JP5371667B2 - Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk - Google Patents
Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk Download PDFInfo
- Publication number
- JP5371667B2 JP5371667B2 JP2009227668A JP2009227668A JP5371667B2 JP 5371667 B2 JP5371667 B2 JP 5371667B2 JP 2009227668 A JP2009227668 A JP 2009227668A JP 2009227668 A JP2009227668 A JP 2009227668A JP 5371667 B2 JP5371667 B2 JP 5371667B2
- Authority
- JP
- Japan
- Prior art keywords
- glass substrate
- polishing
- acid
- magnetic disk
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
本発明は、コンピュータ等の記録媒体として用いられる磁気ディスク用のガラス基板の製造方法及び磁気ディスクの製造方法に関する。 The present invention relates to a method for manufacturing a glass substrate for a magnetic disk used as a recording medium for a computer or the like, and a method for manufacturing a magnetic disk.
近年、情報技術の高度化に伴い、情報記録技術、特に磁気記録技術は著しく進歩している。磁気記録媒体のひとつであるHDD(ハードディスクドライブ)等の磁気記録媒体用基板としては、アルミニウム基板が広く用いられてきた。しかし磁気ディスクの小型化、薄板化、及び高記録密度化に伴い、アルミニウム基板に比べ基板表面の平坦性及び基板強度に優れたガラス基板に徐々に置き換わりつつある。 In recent years, with the advancement of information technology, information recording technology, particularly magnetic recording technology, has made remarkable progress. An aluminum substrate has been widely used as a substrate for a magnetic recording medium such as an HDD (Hard Disk Drive) which is one of the magnetic recording media. However, with the miniaturization, thinning, and high recording density of magnetic disks, glass substrates that are superior in substrate surface flatness and substrate strength compared to aluminum substrates are gradually being replaced.
また、磁気ディスクの主表面を有効利用するために、従来のCSS(Contact Start Stop)方式に代えて、LUL(Load UnLoad)方式が用いられるようになってきた。CSS方式は、磁気ディスクの主表面上に設けたCSSゾーンに磁気ヘッドを接触させて退避させる方式であり、LUL方式は磁気ディスクの外部に設けたランプ(傾斜部)に磁気ヘッドを退避させる方式である。CSSゾーンは記録領域として使用できないばかりか、磁気ヘッドの吸着を防止するためにある程度の表面粗さとする必要があった。しかし、LUL方式を採用したことにより磁気ディスク全面を記録領域として利用可能となるとともに、その表面にあえて凹凸形状を設ける必要がなく、磁気ディスク表面を極めて平滑化することが可能となった。 In order to effectively use the main surface of the magnetic disk, an LUL (Load UnLoad) method has been used instead of the conventional CSS (Contact Start Stop) method. The CSS system is a system in which a magnetic head is brought into contact with a CSS zone provided on the main surface of the magnetic disk and retracted, and the LUL system is a system in which the magnetic head is retracted to a ramp (inclined portion) provided outside the magnetic disk. It is. The CSS zone cannot only be used as a recording area, but also has to have a certain surface roughness to prevent the magnetic head from being attracted. However, by adopting the LUL method, the entire surface of the magnetic disk can be used as a recording area, and it is not necessary to provide an uneven shape on the surface, and the surface of the magnetic disk can be extremely smoothed.
また、磁気記録技術の高密度化に伴い、磁気ヘッドの方も薄膜ヘッドから、磁気抵抗型ヘッド(MRヘッド)、大型磁気抵抗型ヘッド(GMRヘッド)へと推移してきている。しかし、GMRヘッドは感度が高く、また高記録密度化もあいまって、ヘッドと基板が離れていては隣接する記録ビットの情報を拾ってしまうために、磁気ヘッドの浮上量を低く抑える必要がある。 Further, as the magnetic recording technology has been increased in density, the magnetic head has been changed from a thin film head to a magnetoresistive head (MR head) and a large magnetoresistive head (GMR head). However, the GMR head has high sensitivity and high recording density, and if the head and the substrate are separated from each other, information on adjacent recording bits is picked up. Therefore, it is necessary to keep the flying height of the magnetic head low. .
これらの事情から、磁気ヘッドの低浮上量化が求められており、磁気ヘッドの基板からの浮上量が8nm程度にまで狭くなってきている。 Under these circumstances, the flying height of the magnetic head is required to be reduced, and the flying height of the magnetic head from the substrate is narrowed to about 8 nm.
磁気ヘッドを低浮上量化した場合、ヘッドクラッシュ障害やサーマルアスペリティ障害を引き起こす場合がある。ヘッドクラッシュ障害は、磁気ヘッドが磁気ディスクの凸部に衝突して損傷する障害である。サーマルアスペリティ障害とは、磁気ディスク面上の微小な凸形状あるいは凹形状上を磁気ヘッドが浮上飛行しながら通過するときに、空気の断熱圧縮または接触により磁気抵抗効果型素子が加熱されることにより、読み出しエラーを生じる障害である。したがって磁気抵抗型素子を搭載した磁気ヘッドに対しては、磁気ディスク表面は極めて高度な平滑度及び平坦度、すなわち低粗さが求められる。 If the flying height of the magnetic head is reduced, a head crash failure or thermal asperity failure may occur. The head crash failure is a failure in which the magnetic head collides with the convex portion of the magnetic disk and is damaged. Thermal asperity failure means that the magnetoresistive element is heated by adiabatic compression or contact of air when the magnetic head passes over a minute convex or concave shape on the magnetic disk surface while flying. This is a failure that causes a read error. Therefore, for a magnetic head equipped with a magnetoresistive element, the magnetic disk surface is required to have extremely high smoothness and flatness, that is, low roughness.
特に、最近では、特許文献1に記載されているように、記録密度をより一層向上させるために、垂直磁気記録方式が主式方式となりつつある。この垂直磁気記録媒体の場合には、面内磁気記録方式の場合と比べて、記録密度が高いため、ガラス基板の粗さの影響がより顕著に表れやすい。このため、ガラス基板には、より一層の低粗さが求められる。 In particular, recently, as described in Patent Document 1, in order to further improve the recording density, the perpendicular magnetic recording method is becoming the main method. In the case of this perpendicular magnetic recording medium, since the recording density is higher than in the case of the in-plane magnetic recording method, the influence of the roughness of the glass substrate is more likely to appear. For this reason, the glass substrate is required to have even lower roughness.
また、上記のような状況において、より低粗さを実現するためには、ガラス基板の表面粗さを決定する工程に着目する必要があり、研磨液(slurry)のpHを適正に調整する必要がある。すなわち、研磨液のpHと研磨レートには相関性があり、例えば、アルミノシリケート系ガラスでは、基本的に酸性側ほど研磨レートが速くなる傾向にある。しかし、研磨工程を繰返すと、研磨液のpHが上昇してしまい、研磨レートが低下してしまうという問題がある。 Further, in order to achieve lower roughness in the above situation, it is necessary to pay attention to the process of determining the surface roughness of the glass substrate, and it is necessary to appropriately adjust the pH of the polishing liquid (slurry). There is. That is, there is a correlation between the pH of the polishing liquid and the polishing rate. For example, in an aluminosilicate glass, the polishing rate basically tends to be higher on the acidic side. However, if the polishing process is repeated, there is a problem that the pH of the polishing liquid increases and the polishing rate decreases.
そこで、従来、研磨液のpH上昇を抑制するため、酒石酸など1種類で緩衝性を示す物質を研磨液に添加していた。 Therefore, conventionally, in order to suppress an increase in pH of the polishing liquid, one kind of buffering material such as tartaric acid has been added to the polishing liquid.
