WO2013047288A1 - Production method for glass substrate for information recording medium - Google Patents

Production method for glass substrate for information recording medium Download PDF

Info

Publication number
WO2013047288A1
WO2013047288A1 PCT/JP2012/073909 JP2012073909W WO2013047288A1 WO 2013047288 A1 WO2013047288 A1 WO 2013047288A1 JP 2012073909 W JP2012073909 W JP 2012073909W WO 2013047288 A1 WO2013047288 A1 WO 2013047288A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
polishing
abrasive grains
polishing step
information recording
Prior art date
Application number
PCT/JP2012/073909
Other languages
French (fr)
Japanese (ja)
Inventor
葉月 中江
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013047288A1 publication Critical patent/WO2013047288A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present invention relates to a method for manufacturing a glass substrate for information recording media, and in particular, manufacturing a glass substrate for information recording media mounted as part of an information recording medium in an information recording device such as a hard disk drive (HDD). Regarding the method.
  • an information recording device such as a hard disk drive (HDD).
  • Information recording devices such as hard disk drives are built in various devices such as computers.
  • Such an information recording apparatus is equipped with an information recording medium such as a magnetic disk formed in a disk shape.
  • the information recording medium is manufactured by forming a magnetic recording layer for magnetic recording on the main surface of an aluminum or glass substrate.
  • glass substrates are widely used for manufacturing information recording media.
  • a glass substrate used for manufacturing an information recording medium is referred to as an information recording medium glass substrate (hereinafter also simply referred to as a glass substrate).
  • a method for producing a glass substrate for an information recording medium is disclosed in, for example, Japanese Unexamined Patent Application Publication No. 2009-104776 (Patent Document 1) and Japanese Unexamined Patent Application Publication No. 2010-238272 (Patent Document 2).
  • the glass substrate is mounted in the information recording apparatus in a state where a magnetic recording layer is formed on the main surface as a part of a member constituting the information recording medium.
  • information is recorded in the magnetic recording layer by magnetizing the magnetic recording layer formed on the glass substrate by the magnetic head.
  • Information recorded in the magnetic recording layer is reproduced by being read by the magnetic head.
  • a magnetic head using a technology called DFH (Dynamic Flying Height) has been developed as a technology for further increasing the recording density.
  • DFH Dynamic Flying Height
  • a special metal is used at a location where the magnetic head is mounted. Due to the special metal, the magnetic head protrudes at a fine distance.
  • Various external factors act on the hard disk drive. Variations that occur in the flying height due to the action of external factors can be corrected by the DFH technique.
  • the flying height can be kept constant, and in principle, the flying height can be set to several nm or less.
  • the flying height In the conventional glass substrate, even if irregularities of about several hundred nm were formed on the main surface, the flying height was relatively large, so it was not a problem. As described above, in recent years, the flying height may be set to several nm or less. When the flying height is set to several nanometers or less, the magnetic head and the information recording medium easily come into contact with each other (also referred to as a head crash) due to fine irregularities formed on the main surface of the glass substrate.
  • the main surface of the glass substrate is generally polished using loose abrasive grains.
  • a hard urethane pad is used as a polishing pad on the main surface of the glass substrate, and rough polishing using cerium oxide, which is mainly chemical polishing. (Chemical mechanical polishing) is performed.
  • a soft foam resin pad is used as a polishing pad on the main surface of the glass substrate, and precision polishing using colloidal silica or the like is performed.
  • the present inventors have performed mechanical polishing using zirconium oxide as free abrasive grains on the main surface of the glass substrate in order to suppress the occurrence of shape disturbance near the edge of the glass substrate.
  • colloidal silica as loose abrasive grains on the main surface of the glass substrate.
  • mechanical polishing polishes the main surface of the glass substrate with rough cutting, so scratches formed by mechanical polishing are removed (or corrected) by precision polishing using colloidal silica.
  • the present invention has been made in view of the above circumstances, and is for an information recording medium capable of suppressing mutual contact between an information recording medium such as a magnetic disk and a magnetic head for reading and writing data. It aims at obtaining the manufacturing method of a glass substrate.
  • Method of manufacturing a glass substrate for an information recording medium is a method for producing a glass substrate for an information recording medium which is built in the information recorder as part of the information recording medium, and has a main surface, SiO 2 Preparing a glass material containing a component, and supplying the first free abrasive grains between the main surface of the glass material and the first polishing pad, and using the first polishing pad, the glass material.
  • polishing process consists of a soft foamed resin pad, and the hardness of the said soft foamed resin pad is 73 to 85 degree
  • the first loose abrasive used in the first rough polishing step includes zirconium oxide
  • the second free abrasive used in the second rough polishing step includes cerium oxide
  • the precision polishing is the same as the first loose abrasive used in the first rough polishing step
  • the said 3rd free abrasive grain used for a process contains colloidal silica.
  • the glass material prepared in the preparation step includes 58% by mass or more and 68% by mass or less of SiO 2 as a component.
  • the glass material prepared in the preparation step is prepared by cutting out from a plate-like glass manufactured using a float process.
  • the abrasive grain size of zirconium oxide used as the first loose abrasive in the first rough polishing step is 0.7 ⁇ m or more and 1.4 ⁇ m or less.
  • the average abrasive grain size of zirconium oxide used as the first free abrasive grains in the first coarse polishing step and the average abrasive grain size of cerium oxide used as the second free abrasive grains in the second coarse polishing step As for the ratio to the diameter, when the average abrasive grain size of zirconium oxide used as the first free abrasive grain is 1, the average abrasive grain diameter of cerium oxide used as the second free abrasive grain is 0.7 or more and 1. 0 or less.
  • a polishing processing rate by zirconium oxide used as the first free abrasive grains in the first rough polishing step, and a polishing processing rate by cerium oxide used as the second free abrasive particles in the second rough polishing step The ratio of the polishing rate with cerium oxide used as the second loose abrasive is 1 and the polishing rate with zirconium oxide used as the first loose abrasive is 0.4 or more and 0.8 or less.
  • the allowance for the glass material by zirconium oxide used as the first loose abrasive grains in the first coarse polishing step, and the cerium oxide used as the second loose abrasive grains in the second coarse polishing step is 0.8 or more when the machining allowance with cerium oxide used as the second loose abrasive grain is 1, and the machining allowance with zirconium oxide used as the first loose abrasive grain is 1. 2 or less.
  • the ⁇ potential of zirconium oxide used as the first loose abrasive in the first rough polishing step is ⁇ 50 mV to ⁇ 30 mV.
  • the present invention it is possible to suppress mutual contact between an information recording medium such as a magnetic disk and a magnetic head that reads and writes data by suppressing excessive polishing of the vicinity of the edge of the main surface of the glass substrate.
  • the manufacturing method of the glass substrate for information recording media which can be performed can be obtained.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4.
  • FIG. 4 It is a flowchart figure which shows each process of the manufacturing method of the glass substrate for information recording media in embodiment. It is a figure which shows each experimental condition in Example 1 and Comparative Examples 1 and 2.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4.
  • FIG. 5 is a flowchart showing steps of a method for manufacturing a glass substrate for information recording media in Examples 1, 2-1, 2-2 and Comparative Examples 2, 3. It is a flowchart figure which shows each process of the manufacturing method of the glass substrate for information recording media in the comparative example 1. It is a figure which shows the content rate of each component contained in the glass raw material used in Example 1, 2-1, 2-2, Comparative Examples 1-3. It is a figure which shows the experimental result in Example 1, 2-1, 2-2 and Comparative Examples 1-3. It is a figure which shows the experimental result in another Example.
  • FIG. 1 is a perspective view showing the information recording apparatus 30.
  • the information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
  • the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28.
  • a spindle motor (not shown) is installed on the upper surface of the housing 20.
  • An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28.
  • the information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm.
  • the information recording medium 10 includes a chemical strengthening layer 12 (see FIGS. 4 and 5) and a magnetic recording layer 14 (see FIGS. 4 and 5) on the glass substrate 1. ) Is formed.
  • the arm 23 is attached so as to be swingable around the vertical axis 24.
  • a suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23.
  • a head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10 from the front surface side and the back surface side.
  • a voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21.
  • the voice coil 25 is clamped by a magnet (not shown) provided on the housing 20.
  • a voice coil motor 26 is constituted by the voice coil 25 and the magnet.
  • a predetermined current is supplied to the voice coil 25.
  • the arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet.
  • the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1.
  • the head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10.
  • a magnetic head (not shown) provided on the head slider 21 performs a seek operation.
  • the head slider 21 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track of the information recording medium 10.
  • the information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
  • FIG. 2 is a plan view showing glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) contains SiO 2 as a component.
  • the glass substrate 1 may contain 58% by mass or more and 68% by mass or less of SiO 2 as a component.
  • the glass substrate 1 has a main surface 2, a main surface 3, an inner peripheral end surface 4, a hole 5, and an outer peripheral end surface 6, and is formed in a disk shape as a whole.
  • a chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4.
  • a chamfered portion 8 is formed between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6.
  • the size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch.
  • the thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage.
  • the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm.
  • the thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate.
  • FIG. 4 is a plan view showing an information recording medium 10 provided with a glass substrate 1 as an information recording medium.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG.
  • the information recording medium 10 includes a glass substrate 1 and a chemically strengthened layer 12 formed so as to cover the main surfaces 2 and 3, the inner peripheral end surface 4 and the outer peripheral end surface 6 of the glass substrate 1. And a magnetic recording layer 14 formed on the chemical strengthening layer 12.
  • a hole 15 is formed inside the inner peripheral end face 4.
  • the information recording medium 10 is fixed to a spindle motor provided on a housing 20 (not shown) using the holes 15.
  • the magnetic recording layer 14 is formed on both (both sides) of the chemical strengthening layer 12 formed on the main surface 2 and the chemical strengthening layer 12 formed on the main surface 3. Is formed.
  • the magnetic recording layer 14 may be provided only on the chemical strengthening layer 12 (one side) formed on the main surface 2, or on the chemical strengthening layer 12 (one side) formed on the main surface 3. It may be provided.
  • the magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the chemical strengthening layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method).
  • the magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the chemical strengthening layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
  • the thickness of the magnetic recording layer 14 is about 0.3 ⁇ m to 1.2 ⁇ m for the spin coating method, about 0.04 ⁇ m to 0.08 ⁇ m for the sputtering method, and about 0.05 ⁇ m to about the electroless plating method. 0.1 ⁇ m. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
  • a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used.
  • the surface of the magnetic recording layer 14 may be thinly coated with a lubricant.
  • a lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
  • the magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary.
  • the underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • the underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked.
  • a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
  • Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
  • Another protective layer may be formed on the protective layer or instead of the protective layer.
  • tetraalkoxylane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon oxide (SiO 2 ) layer. It may be formed.
  • the glass substrate manufacturing method S100 in the present embodiment includes a glass material preparation step (S10), a cutout step (S11), an inside / outside processing step (S12), an etching step (S13), an inside / outside polishing step (S14), and a first roughening step.
  • a polishing step (S15), a second rough polishing step (S16), a precision polishing step (S17), and a chemical strengthening step (S18) are provided.
  • a magnetic recording layer deposition step (S200) is performed on the glass substrate obtained through the chemical strengthening step (S18).
  • the information recording medium 10 (see FIGS. 4 and 5) is obtained through the magnetic recording layer deposition step (S200).
  • the details of the steps S10 to S18 constituting the glass substrate manufacturing method S100 will be described in order. In the following description, simple cleaning appropriately performed between the steps S10 to S18 will be described in detail. There may not be.
  • Glass material preparation process In the glass material preparation step (S10), a glass material constituting the glass substrate is prepared.
  • the glass material includes SiO 2 as a component, and is made of an amorphous glass material made of, for example, aluminosilicate glass.
  • the glass material in the present embodiment is prepared as a plate (or sheet) glass having a thickness of 1 mm, for example, by a float method.
  • the glass material in the present embodiment contains 58% by mass or more and 68% by mass or less of SiO 2 as a component.
  • the glass material is prepared by a so-called direct press method (DP method) in which a molten glass material is poured onto the lower mold and then the molten glass material is press-molded by the upper mold and the lower mold. May be. Also in this case, the glass material may contain 58% by mass or more and 68% by mass or less of SiO 2 as a component.
  • DP method direct press method
  • a rectangular glass material including a region to be a disk-shaped glass substrate is cut out from the glass material using a diamond cutter (grinding grindstone) or the like.
  • a plurality of glass materials formed in a rectangular shape from one glass material may be cut out.
  • the size of the glass material to be cut out is, for example, 50 mm ⁇ 50 mm to 100 mm ⁇ 100 mm.
  • a cut line is formed on the bottom surface of the glass material cut into a rectangular shape using a glass cutter.
  • the cut line is formed in a circular shape so as to draw each of a substantially peripheral edge on the outer peripheral side and a substantially peripheral edge on the inner peripheral side of the region to be the glass substrate.
  • the diameter of the cut line formed on the substantially peripheral edge on the outer peripheral side is, for example, 67 mm, and the diameter of the cut line formed on the substantially peripheral edge on the inner peripheral side is, for example, 18 mm.
  • the outer peripheral incision and the inner peripheral incision formed in the inner and outer processing steps are formed so as to be inclined obliquely toward the outside with respect to the plate thickness direction.
  • the inclination angle with respect to the normal direction of the glass material at each of the outer peripheral incision and the inner peripheral incision is, for example, 10 °.
  • the outer peripheral end face and the inner peripheral end face of the glass material are respectively ground so that the outer diameter becomes 65 mm ⁇ and the inner diameter (the diameter of the circular hole in the center) becomes 20 mm ⁇ . Further, a predetermined chamfering process is performed on the outer peripheral end surface and the inner peripheral end surface. The surface roughness of the end face of the glass material at this time is about 4 ⁇ m in Rmax. In general, a glass substrate having an outer diameter of 65 mm is used in a 2.5-inch hard disk drive.
  • the inner and outer polishing step (S14) mirror polishing using a brush polishing method is performed on each of the outer peripheral end surface and the inner peripheral end surface of the glass material.
  • abrasive grains for example, a slurry containing cerium oxide abrasive grains (free abrasive grains) can be used.
  • both main surfaces of the glass material are mechanically polished using a double-side polishing apparatus having a planetary gear mechanism.
  • the first rough polishing step in which mechanical polishing is performed, almost no chemical action is used for polishing, and the mechanical (physical) action by the free abrasive grains (abrasive) is dominant.
  • the main surface of the glass substrate is polished.
  • the amount of polishing with respect to the main surface of the glass substrate is predetermined depending on the physical properties (abrasive grain size or abrasive grain concentration) of free abrasive grains and the processing conditions (pressing force of the surface plate or the rotational speed of the surface plate). Determined by value.
  • a soft foamed resin pad (soft foamed resin polisher) is used as the polishing pad (first polishing pad) attached to the upper and lower surface plates of the double-sided polishing apparatus in the first rough polishing process.
  • this soft foamed resin pad one having a hardness of 73 degrees to 85 degrees in Asker C hardness is used.
  • the polishing slurry (first free abrasive grains) in the first rough polishing step zirconium oxide (zirconia), titanium oxide, diamond, or the like may be used. From the viewpoint of easy control of the particle size and cost, zirconium oxide (zirconia) is preferably used as the polishing slurry (first free abrasive grains).
  • the abrasive grain size of the zirconium oxide is preferably 0.7 ⁇ m or more and 1.4 ⁇ m or less.
  • the ⁇ potential of zirconium oxide used as the first free abrasive grains in the first rough polishing step is ⁇ 50 mV to ⁇ 30 mV. Good.
  • the glass material that has finished the first rough polishing step may be washed with a neutral detergent, pure water, IPA (isopropyl alcohol), UV (ultraviolet) ozone, or the like. Further, zirconia may be dissolved and removed by HF or the like.
  • both main surfaces of the glass material are chemically mechanically polished using a double-side polishing apparatus having a planetary gear mechanism.
  • chemical action is mainly used for polishing.
  • the chemical component in the polishing agent or polishing slurry mechanically polishes the main surface of the glass substrate while chemically changing the main surface of the glass substrate (substitution of Si—O and Ce—O).
  • the main surface of the glass substrate is polished chemically and mechanically, so that the main surface of the glass substrate is polished at a faster polishing rate than when the main surface of the glass substrate is mechanically polished using an abrasive alone. Polished.
  • a soft foam resin pad soft foam resin polisher
  • cerium oxide (ceria), manganese oxide, or the like may be used.
  • cerium oxide (ceria) is used as the polishing slurry (second free abrasive grains) in the second rough polishing step
  • the average abrasive grain size of cerium oxide used as the second loose abrasive grains in the second rough polishing step the ratio of the average abrasive grain diameter of zirconium oxide used as the first loose abrasive grains is 2
  • the average abrasive grain size of cerium oxide used as the free abrasive grains is 0.7 or more and 1.3 or less, preferably 0.7 or more and 1.0 or less.
  • the main surface of the glass material and the soft foam resin are in contact with each other of the main surfaces of the glass material and the soft foam resin pads disposed so as to sandwich the main surfaces.
  • a slurry such as cerium oxide is supplied between the pad and the pad.
  • the main surface of the glass material is polished chemically and mechanically using a soft foam resin pad and cerium oxide.
  • the ratio between the polishing rate by zirconium oxide used as the first loose abrasive in the first rough polishing step and the polishing rate by cerium oxide used as the second loose abrasive in the second rough polishing step is the second free rate.
  • the polishing rate with cerium oxide used as abrasive grains is 1, the polishing rate with zirconium oxide used as first loose abrasive grains is 0.4 or more and 0.8 or less, more preferably 0.5 or more and 0.00. It is good that it is 7 or less.
  • the allowance for the main surface of the glass material by zirconium oxide used as the first loose abrasive grains in the first rough polishing step, and the main surface of the glass material by cerium oxide used as the second loose abrasive particles in the second rough polishing step The ratio with the machining allowance is 1 when the machining allowance with cerium oxide used as the second loose abrasive grains is 1, and the machining allowance with zirconium oxide used as the first loose abrasive grains is 0.8 or more and 1.2 or less. Good.
  • the machining allowance with respect to the main surface of the glass material by the colloidal silica used as the third loose abrasive grains in the precision polishing step to be described later is 3 if the machining allowance by the cerium oxide used as the second loose abrasive grains is 1.
  • the allowance for colloidal silica used as the loose abrasive is preferably 0.1 or less.
  • the glass material that has finished the second rough polishing step may be washed with a neutral detergent, pure water, IPA (isopropyl alcohol), UV (ultraviolet) ozone, or the like. More preferably, for the glass material that has finished the second rough polishing step, it is preferable that the main surface is slightly dissolved with hydrofluoric acid or the like to completely remove the abrasive remaining on the main surface.
  • both main surfaces of the glass material are precisely mirror-polished using a double-side polishing apparatus having a planetary gear mechanism.
  • a soft foam resin pad soft foam resin polisher
  • Colloidal silica or the like is preferably used as the polishing slurry (third free abrasive grains) in the precision polishing step.
  • the hardness of the other soft foam resin pad used as the polishing pad in the precision polishing process may be smaller than the hardness of the soft foam resin pad used as the polishing pad in the second rough polishing process.
  • the hardness of the soft foam resin pad used as the polishing pad in the second rough polishing process is preferably larger than the hardness of another soft foam resin pad used as the polishing pad in the precision polishing process.
  • the main surface of the glass material and the soft foam resin pad are placed in a state where the two main surfaces of the glass material and the soft foam resin pad arranged so as to sandwich the two main surfaces are in contact with each other.
  • colloidal silica is supplied as a slurry.
  • the glass material that has finished the third rough polishing step may be washed with neutral detergent, pure water, IPA (isopropyl alcohol), UV (ultraviolet) ozone, or the like. Through the above steps, the glass substrate 1 shown in FIGS. 2 and 3 is obtained.
  • a chemical strengthening process is performed on the glass substrate (glass material) obtained by the above steps.
  • a compressive stress layer is formed on the main surface of the glass substrate.
  • the chemical strengthening solution used for the chemical strengthening treatment include a mixed solution of potassium nitrate (content 60%) and sodium nitrate (content 40%), or potassium nitrate (content 70%) and sodium nitrate (content 30). %) And the like can be used.
  • the chemical strengthening solution is heated to 300 ° C. to 400 ° C., and the cleaned glass substrate is preheated to 200 ° C. to 300 ° C.
  • the glass substrate is immersed in the chemical strengthening solution for 3 to 4 hours.
  • the plurality of glass substrates are immersed in a holder or the like so that the plurality of glass substrates are held by the respective end faces. It is preferable.
  • the alkali metal ions such as lithium ions and sodium ions contained in the glass substrate are replaced with alkali metal ions such as potassium ions having a larger ion radius than these ions (ion exchange method).
  • Compressive stress is generated in the ion-exchanged region due to the strain caused by the difference in ion radius, and both main surfaces of the glass substrate are strengthened.
  • the chemical strengthening process may be performed before the precision polishing process.
  • the glass substrate is washed using a high frequency of 950 kHz or washed using an alkaline detergent so that the deposits remaining on the glass substrate are eliminated. Thereafter, the glass substrate is dried using IPA vapor.
  • An information recording medium such as a magnetic disk manufactured using the glass substrate 1 (see FIGS. 2 and 3) by removing the deposits remaining on the main surface of the glass substrate after the chemical strengthening step. 10 (see FIGS. 4 and 5) is reduced from occurrence of head crash.
  • the manufacturing method of the glass substrate in the present embodiment is configured as described above.
  • Magnetic recording layers are formed on both main surfaces (or one of the main surfaces) of the glass substrate that has been subjected to the chemical strengthening treatment.
  • the magnetic recording layer includes, for example, an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and an F system.
  • an adhesion layer made of a Cr alloy
  • a soft magnetic layer made of a CoFeZr alloy
  • an orientation control underlayer made of Ru
  • a perpendicular magnetic recording layer made of a CoCrPt alloy
  • a protective layer made of a C system
  • F system F system
  • Chemical mechanical polishing is characterized by a high polishing rate.
  • the compatibility between the free abrasive grains (abrasive) and the glass substrate is good, so that the abrasive tends to remain on the surface of the glass substrate.
  • the vicinity of the edge of the glass substrate is easily polished by the action of a chemical change, and a deteriorated portion called “sag” is formed at the edge of the glass substrate.
  • the glass substrate is used using cerium oxide or the like.
  • the main surface of is chemically and mechanically polished (second rough polishing step).
  • the portion roughened by the mechanical polishing in the first rough polishing step is preferentially polished by the chemical mechanical polishing in the second rough polishing step over the vicinity of the end of the glass substrate.
  • the main surface of the glass substrate is mechanically polished by chemical mechanical polishing such as cerium oxide before the chemical polishing action reaches the end of the glass substrate and the vicinity of the end of the glass substrate is excessively polished. It is chemically polished so that most of the deep scratches caused by the surface become shallow.
  • the main surface of the glass substrate can be polished so as to obtain an appropriate polishing thickness by chemical mechanical polishing, and the scratches that become shallow by chemical mechanical polishing are colloidal in the precision polishing process that is the next process. It can be sufficiently removed by mirror polishing using silica or the like.
  • a glass substrate glass substrate for information recording medium
  • high smoothness on the main surface of the glass substrate is achieved by sequentially performing mechanical polishing, chemical mechanical polishing, and precision polishing. High flatness can be obtained, and a good state with no irregular shape and scratches can be obtained near the edge of the glass substrate. At the end of the glass substrate, a portion with a deteriorated shape called “sag” is not formed. Furthermore, by performing the chemical strengthening process on the glass substrate, the impact resistance and vibration resistance of the glass substrate are also improved, and a glass substrate that is resistant to impact and vibration is obtained.
  • a hard urethane pad is used as a polishing pad during rough polishing (chemical mechanical polishing)
  • the processing efficiency decreases, and the glass substrate This is because many scratches and the like occur on the main surface.
  • a hard urethane pad is used as a polishing pad during rough polishing (chemical mechanical polishing)
  • the polishing pad (first polishing pad) used in the first rough polishing step is made of a soft foam resin pad in order to stabilize the processing efficiency.
  • this soft foamed resin pad one having a hardness of 73 degrees to 85 degrees in Asker C hardness is used.
  • soft foamed resin urethane is also used for chemical mechanical polishing with cerium oxide.
  • Information recording medium 10 (see FIG. 4 and FIG. 5) provided with glass substrate 1 (see FIG. 2 and FIG. 3, etc.) obtained by the method of manufacturing a glass substrate (glass substrate for information recording medium) in the present embodiment.
  • a glass substrate glass substrate for information recording medium
  • contact with the magnetic head is suppressed, and occurrence of data reading errors and the like can also be suppressed. Therefore, when the information recording medium provided with the glass substrate 1 is used as an information recording apparatus such as a hard disk, it has a high recording capacity and can ensure high operational stability.
  • the glass material is prepared in the glass material preparation step comprises 58 wt% or more 68 wt% or less of SiO 2 to the ingredients.
  • the content of SiO 2 in the glass material affects various physical properties of the glass material. In general, the higher the content of SiO 2 contained in the glass material, the harder the glass material, and the lower the content of SiO 2 contained in the glass material, the more chemically durable. Lower.
  • the chemical durability of the glass material is increased to reduce the chemical polishing effect. Even with the polishing used, mechanical polishing is strongly performed, so that many scratches and the like are generated.
  • the glass material prepared in the glass material preparation step has a SiO 2 content of less than 58% by mass, the chemical durability of the glass material is reduced, thereby reducing the polishing using cerium oxide.
  • the shape of the edge of the glass substrate tends to deteriorate at the same time.
  • the glass material prepared in the glass material preparation step contains 58% by mass or more and 68% by mass or less of SiO 2 as a component, so that the glass substrate has high cleanliness, high smoothness, and high flatness with few scratches. Can be obtained.
  • a glass material is prepared by using a float method.
  • a glass substrate obtained from a glass material formed into a plate shape using the float process has few scratches and has a high flatness.
  • a glass substrate prepared by using the direct press method has more scratches and flatness than a glass substrate prepared by using the float method.
  • the glass substrate prepared using the direct press method needs a grinding process using fixed abrasive grains.
  • the scratches cannot be corrected by polishing with zirconium oxide, and thus the burden of chemical polishing using cerium oxide increases.
  • the abrasive particle diameter of zirconium oxide (zirconia) used as the polishing slurry (first free abrasive grains) is 0.7 ⁇ m or more and 1.4 ⁇ m or less.
  • the shape and surface roughness of the main surface of the glass substrate to be polished change.
  • Zirconium oxide used as a polishing slurry (first free abrasive grains) in the first rough polishing step (mechanical polishing) needs to increase the processing efficiency. When it becomes larger than 4 ⁇ m, scratches and the like increase, which affects the quality of the finally obtained glass substrate. On the other hand, when the abrasive grain size is smaller than 0.7 ⁇ m, the processing efficiency is lowered.
  • the abrasive grain size of zirconium oxide used as a polishing slurry (first loose abrasive grains) in the first rough polishing step (mechanical polishing) is 0.7 ⁇ m or more and 1.4 ⁇ m or less.
  • the quality of the finally obtained glass substrate can be improved.
  • the average abrasive grain size of zirconium oxide (zirconia) used as the first free abrasive grains in the first coarse polishing step, and the second free abrasive grains in the second coarse polishing step is 1, and the average abrasive grain size of cerium oxide used as the second free abrasive grains Is 0.7 or more and 1.3 or less, preferably 0.7 or more and 1.0 or less.
  • the average abrasive grain size of zirconium oxide used as the first free abrasive grains is 1, the average abrasive grain size of cerium oxide used as the second free abrasive grains is 0.7 or more and 1.3 or less, preferably 0.
  • the ratio is 0.7 or more and 1.0 or less, the shape of the end of the glass substrate is not deteriorated, and scratches generated on the main surface of the glass substrate by zirconium oxide are satisfactorily removed by cerium oxide. It becomes.
  • the polishing processing rate by zirconium oxide used as the first free abrasive grains in the first rough polishing step and the oxidation used as the second free abrasive grains in the second rough polishing step is 0.4 or more when the polishing process rate with cerium oxide used as the second free abrasive grains is 1, and the polishing process rate with zirconium oxide used as the first free abrasive grains is 0.4 or more. It is 8 or less, more preferably 0.5 or more and 0.7 or less.
  • the shape and surface roughness of the main surface of the glass substrate to be polished change.
  • the polishing processing rate by cerium oxide used as the second free abrasive grains is 1
  • the polishing processing rate by zirconium oxide used as the first free abrasive grains is greater than 0.8, the main surface of the glass substrate Will tend to form scratches.
  • the polishing rate with cerium oxide used as the second free abrasive is 1, the polishing rate with zirconium oxide used as the first free abrasive is 0.4 or more and 0.8 or less, more preferably 0.
  • the scratches generated on the main surface of the glass substrate by zirconium oxide can be satisfactorily removed by cerium oxide without deteriorating the shape of the edge of the glass substrate by being 0.5 or more and 0.7 or less. It becomes.
  • the allowance for the main surface of the glass material by zirconium oxide used as the first loose abrasive grains in the first rough polishing step, and the second free abrasive in the second rough polishing step is 1 when the machining allowance by cerium oxide used as the second free abrasive grains is 1, and the removal by the zirconium oxide used as the first free abrasive grains.
  • the cost is 0.8 or more and 1.2 or less.
  • the machining allowance for mechanical polishing using zirconium oxide and chemical mechanical polishing using cerium oxide is preferably substantially the same.
  • the reason is that mechanical polishing with zirconium oxide adjusts the shape of the main surface of the glass substrate, but forms certain scratches.
  • Chemical mechanical polishing with cerium oxide affects the shape of the edge of the glass substrate, but can repair the scratches generated by mechanical polishing with zirconium oxide.
  • the best balance between mechanical polishing with zirconium oxide and chemical mechanical polishing with cerium oxide is when the machining allowances are approximately equal.
  • the removal allowance by cerium oxide used as the second free abrasive grains is 1
  • the allowance by zirconium oxide used as the first free abrasive grains is 0.8 or more and 1.2 or less, so that The scratches generated on the main surface of the glass substrate by zirconium oxide can be satisfactorily removed by cerium oxide without deterioration of the shape of the end portion.
  • the allowance for the main surface of the glass material by the colloidal silica used as the third free abrasive grains in the precision polishing step is taken up by the cerium oxide used as the second free abrasive grains. If the allowance is 1, the allowance for colloidal silica used as the third loose abrasive is 0.1 or less.
  • the machining allowance with cerium oxide used as the second free abrasive grains is 1, when the machining allowance with colloidal silica becomes larger than 0.1, the shape of the end portion of the glass substrate tends to deteriorate.
  • the removal allowance by cerium oxide used as the second free abrasive grains is 1
  • the removal allowance by the colloidal silica used as the third free abrasive grains is 0.1 or less, so that the shape of the end portion of the glass substrate is reduced. It can be suppressed that the deterioration.
  • the ⁇ potential of zirconium oxide used as the first free abrasive grains in the first rough polishing step is ⁇ 50 mV to ⁇ 30 mV. If the ⁇ potential due to zirconium oxide is lower than ⁇ 50 mV, zirconium oxide tends to remain on the surface of the glass substrate, which causes a flaw during chemical mechanical polishing using cerium oxide. If the ⁇ potential due to zirconium oxide is higher than ⁇ 30 mV, the repulsion between the glass substrate and zirconium oxide is too strong, and polishing cannot be performed smoothly, and the shape of the main surface of the glass substrate tends to deteriorate.
  • the ⁇ potential of zirconium oxide used as the first free abrasive grains is ⁇ 50 mV or more and ⁇ 30 mV or less, so that the main surface of the glass substrate is less likely to be scratched and the shape of the main surface of the glass substrate is reduced. Deterioration can also be suppressed.
  • FIG. 7 is a diagram showing experimental conditions in Example 1 and Comparative Examples 1 and 2.
  • FIG. 8 is a diagram showing experimental conditions in Comparative Example 3 and Examples 2-1 and 2-2.
  • FIG. 9 is a flowchart showing each step of the glass substrate manufacturing method in Examples 1, 2-1, 2-2 and Comparative Examples 2, 3.
  • FIG. 10 is a flowchart showing each step of the glass substrate manufacturing method in Comparative Example 1.
  • FIG. 11 is a diagram showing the content ratio of each component contained in the glass material (glass material A) used in Examples 1, 2-1, 2-2 and Comparative Examples 1 to 3. About the glass raw material B and the glass raw material C which are described in FIG. 11, it is used in the other Example mentioned later.
  • FIG. 12 is a diagram showing experimental results in Examples 1, 2-1, 2-2 and Comparative Examples 1 to 3.
  • Examples 1, 2-1, 2-2 and Comparative Examples 1 to 3 as shown in FIG. 12, with respect to the glass substrate manufactured by using each manufacturing method, The degree of deterioration of the shape called “sag” was measured, and the number of deposits on the main surface of the glass substrate was calculated as an OSA (Optical Surface Analyzer) encounter number. In addition, a glide test was performed on the glass substrate manufactured by using each manufacturing method, and the number of occurrences of missing was calculated.
  • OSA Optical Surface Analyzer
  • the glass material A was prepared using the float method.
  • the components constituting the glass material A are Li 2 O 3.5 mass%, Na 2 O 10.0 mass%, K 2 O 0.5 mass%, and MgO 0 0.5% by mass, CaO 1.5% by mass, SrO 0.5% by mass, BaO 1.0% by mass, ZnO 0.5% by mass, B 2 O 3 0.5% by mass, Al 2 O 3 is 11.5% by mass, SiO 2 is 67.5% by mass, ZrO 2 is 2.0% by mass, and CeO 2 is 0.5% by mass.
  • the glass material A was sequentially subjected to a cutting process (S11), an internal / external processing process (S12), an etching process (S13), and an internal / external polishing process (S14) (see FIG. 9). .
  • zirconium oxide (zirconia) having an average particle diameter of 0.6 ⁇ m is used as free abrasive grains (slurry), and the polishing processing rate was 0.8 ⁇ m / min, and the machining allowance was 20 ⁇ m.
  • a polishing pad a soft foamed resin pad having Asker C hardness of 80 degrees was used.
  • cerium oxide (ceria) having an average particle diameter of 1.0 ⁇ m is used as free abrasive grains (slurry), and polishing is performed.
  • the processing rate was 1.0 ⁇ m / min, and the machining allowance was 20 ⁇ m.
  • As the polishing pad a soft foamed resin pad having Asker C hardness of 70 degrees was used.
  • polishing conditions for mirror polishing in the precision polishing step (S17)
  • colloidal silica having an average particle diameter of 20 nm is used as free abrasive grains (slurry), and the polishing rate is 0.05 ⁇ m / min.
  • the machining allowance was 1.5 ⁇ m.
  • polishing pad a soft foamed resin pad having Asker C hardness of 70 degrees was used.
  • the chemical strengthening step (S18) and the magnetic recording layer deposition step (S200) were sequentially performed on the glass substrate that had undergone the precision polishing step (S17) in the same manner as in the above-described embodiment.
  • OSA6300 optical surface analyzer manufactured by KLA Tencol
  • a glide test was also performed on the glass substrate based on Example 1. Specifically, the magnetic disk was manufactured from the glass substrate based on Example 1, and after the magnetic disk was incorporated into the hard disk drive, the glide (distance between the magnetic head and the surface of the magnetic disk) was set to 6 nm, Each of 4 nm, 3 nm, and 2 nm was set. It was observed whether or not the magnetic head and the surface of the magnetic disk collided (whether or not a head crash occurred) when the magnetic disk was rotated at a predetermined rotational speed.
  • a head crush occurs when the glide is 6 nm, it is determined as an evaluation 1.
  • a head crush does not occur when the glide is 6 nm (evaluation 2). Means it was obtained). Also, head crash did not occur even when the glide was 4 nm (meaning that the evaluation 3 was obtained), and head crash did not occur even when the glide was 3 nm (that the evaluation 4 was obtained). No head crush occurred even when the glide was 2 nm (meaning that the best evaluation 5 was obtained).
  • a missing test was also performed on the glass substrate based on Example 1. Specifically, the magnetic disk is manufactured from the glass substrate based on Example 1, and the magnetic disk is incorporated into the hard disk drive, and then the magnetic information is written and read, and the number of occurrences of read errors or write errors is determined. Counted as missing count.
  • a magnetic film was formed on the surface of the glass substrate for the divisional recording medium (magnetic disk) produced in Example 1 and then mounted on a hard disk drive having a DFH mechanism. Then, read / write errors on the entire surface of the magnetic disk were evaluated.
  • the evaluation of the number of errors was performed by counting errors in which the read / write error area was 0.4 ⁇ m or more when reading / writing was performed on the entire surface of the magnetic disk. Although errors occur in units of bits, errors due to scratches occur in a certain number of bits, so an error region of 0.4 ⁇ m or larger was evaluated.
  • the missing count number is 31 or more, it is determined as an evaluation C, when the missing count number is 21 or more and 30 or less, it is determined as an evaluation B, and when the missing count number is 11 or more and 20 or less, it is evaluated as A.
  • the evaluation S is determined. However, as the glass substrate based on Example 1, the missing count number is 8, and the evaluation S can be obtained. It was.
  • Comparative Example 1 As shown in FIGS. 7 and 10, the glass substrate manufacturing method S ⁇ b> 201 (see FIG. 10) of Comparative Example 1 is similar to Example 1 described above, in the glass material preparation step (S ⁇ b> 10), the cutting step (S ⁇ b> 11), It includes an internal / external processing step (S12), an etching step (S13), an internal / external polishing step (S14), and a precision polishing step (S17). Between the internal / external polishing step (S14) and the precision polishing step (S17), Only the rough polishing step (S16A) using mechanical polishing is performed.
  • the glass material preparation step (S10) the glass material A was prepared using the float method as in Example 1 described above.
  • the cutting step (S11), the internal / external processing step (S12), the etching step (S13), and the internal / external polishing step (S14) were sequentially performed in the same manner as in Example 1 (see FIG. 10). .
  • cerium oxide (ceria) having an average particle diameter of 0.8 ⁇ m is used as free abrasive grains (slurry), and the polishing rate is The thickness was 1.0 ⁇ m / min and the machining allowance was 40 ⁇ m.
  • a polishing pad a soft foamed resin pad having Asker C hardness of 80 degrees was used.
  • polishing conditions for mirror polishing in the precision polishing step (S17) are the same as those in Example 1 described above. Similarly to Example 1 described above, the chemical strengthening step (S18) and the magnetic recording layer deposition step (S200) were sequentially performed on the glass substrate that had undergone the precision polishing step (S17).
  • Comparative Example 2 Referring to FIG. 7, Comparative Example 2 is different from Example 1 described above in that the hardness of the soft foam resin pad used in the first rough polishing step (S15) is 70 degrees in Asker C hardness. Different. The hardness of the soft foam resin pad used in the first rough polishing step (S15) of Example 1 described above is 80 degrees in Asker C hardness.
  • the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Comparative Example 2 in the same manner as in Example 1 above, and it was 25.2 nm.
  • the number of OSA encounters was 43.
  • a head crash did not occur when the glide was 6 nm, and the evaluation was 4.
  • Evaluation C was obtained as a result of the missing test.
  • Comparative Example 3 is different from Example 1 described above in that the hardness of the soft foam resin pad used in the first rough polishing step (S15) is 87 degrees in Asker C hardness. Different. The hardness of the soft foam resin pad used in the first rough polishing step (S15) of Example 1 described above is 80 degrees in Asker C hardness.
  • the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Comparative Example 3 in the same manner as in Example 1 above, and it was 32.5 nm.
  • the number of OSA encounters was 48.
  • a head crash occurred when the glide was 6 nm, and the evaluation was 1.
  • Evaluation C was obtained as a result of the missing test.
  • Example 2-1 is the same as Example 1 described above in that the hardness of the soft foam resin pad used in the first rough polishing step (S15) is 73 degrees in Asker C hardness. Is different. The hardness of the soft foam resin pad used in the first rough polishing step (S15) of Example 1 described above is 80 degrees in Asker C hardness.
  • Example 12 As shown in FIG. 12, with respect to the glass substrate based on Example 2-1, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 1 above, and was found to be 24.0 nm. . The number of OSA encounters was 22. As a result of the glide test, head crush did not occur even when the glide was 3 nm, and the evaluation was 4. Evaluation A was obtained as a result of the missing test.
  • Example 2-2 is the same as Example 1 described above in that the hardness of the soft foam resin pad used in the first rough polishing step (S15) is 85 degrees in Asker C hardness. Is different.
  • the hardness of the soft foam resin pad used in the first rough polishing step (S15) of Example 1 described above is 80 degrees in Asker C hardness.
  • the degree of “sag” at the edge of the glass substrate measured for the glass substrate based on Example 2-2 in the same manner as in Example 1 was 25.0 nm. .
  • the number of OSA encounters was 24.
  • head crush did not occur even when the glide was 3 nm, and the evaluation was 4.
  • Evaluation A was obtained as a result of the missing test.
  • Example 3-1 Referring to FIG. 13, in Example 3-1, the glass material prepared in the glass material preparation step (S10) is glass material B (see FIG. 11), and the first rough polishing step (S15). ) Is used as free abrasive grains (slurry) in the second coarse polishing step (S16), and the average particle diameter of zirconium oxide (zirconia) used as free abrasive grains (slurry) in 1) is It differs from Example 1 described above in that the average particle diameter of cerium oxide (ceria) is 0.8 ⁇ m.
  • the glass material prepared in the glass material preparation step (S10) of Example 1 described above is glass material A (see FIG. 11).
  • the components constituting the glass material B are Li 2 O 4.0 mass%, Na 2 O 11.5 mass%, K 2 O 0.5 mass%, and MgO 1 .0 wt%, CaO 2.5 wt%, Al 2 O 3 is 15.0 wt%, and, SiO 2 is 65.5 wt%.
  • Example 3-2 differs from Example 3-1 above in that the glass material prepared in the glass material preparation step (S10) is glass material C (see FIG. 11).
  • the glass material prepared in the glass material preparation step (S10) of Example 3-1 is the glass material B (see FIG. 11).
  • the components constituting the glass material C are Li 2 O 10.5 mass%, Na 2 O 3.0 mass%, K 2 O 1.5 mass%, and CaO 7 0.5% by mass, BaO 2.5% by mass, Al 2 O 3 11.0% by mass, SiO 2 57.0% by mass, ZrO 2 4.0% by mass, and Nb 2 O 5 3 0.0% by mass.
  • Example 3-1 and Example 3-2 Comparing Example 3-1 and Example 3-2, when the glass material has a SiO 2 content of less than 58% by mass (in the case of Example 3-2), the glass material is 58% by mass or more 68. It can be seen that the shape of the edge of the glass substrate tends to deteriorate compared to the case where the content of SiO 2 is less than or equal to mass% (in the case of Example 3-1). Incidentally, if the content of SiO 2 is a glass substrate below 58 wt%, it was sometimes processing does not work.
  • Example 4-1 the glass material prepared in the glass material preparation step (S10) is prepared by the direct press method, and used as free abrasive grains (slurry) in the first rough polishing step (S15).
  • the average particle size of cerium oxide (ceria) used as free abrasive grains (slurry) in the second rough polishing step (S16) is that the average particle size of zirconium oxide (zirconia) is 1.0 ⁇ m It differs from Example 1 described above in that it is 0.8 ⁇ m.
  • the glass material prepared in the glass material preparation step (S10) of Example 1 described above is prepared by the float method.
  • Example 4-1 As shown in FIG. 13, with respect to the glass substrate based on Example 4-1, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 1 above, and it was 9.4 nm. . The number of OSA encounters was 35. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
  • Example 1 and Example 4-1 In contrast to Example 1 and Example 4-1, when the glass material is prepared by using the float method, compared to when the glass material is prepared by using the direct press method, It turns out that generation
  • Example 5-1 the average particle diameter of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is 0.7 ⁇ m, and the second rough polishing step
  • the difference from Example 1 described above is that the average particle diameter of cerium oxide (ceria) used as free abrasive grains (slurry) in (S16) is 0.8 ⁇ m.
  • the average particle diameter of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) of Example 1 is 0.6 ⁇ m, and the second rough polishing step (S16).
  • the average particle diameter of cerium oxide (ceria) used as free abrasive grains (slurry) is 1.0 ⁇ m.
  • the degree of “sag” at the edge of the glass substrate was measured for the glass substrate based on Example 5-1 in the same manner as in Example 1 described above, and was 10.15 nm. .
  • the number of OSA encounters was 28.
  • head crush did not occur even when the glide was 2 nm, and the evaluation was 5.
  • Evaluation B was obtained as a result of the missing test.
  • Example 5-2 the average particle diameter of zirconium oxide (zirconia) used as the loose abrasive grains (slurry) in the first rough polishing step (S15) is 1.4 ⁇ m. Different from -1. The average particle diameter of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 5-1 is 0.7 ⁇ m.
  • Example 5-3 the average particle diameter of zirconium oxide (zirconia) used as the free abrasive grains (slurry) in the first rough polishing step (S15) is 0.6 ⁇ m. Different from -1. The average particle diameter of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 5-1 is 0.7 ⁇ m.
  • Example 5-3 As shown in FIG. 13, with respect to the glass substrate based on Example 5-3, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 5-1 above. there were. The number of OSA encounters was 34. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
  • Example 5-4 the average particle diameter of zirconium oxide (zirconia) used as the free abrasive grains (slurry) in the first rough polishing step (S15) is 1.5 ⁇ m. Different from -1. The average particle diameter of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 5-1 is 0.7 ⁇ m.
  • the abrasive grain size of zirconium oxide used as the loose abrasive grains (first loose abrasive grains) in the first rough polishing step is 0.7 ⁇ m or more and 1.4 ⁇ m or less.
  • the abrasive grain size is smaller than 0.7 ⁇ m or larger than 1.4 ⁇ m (Example 5-3 and Example 5). 4), it can be seen that it is possible to suppress the occurrence of scratches on the main surface of the finally obtained glass substrate.
  • Example 6-1 the average particle diameter of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is 0.7 ⁇ m. Is different. In Example 6-1, when the average particle diameters of zirconium oxide and cerium oxide are compared, when zirconium oxide is 1, cerium oxide is about 1.42.
  • the average particle diameter of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) of Example 1 described above is 0.6 ⁇ m, and the second rough polishing step (S16).
  • the average particle size of cerium oxide (ceria) used as free abrasive grains (slurry) is 1.0 ⁇ m.
  • Example 6-1 As shown in FIG. 13, with respect to the glass substrate based on Example 6-1, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 1 above, and was 9.45 nm. . The number of OSA encounters was 18. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation S was obtained as a result of the missing test.
  • Example 6-2 the average particle diameter of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is 1.1 ⁇ m, and the second rough polishing step ( The difference from Example 6-1 described above is that the average particle diameter of cerium oxide (ceria) used as loose abrasive grains (slurry) in S16) is 0.8 ⁇ m.
  • Example 6-2 when the average particle diameters of zirconium oxide and cerium oxide are compared, when zirconium oxide is 1, the cerium oxide is about 0.73.
  • Example 6-1 when the average particle diameters of zirconium oxide and cerium oxide are compared, when zirconium oxide is 1, cerium oxide is about 1.42.
  • Example 6-3 the average particle diameter of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is 0.7 ⁇ m, and the second rough polishing step ( The difference from Example 6-2 described above is that the average particle diameter of cerium oxide (ceria) used as loose abrasive grains (slurry) in S16) is 1.2 ⁇ m.
  • Example 6-3 when the average particle diameters of zirconium oxide and cerium oxide are compared, when zirconium oxide is 1, the cerium oxide is about 1.71. In Example 6-2, when the average particle diameters of zirconium oxide and cerium oxide are compared, when zirconium oxide is 1, the cerium oxide is about 0.73.
  • Example 6-1 Comparing Example 6-1 to Example 6-3, if the average abrasive grain size of zirconium oxide used as loose abrasive grains (first loose abrasive grains) in the first coarse polishing step is 1, the second coarse polish When the average abrasive grain size of cerium oxide used as free abrasive grains (second free abrasive grains) in the process is 0.7 or more and 1.3 or less (in the case of Example 6-2), cerium oxide Compared with the case where the average abrasive grain size is smaller than 0.7 or larger than 1.3 (in the case of Example 6-1 and Example 6-3), on the main surface of the finally obtained glass substrate It can be seen that it is possible to suppress the occurrence of flaws in.
  • Example 7-1 the polishing rate with zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is 0.4 ⁇ m / min, and the first rough polishing step (S15).
  • the average particle diameter of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the polishing step (S15) is 1.0 ⁇ m, and loose abrasive grains (slurry) in the second coarse polishing step (S16).
  • Example 1 is different from Example 1 described above in that the average particle diameter of cerium oxide (ceria) used as the above is 0.8 ⁇ m.
  • the polishing rate with zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 1 described above is 0.8 ⁇ m / min.
  • Example 7-1 when the polishing processing rates of zirconium oxide and cerium oxide were compared, when the polishing processing rate by cerium oxide (1.0 ⁇ m / min) was 1, the polishing processing rate by zirconium oxide was 0. .4. In Example 1, when the polishing processing rates of zirconium oxide and cerium oxide are compared, when the polishing processing rate by cerium oxide (1.0 ⁇ m / min) is 1, the polishing processing rate by zirconium oxide is 0.8. It is.
  • Example 7-1 As shown in FIG. 13, with respect to the glass substrate based on Example 7-1, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 1 above, and it was 8.7 nm. . The number of OSA encounters was 32. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
  • Example 7-2 In Example 7-2, the above-described implementation was performed in that the polishing rate with zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) was 0.5 ⁇ m / min. Different from Example 7-1.
  • the polishing rate with zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 7-1 is 0.4 ⁇ m / min.
  • Example 7-2 when the polishing processing rates of zirconium oxide and cerium oxide were compared, when the polishing processing rate by cerium oxide (1.0 ⁇ m / min) was 1, the polishing processing rate by zirconium oxide was 0. .5.
  • Example 7-2 As shown in FIG. 13, with respect to the glass substrate based on Example 7-2, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 7-1. there were. The number of OSA encounters was 28. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
  • Example 7-3 In Example 7-3, the above-described implementation was performed in that the polishing rate with zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) was 0.7 ⁇ m / min. Different from Example 7-1.
  • the polishing rate with zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 7-1 is 0.4 ⁇ m / min.
  • Example 7-3 when the polishing processing rates of zirconium oxide and cerium oxide were compared, when the polishing processing rate by cerium oxide (1.0 ⁇ m / min) was 1, the polishing processing rate by zirconium oxide was 0. .7.
  • Example 8-1 In Example 8-1, the allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is 14 ⁇ m, and the first The average particle diameter of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the coarse polishing step (S15) is 1.0 ⁇ m, and loose abrasive grains (slurry in the second coarse polishing step (S16)). ) Is different from the above-mentioned Example 1 in that the average particle diameter of cerium oxide (ceria) used as) is 0.8 ⁇ m. The allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 1 is 20 ⁇ m.
  • Example 8-1 when the machining allowance between zirconium oxide and cerium oxide is compared, when the machining allowance with cerium oxide (20 ⁇ m) is 1, the machining allowance with zirconium oxide is 0.7.
  • Example 8-1 As shown in FIG. 13, with respect to the glass substrate based on Example 8-1, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 1 above, and it was 25.7 nm. . The number of OSA encounters was 18. As a result of the glide test, head crush did not occur even when the glide was 6 nm, and the evaluation was 2. Evaluation S was obtained as a result of the missing test.
  • Example 8-2 In Example 8-2, the allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is 16 ⁇ m. Different from Example 8-1. The allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 8-1 is 14 ⁇ m.
  • Example 8-2 when the machining allowance between zirconium oxide and cerium oxide is compared, when the machining allowance with cerium oxide (20 ⁇ m) is 1, the machining allowance with zirconium oxide is 0.8.
  • Example 8-2 As shown in FIG. 13, with respect to the glass substrate based on Example 8-2, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 8-1 described above. there were. The number of OSA encounters was 17. As a result of the glide test, head crush did not occur even when the glide was 4 nm, and the evaluation was 3. Evaluation S was obtained as a result of the missing test.
  • Example 8-3 In Example 8-3, the allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is 18 ⁇ m, and the second rough polishing step (S15) It differs from the above-described Example 8-1 in that the allowance for the main surface of the glass substrate by cerium oxide (ceria) used as loose abrasive grains (slurry) in the polishing step (S16) is 15 ⁇ m.
  • zirconium oxide zirconia
  • the allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 8-1 is 14 ⁇ m
  • the second The machining allowance for the main surface of the glass substrate by cerium oxide (ceria) used as loose abrasive grains (slurry) in the rough polishing step (S16) is 20 ⁇ m.
  • Example 8-3 when the machining allowance between zirconium oxide and cerium oxide is compared, when the machining allowance with cerium oxide (15 ⁇ m) is 1, the machining allowance with zirconium oxide is 1.2.
  • Example 8-3 As shown in FIG. 13, with respect to the glass substrate based on Example 8-3, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 8-1 described above. there were. The number of OSA encounters was 24. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation A was obtained as a result of the missing test.
  • Example 8-4 the allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is 20 ⁇ m, and the second rough polishing step (S15). It differs from the above-described Example 8-1 in that the allowance for the main surface of the glass substrate by cerium oxide (ceria) used as loose abrasive grains (slurry) in the polishing step (S16) is 15 ⁇ m.
  • zirconium oxide zirconia
  • the allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 8-1 is 14 ⁇ m
  • the second The machining allowance for the main surface of the glass substrate by cerium oxide (ceria) used as loose abrasive grains (slurry) in the rough polishing step (S16) is 20 ⁇ m.
  • Example 8-4 when the machining allowance between zirconium oxide and cerium oxide is compared, when the machining allowance with cerium oxide (15 ⁇ m) is 1, the machining allowance with zirconium oxide is about 1.33.
  • Example 8-4 As shown in FIG. 13, when the glass substrate based on Example 8-4 was measured for the degree of “sag” at the edge of the glass substrate in the same manner as in Example 8-1 described above, it was 8.7 nm. there were. The number of OSA encounters was 38. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
  • Example 9-1 In Example 9-1, the allowance for the main surface of the glass substrate by colloidal silica used as loose abrasive grains (slurry) in the precision polishing step (S17) is 3.0 ⁇ m. Different from -4. The allowance for the main surface of the glass substrate by colloidal silica used as loose abrasive grains (slurry) in the precision polishing step (S17) of Example 8-4 is 1.5 ⁇ m.
  • Example 9-1 when the machining allowance between cerium oxide and colloidal silica is compared, when the machining allowance with cerium oxide (15 ⁇ m) is 1, the machining allowance with zirconium oxide is 0.2.
  • Example 8-4 when the removal allowance between cerium oxide and colloidal silica is compared, when the allowance with cerium oxide (15 ⁇ m) is 1, the allowance with zirconium oxide (1.5 ⁇ m) is 0.1 It is.
  • Example 9-1 As shown in FIG. 13, with respect to the glass substrate based on Example 9-1, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 8-4 described above. there were. The number of OSA encounters was 18. As a result of the glide test, head crush did not occur even when the glide was 4 nm, and the evaluation was 3. Evaluation S was obtained as a result of the missing test.
  • Example 10-1 In Example 10-1, the ⁇ potential of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is ⁇ 40 mV, so that Example 9-1 described above is used. Is different.
  • Example 10-2 is the same as Example 10-1 described above in that the ⁇ potential of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is ⁇ 45 mV. Is different.
  • Example 10-2 As shown in FIG. 13, when the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Example 10-2 in the same manner as in Example 10-1 above, it was 13.25 nm. there were. The number of OSA encounters was 19. As a result of the glide test, head crush did not occur even when the glide was 3 nm, and the evaluation was 4. Evaluation S was obtained as a result of the missing test.
  • Example 10-3 the ⁇ potential of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is ⁇ 55 mV, and the above Example 10-1 Is different.
  • Example 10-3 As shown in FIG. 13, with respect to the glass substrate based on Example 10-3, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 10-1 above, and it was 18 nm. . The number of OSA encounters was 18. As a result of the glide test, head crush did not occur even when the glide was 4 nm, and the evaluation was 3. Evaluation S was obtained as a result of the missing test.
  • Example 10-4 the ⁇ potential of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is ⁇ 35 mV, and the above Example 10-1 Is different.
  • Example 10-4 As shown in FIG. 13, with respect to the glass substrate based on Example 10-4, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 10-1 above. there were. The number of OSA encounters was 27. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
  • Example 10-5 In Example 10-5, the ⁇ potential of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is ⁇ 25 mV, so that Example 10-1 described above is used. Is different.
  • Example 10-5 As shown in FIG. 13, when the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Example 10-5 in the same manner as in Example 10-1 described above, it was 9.1 nm. there were. The number of OSA encounters was 26. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation A was obtained as a result of the missing test.
  • Example 10-5 Comparing Example 10-1 to Example 10-4, when the ⁇ potential of zirconium oxide used as the first free abrasive grains in the first rough polishing step is ⁇ 50 mV to ⁇ 30 mV (Example 10-1) In the case of Example 10-2 and Example 10-4), the ⁇ potential of zirconium oxide is smaller than ⁇ 50 mV or larger than ⁇ 30 mV (Example 10-3 and Example 10-). 5), the main surface of the finally obtained glass substrate is less likely to be scratched and the shape of the main surface of the glass substrate can be prevented from deteriorating. .

Abstract

A glass material having a main surface and including SiO2 in the components thereof is prepared (S10). First free abrasive grains are supplied between the main surface of the glass material and a first polishing pad comprising a soft foamed resin pad, and the main surface of the glass material is mechanically polished using the first polishing pad (S15). The soft foamed resin pad has an Asker C hardness of 73-85. Then, second free abrasive grains differing from the first free abrasive grains are supplied between the main surface of the glass material and a second polishing pad, and the main surface of the glass material is chemically-mechanically polished using the second polishing pad (S16). Then, third free abrasive grains are supplied between the main surface of the glass material and a third polishing pad, and the main surface of the glass material is polished using the third polishing pad (S17).

Description

情報記録媒体用ガラス基板の製造方法Manufacturing method of glass substrate for information recording medium
 本発明は、情報記録媒体用ガラス基板の製造方法に関し、特に、ハードディスクドライブ(HDD:Hard Disk Drive)などの情報記録装置に情報記録媒体の一部として搭載される情報記録媒体用ガラス基板の製造方法に関する。 The present invention relates to a method for manufacturing a glass substrate for information recording media, and in particular, manufacturing a glass substrate for information recording media mounted as part of an information recording medium in an information recording device such as a hard disk drive (HDD). Regarding the method.
 ハードディスクドライブ等の情報記録装置は、コンピューター等のさまざまな機器に内蔵されている。このような情報記録装置には、円盤状に形成された磁気ディスク等の情報記録媒体が搭載される。情報記録媒体は、アルミ製またはガラス製の基板の主表面上に、磁気記録用の磁気記録層が成膜されることによって製造される。近年では、高い強度および高い硬度が求められるため、情報記録媒体を製造するためにはガラス製の基板が広く用いられている。 Information recording devices such as hard disk drives are built in various devices such as computers. Such an information recording apparatus is equipped with an information recording medium such as a magnetic disk formed in a disk shape. The information recording medium is manufactured by forming a magnetic recording layer for magnetic recording on the main surface of an aluminum or glass substrate. In recent years, since high strength and high hardness are required, glass substrates are widely used for manufacturing information recording media.
 情報記録媒体の製造に用いられるガラス製の基板は、情報記録媒体用ガラス基板(以下、単にガラス基板ともいう)という。情報記録媒体用ガラス基板の製造方法は、たとえば特開2009-104776号公報(特許文献1)および特開2010-238272号公報(特許文献2)に開示されている。 A glass substrate used for manufacturing an information recording medium is referred to as an information recording medium glass substrate (hereinafter also simply referred to as a glass substrate). A method for producing a glass substrate for an information recording medium is disclosed in, for example, Japanese Unexamined Patent Application Publication No. 2009-104776 (Patent Document 1) and Japanese Unexamined Patent Application Publication No. 2010-238272 (Patent Document 2).
 ガラス基板は、情報記録媒体を構成する部材の一部として、主表面上に磁気記録層が成膜された状態で情報記録装置内に搭載される。情報記録装置においては、ガラス基板上に成膜された磁気記録層が磁気ヘッドによって磁化されることにより、磁気記録層内に情報が記録される。磁気記録層内に記録された情報は、磁気ヘッドによって読み取られることにより再生される。 The glass substrate is mounted in the information recording apparatus in a state where a magnetic recording layer is formed on the main surface as a part of a member constituting the information recording medium. In the information recording apparatus, information is recorded in the magnetic recording layer by magnetizing the magnetic recording layer formed on the glass substrate by the magnetic head. Information recorded in the magnetic recording layer is reproduced by being read by the magnetic head.
 情報記録装置に記録可能な情報量(記録容量)の増加に対する要望は強く、磁気記録層に記録される情報の密度はますます高くなる傾向にある。記録密度を高くするためには、ビットサイズを小さくするとともに、情報記録媒体と磁気ヘッドとの間の隙間(フライングハイトともいう)を小さくする必要がある。 Demand for an increase in the amount of information (recording capacity) that can be recorded in an information recording apparatus is strong, and the density of information recorded in the magnetic recording layer tends to be higher. In order to increase the recording density, it is necessary to reduce the bit size and also reduce the gap (also called flying height) between the information recording medium and the magnetic head.
 記録密度をさらに高める技術として、DFH(Dynamic Flying Height)という技術を用いた磁気ヘッドが開発されている。DFH技術においては、磁気ヘッドが装着される箇所に、特殊な金属が用いられる。特殊な金属によって、磁気ヘッドは微細な距離で突出する。 A magnetic head using a technology called DFH (Dynamic Flying Height) has been developed as a technology for further increasing the recording density. In the DFH technology, a special metal is used at a location where the magnetic head is mounted. Due to the special metal, the magnetic head protrudes at a fine distance.
 ハードディスクドライブには、様々な外的要因(圧力変動または温度変動等)が作用する。外的要因の作用によってフライングハイトに生じた変動は、DFH技術によって補正されることができる。DFH技術を採用することによって、フライングハイトを一定に保つことができるとともに、原理上は、フライングハイトを数nm以下に設定することが可能となっている。 ∙ Various external factors (such as pressure fluctuation or temperature fluctuation) act on the hard disk drive. Variations that occur in the flying height due to the action of external factors can be corrected by the DFH technique. By adopting the DFH technique, the flying height can be kept constant, and in principle, the flying height can be set to several nm or less.
 従来のガラス基板においては、数百nm程度の凹凸が主表面上に形成されていたとしても、フライングハイトが比較的大きかったため、さほど問題とされていなかった。上述のとおり、近年では、フライングハイトが数nm以下に設定される場合がある。フライングハイトが数nm以下に設定される場合、ガラス基板の主表面上に形成された微細な凹凸に起因して、磁気ヘッドと情報記録媒体とが互いに接触(ヘッドクラッシュともいう)しやすくなる。 In the conventional glass substrate, even if irregularities of about several hundred nm were formed on the main surface, the flying height was relatively large, so it was not a problem. As described above, in recent years, the flying height may be set to several nm or less. When the flying height is set to several nanometers or less, the magnetic head and the information recording medium easily come into contact with each other (also referred to as a head crash) due to fine irregularities formed on the main surface of the glass substrate.
 ヘッドクラッシュが発生すると、記録エラーまたは読み取りエラーなどが発生する。記録エラー等の発生を防止するために、ガラス基板の主表面に対しては、これまで以上に高い平滑性および高い平坦性が求められている。 When a head crash occurs, a recording error or reading error occurs. In order to prevent the occurrence of a recording error or the like, higher smoothness and higher flatness than ever are required for the main surface of the glass substrate.
特開2009-104776号公報JP 2009-104776 A 特開2010-238272号公報JP 2010-238272 A
 ガラス基板が製造される際、高い平滑性および高い平坦性を得るために、一般的にはガラス基板の主表面は遊離砥粒を用いて研磨される。SiOを成分に含む従来のガラス基板の製造方法においては、ガラス基板の主表面に対して、まず、研磨パッドとして硬質ウレタンパッドを用いるとともに、化学研磨が主体である酸化セリウムを用いた粗研磨(化学的機械研磨)が行なわれる。その後、ガラス基板の主表面に対して、研磨パッドとして軟質発泡樹脂パッドを用いるとともに、コロイダルシリカ等を用いた精密研磨が行なわれる。 When a glass substrate is manufactured, in order to obtain high smoothness and high flatness, the main surface of the glass substrate is generally polished using loose abrasive grains. In the conventional method for manufacturing a glass substrate containing SiO 2 as a component, first, a hard urethane pad is used as a polishing pad on the main surface of the glass substrate, and rough polishing using cerium oxide, which is mainly chemical polishing. (Chemical mechanical polishing) is performed. Thereafter, a soft foam resin pad is used as a polishing pad on the main surface of the glass substrate, and precision polishing using colloidal silica or the like is performed.
 ここで、従来の製造方法を用いてガラス基板を製造し、そのガラス基板を情報記録装置に情報記録媒体(磁気ディスク)として搭載したところ、DFH技術を用いたフライングハイトの極めて小さい(数nm)情報記録装置においては、情報記録媒体と記録ヘッドとの相互の接触(ヘッドクラッシュ)が度々発生するという問題が発生した。 Here, when a glass substrate is manufactured using a conventional manufacturing method and the glass substrate is mounted on an information recording apparatus as an information recording medium (magnetic disk), the flying height using DFH technology is extremely small (several nm). In the information recording apparatus, there has been a problem that mutual contact (head crash) between the information recording medium and the recording head frequently occurs.
 本発明者らが原因を追究した結果、従来は問題となっていなかったガラス基板の端部付近(チャンファー部または内外周の端面)のわずかな形状の乱れまたは傷が原因となって、情報記録媒体と記録ヘッドとの相互の接触が発生していることがわかった。 As a result of the investigation of the cause by the present inventors, information caused by slight irregularities or scratches in the vicinity of the end of the glass substrate (the chamfer or the end surface of the inner and outer circumferences) that had not been a problem in the past. It was found that mutual contact between the recording medium and the recording head occurred.
 本発明者らがさらに原因を追究した結果、SiOを含有するガラス基板に対して酸化セリウム等を用いて化学的機械研磨を行なう場合、高い研磨加工レートを得られるものの、酸化セリウムによって意図していない端部形状の変化が引き起こされていることがわかった。本発明者らは、酸化セリウム等を使用してSiOを含有するガラス基板の主表面に対して化学的機械研磨を行なう際に、化学的な研磨作用がガラス基板の端部付近にまで及び、端部付近が過剰に研磨されることによって、形状の乱れ等が発生していることがわかった。 As a result of further investigation of the cause by the present inventors, when chemical mechanical polishing is performed on a glass substrate containing SiO 2 using cerium oxide or the like, although a high polishing processing rate can be obtained, it is intended by cerium oxide. It was found that a change in the edge shape was not caused. When the present inventors perform chemical mechanical polishing on the main surface of a glass substrate containing SiO 2 using cerium oxide or the like, the chemical polishing action extends to the vicinity of the edge of the glass substrate. It has been found that the shape is disturbed due to excessive polishing near the end.
 これに対して本発明者らは、ガラス基板の端部付近に形状の乱れ等が生じることを抑制するために、ガラス基板の主表面に対して遊離砥粒として酸化ジルコニウムを用いた機械研磨を行ない、その後、ガラス基板の主表面に対して遊離砥粒としてコロイダルシリカを用いた精密研磨を行なう、という試みを実施した。ガラス基板の端部付近の形状は安定したが、機械研磨はガラス基板の主として主表面を粗く削りながら研磨するため、機械研磨によって形成された傷はコロイダルシリカを用いた精密研磨では除去(または修正)されきれず、結果として、この方法ではヘッドクラッシュの発生を効果的に抑制することは困難であることがわかった。 On the other hand, the present inventors have performed mechanical polishing using zirconium oxide as free abrasive grains on the main surface of the glass substrate in order to suppress the occurrence of shape disturbance near the edge of the glass substrate. After that, an attempt was made to perform precision polishing using colloidal silica as loose abrasive grains on the main surface of the glass substrate. Although the shape near the edge of the glass substrate is stable, mechanical polishing polishes the main surface of the glass substrate with rough cutting, so scratches formed by mechanical polishing are removed (or corrected) by precision polishing using colloidal silica. As a result, it has been found that it is difficult to effectively suppress the occurrence of head crashes by this method.
 本発明は、上記のような実情に鑑みてなされたものであって、磁気ディスク等の情報記録媒体とデータの読み書きを行なう磁気ヘッドとの相互の接触を抑制することが可能な情報記録媒体用ガラス基板の製造方法を得ること目的とする。 The present invention has been made in view of the above circumstances, and is for an information recording medium capable of suppressing mutual contact between an information recording medium such as a magnetic disk and a magnetic head for reading and writing data. It aims at obtaining the manufacturing method of a glass substrate.
 本発明に基づく情報記録媒体用ガラス基板の製造方法は、情報記録装置に情報記録媒体の一部として内蔵される情報記録媒体用ガラス基板の製造方法であって、主表面を有するとともに、SiOを成分に含むガラス素材を準備する準備工程と、上記ガラス素材の上記主表面と第1研磨パッドとの間に第1遊離砥粒を供給しつつ、上記第1研磨パッドを用いて上記ガラス素材の上記主表面を機械的に研磨する第1粗研磨工程と、上記第1粗研磨工程において研磨された上記ガラス素材の上記主表面と第2研磨パッドとの間に上記第1遊離砥粒とは異なる第2遊離砥粒を供給しつつ、上記第2研磨パッドを用いて上記ガラス素材の上記主表面を化学機械的に研磨する第2粗研磨工程と、上記第2粗研磨工程において研磨された上記ガラス素材の上記主表面と第3研磨パッドとの間に第3遊離砥粒を供給しつつ、上記第3研磨パッドを用いて上記ガラス素材の上記主表面を研磨する精密研磨工程と、を備え、上記第1粗研磨工程に用いられる上記第1研磨パッドは、軟質発泡樹脂パッドからなり、上記軟質発泡樹脂パッドの硬度は、Asker C硬度において73度以上85度以下である。 Method of manufacturing a glass substrate for an information recording medium according to the present invention is a method for producing a glass substrate for an information recording medium which is built in the information recorder as part of the information recording medium, and has a main surface, SiO 2 Preparing a glass material containing a component, and supplying the first free abrasive grains between the main surface of the glass material and the first polishing pad, and using the first polishing pad, the glass material. A first rough polishing step for mechanically polishing the main surface of the glass material, and the first loose abrasive grains between the main surface of the glass material polished in the first rough polishing step and a second polishing pad. Are polished in the second rough polishing step and the second rough polishing step in which the main surface of the glass material is chemically mechanically polished using the second polishing pad while supplying different second loose abrasive grains. Of the above glass material A precision polishing step of polishing the main surface of the glass material using the third polishing pad while supplying third loose abrasive grains between the main surface and the third polishing pad, The said 1st polishing pad used for 1 rough grinding | polishing process consists of a soft foamed resin pad, and the hardness of the said soft foamed resin pad is 73 to 85 degree | times in Asker C hardness.
 好ましくは、上記第1粗研磨工程に用いられる上記第1遊離砥粒は、酸化ジルコニウムを含み、上記第2粗研磨工程に用いられる上記第2遊離砥粒は、酸化セリウムを含み、上記精密研磨工程に用いられる上記第3遊離砥粒は、コロイダルシリカを含む。好ましくは、上記準備工程において準備される上記ガラス素材は、58質量%以上68質量%以下のSiOを成分に含む。 Preferably, the first loose abrasive used in the first rough polishing step includes zirconium oxide, and the second free abrasive used in the second rough polishing step includes cerium oxide, and the precision polishing. The said 3rd free abrasive grain used for a process contains colloidal silica. Preferably, the glass material prepared in the preparation step includes 58% by mass or more and 68% by mass or less of SiO 2 as a component.
 好ましくは、上記準備工程において準備される上記ガラス素材は、フロート法を使用して作製された板状ガラスから削り出されることによって準備される。好ましくは、上記第1粗研磨工程において上記第1遊離砥粒として用いられる酸化ジルコニウムの砥粒径は、0.7μm以上1.4μm以下である。 Preferably, the glass material prepared in the preparation step is prepared by cutting out from a plate-like glass manufactured using a float process. Preferably, the abrasive grain size of zirconium oxide used as the first loose abrasive in the first rough polishing step is 0.7 μm or more and 1.4 μm or less.
 好ましくは、上記第1粗研磨工程において上記第1遊離砥粒として用いられる酸化ジルコニウムの平均砥粒径と、上記第2粗研磨工程において上記第2遊離砥粒として用いられる酸化セリウムの平均砥粒径との比は、上記第1遊離砥粒として用いられる酸化ジルコニウムの平均砥粒径を1とすると、上記第2遊離砥粒として用いられる酸化セリウムの平均砥粒径は0.7以上1.0以下である。好ましくは、上記第1粗研磨工程において上記第1遊離砥粒として用いられる酸化ジルコニウムによる研磨加工レートと、上記第2粗研磨工程において上記第2遊離砥粒として用いられる酸化セリウムによる研磨加工レートとの比は、上記第2遊離砥粒として用いられる酸化セリウムによる研磨加工レートを1とすると、上記第1遊離砥粒として用いられる酸化ジルコニウムによる研磨加工レートは0.4以上0.8以下である。 Preferably, the average abrasive grain size of zirconium oxide used as the first free abrasive grains in the first coarse polishing step and the average abrasive grain size of cerium oxide used as the second free abrasive grains in the second coarse polishing step As for the ratio to the diameter, when the average abrasive grain size of zirconium oxide used as the first free abrasive grain is 1, the average abrasive grain diameter of cerium oxide used as the second free abrasive grain is 0.7 or more and 1. 0 or less. Preferably, a polishing processing rate by zirconium oxide used as the first free abrasive grains in the first rough polishing step, and a polishing processing rate by cerium oxide used as the second free abrasive particles in the second rough polishing step, The ratio of the polishing rate with cerium oxide used as the second loose abrasive is 1 and the polishing rate with zirconium oxide used as the first loose abrasive is 0.4 or more and 0.8 or less. .
 好ましくは、上記第1粗研磨工程において上記第1遊離砥粒として用いられる酸化ジルコニウムによる上記ガラス素材に対する取り代と、上記第2粗研磨工程において上記第2遊離砥粒として用いられる酸化セリウムによる上記ガラス素材に対する取り代との比は、上記第2遊離砥粒として用いられる酸化セリウムによる取り代を1とすると、上記第1遊離砥粒として用いられる酸化ジルコニウムによる取り代は0.8以上1.2以下である。好ましくは、上記第1粗研磨工程において上記第1遊離砥粒として用いられる酸化ジルコニウムのζ電位は、-50mV以上-30mV以下である。 Preferably, the allowance for the glass material by zirconium oxide used as the first loose abrasive grains in the first coarse polishing step, and the cerium oxide used as the second loose abrasive grains in the second coarse polishing step. The ratio of the machining allowance with respect to the glass material is 0.8 or more when the machining allowance with cerium oxide used as the second loose abrasive grain is 1, and the machining allowance with zirconium oxide used as the first loose abrasive grain is 1. 2 or less. Preferably, the ζ potential of zirconium oxide used as the first loose abrasive in the first rough polishing step is −50 mV to −30 mV.
 本発明によれば、ガラス基板の主表面の端部付近が過剰に研磨されることを抑制することによって、磁気ディスク等の情報記録媒体とデータの読み書きを行なう磁気ヘッドとの相互の接触を抑制することが可能な情報記録媒体用ガラス基板の製造方法を得ることができる。 According to the present invention, it is possible to suppress mutual contact between an information recording medium such as a magnetic disk and a magnetic head that reads and writes data by suppressing excessive polishing of the vicinity of the edge of the main surface of the glass substrate. The manufacturing method of the glass substrate for information recording media which can be performed can be obtained.
実施の形態における情報記録媒体用ガラス基板の製造方法を使用することによって製造されたガラス基板を備える情報記録装置を示す斜視図である。It is a perspective view which shows an information recording device provided with the glass substrate manufactured by using the manufacturing method of the glass substrate for information recording media in embodiment. 実施の形態における情報記録媒体用ガラス基板の製造方法によって製造されたガラス基板を示す平面図である。It is a top view which shows the glass substrate manufactured by the manufacturing method of the glass substrate for information recording media in embodiment. 図2中のIII-III線に沿った矢視断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 情報記録媒体として、実施の形態における情報記録媒体用ガラス基板の製造方法によって製造されたガラス基板を備えた情報記録媒体を示す平面図である。It is a top view which shows the information recording medium provided with the glass substrate manufactured by the manufacturing method of the glass substrate for information recording media in embodiment as an information recording medium. 図4中のV-V線に沿った矢視断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. 実施の形態における情報記録媒体用ガラス基板の製造方法の各工程を示すフローチャート図である。It is a flowchart figure which shows each process of the manufacturing method of the glass substrate for information recording media in embodiment. 実施例1および比較例1,2おける各実験条件を示す図である。It is a figure which shows each experimental condition in Example 1 and Comparative Examples 1 and 2. FIG. 比較例3および実施例2-1,2-2おける各実験条件を示す図である。It is a figure which shows each experimental condition in the comparative example 3 and Examples 2-1 and 2-2. 実施例1,2-1,2-2および比較例2,3における情報記録媒体用ガラス基板の製造方法の各工程を示すフローチャート図である。FIG. 5 is a flowchart showing steps of a method for manufacturing a glass substrate for information recording media in Examples 1, 2-1, 2-2 and Comparative Examples 2, 3. 比較例1における情報記録媒体用ガラス基板の製造方法の各工程を示すフローチャート図である。It is a flowchart figure which shows each process of the manufacturing method of the glass substrate for information recording media in the comparative example 1. 実施例1,2-1,2-2および比較例1~3などにおいて使用したガラス素材中に含まれる各成分の含有比率を示す図である。It is a figure which shows the content rate of each component contained in the glass raw material used in Example 1, 2-1, 2-2, Comparative Examples 1-3. 実施例1,2-1,2-2および比較例1~3における実験結果を示す図である。It is a figure which shows the experimental result in Example 1, 2-1, 2-2 and Comparative Examples 1-3. その他の実施例における実験結果を示す図である。It is a figure which shows the experimental result in another Example.
 本発明に基づいた実施の形態および各実施例について、以下、図面を参照しながら説明する。実施の形態および各実施例の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態および各実施例の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。 Embodiments and examples based on the present invention will be described below with reference to the drawings. In the description of the embodiments and the examples, when the number, amount, and the like are referred to, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the description of the embodiment and each example, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 [実施の形態]
 (情報記録装置30)
 図1を参照して、まず、情報記録装置30について説明する。図1は、情報記録装置30を示す斜視図である。情報記録装置30は、実施の形態における情報記録媒体用ガラス基板(以下、単にガラス基板ともいう)の製造方法によって製造されたガラス基板1を、情報記録媒体10として備える。
[Embodiment]
(Information recording device 30)
First, the information recording device 30 will be described with reference to FIG. FIG. 1 is a perspective view showing the information recording apparatus 30. The information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
 具体的には、情報記録装置30は、情報記録媒体10、筐体20、ヘッドスライダー21、サスペンション22、アーム23、垂直軸24、ボイスコイル25、ボイスコイルモーター26、クランプ部材27、および固定ネジ28を備える。筐体20の上面上には、スピンドルモーター(図示せず)が設置される。 Specifically, the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28. A spindle motor (not shown) is installed on the upper surface of the housing 20.
 磁気ディスクなどの情報記録媒体10は、クランプ部材27および固定ネジ28によって、上記のスピンドルモーターに回転可能に固定される。情報記録媒体10は、このスピンドルモーターによって、たとえば数千rpmの回転数で回転駆動される。詳細は図4および図5を参照して後述されるが、情報記録媒体10は、ガラス基板1に化学強化層12(図4および図5参照)および磁気記録層14(図4および図5参照)が形成されることによって製造される。 An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28. The information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm. Although details will be described later with reference to FIGS. 4 and 5, the information recording medium 10 includes a chemical strengthening layer 12 (see FIGS. 4 and 5) and a magnetic recording layer 14 (see FIGS. 4 and 5) on the glass substrate 1. ) Is formed.
 アーム23は、垂直軸24回りに揺動可能に取り付けられる。アーム23の先端には、板バネ(片持ち梁)状に形成されたサスペンション22が取り付けられる。サスペンション22の先端には、ヘッドスライダー21が情報記録媒体10を表面側および裏面側から挟み込むように取り付けられる。 The arm 23 is attached so as to be swingable around the vertical axis 24. A suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23. A head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10 from the front surface side and the back surface side.
 アーム23のヘッドスライダー21とは反対側には、ボイスコイル25が取り付けられる。ボイスコイル25は、筐体20上に設けられたマグネット(図示せず)によって挟持される。ボイスコイル25およびこのマグネットにより、ボイスコイルモーター26が構成される。 A voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21. The voice coil 25 is clamped by a magnet (not shown) provided on the housing 20. A voice coil motor 26 is constituted by the voice coil 25 and the magnet.
 ボイスコイル25には所定の電流が供給される。アーム23は、ボイスコイル25に流れる電流と上記マグネットの磁場とにより発生する電磁力の作用によって、垂直軸24回りに揺動する。アーム23の揺動によって、サスペンション22およびヘッドスライダー21も矢印AR1方向に揺動する。ヘッドスライダー21は、情報記録媒体10の表面上および裏面上を、情報記録媒体10の半径方向に往復移動する。ヘッドスライダー21に設けられた磁気ヘッド(図示せず)はシーク動作を行なう。 A predetermined current is supplied to the voice coil 25. The arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet. As the arm 23 swings, the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1. The head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10. A magnetic head (not shown) provided on the head slider 21 performs a seek operation.
 当該シーク動作が行なわれる一方で、ヘッドスライダー21は、情報記録媒体10の回転に伴って発生する空気流により、浮揚力を受ける。当該浮揚力とサスペンション22の弾性力(押圧力)とのバランスによって、ヘッドスライダー21は情報記録媒体10の表面に対して一定の浮上量で走行する。当該走行によって、ヘッドスライダー21に設けられた磁気ヘッドは、情報記録媒体10の所定のトラックに対して情報(データ)の記録および再生を行なうことが可能となる。ガラス基板1が情報記録媒体10を構成する部材の一部として搭載される情報記録装置30は、以上のように構成される。 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track of the information recording medium 10. The information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
 (ガラス基板1)
 図2は、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって製造されるガラス基板1を示す平面図である。図3は、図2中のIII-III線に沿った矢視断面図である。
(Glass substrate 1)
FIG. 2 is a plan view showing glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment. 3 is a cross-sectional view taken along the line III-III in FIG.
 図2および図3に示すように、情報記録媒体10(図4および図5参照)にその一部として用いられるガラス基板1(情報記録媒体用ガラス基板)は、SiOを成分に含む。ガラス基板1は、58質量%以上68質量%以下のSiOを成分に含むとよい。 As shown in FIGS. 2 and 3, the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) contains SiO 2 as a component. The glass substrate 1 may contain 58% by mass or more and 68% by mass or less of SiO 2 as a component.
 ガラス基板1は、主表面2、主表面3、内周端面4、孔5、および外周端面6を有し、全体として円板状に形成される。主表面2と内周端面4との間、および、主表面3と内周端面4との間には、面取部7がそれぞれ形成される。主表面2と外周端面6との間、および、主表面3と外周端面6との間には、面取部8(チャンファー部)が形成される。 The glass substrate 1 has a main surface 2, a main surface 3, an inner peripheral end surface 4, a hole 5, and an outer peripheral end surface 6, and is formed in a disk shape as a whole. A chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4. Between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6, a chamfered portion 8 (chamfer portion) is formed.
 ガラス基板1の大きさは、たとえば0.8インチ、1.0インチ、1.8インチ、2.5インチ、または3.5インチである。ガラス基板の厚さは、破損防止の観点から、たとえば0.30mm~2.2mmである。本実施の形態におけるガラス基板の大きさは、外径が約64mm、内径が約20mm、厚さが約0.8mmである。ガラス基板の厚さとは、ガラス基板上の点対象となる任意の複数の点で測定した値の平均によって算出される値である。 The size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch. The thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage. In the present embodiment, the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm. The thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate.
 (情報記録媒体10)
 図4は、情報記録媒体としてガラス基板1を備えた情報記録媒体10を示す平面図である。図5は、図4中のV-V線に沿った矢視断面図である。
(Information recording medium 10)
FIG. 4 is a plan view showing an information recording medium 10 provided with a glass substrate 1 as an information recording medium. FIG. 5 is a cross-sectional view taken along the line VV in FIG.
 図4および図5に示すように、情報記録媒体10は、ガラス基板1と、ガラス基板1の主表面2,3、内周端面4および外周端面6を覆うように形成された化学強化層12と、化学強化層12上に形成された磁気記録層14とを含む。ガラス基板1の内周端面4上に化学強化層12が形成されることによって、内周端面4の内側に孔15が形成される。孔15を利用して、情報記録媒体10は筐体20(図示せず)上に設けられたスピンドルモーターに対して固定される。 As shown in FIGS. 4 and 5, the information recording medium 10 includes a glass substrate 1 and a chemically strengthened layer 12 formed so as to cover the main surfaces 2 and 3, the inner peripheral end surface 4 and the outer peripheral end surface 6 of the glass substrate 1. And a magnetic recording layer 14 formed on the chemical strengthening layer 12. By forming the chemical strengthening layer 12 on the inner peripheral end face 4 of the glass substrate 1, a hole 15 is formed inside the inner peripheral end face 4. The information recording medium 10 is fixed to a spindle motor provided on a housing 20 (not shown) using the holes 15.
 図5に示す情報記録媒体10においては、主表面2上に形成された化学強化層12と主表面3上に形成された化学強化層12との双方(両面)の上に磁気記録層14が形成されている。磁気記録層14は、主表面2上に形成された化学強化層12の上(片面)にのみ設けられていてもよく、主表面3上に形成された化学強化層12の上(片面)に設けられていてもよい。 In the information recording medium 10 shown in FIG. 5, the magnetic recording layer 14 is formed on both (both sides) of the chemical strengthening layer 12 formed on the main surface 2 and the chemical strengthening layer 12 formed on the main surface 3. Is formed. The magnetic recording layer 14 may be provided only on the chemical strengthening layer 12 (one side) formed on the main surface 2, or on the chemical strengthening layer 12 (one side) formed on the main surface 3. It may be provided.
 磁気記録層14は、磁性粒子を分散させた熱硬化性樹脂をガラス基板1の主表面2,3上の化学強化層12にスピンコートすることによって形成される(スピンコート法)。磁気記録層14は、ガラス基板1の主表面2,3上の化学強化層12に対して実施されるスパッタリング法または無電解めっき法等により形成されてもよい。 The magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the chemical strengthening layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method). The magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the chemical strengthening layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
 磁気記録層14の膜厚は、スピンコート法の場合は約0.3μm~1.2μm、スパッタリング法の場合は約0.04μm~0.08μm、無電解めっき法の場合は約0.05μm~0.1μmである。薄膜化および高密度化の観点からは、磁気記録層14はスパッタリング法または無電解めっき法によって形成されるとよい。 The thickness of the magnetic recording layer 14 is about 0.3 μm to 1.2 μm for the spin coating method, about 0.04 μm to 0.08 μm for the sputtering method, and about 0.05 μm to about the electroless plating method. 0.1 μm. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
