WO2014136751A1 - Glass substrate for information recording media, and information recording medium - Google Patents

Glass substrate for information recording media, and information recording medium Download PDF

Info

Publication number
WO2014136751A1
WO2014136751A1 PCT/JP2014/055396 JP2014055396W WO2014136751A1 WO 2014136751 A1 WO2014136751 A1 WO 2014136751A1 JP 2014055396 W JP2014055396 W JP 2014055396W WO 2014136751 A1 WO2014136751 A1 WO 2014136751A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
information recording
recording medium
glass
sio
Prior art date
Application number
PCT/JP2014/055396
Other languages
French (fr)
Japanese (ja)
Inventor
大士 梶田
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2015504317A priority Critical patent/JP6029740B2/en
Publication of WO2014136751A1 publication Critical patent/WO2014136751A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates

Definitions

  • the present invention relates to a glass substrate for an information recording medium and an information recording medium mounted as part of the information recording medium in an information recording apparatus such as a hard disk drive (HDD).
  • HDD hard disk drive
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-015328
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-314159
  • the Tg which is an index of heat resistance of the glass substrate, is improved to 600 ° C. or higher.
  • a high-temperature heat treatment at about 600 ° C. is performed during the film formation of the Fe—Pt magnetic material on the glass substrate.
  • the present invention has been made to solve the above-described problems, and suppresses deformation of the glass substrate and suppresses diffusion of Li from the glass substrate during film formation of the magnetic recording medium and high-temperature annealing.
  • a glass substrate for an information recording medium and an information recording medium are provided.
  • the glass substrate for information recording medium is a glass substrate for heat assist recording.
  • the information recording medium according to the present invention has a magnetic recording layer on the glass substrate for information recording medium described above.
  • the glass substrate for an information recording medium and the information recording capable of suppressing the deformation of the glass substrate and suppressing the diffusion of Li from the glass substrate at the time of film formation and high temperature annealing of the magnetic recording medium.
  • a medium can be provided.
  • FIG. 2 is a perspective view showing an information recording device 30.
  • FIG. It is a top view which shows the glass substrate 1 manufactured by the manufacturing method of the glass substrate for information recording media based on this Embodiment.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4.
  • FIG. 1 is a perspective view showing the information recording apparatus 30.
  • the information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
  • the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28.
  • a spindle motor (not shown) is installed on the upper surface of the housing 20.
  • An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28.
  • the information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm.
  • a compression stress layer 12 see FIG. 5
  • a magnetic recording layer 14 see FIGS. 4 and 5 are formed on the glass substrate 1. To be manufactured.
  • the arm 23 is attached so as to be swingable around the vertical axis 24.
  • a suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23.
  • a head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
  • a voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21.
  • the voice coil 25 is clamped by a magnet (not shown) provided on the housing 20.
  • a voice coil motor 26 is constituted by the voice coil 25 and the magnet.
  • a predetermined current is supplied to the voice coil 25.
  • the arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet.
  • the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1.
  • the head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10.
  • a magnetic head (not shown) provided on the head slider 21 performs a seek operation.
  • the head slider 21 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10.
  • the information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
  • FIG. 2 is a plan view showing glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) has a main surface 2, a main surface 3, It has the inner peripheral end surface 4, the hole 5, and the outer peripheral end surface 6, and is formed in a disk shape as a whole.
  • the hole 5 is provided so as to penetrate from one main surface 2 toward the other main surface 3.
  • a chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4.
  • a chamfered portion 8 (chamfer portion) is formed between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6, a chamfered portion 8 (chamfer portion) is formed.
  • the size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch. It is possible to make the size smaller than this or larger than this.
  • the thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage.
  • the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm.
  • the thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate. From the viewpoint of increasing the hardness of the glass substrate, the Vickers hardness of the glass substrate 1 is preferably 610 kg / mm 2 or more.
  • FIG. 4 is a plan view showing an information recording medium 10 provided with a glass substrate 1 as an information recording medium.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG.
  • the information recording medium 10 includes a glass substrate 1, a compressive stress layer 12, and a magnetic recording layer 14.
  • the compressive stress layer 12 is formed so as to cover the main surfaces 2 and 3, the inner peripheral end face 4, and the outer peripheral end face 6 of the glass substrate 1.
  • the magnetic recording layer 14 is formed so as to cover a predetermined region on the main surfaces 2 and 3 of the compressive stress layer 12.
  • the magnetic recording layer 14 is formed on both the compressive stress layer 12 formed on the main surface 2 and the compressive stress layer 12 formed on the main surface 3 (both sides). Is formed.
  • the magnetic recording layer 14 may be provided only on the compression stress layer 12 (one side) formed on the main surface 2, or on the compression stress layer 12 (one side) formed on the main surface 3. It may be provided.
  • the magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method).
  • the magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
  • the thickness of the magnetic recording layer 14 is about 0.3 ⁇ m to 1.2 ⁇ m for the spin coating method, about 0.04 ⁇ m to 0.08 ⁇ m for the sputtering method, and about 0.05 ⁇ m to about the electroless plating method. 0.1 ⁇ m. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
  • a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used.
  • Fe—Pt magnetic materials have been used as magnetic layer materials suitable for heat-assisted recording.
  • the surface of the magnetic recording layer 14 may be thinly coated with a lubricant.
  • a lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
  • the magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary.
  • the underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • the underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked.
  • a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
  • Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
  • protective layers may be formed on the protective layer or instead of the protective layer.
  • colloidal silica fine particles are dispersed and coated on a Cr layer with tetraalkoxylane diluted with an alcohol solvent, and then fired to form a silicon oxide (SiO2) layer. May be.
  • the glass substrate manufacturing method S100 in the present embodiment includes a plate-like glass forming step S10, a cut-out forming step S20, a blasting step S30, a lapping step S40, an end surface polishing step S50, a rough polishing step S60, a cleaning step S65, and a chemical strengthening step. S70, precision polishing process S80, and scrub cleaning process S90 are provided.
  • the magnetic thin film forming step S200 is performed on the glass substrate obtained through the scrub cleaning step S90. Through the magnetic thin film forming step S200, the information recording medium 10 (see FIGS. 4 and 5) is obtained.
  • the details of the steps S10 to S90 constituting the glass substrate manufacturing method S100 will be described in order.
  • a glass sheet is manufactured using a known glass forming method such as a direct press method, a float method, a down draw method, a redraw method, or a fusion method using a molten glass as a material.
  • a known glass forming method such as a direct press method, a float method, a down draw method, a redraw method, or a fusion method using a molten glass as a material.
  • the blended raw material is put into a platinum crucible in an electric furnace heated to 1300 to 1550 ° C., etc., melted and clarified, stirred and homogenized, cast into a preheated mold, and gradually cooled into a glass block.
  • the direct press method can be directly molded from a melted glass into a target glass molded product, and is therefore suitable for producing a large amount of sheet glass having the same shape.
  • molten glass is supplied to a press mold and pressed with a press mold while the glass is in a softened state to form a sheet glass. After being held for 1 to 3 hours at a temperature near the glass transition point, it is gradually cooled.
  • the glass substrate 1 has a Vickers hardness of 610 kg / mm 2 or more.
  • a material of the glass substrate for example, amorphous glass or crystallized glass can be used.
  • chemical strengthening can be appropriately performed, and a glass substrate for an information recording medium excellent in flatness of the main surface and substrate strength can be provided.
  • blasting step S30 a plurality of particles (abrasive grains) 200 are sprayed on the main surfaces 2 and 3 of the glass substrate 1 formed by the plate-like glass forming step S10, whereby the main of the glass substrate (glass substrate precursor) 1 is obtained. Surfaces 2 and 3 are ground (first grinding step).
  • the average Ra of the glass substrate 1 is set to about 2.0 ⁇ m.
  • lapping step S40 In the lapping step (second grinding step) S40, lapping (second grinding) is performed on the main surface of the glass substrate 1 using a lapping machine (not shown). Both main surfaces of the glass substrate 1 are ground by the lapping machine.
  • End face polishing step S50 In the end surface polishing step S50, the inner peripheral end surface and the outer peripheral end surface of the glass substrate 1 are polished using a polishing brush having a spiral brush bristle material. While supplying the polishing slurry between the polishing brush and each end surface of the glass substrate 1, the polishing brush is rotated in contact with each end surface. With the glass substrate 1 immersed in the polishing liquid, the polishing brush may be rotated in contact with each end face.
  • the glass substrate 1 whose inner peripheral end face and outer peripheral end face are polished has its main surfaces 2 and 3 polished roughly in a plurality of times.
  • the main surfaces 2 and 3 are polished in two steps of the first and second rough polishing steps.
  • the first rough polishing step is mainly intended to remove scratches and distortions remaining on the main surfaces 2 and 3 in the lapping step, and the second rough polishing step The purpose is to finish the main surfaces 2 and 3 in a mirror shape.
  • the glass substrate 1 is subjected to a cleaning process using an acidic cleaning liquid.
  • the purpose of this cleaning treatment is to remove from the surface of the glass substrate 1 any of cerium oxide, zirconium oxide, or zirconium silicate used as a polishing slurry in the rough polishing step S60, which is the previous step.
  • the surface of the glass substrate 1 is etched using a cleaning liquid containing sulfuric acid and / or hydrofluoric acid. Wash.
  • the polishing slurry such as cerium oxide, zirconium oxide, or zirconium silicate adhering to the surface of the glass substrate 1 is appropriately removed by a strongly acidic cleaning liquid such as sulfuric acid and / or hydrofluoric acid. Thereafter, the glass substrate 1 is cleaned using an acidic cleaning solution.
  • the cleaning liquid used in the cleaning step S65 varies depending on the chemical resistance of the glass substrate 1, but a concentration of about 1% to 30% is preferable for sulfuric acid, and 0.2% to 5% for hydrofluoric acid. A concentration of about is preferred. Cleaning using these cleaning liquids may be performed while applying ultrasonic waves in a cleaning machine in which an aqueous solution is stored.
  • the frequency of the ultrasonic wave used at this time is preferably 78 kHz or higher.
  • the glass substrate 1 is chemically strengthened.
  • the chemical strengthening liquid for example, a mixed liquid of potassium nitrate (50 wt%) and sodium sulfate (50 wt%) can be used.
  • the chemical strengthening liquid is heated to, for example, 300 ° C. to 480 ° C.
  • the cleaned glass substrate 1 is preheated to 300 ° C. to 480 ° C., for example.
  • the glass substrate 1 is immersed in the chemical strengthening solution for 3 hours to 4 hours, for example.
  • the plurality of glass substrates 1 can be held in their respective holders so that the entire main surfaces 2 and 3 of the glass substrate 1 are chemically strengthened. preferable.
  • alkali metal ions lithium ions and sodium ions
  • salts sodium ions
  • potassium ions potassium ions
  • the surface of the glass substrate 1 is strengthened by the formation of the compressive stress layer, and the glass substrate 1 has good impact resistance.
  • the glass substrate 1 subjected to the chemical strengthening treatment is appropriately washed.
  • the glass substrate 1 is further cleaned using pure water or IPA (isopropyl alcohol) after being cleaned with sulfuric acid. Thereafter, the chemically strengthened layer may be removed.
  • IPA isopropyl alcohol
  • precision polishing step S80 After the chemical strengthening step S70, a precision polishing process is performed on the glass substrate 1.
  • the precision polishing step S80 is intended to finish the main surface of the glass substrate 1 in a mirror shape.
  • the precision polishing step S80 similarly to the rough polishing step S60 described above, the glass substrate 1 is precisely polished using a double-side polishing machine (see FIG. 11).
  • the composition of the polishing abrasive grains contained in the polishing liquid (slurry) used and the polishing pad used are different.
  • the grain size of the abrasive grains in the polishing liquid supplied to the main surfaces 2 and 3 of the glass substrate 1 on which the compressive stress layer is formed is made smaller than in the rough polishing step S60. Soften the hardness.
  • the polishing pad used in the precision polishing step S80 is, for example, a soft foam resin polisher.
  • the precision polishing step S80 uses loose abrasive grains, and includes a first polishing step with abrasive grains mainly composed of Ce and a second polishing step of polishing with abrasive grains mainly composed of Si.
  • the glass substrate 1 may be temporarily stored in water after being removed from the polishing pad of the double-side polishing machine. By storing in water, it is possible to reduce the amount of foreign matter such as polishing wrinkles or loose abrasive grains adhering to the glass substrate 1 after precision polishing while preventing the surface of the glass substrate 1 from drying after precision polishing. After the glass substrate 1 is stored in water for a predetermined time, the glass substrate 1 is set in a scrub cleaning device and scrub cleaning is performed on the glass substrate 1.
  • a cleaning liquid such as a detergent or pure water is used.
  • the pH of the cleaning solution used for scrub cleaning is preferably 9.0 or more and 12.2 or less. Within this range, the ⁇ potential can be easily adjusted and scrub cleaning can be performed efficiently.
  • both scrub cleaning with a detergent and scrub cleaning with pure water may be performed.
  • the glass substrate 1 By using a detergent and pure water, the glass substrate 1 can be more appropriately cleaned.
  • the glass substrate 1 may be further rinsed with pure water between scrub cleaning with a detergent and scrub cleaning with pure water.
  • the glass substrate 1 may be further subjected to ultrasonic cleaning.
  • ultrasonic cleaning with chemical solution such as sulfuric acid aqueous solution, ultrasonic cleaning with pure water, ultrasonic cleaning with detergent, ultrasonic cleaning with IPA, and / or steam drying with IPA, etc. Further, it may be performed.
  • the manufacturing method S100 of the glass substrate 1 in the present embodiment is configured as described above. By using manufacturing method S100 of glass substrate 1, glass substrate 1 of this embodiment shown in Drawing 2 and Drawing 3 can be obtained.
  • Magnetic thin film forming step S200 A magnetic recording layer is formed on the main surfaces 2 and 3 (or one of the main surfaces 2 and 3) of the glass substrate 1 after the scrub cleaning process is completed.
  • the magnetic recording layer includes, for example, an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and an F system.
  • an adhesion layer made of a Cr alloy
  • a soft magnetic layer made of a CoFeZr alloy
  • an orientation control underlayer made of Ru
  • a perpendicular magnetic recording layer made of a CoCrPt alloy
  • a protective layer made of a C system
  • F system an F system
  • the glass substrate 1 for an information recording medium used in the embodiment according to the present invention will be described in more detail.
  • the glass substrate 1 in the present embodiment is displayed in mol%, SiO 2 : 56 to 71%, Al 2 O 3 : 5 to 15%, B 2 O 3 : 0 to 3% Li 2 O: 0.1 to 6%, Na 2 O: 0.1 to 4%, K 2 O: 0-2%, MgO: 3 to 13%, CaO: 4-21%, SrO: 0 to 3%, BaO: 0 to 3%, ZnO: 0 to 3%, ZrO 2 : 0 to 3%, CeO 2 : 0-2%, SnO 2 : 0-2%, TiO 2 : 0-5%, and Nb 2 O 5 : 0 to 3%, And a content range of SiO 2 + Al 2 O 3 + B 2 O 3 : 64 to 80%, Li 2 O + Na 2 O + K 2 O: 0.2-6% MgO + CaO + SrO + BaO + ZnO: 14 to 28%, (Nb 2 O 5 + TiO 2
  • % indicating a glass composition indicates “mol%” unless otherwise specified.
  • An addition notation of a chemical formula such as “SiO 2 + Al 2 O 3 + B 2 O 3 ” indicates the total amount of components represented by such chemical formula.
  • SiO 2 + Al 2 O 3 + B 2 O 3 indicates the total amount of SiO 2 , Al 2 O 3 and B 2 O 3 .
  • the glass composition is preferably composed of only the components shown above except for inevitable impurities.
  • the deformation of the glass substrate 1 and the diffusion of Li from the glass substrate 1 can be suppressed during the formation of the magnetic recording medium and the high-temperature annealing.
  • the glass substrate for information recording medium of the present embodiment showing the above characteristics is particularly suitable as a glass substrate for heat-assisted recording.
  • Thermally assisted recording performs information recording while locally heating a magnetic recording medium.
  • the use of the above-described Fe—Pt magnetic material is required to realize high-density recording. This is because the glass substrate is required to have particularly high heat resistance.
  • SiO 2 is an important component for forming a glass network structure.
  • such SiO 2 is 56 to 71% (the expression of such a numerical range in this embodiment means that the lower limit value and the upper limit value are included in the range. Therefore, “56 “ ⁇ 71%” means “56% or more and 71% or less”).
  • the content of SiO 2 is less than 56%, glass formation becomes difficult, and chemical durability may be deteriorated. On the other hand, if it exceeds 71%, the meltability deteriorates. Therefore, the content range of SiO 2 needs to be in the range of 56 to 71%. Among these, the range of 58 to 69% is preferable.
  • Al 2 O 3 is an important component that forms a network structure together with SiO 2 , and has a function of improving not only heat resistance but also ion exchange performance.
  • the content of Al 2 O 3 is less than 5%, chemical durability and ion exchange performance may be deteriorated. Conversely, if it exceeds 15%, the ion exchange performance is lowered, and the meltability is further deteriorated. For this reason, the content range of Al 2 O 3 needs to be 5 to 15%. Among them, the range of 7 to 13% is preferable.
  • B 2 O 3 is a component that forms a network structure with SiO 2 , and has a function of lowering the melting temperature, so is contained as necessary. If it exceeds 3%, Tg (glass transition point), which is an index of heat resistance, is lowered. Therefore, the content of B 2 O 3 needs to be in the range of 0 to 3%. Among these, the range is preferably 0 to 2%.
  • the total amount of SiO 2 + Al 2 O 3 + B 2 O 3 was 64 to 80%. These are important components for forming a glass network structure, and if it is less than 65%, glass formation becomes difficult. On the other hand, if it exceeds 80%, the viscosity is too high and the meltability deteriorates. Among these, the range is preferably 66 to 78%.
  • Li 2 O is a component necessary for improving chemical durability and further improving meltability.
  • the content of Li 2 O is less than 0.1%, the effect of suppressing the dissolution of Li and the effect of improving the meltability cannot be obtained sufficiently.
  • the Li 2 O content needs to be in the range of 0.1 to 6%. Among these, the range is preferably 0.2 to 5%.
  • Na 2 O is a component necessary for improving the meltability.
  • the content of Na 2 O is less than 0.1%, the viscosity increases, the liquidus temperature rises, and the meltability deteriorates. Conversely, if it exceeds 4%, the chemical durability is lowered. Therefore, the content of Na 2 O needs to be in the range of 0.1 to 4%. Among these, the range is preferably 0.2 to 3%.
  • K 2 O Since K 2 O has the effect of improving the meltability, it may be contained as necessary. When the content of K 2 O exceeds 2%, Tg is lowered and chemical durability is also deteriorated. Therefore, the content range of K 2 O is set to 0 to 2%. Among these, the range is preferably 0 to 1%.
  • the total amount of Li 2 O + Na 2 O + K 2 O was in the range of 0.2 to 6%. If the total amount is less than 0.2%, a sufficient improvement effect of meltability cannot be obtained. On the other hand, if the total amount exceeds 6%, Tg decreases, sufficient heat resistance cannot be obtained, and chemical durability deteriorates. More preferably, it is in the range of 0.4 to 5.5%.
  • MgO has the effect of improving heat resistance and improving meltability. If the content of MgO is less than 3%, the effect of improving the heat resistance and the effect of improving the meltability cannot be obtained. Conversely, if the content exceeds 13%, the glass structure becomes unstable and the devitrification resistance is reduced. It becomes worse and it becomes difficult to mold. Therefore, the MgO content range is set to 3 to 13%. Among these, the range of 5 to 11% is preferable.
  • CaO has the effect of improving the meltability and maintaining the Tg. If the content of CaO is less than 4%, the effect of improving the meltability and the effect of maintaining Tg cannot be obtained sufficiently. Conversely, if the content exceeds 21%, the glass structure becomes unstable and the chemical durability is improved. It will get worse. Therefore, the CaO content range is set to 4 to 21%. Among these, the range of 6 to 19% is preferable.
  • the SrO content range is set to a range of 0 to 3%. Among these, the range is preferably 0 to 2%.
  • BaO has the effect of improving the meltability and also has the effect of maintaining Tg, so it is contained as necessary.
  • the content range of BaO is set to 0 to 3%. Among these, the range is preferably 0 to 2%.
  • the content range of ZnO is set to 0 to 3%. Among these, the range is preferably 0 to 2%.
  • the total amount of MgO + CaO + SrO + BaO + ZnO was in the range of 14 to 28%. If it is less than 14%, the effects of improving Young's modulus and improving meltability cannot be obtained sufficiently. On the contrary, when the total amount exceeds 28%, the chemical durability deteriorates. More preferably, it is in the range of 16 to 26%.
  • TiO 2 has the effect of softening high temperature viscosity and improving chemical durability. If the content of TiO 2 exceeds 5%, the glass structure becomes unstable, devitrification resistance deteriorates, and molding becomes difficult. Therefore, the content range of TiO 2 is set to a range of 0 to 5%. Among these, the range of 0 to 4% is preferable.
  • Nb 2 O 5 has the effect of improving the chemical durability while improving the meltability.
  • the content range of Nb 2 O 5 is set to 0 to 3%. Among these, the range is preferably 0 to 2%.
  • the content range was set to 0 to 3%. Among these, the range is preferably 0 to 2%.
  • CeO 2 and SnO 2 play a role as a clarifying agent, and may be contained as necessary.
  • the content range was set to 0 to 2%.
  • the range is preferably 0 to 1%.
  • the raw material that plays a role as a fining agent such as Sb 2 O 3, and it may be contained in the range of 0 to 2%.
  • (Nb 2 O 5 + TiO 2 ) / SiO 2 is preferably in the range of 0.01 to 0.06. If the ratio is less than 0.01, the chemical durability is deteriorated. If the ratio exceeds 0.06, the chemical durability is adversely affected.
  • the durability as a skeleton is greatly improved by entering a part of the network structure of the glass, and the diffusion rate of Li ions in the glass is also suppressed. Therefore, the diffusion to the magnetic thin film is suppressed.
  • a desirable range is from 0.012 to 0.05. Nb 2 O 5 and TiO 2 do not have these effects unless one of them is essential.
  • Li 2 O / (Li 2 O + Na 2 O + K 2 O) is preferably in the range of 0.30 to 0.99. If the amount is less than 0.03, the Li elution amount is deteriorated. Therefore, it is essential to contain Li 2 O in a predetermined amount or more. On the other hand, when only Li 2 O is contained at 1.00, elution of Na and K deteriorates. By containing Li 2 O / (Li 2 O + Na 2 O + K 2 O) at a predetermined ratio, a synergistic effect with Nb 2 O 5 and TIO 2 is shown, and the Li diffusion rate is suppressed. A desirable range is from 0.50 to 0.95.
  • FIG. 7 to FIG. 9 show the glass compositions in each example and each comparative example.
  • a predetermined amount of raw material powder is weighed into a platinum crucible and mixed so as to have the glass composition described in Examples 1 to 15. Then, it melt
  • the stirring blade was taken out and allowed to stand for 3 hours, and then the melt was poured into a mold to obtain a glass block. Thereafter, the glass block was held in the vicinity of the glass transition point of each glass for 2 hours, and then slowly cooled to remove strain.
  • the obtained glass block was sliced into a 2.5-inch disk shape having a thickness of about 1.0 mm, and the inner and outer circumferences were concentrically cut out using a cutter to obtain a disk-shaped glass substrate. Rough polishing and polishing were performed on both surfaces of the glass substrate.
  • the glass substrate was washed to produce a glass substrate for an information recording medium having a thickness of 0.8 mm shown in each example and each comparative example.
  • the following physical property evaluation was performed on the produced glass substrate for an information recording medium.
  • Glass material physical properties were measured by the following methods, respectively.
  • ⁇ Glass transition point (Tg)> Using a differential heat measuring device (trade name: EXSTAR6000, manufactured by Seiko Instruments Inc.), heating and measuring a glass sample adjusted to a powder form in a temperature range of room temperature to 900 ° C. at a rate of temperature increase of 10 ° C./min. was used to measure the glass transition point.
  • EXSTAR6000 differential heat measuring device
  • ⁇ Li elution amount> The surface of the glass substrate was polished with cerium oxide to obtain a smooth surface with an Ra value of 2 nm or less. Thereafter, the surface of the glass substrate was washed and immersed in 50 ml of RO water at 80 ° C. for 24 hours. Thereafter, the eluate was analyzed and calculated using an ICP emission spectroscopic analyzer.
  • ⁇ Heat resistance test> An Fe—Pt alloy film was formed on a glass substrate, and then judged by the flatness after heat treatment at 600 ° C. ⁇ 1 hour. The flatness was measured using a white light interference type surface shape measuring instrument (Optiflat (manufactured by Phase Shift Technology)). The glass substrate of each example had a flatness before heat treatment of about 2.0 to 2.3 mm.
  • HDD test> An Fe—Pt alloy film was formed on a glass substrate, then heat-treated at 600 ° C. for 1 hour, and then evaluated by the number of reading errors when operating at 15000 rpm. The evaluation was performed 100 sheets in each example and each comparative example, and the total number of errors in the hard disk drive (HDD) test is shown in FIGS. The mol% values shown in FIGS. 7 to 9 are rounded off to the first decimal place and used to the first decimal place as significant figures.
  • the number of errors in the hard disk drive (HDD) test shown in FIGS. 7 to 9 the number of errors is evaluated as 0 to 2 times “A”, the number of errors is evaluated as 3 to 5 times “B”, and the number of errors is The evaluation “C” was 6 times or more.
  • the glass substrate for hard disk drive (HDD) in each example is different from the glass substrate for HDD in each comparative example in the formation of the magnetic recording medium and the glass substrate during high-temperature annealing. No deformation has occurred. Furthermore, each glass component is contained in a predetermined ratio, and both (Nb 2 O 5 + TiO 2 ) / SiO 2 and Li 2 O / (Li 2 O + Na 2 O + K 2 O) are within a predetermined range. As a result, it was possible to obtain a good SNR characteristic by containing Li ions and suppressing the diffusion of Li, and as a result, excellent evaluation was obtained in a hard disk drive (HDD) test.

Abstract

This glass substrate for information recording media contains, in mol%, 56-71% of SiO2, 5-15% of Al2O3, 0-3% of B2O3, 0.1-6% of Li2O, 0.1-4% of Na2O, 0-2% of K2O, 3-13% of MgO, 4-21% of CaO, 0-3% of SrO, 0-3% of BaO, 0-3% of ZnO, 0-3% ZrO2, 0-2% of CeO2, 0-2% of SnO2, 0-5% of TiO2 and 0-3% of Nb2O5, while satisfying the following glass composition ratios, SiO2 + Al2O3 +B2O3 being 64-80%, Li2O + Na2O + K2O being 0.2-6%, MgO + CaO + SrO + BaO + ZnO being 14-28%, (Nb2O5 + TiO2)/SiO2 = 0.01-0.06 and Li2O/(Li2O + Na2O + K2O) = 0.30-0.99.

Description

情報記録媒体用ガラス基板および情報記録媒体Glass substrate for information recording medium and information recording medium
 本発明は、ハードディスクドライブ(HDD:Hard Disk Drive)などの情報記録装置に情報記録媒体の一部として搭載される情報記録媒体用ガラス基板および情報記録媒体に関する。 The present invention relates to a glass substrate for an information recording medium and an information recording medium mounted as part of the information recording medium in an information recording apparatus such as a hard disk drive (HDD).
 近年、HDDの記憶容量が飛躍的に増大することに伴い、1ビットに費やす媒体の記録面積を小さくしていくことが必要不可欠となっている。それに比例させて記録用の磁性粒子サイズも微細化しなければならない。しかし、微細化により記録した磁化の向きを一方向に保つエネルギーが小さくなり、熱エネルギーの影響を受けやすい。磁化の向きを安定させるため、現在磁性材料として広く使用されているCoCr系合金から、保磁力の高いFe-Pt系磁性材料に媒体を変える必要性がある。 In recent years, as the storage capacity of HDDs has increased dramatically, it has become indispensable to reduce the recording area of the medium spent for one bit. In proportion to this, the size of magnetic particles for recording must be reduced. However, the energy for maintaining the direction of magnetization recorded in one direction is reduced by miniaturization, and it is easily affected by thermal energy. In order to stabilize the magnetization direction, there is a need to change the medium from a CoCr-based alloy, which is currently widely used as a magnetic material, to an Fe—Pt-based magnetic material having a high coercive force.
 しかし、Fe-Pt系磁性材料の成膜では、Fe、Pt原子の配列が不規則になり、高い保磁力が得られない。規則化して高い保磁力を得るには、Fe-Pt系磁性材料に対し、約600℃での高温熱処理を施すことが必要不可欠となる。このため、Fe-Pt系磁性材料が成膜されるガラス基板においても、高い耐熱性が要求される。 However, in the film formation of the Fe—Pt magnetic material, the arrangement of Fe and Pt atoms becomes irregular, and a high coercive force cannot be obtained. In order to obtain a high coercive force by ordering, it is indispensable to subject the Fe—Pt magnetic material to a high temperature heat treatment at about 600 ° C. For this reason, high heat resistance is required even for a glass substrate on which a Fe—Pt magnetic material is formed.
 一般に、高い耐熱性を有するガラス基板としては、種々のガラス組成のものが提案されている(特開2005-015328号公報(特許文献1)、特開2005-314159号公報(特許文献2))。 In general, as glass substrates having high heat resistance, those having various glass compositions have been proposed (Japanese Patent Laid-Open No. 2005-015328 (Patent Document 1) and Japanese Patent Laid-Open No. 2005-314159 (Patent Document 2)). .
特開2005-015328号公報JP 2005-015328 A 特開2005-314159号公報JP 2005-314159 A
 上述したように、Fe-Pt系磁性材料に対し、約600℃での高温熱処理を施すことが必要不可欠となるため、ガラス基板の耐熱性の指標となるTgを600℃以上まで向上させて、ガラス基板へのFe-Pt系磁性材料の成膜時に約600℃での高温熱処理を施している。 As described above, since it is indispensable to perform high-temperature heat treatment at about 600 ° C. on the Fe—Pt magnetic material, the Tg, which is an index of heat resistance of the glass substrate, is improved to 600 ° C. or higher. A high-temperature heat treatment at about 600 ° C. is performed during the film formation of the Fe—Pt magnetic material on the glass substrate.
 その結果、ガラス基板の変形はなかったが、そのガラス基板を用いて製造された情報記録媒体(磁気ディスク)の電磁変換特性の低下が避けられなかった。原因を調査した結果、600℃での高温熱処理によってガラス成分中のLiイオンが磁性膜内まで拡散して、電磁変換特性に影響を及ぼしていることが明確になってきた。 As a result, the glass substrate was not deformed, but the electromagnetic conversion characteristics of the information recording medium (magnetic disk) manufactured using the glass substrate were inevitably deteriorated. As a result of investigating the cause, it has become clear that Li ions in the glass component are diffused into the magnetic film by high-temperature heat treatment at 600 ° C. and affect the electromagnetic conversion characteristics.
 高保磁力のFe-Pt系の磁性材料を成膜する際に、ガラス基板のTg(ガラス転移点特権)が600℃以下では、耐熱性が低いことで変形が発生する。Tgを低下させるLiOの含有量を抑制し、Tg>600℃の耐熱性を確保しても、600℃のアニールによってガラス成分中のLiイオンの磁性膜内への拡散は避けられなかった。 When a high coercive force Fe—Pt magnetic material is formed, if the glass substrate has a Tg (privilege of glass transition temperature) of 600 ° C. or lower, deformation occurs due to low heat resistance. Even if the content of Li 2 O that lowers Tg is suppressed and heat resistance of Tg> 600 ° C. is ensured, diffusion of Li ions in the glass component into the magnetic film is unavoidable by annealing at 600 ° C. .
 一方、LiO含有量を0にすると、ガラス骨格全体としての化学的耐久性が悪化し、Na、Kイオンの溶出が悪化する。アルカリ酸化物の含有量を0にすると、溶融・成形性が極端に悪化し、ガラス基板の生産が困難となる。 On the other hand, when the Li 2 O content is 0, the chemical durability of the entire glass skeleton is deteriorated, and the elution of Na and K ions is deteriorated. When the content of the alkali oxide is 0, melting / formability is extremely deteriorated, and it becomes difficult to produce a glass substrate.
 したがって、この発明は、上記課題を解決するためになされたものであり、磁気記録媒体の成膜および高温アニール時に、ガラス基板の変形を抑制するとともに、ガラス基板からのLiの拡散を抑制することを可能とする情報記録媒体用ガラス基板および情報記録媒体を提供する。 Accordingly, the present invention has been made to solve the above-described problems, and suppresses deformation of the glass substrate and suppresses diffusion of Li from the glass substrate during film formation of the magnetic recording medium and high-temperature annealing. Provided are a glass substrate for an information recording medium and an information recording medium.
 本発明に基づいた情報記録媒体用ガラス基板においては、
 mol%表示で、
SiO:56~71%、
Al:5~15%、
:0~3%、
LiO:0.1~6%、
NaO:0.1~4%、
O:0~2%、
MgO:3~13%、
CaO:4~21%、
SrO:0~3%、
BaO:0~3%、
ZnO:0~3%、
ZrO:0~3%、
CeO:0~2%、
SnO:0~2%、
TiO:0~5%、および、
Nb:0~3%、
となる含有範囲を有し、かつ、
SiO+Al+B:64~80%、
LiO+NaO+KO:0.2~6%、
MgO+CaO+SrO+BaO+ZnO:14~28%、
(Nb+TiO)/SiO=0.01~0.06、および、
LiO/(LiO+NaO+KO)=0.30~0.99、
というガラス組成比率を満足する。
In the glass substrate for information recording medium based on the present invention,
In mol% display
SiO 2 : 56 to 71%,
Al 2 O 3 : 5 to 15%,
B 2 O 3 : 0 to 3%
Li 2 O: 0.1 to 6%,
Na 2 O: 0.1 to 4%,
K 2 O: 0-2%,
MgO: 3 to 13%,
CaO: 4-21%,
SrO: 0 to 3%,
BaO: 0 to 3%,
ZnO: 0 to 3%,
ZrO 2 : 0 to 3%,
CeO 2 : 0-2%,
SnO 2 : 0-2%,
TiO 2 : 0-5%, and
Nb 2 O 5 : 0 to 3%,
And a content range of
SiO 2 + Al 2 O 3 + B 2 O 3 : 64 to 80%,
Li 2 O + Na 2 O + K 2 O: 0.2-6%
MgO + CaO + SrO + BaO + ZnO: 14 to 28%,
(Nb 2 O 5 + TiO 2 ) / SiO 2 = 0.01 to 0.06, and
Li 2 O / (Li 2 O + Na 2 O + K 2 O) = 0.30 to 0.99,
The glass composition ratio is satisfied.
 他の形態における情報記録媒体用ガラス基板においては、
 mol%表示で、
SiO:58~69%、
Al:7~13%、
:0~2%、
LiO:0.2~5%、
NaO:0.2~3%、
O:0~1%、
MgO:5~11%、
CaO:6~19%、
SrO:0~2%、
BaO:0~2%、
ZnO:0~2%、
ZrO:0~2%、
CeO:0~1%、
SnO:0~1%、
TiO:0~4%、
Nb:0~2%、
となる含有範囲を有し、かつ、SiO+Al+B:66~78%、
LiO+NaO+K2O:0.4~5.5%、
MgO+CaO+SrO+BaO+ZnO:16~26%、
(Nb+TiO)/SiO=0.012~0.05、および、
LiO/(LiO+NaO+KO)=0.50~0.95、
というガラス組成比率を満足する。
In the glass substrate for information recording media in other forms,
In mol% display
SiO 2 : 58 to 69%,
Al 2 O 3 : 7 to 13%,
B 2 O 3 : 0 to 2%
Li 2 O: 0.2 to 5%,
Na 2 O: 0.2-3%,
K 2 O: 0 to 1%,
MgO: 5 to 11%,
CaO: 6-19%,
SrO: 0-2%,
BaO: 0-2%,
ZnO: 0-2%,
ZrO 2 : 0 to 2%,
CeO 2 : 0 to 1%,
SnO 2 : 0 to 1%
TiO 2 : 0 to 4%,
Nb 2 O 5 : 0 to 2%,
And a content range of SiO 2 + Al 2 O 3 + B 2 O 3 : 66 to 78%,
Li 2 O + Na 2 O + K 2 O: 0.4 to 5.5%,
MgO + CaO + SrO + BaO + ZnO: 16 to 26%,
(Nb 2 O 5 + TiO 2 ) / SiO 2 = 0.012 to 0.05, and
Li 2 O / (Li 2 O + Na 2 O + K 2 O) = 0.50-0.95,
The glass composition ratio is satisfied.
 他の形態における情報記録媒体用ガラス基板においては、当該情報記録媒体用ガラス基板は、熱アシスト記録用のガラス基板である。 In the glass substrate for information recording medium in another form, the glass substrate for information recording medium is a glass substrate for heat assist recording.
 本発明に基づいた情報記録媒体においては、上述のいずれかに記載の情報記録媒体用ガラス基板上に磁気記録層を有する。 The information recording medium according to the present invention has a magnetic recording layer on the glass substrate for information recording medium described above.
 本発明によれば、磁気記録媒体の成膜および高温アニール時に、ガラス基板の変形を抑制するとともに、ガラス基板からのLiの拡散を抑制することを可能とする情報記録媒体用ガラス基板および情報記録媒体を提供することが可能となる。 According to the present invention, the glass substrate for an information recording medium and the information recording capable of suppressing the deformation of the glass substrate and suppressing the diffusion of Li from the glass substrate at the time of film formation and high temperature annealing of the magnetic recording medium. A medium can be provided.
情報記録装置30を示す斜視図である。2 is a perspective view showing an information recording device 30. FIG. 本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって製造されるガラス基板1を示す平面図である。It is a top view which shows the glass substrate 1 manufactured by the manufacturing method of the glass substrate for information recording media based on this Embodiment. 図2中のIII-III線に沿った矢視断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 情報記録媒体としてガラス基板1を備えた情報記録媒体10を示す平面図である。It is a top view which shows the information recording medium 10 provided with the glass substrate 1 as an information recording medium. 図4中のV-V線に沿った矢視断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. ガラス基板の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a glass substrate. 実施例1から実施例8のHDDテストの評価を示す図である。It is a figure which shows evaluation of the HDD test of Example 1-8. 実施例9から実施例15のHDDテストの評価を示す図である。It is a figure which shows evaluation of the HDD test of Example 9-15. 比較例1から比較例7のHDDテストの評価を示す図である。It is a figure which shows evaluation of the HDD test of the comparative example 1 to the comparative example 7. FIG.
 本発明に基づいた実施の形態および各実施例について、以下、図面を参照しながら説明する。実施の形態および各実施例の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態および各実施例の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。 Embodiments and examples based on the present invention will be described below with reference to the drawings. In the description of the embodiments and the examples, when the number, amount, and the like are referred to, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the description of the embodiment and each example, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 [実施の形態]
 (情報記録装置30)
 図1を参照して、まず、情報記録装置30について説明する。図1は、情報記録装置30を示す斜視図である。情報記録装置30は、実施の形態における情報記録媒体用ガラス基板(以下、単にガラス基板ともいう)の製造方法によって製造されたガラス基板1を、情報記録媒体10として備える。
[Embodiment]
(Information recording device 30)
First, the information recording device 30 will be described with reference to FIG. FIG. 1 is a perspective view showing the information recording apparatus 30. The information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
 具体的には、情報記録装置30は、情報記録媒体10、筐体20、ヘッドスライダー21、サスペンション22、アーム23、垂直軸24、ボイスコイル25、ボイスコイルモーター26、クランプ部材27、および固定ネジ28を備える。筐体20の上面上には、スピンドルモーター(図示せず)が設置される。 Specifically, the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28. A spindle motor (not shown) is installed on the upper surface of the housing 20.
 磁気ディスクなどの情報記録媒体10は、クランプ部材27および固定ネジ28によって、上記のスピンドルモーターに回転可能に固定される。情報記録媒体10は、このスピンドルモーターによって、たとえば数千rpmの回転数で回転駆動される。詳細は図4および図5を参照して後述されるが、情報記録媒体10は、ガラス基板1に圧縮応力層12(図5参照)および磁気記録層14(図4および図5参照)が形成されることによって製造される。 An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28. The information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm. Although details will be described later with reference to FIGS. 4 and 5, in the information recording medium 10, a compression stress layer 12 (see FIG. 5) and a magnetic recording layer 14 (see FIGS. 4 and 5) are formed on the glass substrate 1. To be manufactured.
 アーム23は、垂直軸24回りに揺動可能に取り付けられる。アーム23の先端には、板バネ(片持ち梁)状に形成されたサスペンション22が取り付けられる。サスペンション22の先端には、ヘッドスライダー21が情報記録媒体10を挟み込むように取り付けられる。 The arm 23 is attached so as to be swingable around the vertical axis 24. A suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23. A head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
 アーム23のヘッドスライダー21とは反対側には、ボイスコイル25が取り付けられる。ボイスコイル25は、筐体20上に設けられたマグネット(図示せず)によって挟持される。ボイスコイル25およびこのマグネットにより、ボイスコイルモーター26が構成される。 A voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21. The voice coil 25 is clamped by a magnet (not shown) provided on the housing 20. A voice coil motor 26 is constituted by the voice coil 25 and the magnet.
 ボイスコイル25には所定の電流が供給される。アーム23は、ボイスコイル25に流れる電流と上記マグネットの磁場とにより発生する電磁力の作用によって、垂直軸24回りに揺動する。アーム23の揺動によって、サスペンション22およびヘッドスライダー21も矢印AR1方向に揺動する。ヘッドスライダー21は、情報記録媒体10の表面上および裏面上を、情報記録媒体10の半径方向に往復移動する。ヘッドスライダー21に設けられた磁気ヘッド(図示せず)はシーク動作を行なう。 A predetermined current is supplied to the voice coil 25. The arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet. As the arm 23 swings, the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1. The head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10. A magnetic head (not shown) provided on the head slider 21 performs a seek operation.
 当該シーク動作が行なわれる一方で、ヘッドスライダー21は、情報記録媒体10の回転に伴って発生する空気流により、浮揚力を受ける。当該浮揚力とサスペンション22の弾性力(押圧力)とのバランスによって、ヘッドスライダー21は情報記録媒体10の表面に対して一定の浮上量で走行する。当該走行によって、ヘッドスライダー21に設けられた磁気ヘッドは、情報記録媒体10内の所定のトラックに対して情報(データ)の記録および再生を行なうことが可能となる。ガラス基板1が情報記録媒体10を構成する部材の一部として搭載される情報記録装置30は、以上のように構成される。 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10. The information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
 (ガラス基板1)
 図2は、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって製造されるガラス基板1を示す平面図である。図3は、図2中のIII-III線に沿った矢視断面図である。
(Glass substrate 1)
FIG. 2 is a plan view showing glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment. 3 is a cross-sectional view taken along the line III-III in FIG.
 図2および図3に示すように、情報記録媒体10(図4および図5参照)にその一部として用いられるガラス基板1(情報記録媒体用ガラス基板)は、主表面2、主表面3、内周端面4、孔5、および外周端面6を有し、全体として円盤状に形成される。孔5は、一方の主表面2から他方の主表面3に向かって貫通するように設けられる。主表面2と内周端面4との間、および、主表面3と内周端面4との間には、面取部7がそれぞれ形成される。主表面2と外周端面6との間、および、主表面3と外周端面6との間には、面取部8(チャンファー部)が形成される。 As shown in FIGS. 2 and 3, the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) has a main surface 2, a main surface 3, It has the inner peripheral end surface 4, the hole 5, and the outer peripheral end surface 6, and is formed in a disk shape as a whole. The hole 5 is provided so as to penetrate from one main surface 2 toward the other main surface 3. A chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4. Between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6, a chamfered portion 8 (chamfer portion) is formed.
 ガラス基板1の大きさは、たとえば0.8インチ、1.0インチ、1.8インチ、2.5インチ、または3.5インチである。これ以下、または、これ以上のインチサイズとすること可能である。ガラス基板の厚さは、破損防止の観点から、たとえば0.30mm~2.2mmである。本実施の形態におけるガラス基板の大きさは、外径が約64mm、内径が約20mm、厚さが約0.8mmである。ガラス基板の厚さとは、ガラス基板上の点対象となる任意の複数の点で測定した値の平均によって算出される値である。ガラス基板の高硬度化の観点から、ガラス基板1のビッカース硬度は、610kg/mm以上であるとよい。 The size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch. It is possible to make the size smaller than this or larger than this. The thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage. In the present embodiment, the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm. The thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate. From the viewpoint of increasing the hardness of the glass substrate, the Vickers hardness of the glass substrate 1 is preferably 610 kg / mm 2 or more.
 (情報記録媒体10)
 図4は、情報記録媒体としてガラス基板1を備えた情報記録媒体10を示す平面図である。図5は、図4中のV-V線に沿った矢視断面図である。
(Information recording medium 10)
FIG. 4 is a plan view showing an information recording medium 10 provided with a glass substrate 1 as an information recording medium. FIG. 5 is a cross-sectional view taken along the line VV in FIG.
 図4および図5に示すように、情報記録媒体10は、ガラス基板1と、圧縮応力層12と、磁気記録層14とを含む。圧縮応力層12は、ガラス基板1の主表面2,3、内周端面4、および外周端面6を覆うように形成される。磁気記録層14は、圧縮応力層12の主表面2,3上の所定の領域を覆うように形成される。ガラス基板1の内周端面4上に圧縮応力層12が形成されることによって、内周端面4の内側に孔15が形成される。孔15を利用して、情報記録媒体10は筐体20(図1参照)上に設けられたスピンドルモーターに対して固定される。 4 and 5, the information recording medium 10 includes a glass substrate 1, a compressive stress layer 12, and a magnetic recording layer 14. The compressive stress layer 12 is formed so as to cover the main surfaces 2 and 3, the inner peripheral end face 4, and the outer peripheral end face 6 of the glass substrate 1. The magnetic recording layer 14 is formed so as to cover a predetermined region on the main surfaces 2 and 3 of the compressive stress layer 12. By forming the compressive stress layer 12 on the inner peripheral end face 4 of the glass substrate 1, a hole 15 is formed inside the inner peripheral end face 4. The information recording medium 10 is fixed to a spindle motor provided on the housing 20 (see FIG. 1) using the holes 15.
 図5に示す情報記録媒体10においては、主表面2上に形成された圧縮応力層12と主表面3上に形成された圧縮応力層12との双方(両面)の上に、磁気記録層14が形成されている。磁気記録層14は、主表面2上に形成された圧縮応力層12の上(片面)にのみ設けられていてもよく、主表面3上に形成された圧縮応力層12の上(片面)に設けられていてもよい。 In the information recording medium 10 shown in FIG. 5, the magnetic recording layer 14 is formed on both the compressive stress layer 12 formed on the main surface 2 and the compressive stress layer 12 formed on the main surface 3 (both sides). Is formed. The magnetic recording layer 14 may be provided only on the compression stress layer 12 (one side) formed on the main surface 2, or on the compression stress layer 12 (one side) formed on the main surface 3. It may be provided.
 磁気記録層14は、磁性粒子を分散させた熱硬化性樹脂をガラス基板1の主表面2,3上の圧縮応力層12にスピンコートすることによって形成される(スピンコート法)。磁気記録層14は、ガラス基板1の主表面2,3上の圧縮応力層12に対して実施されるスパッタリング法または無電解めっき法等により形成されてもよい。 The magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method). The magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
 磁気記録層14の膜厚は、スピンコート法の場合は約0.3μm~1.2μm、スパッタリング法の場合は約0.04μm~0.08μm、無電解めっき法の場合は約0.05μm~0.1μmである。薄膜化および高密度化の観点からは、磁気記録層14はスパッタリング法または無電解めっき法によって形成されるとよい。 The thickness of the magnetic recording layer 14 is about 0.3 μm to 1.2 μm for the spin coating method, about 0.04 μm to 0.08 μm for the sputtering method, and about 0.05 μm to about the electroless plating method. 0.1 μm. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
 磁気記録層14に用いる磁性材料としては、高い保持力を得る目的で結晶異方性の高いCoを主成分とし、残留磁束密度を調整する目的でNiまたはCrを加えたCo系合金などを付加的に用いることが好適である。近年では、熱アシスト記録用に好適な磁性層材料として、Fe-Pt系磁性材料が用いられるようになってきている。 As a magnetic material used for the magnetic recording layer 14, a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used. In recent years, Fe—Pt magnetic materials have been used as magnetic layer materials suitable for heat-assisted recording.
 磁気ヘッドの滑りをよくするために、磁気記録層14の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、たとえば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。 In order to improve the sliding of the magnetic head, the surface of the magnetic recording layer 14 may be thinly coated with a lubricant. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
 磁気記録層14には、必要に応じて下地層または保護層を設けてもよい。情報記録媒体10における下地層は、磁性膜の種類に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、またはNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。 The magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary. The underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
 磁気記録層14に設ける下地層は、単層に限らず、同一または異種の層を積層した複数層構造としても構わない。たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、または、NiAl/CrV等の多層下地層としてもよい。 The underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
 磁気記録層14の摩耗および腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、またはシリカ層が挙げられる。これらの保護層は、下地層および磁性膜など共にインライン型スパッタ装置で連続して形成されることができる。これらの保護層は、単層としてもよく、または、同一若しくは異種の層からなる多層構成としてもよい。 Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
 上記保護層上に、あるいは上記保護層に代えて、他の保護層を形成してもよい。たとえば、上記保護層に代えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO2)層を形成してもよい。 Other protective layers may be formed on the protective layer or instead of the protective layer. For example, instead of the protective layer, colloidal silica fine particles are dispersed and coated on a Cr layer with tetraalkoxylane diluted with an alcohol solvent, and then fired to form a silicon oxide (SiO2) layer. May be.
 (ガラス基板の製造方法)
 次に、図6に示すフローチャート図を用いて、本実施の形態におけるガラス基板(情報記録媒体用ガラス基板)の製造方法S100について説明する。本実施の形態におけるガラス基板の製造方法S100は、板状ガラス成形工程S10、切り出し成形工程S20、ブラスト工程S30、ラッピング工程S40、端面研磨工程S50、粗研磨工程S60、洗浄工程S65、化学強化工程S70、精密研磨工程S80、および、スクラブ洗浄工程S90を備える。
(Glass substrate manufacturing method)
Next, the manufacturing method S100 of the glass substrate (glass substrate for information recording media) in this Embodiment is demonstrated using the flowchart figure shown in FIG. The glass substrate manufacturing method S100 in the present embodiment includes a plate-like glass forming step S10, a cut-out forming step S20, a blasting step S30, a lapping step S40, an end surface polishing step S50, a rough polishing step S60, a cleaning step S65, and a chemical strengthening step. S70, precision polishing process S80, and scrub cleaning process S90 are provided.
 スクラブ洗浄工程S90を経ることによって得られたガラス基板に対して、磁気薄膜形成工程S200が実施される。磁気薄膜形成工程S200を経ることによって、情報記録媒体10(図4および図5参照)が得られる。以下、ガラス基板の製造方法S100を構成する各工程S10~S90の詳細について順に説明する。 The magnetic thin film forming step S200 is performed on the glass substrate obtained through the scrub cleaning step S90. Through the magnetic thin film forming step S200, the information recording medium 10 (see FIGS. 4 and 5) is obtained. Hereinafter, the details of the steps S10 to S90 constituting the glass substrate manufacturing method S100 will be described in order.
 (板状ガラス成形工程S10)
 まず、板状ガラス成形工程S10において、溶融ガラスを材料として、ダイレクトプレス法、フロート法、ダウンドロー法、リドロー法、またはフュージョン法など、公知の成形方法を用いて、板状ガラスを製造する。
(Plate-shaped glass forming step S10)
First, in the glass sheet forming step S10, a glass sheet is manufactured using a known glass forming method such as a direct press method, a float method, a down draw method, a redraw method, or a fusion method using a molten glass as a material.
 溶融ガラスを構成する各成分の原料として、各々相当する酸化物、炭酸塩、硝酸塩、水酸化物等が使用され、所望の割合に秤量され、粉末で充分に混合して調合原料とされる。調合原料が、例えば1300~1550℃に加熱された電気炉中の白金坩堝等に投入され、溶融清澄後、撹拌均質化して予め加熱された鋳型に鋳込まれ、徐冷してガラスブロックとされる。 As raw materials for each component constituting the molten glass, corresponding oxides, carbonates, nitrates, hydroxides and the like are used, respectively, weighed to a desired ratio, and thoroughly mixed with powder to obtain a blended raw material. For example, the blended raw material is put into a platinum crucible in an electric furnace heated to 1300 to 1550 ° C., etc., melted and clarified, stirred and homogenized, cast into a preheated mold, and gradually cooled into a glass block. The
 ダイレクトプレス法は、溶解したガラスから目的とするガラス成形品に直接的に成形できるため、同一の形状を有する板状ガラスを多量に生産する場合に好適である。ダイレクトプレス法では、溶融ガラスをプレス成形型に供給し、このガラスが軟化状態にある間にプレス成形型でプレスして板状ガラスを成形する。ガラス転移点付近の温度で、1~3時間保持された後に徐冷される。 The direct press method can be directly molded from a melted glass into a target glass molded product, and is therefore suitable for producing a large amount of sheet glass having the same shape. In the direct press method, molten glass is supplied to a press mold and pressed with a press mold while the glass is in a softened state to form a sheet glass. After being held for 1 to 3 hours at a temperature near the glass transition point, it is gradually cooled.
 ガラス基板1のビッカース硬度は、610kg/mm以上である。ガラス基板の材質としては、たとえばアモルファスガラス、結晶化ガラスを利用できる。アモルファスガラスを用いる場合、化学強化を適切に施すことができるとともに、主表面の平坦性および基板強度において優れた情報記録媒体用ガラス基板を提供することが可能となる。 The glass substrate 1 has a Vickers hardness of 610 kg / mm 2 or more. As a material of the glass substrate, for example, amorphous glass or crystallized glass can be used. When amorphous glass is used, chemical strengthening can be appropriately performed, and a glass substrate for an information recording medium excellent in flatness of the main surface and substrate strength can be provided.
 (切り出し成形工程S20)
 再び、図6を参照して、切り出し成形工程S20においては、円筒状のダイヤモンドドリルを用いて、このガラス基板の中心部に内孔を形成し、円環状のガラス基板を成形する(コアリング加工)。その後、内周端面および外周端面をダイヤモンド砥石によって研削し、所定の面取り加工を施す(フォーミング、チャンファリング)。
(Cut-out molding step S20)
Referring to FIG. 6 again, in the cut-out forming step S20, an inner hole is formed in the center of the glass substrate using a cylindrical diamond drill, and an annular glass substrate is formed (coring process). ). Thereafter, the inner peripheral end face and the outer peripheral end face are ground with a diamond grindstone and subjected to predetermined chamfering (forming, chamfering).
 (ブラスト工程S30)
 ブラスト工程S30においては、板状ガラス成形工程S10よって形成されたガラス基板1の主表面2,3に複数の粒子(砥粒)200を吹き付けることによって、ガラス基板(ガラス基板前駆体)1の主表面2,3の研削を行なう(第1研削工程)。このブラスト工程S30により、たとえば、ガラス基板1の平均Raは、2.0μm程度とされる。
(Blasting process S30)
In the blasting step S30, a plurality of particles (abrasive grains) 200 are sprayed on the main surfaces 2 and 3 of the glass substrate 1 formed by the plate-like glass forming step S10, whereby the main of the glass substrate (glass substrate precursor) 1 is obtained. Surfaces 2 and 3 are ground (first grinding step). By this blasting step S30, for example, the average Ra of the glass substrate 1 is set to about 2.0 μm.
 (ラッピング工程S40)
 ラッピング工程(第2研削工程)S40においては、ラッピンマシーン(図示省略)を用いて、ガラス基板1の主表面にラッピング(第2研削)を施す。ラッピンマシーンにより、ガラス基板1の両主表面が研削される。
(Lapping step S40)
In the lapping step (second grinding step) S40, lapping (second grinding) is performed on the main surface of the glass substrate 1 using a lapping machine (not shown). Both main surfaces of the glass substrate 1 are ground by the lapping machine.
 (端面研磨工程S50)
 端面研磨工程S50においては、ガラス基板1の内周端面および外周端面が、螺旋状のブラシ毛材を有する研磨ブラシを用いて研磨される。研磨ブラシとガラス基板1の各端面との間に研磨スラリーを供給しつつ、研磨ブラシを各端面に当接させた状態で回転させる。ガラス基板1を研磨液の中に浸漬した状態で、研磨ブラシを各端面に当接させた状態で回転させてもよい。
(End face polishing step S50)
In the end surface polishing step S50, the inner peripheral end surface and the outer peripheral end surface of the glass substrate 1 are polished using a polishing brush having a spiral brush bristle material. While supplying the polishing slurry between the polishing brush and each end surface of the glass substrate 1, the polishing brush is rotated in contact with each end surface. With the glass substrate 1 immersed in the polishing liquid, the polishing brush may be rotated in contact with each end face.
 (粗研磨工程S60)
 内周端面および外周端面が研磨されたガラス基板1は、複数回に分けて主表面2,3が粗く研磨される。たとえば、第1および第2粗研磨工程の2回にわけて、主表面2,3が研磨される。徐々にガラス基板1の仕上がり精度を高めることにより、平滑性および平坦性の高い表面を有するガラス基板1を得ることができる。2回に分けて粗研磨を行なう場合、第1粗研磨工程は、前述のラッピング工程において主表面2,3に残留したキズおよび歪みを除去することを主たる目的とし、第2粗研磨工程は、主表面2,3を鏡面状に仕上げることを目的としている。
(Rough polishing step S60)
The glass substrate 1 whose inner peripheral end face and outer peripheral end face are polished has its main surfaces 2 and 3 polished roughly in a plurality of times. For example, the main surfaces 2 and 3 are polished in two steps of the first and second rough polishing steps. By gradually increasing the finishing accuracy of the glass substrate 1, the glass substrate 1 having a highly smooth and flat surface can be obtained. When performing rough polishing in two steps, the first rough polishing step is mainly intended to remove scratches and distortions remaining on the main surfaces 2 and 3 in the lapping step, and the second rough polishing step The purpose is to finish the main surfaces 2 and 3 in a mirror shape.
 (洗浄工程S65)
 粗研磨工程S60の後、ガラス基板1に対して酸性の洗浄液を用いた洗浄処理が実施される。この洗浄処理は、前工程である粗研磨工程S60において研磨スラリーとして使用されていた酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムのいずれかを、ガラス基板1の表面から除去することを目的としている。
(Washing step S65)
After the rough polishing step S60, the glass substrate 1 is subjected to a cleaning process using an acidic cleaning liquid. The purpose of this cleaning treatment is to remove from the surface of the glass substrate 1 any of cerium oxide, zirconium oxide, or zirconium silicate used as a polishing slurry in the rough polishing step S60, which is the previous step.
 具体的には、粗研磨工程S60において使用した研磨パッドから粗研磨後のガラス基板1を取り外した後、硫酸およびまたはフッ化水素酸などを含む洗浄液を用いてガラス基板1の表面をエッチングしながら洗浄する。ガラス基板1の表面に付着していた酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムなどの研磨スラリーは、硫酸およびまたはフッ化水素酸などの強酸性の洗浄液によって適切に除去される。その後、ガラス基板1は酸性の洗浄液を用いて洗浄される。 Specifically, after removing the glass substrate 1 after the rough polishing from the polishing pad used in the rough polishing step S60, the surface of the glass substrate 1 is etched using a cleaning liquid containing sulfuric acid and / or hydrofluoric acid. Wash. The polishing slurry such as cerium oxide, zirconium oxide, or zirconium silicate adhering to the surface of the glass substrate 1 is appropriately removed by a strongly acidic cleaning liquid such as sulfuric acid and / or hydrofluoric acid. Thereafter, the glass substrate 1 is cleaned using an acidic cleaning solution.
 洗浄工程S65において用いられる洗浄液は、ガラス基板1の耐化学性によっても異なるが、硫酸であれば1%~30%程度の濃度が好ましく、フッ化水素酸であれば0.2%~5%程度の濃度が好ましい。これらの洗浄液を用いた洗浄は、水溶液が貯留された洗浄機の中で超音波を印加しながら行なわれるとよい。この際に用いられる超音波の周波数は、78kHz以上であることが好ましい。 The cleaning liquid used in the cleaning step S65 varies depending on the chemical resistance of the glass substrate 1, but a concentration of about 1% to 30% is preferable for sulfuric acid, and 0.2% to 5% for hydrofluoric acid. A concentration of about is preferred. Cleaning using these cleaning liquids may be performed while applying ultrasonic waves in a cleaning machine in which an aqueous solution is stored. The frequency of the ultrasonic wave used at this time is preferably 78 kHz or higher.
 (化学強化工程S70)
 洗浄工程S65の後、ガラス基板1は化学強化される。化学強化液としては、たとえば硝酸カリウム(50wt%)と硫酸ナトリウム(50wt%)との混合液を用いることができる。化学強化液は、たとえば300℃~480℃に加熱される。洗浄したガラス基板1は、たとえば300℃~480℃に予熱される。ガラス基板1は、化学強化液中にたとえば3時間~4時間浸漬される。
(Chemical strengthening step S70)
After the cleaning step S65, the glass substrate 1 is chemically strengthened. As the chemical strengthening liquid, for example, a mixed liquid of potassium nitrate (50 wt%) and sodium sulfate (50 wt%) can be used. The chemical strengthening liquid is heated to, for example, 300 ° C. to 480 ° C. The cleaned glass substrate 1 is preheated to 300 ° C. to 480 ° C., for example. The glass substrate 1 is immersed in the chemical strengthening solution for 3 hours to 4 hours, for example.
 浸漬の際には、ガラス基板1の主表面2,3の全体が化学強化されるように、複数のガラス基板1が各々の端面で保持されるように、ホルダーに収納した状態で行なうことが好ましい。ガラス基板1を化学強化液中に浸漬することによって、ガラス基板1の表層のアルカリ金属イオン(リチウムイオンおよびナトリウムイオン)が、化学強化液中のイオン半径が相対的に大きい化学強化塩(ナトリウムイオンおよびカリウムイオン)に置換される。これにより、ガラス基板1の表層にはたとえば50μm~200μmの厚さを有する圧縮応力層が形成される。 When dipping, the plurality of glass substrates 1 can be held in their respective holders so that the entire main surfaces 2 and 3 of the glass substrate 1 are chemically strengthened. preferable. By immersing the glass substrate 1 in the chemical strengthening solution, alkali metal ions (lithium ions and sodium ions) on the surface layer of the glass substrate 1 are chemically strengthened salts (sodium ions) having a relatively large ion radius in the chemical strengthening solution. And potassium ions). As a result, a compressive stress layer having a thickness of, for example, 50 μm to 200 μm is formed on the surface layer of the glass substrate 1.
 圧縮応力層の形成によってガラス基板1の表面が強化され、ガラス基板1は、良好な耐衝撃性を有することとなる。化学強化処理されたガラス基板1は、適宜洗浄される。たとえば、ガラス基板1は、硫酸で洗浄された後に、純水またはIPA(イソプロピルアルコール)等を用いてさらに洗浄される。その後、化学強化層を除去してもよい。 The surface of the glass substrate 1 is strengthened by the formation of the compressive stress layer, and the glass substrate 1 has good impact resistance. The glass substrate 1 subjected to the chemical strengthening treatment is appropriately washed. For example, the glass substrate 1 is further cleaned using pure water or IPA (isopropyl alcohol) after being cleaned with sulfuric acid. Thereafter, the chemically strengthened layer may be removed.
 (精密研磨工程S80)
 化学強化工程S70の後、ガラス基板1に対して精密研磨処理が実施される。精密研磨工程S80は、ガラス基板1の主表面を鏡面状に仕上げることを目的としている。精密研磨工程S80では、上述の粗研磨工程S60と同様に、両面研磨機(図11参照)を用いてガラス基板1に対する精密研磨が行なわれる。
(Precision polishing step S80)
After the chemical strengthening step S70, a precision polishing process is performed on the glass substrate 1. The precision polishing step S80 is intended to finish the main surface of the glass substrate 1 in a mirror shape. In the precision polishing step S80, similarly to the rough polishing step S60 described above, the glass substrate 1 is precisely polished using a double-side polishing machine (see FIG. 11).
 精密研磨工程S80と上記の粗研磨工程S60とでは、使用される研磨液(スラリー)に含有される研磨砥粒、および、使用される研磨パッドの組成が異なる。精密研磨工程S80では、粗研磨工程S60よりも、圧縮応力層が形成されたガラス基板1の主表面2,3に供給される研磨液中の研磨砥粒の粒径を小さくし、研磨パッドの硬さを柔らかくする。 In the fine polishing step S80 and the rough polishing step S60, the composition of the polishing abrasive grains contained in the polishing liquid (slurry) used and the polishing pad used are different. In the precision polishing step S80, the grain size of the abrasive grains in the polishing liquid supplied to the main surfaces 2 and 3 of the glass substrate 1 on which the compressive stress layer is formed is made smaller than in the rough polishing step S60. Soften the hardness.
 精密研磨工程S80に用いられる研磨パッドとしては、たとえば軟質発泡樹脂ポリッシャーである。精密研磨工程S80においては、遊離砥粒が用いられ、Ceを主成分とする砥粒で第1研磨工程と、Siを主成分とする砥粒で研磨する第2研磨工程とを含む。 The polishing pad used in the precision polishing step S80 is, for example, a soft foam resin polisher. The precision polishing step S80 uses loose abrasive grains, and includes a first polishing step with abrasive grains mainly composed of Ce and a second polishing step of polishing with abrasive grains mainly composed of Si.
 (スクラブ洗浄工程S90)
 精密研磨工程S80の後、ガラス基板1に対してスクラブ洗浄処理が実施される。具体的には、精密研磨工程S80において使用した研磨パッドから精密研磨後のガラス基板1を取り外した後、ガラス基板1の表面に洗浄液を供給しつつ、圧縮応力層が形成されたガラス基板1の表面に対してスクラブ洗浄装置を用いてスクラブ洗浄を行なう。
(Scrub cleaning step S90)
After the precision polishing step S80, a scrub cleaning process is performed on the glass substrate 1. Specifically, the glass substrate 1 after the precision polishing is removed from the polishing pad used in the precision polishing step S80, and then the cleaning liquid is supplied to the surface of the glass substrate 1 while the compression stress layer is formed. Scrub cleaning is performed on the surface using a scrub cleaning device.
 ガラス基板1は、両面研磨機の研磨パッドから取り外された後、一時的に水中保管されてもよい。水中保管により、精密研磨後にガラス基板1の表面が乾燥することを防ぎつつ、精密研磨後のガラス基板1に付着している研磨滓または遊離砥粒等の異物の量を低減することができる。所定の時間だけガラス基板1を水中保管した後、ガラス基板1をスクラブ洗浄装置にセットし、ガラス基板1に対するスクラブ洗浄を行なう。 The glass substrate 1 may be temporarily stored in water after being removed from the polishing pad of the double-side polishing machine. By storing in water, it is possible to reduce the amount of foreign matter such as polishing wrinkles or loose abrasive grains adhering to the glass substrate 1 after precision polishing while preventing the surface of the glass substrate 1 from drying after precision polishing. After the glass substrate 1 is stored in water for a predetermined time, the glass substrate 1 is set in a scrub cleaning device and scrub cleaning is performed on the glass substrate 1.
 スクラブ洗浄としては、たとえば、洗剤または純水等の洗浄液が用いられる。スクラブ洗浄に用いられる洗浄液のpHは、9.0以上12.2以下であるとよい。この範囲内であれば、ζ電位を容易に調整でき、効率的にスクラブ洗浄を行なうことが可能となる。スクラブ洗浄としては、洗剤によるスクラブ洗浄と、純水によるスクラブ洗浄との双方を行なってもよい。洗剤および純水を用いることによって、より適切にガラス基板1を洗浄できる。洗剤によるスクラブ洗浄と純水によるスクラブ洗浄との間に、ガラス基板1を純水でさらにリンス処理してもよい。 As the scrub cleaning, for example, a cleaning liquid such as a detergent or pure water is used. The pH of the cleaning solution used for scrub cleaning is preferably 9.0 or more and 12.2 or less. Within this range, the ζ potential can be easily adjusted and scrub cleaning can be performed efficiently. As scrub cleaning, both scrub cleaning with a detergent and scrub cleaning with pure water may be performed. By using a detergent and pure water, the glass substrate 1 can be more appropriately cleaned. The glass substrate 1 may be further rinsed with pure water between scrub cleaning with a detergent and scrub cleaning with pure water.
 スクラブ洗浄を行なった後に、ガラス基板1に対して超音波洗浄をさらに行なってもよい。洗剤および純水によるスクラブ洗浄を行なった後に、硫酸水溶液等の薬液による超音波洗浄、純水による超音波洗浄、洗剤による超音波洗浄、IPAによる超音波洗浄、およびまたは、IPAによる蒸気乾燥等を更に行なってもよい。 After the scrub cleaning, the glass substrate 1 may be further subjected to ultrasonic cleaning. After scrub cleaning with detergent and pure water, ultrasonic cleaning with chemical solution such as sulfuric acid aqueous solution, ultrasonic cleaning with pure water, ultrasonic cleaning with detergent, ultrasonic cleaning with IPA, and / or steam drying with IPA, etc. Further, it may be performed.
 本実施の形態におけるガラス基板1の製造方法S100としては、以上のように構成される。ガラス基板1の製造方法S100を使用することによって、図2および図3に示す本実施の形態のガラス基板1を得ることができる。 The manufacturing method S100 of the glass substrate 1 in the present embodiment is configured as described above. By using manufacturing method S100 of glass substrate 1, glass substrate 1 of this embodiment shown in Drawing 2 and Drawing 3 can be obtained.
 (磁気薄膜形成工程S200)
 スクラブ洗浄処理が完了したガラス基板1の主表面2,3(またはいずれか一方の主表面2,3)に対し、磁気記録層が形成される。磁気記録層は、たとえば、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系からなる保護層、およびF系からなる潤滑層が順次成膜されることによって形成される。磁気記録層の形成によって、図4および図5に示す情報記録媒体10を得ることができる。
(Magnetic thin film forming step S200)
A magnetic recording layer is formed on the main surfaces 2 and 3 (or one of the main surfaces 2 and 3) of the glass substrate 1 after the scrub cleaning process is completed. The magnetic recording layer includes, for example, an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and an F system. Are formed by sequentially forming the lubricating layer. By forming the magnetic recording layer, the information recording medium 10 shown in FIGS. 4 and 5 can be obtained.
 以下、本発明に係る実施の形態に用いられる情報記録媒体用のガラス基板1について、さらに詳細に説明する。 Hereinafter, the glass substrate 1 for an information recording medium used in the embodiment according to the present invention will be described in more detail.
 <ガラス基板1>
 本実施の形態におけるガラス基板1は、mol%表示で、
SiO:56~71%、
Al:5~15%、
:0~3%、
LiO:0.1~6%、
NaO:0.1~4%、
O:0~2%、
MgO:3~13%、
CaO:4~21%、
SrO:0~3%、
BaO:0~3%、
ZnO:0~3%、
ZrO:0~3%、
CeO:0~2%、
SnO:0~2%、
TiO:0~5%、および、
Nb:0~3%、
となる含有範囲を有し、かつ
SiO+Al+B:64~80%、
LiO+NaO+KO:0.2~6%、
MgO+CaO+SrO+BaO+ZnO:14~28%、
(Nb+TiO)/SiO=0.01~0.06、および、
LiO/(LiO+NaO+KO)=0.30~0.99、というガラス組成比率を満足する。
<Glass substrate 1>
The glass substrate 1 in the present embodiment is displayed in mol%,
SiO 2 : 56 to 71%,
Al 2 O 3 : 5 to 15%,
B 2 O 3 : 0 to 3%
Li 2 O: 0.1 to 6%,
Na 2 O: 0.1 to 4%,
K 2 O: 0-2%,
MgO: 3 to 13%,
CaO: 4-21%,
SrO: 0 to 3%,
BaO: 0 to 3%,
ZnO: 0 to 3%,
ZrO 2 : 0 to 3%,
CeO 2 : 0-2%,
SnO 2 : 0-2%,
TiO 2 : 0-5%, and
Nb 2 O 5 : 0 to 3%,
And a content range of SiO 2 + Al 2 O 3 + B 2 O 3 : 64 to 80%,
Li 2 O + Na 2 O + K 2 O: 0.2-6%
MgO + CaO + SrO + BaO + ZnO: 14 to 28%,
(Nb 2 O 5 + TiO 2 ) / SiO 2 = 0.01 to 0.06, and
The glass composition ratio of Li 2 O / (Li 2 O + Na 2 O + K 2 O) = 0.30 to 0.99 is satisfied.
 本実施の形態においては、ガラス組成を示す「%」表示は特に断らない限り「mol%」を示すものとする。「SiO+Al+B」等のような化学式の加算表記は、そのような化学式で示される成分の合計量を示すものとする。たとえば、「SiO+Al+B」とはSiOとAlとBとの合計量を示す。 In the present embodiment, “%” indicating a glass composition indicates “mol%” unless otherwise specified. An addition notation of a chemical formula such as “SiO 2 + Al 2 O 3 + B 2 O 3 ” indicates the total amount of components represented by such chemical formula. For example, “SiO 2 + Al 2 O 3 + B 2 O 3 ” indicates the total amount of SiO 2 , Al 2 O 3 and B 2 O 3 .
 当該ガラス組成は、不可避不純物を除き上記に示された成分のみで構成されることが好ましい。 The glass composition is preferably composed of only the components shown above except for inevitable impurities.
 上記ガラス基板1を用いることで、磁気記録媒体の成膜および高温アニール時に、ガラス基板1の変形を抑制するとともに、ガラス基板1からのLiの拡散を抑制することを可能とする。 By using the glass substrate 1, the deformation of the glass substrate 1 and the diffusion of Li from the glass substrate 1 can be suppressed during the formation of the magnetic recording medium and the high-temperature annealing.
 上記のような特性を示す本実施の形態の情報記録媒体用ガラス基板は、特に熱アシスト記録用のガラス基板として好適である。熱アシスト記録は、磁気記録媒体を局所的に加熱しながら情報記録を行なうものであるが、特に高密度記録を実現するために上記のようなFe-Pt系磁性材料の使用が要求されることから、ガラス基板に対しても特に高い耐熱性が要求されるためである。 The glass substrate for information recording medium of the present embodiment showing the above characteristics is particularly suitable as a glass substrate for heat-assisted recording. Thermally assisted recording performs information recording while locally heating a magnetic recording medium. In particular, the use of the above-described Fe—Pt magnetic material is required to realize high-density recording. This is because the glass substrate is required to have particularly high heat resistance.
 <ガラス組成>
 本発明のガラス組成を構成する各構成成分について以下説明する。
<Glass composition>
Each component which comprises the glass composition of this invention is demonstrated below.
 SiOは、ガラスの網目構造を形成する重要な成分である。本発明のガラス組成では、このようなSiOを56~71%(本実施の形態におけるこのような数値範囲の表記は下限値および上限値がその範囲に含まれることを意味する。よって「56~71%」とは「56%以上71%以下」を示す)の範囲で含有する。 SiO 2 is an important component for forming a glass network structure. In the glass composition of the present invention, such SiO 2 is 56 to 71% (the expression of such a numerical range in this embodiment means that the lower limit value and the upper limit value are included in the range. Therefore, “56 “˜71%” means “56% or more and 71% or less”).
 SiOの含有量が56%未満では、ガラス形成が困難となり、化学的耐久性が悪化する恐れがある。逆に71%を超えると溶融性が悪化してしまう。そのためSiOの含有範囲は56~71%の範囲とすることが必要である。その中でも好ましくは58~69%の範囲である。 If the content of SiO 2 is less than 56%, glass formation becomes difficult, and chemical durability may be deteriorated. On the other hand, if it exceeds 71%, the meltability deteriorates. Therefore, the content range of SiO 2 needs to be in the range of 56 to 71%. Among these, the range of 58 to 69% is preferable.
 Alは、SiOと共に網目構造を形成する重要な成分であり、耐熱性を向上させるだけではなく、イオン交換性能を向上させる働きを有している。Alの含有量が5%より少ないと、化学的耐久性、イオン交換性能が低下する恐れがある。逆に15%を超えると、イオン交換性能が低下し、更に溶融性が悪化してしてしまう。このためAlの含有範囲は5~15%の範囲とすることが必要である。その中でも好ましくは7~13%の範囲である。 Al 2 O 3 is an important component that forms a network structure together with SiO 2 , and has a function of improving not only heat resistance but also ion exchange performance. When the content of Al 2 O 3 is less than 5%, chemical durability and ion exchange performance may be deteriorated. Conversely, if it exceeds 15%, the ion exchange performance is lowered, and the meltability is further deteriorated. For this reason, the content range of Al 2 O 3 needs to be 5 to 15%. Among them, the range of 7 to 13% is preferable.
 Bは、SiOと共に網目構造を形成する成分であり、溶融温度を低下させる働きを有しているので必要に応じて含有させる。3%を超えると、耐熱性の指標となるTg(ガラス転移点)が低下してしまう。このためBの含有量は0~3%の範囲とすることが必要である。その中でも好ましくは0~2%の範囲である。 B 2 O 3 is a component that forms a network structure with SiO 2 , and has a function of lowering the melting temperature, so is contained as necessary. If it exceeds 3%, Tg (glass transition point), which is an index of heat resistance, is lowered. Therefore, the content of B 2 O 3 needs to be in the range of 0 to 3%. Among these, the range is preferably 0 to 2%.
 SiO+Al+Bは、総量で64~80%とした。これらはガラスの網目構造を形成する重要な成分であり、65%より少ないとガラス形成が困難となる。逆に80%を超えると粘度が高くすぎて溶融性が悪化してしまう。その中でも好ましくは66~78%の範囲である。 The total amount of SiO 2 + Al 2 O 3 + B 2 O 3 was 64 to 80%. These are important components for forming a glass network structure, and if it is less than 65%, glass formation becomes difficult. On the other hand, if it exceeds 80%, the viscosity is too high and the meltability deteriorates. Among these, the range is preferably 66 to 78%.
 LiOは、化学的耐久性を向上させ、更に溶融性を向上させるのに必要な成分である。LiOの含有量が0.1%より少ないと、Li溶出の抑制効果と溶融性を向上させる効果が十分に得られない。逆に6%を超えると、Tgが低下し、Li溶出が悪化してしまう。そのため、LiOの含有量は0.1~6%の範囲とすることが必要である。その中でも好ましくは0.2~5%の範囲である。 Li 2 O is a component necessary for improving chemical durability and further improving meltability. When the content of Li 2 O is less than 0.1%, the effect of suppressing the dissolution of Li and the effect of improving the meltability cannot be obtained sufficiently. Conversely, when it exceeds 6%, Tg will fall and Li elution will deteriorate. Therefore, the Li 2 O content needs to be in the range of 0.1 to 6%. Among these, the range is preferably 0.2 to 5%.
 NaOは、溶融性を向上させるために必要な成分である。NaOの含有量が0.1%より少ないと、粘度が高くなり液相温度が上昇して溶融性が悪化する。逆に4%を超えると、化学的耐久性が低下してしまう。そのためNaOの含有量は0.1~4%の範囲とすることが必要である。その中でも好ましくは0.2~3%の範囲である。 Na 2 O is a component necessary for improving the meltability. When the content of Na 2 O is less than 0.1%, the viscosity increases, the liquidus temperature rises, and the meltability deteriorates. Conversely, if it exceeds 4%, the chemical durability is lowered. Therefore, the content of Na 2 O needs to be in the range of 0.1 to 4%. Among these, the range is preferably 0.2 to 3%.
 KOは溶融性を改善する効果を持っているので、必要に応じて含有させて良い。KOの含有量が2%を超えるとTgが低下し、化学的耐久性も悪化してしまう。そのためKOの含有範囲は0~2%の範囲とした。その中でも好ましくは0~1%の範囲である。 Since K 2 O has the effect of improving the meltability, it may be contained as necessary. When the content of K 2 O exceeds 2%, Tg is lowered and chemical durability is also deteriorated. Therefore, the content range of K 2 O is set to 0 to 2%. Among these, the range is preferably 0 to 1%.
 LiO+NaO+KOは、総量を0.2~6%の範囲とした。この総量が0.2%より少ないと溶融性の十分な改善効果が得られない。逆に総量が6%を超えるとTgが低下し十分な耐熱性が得られず、化学的耐久性が悪化する。より好ましくは0.4~5.5%の範囲である。 The total amount of Li 2 O + Na 2 O + K 2 O was in the range of 0.2 to 6%. If the total amount is less than 0.2%, a sufficient improvement effect of meltability cannot be obtained. On the other hand, if the total amount exceeds 6%, Tg decreases, sufficient heat resistance cannot be obtained, and chemical durability deteriorates. More preferably, it is in the range of 0.4 to 5.5%.
 MgOは、耐熱性を向上すると共に溶融性を改善する効果を持っている。MgOの含有量が3%未満では、耐熱性を向上する効果と溶融性を改善する効果が得られず、逆に含有量が13%を超えるとガラス構造が不安定となり、耐失透性が悪化してしまい成形困難となる。そのためMgOの含有範囲は3~13%の範囲とした。その中でも好ましくは5~11%の範囲である。 MgO has the effect of improving heat resistance and improving meltability. If the content of MgO is less than 3%, the effect of improving the heat resistance and the effect of improving the meltability cannot be obtained. Conversely, if the content exceeds 13%, the glass structure becomes unstable and the devitrification resistance is reduced. It becomes worse and it becomes difficult to mold. Therefore, the MgO content range is set to 3 to 13%. Among these, the range of 5 to 11% is preferable.
 CaOは溶融性を改善する効果を持つと共に、Tgを維持する効果を持っている。CaOの含有量が4%未満では溶融性を改善する効果とTgを維持する効果が十分に得られず、逆に含有量が21%を超えるとガラス構造が不安定となり、化学的耐久性が悪化してしまう。そのためCaOの含有範囲は4~21%の範囲とした。その中でも好ましくは6~19%の範囲である。 CaO has the effect of improving the meltability and maintaining the Tg. If the content of CaO is less than 4%, the effect of improving the meltability and the effect of maintaining Tg cannot be obtained sufficiently. Conversely, if the content exceeds 21%, the glass structure becomes unstable and the chemical durability is improved. It will get worse. Therefore, the CaO content range is set to 4 to 21%. Among these, the range of 6 to 19% is preferable.
 SrOは溶融性を改善する効果を持つと共に、Tgを維持する効果を持っているので必要に応じて含有させる。SrOの含有量が3%を超えると耐失透性が悪化してしまい成形困難となる。そのためSrOの含有範囲は0~3%の範囲とした。その中でも好ましくは0~2%の範囲である。 SrO has the effect of improving meltability and also has the effect of maintaining Tg, so it is contained as necessary. When the content of SrO exceeds 3%, the devitrification resistance is deteriorated and molding becomes difficult. Therefore, the SrO content range is set to a range of 0 to 3%. Among these, the range is preferably 0 to 2%.
 BaOは溶融性を改善する効果を持つと共に、Tgを維持する効果を持っているので必要に応じて含有させる。BaOの含有量が3%を超えると耐失透性が悪化してしまい成形困難となる。そのためBaOの含有範囲は0~3%の範囲とした。その中でも好ましくは0~2%の範囲である。 BaO has the effect of improving the meltability and also has the effect of maintaining Tg, so it is contained as necessary. When the content of BaO exceeds 3%, devitrification resistance deteriorates and molding becomes difficult. Therefore, the content range of BaO is set to 0 to 3%. Among these, the range is preferably 0 to 2%.
 ZnOは化学的耐久性を向上させると共に溶融性を改善する効果を持つので必要に応じて含有させる。ZnOの含有量が3%を超えるとガラス構造が不安定となり、耐失透性が悪化してしまう。そのためZnOの含有範囲は0~3%の範囲とした。その中でも好ましくは0~2%の範囲である。 ZnO is added as necessary because it has the effect of improving chemical durability and improving melting properties. If the ZnO content exceeds 3%, the glass structure becomes unstable, and the devitrification resistance deteriorates. Therefore, the content range of ZnO is set to 0 to 3%. Among these, the range is preferably 0 to 2%.
 MgO+CaO+SrO+BaO+ZnOの総量は、14~28%の範囲とした。14%より少ないとヤング率の向上と溶融性向上の効果が十分に得られない。逆に総量が28%を超えると化学的耐久性が悪化する。より好ましくは16~26%の範囲である。 The total amount of MgO + CaO + SrO + BaO + ZnO was in the range of 14 to 28%. If it is less than 14%, the effects of improving Young's modulus and improving meltability cannot be obtained sufficiently. On the contrary, when the total amount exceeds 28%, the chemical durability deteriorates. More preferably, it is in the range of 16 to 26%.
 TiOは高温粘性を軟化させると共に化学的耐久性を向上する効果を持っている。TiOの含有量が5%を超えるとガラス構造が不安定となり、耐失透性が悪化してしまい成形困難となる。そのためTiOの含有範囲は0~5%の範囲とした。その中でも好ましくは0~4%の範囲である。 TiO 2 has the effect of softening high temperature viscosity and improving chemical durability. If the content of TiO 2 exceeds 5%, the glass structure becomes unstable, devitrification resistance deteriorates, and molding becomes difficult. Therefore, the content range of TiO 2 is set to a range of 0 to 5%. Among these, the range of 0 to 4% is preferable.
 Nbは、溶融性を向上させると共に、化学的耐久性を向上する効果を持っている。Nbの含有量が3%を超えると、液相温度が上昇し耐失透性が悪化してしまう。そのためNbの含有範囲は0~3%の範囲とした。その中でも好ましくは0~2%の範囲である。 Nb 2 O 5 has the effect of improving the chemical durability while improving the meltability. When the content of Nb 2 O 5 exceeds 3%, the liquidus temperature rises and the devitrification resistance deteriorates. Therefore, the content range of Nb 2 O 5 is set to 0 to 3%. Among these, the range is preferably 0 to 2%.
 ZrOはガラスの耐熱性を向上する効果があるので、必要に応じて含有させても良い。ただし、含有量が3%を超えると耐失透性が悪化してしまい、ガラス化が困難となる。そのため含有範囲は0~3%の範囲とした。その中でも好ましくは0~2%の範囲である。 Since ZrO 2 has an effect of improving the heat resistance of the glass, it may be contained as necessary. However, if the content exceeds 3%, the devitrification resistance deteriorates, and vitrification becomes difficult. Therefore, the content range was set to 0 to 3%. Among these, the range is preferably 0 to 2%.
 CeOおよびSnOは清澄剤としての役割を果たすので、必要に応じて含有させて良い。それぞれ含有量が2%を超えると耐失透性が悪化してしまい、ガラス化が困難となる。そのため含有範囲は0~2%の範囲とした。その中でも好ましくは0~1%の範囲である。これら2つ以外でも、Sb等の清澄剤としての役割を果たす原料に制限は無く、0~2%の範囲で含有させても良い。 CeO 2 and SnO 2 play a role as a clarifying agent, and may be contained as necessary. When each content exceeds 2%, devitrification resistance deteriorates and vitrification becomes difficult. Therefore, the content range was set to 0 to 2%. Among these, the range is preferably 0 to 1%. In addition to these two, there is no limitation on the raw material that plays a role as a fining agent such as Sb 2 O 3, and it may be contained in the range of 0 to 2%.
 (Nb+TiO)/SiOは、0.01~0.06の範囲とすることが望ましい。比率が0.01未満では化学的耐久性が悪化してしまい、比率が0.06を超えると、逆に化学的耐久性が悪化してしまう。(Nb+TiO)/SiOを所定の比率で含有させることでガラスの網目構造の一部に入り骨格としての耐久性が大きく向上し、ガラスのLiイオンの拡散速度も抑制することで、磁気薄膜への拡散を抑制する。望ましい範囲は、0.012~0.05の範囲である。NbとTiOは、どちらか一方を必須で含有しない限り、これらの効果は得られない。 (Nb 2 O 5 + TiO 2 ) / SiO 2 is preferably in the range of 0.01 to 0.06. If the ratio is less than 0.01, the chemical durability is deteriorated. If the ratio exceeds 0.06, the chemical durability is adversely affected. By containing (Nb 2 O 5 + TiO 2 ) / SiO 2 at a predetermined ratio, the durability as a skeleton is greatly improved by entering a part of the network structure of the glass, and the diffusion rate of Li ions in the glass is also suppressed. Therefore, the diffusion to the magnetic thin film is suppressed. A desirable range is from 0.012 to 0.05. Nb 2 O 5 and TiO 2 do not have these effects unless one of them is essential.
 LiO/(LiO+NaO+KO)は、0.30~0.99の範囲とすることが望ましい。0.03未満ではLi溶出量が悪化してしまうので、所定の量以上のLiO含有を必須とする。逆に、1.00でLiOのみ含有した場合は、Na、Kの溶出が悪化してしまう。LiO/(LiO+NaO+KO)を所定の比率で含有することで、Nb、TIOとの相乗効果を示してLi拡散速度が抑制される。望ましい範囲は、0.50~0.95の範囲である。 Li 2 O / (Li 2 O + Na 2 O + K 2 O) is preferably in the range of 0.30 to 0.99. If the amount is less than 0.03, the Li elution amount is deteriorated. Therefore, it is essential to contain Li 2 O in a predetermined amount or more. On the other hand, when only Li 2 O is contained at 1.00, elution of Na and K deteriorates. By containing Li 2 O / (Li 2 O + Na 2 O + K 2 O) at a predetermined ratio, a synergistic effect with Nb 2 O 5 and TIO 2 is shown, and the Li diffusion rate is suppressed. A desirable range is from 0.50 to 0.95.
 (実施例1~15、および、比較例1~7)
 図7から図9に、各実施例および各比較例におけるガラス組成を示す。実施例1~15に記載のガラス組成となるように、所定量の原料粉末を白金るつぼに秤量して入れ、混合する。その後、電気炉中で1500℃で溶解した。原料が充分に溶解したのち、白金製の撹拌羽をガラス融液に挿入し、1時間撹拌した。
(Examples 1 to 15 and Comparative Examples 1 to 7)
FIG. 7 to FIG. 9 show the glass compositions in each example and each comparative example. A predetermined amount of raw material powder is weighed into a platinum crucible and mixed so as to have the glass composition described in Examples 1 to 15. Then, it melt | dissolved at 1500 degreeC in the electric furnace. After the raw materials were sufficiently dissolved, a platinum stirring blade was inserted into the glass melt and stirred for 1 hour.
 その後、撹拌羽を取り出し、3時間静置した後、金型に融液を流しこむことによってガラスブロックを得た。その後、各ガラスのガラス転移点付近でガラスブロックを2時間保持した後、徐冷して歪取りを行なった。 Thereafter, the stirring blade was taken out and allowed to stand for 3 hours, and then the melt was poured into a mold to obtain a glass block. Thereafter, the glass block was held in the vicinity of the glass transition point of each glass for 2 hours, and then slowly cooled to remove strain.
 得られたガラスブロックを、厚み約1.0mmの2.5インチの円盤形状にスライスし、内周、外周を同心円としてカッターを用いて切り出し、円盤形状のガラス基板とした。ガラス基板の両面に対して粗研磨および研磨を行なった。 The obtained glass block was sliced into a 2.5-inch disk shape having a thickness of about 1.0 mm, and the inner and outer circumferences were concentrically cut out using a cutter to obtain a disk-shaped glass substrate. Rough polishing and polishing were performed on both surfaces of the glass substrate.
 その後、ガラス基板の洗浄を行なうことにより各実施例および各比較例に示す、厚みが0.8mmである情報記録媒体用ガラス基板を作製した。この作製した情報記録媒体用ガラス基板について下記物性評価を行なった。 Thereafter, the glass substrate was washed to produce a glass substrate for an information recording medium having a thickness of 0.8 mm shown in each example and each comparative example. The following physical property evaluation was performed on the produced glass substrate for an information recording medium.
 ガラスの材料物性測定(ガラス転移点Tg、Si溶出量、高温粘性)は、それぞれ下記の方法で測定を実施した。 Glass material physical properties (glass transition point Tg, Si elution amount, high temperature viscosity) were measured by the following methods, respectively.
 <ガラス転移点(Tg)>
 示差熱測定装置(商品名:EXSTAR6000、セイコーインスツルメンツ社製)を用いて、室温~900℃の温度範囲を10℃/minの昇温速度で、粉末状に調整したガラス試料を加熱し測定することにより、ガラス転移点を測定した。
<Glass transition point (Tg)>
Using a differential heat measuring device (trade name: EXSTAR6000, manufactured by Seiko Instruments Inc.), heating and measuring a glass sample adjusted to a powder form in a temperature range of room temperature to 900 ° C. at a rate of temperature increase of 10 ° C./min. Was used to measure the glass transition point.
 <Li溶出量>
 ガラス基板の表面を酸化セリウムで研磨して、Ra値が2nm以下の平滑面とした。その後、ガラス基板の表面を洗浄し、80℃のRO水50ml中に24時間浸漬した。その後、ICP発光分光分析装置で溶出液を分析し算出した。
<Li elution amount>
The surface of the glass substrate was polished with cerium oxide to obtain a smooth surface with an Ra value of 2 nm or less. Thereafter, the surface of the glass substrate was washed and immersed in 50 ml of RO water at 80 ° C. for 24 hours. Thereafter, the eluate was analyzed and calculated using an ICP emission spectroscopic analyzer.
 <耐熱テスト>
 ガラス基板にFe-Pt合金を成膜し、その後600℃×1時間で熱処理した後の平坦度で判断した。平坦度は、白色光干渉式表面形状測定機(Optiflat(Phase Shift Technology社製))を用いて測定した。各実施例のガラス基板は、熱処理前の平坦度は、2.0Å~2.3Å程度であった。
<Heat resistance test>
An Fe—Pt alloy film was formed on a glass substrate, and then judged by the flatness after heat treatment at 600 ° C. × 1 hour. The flatness was measured using a white light interference type surface shape measuring instrument (Optiflat (manufactured by Phase Shift Technology)). The glass substrate of each example had a flatness before heat treatment of about 2.0 to 2.3 mm.
 <ハードディスクドライブ(HDD)テスト>
 ガラス基板にFe-Pt合金を成膜し、その後600℃×1時間で熱処理した後に、15000rpmで動作させた際の読み取りエラー回数で評価した。評価は各実施例、各比較例で100枚ずつ行ない、そのハードディスクドライブ(HDD)テストのエラー回数の総数を、図7~図9に示した。図7~図9に示すmol%の値は、小数第2位を四捨五入して小数点以下1桁までを有効数字として用いる。
<Hard disk drive (HDD) test>
An Fe—Pt alloy film was formed on a glass substrate, then heat-treated at 600 ° C. for 1 hour, and then evaluated by the number of reading errors when operating at 15000 rpm. The evaluation was performed 100 sheets in each example and each comparative example, and the total number of errors in the hard disk drive (HDD) test is shown in FIGS. The mol% values shown in FIGS. 7 to 9 are rounded off to the first decimal place and used to the first decimal place as significant figures.
 図7~図9に示す、ハードディスクドライブ(HDD)テストのエラー回数に関して、エラー回数が0回~2回を評価「A」、エラー回数が3回~5回を評価「B」、エラー回数が6回以上を評価「C」とした。 Regarding the number of errors in the hard disk drive (HDD) test shown in FIGS. 7 to 9, the number of errors is evaluated as 0 to 2 times “A”, the number of errors is evaluated as 3 to 5 times “B”, and the number of errors is The evaluation “C” was 6 times or more.
 図7~図9より明らかなように、各実施例のハードディスクドライブ(HDD)用のガラス基板は、各比較例のHDD用ガラス基板に比べ、磁気記録媒体の成膜および高温アニール時にガラス基板の変形が発生していない。さらに、各ガラス成分を所定の割合で含有させて、かつ、(Nb+TiO)/SiO、および、LiO/(LiO+NaO+KO)の両方を所定の範囲とすることで、Liイオンを含有し、かつ、Liの拡散を抑制して良好なSNR特性を得ることを可能とし、その結果、ハードディスクドライブ(HDD)テストで優れた評価が得られた。 As is apparent from FIGS. 7 to 9, the glass substrate for hard disk drive (HDD) in each example is different from the glass substrate for HDD in each comparative example in the formation of the magnetic recording medium and the glass substrate during high-temperature annealing. No deformation has occurred. Furthermore, each glass component is contained in a predetermined ratio, and both (Nb 2 O 5 + TiO 2 ) / SiO 2 and Li 2 O / (Li 2 O + Na 2 O + K 2 O) are within a predetermined range. As a result, it was possible to obtain a good SNR characteristic by containing Li ions and suppressing the diffusion of Li, and as a result, excellent evaluation was obtained in a hard disk drive (HDD) test.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ガラス基板、2,3 主表面、4 内周端面、5,15 孔、6 外周端面、10 情報記録媒体、12 圧縮応力層、14 磁気記録層、20 筐体、21 ヘッドスライダー、22 サスペンション、23 アーム、24 垂直軸、25 ボイスコイル、26 ボイスコイルモーター、27 クランプ部材、28 固定ネジ、30 情報記録装置。 DESCRIPTION OF SYMBOLS 1 Glass substrate, 2, 3 Main surface, 4 Inner peripheral end surface, 5,15 hole, 6, Outer peripheral end surface, 10 Information recording medium, 12 Compression stress layer, 14 Magnetic recording layer, 20 Housing, 21 Head slider, 22 Suspension, 23 arm, 24 vertical axis, 25 voice coil, 26 voice coil motor, 27 clamp member, 28 fixing screw, 30 information recording device.

Claims (4)

  1.  mol%表示で、
    SiO:56~71%、
    Al:5~15%、
    :0~3%、
    LiO:0.1~6%、
    NaO:0.1~4%、
    O:0~2%、
    MgO:3~13%、
    CaO:4~21%、
    SrO:0~3%、
    BaO:0~3%、
    ZnO:0~3%、
    ZrO:0~3%、
    CeO:0~2%、
    SnO:0~2%、
    TiO:0~5%、および、
    Nb:0~3%、
    となる含有範囲を有し、かつ、
    SiO+Al+B:64~80%、
    LiO+NaO+KO:0.2~6%、
    MgO+CaO+SrO+BaO+ZnO:14~28%、
    (Nb+TiO)/SiO=0.01~0.06、および、
    LiO/(LiO+NaO+KO)=0.30~0.99、
    というガラス組成比率を満足する、情報記録媒体用ガラス基板。
    In mol% display
    SiO 2 : 56 to 71%,
    Al 2 O 3 : 5 to 15%,
    B 2 O 3 : 0 to 3%
    Li 2 O: 0.1 to 6%,
    Na 2 O: 0.1 to 4%,
    K 2 O: 0-2%,
    MgO: 3 to 13%,
    CaO: 4-21%,
    SrO: 0 to 3%,
    BaO: 0 to 3%,
    ZnO: 0 to 3%,
    ZrO 2 : 0 to 3%,
    CeO 2 : 0-2%,
    SnO 2 : 0-2%,
    TiO 2 : 0-5%, and
    Nb 2 O 5 : 0 to 3%,
    And a content range of
    SiO 2 + Al 2 O 3 + B 2 O 3 : 64 to 80%,
    Li 2 O + Na 2 O + K 2 O: 0.2-6%
    MgO + CaO + SrO + BaO + ZnO: 14 to 28%,
    (Nb 2 O 5 + TiO 2 ) / SiO 2 = 0.01 to 0.06, and
    Li 2 O / (Li 2 O + Na 2 O + K 2 O) = 0.30 to 0.99,
    A glass substrate for an information recording medium that satisfies the glass composition ratio.
  2.  mol%表示で、
    SiO:58~69%、
    Al:7~13%、
    :0~2%、
    LiO:0.2~5%、
    NaO:0.2~3%、
    O:0~1%、
    MgO:5~11%、
    CaO:6~19%、
    SrO:0~2%、
    BaO:0~2%、
    ZnO:0~2%、
    ZrO:0~2%、
    CeO:0~1%、
    SnO:0~1%、
    TiO:0~4%、
    Nb:0~2%、
    となる含有範囲を有し、かつ、
    SiO+Al+B:66~78%、
    LiO+NaO+K2O:0.4~5.5%、
    MgO+CaO+SrO+BaO+ZnO:16~26%、
    (Nb+TiO)/SiO=0.012~0.05、および、
    LiO/(LiO+NaO+KO)=0.50~0.95、というガラス組成比率を満足する、請求項1に記載の情報記録媒体用ガラス基板。
    In mol% display
    SiO 2 : 58 to 69%,
    Al 2 O 3 : 7 to 13%,
    B 2 O 3 : 0 to 2%
    Li 2 O: 0.2 to 5%,
    Na 2 O: 0.2-3%,
    K 2 O: 0 to 1%,
    MgO: 5 to 11%,
    CaO: 6-19%,
    SrO: 0-2%,
    BaO: 0-2%,
    ZnO: 0-2%,
    ZrO 2 : 0 to 2%,
    CeO 2 : 0 to 1%,
    SnO 2 : 0 to 1%
    TiO 2 : 0 to 4%,
    Nb 2 O 5 : 0 to 2%,
    And a content range of
    SiO 2 + Al 2 O 3 + B 2 O 3 : 66 to 78%,
    Li 2 O + Na 2 O + K 2 O: 0.4 to 5.5%,
    MgO + CaO + SrO + BaO + ZnO: 16 to 26%,
    (Nb 2 O 5 + TiO 2 ) / SiO 2 = 0.012 to 0.05, and
    2. The glass substrate for an information recording medium according to claim 1, wherein a glass composition ratio of Li 2 O / (Li 2 O + Na 2 O + K 2 O) = 0.50 to 0.95 is satisfied.
  3.  当該情報記録媒体用ガラス基板は、熱アシスト記録用のガラス基板である、請求項1または2に記載の情報記録媒体用ガラス基板。 The glass substrate for information recording medium according to claim 1 or 2, wherein the glass substrate for information recording medium is a glass substrate for heat-assisted recording.
  4.  請求項1~3のいずれか1項に記載の情報記録媒体用ガラス基板上に磁気記録層を有する情報記録媒体。 An information recording medium having a magnetic recording layer on the glass substrate for information recording medium according to any one of claims 1 to 3.
PCT/JP2014/055396 2013-03-05 2014-03-04 Glass substrate for information recording media, and information recording medium WO2014136751A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015504317A JP6029740B2 (en) 2013-03-05 2014-03-04 Glass substrate for information recording medium and information recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013042913 2013-03-05
JP2013-042913 2013-03-05

Publications (1)

Publication Number Publication Date
WO2014136751A1 true WO2014136751A1 (en) 2014-09-12

Family

ID=51491267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055396 WO2014136751A1 (en) 2013-03-05 2014-03-04 Glass substrate for information recording media, and information recording medium

Country Status (2)

Country Link
JP (1) JP6029740B2 (en)
WO (1) WO2014136751A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019055911A (en) * 2014-10-08 2019-04-11 コーニング インコーポレイテッド Glass and glass ceramic having metal oxide density gradient
WO2023235211A1 (en) * 2022-05-31 2023-12-07 Corning Incorporated Ion exchangeable yellow glass articles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357318A (en) * 1999-04-13 2000-12-26 Asahi Glass Co Ltd Glass for substrate of information recording medium and glass substrate for information recording medium
JP2001172043A (en) * 1999-12-20 2001-06-26 Asahi Glass Co Ltd Glass used for substrate of data recording medium, and glass substrate of data recording medium
WO2012057338A1 (en) * 2010-10-29 2012-05-03 Hoya株式会社 Glass substrate for use in magnetic storage medium, magnetic storage medium, and glass substrate blank for use in magnetic storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357318A (en) * 1999-04-13 2000-12-26 Asahi Glass Co Ltd Glass for substrate of information recording medium and glass substrate for information recording medium
JP2001172043A (en) * 1999-12-20 2001-06-26 Asahi Glass Co Ltd Glass used for substrate of data recording medium, and glass substrate of data recording medium
WO2012057338A1 (en) * 2010-10-29 2012-05-03 Hoya株式会社 Glass substrate for use in magnetic storage medium, magnetic storage medium, and glass substrate blank for use in magnetic storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019055911A (en) * 2014-10-08 2019-04-11 コーニング インコーポレイテッド Glass and glass ceramic having metal oxide density gradient
WO2023235211A1 (en) * 2022-05-31 2023-12-07 Corning Incorporated Ion exchangeable yellow glass articles

Also Published As

Publication number Publication date
JPWO2014136751A1 (en) 2017-02-09
JP6029740B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6220411B2 (en) Glass for use in information recording medium substrate, information recording medium substrate, information recording medium, and methods for producing the same
JP5393974B2 (en) Manufacturing method of glass substrate for magnetic disk and magnetic disk
TWI447086B (en) Magnetic recording medium substrate glass, magnetic recording medium substrate, magnetic recording medium, and the like
JPWO2014097623A1 (en) Glass substrate for HDD and information recording medium
WO2011096310A1 (en) Glass substrate for information recording medium, method for producing glass substrate for information recording medium, and information recording medium
JP7165655B2 (en) Glass for information recording medium substrate, information recording medium substrate, information recording medium and glass spacer for recording/reproducing device
JP6029740B2 (en) Glass substrate for information recording medium and information recording medium
JP5978394B2 (en) Manufacturing method of plate glass, manufacturing method of glass substrate for information recording medium, and manufacturing method of information recording medium
JP5778165B2 (en) Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium
JP2015060614A (en) Method for manufacturing glass substrate for information recording medium
JP4911882B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE
JP7113157B1 (en) Magnetic disk and substrate for magnetic disk
WO2014103982A1 (en) Method for manufacturing glass substrate for information recording medium
JP3172107B2 (en) Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium
WO2013145461A1 (en) Method for producing hdd glass substrate
JPWO2013094451A1 (en) Glass substrate
JP6196976B2 (en) Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, and glass substrate for information recording medium
WO2015041011A1 (en) Method for manufacturing glass substrate for information recording medium
JP5375698B2 (en) Manufacturing method of glass substrate
JPWO2013099584A1 (en) Manufacturing method of glass substrate for information recording medium
WO2013047287A1 (en) Production method for glass substrate for information recording medium
WO2013047288A1 (en) Production method for glass substrate for information recording medium
WO2013047286A1 (en) Production method for glass substrate for information recording medium
WO2013145460A1 (en) Method for producing hdd glass substrate and hdd glass substrate
JP2015011743A (en) Method of manufacturing glass substrate for information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504317

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759535

Country of ref document: EP

Kind code of ref document: A1