一方、ガラス基板の表面粗さの低下に伴う新たな現象として、従来では問題にならなかった研磨、洗浄間でのインターフェースを介して起こる表面粗さ上昇の問題が明らかとなってきている。研磨後の表面粗さ(Ra)がRa0.15nm以下のガラス基板では、酸浸漬後にアルカリ浸漬を組み合わせると、表面粗さが大きく上昇する傾向が確認されている。酸のpHが低い、つまり強酸性ほど、以後のアルカリ浸漬による粗さ上昇が大きくなる。 On the other hand, as a new phenomenon associated with a decrease in the surface roughness of the glass substrate, a problem of an increase in surface roughness that has occurred through an interface between polishing and cleaning, which has not been a problem in the past, has become apparent. In a glass substrate having a surface roughness (Ra) after polishing of 0.15 nm or less after polishing, a tendency to greatly increase the surface roughness is confirmed when combined with alkali immersion after acid immersion. The lower the pH of the acid, that is, the stronger the acidity, the greater the roughness increase due to subsequent alkali soaking.
また、研磨後の洗浄には、アルカリ性の薬液による洗浄が必ず実施される。つまり、研磨工程での研磨液のpHが低いほど、以後の洗浄による表面粗さ上昇が大きくなる問題がある。そこで、表面粗さの低いガラス基板では、研磨、洗浄間でのインターフェースを介して起こる表面粗さ上昇を抑制するため、研磨液のpHを従来のpH2程度からpH3ないし4以上の弱酸性領域に設定しなければならなくなった。 In addition, cleaning with an alkaline chemical solution is always performed for cleaning after polishing. That is, there is a problem that the lower the pH of the polishing liquid in the polishing process, the greater the increase in surface roughness due to subsequent cleaning. Therefore, in the case of a glass substrate having a low surface roughness, the pH of the polishing liquid is changed from a conventional pH of about 2 to a weakly acidic region of pH 3 to 4 or more in order to suppress an increase in surface roughness that occurs through an interface between polishing and cleaning. I had to set it.
ところで、最終研磨工程で研磨終了直後に、ガラス基板に対してコンタミが強固に付着している場合には、その後に薬液洗浄を実施しても、ガラス基板からコンタミを容易に除去できない。現在、ガラス基板の表面粗さは、Ra0.1nm程度となっているが、粗さの造り込みが行われる最終研磨以後に、強アルカリや強酸などの薬液による洗浄を実施すると、基板粗さが大きく上昇してしまうという問題がある。 By the way, immediately after completion of polishing in the final polishing step, when the contamination is firmly attached to the glass substrate, the contamination cannot be easily removed from the glass substrate even if chemical cleaning is performed thereafter. At present, the surface roughness of the glass substrate is about 0.1 nm Ra, but when the substrate is cleaned with a chemical such as a strong alkali or strong acid after the final polishing in which the roughness is built, the substrate roughness is reduced. There is a problem that it rises greatly.
また、研磨液をpH3ないし4以上の弱酸性領域としても、研磨液の繰り返し使用によって起こる研磨液のpH上昇を抑制する必要がある。しかし、pH3や4以上での弱酸性領域では、添加剤種の液性が酸性であることに起因する影響から、添加剤種の添加量、つまり、添加濃度の違いにより研磨液のpHが大きく変動してしまう問題が発現した。 Further, even if the polishing liquid is set to a weakly acidic region having a pH of 3 to 4 or more, it is necessary to suppress an increase in the pH of the polishing liquid caused by repeated use of the polishing liquid. However, in the weakly acidic region at pH 3 and 4 or more, the pH of the polishing liquid is large due to the additive amount of the additive species, that is, the difference in additive concentration, due to the influence of the liquidity of the additive species. A problem that fluctuated was developed.
傾向的には、研磨液の酸性度が弱い弱酸性領域ほど、添加濃度を少量にしなければならない。しかし、添加濃度が少量になると、緩衝作用が弱くなってしまう。 In trend, the weakly acidic region where the acidity of the polishing liquid is weaker, the additive concentration must be reduced. However, when the added concentration is small, the buffering action is weakened.
そこで、本発明は、低粗さを実現するために、研磨工程後の洗浄工程において、比較的希薄な薬液条件でも、研磨工程においてガラス基板に付着したコンタミを確実に除去でき、また、研磨液のpHを弱酸性領域とした場合においても、研磨液の繰り返し使用によって起こるpH上昇を抑制できる研磨液を用いた磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法を提供することを目的とする。 Therefore, in order to realize low roughness, the present invention can reliably remove the contaminants adhering to the glass substrate in the polishing step even in a relatively dilute chemical solution condition in the cleaning step after the polishing step. An object of the present invention is to provide a method for producing a glass substrate for a magnetic disk and a method for producing a magnetic disk using a polishing liquid that can suppress an increase in pH caused by repeated use of the polishing liquid even when the pH of the liquid is in a weakly acidic region. To do.
前述の課題を解決し、前記目的を達成するため、本発明は、ガラス基板に付着するコンタミの総量の低減及び、ガラス基板に付着しているコンタミの付着力の低減を図り、また、研磨工程及び洗浄工程において、少なくとも1種類の同じ薬液を使用することにより、研磨工程で付着したコンタミを洗浄工程において除去し易くするものである。 In order to solve the above-described problems and achieve the above object, the present invention aims to reduce the total amount of contaminants adhering to the glass substrate, reducing the adhesion force of contaminants adhering to the glass substrate, and polishing process. In the cleaning step, at least one type of the same chemical solution is used, so that the contamination adhered in the polishing step can be easily removed in the cleaning step.
まず、コンタミの総量の低減及び付着力の低減については、洗浄により容易な除去が難しいコンタミを研磨液(slurry)液中に安定的に分散させる必要がある。これについては、ターゲットのコンタミに対して、キレート作用を示す物質及び分散作用を示す物質の2成分以上の組み合わせにより実施する。 First, regarding the reduction of the total amount of contamination and the reduction of adhesion force, it is necessary to stably disperse the contamination that is difficult to remove by cleaning in the polishing liquid. About this, it carries out by the combination of 2 or more components of the substance which shows a chelating action, and the substance which shows a dispersion | distribution action with respect to the target contamination.
次に、研磨工程で付着したコンタミを洗浄工程において除去し易くするには、研磨工程において使用する研磨液に、洗浄工程に加える物質と同じ物質を添加する。 Next, in order to make it easier to remove the contaminants attached in the polishing process in the cleaning process, the same substance as that added to the cleaning process is added to the polishing liquid used in the polishing process.
すなわち、ガラス基板に付着するコンタミ種に対して効果的に作用する添加剤種を研磨剤に加え、コンタミのガラス基板への付着量及び付着力を抑制することができる。その後、洗浄工程にて研磨剤添加剤種と同一物質を含む薬液洗浄を実施することにより、ガラス基板に付着したコンタミを除去し易くすることができる。 That is, an additive species that effectively acts on the contamination species adhering to the glass substrate can be added to the abrasive to suppress the adhesion amount and adhesion force of the contamination to the glass substrate. Thereafter, contamination that adheres to the glass substrate can be easily removed by performing chemical cleaning including the same substance as the abrasive additive species in the cleaning step.
また、洗浄工程においては、アルカリ工程、酸工程、アルカリ工程の基本的には3つの順序で洗浄が実施されるが、この3つの工程すべてにおいて、同一の添加剤種が添加されていることにより、コンタミ除去能力を高めることができる。 In the cleaning process, the alkali process, the acid process, and the alkali process are basically performed in three orders. In all three processes, the same additive species is added. , The ability to remove contamination can be increased.
また、本発明においては、前記目的の達成のため、緩衝作用を示す組み合わせとなるような任意の2成分を組み合わせて緩衝組成とし、2成分の添加組成比率をかえることにより、目的のpHを持つ緩衝液組成を可能とする。これより、緩衝成分が1種類であるとときのように、添加濃度によりpHが変動してしまうという制約を受けることなく、添加量を自由に設定できるようになった。 Further, in the present invention, in order to achieve the above object, a buffer composition is obtained by combining two arbitrary components that form a combination exhibiting a buffering action, and the target pH is obtained by changing the ratio of the two components added. Allows buffer composition. As a result, the amount of addition can be freely set without being restricted by the fact that the pH varies depending on the concentration of addition as in the case where there is only one buffer component.
特に、研磨液のpHを4程度の弱酸領域では、従来、緩衝成分の大量添加が不可能であったが、2成分組み合わせにより、大量添加が可能となり、研磨液のpHの安定性が増した結果、研磨液の繰り返し使用によって起こる研磨液のpHの上昇を大幅に抑制することができた。 In particular, in the weak acid region where the pH of the polishing liquid is about 4, it was conventionally impossible to add a large amount of a buffer component, but a combination of the two components enabled a large amount of addition, and the pH stability of the polishing liquid increased. As a result, an increase in the pH of the polishing liquid caused by repeated use of the polishing liquid could be significantly suppressed.
すなわち、本発明は、以下の構成のいずれか一を有するものである。 That is, the present invention has any one of the following configurations.
〔構成1〕
円盤状のガラス基板の両主表面に研磨パッドを押圧させ、これらガラス基板及び研磨パッドとの間に研磨材を含む研磨液を供給しながら、前記ガラス基板と前記研磨パッドとを相対的に移動させて、ガラス基板の主表面を研磨して、磁気ディスク用ガラス基板を製造する製造方法において、研磨液は、ガラス基板に付着したコンタミに対してキレート作用を示す物質及び分散作用を示す物質の2成分以上を含み、これら物質は、酸性を示す弱酸及びアルカリ性を示す弱酸塩の2成分からなる緩衝成分であり、研磨工程後に実施される洗浄工程における洗浄液にも含まれていることを特徴とするものである。
[Configuration 1]
A polishing pad is pressed against both main surfaces of a disk-shaped glass substrate, and the glass substrate and the polishing pad are relatively moved while supplying a polishing liquid containing an abrasive between the glass substrate and the polishing pad. In the manufacturing method of manufacturing the glass substrate for a magnetic disk by polishing the main surface of the glass substrate, the polishing liquid is made up of a substance that exhibits a chelating action and a substance that exhibits a dispersing action on contaminants attached to the glass substrate. It contains two or more components, and these substances are buffer components composed of two components, a weak acid showing acidity and a weak acid salt showing alkalinity, and are also included in a cleaning liquid in a cleaning process performed after the polishing process. To do.
〔構成2〕
円盤状のガラス基板の両主表面に研磨パッドを押圧させ、これらガラス基板及び研磨パッドとの間に研磨材を含む研磨液を供給しながら、ガラス基板と研磨パッドとを相対的に移動させて、ガラス基板の主表面を研磨して、磁気ディスク用ガラス基板を製造する製造方法において、研磨液は、研磨液のpHを弱酸性領域にするための酸性物質と、酸性を示す弱酸及びアルカリ性を示す弱酸塩の2成分からなる緩衝成分とを含み、弱酸性領域の緩衝液となっており、2成分からなる緩衝成分は、研磨工程後に実施される洗浄工程における洗浄液にも含まれていることを特徴とするものである。
[Configuration 2 ]
The polishing pad is pressed against both main surfaces of the disk-shaped glass substrate, and the glass substrate and the polishing pad are relatively moved while supplying a polishing liquid containing an abrasive between the glass substrate and the polishing pad. In the manufacturing method of manufacturing the glass substrate for magnetic disk by polishing the main surface of the glass substrate, the polishing liquid comprises an acidic substance for bringing the pH of the polishing liquid into a weakly acidic region , and a weak acid and an alkalinity indicating acidity. And a buffer solution consisting of two components of the weak acid salt shown, and is a buffer solution in a weakly acidic region , and the buffer component consisting of two components is also included in the cleaning solution in the cleaning step performed after the polishing step It is characterized by.
〔構成3〕
構成1、または、構成2を有する磁気ディスク用ガラス基板の製造方法において、緩衝成分は、酢酸、リンゴ酸、マロン酸、コハク酸、クエン酸、酒石酸、リン酸、ホスフィン酸、ホスホン酸、ピロリン酸、トリポリリン酸、ヒドロキシエタンホスホン酸(HEDP)、アミノトリメチレンホスホン酸(NTMP)のいずれかと、それらのいずれかの塩を任意に組み合わせた組成であることを特徴とするものである。
[Configuration 3 ]
In the method for producing a glass substrate for a magnetic disk having Configuration 1 or Configuration 2 , the buffer component is acetic acid, malic acid, malonic acid, succinic acid, citric acid, tartaric acid, phosphoric acid, phosphinic acid, phosphonic acid, pyrophosphoric acid , Tripolyphosphoric acid, hydroxyethanephosphonic acid (HEDP), aminotrimethylenephosphonic acid (NTMP), and any combination of these salts.
〔構成4〕
構成1乃至請求項3のいずれか一を有する磁気ディスク用ガラス基板の製造方法により得られたガラス基板の表面に、少なくとも磁性層を形成することを特徴とするものである。
[Configuration 4 ]
At least a magnetic layer is formed on the surface of the glass substrate obtained by the method for producing a glass substrate for a magnetic disk having any one of Structures 1 to 3 .
〔構成5〕
構成4を有する磁気ディスクの製造方法において、磁気ディスクは、垂直磁気記録方式用磁気ディスクであって、磁性層は、複数の層からなり、少なくとも1層は、軟磁性層であることを特徴とするものである。
[Configuration 5 ]
In the method of manufacturing a magnetic disk having Configuration 4 , the magnetic disk is a magnetic disk for perpendicular magnetic recording system, the magnetic layer is composed of a plurality of layers, and at least one layer is a soft magnetic layer. To do.
本発明においては、研磨工程において用いる研磨液は、ガラス基板に付着したコンタミに対してキレート作用を示す物質及び分散作用を示す物質の2成分以上を含み、これら物質は、研磨工程後に実施される洗浄工程における洗浄液にも含まれているので、ガラス基板に付着するコンタミの総量の低減及びガラス基板に付着しているコンタミの付着力の低減が図られ、また、研磨工程で付着したコンタミを洗浄工程において除去し易くすることができる。 In the present invention, the polishing liquid used in the polishing step contains two or more components of a substance exhibiting a chelating action and a substance exhibiting a dispersing action on contaminants attached to the glass substrate, and these substances are implemented after the polishing process. Since it is also included in the cleaning liquid in the cleaning process, the total amount of contamination adhering to the glass substrate is reduced and the adhesion of contamination adhering to the glass substrate is reduced, and contamination adhering in the polishing process is also cleaned. It can be easily removed in the process.
すなわち、本発明は、表面粗さを良好とするために、研磨工程後の洗浄工程において、比較的希薄な薬液条件でも、研磨工程においてガラス基板に付着したコンタミを確実に除去できる磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法を提供することができるものである。 That is, the present invention provides a magnetic disk glass that can reliably remove contaminants adhering to the glass substrate in the polishing process even under relatively dilute chemical conditions in the cleaning process after the polishing process in order to improve the surface roughness. A substrate manufacturing method and a magnetic disk manufacturing method can be provided.
また、本発明においては、ガラス基板の主表面を研磨する研磨工程において、研磨液は、所定のpHにするための酸性物質と、酸性を示す弱酸及びアルカリ性を示す弱酸塩の2成分からなる緩衝成分とを含み、所定のpHの緩衝液となっているので、緩衝成分が1種類であるとときのように、添加濃度によりpHが変動してしまうという制約を受けることなく、添加量を自由に設定できるようになった。 In the present invention, in the polishing step for polishing the main surface of the glass substrate, the polishing liquid is a buffer composed of two components: an acidic substance for obtaining a predetermined pH, a weak acid showing acidity, and a weak acid salt showing alkalinity. Since it is a buffer solution with a predetermined pH, it can be freely added without the restriction that the pH fluctuates depending on the concentration of addition as in the case of one buffer component. It became possible to set to.
特に、研磨液のpHを4程度の弱酸領域では、従来、緩衝成分の大量添加が不可能であったが、2成分組み合わせにより、大量添加が可能となり、研磨液のpHの安定性が増した結果、研磨工程の繰返しに伴って起こる研磨液のpHの上昇を大幅に抑制することができた。 In particular, in the weak acid region where the pH of the polishing liquid is about 4, it was conventionally impossible to add a large amount of a buffer component. However, the combination of two components enabled the addition of a large amount, and the stability of the pH of the polishing liquid increased. As a result, it was possible to significantly suppress the increase in the pH of the polishing liquid that occurs with the repetition of the polishing process.
すなわち、本発明は、低粗さを実現するために、研磨液のpHを弱酸性領域とした場合においても、研磨液の繰り返し使用によって起こるpH上昇を抑制できる研磨液を用いた磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法を提供することができるものである。 That is, the present invention provides a magnetic disk glass using a polishing liquid that can suppress an increase in pH caused by repeated use of the polishing liquid even when the pH of the polishing liquid is in a weakly acidic region in order to realize low roughness. A substrate manufacturing method and a magnetic disk manufacturing method can be provided.
以下、本発明を実施するための実施の形態について説明する。 Embodiments for carrying out the present invention will be described below.
本発明においては、磁気ディスク用ガラス基板の主表面を研磨する研磨工程において用いる研磨液は、研磨工程においてガラス基板に付着するコンタミに対して、キレート作用を示す物質及び分散作用を示す物質の2成分以上を含んでいることにより、洗浄により容易な除去が難しいコンタミを研磨液液中に安定的に分散させ、コンタミの総量の低減及び付着力の低減を図ることができる。 In the present invention, the polishing liquid used in the polishing process for polishing the main surface of the glass substrate for magnetic disks is one of a substance that exhibits a chelating action and a substance that exhibits a dispersing action against contaminants that adhere to the glass substrate in the polishing process. By containing more than the components, it is possible to stably disperse contaminants that are difficult to remove easily by washing in the polishing liquid, and to reduce the total amount of contaminants and adhesion.
洗浄により除去が難しいコンタミはFeなどの金属系及び有機系異物である。Feなどの金属系コンタミは、少なくともその最表層が水酸化物の状態で存在しているものと考えられる。これら金属水酸化物がガラスと接触した場合には、粒子径に対して広い表面積で基板に吸着させることとなるから、洗浄による除去が難しくなる。これら金属水酸化物は、粒径が3μm以下であることからコロイドとして扱うことができ、これら水酸化物は、疎水コロイドと見なすことができる。疎水コロイドを安定分散させるためには、いわゆる「保護コロイド」を形成する成分を添加すればよい。 Contaminants that are difficult to remove by washing are metallic and organic foreign matters such as Fe. It is considered that at least the outermost layer of the metallic contamination such as Fe exists in a hydroxide state. When these metal hydroxides are brought into contact with glass, they are adsorbed on the substrate with a large surface area with respect to the particle diameter, so that removal by washing becomes difficult. Since these metal hydroxides have a particle size of 3 μm or less, they can be treated as colloids, and these hydroxides can be regarded as hydrophobic colloids. In order to stably disperse the hydrophobic colloid, a component forming a so-called “protective colloid” may be added.
また、本発明においては、これら成分は、研磨工程後に実施される洗浄工程において使用される洗浄液にも含まれている。すなわち、洗浄工程において、研磨剤添加剤種と同一物質を含む薬液洗浄を実施することにより、ガラス基板に付着したコンタミがより除去し易くなる。 Moreover, in this invention, these components are also contained in the washing | cleaning liquid used in the washing | cleaning process implemented after a grinding | polishing process. That is, in the cleaning process, contamination that adheres to the glass substrate can be more easily removed by performing chemical cleaning including the same substance as the abrasive additive species.
洗浄工程は、アルカリ工程、酸工程、アルカリ工程の基本的には3つの順序で洗浄が実施されるが、この3つの工程すべてにおいて、同一の添加剤種が添加されていることにより、コンタミ除去能力を一層高めることができる。 The cleaning process is basically performed in three steps: alkaline process, acid process, and alkaline process. In all three processes, the same additive species is added to remove contamination. The ability can be further enhanced.
さらに、本発明においては、磁気ディスク用ガラス基板の主表面を研磨する研磨工程において用いる研磨液は、研磨レートの安定性を確保するため、研磨液への添加剤種は、研磨液を所定のpHにするための酸性物質と、酸性を示す弱酸及びアルカリ性を示す弱酸塩の2成分からなる緩衝成分とを含み、所定のpHの緩衝液となっていることが好ましい。
Further, in the present invention, the polishing liquid used in the polishing step for polishing the main surface of the glass substrate for magnetic disk ensures the stability of the polishing rate. It is preferable that a buffer solution having a predetermined pH is included, including an acidic substance for adjusting the pH and a buffer component composed of two components of a weak acid exhibiting acidity and a weak acid salt exhibiting alkalinity.
緩衝成分は、緩衝作用を示す組み合わせとなるような任意の2成分を組み合わせた緩衝組成であり、2成分の添加組成比率をかえることで、所定のpHを持つ緩衝液組成が可能となる。これより、緩衝成分が1種類のときのように添加濃度によりpHが変動してしまう制約を受けることなく、添加量を自由に設定できるようになる。特に、研磨液のpHを4程度の弱酸領域では、従来、大量添加が不可能であったが、2成分組み合わせとすることにより、大量添加が可能となり、研磨液のpHの安定性が増し、研磨工程の繰返しに伴う研磨液の繰り返し使用によって起こる研磨液のpHの上昇を大幅に抑制することができる。 The buffer component is a buffer composition in which two arbitrary components are combined so as to exhibit a buffering action, and a buffer solution composition having a predetermined pH can be obtained by changing the composition ratio of the two components. Thus, the amount of addition can be freely set without being subjected to the restriction that the pH varies depending on the concentration of addition as in the case of one buffer component. In particular, in the weak acid region where the pH of the polishing liquid is about 4, conventionally, a large amount of addition was impossible, but by combining two components, a large amount of addition is possible, and the stability of the pH of the polishing liquid is increased. An increase in the pH of the polishing liquid caused by repeated use of the polishing liquid accompanying the repetition of the polishing process can be greatly suppressed.
なお、研磨液のpHを4程度の弱酸領域とすることにより、研磨後の洗浄工程において、アルカリ性の薬液による洗浄を実施しても、表面粗さ上昇を抑えることができる。 In addition, by setting the pH of the polishing liquid to a weak acid region of about 4, it is possible to suppress an increase in surface roughness even if cleaning with an alkaline chemical solution is performed in the cleaning step after polishing.
緩衝溶液の組成としては、酸性を示す任意の弱酸と、アルカリ性を示す任意の弱酸塩の組み合わせにより成立する緩衝作用を示す組み合わせである。一例として、酢酸、リンゴ酸、マロン酸、コハク酸、クエン酸、酒石酸、リン酸、ホスフィン酸、ホスホン酸、ピロリン酸、トリポリリン酸、ヒドロキシエタンホスホン酸(HEDP)、アミノトリメチレンホスホン酸(NTMP)のいずれかと、それらのいずれかの塩とを任意に組み合わせた組成などがあげられる。 The composition of the buffer solution is a combination that exhibits a buffering action that is established by a combination of any weak acid that exhibits acidity and any weak acid salt that exhibits alkalinity. Examples include acetic acid, malic acid, malonic acid, succinic acid, citric acid, tartaric acid, phosphoric acid, phosphinic acid, phosphonic acid, pyrophosphoric acid, tripolyphosphoric acid, hydroxyethanephosphonic acid (HEDP), aminotrimethylenephosphonic acid (NTMP) And a composition in which any one of these salts is arbitrarily combined.
さらに、このpH3〜4の弱酸性領域で研磨レートを増加させる目的として、研磨液及びガラス基板のζ電位を等電点側へシフトさせることができる成分をさらに添加してもよい。これは、ガラス基板及び研磨液のζ電位が等電点側へシフトした結果、両者の相互作用が増し、研磨レートが増加するからだと考えられる。研磨レートが増加する目安としては、研磨液のζ電位が絶対値で25mV以内になるような電解質を1wt%程度添加する。この電解質の添加により、結果として、研磨材粒子径(D50値)の増大が確認できる。 Furthermore, for the purpose of increasing the polishing rate in the weakly acidic region of pH 3 to 4, a component capable of shifting the ζ potential of the polishing liquid and the glass substrate to the isoelectric point side may be further added. This is presumably because the ζ potential of the glass substrate and the polishing liquid is shifted to the isoelectric point, resulting in an increase in the interaction between the two and an increase in the polishing rate. As a measure for increasing the polishing rate, an electrolyte of about 1 wt% is added so that the ζ potential of the polishing liquid is within 25 mV in absolute value. As a result, the addition of this electrolyte can confirm an increase in the abrasive particle diameter (D50 value).
以下、本発明を適用した磁気ディスク用ガラス基板及び磁気ディスクの製造方法について実施例を説明する。この磁気ディスク用ガラス基板及び磁気ディスクは、0.8インチ型ディスク(内径6mm、外径21.6mm、板厚0.381mm)、1.0インチ型ディスク(内径7mm、外径27.4mm、板厚0.381mm)、1.8インチ型磁気ディスク(内径12mm、外径48mm、板厚0.508mm)などの所定の形状を有する磁気ディスクとして製造される。また、2.5インチ型ディスクや3.5インチ型ディスクとして製造してもよい。 Embodiments of a magnetic disk glass substrate and a magnetic disk manufacturing method to which the present invention is applied will be described below. This glass substrate for magnetic disk and magnetic disk are 0.8 inch type disk (inner diameter 6 mm, outer diameter 21.6 mm, plate thickness 0.381 mm), 1.0 inch type disk (inner diameter 7 mm, outer diameter 27.4 mm, It is manufactured as a magnetic disk having a predetermined shape such as a plate thickness of 0.381 mm) and a 1.8 inch type magnetic disk (inner diameter of 12 mm, outer diameter of 48 mm, plate thickness of 0.508 mm). Further, it may be manufactured as a 2.5 inch type disc or a 3.5 inch type disc.
(1)形状加工工程及び第1ラッピング工程
まず、溶融させたアルミノシリケートガラスを上型、下型、胴型を用いたダイレクトプレスによりディスク形状に成型し、アモルファスの板状ガラスを得た。なお、アルミノシリケートガラスはSiOからなる網目状のガラス骨格と、修飾イオンとしてアルミニウムを含む構造を有し、アルカリ金属元素を含むガラスである。ダイレクトプレス以外に、ダウンドロー法やフロート法で形成したシートガラスから研削砥石で切り出して円盤状の磁気ディスク用ガラス基板を得てもよい。なお、アルミノシリケートガラスとしては、SiO2:58〜75重量%、Al2O3:5〜23重量%、Li2O:3〜10重量%、Na2O:4〜13重量%を主成分として含有する化学強化ガラスを使用した。
(1) Shape processing step and first lapping step First, the melted aluminosilicate glass was molded into a disk shape by direct pressing using an upper die, a lower die, and a barrel die to obtain an amorphous plate glass. The aluminosilicate glass is a glass containing an alkali metal element having a network-like glass skeleton made of SiO and a structure containing aluminum as a modifying ion. In addition to direct pressing, a disk-shaped glass substrate for a magnetic disk may be obtained by cutting a sheet glass formed by a downdraw method or a float method with a grinding wheel. As the aluminosilicate glass, SiO 2: 58 to 75 wt%, Al 2 O 3: 5~23 wt%, Li 2 O: 3 to 10 wt%, Na 2 O: 4 to 13 principal component weight% Chemically strengthened glass contained as
次に、この板状ガラスの両主表面をラッピング加工し、ディスク状のガラス母材とした。ラッピング加工は、板状ガラスの主表面にラップ定盤を押圧し、荒削りする研削加工である。 Next, both main surfaces of the plate glass were lapped to form a disk-shaped glass base material. The lapping process is a grinding process in which a lapping platen is pressed against the main surface of the sheet glass and roughed.
(2)切り出し工程(コアリング、フォーミング)
次に、円筒状のダイヤモンドドリルを用いて中心部に内孔を形成した(コアリング)。そして内周端面及び外周端面をダイヤモンド砥石によって研削し、所定の面取り加工を施した(フォーミング)。
(2) Cutting process (coring, forming)
Next, an inner hole was formed in the center using a cylindrical diamond drill (coring). Then, the inner peripheral end face and the outer peripheral end face were ground with a diamond grindstone and subjected to predetermined chamfering (forming).
(3)端面研磨工程
次に、ガラス基板の端面について、ブラシ研磨方法により、鏡面研磨を行った。この端面研磨工程により、ガラス基板の端面は、パーティクル等の発塵を防止できる鏡面状態に加工された。
(3) End surface polishing process Next, the end surface of the glass substrate was mirror-polished by a brush polishing method. By this end surface polishing step, the end surface of the glass substrate was processed into a mirror surface state capable of preventing generation of particles and the like.
(4)第2ラッピング工程
次に、得られたガラス基板の両主表面について、第1ラッピング工程と同様に、第2ラッピング加工を行った。この第2ラッピング工程を行うことにより、前工程である切り出し工程や端面研磨工程において主表面に形成された微細な凹凸形状を予め除去しておくことができ、後続の主表面に対する研磨工程を短時間で完了させることができるようになる。
(4) Second Lapping Step Next, a second lapping process was performed on both main surfaces of the obtained glass substrate in the same manner as in the first lapping step. By performing this second lapping step, it is possible to remove in advance the fine unevenness formed on the main surface in the cutting step and end surface polishing step, which are the previous steps, and shorten the subsequent polishing step on the main surface. Will be able to be completed in time.
第2ラッピング工程では、砥粒の粒度として#1000を選択し、主表面の平坦度を3μm、表面粗さRmaxが2μm程度、算術平均粗さRaを0.2μm程度とした(Rmax及びRaは日本工業規格(JIS)B0601に従う)。なお、Rmax、Raは原子間力顕微鏡(AFM)(デジタルインスツルメンツ社製ナノスコープ)にて測定した。平坦度は平坦度測定装置で測定したもので、基板表面の最も高い部分と、最も低い部分との上下方向(表面に垂直な方向)の距離(高低差)である。 In the second lapping step, # 1000 is selected as the grain size of the abrasive grains, the flatness of the main surface is 3 μm, the surface roughness Rmax is about 2 μm, and the arithmetic average roughness Ra is about 0.2 μm (Rmax and Ra are According to Japanese Industrial Standard (JIS) B0601). Rmax and Ra were measured with an atomic force microscope (AFM) (Digital Instruments Nanoscope). The flatness is measured by a flatness measuring device, and is the distance (height difference) between the highest part and the lowest part of the substrate surface in the vertical direction (direction perpendicular to the surface).
(5)主表面の第1研磨工程
主表面の研磨工程として、まず第1研磨工程を施した。この第1研磨工程は次工程である第2研磨工程(鏡面研磨工程)に先立って予め主表面を研磨し、前述のラッピング工程において主表面に残留したキズや歪みを除去することを主たる目的とするものである。
(5) 1st grinding | polishing process of a main surface First, the 1st grinding | polishing process was given as a grinding | polishing process of a main surface. The primary purpose of this first polishing step is to polish the main surface in advance prior to the second polishing step (mirror polishing step), which is the next step, and to remove scratches and distortions remaining on the main surface in the lapping step described above. To do.
この第1研磨工程においては、一度に100枚から200枚のガラス基板を研磨可能な両面研磨装置によって研磨した。この両面研磨装置は、上記多数枚のガラス基板を研磨布を介して上方定盤及び下方定盤によって挟持し、遊星歯車機構によって相対的に移動させることにより研磨を行う。第1研磨工程における研磨布としては、硬質樹脂ポリッシャを用いた。研磨材としては酸化セリウム砥粒を用い、粒径の最大値が3.5μm、平均値が1.1μm、D50値が1.1μmのものを水に混入させて用いた。 In the first polishing step, 100 to 200 glass substrates were polished at once by a double-side polishing apparatus capable of polishing. This double-side polishing apparatus performs polishing by sandwiching the multiple glass substrates with an upper surface plate and a lower surface plate through a polishing cloth and relatively moving them by a planetary gear mechanism. A hard resin polisher was used as the polishing cloth in the first polishing step. As the abrasive, cerium oxide abrasive grains were used, and those having a maximum particle size of 3.5 μm, an average value of 1.1 μm, and a D50 value of 1.1 μm were mixed in water.
この第1研磨工程を終えたガラス基板を、中性洗剤、純水、IPA(イソプロピルアルコール)、の各洗浄槽に順次浸漬して、洗浄した。 The glass substrate which finished this 1st grinding | polishing process was immersed in each washing tank of neutral detergent, a pure water, and IPA (isopropyl alcohol) one by one, and was wash | cleaned.
(6)化学強化工程
次に、前述のラッピング工程及び第1研磨工程を終えたガラス基板に、化学強化を施した。化学強化は、硝酸カリウム(60%)と硝酸ナトリウム(40%)を混合した化学強化溶液を用意し、この化学強化溶液を375℃に加熱しておくとともに、洗浄済みのガラス基板を300℃に予熱し、化学強化溶液中に約3時間浸漬することによって行った。この浸漬の際には、ガラス基板の表面全体が化学強化されるようにするため、複数のガラス基板が端面で保持されるように、ホルダに収納した状態で行った。
(6) Chemical strengthening process Next, the glass substrate which finished the above-mentioned lapping process and the 1st grinding | polishing process was chemically strengthened. For chemical strengthening, a chemical strengthening solution prepared by mixing potassium nitrate (60%) and sodium nitrate (40%) is prepared, and the chemically strengthened solution is heated to 375 ° C., and the cleaned glass substrate is preheated to 300 ° C. And was immersed in the chemical strengthening solution for about 3 hours. In this immersion, in order to chemically strengthen the entire surface of the glass substrate, it was performed in a state of being housed in a holder so that a plurality of glass substrates were held at the end surfaces.
このように、化学強化溶液に浸漬処理することによって、ガラス基板の表層のリチウムイオン及びナトリウムイオンが、化学強化溶液中のナトリウムイオン及びカリウムイオンにそれぞれ置換され、ガラス基板が強化される。ガラス基板の表層に形成された圧縮応力層の厚さは、約100μmから200μmであった。 Thus, by immersing in a chemical strengthening solution, the lithium ion and sodium ion of the surface layer of a glass substrate are each substituted by the sodium ion and potassium ion in a chemical strengthening solution, and a glass substrate is strengthened. The thickness of the compressive stress layer formed on the surface layer of the glass substrate was about 100 μm to 200 μm.
化学強化処理を終えたガラス基板を、20℃の水槽に浸漬して急冷し、約10分間維持した。そして、急冷を終えたガラス基板を、約40℃に加熱した濃硫酸に浸漬して洗浄を行った。さらに、硫酸洗浄を終えたガラス基板を純水、IPA(イソプロピルアルコール)の各洗浄槽に順次浸漬して洗浄した。 The glass substrate that had been subjected to the chemical strengthening treatment was immersed in a 20 ° C. water bath and rapidly cooled, and maintained for about 10 minutes. And the glass substrate which finished quenching was immersed in the concentrated sulfuric acid heated at about 40 degreeC, and was wash | cleaned. Further, the glass substrate after the sulfuric acid cleaning was cleaned by immersing in a cleaning bath of pure water and IPA (isopropyl alcohol) sequentially.
(7)主表面の第2研磨工程
次に、主表面の研磨工程として、第2研磨工程を施した。この第2研磨工程は、主表面を鏡面状に仕上げることを目的とする。この第2研磨工程においては、第1研磨工程と同様の両面研磨装置により、研磨布として軟質発泡樹脂ポリッシャ、具体的には発泡ポリウレタンを用いて、主表面の鏡面研磨を行った。
(7) Second polishing step for main surface Next, a second polishing step was performed as a polishing step for the main surface. The purpose of this second polishing step is to finish the main surface into a mirror surface. In the second polishing step, mirror polishing of the main surface was performed using a soft foam resin polisher, specifically, foamed polyurethane, as the polishing cloth, using the same double-side polishing apparatus as in the first polishing step.
研磨材としては、粒径30nmのコロイド状シリカ砥粒を準備し、水と、全解離性の無機酸として硫酸、緩衝作用のある組成として、酸性を示す任意の弱酸とアルカリ性を示す任意の弱酸塩の組み合わせにより成立する緩衝作用を示す組み合わせを用い、酢酸、リンゴ酸、マロン酸、コハク酸、クエン酸、酒石酸、リン酸、ホスフィン酸、ホスホン酸、ピロリン酸、トリポリリン酸、ヒドロキシエタンホスホン酸(HEDP)、アミノトリメチレンホスホン酸(NTMP)のいずれかと、それらのいずれかの塩を任意に組み合わせた組成、すなわち、酢酸及び酢酸塩、クエン酸及びクエン酸塩、酒石酸及び酒石酸塩、リン酸及びリン酸塩、酒石酸及びリン酸塩、クエン酸及びリン酸塩のいずれかとした。 As an abrasive, colloidal silica abrasive grains having a particle diameter of 30 nm are prepared, water, sulfuric acid as a total dissociating inorganic acid, and any weak acid that exhibits acidity and any weak acid that exhibits alkalinity as a buffering composition. Using a combination that exhibits a buffer action established by the combination of salts, acetic acid, malic acid, malonic acid, succinic acid, citric acid, tartaric acid, phosphoric acid, phosphinic acid, phosphonic acid, pyrophosphoric acid, tripolyphosphoric acid, hydroxyethanephosphonic acid ( HEDP), aminotrimethylene phosphonic acid (NTMP) and any combination of these salts, ie acetic acid and acetate, citric acid and citrate, tartaric acid and tartrate, phosphoric acid and One of phosphate, tartaric acid and phosphate, citric acid and phosphate was used.
研磨液中のシリカの含有量は5〜40重量%とすることが好ましい。本実施例では10重量%とした。研磨液中の残部は超純水である。 The content of silica in the polishing liquid is preferably 5 to 40% by weight. In this example, it was 10% by weight. The balance in the polishing liquid is ultrapure water.
(8)鏡面研磨処理後の洗浄工程
第2研磨工程を終えたガラス基板を、濃度0.01〜5wt%のKOH水溶液、または、濃度3〜5wt%のNaOH水溶液である洗浄液に浸漬してアルカリ洗浄を行った。
(8) Cleaning step after mirror polishing treatment The glass substrate that has finished the second polishing step is immersed in a cleaning solution that is a 0.01 to 5 wt% KOH aqueous solution or a 3 to 5 wt% NaOH aqueous solution to obtain an alkali. Washing was performed.
この洗浄液には、第2研磨工程において用いる研磨液に含まれている緩衝作用のある組成、すなわち、酸性を示す任意の弱酸とアルカリ性を示す任意の弱酸塩の組み合わせにより成立する緩衝作用を示す成分が含まれている。これら成分としては、酢酸、リンゴ酸、マロン酸、コハク酸、クエン酸、酒石酸、リン酸、ホスフィン酸、ホスホン酸、ピロリン酸、トリポリリン酸、ヒドロキシエタンホスホン酸(HEDP)、アミノトリメチレンホスホン酸(NTMP)のいずれかと、それらのいずれかの塩を任意に組み合わせた組成とし、研磨液に含まれている成分と同一の成分とした。 This cleaning liquid has a buffering composition contained in the polishing liquid used in the second polishing step, that is, a component having a buffering action formed by a combination of any weak acid showing acidity and any weak acid salt showing alkalinity. It is included. These components include acetic acid, malic acid, malonic acid, succinic acid, citric acid, tartaric acid, phosphoric acid, phosphinic acid, phosphonic acid, pyrophosphoric acid, tripolyphosphoric acid, hydroxyethanephosphonic acid (HEDP), aminotrimethylenephosphonic acid ( NTMP) and any combination of these salts, and the same components as those contained in the polishing liquid.
なお、洗浄は超音波を印加して行った。さらに、中性洗剤、純水、純水、IPA、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して洗浄した。なお、各洗浄槽には、超音波を印加した。 Cleaning was performed by applying ultrasonic waves. Furthermore, it wash | cleaned by immersing in each washing tank of neutral detergent, a pure water, a pure water, IPA, and IPA (steam drying) sequentially. Note that ultrasonic waves were applied to each cleaning tank.
(9)磁気ディスク用ガラス基板の検査工程
以上のように製造された磁気ディスク用ガラス基板の検査を行った。ガラス基板表面の粗さをAFM(原子間力顕微鏡)で測定したところ、Ra(ave)は同程度の値で推移しており、傾向性はなかった。
(9) Inspection step of glass substrate for magnetic disk The glass substrate for magnetic disk manufactured as described above was inspected. When the roughness of the glass substrate surface was measured with an AFM (atomic force microscope), Ra (ave) had a similar value, and there was no tendency.
なお、実施例の各ガラス基板の表面は清浄な鏡面状態であった。表面には、磁気ヘッドの浮上を妨げる異物や、サーマルアスペリティ障害の原因となる異物は存在しなかった。すなわち、平坦、かつ、平滑な、高剛性の磁気ディスク用ガラス基板を得た。 In addition, the surface of each glass substrate of an Example was a clean mirror surface state. There were no foreign objects on the surface that could hinder the flying of the magnetic head or cause thermal asperity failure. That is, a flat and smooth high-rigidity glass substrate for a magnetic disk was obtained.
以上のように製造された磁気ディスク用のガラス基板を用いて垂直磁気記録方式の磁気ディスクを製造した。 Using the magnetic disk glass substrate manufactured as described above, a perpendicular magnetic recording type magnetic disk was manufactured.
(10)磁気ディスク製造工程
上述した工程を経て得られたガラス基板の両面に、ガラス基板の表面にCr合金からなる付着層、CoTaZr基合金からなる軟磁性層、Ruからなる下地層、CoCrPt基合金からなる垂直磁気記録層、水素化炭素からなる保護層、パーフルオロポリエーテルからなる潤滑層を順次成膜することにより、垂直磁気記録ディスクを製造した。なお、本構成は垂直磁気ディスクの構成の一例であるが、面内磁気ディスクとして磁性層等を構成してもよい。
(10) Magnetic disk manufacturing process On both surfaces of the glass substrate obtained through the above-described processes, an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoTaZr-based alloy, an underlayer made of Ru, and a CoCrPt group on the surface of the glass substrate A perpendicular magnetic recording disk was manufactured by sequentially forming a perpendicular magnetic recording layer made of an alloy, a protective layer made of hydrogenated carbon, and a lubricating layer made of perfluoropolyether. Although this configuration is an example of a configuration of a perpendicular magnetic disk, a magnetic layer or the like may be configured as an in-plane magnetic disk.
(11)磁気ディスクの検査工程
以上のように製造された磁気ディスクの検査を行った。浮上量が10nmである検査用ヘッドを用いて磁気ディスク上を浮上走行させるヘッドクラッシュ試験を行ったところ、上記実施例のいずれのガラス基板からなる磁気ディスクにおいても、磁気ヘッドが異物等に接触することがなく、クラッシュ障害は生じなかった。
(11) Magnetic disk inspection process The magnetic disk manufactured as described above was inspected. When a head crash test was carried out by flying over a magnetic disk using an inspection head having a flying height of 10 nm, the magnetic head was in contact with foreign matter or the like in any of the magnetic disks made of the glass substrates of the above examples. There was no crash failure.
次に、浮上量が8nmである検査用ヘッドを用いたヘッドクラッシュ試験を行ったところ、上記実施例のいずれのガラス基板からなる磁気ディスクにおいても、クラッシュ障害は生じなかった。なお、Ra(max)−Ra(min)は0.02以下であることが必要と考えられる。 Next, when a head crush test using an inspection head having a flying height of 8 nm was performed, no crush failure occurred in any of the magnetic disks made of the glass substrates of the above examples. Note that Ra (max) -Ra (min) is considered to be 0.02 or less.
次に、実施例のガラス基板からなる磁気ディスクに対し、浮上量が8nmであって、再生素子部が磁気抵抗効果型素子、記録素子部が単磁極型素子を用いて、垂直記録方式による記録再生試験を行ったところ、正常に情報が記録、再生されることを確認した。再生信号にサーマルアスペリティ信号が検出されることも無かった。1平方インチ当り100ギガビットで記録再生を行うことができた。 Next, with respect to the magnetic disk made of the glass substrate of the example, the flying height is 8 nm, the reproducing element portion is a magnetoresistive element, the recording element portion is a single magnetic pole element, and recording is performed by a perpendicular recording method. When a reproduction test was performed, it was confirmed that information was recorded and reproduced normally. The thermal asperity signal was not detected in the reproduction signal. Recording and reproduction could be performed at 100 gigabits per square inch.
次に、実施例のガラス基板からなる磁気ディスクに対し、グライドハイト試験を行った。この試験は、検査用ヘッドの浮上量を次第に低下させた場合に、どの浮上量で検査用ヘッドと磁気ディスクとの接触が生じるのかを確認する試験である。結果、本実施例の磁気ディスクでは、磁気ディスクの内縁部分から外縁部分に渡って、浮上量が4nmであっても接触が生じなかった。磁気ディスクの外縁部分においては、グライドハイトは3.7nmであった。 Next, a glide height test was performed on the magnetic disk made of the glass substrate of the example. In this test, when the flying height of the inspection head is gradually lowered, the flying height is checked to determine the contact between the testing head and the magnetic disk. As a result, in the magnetic disk of this example, no contact occurred even when the flying height was 4 nm from the inner edge portion to the outer edge portion of the magnetic disk. At the outer edge portion of the magnetic disk, the glide height was 3.7 nm.
以上、本発明の好適な実施例について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although the suitable Example of this invention was described, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.
本発明は、コンピュータ等の記録媒体として用いられる磁気ディスク用のガラス基板の製造方法及び磁気ディスクの製造方法に適用される。 The present invention is applied to a method of manufacturing a glass substrate for a magnetic disk used as a recording medium of a computer or the like and a method of manufacturing a magnetic disk.
Claims (5)
前記研磨液は、ガラス基板に付着したコンタミに対してキレート作用を示す物質及び分散作用を示す物質の2成分以上を含み、これら物質は、酸性を示す弱酸及びアルカリ性を示す弱酸塩の2成分からなる緩衝成分であり、研磨工程後に実施される洗浄工程における洗浄液にも含まれている
ことを特徴とする磁気ディスク用ガラス基板の製造方法。 A polishing pad is pressed against both main surfaces of a disk-shaped glass substrate, and the glass substrate and the polishing pad are relatively moved while supplying a polishing liquid containing an abrasive between the glass substrate and the polishing pad. Then, in the manufacturing method of polishing the main surface of the glass substrate and manufacturing a glass substrate for a magnetic disk,
The polishing liquid contains two or more components of a substance exhibiting a chelating action and a substance exhibiting a dispersing action on contaminants attached to the glass substrate, and these substances are composed of two components of a weak acid showing acidity and a weak acid salt showing alkalinity. A method for producing a glass substrate for a magnetic disk , which is a buffer component and is also contained in a cleaning liquid in a cleaning process performed after a polishing process.
前記研磨液は、研磨液のpHを弱酸性領域にするための酸性物質と、酸性を示す弱酸及びアルカリ性を示す弱酸塩の2成分からなる緩衝成分とを含み、前記弱酸性領域の緩衝液となっており、前記2成分からなる緩衝成分は、研磨工程後に実施される洗浄工程における洗浄液にも含まれている
ことを特徴とする磁気ディスク用ガラス基板の製造方法。 A polishing pad is pressed against both main surfaces of a disk-shaped glass substrate, and the glass substrate and the polishing pad are relatively moved while supplying a polishing liquid containing an abrasive between the glass substrate and the polishing pad. Then, in the manufacturing method of polishing the main surface of the glass substrate and manufacturing a glass substrate for a magnetic disk,
The polishing liquid contains an acidic substance for bringing the pH of the polishing liquid into a weakly acidic region, and a buffer component composed of two components of a weak acid showing acidity and a weak acid salt showing alkalinity, and the buffering solution in the weakly acidic region includes: The buffer component consisting of the two components is also contained in a cleaning liquid in a cleaning process performed after the polishing process .
ことを特徴とする請求項1、または、請求項2記載の磁気ディスク用ガラス基板の製造方法。 The buffer component includes acetic acid, malic acid, malonic acid, succinic acid, citric acid, tartaric acid, phosphoric acid, phosphinic acid, phosphonic acid, pyrophosphoric acid, tripolyphosphoric acid, hydroxyethanephosphonic acid (HEDP), aminotrimethylenephosphonic acid ( NTMP) and any combination of any of these salts.
Claim 1 or claim 2 Symbol mounting method of manufacturing a glass substrate for a magnetic disk, characterized in that.
ことを特徴とする磁気ディスクの製造方法。 A method for manufacturing a magnetic disk, comprising forming at least a magnetic layer on a surface of a glass substrate obtained by the method for manufacturing a glass substrate for a magnetic disk according to any one of claims 1 to 3 .
前記磁性層は、複数の層からなり、少なくとも1層は、軟磁性層である
ことを特徴とする請求項4記載の磁気ディスクの製造方法。 The magnetic disk is a magnetic disk for perpendicular magnetic recording system,
The magnetic disk manufacturing method according to claim 4 , wherein the magnetic layer includes a plurality of layers, and at least one layer is a soft magnetic layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009227668A JP5371667B2 (en) | 2008-09-30 | 2009-09-30 | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008253726 | 2008-09-30 | ||
JP2008253726 | 2008-09-30 | ||
JP2008253722 | 2008-09-30 | ||
JP2008253722 | 2008-09-30 | ||
JP2009227668A JP5371667B2 (en) | 2008-09-30 | 2009-09-30 | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010108590A JP2010108590A (en) | 2010-05-13 |
JP5371667B2 true JP5371667B2 (en) | 2013-12-18 |
Family
ID=42297869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009227668A Expired - Fee Related JP5371667B2 (en) | 2008-09-30 | 2009-09-30 | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5371667B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104797540B (en) | 2012-11-30 | 2019-03-12 | Hoya株式会社 | Glass article |
JP6325460B2 (en) | 2013-01-10 | 2018-05-16 | Hoya株式会社 | Optical element manufacturing method |
JP5915718B1 (en) * | 2014-11-07 | 2016-05-11 | 旭硝子株式会社 | Glass substrate for magnetic disk and magnetic disk |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05342532A (en) * | 1992-06-10 | 1993-12-24 | Hitachi Ltd | Production of thin-film magnetic disk |
GB2359558B (en) * | 2000-02-23 | 2002-01-23 | Fujimi America Inc | Polishing composition for a memory hard disk substrate |
JP4115722B2 (en) * | 2002-03-15 | 2008-07-09 | Hoya株式会社 | Manufacturing method of glass substrate for information recording medium |
JP5283247B2 (en) * | 2005-12-22 | 2013-09-04 | 花王株式会社 | Polishing liquid composition for glass substrate |
JP2007257810A (en) * | 2006-03-24 | 2007-10-04 | Hoya Corp | Method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk |
-
2009
- 2009-09-30 JP JP2009227668A patent/JP5371667B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010108590A (en) | 2010-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007257810A (en) | Method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk | |
JP5386036B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP5635078B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP5371667B2 (en) | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk | |
JP6266504B2 (en) | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk | |
JP5654538B2 (en) | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk | |
JP6105488B2 (en) | Manufacturing method of glass substrate for information recording medium | |
JP2010080023A (en) | Method of manufacturing glass substrate for magnetic disk, and magnetic disk | |
JP6298448B2 (en) | Method for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method for manufacturing magnetic disk | |
JP5386037B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP6041290B2 (en) | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk | |
JP6328052B2 (en) | Method for manufacturing glass substrate for information recording medium, method for manufacturing information recording medium, and polishing pad | |
JPWO2012043253A1 (en) | Method for manufacturing glass substrate for information recording medium and information recording medium | |
JP2010086597A (en) | Method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk | |
WO2012042735A1 (en) | Manufacturing method for glass substrate for information recording medium | |
JP6196976B2 (en) | Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, and glass substrate for information recording medium | |
JP6267115B2 (en) | Information recording medium glass substrate, information recording medium glass substrate manufacturing method, magnetic recording medium, and magnetic recording medium manufacturing method | |
JP5722618B2 (en) | Method for manufacturing glass substrate for magnetic information recording medium | |
JP6021911B2 (en) | GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM AND METHOD FOR PRODUCING GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM | |
JP2015069667A (en) | Manufacturing method of glass substrate for magnetic disk, and manufacturing method of magnetic disk | |
JP2014063544A (en) | Method of manufacturing glass substrate for information recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130705 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130917 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130917 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5371667 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |