magnetic recording medium, and magnetic recording medium manufacturing method
JP6021911B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM AND METHOD FOR PRODUCING GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM
JP5303741B1 (en) Manufacturing method of glass substrate for information recording medium
JP5492276B2 (en) Glass substrate for magnetic disk and magnetic disk
JP5706250B2 (en) Glass substrate for HDD
JP6131124B2 (en) Glass substrate for information recording medium and information recording medium
JP5386037B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2012203960A (en) Manufacturing method for glass substrate for magnetic information recording medium
JP2014010869A (en) Method for manufacturing glass substrate for hdd
WO2014045653A1 (en) Method for manufacturing glass substrate for information recording medium
JP2005285276A (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk and magnetic disk
JP2014063544A (en) Method of manufacturing glass substrate for information recording medium
JP6081580B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2012203959A (en) Manufacturing method for glass substrate for magnetic information recording medium
JP2013012281A (en) Method for manufacturing glass substrate for hdd
WO2015041011A1 (en) Method for manufacturing glass substrate for information recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6196976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250