 磁気記録層14に用いる磁性材料としては、高い保持力を得る目的で結晶異方性の高いCoを主成分とし、残留磁束密度を調整する目的でNiまたはCrを加えたCo系合金などを付加的に用いることが好適である。 As a magnetic material used for the magnetic recording layer 14, a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used.
 磁気ヘッドの滑りをよくするために、磁気記録層14の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、たとえば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。 In order to improve the sliding of the magnetic head, the surface of the magnetic recording layer 14 may be thinly coated with a lubricant. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
 磁気記録層14には、必要に応じて下地層または保護層を設けてもよい。情報記録媒体10における下地層は、磁性膜の種類に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、またはNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。 The magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary. The underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
 磁気記録層14に設ける下地層は、単層に限らず、同一または異種の層を積層した複数層構造としても構わない。たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、または、NiAl/CrV等の多層下地層としてもよい。 The underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
 磁気記録層14の摩耗および腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、またはシリカ層が挙げられる。これらの保護層は、下地層および磁性膜など共にインライン型スパッタ装置で連続して形成されることができる。これらの保護層は、単層としてもよく、または、同一若しくは異種の層からなる多層構成としてもよい。 Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
 上記保護層上に、あるいは上記保護層に代えて、他の保護層を形成してもよい。たとえば、上記保護層に代えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO)層を形成してもよい。 Another protective layer may be formed on the protective layer or instead of the protective layer. For example, in place of the protective layer, tetraalkoxylane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon oxide (SiO 2 ) layer. It may be formed.
 (ガラス基板の製造方法)
 次に、図6に示すフローチャート図を用いて、本実施の形態におけるガラス基板(情報記録媒体用ガラス基板)の製造方法S100について説明する。本実施の形態におけるガラス基板の製造方法S100は、ガラス素材準備工程(S10)、切り出し工程(S11)、内外加工工程(S12)、エッチング工程(S13)、内外研磨工程(S14)、第1粗研磨工程(S15)、第2粗研磨工程(S16)、精密研磨工程(S17)、および化学強化工程(S18)を備える。
(Glass substrate manufacturing method)
Next, the manufacturing method S100 of the glass substrate (glass substrate for information recording media) in this Embodiment is demonstrated using the flowchart figure shown in FIG. The glass substrate manufacturing method S100 in the present embodiment includes a glass material preparation step (S10), a cutout step (S11), an inside / outside processing step (S12), an etching step (S13), an inside / outside polishing step (S14), and a first roughening step. A polishing step (S15), a second rough polishing step (S16), a precision polishing step (S17), and a chemical strengthening step (S18) are provided.
 化学強化工程(S18)を経ることによって得られたガラス基板に対して、磁気記録層成膜工程(S200)が実施される。磁気記録層成膜工程(S200)を経ることによって、情報記録媒体10(図4および図5参照)が得られる。以下、ガラス基板の製造方法S100を構成する各工程S10~S18の詳細について順に説明する、以下の説明において、各工程S10~S18の間に適宜行なわれる簡易的な洗浄については、詳細に記載していない場合がある。 A magnetic recording layer deposition step (S200) is performed on the glass substrate obtained through the chemical strengthening step (S18). The information recording medium 10 (see FIGS. 4 and 5) is obtained through the magnetic recording layer deposition step (S200). Hereinafter, the details of the steps S10 to S18 constituting the glass substrate manufacturing method S100 will be described in order. In the following description, simple cleaning appropriately performed between the steps S10 to S18 will be described in detail. There may not be.
 (ガラス素材準備工程)
 ガラス素材準備工程(S10)においては、ガラス基板を構成するガラス素材が準備される。ガラス素材は、SiOを成分に含み、たとえばアルミノシリケートガラスからなるアモルファスガラス素材から構成される。
(Glass material preparation process)
In the glass material preparation step (S10), a glass material constituting the glass substrate is prepared. The glass material includes SiO 2 as a component, and is made of an amorphous glass material made of, for example, aluminosilicate glass.
 本実施の形態におけるガラス素材は、フロート法によって、たとえば厚さが1mmの板状(またはシート状)のガラスとして準備される。本実施の形態におけるガラス素材は、58質量%以上68質量%以下のSiOを成分に含む。 The glass material in the present embodiment is prepared as a plate (or sheet) glass having a thickness of 1 mm, for example, by a float method. The glass material in the present embodiment contains 58% by mass or more and 68% by mass or less of SiO 2 as a component.
 ガラス素材は、溶融したガラス素材が下型上に流し込まれた後、上型および下型によって溶融したガラス素材がプレス成形されることによって形成される、いわゆるダイレクトプレス法(DP法)によって準備されてもよい。この場合も、ガラス素材は、58質量%以上68質量%以下のSiOを成分に含むとよい。 The glass material is prepared by a so-called direct press method (DP method) in which a molten glass material is poured onto the lower mold and then the molten glass material is press-molded by the upper mold and the lower mold. May be. Also in this case, the glass material may contain 58% by mass or more and 68% by mass or less of SiO 2 as a component.
 (切り出し工程)
 切り出し工程(S11)においては、ガラス素材から、円盤状のガラス基板となるべき領域を含む矩形状のガラス素材が、ダイヤモンドカッター(研削砥石)などを用いて切り出される。切り出し工程においては、1枚のガラス素材から矩形状に形成される複数のガラス素材が切り出されるとよい。切り出されるガラス素材の大きさは、たとえば、50mm×50mm~100mm×100mmである。
(Cut out process)
In the cutting process (S11), a rectangular glass material including a region to be a disk-shaped glass substrate is cut out from the glass material using a diamond cutter (grinding grindstone) or the like. In the cutting-out process, a plurality of glass materials formed in a rectangular shape from one glass material may be cut out. The size of the glass material to be cut out is, for example, 50 mm × 50 mm to 100 mm × 100 mm.
 (内外加工工程)
 内外加工工程(S12)においては、矩形状に切り出されたガラス素材の底面に、ガラスカッターを用いて切筋が形成される。切筋は、ガラス基板となるべき領域の外周側の略周縁および内周側の略周縁のそれぞれを描くように、円形状に形成される。外周側の略周縁に形成される切筋の直径は、たとえば67mmであり、内周側の略周縁に形成される切筋の直径は、たとえば18mmである。
(Internal / external machining process)
In the inside / outside processing step (S12), a cut line is formed on the bottom surface of the glass material cut into a rectangular shape using a glass cutter. The cut line is formed in a circular shape so as to draw each of a substantially peripheral edge on the outer peripheral side and a substantially peripheral edge on the inner peripheral side of the region to be the glass substrate. The diameter of the cut line formed on the substantially peripheral edge on the outer peripheral side is, for example, 67 mm, and the diameter of the cut line formed on the substantially peripheral edge on the inner peripheral side is, for example, 18 mm.
 内外加工工程において形成される外周側の切筋および内周側の切筋は、板厚方向に対して外側に向かって斜めに傾斜するようにそれぞれ形成される。外周側の切筋および内周側の切筋の各々におけるガラス素材の法線方向に対する傾斜角度は、たとえば10°である。 The outer peripheral incision and the inner peripheral incision formed in the inner and outer processing steps are formed so as to be inclined obliquely toward the outside with respect to the plate thickness direction. The inclination angle with respect to the normal direction of the glass material at each of the outer peripheral incision and the inner peripheral incision is, for example, 10 °.
 (エッチング工程)
 エッチング工程(S13)においては、フッ化水素酸、フッ化アンモニウムなどを含む水溶液によって、主表面および端面部に存在している微小なクラックを除去する。除去するガラス基板の厚みは3μm~20μm程度である。
(Etching process)
In the etching step (S13), minute cracks present on the main surface and the end face are removed with an aqueous solution containing hydrofluoric acid, ammonium fluoride, and the like. The thickness of the glass substrate to be removed is about 3 μm to 20 μm.
 次に、外径が65mmφとなり、内径(中心部の円孔の直径)が20mmφとなるように、ガラス素材の外周端面および内周端面がそれぞれ研削される。さらに、外周端面および内周端面に対して所定の面取り加工が施される。このときのガラス素材の端面の表面粗さは、Rmaxで4μm程度である。一般に、2.5インチ型のハードディスクドライブでは、外径が65mmのガラス基板が用いられる。 Next, the outer peripheral end face and the inner peripheral end face of the glass material are respectively ground so that the outer diameter becomes 65 mmφ and the inner diameter (the diameter of the circular hole in the center) becomes 20 mmφ. Further, a predetermined chamfering process is performed on the outer peripheral end surface and the inner peripheral end surface. The surface roughness of the end face of the glass material at this time is about 4 μm in Rmax. In general, a glass substrate having an outer diameter of 65 mm is used in a 2.5-inch hard disk drive.
 (内外研磨工程)
 内外研磨工程(S14)においては、ガラス素材の外周端面および内周端面のそれぞれについて、ブラシ研磨方法を使用する鏡面研磨が行なわれる。研磨砥粒としては、たとえば、酸化セリウム砥粒を含むスラリー(遊離砥粒)を用いることができる。内外研磨工程により、ガラス素材の端面においては、ナトリウムまたはカリウムの析出の発生を防止できる鏡面状態が得られる。
(Internal and external polishing process)
In the inner and outer polishing step (S14), mirror polishing using a brush polishing method is performed on each of the outer peripheral end surface and the inner peripheral end surface of the glass material. As the abrasive grains, for example, a slurry containing cerium oxide abrasive grains (free abrasive grains) can be used. By the inner and outer polishing steps, a mirror surface state in which the occurrence of precipitation of sodium or potassium can be prevented at the end face of the glass material.
 (第1粗研磨工程)
 第1粗研磨工程(S15)においては、遊星歯車機構を有する両面研磨装置を用いて、ガラス素材の両主表面が機械的に研磨される。機械的な研磨を行なう第1粗研磨工程においては、研磨に際して化学的な作用はほとんど用いられず、遊離砥粒(研磨剤)による機械的な(物理的な)作用が支配的となるようにガラス基板の主表面が研磨される。ここでは、遊離砥粒の物性(砥粒径若しくは砥粒の濃度)および加工条件(定盤の圧接力若しくは定盤の回転数)などに応じて、ガラス基板の主表面に対する研磨量が所定の値に決定される。
(First rough polishing process)
In the first rough polishing step (S15), both main surfaces of the glass material are mechanically polished using a double-side polishing apparatus having a planetary gear mechanism. In the first rough polishing step in which mechanical polishing is performed, almost no chemical action is used for polishing, and the mechanical (physical) action by the free abrasive grains (abrasive) is dominant. The main surface of the glass substrate is polished. Here, the amount of polishing with respect to the main surface of the glass substrate is predetermined depending on the physical properties (abrasive grain size or abrasive grain concentration) of free abrasive grains and the processing conditions (pressing force of the surface plate or the rotational speed of the surface plate). Determined by value.
 第1粗研磨工程において両面研磨装置の上下定盤に取り付けられる研磨パッド(第1研磨パッド)としては、軟質発泡樹脂パッド(軟質発泡樹脂ポリッシャー)が用いられる。この軟質発泡樹脂パッドとしては、硬度が、Asker C硬度において73度以上85度以下であるものが用いられる。第1粗研磨工程における研磨スラリー(第1遊離砥粒)としては、酸化ジルコニウム(ジルコニア)、酸化チタン、またはダイアモンド等が用いられるとよい。粒径の制御のしやすさおよびコストの観点からは、研磨スラリー(第1遊離砥粒)としては、酸化ジルコニウム(ジルコニア)が用いられるとよい。 A soft foamed resin pad (soft foamed resin polisher) is used as the polishing pad (first polishing pad) attached to the upper and lower surface plates of the double-sided polishing apparatus in the first rough polishing process. As this soft foamed resin pad, one having a hardness of 73 degrees to 85 degrees in Asker C hardness is used. As the polishing slurry (first free abrasive grains) in the first rough polishing step, zirconium oxide (zirconia), titanium oxide, diamond, or the like may be used. From the viewpoint of easy control of the particle size and cost, zirconium oxide (zirconia) is preferably used as the polishing slurry (first free abrasive grains).
 研磨スラリー(第1遊離砥粒)として酸化ジルコニウム(ジルコニア)が用いられる場合、その酸化ジルコニウムの砥粒径は、0.7μm以上1.4μm以下であるとよい。研磨スラリー(第1遊離砥粒)として酸化ジルコニウム(ジルコニア)が用いられる場合、第1粗研磨工程において第1遊離砥粒として用いられる酸化ジルコニウムのζ電位は、-50mV以上-30mV以下であるとよい。 When zirconium oxide (zirconia) is used as the polishing slurry (first free abrasive grains), the abrasive grain size of the zirconium oxide is preferably 0.7 μm or more and 1.4 μm or less. When zirconium oxide (zirconia) is used as the polishing slurry (first free abrasive grains), the ζ potential of zirconium oxide used as the first free abrasive grains in the first rough polishing step is −50 mV to −30 mV. Good.
 第1粗研磨工程においては、ガラス素材の両主表面とその両主表面を挟み込むように配置された軟質発泡樹脂パッドとを相互に当接させた状態で、ガラス素材の主表面と軟質発泡樹脂パッドとの間に酸化ジルコニウム等のスラリーが供給される。軟質発泡樹脂パッドおよび酸化ジルコニウムを用いてガラス素材の主表面が機械的に研磨されることによって、主表面上に形成されていた傷および主表面に発生していた歪み等が除去される。 In the first rough polishing step, the main surface of the glass material and the soft foam resin are in contact with each other of the main surfaces of the glass material and the soft foam resin pads disposed so as to sandwich the two main surfaces. A slurry such as zirconium oxide is supplied between the pad and the pad. By mechanically polishing the main surface of the glass material using the soft foamed resin pad and zirconium oxide, scratches formed on the main surface, distortion generated on the main surface, and the like are removed.
 第1粗研磨工程を終えたガラス素材は、中性洗剤、純水、IPA(イソプロピルアルコール)、またはUV(ultraviolet)オゾンなどによって洗浄されるとよい。また、HF等によってジルコニアを溶解除去しても良い。 The glass material that has finished the first rough polishing step may be washed with a neutral detergent, pure water, IPA (isopropyl alcohol), UV (ultraviolet) ozone, or the like. Further, zirconia may be dissolved and removed by HF or the like.
 (第2粗研磨工程)
 第2粗研磨工程(S16)においては、遊星歯車機構を有する両面研磨装置を用いて、ガラス素材の両主表面が化学機械的に研磨される。化学機械的な研磨を行なう第2粗研磨工程においては、研磨に際して化学的な作用が主として用いられる。
(Second rough polishing step)
In the second rough polishing step (S16), both main surfaces of the glass material are chemically mechanically polished using a double-side polishing apparatus having a planetary gear mechanism. In the second rough polishing step in which chemical mechanical polishing is performed, chemical action is mainly used for polishing.
 研磨剤または研磨スラリー中の化学成分は、ガラス基板の主表面を化学変化(Si-OとCe-Oとの置換)させつつ、さらにガラス基板の主表面を機械的に研磨する。ガラス基板の主表面が化学機械的に研磨されることによって、研磨剤を単体で用いてガラス基板の主表面を機械的に研磨させる場合に比べて、ガラス基板の主表面は早い研磨加工レートで研磨される。 The chemical component in the polishing agent or polishing slurry mechanically polishes the main surface of the glass substrate while chemically changing the main surface of the glass substrate (substitution of Si—O and Ce—O). The main surface of the glass substrate is polished chemically and mechanically, so that the main surface of the glass substrate is polished at a faster polishing rate than when the main surface of the glass substrate is mechanically polished using an abrasive alone. Polished.
 第2粗研磨工程において両面研磨装置の上下定盤に取り付けられる研磨パッド(第2研磨パッド)としては、軟質発泡樹脂パッド(軟質発泡樹脂ポリッシャー)が用いられるとよい。第2粗研磨工程における研磨スラリー(第2遊離砥粒)としては、酸化セリウム(セリア)または酸化マンガン等が用いられるとよい。 As the polishing pad (second polishing pad) attached to the upper and lower surface plates of the double-side polishing apparatus in the second rough polishing step, a soft foam resin pad (soft foam resin polisher) may be used. As the polishing slurry (second free abrasive grains) in the second rough polishing step, cerium oxide (ceria), manganese oxide, or the like may be used.
 第2粗研磨工程における研磨スラリー(第2遊離砥粒)として酸化セリウム(セリア)が用いられる場合、第1粗研磨工程において第1遊離砥粒として用いられる酸化ジルコニウム(ジルコニア)の平均砥粒径と、第2粗研磨工程において第2遊離砥粒として用いられる酸化セリウムの平均砥粒径との比は、第1遊離砥粒として用いられる酸化ジルコニウムの平均砥粒径を1とすると、第2遊離砥粒として用いられる酸化セリウムの平均砥粒径は0.7以上1.3以下、好ましくは、0.7以上1.0以下であるとよい。 When cerium oxide (ceria) is used as the polishing slurry (second free abrasive grains) in the second rough polishing step, the average abrasive grain size of zirconium oxide (zirconia) used as the first free abrasive particles in the first rough polishing step And the average abrasive grain size of cerium oxide used as the second loose abrasive grains in the second rough polishing step, the ratio of the average abrasive grain diameter of zirconium oxide used as the first loose abrasive grains is 2, The average abrasive grain size of cerium oxide used as the free abrasive grains is 0.7 or more and 1.3 or less, preferably 0.7 or more and 1.0 or less.
 第2粗研磨工程においては、ガラス素材の両主表面とその両主表面を挟み込むように配置された軟質発泡樹脂パッドとを相互に当接させた状態で、ガラス素材の主表面と軟質発泡樹脂パッドとの間に酸化セリウム等のスラリーが供給される。軟質発泡樹脂パッドおよび酸化セリウムを用いてガラス素材の主表面は、化学機械的に研磨される。 In the second rough polishing step, the main surface of the glass material and the soft foam resin are in contact with each other of the main surfaces of the glass material and the soft foam resin pads disposed so as to sandwich the main surfaces. A slurry such as cerium oxide is supplied between the pad and the pad. The main surface of the glass material is polished chemically and mechanically using a soft foam resin pad and cerium oxide.
 第1粗研磨工程において第1遊離砥粒として用いられる酸化ジルコニウムによる研磨加工レートと、第2粗研磨工程において第2遊離砥粒として用いられる酸化セリウムによる研磨加工レートとの比は、第2遊離砥粒として用いられる酸化セリウムによる研磨加工レートを1とすると、第1遊離砥粒として用いられる酸化ジルコニウムによる研磨加工レートは0.4以上0.8以下、より好ましくは、0.5以上0.7以下であるとよい。 The ratio between the polishing rate by zirconium oxide used as the first loose abrasive in the first rough polishing step and the polishing rate by cerium oxide used as the second loose abrasive in the second rough polishing step is the second free rate. Assuming that the polishing rate with cerium oxide used as abrasive grains is 1, the polishing rate with zirconium oxide used as first loose abrasive grains is 0.4 or more and 0.8 or less, more preferably 0.5 or more and 0.00. It is good that it is 7 or less.
 第1粗研磨工程において第1遊離砥粒として用いられる酸化ジルコニウムによるガラス素材の主表面に対する取り代と、第2粗研磨工程において第2遊離砥粒として用いられる酸化セリウムによるガラス素材の主表面に対する取り代との比は、第2遊離砥粒として用いられる酸化セリウムによる取り代を1とすると、第1遊離砥粒として用いられる酸化ジルコニウムによる取り代は0.8以上1.2以下であるとよい。この際、後述する精密研磨工程において第3遊離砥粒として用いられるコロイダルシリカによるガラス素材の主表面に対する取り代は、第2遊離砥粒として用いられる酸化セリウムによる取り代を1とすると、第3遊離砥粒として用いられるコロイダルシリカによる取り代は0.1以下であるとよい。 The allowance for the main surface of the glass material by zirconium oxide used as the first loose abrasive grains in the first rough polishing step, and the main surface of the glass material by cerium oxide used as the second loose abrasive particles in the second rough polishing step The ratio with the machining allowance is 1 when the machining allowance with cerium oxide used as the second loose abrasive grains is 1, and the machining allowance with zirconium oxide used as the first loose abrasive grains is 0.8 or more and 1.2 or less. Good. At this time, the machining allowance with respect to the main surface of the glass material by the colloidal silica used as the third loose abrasive grains in the precision polishing step to be described later is 3 if the machining allowance by the cerium oxide used as the second loose abrasive grains is 1. The allowance for colloidal silica used as the loose abrasive is preferably 0.1 or less.
 軟質発泡樹脂パッドおよび酸化セリウムを用いてガラス素材の主表面が化学機械的に研磨されることによって、第1粗研磨工程を経た後にガラス基板の主表面上に残留していた傷が除去される。 By scratching the main surface of the glass material chemically and mechanically using the soft foam resin pad and cerium oxide, scratches remaining on the main surface of the glass substrate after the first rough polishing step are removed. .
 第2粗研磨工程を終えたガラス素材は、中性洗剤、純水、IPA(イソプロピルアルコール)、またはUV(ultraviolet)オゾンなどによって洗浄されるとよい。より好ましくは、第2粗研磨工程を終えたガラス素材に対しては、フッ化水素酸などにより主表面を少し溶解させ、主表面上に残存した研磨剤を完全に除去することが好ましい。 The glass material that has finished the second rough polishing step may be washed with a neutral detergent, pure water, IPA (isopropyl alcohol), UV (ultraviolet) ozone, or the like. More preferably, for the glass material that has finished the second rough polishing step, it is preferable that the main surface is slightly dissolved with hydrofluoric acid or the like to completely remove the abrasive remaining on the main surface.
 (精密研磨工程)
 精密研磨工程(S17)においては、遊星歯車機構を有する両面研磨装置を用いて、ガラス素材の両主表面が精密に鏡面研磨される。精密研磨工程において上下定盤に取り付けられる研磨パッド(第3研磨パッド)としては、他の軟質発泡樹脂パッド(軟質発泡樹脂ポリッシャー)が用いられるとよい。精密研磨工程における研磨スラリー(第3遊離砥粒)としては、コロイダルシリカ等が用いられるとよい。
(Precision polishing process)
In the precision polishing step (S17), both main surfaces of the glass material are precisely mirror-polished using a double-side polishing apparatus having a planetary gear mechanism. As the polishing pad (third polishing pad) attached to the upper and lower surface plates in the precision polishing step, another soft foam resin pad (soft foam resin polisher) may be used. Colloidal silica or the like is preferably used as the polishing slurry (third free abrasive grains) in the precision polishing step.
 精密研磨工程において研磨パッドとして用いられる他の軟質発泡樹脂パッドの硬度は、第2粗研磨工程において研磨パッドとして用いられる軟質発泡樹脂パッドの硬度よりも小さいとよい。換言すると、第2粗研磨工程において研磨パッドとして用いられる軟質発泡樹脂パッドの硬度は、精密研磨工程において研磨パッドとして用いられる他の軟質発泡樹脂パッドの硬度よりも大きいとよい。 The hardness of the other soft foam resin pad used as the polishing pad in the precision polishing process may be smaller than the hardness of the soft foam resin pad used as the polishing pad in the second rough polishing process. In other words, the hardness of the soft foam resin pad used as the polishing pad in the second rough polishing process is preferably larger than the hardness of another soft foam resin pad used as the polishing pad in the precision polishing process.
 精密研磨工程においては、ガラス素材の両主表面とその両主表面を挟み込むように配置された軟質発泡樹脂パッドとを相互に当接させた状態で、ガラス素材の主表面と軟質発泡樹脂パッドとの間にコロイダルシリカがスラリーとして供給される。軟質発泡樹脂パッドおよびコロイダルシリカを用いてガラス素材の主表面が精密に鏡面研磨されることによって、ガラス素材の両主表面は、平滑化されるとともに、鏡面状に仕上げられる。 In the precision polishing step, the main surface of the glass material and the soft foam resin pad are placed in a state where the two main surfaces of the glass material and the soft foam resin pad arranged so as to sandwich the two main surfaces are in contact with each other. In the meantime, colloidal silica is supplied as a slurry. By precisely mirror-polishing the main surface of the glass material using the soft foam resin pad and colloidal silica, both main surfaces of the glass material are smoothed and finished in a mirror-like shape.
 第3粗研磨工程を終えたガラス素材は、中性洗剤、純水、IPA(イソプロピルアルコール)、またはUV(ultraviolet)オゾンなどによって、洗浄されるとよい。以上の各工程によって、図2および図3に示すガラス基板1が得られる。 The glass material that has finished the third rough polishing step may be washed with neutral detergent, pure water, IPA (isopropyl alcohol), UV (ultraviolet) ozone, or the like. Through the above steps, the glass substrate 1 shown in FIGS. 2 and 3 is obtained.
 (化学強化工程)
 化学強化工程(S18)においては、以上の工程によって得られたガラス基板(ガラス素材)に、化学強化処理が施される。化学強化処理によって、ガラス基板の主表面に圧縮応力層(化学強化層)が形成される。化学強化処理に用いる化学強化液としては、たとえば、硝酸カリウム(含有率60%)と硝酸ナトリウム(含有率40%)との混合溶液、または、硝酸カリウム(含有率70%)と硝酸ナトリウム(含有率30%)との混合溶液などを用いることができる。
(Chemical strengthening process)
In the chemical strengthening step (S18), a chemical strengthening process is performed on the glass substrate (glass material) obtained by the above steps. By the chemical strengthening treatment, a compressive stress layer (chemical strengthening layer) is formed on the main surface of the glass substrate. Examples of the chemical strengthening solution used for the chemical strengthening treatment include a mixed solution of potassium nitrate (content 60%) and sodium nitrate (content 40%), or potassium nitrate (content 70%) and sodium nitrate (content 30). %) And the like can be used.
 化学強化処理においては、化学強化液を300℃~400℃に加熱するとともに、洗浄済みのガラス基板を200℃~300℃に予熱する。化学強化溶液中に、そのガラス基板が3時間~4時間浸漬される。浸漬の際には、ガラス基板の両表面全体が化学強化されるため、複数のガラス基板が各々の端面で保持されるように、複数のガラス基板がホルダー等に収納された状態で浸漬されることが好ましい。 In the chemical strengthening treatment, the chemical strengthening solution is heated to 300 ° C. to 400 ° C., and the cleaned glass substrate is preheated to 200 ° C. to 300 ° C. The glass substrate is immersed in the chemical strengthening solution for 3 to 4 hours. At the time of immersion, since both the entire surfaces of the glass substrate are chemically strengthened, the plurality of glass substrates are immersed in a holder or the like so that the plurality of glass substrates are held by the respective end faces. It is preferable.
 ガラス基板に含まれるリチウムイオン、ナトリウムイオン等のアルカリ金属イオンは、これらのイオンに比べてイオン半径の大きなカリウムイオン等のアルカリ金属イオンによって置換される(イオン交換法)。イオン半径の違いによって生じる歪みより、イオン交換された領域に圧縮応力が発生し、ガラス基板の両主表面が強化される。化学強化工程は、精密研磨工程よりも前に実施されてもよい。 The alkali metal ions such as lithium ions and sodium ions contained in the glass substrate are replaced with alkali metal ions such as potassium ions having a larger ion radius than these ions (ion exchange method). Compressive stress is generated in the ion-exchanged region due to the strain caused by the difference in ion radius, and both main surfaces of the glass substrate are strengthened. The chemical strengthening process may be performed before the precision polishing process.
 以上の各工程が終了した後、ガラス基板に残存している付着物がなくなるように、ガラス基板は950kHzの高周波を用いて洗浄されたり、アルカリ洗剤を用いて洗浄されたりする。その後、IPAベーパーを用いてガラス基板は乾燥される。 After each of the above steps is completed, the glass substrate is washed using a high frequency of 950 kHz or washed using an alkaline detergent so that the deposits remaining on the glass substrate are eliminated. Thereafter, the glass substrate is dried using IPA vapor.
 化学強化工程を経た後にガラス基板の主表面上に残留している付着物が除去されることによって、ガラス基板1(図2および図3参照)を用いて製造される磁気ディスクなどの情報記録媒体10(図4および図5参照)にヘッドクラッシュが発生することが低減される。本実施の形態におけるガラス基板の製造方法としては、以上のように構成される。 An information recording medium such as a magnetic disk manufactured using the glass substrate 1 (see FIGS. 2 and 3) by removing the deposits remaining on the main surface of the glass substrate after the chemical strengthening step. 10 (see FIGS. 4 and 5) is reduced from occurrence of head crash. The manufacturing method of the glass substrate in the present embodiment is configured as described above.
 (磁気薄膜形成工程)
 化学強化処理が完了したガラス基板の両主表面(またはいずれか一方の主表面)に対し、磁気記録層が形成される。磁気記録層は、たとえば、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系からなる保護層、およびF系からなる潤滑層が順次成膜されることによって形成される。磁気記録層の形成によって、図4および図5に示す情報記録媒体10を得ることができる。
(Magnetic thin film formation process)
Magnetic recording layers are formed on both main surfaces (or one of the main surfaces) of the glass substrate that has been subjected to the chemical strengthening treatment. The magnetic recording layer includes, for example, an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and an F system. Are formed by sequentially forming the lubricating layer. By forming the magnetic recording layer, the information recording medium 10 shown in FIGS. 4 and 5 can be obtained.
 (作用・効果)
 上述したように、機械研磨においては、主としてガラス基板の主表面のみが研磨されるとともに、ガラス基板の主表面は粗く研磨される。ガラス基板の主表面は、荒れた状態となる。一方、化学的機械研磨においては、ガラス基板の主表面は、化学変化されつつ(Si-OとCe-Oとの置換が行なわれつつ)、さらに機械的にも研磨される。
(Action / Effect)
As described above, in the mechanical polishing, only the main surface of the glass substrate is mainly polished, and the main surface of the glass substrate is roughly polished. The main surface of the glass substrate is in a rough state. On the other hand, in the chemical mechanical polishing, the main surface of the glass substrate is further mechanically polished while being chemically changed (substitution of Si—O and Ce—O is performed).
 化学的機械研磨は、研磨加工レートが高いという特徴を有する。しかしながら、化学的機械研磨においては、遊離砥粒(研磨剤)とガラス基板との相性が良いため、ガラス基板の表面には研磨剤が残存しやすい。さらに、化学的機械研磨においては、ガラス基板の端部付近が化学変化の作用によって重点的に研磨されやすく、ガラス基板の端部には、「ダレ」とよばれる形状の悪化した部分が形成されるという特徴もある。 Chemical mechanical polishing is characterized by a high polishing rate. However, in chemical mechanical polishing, the compatibility between the free abrasive grains (abrasive) and the glass substrate is good, so that the abrasive tends to remain on the surface of the glass substrate. Furthermore, in chemical mechanical polishing, the vicinity of the edge of the glass substrate is easily polished by the action of a chemical change, and a deteriorated portion called “sag” is formed at the edge of the glass substrate. There is also a feature.
 本実施の形態のガラス基板の製造方法においては、酸化ジルコニウム等を用いてガラス基板の主表面が機械的に研磨された後(第1粗研磨工程の後)、酸化セリウム等を用いてガラス基板の主表面が化学機械的に研磨される(第2粗研磨工程)。 In the manufacturing method of the glass substrate of the present embodiment, after the main surface of the glass substrate is mechanically polished using zirconium oxide or the like (after the first rough polishing step), the glass substrate is used using cerium oxide or the like. The main surface of is chemically and mechanically polished (second rough polishing step).
 ガラス基板の主表面のうち、第1粗研磨工程における機械研磨によって荒らされた部分は、第2粗研磨工程における化学的機械研磨によって、ガラス基板の端部付近よりも優先的に研磨される。化学的な研磨作用がガラス基板の端部付近にまで及んでガラス基板の端部付近が過剰に研磨される前に、酸化セリウム等の化学的機械研磨によって、ガラス基板の主表面は、機械研磨による深い傷の大部分が浅くなるように化学的に研磨される。 Of the main surface of the glass substrate, the portion roughened by the mechanical polishing in the first rough polishing step is preferentially polished by the chemical mechanical polishing in the second rough polishing step over the vicinity of the end of the glass substrate. The main surface of the glass substrate is mechanically polished by chemical mechanical polishing such as cerium oxide before the chemical polishing action reaches the end of the glass substrate and the vicinity of the end of the glass substrate is excessively polished. It is chemically polished so that most of the deep scratches caused by the surface become shallow.
 ガラス基板の主表面においては、化学的機械研磨によって適度な研磨厚さを得るように研磨されることができるとともに、化学的機械研磨によって浅くなった傷は、次工程である精密研磨工程におけるコロイダルシリカ等を用いた鏡面研磨によって十分に除去されることができる。 The main surface of the glass substrate can be polished so as to obtain an appropriate polishing thickness by chemical mechanical polishing, and the scratches that become shallow by chemical mechanical polishing are colloidal in the precision polishing process that is the next process. It can be sufficiently removed by mirror polishing using silica or the like.
 したがって本実施の形態におけるガラス基板(情報記録媒体用ガラス基板)の製造方法によれば、機械研磨、化学的機械研磨、および精密研磨を順次経ることによって、ガラス基板の主表面において高い平滑性および高い平坦性を得ることができるとともに、ガラス基板の端部付近においては形状の乱れおよび傷のない良好な状態が得られる。ガラス基板の端部には、「ダレ」とよばれる形状の悪化した部分が形成されることもない。さらに、ガラス基板に対して化学強化処理が実施されることによって、ガラス基板の耐衝撃性および耐振動性も向上し、衝撃および振動に強いガラス基板が得られる。 Therefore, according to the method for manufacturing a glass substrate (glass substrate for information recording medium) in the present embodiment, high smoothness on the main surface of the glass substrate is achieved by sequentially performing mechanical polishing, chemical mechanical polishing, and precision polishing. High flatness can be obtained, and a good state with no irregular shape and scratches can be obtained near the edge of the glass substrate. At the end of the glass substrate, a portion with a deteriorated shape called “sag” is not formed. Furthermore, by performing the chemical strengthening process on the glass substrate, the impact resistance and vibration resistance of the glass substrate are also improved, and a glass substrate that is resistant to impact and vibration is obtained.
 冒頭に述べたように、ガラス基板の従来の製造方法においては、ガラス基板の主表面に対して、まず、研磨パッドとして硬質ウレタンパッドを用いた粗研磨(化学的機械研磨)が行なわれる。その後、ガラス基板の主表面に対して、研磨パッドとして軟質発泡樹脂パッドを用いた精密研磨が行なわれる。 As described at the beginning, in the conventional method of manufacturing a glass substrate, first, rough polishing (chemical mechanical polishing) using a hard urethane pad as a polishing pad is performed on the main surface of the glass substrate. Thereafter, precision polishing using a soft foam resin pad as a polishing pad is performed on the main surface of the glass substrate.
 粗研磨(化学的機械研磨)の際に研磨パッドとして硬質ウレタンパッドが用いられる理由は、粗研磨(化学的機械研磨)の際に軟質ウレタンパッドが用いられると、加工効率が低下し、ガラス基板の主表面上において傷などが多く発生するからである。しかしながら、粗研磨(化学的機械研磨)の際に研磨パッドとして硬質ウレタンパッドが用いられると、ガラス基板の端部付近の形状が悪化してしまうという問題がある。これは、硬質ウレタンパッドが用いられると、ガラス基板の端部付近に集中して研磨力が作用するからである。 The reason why a hard urethane pad is used as a polishing pad during rough polishing (chemical mechanical polishing) is that when a soft urethane pad is used during rough polishing (chemical mechanical polishing), the processing efficiency decreases, and the glass substrate This is because many scratches and the like occur on the main surface. However, when a hard urethane pad is used as a polishing pad during rough polishing (chemical mechanical polishing), there is a problem that the shape near the edge of the glass substrate is deteriorated. This is because when a hard urethane pad is used, the polishing force is concentrated in the vicinity of the end of the glass substrate.
 上述のように、本実施の形態のガラス基板の製造方法においては、加工効率を安定化させるために、第1粗研磨工程に用いられる研磨パッド(第1研磨パッド)は、軟質発泡樹脂パッドからなり、この軟質発泡樹脂パッドとしては、硬度が、Asker C硬度において73度以上85度以下であるものが用いられる。このような軟質発泡樹脂パッドを用いることによって、ガラス基板の端部付近に集中して研磨力が作用することがないため、ガラス基板の端部付近の形状は悪化しない。 As described above, in the method for manufacturing a glass substrate of the present embodiment, the polishing pad (first polishing pad) used in the first rough polishing step is made of a soft foam resin pad in order to stabilize the processing efficiency. Thus, as this soft foamed resin pad, one having a hardness of 73 degrees to 85 degrees in Asker C hardness is used. By using such a soft foamed resin pad, the polishing force does not act concentrated on the vicinity of the end of the glass substrate, so the shape near the end of the glass substrate does not deteriorate.
 また、機械研磨の次工程である第2粗研磨工程においては、酸化セリウムによる化学的機械研磨の際にも軟質発泡樹脂ウレタンが使用される。ガラス基板の主表面または端部における傷が増加する前に研磨加工を終らせることによって、傷の発生を抑えたままさらなる端部形状の改善(端部形状の悪化の防止)を図ることが可能となる。 Also, in the second rough polishing step, which is the next step of mechanical polishing, soft foamed resin urethane is also used for chemical mechanical polishing with cerium oxide. By finishing the polishing process before the scratches on the main surface or edge of the glass substrate increase, it is possible to further improve the edge shape (prevent deterioration of the edge shape) while suppressing the occurrence of scratches. It becomes.
 本実施の形態におけるガラス基板(情報記録媒体用ガラス基板)の製造方法によって得られたガラス基板1(図2および図3など参照)を備えた情報記録媒体10(図4および図5など参照)は、情報記録装置30として組み込まれた状態においては磁気ヘッドと接触することが抑制され、データの読み取りエラーなどが発生することも抑制可能となっている。したがって、ガラス基板1を備えた情報記録媒体をハードディスク等の情報記録装置として用いた場合には、高い記録容量を有するとともに、動作上の高い安定性を確保することが可能となっている。 Information recording medium 10 (see FIG. 4 and FIG. 5) provided with glass substrate 1 (see FIG. 2 and FIG. 3, etc.) obtained by the method of manufacturing a glass substrate (glass substrate for information recording medium) in the present embodiment. In the state incorporated as the information recording device 30, contact with the magnetic head is suppressed, and occurrence of data reading errors and the like can also be suppressed. Therefore, when the information recording medium provided with the glass substrate 1 is used as an information recording apparatus such as a hard disk, it has a high recording capacity and can ensure high operational stability.
 本実施の形態のガラス基板の製造方法においては、ガラス素材準備工程において準備されるガラス素材が、58質量%以上68質量%以下のSiOを成分に含む。SiOのガラス素材中の含有率は、ガラス素材の様々な物性に影響する。一般的には、ガラス素材中に含まれるSiOの含有率が高くなればなるほどそのガラス素材は硬くなり、ガラス素材中に含まれるSiOの含有率が少なくなればなるほど化学的な耐久性が低くなる。 In the production method of a glass substrate of this embodiment, the glass material is prepared in the glass material preparation step comprises 58 wt% or more 68 wt% or less of SiO 2 to the ingredients. The content of SiO 2 in the glass material affects various physical properties of the glass material. In general, the higher the content of SiO 2 contained in the glass material, the harder the glass material, and the lower the content of SiO 2 contained in the glass material, the more chemically durable. Lower.
 ガラス素材準備工程において準備されるガラス素材が、68質量%よりも多いSiOの含有率を有する場合、ガラス素材の化学的な耐久性が高くなることによって化学研磨の効果が弱まり、酸化セリウムを用いた研磨によっても、機械的な研磨が強く実施されることになるため傷などが多く発生する。一方、ガラス素材準備工程において準備されるガラス素材が、58質量%よりも少ないSiOの含有率を有する場合、ガラス素材の化学的な耐久性が低くなることによって、酸化セリウムを用いた研磨の際の研磨加工レートが向上するが、同時にガラス基板の端部の形状が悪化しやすくなる。 When the glass material prepared in the glass material preparation step has a SiO 2 content of more than 68% by mass, the chemical durability of the glass material is increased to reduce the chemical polishing effect. Even with the polishing used, mechanical polishing is strongly performed, so that many scratches and the like are generated. On the other hand, when the glass material prepared in the glass material preparation step has a SiO 2 content of less than 58% by mass, the chemical durability of the glass material is reduced, thereby reducing the polishing using cerium oxide. However, the shape of the edge of the glass substrate tends to deteriorate at the same time.
 したがって、ガラス素材準備工程において準備されるガラス素材が58質量%以上68質量%以下のSiOを成分に含むことによって、高い清浄度、高い平滑性、および高い平坦性を有する傷が少ないガラス基板を得ることができる。 Therefore, the glass material prepared in the glass material preparation step contains 58% by mass or more and 68% by mass or less of SiO 2 as a component, so that the glass substrate has high cleanliness, high smoothness, and high flatness with few scratches. Can be obtained.
 本実施の形態のガラス基板の製造方法においては、フロート法を使用することによってガラス素材が準備される。フロート法を使用して板状に形成されたガラス素材から得られるガラス基板は、傷などが少なく、また平坦度も高い。 In the glass substrate manufacturing method of the present embodiment, a glass material is prepared by using a float method. A glass substrate obtained from a glass material formed into a plate shape using the float process has few scratches and has a high flatness.
 一方、ダイレクトプレス法を使用して準備されたガラス基板は、フロート法を使用して準備されたガラス基板に比べて傷などが多く、平坦度も高くない。ダイレクトプレス法を使用して準備されたガラス基板は、固定砥粒を用いた研削工程が必要となる。また、ダイレクトプレス法を使用して準備されたガラス基板は、傷が深いため酸化ジルコニウムを用いた研磨では傷を修正しきれないため、酸化セリウムを用いた化学研磨の負担が大きくなる。 On the other hand, a glass substrate prepared by using the direct press method has more scratches and flatness than a glass substrate prepared by using the float method. The glass substrate prepared using the direct press method needs a grinding process using fixed abrasive grains. Moreover, since the glass substrate prepared using the direct press method has deep scratches, the scratches cannot be corrected by polishing with zirconium oxide, and thus the burden of chemical polishing using cerium oxide increases.
 したがって、ガラス素材準備工程において、ガラス素材がフロート法を使用して準備されることによって、傷などが少なく、また平坦度も高いガラス基板を得ることが可能となる。 Therefore, by preparing the glass material using the float method in the glass material preparation step, it is possible to obtain a glass substrate with few scratches and high flatness.
 本実施の形態のガラス基板の製造方法においては、研磨スラリー(第1遊離砥粒)として用いられる酸化ジルコニウム(ジルコニア)の砥粒径は、0.7μm以上1.4μm以下である。酸化ジルコニウム(ジルコニア)の砥粒径に応じて、研磨されるガラス基板の主表面の形状および面粗さなどが変化する。 In the method for manufacturing a glass substrate of the present embodiment, the abrasive particle diameter of zirconium oxide (zirconia) used as the polishing slurry (first free abrasive grains) is 0.7 μm or more and 1.4 μm or less. Depending on the abrasive grain size of zirconium oxide (zirconia), the shape and surface roughness of the main surface of the glass substrate to be polished change.
 第1粗研磨工程(機械研磨)において研磨スラリー(第1遊離砥粒)として用いられる酸化ジルコニウムは、加工効率を上げる必要があるため砥粒径は大きい方がよいが、砥粒径が1.4μmよりも大きくなると傷などが増え、最終的に得られたガラス基板の品質に影響してしまう。一方、砥粒径が0.7μmよりも小さくなると、加工効率の低下を招く。 Zirconium oxide used as a polishing slurry (first free abrasive grains) in the first rough polishing step (mechanical polishing) needs to increase the processing efficiency. When it becomes larger than 4 μm, scratches and the like increase, which affects the quality of the finally obtained glass substrate. On the other hand, when the abrasive grain size is smaller than 0.7 μm, the processing efficiency is lowered.
 したがって、第1粗研磨工程(機械研磨)において研磨スラリー(第1遊離砥粒)として用いられる酸化ジルコニウムの砥粒径が0.7μm以上1.4μm以下であることによって、高い加工効率が得られるとともに、最終的に得られるガラス基板の品質を向上させることが可能となる。 Therefore, high processing efficiency is obtained when the abrasive grain size of zirconium oxide used as a polishing slurry (first loose abrasive grains) in the first rough polishing step (mechanical polishing) is 0.7 μm or more and 1.4 μm or less. At the same time, the quality of the finally obtained glass substrate can be improved.
 本実施の形態のガラス基板の製造方法においては、第1粗研磨工程において第1遊離砥粒として用いられる酸化ジルコニウム(ジルコニア)の平均砥粒径と、第2粗研磨工程において第2遊離砥粒として用いられる酸化セリウムの平均砥粒径との比は、第1遊離砥粒として用いられる酸化ジルコニウムの平均砥粒径を1とすると、第2遊離砥粒として用いられる酸化セリウムの平均砥粒径は0.7以上1.3以下、好ましくは0.7以上1.0以下である。 In the manufacturing method of the glass substrate of the present embodiment, the average abrasive grain size of zirconium oxide (zirconia) used as the first free abrasive grains in the first coarse polishing step, and the second free abrasive grains in the second coarse polishing step. The ratio of the average abrasive grain size of cerium oxide used as the average abrasive grain size of zirconium oxide used as the first free abrasive grains is 1, and the average abrasive grain size of cerium oxide used as the second free abrasive grains Is 0.7 or more and 1.3 or less, preferably 0.7 or more and 1.0 or less.
 第1遊離砥粒として用いられる酸化ジルコニウムの平均砥粒径を1とした場合、第2遊離砥粒として用いられる酸化セリウムの平均砥粒径が1.0または1.3よりも大きくなると、酸化ジルコニウムの研磨によって形成されたガラス基板の主表面の形状が悪化する。 When the average abrasive grain size of zirconium oxide used as the first free abrasive grains is 1, when the average abrasive grain size of cerium oxide used as the second free abrasive grains is larger than 1.0 or 1.3, oxidation occurs. The shape of the main surface of the glass substrate formed by the polishing of zirconium is deteriorated.
 第1遊離砥粒として用いられる酸化ジルコニウムの平均砥粒径を1とした場合、第2遊離砥粒として用いられる酸化セリウムの平均砥粒径が0.7よりも小さくなると、酸化ジルコニウムによって研磨される研磨量が少なくなり、結果として、第1粗研磨工程において酸化ジルコニウムによって発生した傷が、第2粗研磨工程における酸化セリウムによる化学的機械研磨によって修正しきれないこととなる。 When the average abrasive grain size of zirconium oxide used as the first free abrasive grains is 1, when the average abrasive grain size of cerium oxide used as the second free abrasive grains is smaller than 0.7, it is polished by zirconium oxide. As a result, scratches caused by zirconium oxide in the first rough polishing step cannot be completely corrected by chemical mechanical polishing with cerium oxide in the second rough polishing step.
 したがって、第1遊離砥粒として用いられる酸化ジルコニウムの平均砥粒径を1とすると、第2遊離砥粒として用いられる酸化セリウムの平均砥粒径は0.7以上1.3以下、好ましくは0.7以上1.0以下であることによって、ガラス基板の端部の形状が悪化することもなく、酸化ジルコニウムによってガラス基板の主表面上に発生した傷は、酸化セリウムによって良好に除去されることとなる。 Therefore, when the average abrasive grain size of zirconium oxide used as the first free abrasive grains is 1, the average abrasive grain size of cerium oxide used as the second free abrasive grains is 0.7 or more and 1.3 or less, preferably 0. When the ratio is 0.7 or more and 1.0 or less, the shape of the end of the glass substrate is not deteriorated, and scratches generated on the main surface of the glass substrate by zirconium oxide are satisfactorily removed by cerium oxide. It becomes.
 本実施の形態のガラス基板の製造方法においては、第1粗研磨工程において第1遊離砥粒として用いられる酸化ジルコニウムによる研磨加工レートと、第2粗研磨工程において第2遊離砥粒として用いられる酸化セリウムによる研磨加工レートとの比は、第2遊離砥粒として用いられる酸化セリウムによる研磨加工レートを1とすると、第1遊離砥粒として用いられる酸化ジルコニウムによる研磨加工レートは0.4以上0.8以下、より好ましくは、0.5以上0.7以下である。 In the manufacturing method of the glass substrate of the present embodiment, the polishing processing rate by zirconium oxide used as the first free abrasive grains in the first rough polishing step and the oxidation used as the second free abrasive grains in the second rough polishing step. The ratio of the polishing process rate with cerium is 0.4 or more when the polishing process rate with cerium oxide used as the second free abrasive grains is 1, and the polishing process rate with zirconium oxide used as the first free abrasive grains is 0.4 or more. It is 8 or less, more preferably 0.5 or more and 0.7 or less.
 酸化ジルコニウムによる研磨加工レートおよび酸化セリウムによる研磨加工レートに応じて、研磨されるガラス基板の主表面の形状および面粗さなどが変化する。第2遊離砥粒として用いられる酸化セリウムによる研磨加工レートを1とした場合、第1遊離砥粒として用いられる酸化ジルコニウムによる研磨加工レートが0.8よりも大きくなると、ガラス基板の主表面上には傷が形成されやすくなる。 Depending on the polishing rate with zirconium oxide and the polishing rate with cerium oxide, the shape and surface roughness of the main surface of the glass substrate to be polished change. When the polishing processing rate by cerium oxide used as the second free abrasive grains is 1, when the polishing processing rate by zirconium oxide used as the first free abrasive grains is greater than 0.8, the main surface of the glass substrate Will tend to form scratches.
 一方、第2遊離砥粒として用いられる酸化セリウムによる研磨加工レートを1とした場合、第1遊離砥粒として用いられる酸化ジルコニウムによる研磨加工レートが0.4よりも小さくなると(相対的に、酸化セリウムによる研磨加工レートが早くなると)、第1粗研磨工程において酸化ジルコニウムによって発生した傷が、第2粗研磨工程における酸化セリウムによる化学的機械研磨によって修正しきれないこととなる。 On the other hand, when the polishing rate by cerium oxide used as the second free abrasive grains is 1, when the polishing rate by zirconium oxide used as the first free abrasive grains is smaller than 0.4 (relatively, oxidation When the polishing processing rate by cerium is increased), scratches generated by zirconium oxide in the first rough polishing step cannot be completely corrected by chemical mechanical polishing by cerium oxide in the second rough polishing step.
 したがって、第2遊離砥粒として用いられる酸化セリウムによる研磨加工レートを1とすると、第1遊離砥粒として用いられる酸化ジルコニウムによる研磨加工レートは0.4以上0.8以下、より好ましくは、0.5以上0.7以下であることによって、ガラス基板の端部の形状が悪化することもなく、酸化ジルコニウムによってガラス基板の主表面上に発生した傷は、酸化セリウムによって良好に除去されることとなる。 Therefore, if the polishing rate with cerium oxide used as the second free abrasive is 1, the polishing rate with zirconium oxide used as the first free abrasive is 0.4 or more and 0.8 or less, more preferably 0. The scratches generated on the main surface of the glass substrate by zirconium oxide can be satisfactorily removed by cerium oxide without deteriorating the shape of the edge of the glass substrate by being 0.5 or more and 0.7 or less. It becomes.
 本実施の形態のガラス基板の製造方法においては、第1粗研磨工程において第1遊離砥粒として用いられる酸化ジルコニウムによるガラス素材の主表面に対する取り代と、第2粗研磨工程において第2遊離砥粒として用いられる酸化セリウムによるガラス素材の主表面に対する取り代との比は、第2遊離砥粒として用いられる酸化セリウムによる取り代を1とすると、第1遊離砥粒として用いられる酸化ジルコニウムによる取り代は0.8以上1.2以下である。 In the manufacturing method of the glass substrate of the present embodiment, the allowance for the main surface of the glass material by zirconium oxide used as the first loose abrasive grains in the first rough polishing step, and the second free abrasive in the second rough polishing step. The ratio of the cerium oxide used as grains to the machining allowance for the main surface of the glass material is 1 when the machining allowance by cerium oxide used as the second free abrasive grains is 1, and the removal by the zirconium oxide used as the first free abrasive grains. The cost is 0.8 or more and 1.2 or less.
 酸化ジルコニウムを用いた機械研磨と酸化セリウムを用いた化学的機械研磨の取り代は、略同等であることが好ましい。理由としては、酸化ジルコニウムによる機械研磨は、ガラス基板の主表面の形状を整えるが、一定の傷を形成してしまう。酸化セリウムによる化学的機械研磨は、ガラス基板の端部の形状に影響を与えるが、酸化ジルコニウムによる機械研磨によって発生した傷を修復することができる。酸化ジルコニウムによる機械研磨と酸化セリウムによる化学的機械研磨とのバランスがもっとも良いのが、各々の取り代が略同等の時である。 The machining allowance for mechanical polishing using zirconium oxide and chemical mechanical polishing using cerium oxide is preferably substantially the same. The reason is that mechanical polishing with zirconium oxide adjusts the shape of the main surface of the glass substrate, but forms certain scratches. Chemical mechanical polishing with cerium oxide affects the shape of the edge of the glass substrate, but can repair the scratches generated by mechanical polishing with zirconium oxide. The best balance between mechanical polishing with zirconium oxide and chemical mechanical polishing with cerium oxide is when the machining allowances are approximately equal.
 酸化セリウムによる取り代を1とし、第1遊離砥粒として用いられる酸化ジルコニウムによる取り代が0.8よりも小さい場合(酸化セリウムによる取り代が大きい場合)、ガラス基板の端部の形状が悪化しやすくなる。酸化セリウムによる取り代を1とし、第1遊離砥粒として用いられる酸化ジルコニウムによる取り代が1.2よりも大きい場合(酸化セリウムによる取り代が小さい場合)、酸化ジルコニウムによって発生した傷が、第2粗研磨工程における酸化セリウムによる化学的機械研磨によって修正しきれないこととなる。 When the machining allowance by cerium oxide is 1, and the machining allowance by zirconium oxide used as the first loose abrasive is smaller than 0.8 (when the machining allowance by cerium oxide is large), the shape of the edge of the glass substrate is deteriorated. It becomes easy to do. When the removal allowance by cerium oxide is 1, and the allowance by zirconium oxide used as the first free abrasive grains is larger than 1.2 (when the allowance by cerium oxide is small), scratches caused by zirconium oxide are It cannot be corrected by chemical mechanical polishing with cerium oxide in the two rough polishing steps.
 したがって、第2遊離砥粒として用いられる酸化セリウムによる取り代を1とすると、第1遊離砥粒として用いられる酸化ジルコニウムによる取り代は0.8以上1.2以下であることによって、ガラス基板の端部の形状が悪化することもなく、酸化ジルコニウムによってガラス基板の主表面上に発生した傷は、酸化セリウムによって良好に除去されることとなる。 Therefore, if the removal allowance by cerium oxide used as the second free abrasive grains is 1, the allowance by zirconium oxide used as the first free abrasive grains is 0.8 or more and 1.2 or less, so that The scratches generated on the main surface of the glass substrate by zirconium oxide can be satisfactorily removed by cerium oxide without deterioration of the shape of the end portion.
 本実施の形態のガラス基板の製造方法においては、精密研磨工程において第3遊離砥粒として用いられるコロイダルシリカによるガラス素材の主表面に対する取り代は、第2遊離砥粒として用いられる酸化セリウムによる取り代を1とすると、第3遊離砥粒として用いられるコロイダルシリカによる取り代は0.1以下である。第2遊離砥粒として用いられる酸化セリウムによる取り代を1とした場合、コロイダルシリカによる取り代が0.1よりも大きくなると、ガラス基板の端部の形状が悪化し易くなる。 In the manufacturing method of the glass substrate of the present embodiment, the allowance for the main surface of the glass material by the colloidal silica used as the third free abrasive grains in the precision polishing step is taken up by the cerium oxide used as the second free abrasive grains. If the allowance is 1, the allowance for colloidal silica used as the third loose abrasive is 0.1 or less. When the machining allowance with cerium oxide used as the second free abrasive grains is 1, when the machining allowance with colloidal silica becomes larger than 0.1, the shape of the end portion of the glass substrate tends to deteriorate.
 したがって、第2遊離砥粒として用いられる酸化セリウムによる取り代を1とすると、第3遊離砥粒として用いられるコロイダルシリカによる取り代が0.1以下であることによって、ガラス基板の端部の形状が悪化することは抑制されることができる。 Therefore, when the removal allowance by cerium oxide used as the second free abrasive grains is 1, the removal allowance by the colloidal silica used as the third free abrasive grains is 0.1 or less, so that the shape of the end portion of the glass substrate is reduced. It can be suppressed that the deterioration.
 本実施の形態のガラス基板の製造方法においては、第1粗研磨工程において第1遊離砥粒として用いられる酸化ジルコニウムのζ電位は、-50mV以上-30mV以下である。酸化ジルコニウムによるζ電位が-50mVよりも低いと、酸化ジルコニウムがガラス基板の表面に残りやすくなり、酸化セリウムを用いた化学的機械研磨の際に、傷を発生させる要因となる。酸化ジルコニウムによるζ電位が-30mVよりも高いと、ガラス基板と酸化ジルコニウムとの反発が強すぎて、研磨が円滑に行えなくなり、ガラス基板の主表面の形状が悪化しやすくなる。 In the glass substrate manufacturing method of the present embodiment, the ζ potential of zirconium oxide used as the first free abrasive grains in the first rough polishing step is −50 mV to −30 mV. If the ζ potential due to zirconium oxide is lower than −50 mV, zirconium oxide tends to remain on the surface of the glass substrate, which causes a flaw during chemical mechanical polishing using cerium oxide. If the ζ potential due to zirconium oxide is higher than −30 mV, the repulsion between the glass substrate and zirconium oxide is too strong, and polishing cannot be performed smoothly, and the shape of the main surface of the glass substrate tends to deteriorate.
 したがって、第1遊離砥粒として用いられる酸化ジルコニウムのζ電位は、-50mV以上-30mV以下であることによって、ガラス基板の主表面に傷が発生しにくくなるとともに、ガラス基板の主表面の形状が悪化することも抑制されることが可能となる。 Therefore, the ζ potential of zirconium oxide used as the first free abrasive grains is −50 mV or more and −30 mV or less, so that the main surface of the glass substrate is less likely to be scratched and the shape of the main surface of the glass substrate is reduced. Deterioration can also be suppressed.
 [実施例および比較例]
 以下、図7~図12を参照して、上述の実施の形態に基づいて行なった実施例1,2-1,2-2、および、これらの実施例に対する比較例1~3について説明する。図7は、実施例1および比較例1,2における各実験条件を示す図である。図8は、比較例3および実施例2-1,2-2における各実験条件を示す図である。図9は、実施例1,2-1,2-2および比較例2,3におけるガラス基板の製造方法の各工程を示すフローチャート図である。図10は、比較例1におけるガラス基板の製造方法の各工程を示すフローチャート図である。
[Examples and Comparative Examples]
Hereinafter, with reference to FIGS. 7 to 12, Examples 1, 2-1, 2-2 performed based on the above-described embodiment and Comparative Examples 1 to 3 for these Examples will be described. FIG. 7 is a diagram showing experimental conditions in Example 1 and Comparative Examples 1 and 2. FIG. 8 is a diagram showing experimental conditions in Comparative Example 3 and Examples 2-1 and 2-2. FIG. 9 is a flowchart showing each step of the glass substrate manufacturing method in Examples 1, 2-1, 2-2 and Comparative Examples 2, 3. FIG. 10 is a flowchart showing each step of the glass substrate manufacturing method in Comparative Example 1.
 図11は、実施例1,2-1,2-2および比較例1~3において使用したガラス素材(ガラス素材A)中に含まれる各成分の含有比率を示す図である。図11に記載されるガラス素材Bおよびガラス素材Cについては、後述する他の実施例において使用されるものである。図12は、実施例1,2-1,2-2および比較例1~3における実験結果を示す図である。 FIG. 11 is a diagram showing the content ratio of each component contained in the glass material (glass material A) used in Examples 1, 2-1, 2-2 and Comparative Examples 1 to 3. About the glass raw material B and the glass raw material C which are described in FIG. 11, it is used in the other Example mentioned later. FIG. 12 is a diagram showing experimental results in Examples 1, 2-1, 2-2 and Comparative Examples 1 to 3.
 実施例1,2-1,2-2および比較例1~3においては、図12に示すように、各々の製造方法を使用することによって製造されたガラス基板に対して、ガラス基板の端面に「ダレ」と言われる形状の悪化の程度を測定するとともに、ガラス基板の主表面上における付着物の数を、OSA(Optical Surface Analyzer)のエンカウント数として算出した。また、各々の製造方法を使用することによって製造されたガラス基板に対して、グライドテストを行なうとともに、ミッシングの発生した数を算出した。 In Examples 1, 2-1, 2-2 and Comparative Examples 1 to 3, as shown in FIG. 12, with respect to the glass substrate manufactured by using each manufacturing method, The degree of deterioration of the shape called “sag” was measured, and the number of deposits on the main surface of the glass substrate was calculated as an OSA (Optical Surface Analyzer) encounter number. In addition, a glide test was performed on the glass substrate manufactured by using each manufacturing method, and the number of occurrences of missing was calculated.
 (実施例1)
 図7および図9に示すように、実施例1のガラス基板の製造方法S101(図9参照)は、上述の実施の形態と同様に、ガラス素材準備工程(S10)、切り出し工程(S11)、内外加工工程(S12)、エッチング工程(S13)、内外研磨工程(S14)、第1粗研磨工程(S15)、第2粗研磨工程(S16)、精密研磨工程(S17)、および化学強化工程(S18)を備える。
Example 1
As shown in FIGS. 7 and 9, the glass substrate manufacturing method S101 (see FIG. 9) of Example 1 is similar to the above-described embodiment in the glass material preparation step (S10), the cutting step (S11), Internal / external machining step (S12), etching step (S13), internal / external polishing step (S14), first rough polishing step (S15), second rough polishing step (S16), precision polishing step (S17), and chemical strengthening step ( S18).
 ガラス素材準備工程(S10)においては、フロート法を使用して、ガラス素材Aが準備された。図11に示すように、ガラス素材Aを構成する各成分は、LiOが3.5質量%、NaOが10.0質量%、KOが0.5質量%、MgOが0.5質量%、CaOが1.5質量%、SrOが0.5質量%、BaOが1.0質量%、ZnOが0.5質量%、Bが0.5質量%、Alが11.5質量%、SiOが67.5質量%、ZrOが2.0質量%、そして、CeOが0.5質量%である。 In the glass material preparation step (S10), the glass material A was prepared using the float method. As shown in FIG. 11, the components constituting the glass material A are Li 2 O 3.5 mass%, Na 2 O 10.0 mass%, K 2 O 0.5 mass%, and MgO 0 0.5% by mass, CaO 1.5% by mass, SrO 0.5% by mass, BaO 1.0% by mass, ZnO 0.5% by mass, B 2 O 3 0.5% by mass, Al 2 O 3 is 11.5% by mass, SiO 2 is 67.5% by mass, ZrO 2 is 2.0% by mass, and CeO 2 is 0.5% by mass.
 ガラス素材Aに対して、上述の実施の形態と同様に、切り出し工程(S11)、内外加工工程(S12)、エッチング工程(S13)、内外研磨工程(S14)を順次実施した(図9参照)。 Similarly to the above-described embodiment, the glass material A was sequentially subjected to a cutting process (S11), an internal / external processing process (S12), an etching process (S13), and an internal / external polishing process (S14) (see FIG. 9). .
 第1粗研磨工程(S15)における機械研磨の研磨条件(図7参照)としては、平均粒子径が0.6μmである酸化ジルコニウム(ジルコニア)を遊離砥粒(スラリー)として使用し、研磨加工レートは0.8μm/minとし、取り代は20μmとした。研磨パッドとしては、Asker C硬度が80度である軟質発泡樹脂パッドを使用した。 As polishing conditions for mechanical polishing (see FIG. 7) in the first rough polishing step (S15), zirconium oxide (zirconia) having an average particle diameter of 0.6 μm is used as free abrasive grains (slurry), and the polishing processing rate Was 0.8 μm / min, and the machining allowance was 20 μm. As a polishing pad, a soft foamed resin pad having Asker C hardness of 80 degrees was used.
 第2粗研磨工程(S16)における化学的機械研磨の研磨条件(図7参照)としては、平均粒子径が1.0μmである酸化セリウム(セリア)を遊離砥粒(スラリー)として使用し、研磨加工レートは1.0μm/minとし、取り代は20μmとした。研磨パッドとしては、Asker C硬度が70度である軟質発泡樹脂パッドを使用した。 As polishing conditions (see FIG. 7) for chemical mechanical polishing in the second rough polishing step (S16), cerium oxide (ceria) having an average particle diameter of 1.0 μm is used as free abrasive grains (slurry), and polishing is performed. The processing rate was 1.0 μm / min, and the machining allowance was 20 μm. As the polishing pad, a soft foamed resin pad having Asker C hardness of 70 degrees was used.
 精密研磨工程(S17)における鏡面研磨の研磨条件(図7参照)としては、平均粒子径が20nmであるコロイダルシリカを遊離砥粒(スラリー)として使用し、研磨加工レートは0.05μm/minとし、取り代は1.5μmとした。研磨パッドとしては、Asker C硬度が70度である軟質発泡樹脂パッドを使用した。 As polishing conditions (see FIG. 7) for mirror polishing in the precision polishing step (S17), colloidal silica having an average particle diameter of 20 nm is used as free abrasive grains (slurry), and the polishing rate is 0.05 μm / min. The machining allowance was 1.5 μm. As the polishing pad, a soft foamed resin pad having Asker C hardness of 70 degrees was used.
 精密研磨工程(S17)を経たガラス基板に対して、上述の実施の形態と同様に、化学強化工程(S18)および磁気記録層成膜工程(S200)を順次実施した。 The chemical strengthening step (S18) and the magnetic recording layer deposition step (S200) were sequentially performed on the glass substrate that had undergone the precision polishing step (S17) in the same manner as in the above-described embodiment.
 (実施例1の評価)
 図12を参照して、以上の各工程によって得られた実施例1に基づくガラス基板に対して、ガラス基板の端部における「ダレ」の程度を測定した。具体的には、KLA Tencol社製の光学表面解析機「OSA6300」を用いて、ガラス基板の中心部からの寸法R=31.8mmの位置におけるガラス基板の主表面(基準面)からの深さ寸法を測定したところ、24.3nmであった。また、ガラス基板の主表面上における傷の数を、OSA(Optical Surface Analyzer)のエンカウント数として測定器の画面上に表示される傷の数として測定したところ、19本であった。
(Evaluation of Example 1)
Referring to FIG. 12, the degree of “sag” at the edge of the glass substrate was measured for the glass substrate based on Example 1 obtained by the above steps. Specifically, using an optical surface analyzer “OSA6300” manufactured by KLA Tencol, the depth from the main surface (reference surface) of the glass substrate at a position of dimension R = 31.8 mm from the center of the glass substrate. When the dimension was measured, it was 24.3 nm. Moreover, when the number of scratches on the main surface of the glass substrate was measured as the number of scratches displayed on the screen of the measuring instrument as an OSA (Optical Surface Analyzer) encounter number, it was 19.
 実施例1に基づくガラス基板に対して、グライドテストも実施した。具体的には、実施例1に基づくガラス基板から磁気ディスクを製造するとともに、その磁気ディスクをハードディスクドライブに組み込んだ後、グライド(磁気ヘッドと磁気ディスクの表面との間の距離)を、6nm、4nm、3nm、2nmのそれぞれに設定した。磁気ディスクを所定の回転数で回転させた際に、磁気ヘッドと磁気ディスクの表面とが衝突するか否か(ヘッドクラッシュが発生するか否か)を観察した。 A glide test was also performed on the glass substrate based on Example 1. Specifically, the magnetic disk was manufactured from the glass substrate based on Example 1, and after the magnetic disk was incorporated into the hard disk drive, the glide (distance between the magnetic head and the surface of the magnetic disk) was set to 6 nm, Each of 4 nm, 3 nm, and 2 nm was set. It was observed whether or not the magnetic head and the surface of the magnetic disk collided (whether or not a head crash occurred) when the magnetic disk was rotated at a predetermined rotational speed.
 グライドが6nmのときにヘッドクラッシュが発生した場合には評価1と判定されるところ、実施例1に基づくガラス基板としては、グライドが6nmの場合にはヘッドクラッシュが発生しなかった(評価2が得られたことを意味する)。また、グライドが4nmの場合にもヘッドクラッシュは発生せず(評価3が得られたことを意味する)、グライドが3nmの場合にもヘッドクラッシュは発生せず(評価4が得られたことを意味する)、グライドが2nmの場合にもヘッドクラッシュは発生しなかった(最良の評価5が得られたことを意味する)。 When a head crush occurs when the glide is 6 nm, it is determined as an evaluation 1. However, as a glass substrate based on Example 1, a head crush does not occur when the glide is 6 nm (evaluation 2). Means it was obtained). Also, head crash did not occur even when the glide was 4 nm (meaning that the evaluation 3 was obtained), and head crash did not occur even when the glide was 3 nm (that the evaluation 4 was obtained). No head crush occurred even when the glide was 2 nm (meaning that the best evaluation 5 was obtained).
 実施例1に基づくガラス基板に対して、ミッシングテストも実施した。具体的には、実施例1に基づくガラス基板から磁気ディスクを製造するとともに、その磁気ディスクをハードディスクドライブに組み込んだ後、磁気情報の書き込みおよび読み取りを行い、読み取りエラーまたは書き込みエラーが発生した数をミッシングカウント数として数えた。 A missing test was also performed on the glass substrate based on Example 1. Specifically, the magnetic disk is manufactured from the glass substrate based on Example 1, and the magnetic disk is incorporated into the hard disk drive, and then the magnetic information is written and read, and the number of occurrences of read errors or write errors is determined. Counted as missing count.
 読み書きエラー数の評価(ミッシングカウント数)については、実施例1で作製した除法記録媒体(磁気ディスク)用ガラス基板の表面に磁性膜をスパッタにより成膜した後に、DFH機構を有するハードディスクドライブに搭載し、磁気ディスクの全面の読み書きエラーを評価した。このエラー数の評価は、磁気ディスクの全面に対して読み書きしたときに、読み書きエラーが発生した領域が0.4μm以上のエラーをカウントすることにより行なった。エラーはbit単位で起こるが、傷によるエラーは、ある程度まとまったbitで起こるため、0.4μm以上の大きさのエラー領域を評価した。 For evaluation of the number of read / write errors (missing count number), a magnetic film was formed on the surface of the glass substrate for the divisional recording medium (magnetic disk) produced in Example 1 and then mounted on a hard disk drive having a DFH mechanism. Then, read / write errors on the entire surface of the magnetic disk were evaluated. The evaluation of the number of errors was performed by counting errors in which the read / write error area was 0.4 μm or more when reading / writing was performed on the entire surface of the magnetic disk. Although errors occur in units of bits, errors due to scratches occur in a certain number of bits, so an error region of 0.4 μm or larger was evaluated.
 ミッシングカウント数が31以上の場合には評価Cと判定され、ミッシングカウント数が21以上~30以下の場合には評価Bと判定され、ミッシングカウント数が11以上~20以下の場合には評価Aと判定され、ミッシングカウント数が0以上~10以下の場合には評価Sと判定されるところ、実施例1に基づくガラス基板としては、ミッシングカウント数が8であり、評価Sを得ることができた。 When the missing count number is 31 or more, it is determined as an evaluation C, when the missing count number is 21 or more and 30 or less, it is determined as an evaluation B, and when the missing count number is 11 or more and 20 or less, it is evaluated as A. When the missing count number is 0 or more and 10 or less, the evaluation S is determined. However, as the glass substrate based on Example 1, the missing count number is 8, and the evaluation S can be obtained. It was.
 (比較例1)
 図7および図10に示すように、比較例1のガラス基板の製造方法S201(図10参照)は、上述の実施例1と同様に、ガラス素材準備工程(S10)、切り出し工程(S11)、内外加工工程(S12)、エッチング工程(S13)、内外研磨工程(S14)、および精密研磨工程(S17)を備え、内外研磨工程(S14)と精密研磨工程(S17)との間においては、化学機械研磨を用いた粗研磨工程(S16A)のみが実施される。
(Comparative Example 1)
As shown in FIGS. 7 and 10, the glass substrate manufacturing method S <b> 201 (see FIG. 10) of Comparative Example 1 is similar to Example 1 described above, in the glass material preparation step (S <b> 10), the cutting step (S <b> 11), It includes an internal / external processing step (S12), an etching step (S13), an internal / external polishing step (S14), and a precision polishing step (S17). Between the internal / external polishing step (S14) and the precision polishing step (S17), Only the rough polishing step (S16A) using mechanical polishing is performed.
 ガラス素材準備工程(S10)においては、上述の実施例1と同様に、フロート法を使用して、ガラス素材Aが準備された。ガラス素材Aに対して、上述の実施例1と同様に、切り出し工程(S11)、内外加工工程(S12)、エッチング工程(S13)、内外研磨工程(S14)を順次実施した(図10参照)。 In the glass material preparation step (S10), the glass material A was prepared using the float method as in Example 1 described above. For the glass material A, the cutting step (S11), the internal / external processing step (S12), the etching step (S13), and the internal / external polishing step (S14) were sequentially performed in the same manner as in Example 1 (see FIG. 10). .
 粗研磨工程(S16A)における化学機械研磨の研磨条件(図8参照)としては、平均粒子径が0.8μmである酸化セリウム(セリア)を遊離砥粒(スラリー)として使用し、研磨加工レートは1.0μm/minとし、取り代は40μmとした。研磨パッドとしては、Asker C硬度が80度である軟質発泡樹脂パッドを使用した。 As polishing conditions (see FIG. 8) for chemical mechanical polishing in the rough polishing step (S16A), cerium oxide (ceria) having an average particle diameter of 0.8 μm is used as free abrasive grains (slurry), and the polishing rate is The thickness was 1.0 μm / min and the machining allowance was 40 μm. As a polishing pad, a soft foamed resin pad having Asker C hardness of 80 degrees was used.
 精密研磨工程(S17)における鏡面研磨の研磨条件(図8参照)は、上述の実施例1と同様である。精密研磨工程(S17)を経たガラス基板に対して、上述の実施例1と同様に、化学強化工程(S18)および磁気記録層成膜工程(S200)を順次実施した。 The polishing conditions (see FIG. 8) for mirror polishing in the precision polishing step (S17) are the same as those in Example 1 described above. Similarly to Example 1 described above, the chemical strengthening step (S18) and the magnetic recording layer deposition step (S200) were sequentially performed on the glass substrate that had undergone the precision polishing step (S17).
 (比較例1の評価)
 図12を参照して、比較例1に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、39.5nmであった。OSAのエンカウント数は、34本であった。グライドテストの結果としては、グライドが6nmの場合にヘッドクラッシュが発生し、評価1であった。ミッシングテストの結果としては、評価Cが得られた。
(Evaluation of Comparative Example 1)
Referring to FIG. 12, the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Comparative Example 1 in the same manner as in Example 1 described above. The number of OSA encounters was 34. As a result of the glide test, a head crash occurred when the glide was 6 nm, and the evaluation was 1. Evaluation C was obtained as a result of the missing test.
 (比較例2)
 図7を参照して、比較例2は、第1粗研磨工程(S15)に用いられる軟質発泡樹脂パッドの硬度が、Asker C硬度において70度であるという点において、上述の実施例1とは異なる。上述の実施例1の第1粗研磨工程(S15)に用いられる軟質発泡樹脂パッドの硬度は、Asker C硬度において80度である。
(Comparative Example 2)
Referring to FIG. 7, Comparative Example 2 is different from Example 1 described above in that the hardness of the soft foam resin pad used in the first rough polishing step (S15) is 70 degrees in Asker C hardness. Different. The hardness of the soft foam resin pad used in the first rough polishing step (S15) of Example 1 described above is 80 degrees in Asker C hardness.
 図12に示すように、比較例2に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、25.2nmであった。OSAのエンカウント数は、43本であった。グライドテストの結果としては、グライドが6nmの場合にはヘッドクラッシュが発生せず、評価4であった。ミッシングテストの結果としては、評価Cが得られた。 As shown in FIG. 12, the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Comparative Example 2 in the same manner as in Example 1 above, and it was 25.2 nm. The number of OSA encounters was 43. As a result of the glide test, a head crash did not occur when the glide was 6 nm, and the evaluation was 4. Evaluation C was obtained as a result of the missing test.
 (比較例3)
 図7を参照して、比較例3は、第1粗研磨工程(S15)に用いられる軟質発泡樹脂パッドの硬度が、Asker C硬度において87度であるという点において、上述の実施例1とは異なる。上述の実施例1の第1粗研磨工程(S15)に用いられる軟質発泡樹脂パッドの硬度は、Asker C硬度において80度である。
(Comparative Example 3)
Referring to FIG. 7, Comparative Example 3 is different from Example 1 described above in that the hardness of the soft foam resin pad used in the first rough polishing step (S15) is 87 degrees in Asker C hardness. Different. The hardness of the soft foam resin pad used in the first rough polishing step (S15) of Example 1 described above is 80 degrees in Asker C hardness.
 図12に示すように、比較例3に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、32.5nmであった。OSAのエンカウント数は、48本であった。グライドテストの結果としては、グライドが6nmの場合にヘッドクラッシュが発生し、評価1であった。ミッシングテストの結果としては、評価Cが得られた。 As shown in FIG. 12, the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Comparative Example 3 in the same manner as in Example 1 above, and it was 32.5 nm. The number of OSA encounters was 48. As a result of the glide test, a head crash occurred when the glide was 6 nm, and the evaluation was 1. Evaluation C was obtained as a result of the missing test.
 (実施例2-1)
 図8を参照して、実施例2-1は、第1粗研磨工程(S15)に用いられる軟質発泡樹脂パッドの硬度が、Asker C硬度において73度であるという点において、上述の実施例1とは異なる。上述の実施例1の第1粗研磨工程(S15)に用いられる軟質発泡樹脂パッドの硬度は、Asker C硬度において80度である。
Example 2-1
Referring to FIG. 8, Example 2-1 is the same as Example 1 described above in that the hardness of the soft foam resin pad used in the first rough polishing step (S15) is 73 degrees in Asker C hardness. Is different. The hardness of the soft foam resin pad used in the first rough polishing step (S15) of Example 1 described above is 80 degrees in Asker C hardness.
 図12に示すように、実施例2-1に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、24.0nmであった。OSAのエンカウント数は、22本であった。グライドテストの結果としては、グライドが3nmの場合にもヘッドクラッシュは発生せず、評価4であった。ミッシングテストの結果としては、評価Aが得られた。 As shown in FIG. 12, with respect to the glass substrate based on Example 2-1, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 1 above, and was found to be 24.0 nm. . The number of OSA encounters was 22. As a result of the glide test, head crush did not occur even when the glide was 3 nm, and the evaluation was 4. Evaluation A was obtained as a result of the missing test.
 (実施例2-2)
 図8を参照して、実施例2-2は、第1粗研磨工程(S15)に用いられる軟質発泡樹脂パッドの硬度が、Asker C硬度において85度であるという点において、上述の実施例1とは異なる。上述の実施例1の第1粗研磨工程(S15)に用いられる軟質発泡樹脂パッドの硬度は、Asker C硬度において80度である。
(Example 2-2)
Referring to FIG. 8, Example 2-2 is the same as Example 1 described above in that the hardness of the soft foam resin pad used in the first rough polishing step (S15) is 85 degrees in Asker C hardness. Is different. The hardness of the soft foam resin pad used in the first rough polishing step (S15) of Example 1 described above is 80 degrees in Asker C hardness.
 図12に示すように、実施例2-2に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、25.0nmであった。OSAのエンカウント数は、24本であった。グライドテストの結果としては、グライドが3nmの場合にもヘッドクラッシュは発生せず、評価4であった。ミッシングテストの結果としては、評価Aが得られた。 As shown in FIG. 12, the degree of “sag” at the edge of the glass substrate measured for the glass substrate based on Example 2-2 in the same manner as in Example 1 was 25.0 nm. . The number of OSA encounters was 24. As a result of the glide test, head crush did not occur even when the glide was 3 nm, and the evaluation was 4. Evaluation A was obtained as a result of the missing test.
 (実施例1,2-1,2-2および比較例1~3の対比)
 図12に示すように、実施例1,2-1,2-2および比較例1を対比すると、実施例1,2-1,2-2に基づくガラス基板の製造方法によれば、第1粗研磨工程における機械研磨と、第2粗研磨工程における化学的機械研磨と、精密研磨工程における鏡面研磨とが順次実施されることによって、「ダレ」とよばれる形状の悪化した部分が形成されることは抑制され、さらに、ガラス基板の主表面における傷の発生(残留)も抑制されることがわかる。
(Comparison of Examples 1, 2-1, 2-2 and Comparative Examples 1 to 3)
As shown in FIG. 12, when Examples 1, 2-1, 2-2 and Comparative Example 1 are compared, according to the glass substrate manufacturing method based on Examples 1, 2-1, 2-2, By performing the mechanical polishing in the rough polishing process, the chemical mechanical polishing in the second rough polishing process, and the mirror polishing in the precision polishing process in sequence, a portion with a deteriorated shape called “sag” is formed. This is suppressed, and furthermore, it is understood that generation (residue) of scratches on the main surface of the glass substrate is also suppressed.
 また、実施例1,2-1,2-2および比較例2,3を対比すると、実施例1,2-1,2-2に基づくガラス基板の製造方法によれば、第1粗研磨工程に研磨パッド(第1研磨パッド)として用いられる軟質発泡樹脂パッドの硬度がAsker C硬度において73度以上85度以下であることによって、「ダレ」とよばれる形状の悪化した部分が形成されることは抑制され、さらに、ガラス基板の主表面における傷の発生(残留)も抑制されることがわかる。 Further, when Examples 1, 2-1, 2-2 and Comparative Examples 2, 3 are compared, according to the glass substrate manufacturing method based on Examples 1, 2-1, 2-2, the first rough polishing step In addition, when the hardness of the soft foam resin pad used as the polishing pad (first polishing pad) is 73 degrees or more and 85 degrees or less in Asker C hardness, a portion called “sag” is deteriorated. It can be seen that the generation of scratches (residue) on the main surface of the glass substrate is also suppressed.
 [他の実施例]
 (実施例3-1)
 図13を参照して、実施例3-1は、ガラス素材準備工程(S10)において準備されるガラス素材が、ガラス素材B(図11参照)であるという点と、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径が1.0μmであるという点と、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)の平均粒子径が0.8μmであるという点とにおいて、上述の実施例1とは異なる。上述の実施例1のガラス素材準備工程(S10)において準備されるガラス素材は、ガラス素材A(図11参照)である。
[Other embodiments]
Example 3-1
Referring to FIG. 13, in Example 3-1, the glass material prepared in the glass material preparation step (S10) is glass material B (see FIG. 11), and the first rough polishing step (S15). ) Is used as free abrasive grains (slurry) in the second coarse polishing step (S16), and the average particle diameter of zirconium oxide (zirconia) used as free abrasive grains (slurry) in 1) is It differs from Example 1 described above in that the average particle diameter of cerium oxide (ceria) is 0.8 μm. The glass material prepared in the glass material preparation step (S10) of Example 1 described above is glass material A (see FIG. 11).
 図11に示すように、ガラス素材Bを構成する各成分は、LiOが4.0質量%、NaOが11.5質量%、KOが0.5質量%、MgOが1.0質量%、CaOが2.5質量%、Alが15.0質量%、そして、SiOが65.5質量%である。 As shown in FIG. 11, the components constituting the glass material B are Li 2 O 4.0 mass%, Na 2 O 11.5 mass%, K 2 O 0.5 mass%, and MgO 1 .0 wt%, CaO 2.5 wt%, Al 2 O 3 is 15.0 wt%, and, SiO 2 is 65.5 wt%.
 図13に示すように、実施例3-1に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、13.5nmであった。OSAのエンカウント数は、16本であった。グライドテストの結果としては、グライドが3nmの場合にもヘッドクラッシュは発生せず、評価4であった。ミッシングテストの結果としては、評価Sが得られた。 As shown in FIG. 13, when the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Example 3-1, as in Example 1 above, it was 13.5 nm. . The number of OSA encounters was 16. As a result of the glide test, head crush did not occur even when the glide was 3 nm, and the evaluation was 4. Evaluation S was obtained as a result of the missing test.
 (実施例3-2)
 実施例3-2は、ガラス素材準備工程(S10)において準備されるガラス素材が、ガラス素材C(図11参照)であるという点において、上述の実施例3-1とは異なる。上述の実施例3-1のガラス素材準備工程(S10)において準備されるガラス素材は、ガラス素材B(図11参照)である。
(Example 3-2)
Example 3-2 differs from Example 3-1 above in that the glass material prepared in the glass material preparation step (S10) is glass material C (see FIG. 11). The glass material prepared in the glass material preparation step (S10) of Example 3-1 is the glass material B (see FIG. 11).
 図11に示すように、ガラス素材Cを構成する各成分は、LiOが10.5質量%、NaOが3.0質量%、KOが1.5質量%、CaOが7.5質量%、BaOが2.5質量%、Alが11.0質量%、SiOが57.0質量%、ZrOが4.0質量%、そして、Nbが3.0質量%である。 As shown in FIG. 11, the components constituting the glass material C are Li 2 O 10.5 mass%, Na 2 O 3.0 mass%, K 2 O 1.5 mass%, and CaO 7 0.5% by mass, BaO 2.5% by mass, Al 2 O 3 11.0% by mass, SiO 2 57.0% by mass, ZrO 2 4.0% by mass, and Nb 2 O 5 3 0.0% by mass.
 図13に示すように、実施例3-2に基づくガラス基板に対して、上述の実施例3-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、18.1nmであった。OSAのエンカウント数は、15本であった。グライドテストの結果としては、グライドが4nmの場合にもヘッドクラッシュは発生せず、評価3であった。ミッシングテストの結果としては、評価Sが得られた。 As shown in FIG. 13, when the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Example 3-2 in the same manner as in Example 3-1 described above, it was 18.1 nm. there were. The number of OSA encounters was 15. As a result of the glide test, head crush did not occur even when the glide was 4 nm, and the evaluation was 3. Evaluation S was obtained as a result of the missing test.
 (実施例3-1および実施例3-2の対比)
 実施例3-1および実施例3-2を対比すると、ガラス素材が58質量%よりも少ないSiOの含有率を有する場合(実施例3-2の場合)、ガラス素材が58質量%以上68質量%以下のSiOの含有率を有する場合(実施例3-1の場合)に比べて、ガラス基板の端部の形状が悪化しやすくなる傾向にあることがわかる。なお、SiOの含有率が58質量%以下のガラス基板を用いた場合、加工がうまくいかないこともあった。
(Contrast of Example 3-1 and Example 3-2)
Comparing Example 3-1 and Example 3-2, when the glass material has a SiO 2 content of less than 58% by mass (in the case of Example 3-2), the glass material is 58% by mass or more 68. It can be seen that the shape of the edge of the glass substrate tends to deteriorate compared to the case where the content of SiO 2 is less than or equal to mass% (in the case of Example 3-1). Incidentally, if the content of SiO 2 is a glass substrate below 58 wt%, it was sometimes processing does not work.
 (実施例4-1)
 実施例4-1は、ガラス素材準備工程(S10)において準備されるガラス素材が、ダイレクトプレス法によって準備されるという点と、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径が1.0μmであるという点と、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)の平均粒子径が0.8μmであるという点とにおいて、上述の実施例1とは異なる。上述の実施例1のガラス素材準備工程(S10)において準備されるガラス素材は、フロート法によって準備される。
Example 4-1
In Example 4-1, the glass material prepared in the glass material preparation step (S10) is prepared by the direct press method, and used as free abrasive grains (slurry) in the first rough polishing step (S15). The average particle size of cerium oxide (ceria) used as free abrasive grains (slurry) in the second rough polishing step (S16) is that the average particle size of zirconium oxide (zirconia) is 1.0 μm It differs from Example 1 described above in that it is 0.8 μm. The glass material prepared in the glass material preparation step (S10) of Example 1 described above is prepared by the float method.
 図13に示すように、実施例4-1に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、9.4nmであった。OSAのエンカウント数は、35本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Bが得られた。 As shown in FIG. 13, with respect to the glass substrate based on Example 4-1, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 1 above, and it was 9.4 nm. . The number of OSA encounters was 35. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
 (実施例1および実施例4-1の対比)
 実施例1および実施例4-1を対比すると、フロート法を使用することによってガラス素材が準備される場合の方が、ダイレクトプレス法を使用することによってガラス素材が準備される場合に比べて、最終的に得られるガラス基板の主表面上における傷の発生を抑制することが可能であることがわかる。
(Contrast of Example 1 and Example 4-1)
In contrast to Example 1 and Example 4-1, when the glass material is prepared by using the float method, compared to when the glass material is prepared by using the direct press method, It turns out that generation | occurrence | production of the damage | wound on the main surface of the glass substrate finally obtained can be suppressed.
 (実施例5-1)
 実施例5-1は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径が0.7μmであるという点と、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)の平均粒子径が0.8μmであるという点とにおいて、上述の実施例1とは異なる。上述の実施例1の第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径は、0.6μmであり、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)の平均粒子径が1.0μmである。
Example 5-1
In Example 5-1, the average particle diameter of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is 0.7 μm, and the second rough polishing step The difference from Example 1 described above is that the average particle diameter of cerium oxide (ceria) used as free abrasive grains (slurry) in (S16) is 0.8 μm. The average particle diameter of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) of Example 1 is 0.6 μm, and the second rough polishing step (S16). The average particle diameter of cerium oxide (ceria) used as free abrasive grains (slurry) is 1.0 μm.
 図13に示すように、実施例5-1に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、10.15nmであった。OSAのエンカウント数は、28本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Bが得られた。 As shown in FIG. 13, the degree of “sag” at the edge of the glass substrate was measured for the glass substrate based on Example 5-1 in the same manner as in Example 1 described above, and was 10.15 nm. . The number of OSA encounters was 28. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
 (実施例5-2)
 実施例5-2は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径が1.4μmであるという点において、上述の実施例5-1とは異なる。上述の実施例5-1の第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径は、0.7μmである。
(Example 5-2)
In Example 5-2, the average particle diameter of zirconium oxide (zirconia) used as the loose abrasive grains (slurry) in the first rough polishing step (S15) is 1.4 μm. Different from -1. The average particle diameter of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 5-1 is 0.7 μm.
 図13に示すように、実施例5-2に基づくガラス基板に対して、上述の実施例5-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、9.1nmであった。OSAのエンカウント数は、27本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Bが得られた。 As shown in FIG. 13, when the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Example 5-2 in the same manner as in Example 5-1 described above, it was 9.1 nm. there were. The number of OSA encounters was 27. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
 (実施例5-3)
 実施例5-3は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径が0.6μmであるという点において、上述の実施例5-1とは異なる。上述の実施例5-1の第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径は、0.7μmである。
(Example 5-3)
In Example 5-3, the average particle diameter of zirconium oxide (zirconia) used as the free abrasive grains (slurry) in the first rough polishing step (S15) is 0.6 μm. Different from -1. The average particle diameter of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 5-1 is 0.7 μm.
 図13に示すように、実施例5-3に基づくガラス基板に対して、上述の実施例5-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、8.5nmであった。OSAのエンカウント数は、34本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Bが得られた。 As shown in FIG. 13, with respect to the glass substrate based on Example 5-3, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 5-1 above. there were. The number of OSA encounters was 34. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
 (実施例5-4)
 実施例5-4は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径が1.5μmであるという点において、上述の実施例5-1とは異なる。上述の実施例5-1の第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径は、0.7μmである。
(Example 5-4)
In Example 5-4, the average particle diameter of zirconium oxide (zirconia) used as the free abrasive grains (slurry) in the first rough polishing step (S15) is 1.5 μm. Different from -1. The average particle diameter of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 5-1 is 0.7 μm.
 図13に示すように、実施例5-4に基づくガラス基板に対して、上述の実施例5-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、8.7nmであった。OSAのエンカウント数は、42本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Bが得られた。 As shown in FIG. 13, when the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Example 5-4 in the same manner as in Example 5-1 described above, it was 8.7 nm. there were. The number of OSA encounters was 42. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
 (実施例5-1~実施例5-4の対比)
 実施例5-1~実施例5-4を対比すると、第1粗研磨工程において遊離砥粒(第1遊離砥粒)として用いられる酸化ジルコニウムの砥粒径が0.7μm以上1.4μm以下である場合(実施例5-1および実施例5-2の場合)の方が、砥粒径が0.7μmよりも小さいかまたは1.4μmよりも大きい場合(実施例5-3および実施例5-4の場合)に比べて、最終的に得られるガラス基板の主表面上における傷の発生を抑制することが可能であることがわかる。
(Contrast of Example 5-1 to Example 5-4)
Comparing Example 5-1 to Example 5-4, the abrasive grain size of zirconium oxide used as the loose abrasive grains (first loose abrasive grains) in the first rough polishing step is 0.7 μm or more and 1.4 μm or less. In some cases (in the case of Example 5-1 and Example 5-2), the abrasive grain size is smaller than 0.7 μm or larger than 1.4 μm (Example 5-3 and Example 5). 4), it can be seen that it is possible to suppress the occurrence of scratches on the main surface of the finally obtained glass substrate.
 (実施例6-1)
 実施例6-1は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径が0.7μmであるという点において、上述の実施例1とは異なる。実施例6-1においては、酸化ジルコニウムと酸化セリウムとの平均粒子径同士を比較すると、酸化ジルコニウムを1とした場合、酸化セリウムは約1.42である。
Example 6-1
In Example 6-1, the average particle diameter of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is 0.7 μm. Is different. In Example 6-1, when the average particle diameters of zirconium oxide and cerium oxide are compared, when zirconium oxide is 1, cerium oxide is about 1.42.
 上述の実施例1の第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径が0.6μmであり、且つ、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)の平均粒子径が1.0μmである。 The average particle diameter of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) of Example 1 described above is 0.6 μm, and the second rough polishing step (S16). The average particle size of cerium oxide (ceria) used as free abrasive grains (slurry) is 1.0 μm.
 図13に示すように、実施例6-1に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、9.45nmであった。OSAのエンカウント数は、18本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Sが得られた。 As shown in FIG. 13, with respect to the glass substrate based on Example 6-1, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 1 above, and was 9.45 nm. . The number of OSA encounters was 18. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation S was obtained as a result of the missing test.
 (実施例6-2)
 実施例6-2は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径が1.1μmであり、且つ、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)の平均粒子径が0.8μmであるという点において、上述の実施例6-1とは異なる。
(Example 6-2)
In Example 6-2, the average particle diameter of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is 1.1 μm, and the second rough polishing step ( The difference from Example 6-1 described above is that the average particle diameter of cerium oxide (ceria) used as loose abrasive grains (slurry) in S16) is 0.8 μm.
 実施例6-2においては、酸化ジルコニウムと酸化セリウムとの平均粒子径同士を比較すると、酸化ジルコニウムを1とした場合、酸化セリウムは約0.73である。実施例6-1においては、酸化ジルコニウムと酸化セリウムとの平均粒子径同士を比較すると、酸化ジルコニウムを1とした場合、酸化セリウムは約1.42である。 In Example 6-2, when the average particle diameters of zirconium oxide and cerium oxide are compared, when zirconium oxide is 1, the cerium oxide is about 0.73. In Example 6-1, when the average particle diameters of zirconium oxide and cerium oxide are compared, when zirconium oxide is 1, cerium oxide is about 1.42.
 図13に示すように、実施例6-2に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、17.5nmであった。OSAのエンカウント数は、16本であった。グライドテストの結果としては、グライドが4nmの場合にもヘッドクラッシュは発生せず、評価3であった。ミッシングテストの結果としては、評価Sが得られた。 As shown in FIG. 13, when the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Example 6-2 in the same manner as in Example 1 described above, it was 17.5 nm. . The number of OSA encounters was 16. As a result of the glide test, head crush did not occur even when the glide was 4 nm, and the evaluation was 3. Evaluation S was obtained as a result of the missing test.
 (実施例6-3)
 実施例6-3は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径が0.7μmであり、且つ、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)の平均粒子径が1.2μmであるという点において、上述の実施例6-2とは異なる。
(Example 6-3)
In Example 6-3, the average particle diameter of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is 0.7 μm, and the second rough polishing step ( The difference from Example 6-2 described above is that the average particle diameter of cerium oxide (ceria) used as loose abrasive grains (slurry) in S16) is 1.2 μm.
 実施例6-3においては、酸化ジルコニウムと酸化セリウムとの平均粒子径同士を比較すると、酸化ジルコニウムを1とした場合、酸化セリウムは約1.71である。実施例6-2においては、酸化ジルコニウムと酸化セリウムとの平均粒子径同士を比較すると、酸化ジルコニウムを1とした場合、酸化セリウムは約0.73である。 In Example 6-3, when the average particle diameters of zirconium oxide and cerium oxide are compared, when zirconium oxide is 1, the cerium oxide is about 1.71. In Example 6-2, when the average particle diameters of zirconium oxide and cerium oxide are compared, when zirconium oxide is 1, the cerium oxide is about 0.73.
 図13に示すように、実施例6-3に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、24.4nmであった。OSAのエンカウント数は、18本であった。グライドテストの結果としては、グライドが3nmの場合にもヘッドクラッシュは発生せず、評価4であった。ミッシングテストの結果としては、評価Sが得られた。 As shown in FIG. 13, when the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Example 6-3 in the same manner as in Example 1 above, it was 24.4 nm. . The number of OSA encounters was 18. As a result of the glide test, head crush did not occur even when the glide was 3 nm, and the evaluation was 4. Evaluation S was obtained as a result of the missing test.
 (実施例6-1~実施例6-3の対比)
 実施例6-1~実施例6-3を対比すると、第1粗研磨工程において遊離砥粒(第1遊離砥粒)として用いられる酸化ジルコニウムの平均砥粒径を1とすると、第2粗研磨工程において遊離砥粒(第2遊離砥粒)として用いられる酸化セリウムの平均砥粒径が0.7以上1.3以下である場合(実施例6-2の場合)の方が、酸化セリウムの平均砥粒径が0.7よりも小さいかまたは1.3よりも大きい場合(実施例6-1および実施例6-3の場合)に比べて、最終的に得られるガラス基板の主表面上における傷の発生を抑制することが可能であることがわかる。
(Contrast of Example 6-1 to Example 6-3)
Comparing Example 6-1 to Example 6-3, if the average abrasive grain size of zirconium oxide used as loose abrasive grains (first loose abrasive grains) in the first coarse polishing step is 1, the second coarse polish When the average abrasive grain size of cerium oxide used as free abrasive grains (second free abrasive grains) in the process is 0.7 or more and 1.3 or less (in the case of Example 6-2), cerium oxide Compared with the case where the average abrasive grain size is smaller than 0.7 or larger than 1.3 (in the case of Example 6-1 and Example 6-3), on the main surface of the finally obtained glass substrate It can be seen that it is possible to suppress the occurrence of flaws in.
 (実施例7-1)
 実施例7-1は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)による研磨加工レートが0.4μm/minであるという点と、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径が1.0μmであるという点と、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)の平均粒子径が0.8μmであるという点とにおいて、上述の実施例1とは異なる。上述の実施例1の第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)による研磨加工レートが0.8μm/minである。
Example 7-1
In Example 7-1, the polishing rate with zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is 0.4 μm / min, and the first rough polishing step (S15). The average particle diameter of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the polishing step (S15) is 1.0 μm, and loose abrasive grains (slurry) in the second coarse polishing step (S16). Example 1 is different from Example 1 described above in that the average particle diameter of cerium oxide (ceria) used as the above is 0.8 μm. The polishing rate with zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 1 described above is 0.8 μm / min.
 実施例7-1においては、酸化ジルコニウムと酸化セリウムとの研磨加工レート同士を比較すると、酸化セリウムによる研磨加工レート(1.0μm/min)を1とした場合、酸化ジルコニウムによる研磨加工レートは0.4である。実施例1においては、酸化ジルコニウムと酸化セリウムとの研磨加工レート同士を比較すると、酸化セリウムによる研磨加工レート(1.0μm/min)を1とした場合、酸化ジルコニウムによる研磨加工レートは0.8である。 In Example 7-1, when the polishing processing rates of zirconium oxide and cerium oxide were compared, when the polishing processing rate by cerium oxide (1.0 μm / min) was 1, the polishing processing rate by zirconium oxide was 0. .4. In Example 1, when the polishing processing rates of zirconium oxide and cerium oxide are compared, when the polishing processing rate by cerium oxide (1.0 μm / min) is 1, the polishing processing rate by zirconium oxide is 0.8. It is.
 図13に示すように、実施例7-1に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、8.7nmであった。OSAのエンカウント数は、32本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Bが得られた。 As shown in FIG. 13, with respect to the glass substrate based on Example 7-1, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 1 above, and it was 8.7 nm. . The number of OSA encounters was 32. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
 (実施例7-2)
 実施例7-2は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)による研磨加工レートが0.5μm/minであるという点において、上述の実施例7-1とは異なる。実施例7-1の第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)による研磨加工レートは、0.4μm/minである。
(Example 7-2)
In Example 7-2, the above-described implementation was performed in that the polishing rate with zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) was 0.5 μm / min. Different from Example 7-1. The polishing rate with zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 7-1 is 0.4 μm / min.
 実施例7-2においては、酸化ジルコニウムと酸化セリウムとの研磨加工レート同士を比較すると、酸化セリウムによる研磨加工レート(1.0μm/min)を1とした場合、酸化ジルコニウムによる研磨加工レートは0.5である。 In Example 7-2, when the polishing processing rates of zirconium oxide and cerium oxide were compared, when the polishing processing rate by cerium oxide (1.0 μm / min) was 1, the polishing processing rate by zirconium oxide was 0. .5.
 図13に示すように、実施例7-2に基づくガラス基板に対して、上述の実施例7-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、8.55nmであった。OSAのエンカウント数は、28本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Bが得られた。 As shown in FIG. 13, with respect to the glass substrate based on Example 7-2, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 7-1. there were. The number of OSA encounters was 28. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
 (実施例7-3)
 実施例7-3は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)による研磨加工レートが0.7μm/minであるという点において、上述の実施例7-1とは異なる。実施例7-1の第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)による研磨加工レートは、0.4μm/minである。
(Example 7-3)
In Example 7-3, the above-described implementation was performed in that the polishing rate with zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) was 0.7 μm / min. Different from Example 7-1. The polishing rate with zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 7-1 is 0.4 μm / min.
 実施例7-3においては、酸化ジルコニウムと酸化セリウムとの研磨加工レート同士を比較すると、酸化セリウムによる研磨加工レート(1.0μm/min)を1とした場合、酸化ジルコニウムによる研磨加工レートは0.7である。 In Example 7-3, when the polishing processing rates of zirconium oxide and cerium oxide were compared, when the polishing processing rate by cerium oxide (1.0 μm / min) was 1, the polishing processing rate by zirconium oxide was 0. .7.
 図13に示すように、実施例7-3に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、9.1nmであった。OSAのエンカウント数は、21本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Aが得られた。 As shown in FIG. 13, when the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Example 7-3 in the same manner as in Example 1 described above, it was 9.1 nm. . The number of OSA encounters was 21. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation A was obtained as a result of the missing test.
 (実施例7-1~実施例7-3の対比)
 実施例7-1~実施例7-3を対比すると、第2粗研磨工程において遊離砥粒(第2遊離砥粒)として用いられる酸化セリウムの研磨加工レートを1とすると、第1粗研磨工程において遊離砥粒(第1遊離砥粒)として用いられる酸化ジルコニウムの研磨加工レートが0.5以上0.7以下である場合(実施例7-2および実施例7-3の場合)の方が、酸化ジルコニウムの研磨加工レートが0.5よりも小さい場合(実施例7-1の場合)に比べて、最終的に得られるガラス基板の主表面上における傷の発生を抑制することが可能であることがわかる。
(Contrast of Example 7-1 to Example 7-3)
Comparing Example 7-1 to Example 7-3, assuming that the polishing rate of cerium oxide used as the loose abrasive grains (second loose abrasive grains) in the second coarse polishing step is 1, the first coarse polishing step In the case where the polishing rate of zirconium oxide used as free abrasive grains (first free abrasive grains) is 0.5 or more and 0.7 or less (in the case of Example 7-2 and Example 7-3) As compared with the case where the polishing rate of zirconium oxide is less than 0.5 (in the case of Example 7-1), it is possible to suppress the occurrence of scratches on the main surface of the finally obtained glass substrate. I know that there is.
 (実施例8-1)
 実施例8-1は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)によるガラス基板の主表面に対する取り代が14μmであるという点と、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)の平均粒子径が1.0μmであるという点と、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)の平均粒子径が0.8μmであるという点とにおいて、上述の実施例1とは異なる。実施例1の第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)によるガラス基板の主表面に対する取り代は、20μmである。
Example 8-1
In Example 8-1, the allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is 14 μm, and the first The average particle diameter of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the coarse polishing step (S15) is 1.0 μm, and loose abrasive grains (slurry in the second coarse polishing step (S16)). ) Is different from the above-mentioned Example 1 in that the average particle diameter of cerium oxide (ceria) used as) is 0.8 μm. The allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 1 is 20 μm.
 実施例8-1においては、酸化ジルコニウムと酸化セリウムとの取り代同士を比較すると、酸化セリウムによる取り代(20μm)を1とした場合、酸化ジルコニウムによる取り代は0.7である。 In Example 8-1, when the machining allowance between zirconium oxide and cerium oxide is compared, when the machining allowance with cerium oxide (20 μm) is 1, the machining allowance with zirconium oxide is 0.7.
 図13に示すように、実施例8-1に基づくガラス基板に対して、上述の実施例1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、25.7nmであった。OSAのエンカウント数は、18本であった。グライドテストの結果としては、グライドが6nmの場合にもヘッドクラッシュは発生せず、評価2であった。ミッシングテストの結果としては、評価Sが得られた。 As shown in FIG. 13, with respect to the glass substrate based on Example 8-1, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 1 above, and it was 25.7 nm. . The number of OSA encounters was 18. As a result of the glide test, head crush did not occur even when the glide was 6 nm, and the evaluation was 2. Evaluation S was obtained as a result of the missing test.
 (実施例8-2)
 実施例8-2は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)によるガラス基板の主表面に対する取り代が16μmであるという点において、上述の実施例8-1とは異なる。実施例8-1の第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)によるガラス基板の主表面に対する取り代が14μmである。
(Example 8-2)
In Example 8-2, the allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is 16 μm. Different from Example 8-1. The allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 8-1 is 14 μm.
 実施例8-2においては、酸化ジルコニウムと酸化セリウムとの取り代同士を比較すると、酸化セリウムによる取り代(20μm)を1とした場合、酸化ジルコニウムによる取り代は0.8である。 In Example 8-2, when the machining allowance between zirconium oxide and cerium oxide is compared, when the machining allowance with cerium oxide (20 μm) is 1, the machining allowance with zirconium oxide is 0.8.
 図13に示すように、実施例8-2に基づくガラス基板に対して、上述の実施例8-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、17.2nmであった。OSAのエンカウント数は、17本であった。グライドテストの結果としては、グライドが4nmの場合にもヘッドクラッシュは発生せず、評価3であった。ミッシングテストの結果としては、評価Sが得られた。 As shown in FIG. 13, with respect to the glass substrate based on Example 8-2, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 8-1 described above. there were. The number of OSA encounters was 17. As a result of the glide test, head crush did not occur even when the glide was 4 nm, and the evaluation was 3. Evaluation S was obtained as a result of the missing test.
 (実施例8-3)
 実施例8-3は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)によるガラス基板の主表面に対する取り代が18μmであり、かつ、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)によるガラス基板の主表面に対する取り代が15μmであるという点において、上述の実施例8-1とは異なる。
(Example 8-3)
In Example 8-3, the allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is 18 μm, and the second rough polishing step (S15) It differs from the above-described Example 8-1 in that the allowance for the main surface of the glass substrate by cerium oxide (ceria) used as loose abrasive grains (slurry) in the polishing step (S16) is 15 μm.
 上述の実施例8-1の第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)によるガラス基板の主表面に対する取り代は14μmであり、かつ、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)によるガラス基板の主表面に対する取り代は、20μmである。 The allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 8-1 is 14 μm, and the second The machining allowance for the main surface of the glass substrate by cerium oxide (ceria) used as loose abrasive grains (slurry) in the rough polishing step (S16) is 20 μm.
 実施例8-3においては、酸化ジルコニウムと酸化セリウムとの取り代同士を比較すると、酸化セリウムによる取り代(15μm)を1とした場合、酸化ジルコニウムによる取り代は1.2である。 In Example 8-3, when the machining allowance between zirconium oxide and cerium oxide is compared, when the machining allowance with cerium oxide (15 μm) is 1, the machining allowance with zirconium oxide is 1.2.
 図13に示すように、実施例8-3に基づくガラス基板に対して、上述の実施例8-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、8.75nmであった。OSAのエンカウント数は、24本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Aが得られた。 As shown in FIG. 13, with respect to the glass substrate based on Example 8-3, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 8-1 described above. there were. The number of OSA encounters was 24. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation A was obtained as a result of the missing test.
 (実施例8-4)
 実施例8-4は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)によるガラス基板の主表面に対する取り代が20μmであり、かつ、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)によるガラス基板の主表面に対する取り代が15μmであるという点において、上述の実施例8-1とは異なる。
(Example 8-4)
In Example 8-4, the allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is 20 μm, and the second rough polishing step (S15). It differs from the above-described Example 8-1 in that the allowance for the main surface of the glass substrate by cerium oxide (ceria) used as loose abrasive grains (slurry) in the polishing step (S16) is 15 μm.
 上述の実施例8-1の第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)によるガラス基板の主表面に対する取り代は14μmであり、かつ、第2粗研磨工程(S16)において遊離砥粒(スラリー)として使用される酸化セリウム(セリア)によるガラス基板の主表面に対する取り代は、20μmである。 The allowance for the main surface of the glass substrate by zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) of Example 8-1 is 14 μm, and the second The machining allowance for the main surface of the glass substrate by cerium oxide (ceria) used as loose abrasive grains (slurry) in the rough polishing step (S16) is 20 μm.
 実施例8-4においては、酸化ジルコニウムと酸化セリウムとの取り代同士を比較すると、酸化セリウムによる取り代(15μm)を1とした場合、酸化ジルコニウムによる取り代は約1.33である。 In Example 8-4, when the machining allowance between zirconium oxide and cerium oxide is compared, when the machining allowance with cerium oxide (15 μm) is 1, the machining allowance with zirconium oxide is about 1.33.
 図13に示すように、実施例8-4に基づくガラス基板に対して、上述の実施例8-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、8.7nmであった。OSAのエンカウント数は、38本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Bが得られた。 As shown in FIG. 13, when the glass substrate based on Example 8-4 was measured for the degree of “sag” at the edge of the glass substrate in the same manner as in Example 8-1 described above, it was 8.7 nm. there were. The number of OSA encounters was 38. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
 (実施例8-1~実施例8-4の対比)
 実施例8-1~実施例8-4を対比すると、第2粗研磨工程において遊離砥粒(第2遊離砥粒)として用いられる酸化セリウムによる取り代を1とすると、第1粗研磨工程において遊離砥粒(第1遊離砥粒)として用いられる酸化ジルコニウムによる取り代が0.8以上1.2以下である場合(実施例8-2および実施例8-3の場合)の方が、酸化ジルコニウムによる取り代が0.8よりも小さいか1.2よりも大きい場合(実施例8-1および実施例8-4の場合)に比べて、最終的に得られるガラス基板の端部付近における形状の変化を抑制することが可能であるとともに、ガラス基板の主表面上における傷の発生を抑制することが可能であることがわかる。
(Contrast of Example 8-1 to Example 8-4)
Comparing Example 8-1 to Example 8-4, if the removal allowance by cerium oxide used as the free abrasive grains (second free abrasive grains) in the second rough polishing step is 1, then in the first rough polishing step When the removal allowance by zirconium oxide used as the loose abrasive grains (first loose abrasive grains) is 0.8 or more and 1.2 or less (in the case of Example 8-2 and Example 8-3), the oxidation Compared to the case where the machining allowance by zirconium is smaller than 0.8 or larger than 1.2 (in the case of Example 8-1 and Example 8-4), the vicinity of the end of the glass substrate finally obtained It can be seen that the change in shape can be suppressed and the occurrence of scratches on the main surface of the glass substrate can be suppressed.
 (実施例9-1)
 実施例9-1は、精密研磨工程(S17)において遊離砥粒(スラリー)として使用されるコロイダルシリカによるガラス基板の主表面に対する取り代が3.0μmであるという点において、上述の実施例8-4とは異なる。実施例8-4の精密研磨工程(S17)において遊離砥粒(スラリー)として使用されるコロイダルシリカによるガラス基板の主表面に対する取り代は、1.5μmである。
Example 9-1
In Example 9-1, the allowance for the main surface of the glass substrate by colloidal silica used as loose abrasive grains (slurry) in the precision polishing step (S17) is 3.0 μm. Different from -4. The allowance for the main surface of the glass substrate by colloidal silica used as loose abrasive grains (slurry) in the precision polishing step (S17) of Example 8-4 is 1.5 μm.
 実施例9-1においては、酸化セリウムとコロイダルシリカとの取り代同士を比較すると、酸化セリウムによる取り代(15μm)を1とした場合、酸化ジルコニウムによる取り代は0.2である。実施例8-4においては、酸化セリウムとコロイダルシリカとの取り代同士を比較すると、酸化セリウムによる取り代(15μm)を1とした場合、酸化ジルコニウムによる取り代(1.5μm)は0.1である。 In Example 9-1, when the machining allowance between cerium oxide and colloidal silica is compared, when the machining allowance with cerium oxide (15 μm) is 1, the machining allowance with zirconium oxide is 0.2. In Example 8-4, when the removal allowance between cerium oxide and colloidal silica is compared, when the allowance with cerium oxide (15 μm) is 1, the allowance with zirconium oxide (1.5 μm) is 0.1 It is.
 図13に示すように、実施例9-1に基づくガラス基板に対して、上述の実施例8-4と同様にガラス基板の端部における「ダレ」の程度を測定したところ、15.9nmであった。OSAのエンカウント数は、18本であった。グライドテストの結果としては、グライドが4nmの場合にもヘッドクラッシュは発生せず、評価3であった。ミッシングテストの結果としては、評価Sが得られた。 As shown in FIG. 13, with respect to the glass substrate based on Example 9-1, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 8-4 described above. there were. The number of OSA encounters was 18. As a result of the glide test, head crush did not occur even when the glide was 4 nm, and the evaluation was 3. Evaluation S was obtained as a result of the missing test.
 (実施例8-4と実施例9-1の対比)
 実施例8-4と実施例9-1を対比すると、第2粗研磨工程において遊離砥粒(第2遊離砥粒)として用いられる酸化セリウムによる取り代を1とすると、精密研磨工程において遊離砥粒(第3遊離砥粒)として用いられるコロイダルシリカによる取り代が0.1以下である場合(実施例8-4の場合)の方が、コロイダルシリカによる取り代が0.1よりも大きい場合(実施例9-1の場合)に比べて、最終的に得られるガラス基板の主表面上における傷の発生を抑制することが可能であることがわかる。
(Contrast of Example 8-4 and Example 9-1)
Comparing Example 8-4 and Example 9-1, if the removal allowance by cerium oxide used as loose abrasive grains (second loose abrasive grains) in the second rough polishing step is 1, loose abrasives in the precision polishing step When the allowance by colloidal silica used as grains (third free abrasive grains) is 0.1 or less (in the case of Example 8-4), the allowance by colloidal silica is larger than 0.1 It can be seen that it is possible to suppress the occurrence of scratches on the main surface of the finally obtained glass substrate as compared with the case of Example 9-1.
 (実施例10-1)
 実施例10-1は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)のζ電位が-40mVであるという点において、上述の実施例9-1とは異なる。
(Example 10-1)
In Example 10-1, the ζ potential of zirconium oxide (zirconia) used as loose abrasive grains (slurry) in the first rough polishing step (S15) is −40 mV, so that Example 9-1 described above is used. Is different.
 図13に示すように、実施例10-1に基づくガラス基板に対して、上述の実施例9-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、8.7nmであった。OSAのエンカウント数は、18本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Sが得られた。 As shown in FIG. 13, when the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Example 10-1 in the same manner as in Example 9-1 above, it was 8.7 nm. there were. The number of OSA encounters was 18. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation S was obtained as a result of the missing test.
 (実施例10-2)
 実施例10-2は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)のζ電位が-45mVであるという点において、上述の実施例10-1とは異なる。
(Example 10-2)
Example 10-2 is the same as Example 10-1 described above in that the ζ potential of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is −45 mV. Is different.
 図13に示すように、実施例10-2に基づくガラス基板に対して、上述の実施例10-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、13.25nmであった。OSAのエンカウント数は、19本であった。グライドテストの結果としては、グライドが3nmの場合にもヘッドクラッシュは発生せず、評価4であった。ミッシングテストの結果としては、評価Sが得られた。 As shown in FIG. 13, when the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Example 10-2 in the same manner as in Example 10-1 above, it was 13.25 nm. there were. The number of OSA encounters was 19. As a result of the glide test, head crush did not occur even when the glide was 3 nm, and the evaluation was 4. Evaluation S was obtained as a result of the missing test.
 (実施例10-3)
 実施例10-3は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)のζ電位が-55mVであるという点において、上述の実施例10-1とは異なる。
(Example 10-3)
In Example 10-3, the ζ potential of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is −55 mV, and the above Example 10-1 Is different.
 図13に示すように、実施例10-3に基づくガラス基板に対して、上述の実施例10-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、18nmであった。OSAのエンカウント数は、18本であった。グライドテストの結果としては、グライドが4nmの場合にもヘッドクラッシュは発生せず、評価3であった。ミッシングテストの結果としては、評価Sが得られた。 As shown in FIG. 13, with respect to the glass substrate based on Example 10-3, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 10-1 above, and it was 18 nm. . The number of OSA encounters was 18. As a result of the glide test, head crush did not occur even when the glide was 4 nm, and the evaluation was 3. Evaluation S was obtained as a result of the missing test.
 (実施例10-4)
 実施例10-4は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)のζ電位が-35mVであるという点において、上述の実施例10-1とは異なる。
(Example 10-4)
In Example 10-4, the ζ potential of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is −35 mV, and the above Example 10-1 Is different.
 図13に示すように、実施例10-4に基づくガラス基板に対して、上述の実施例10-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、8.5nmであった。OSAのエンカウント数は、27本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Bが得られた。 As shown in FIG. 13, with respect to the glass substrate based on Example 10-4, the degree of “sag” at the edge of the glass substrate was measured in the same manner as in Example 10-1 above. there were. The number of OSA encounters was 27. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation B was obtained as a result of the missing test.
 (実施例10-5)
 実施例10-5は、第1粗研磨工程(S15)において遊離砥粒(スラリー)として使用される酸化ジルコニウム(ジルコニア)のζ電位が-25mVであるという点において、上述の実施例10-1とは異なる。
(Example 10-5)
In Example 10-5, the ζ potential of zirconium oxide (zirconia) used as free abrasive grains (slurry) in the first rough polishing step (S15) is −25 mV, so that Example 10-1 described above is used. Is different.
 図13に示すように、実施例10-5に基づくガラス基板に対して、上述の実施例10-1と同様にガラス基板の端部における「ダレ」の程度を測定したところ、9.1nmであった。OSAのエンカウント数は、26本であった。グライドテストの結果としては、グライドが2nmの場合にもヘッドクラッシュは発生せず、評価5であった。ミッシングテストの結果としては、評価Aが得られた。 As shown in FIG. 13, when the degree of “sag” at the edge of the glass substrate was measured on the glass substrate based on Example 10-5 in the same manner as in Example 10-1 described above, it was 9.1 nm. there were. The number of OSA encounters was 26. As a result of the glide test, head crush did not occur even when the glide was 2 nm, and the evaluation was 5. Evaluation A was obtained as a result of the missing test.
 (実施例10-1~実施例10-5の対比)
 実施例10-1~実施例10-4を対比すると、第1粗研磨工程において第1遊離砥粒として用いられる酸化ジルコニウムのζ電位が-50mV以上-30mV以下である場合(実施例10-1、実施例10-2、および実施例10-4の場合)の方が、酸化ジルコニウムのζ電位が-50mVよりも小さいかまたは-30mVよりも大きい場合(実施例10-3および実施例10-5の場合)に比べて、最終的に得られるガラス基板の主表面に傷が発生しにくくなるとともに、ガラス基板の主表面の形状が悪化することも抑制されることが可能となることがわかる。
(Contrast of Example 10-1 to Example 10-5)
Comparing Example 10-1 to Example 10-4, when the ζ potential of zirconium oxide used as the first free abrasive grains in the first rough polishing step is −50 mV to −30 mV (Example 10-1) In the case of Example 10-2 and Example 10-4), the ζ potential of zirconium oxide is smaller than −50 mV or larger than −30 mV (Example 10-3 and Example 10-). 5), the main surface of the finally obtained glass substrate is less likely to be scratched and the shape of the main surface of the glass substrate can be prevented from deteriorating. .
 以上、本発明に基づいた実施の形態および各実施例について説明したが、今回開示された実施の形態および各実施例はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although embodiment and each Example based on this invention were described, embodiment and each Example disclosed this time are illustrations in all points, and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ガラス基板(情報記録媒体用ガラス基板)、2,3 主表面、4 内周端面、5 孔、6 外周端面、7,8 面取部、10 情報記録媒体、12 化学強化層、14 磁気記録層、20 筐体、21 ヘッドスライダー、22 サスペンション、23 アーム、24 垂直軸、25 ボイスコイル、26 ボイスコイルモーター、27 クランプ部材、28 固定ネジ、30 情報記録装置、S10 ガラス素材準備工程、S11 切り出し工程、S12 内外加工工程、S13 エッチング工程、S14 内外研磨工程、S15 第1粗研磨工程、S16A 粗研磨工程、S16 第2粗研磨工程、S17 精密研磨工程、S18 化学強化工程、S100,S101,S201 情報記録媒体用ガラス基板の製造方法、S200 磁気記録層成膜工程。 1 glass substrate (glass substrate for information recording medium), 2, 3 main surface, 4 inner peripheral end surface, 5 holes, 6 outer peripheral end surface, 7, 8 chamfer, 10 information recording medium, 12 chemical strengthening layer, 14 magnetic recording Layer, 20 housing, 21 head slider, 22 suspension, 23 arm, 24 vertical axis, 25 voice coil, 26 voice coil motor, 27 clamp member, 28 fixing screw, 30 information recording device, S10 glass material preparation process, S11 cut out Step, S12 Internal / external processing step, S13 Etching step, S14 Internal / external polishing step, S15 First rough polishing step, S16A Rough polishing step, S16 Second rough polishing step, S17 Precision polishing step, S18 Chemical strengthening step, S100, S101, S201 Manufacturing method of glass substrate for information recording medium, S200 Magnetic recording layer forming step.

Claims (9)

  1.  情報記録装置(30)に情報記録媒体(10)の一部として内蔵される情報記録媒体用ガラス基板(1)の製造方法であって、
     主表面(2,3)を有するとともに、SiOを成分に含むガラス素材を準備する準備工程(S10)と、
     前記ガラス素材の前記主表面と第1研磨パッドとの間に第1遊離砥粒を供給しつつ、前記第1研磨パッドを用いて前記ガラス素材の前記主表面を機械的に研磨する第1粗研磨工程(S15)と、
     前記第1粗研磨工程において研磨された前記ガラス素材の前記主表面と第2研磨パッドとの間に前記第1遊離砥粒とは異なる第2遊離砥粒を供給しつつ、前記第2研磨パッドを用いて前記ガラス素材の前記主表面を化学機械的に研磨する第2粗研磨工程(S16)と、
     前記第2粗研磨工程において研磨された前記ガラス素材の前記主表面と第3研磨パッドとの間に第3遊離砥粒を供給しつつ、前記第3研磨パッドを用いて前記ガラス素材の前記主表面を研磨する精密研磨工程(S17)と、を備え、
     前記第1粗研磨工程(S15)に用いられる前記第1研磨パッドは、軟質発泡樹脂パッドからなり、
     前記軟質発泡樹脂パッドの硬度は、Asker C硬度において73度以上85度以下である、
    情報記録媒体用ガラス基板の製造方法。
    A method of manufacturing a glass substrate (1) for an information recording medium incorporated as a part of an information recording medium (10) in an information recording device (30),
    A preparation step (S10) for preparing a glass material having a main surface (2, 3) and containing SiO 2 as a component;
    A first rough polishing machine that mechanically polishes the main surface of the glass material using the first polishing pad while supplying first loose abrasive grains between the main surface of the glass material and the first polishing pad. Polishing step (S15);
    The second polishing pad while supplying second free abrasive grains different from the first free abrasive grains between the main surface of the glass material polished in the first rough polishing step and the second polishing pad. A second rough polishing step (S16) for chemically and mechanically polishing the main surface of the glass material using
    While supplying third loose abrasive grains between the main surface of the glass material polished in the second rough polishing step and a third polishing pad, the main material of the glass material is used with the third polishing pad. A precision polishing step (S17) for polishing the surface,
    The first polishing pad used in the first rough polishing step (S15) is composed of a soft foam resin pad,
    The soft foamed resin pad has a hardness of 73 degrees to 85 degrees in Asker C hardness.
    A method for producing a glass substrate for an information recording medium.
  2.  前記第1粗研磨工程(S15)に用いられる前記第1遊離砥粒は、酸化ジルコニウムを含み、
     前記第2粗研磨工程(S16)に用いられる前記第2遊離砥粒は、酸化セリウムを含み、
     前記精密研磨工程(S17)に用いられる前記第3遊離砥粒は、コロイダルシリカを含む、
    請求項1に記載の情報記録媒体用ガラス基板の製造方法。
    The first loose abrasive used in the first rough polishing step (S15) includes zirconium oxide,
    The second loose abrasive used in the second rough polishing step (S16) includes cerium oxide,
    The third loose abrasive used in the precision polishing step (S17) includes colloidal silica.
    The manufacturing method of the glass substrate for information recording media of Claim 1.
  3.  前記準備工程(S10)において準備される前記ガラス素材は、58質量%以上68質量%以下のSiOを成分に含む、
    請求項1または2に記載の情報記録媒体用ガラス基板の製造方法。
    The glass material prepared in the preparation step (S10) includes 58% by mass or more and 68% by mass or less of SiO 2 as a component.
    The manufacturing method of the glass substrate for information recording media of Claim 1 or 2.
  4.  前記準備工程(S10)において準備される前記ガラス素材は、フロート法を使用して作製された板状ガラスから削り出されることによって準備される、
    請求項1から3のいずれかに記載の情報記録媒体用ガラス基板の製造方法。
    The glass material prepared in the preparation step (S10) is prepared by cutting out from a sheet glass produced using a float method,
    The manufacturing method of the glass substrate for information recording media in any one of Claim 1 to 3.
  5.  前記第1粗研磨工程(S15)において前記第1遊離砥粒として用いられる酸化ジルコニウムの砥粒径は、0.7μm以上1.4μm以下である、
    請求項2に記載の情報記録媒体用ガラス基板の製造方法。
    The abrasive grain size of zirconium oxide used as the first loose abrasive grains in the first rough polishing step (S15) is 0.7 μm or more and 1.4 μm or less.
    The manufacturing method of the glass substrate for information recording media of Claim 2.
  6.  前記第1粗研磨工程(S15)において前記第1遊離砥粒として用いられる酸化ジルコニウムの平均砥粒径と、前記第2粗研磨工程(S16)において前記第2遊離砥粒として用いられる酸化セリウムの平均砥粒径との比は、
     前記第1遊離砥粒として用いられる酸化ジルコニウムの平均砥粒径を1とすると、前記第2遊離砥粒として用いられる酸化セリウムの平均砥粒径は0.7以上1.0以下である、
    請求項2に記載の情報記録媒体用ガラス基板の製造方法。
    The average abrasive grain size of zirconium oxide used as the first loose abrasive grains in the first coarse polishing step (S15) and the cerium oxide used as the second loose abrasive grains in the second coarse polishing step (S16) The ratio to the average abrasive grain size is
    When the average abrasive grain size of zirconium oxide used as the first free abrasive grains is 1, the average abrasive grain size of cerium oxide used as the second free abrasive grains is 0.7 or more and 1.0 or less.
    The manufacturing method of the glass substrate for information recording media of Claim 2.
  7.  前記第1粗研磨工程(S15)において前記第1遊離砥粒として用いられる酸化ジルコニウムによる研磨加工レートと、前記第2粗研磨工程(S16)において前記第2遊離砥粒として用いられる酸化セリウムによる研磨加工レートとの比は、
     前記第2遊離砥粒として用いられる酸化セリウムによる研磨加工レートを1とすると、前記第1遊離砥粒として用いられる酸化ジルコニウムによる研磨加工レートは0.4以上0.8以下である、
    請求項2に記載の情報記録媒体用ガラス基板の製造方法。
    Polishing rate by zirconium oxide used as the first free abrasive grains in the first rough polishing step (S15) and polishing by cerium oxide used as the second free abrasive grains in the second rough polishing step (S16) The ratio to the processing rate is
    When the polishing processing rate with cerium oxide used as the second free abrasive is 1, the polishing rate with zirconium oxide used as the first free abrasive is 0.4 or more and 0.8 or less.
    The manufacturing method of the glass substrate for information recording media of Claim 2.
  8.  前記第1粗研磨工程(S15)において前記第1遊離砥粒として用いられる酸化ジルコニウムによる前記ガラス素材に対する取り代と、前記第2粗研磨工程(S16)において前記第2遊離砥粒として用いられる酸化セリウムによる前記ガラス素材に対する取り代との比は、
     前記第2遊離砥粒として用いられる酸化セリウムによる取り代を1とすると、前記第1遊離砥粒として用いられる酸化ジルコニウムによる取り代は0.8以上1.2以下である、
    請求項2に記載の情報記録媒体用ガラス基板の製造方法。
    The allowance for the glass material by zirconium oxide used as the first loose abrasive in the first rough polishing step (S15), and the oxidation used as the second loose abrasive in the second rough polishing step (S16) The ratio of cerium to the stock allowance for the glass material is
    If the removal allowance by cerium oxide used as the second free abrasive grains is 1, the allowance due to zirconium oxide used as the first free abrasive grains is 0.8 or more and 1.2 or less,
    The manufacturing method of the glass substrate for information recording media of Claim 2.
  9.  前記第1粗研磨工程(S15)において前記第1遊離砥粒として用いられる酸化ジルコニウムのζ電位は、-50mV以上-30mV以下である、
    請求項2に記載の情報記録媒体用ガラス基板の製造方法。
    Zirconium oxide used as the first loose abrasive in the first rough polishing step (S15) has a ζ potential of −50 mV to −30 mV.
    The manufacturing method of the glass substrate for information recording media of Claim 2.
PCT/JP2012/073909 2011-09-30 2012-09-19 Production method for glass substrate for information recording medium WO2013047288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-217399 2011-09-30
JP2011217399 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047288A1 true WO2013047288A1 (en) 2013-04-04

Family

ID=47995320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073909 WO2013047288A1 (en) 2011-09-30 2012-09-19 Production method for glass substrate for information recording medium

Country Status (1)

Country Link
WO (1) WO2013047288A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087441A (en) * 2007-09-28 2009-04-23 Hoya Corp Manufacturing method of glass substrate for magnetic disk, and manufacturing method of magnetic disk
JP2009211782A (en) * 2008-03-05 2009-09-17 Furukawa Electric Co Ltd:The Method for manufacturing glass substrate
JP2010080015A (en) * 2008-09-27 2010-04-08 Hoya Corp Glass material for manufacturing glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP2011040144A (en) * 2009-07-17 2011-02-24 Ohara Inc Method for manufacturing substrate for information storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087441A (en) * 2007-09-28 2009-04-23 Hoya Corp Manufacturing method of glass substrate for magnetic disk, and manufacturing method of magnetic disk
JP2009211782A (en) * 2008-03-05 2009-09-17 Furukawa Electric Co Ltd:The Method for manufacturing glass substrate
JP2010080015A (en) * 2008-09-27 2010-04-08 Hoya Corp Glass material for manufacturing glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP2011040144A (en) * 2009-07-17 2011-02-24 Ohara Inc Method for manufacturing substrate for information storage medium

Similar Documents

Publication Publication Date Title
JP6165227B2 (en) Glass substrate, method for manufacturing glass substrate for magnetic disk, substrate for magnetic disk, magnetic disk, method for manufacturing magnetic disk
US10607647B2 (en) Magnetic disk substrate with specified changes in height or depth between adjacent raised or lowered portions and an offset portion on a main surface within a range of 92.0 to 97.0% in a radial direction from a center, a magnetic disk with substrate and magnetic disk device
JP3527075B2 (en) Glass substrate for magnetic recording medium, magnetic recording medium, and method for producing them
JPWO2010001844A1 (en) Magnetic disk substrate, manufacturing method thereof, and magnetic disk
WO2013100154A1 (en) Manufacturing method for magnetic-disk glass substrate
JP3639277B2 (en) Glass substrate for magnetic recording medium, magnetic recording medium, and manufacturing method thereof
JP2006082138A (en) Method of manufacturing glass substrate for magnetic disk, and glass substrate for magnetic disk, as well as method of manufacturing magnetic disk, and magnetic disk
JP4860580B2 (en) Magnetic disk substrate and magnetic disk
JP5898381B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND MAGNETIC DISC DEVICE
JP5778165B2 (en) Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium
WO2013047288A1 (en) Production method for glass substrate for information recording medium
JP6423935B2 (en) Manufacturing method of glass substrate for information recording medium and polishing brush
WO2013047286A1 (en) Production method for glass substrate for information recording medium
WO2013047287A1 (en) Production method for glass substrate for information recording medium
WO2014136751A1 (en) Glass substrate for information recording media, and information recording medium
JP4347146B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5869241B2 (en) HDD glass substrate, HDD glass substrate manufacturing method, and HDD magnetic recording medium
JP5719785B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE
WO2013099584A1 (en) Method of manufacturing glass substrate for information recording medium
WO2014103982A1 (en) Method for manufacturing glass substrate for information recording medium
JP2006095636A (en) Glass substrate carrier for magnetic recording medium, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
WO2015041011A1 (en) Method for manufacturing glass substrate for information recording medium
JP2013211075A (en) Manufacturing method of glass substrate for information recording medium
JP2013211076A (en) Manufacturing method of glass substrate for information recording medium
WO2014050496A1 (en) Method for producing glass substrate for information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP