JP5392075B2 - Information recording device - Google Patents

Information recording device Download PDF

Info

Publication number
JP5392075B2
JP5392075B2 JP2009503973A JP2009503973A JP5392075B2 JP 5392075 B2 JP5392075 B2 JP 5392075B2 JP 2009503973 A JP2009503973 A JP 2009503973A JP 2009503973 A JP2009503973 A JP 2009503973A JP 5392075 B2 JP5392075 B2 JP 5392075B2
Authority
JP
Japan
Prior art keywords
glass substrate
information recording
recording medium
distance
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009503973A
Other languages
Japanese (ja)
Other versions
JPWO2008111427A1 (en
Inventor
秀樹 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2009503973A priority Critical patent/JP5392075B2/en
Publication of JPWO2008111427A1 publication Critical patent/JPWO2008111427A1/en
Application granted granted Critical
Publication of JP5392075B2 publication Critical patent/JP5392075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/02Details
    • G11B17/022Positioning or locking of single discs
    • G11B17/028Positioning or locking of single discs of discs rotating during transducing operation
    • G11B17/0287Positioning or locking of single discs of discs rotating during transducing operation by permanent connections, e.g. screws, rivets
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates

Description

【技術分野】
【0001】
本発明は、情報記録装置に関する。
【背景技術】
【0002】
従来、コンピュータ等に用いられる情報記録装置における情報記録媒体用基板としては、これまでアルミニウム基板が一般的に用いられてきたが、近年はアルミニウム基板に比べ硬度、強度並びに平坦性に優れたガラス基板の採用が増えつつある。磁気ディスクの場合、小型化・薄板化とともに高記録密度化が図られ、磁気ヘッドの低浮上化と伴に磁気ヘッド機構についてもCSS(Contact Start Stop)方式からLUL(Load Unload)方式に移行しつつある。LUL方式では、CSS方式に比べ磁気ヘッドの低浮上走行が可能であるため、より高密度記録が可能となり記録の大容量化に対応することができる。CSS方式からLUL方式への移行に伴い、ガラス基板の採用が増えている。
【0003】
ガラス基板に磁性層を備えた磁気ディスクは、磁気ディスク記録装置に設けてあるスピンドルモータ(SPM)の回転軸であるハブに固定する必要がある。磁気ディスクをハブに固定する方法として、高精度な平面同士で挟持する方法と、高精度な平面と円環状の突起とで挟持する方法とがある。具体的には、以下の場合が考えられる。(1)高精度な平面を備えたスペーサーの端面同士で挟持する。(2)高精度な平面を備えたスペーサーの端面と円環状の突起を持つクランパとで挟持する。(3)クランパと同様な突起を持つハブの下端部外周に設けてある磁気ディスク受け部として機能するフランジと高精度な平面を備えたスペーサーの端面とで挟持する。
【0004】
例えば、ハブに磁気ディスクを3枚固定する場合を考えてみる。フランジの上に順に、磁気ディスク、スペーサー、磁気ディスク、スペーサー、磁気ディスクをハブに挿入し、最後にハブの先端にクランパをねじ等で固定する。このクランパはばね作用を備えており、このばね作用を効かせてハブの先端にクランパを固定することで、フランジとクランパとで押圧力が生じ、磁気ディスクがハブに固定される。
【0005】
これら従来の磁気ディスクの固定方法は、ディスクの平坦部を両面から挟持して固定する方法であった。ハブに固定される磁気ディスクの内周端部、すなわち磁気ディスクの基体であるガラス基板の内周端部において、隆起等があると、磁気ディスクが傾いたり、歪んで固定されるという問題があり、基板の機械的強度が弱い場合は、割れが発生する問題が有る。このため、内周端部の形状は、主表面の平坦面を基準に±0.35μmの範囲内に収まる形状とするガラス基板が知られている(特許文献1参照)。
【先行技術文献】
【特許文献1】特開2001−167427号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、発明者らの実験によれば、特許文献1に記載されている内周端部の形状であっても、ガラス基板が破損する場合があった。それは、ガラス基板が組み込まれた磁気ディスク記録装置が通常に使用されている状態では問題が生じないが、磁気ディスク記録装置に落下等の強い衝撃が加えられた場合、ガラス基板がハブに固定されている部分で破損する場合があった。
【0007】
本発明は、上記の課題を鑑みてなされたものであって、その目的とするところは、安定してSPM(スピンドルモータ)のハブに固定され、SPMが組み込まれた磁気ディスク記録装置に強い衝撃が加えられた場合であっても、破損しない情報記録媒体用ガラス基板を有する情報記録装置を提供することである。
【課題を解決するための手段】
【0008】
上記の課題は、以下の構成により解決される。
【0009】
1. 平坦部を備えた主表面と、同心の外周端面と内周端面とを有するドーナツ形状の情報記録媒体用ガラス基板と、
回転自在なハブを含むスピンドルモータと、
前記ハブの外周に嵌合し、前記内周端面がなす孔に挿通された状態で、前記主表面に対向する面が平坦で、前記対向する面の外周が前記孔を中心軸とする半径Rsの円形である第1の形状を有する第1挟持部材と、
前記主表面に対向する面に前記孔を中心軸とする前記半径Rsより小さい半径Rpに円環状の突起を有し、前記突起の頂部分の形状が丸みを有する第2の形状を有する第2挟持部材とを有し、
前記第1挟持部材と第2挟持部材とで前記情報記録媒体用ガラス基板を挟持して前記ハブに固定される情報記録装置であって、
前記情報記録媒体用ガラス基板の径方向の前記主表面に垂直な断面の一方の前記主表面の輪郭線の上で、前記情報記録媒体用ガラス基板の中心軸からの距離R1を前記孔の半径R0+5mmとする位置P1と、前記情報記録媒体用ガラス基板の中心軸からの距離R3を前記孔の半径R0+0.35mmとする位置P3と、を同一断面内に定め、前記輪郭線が、前記位置P1と前記位置P3との間の位置P2で前記主表面の平坦部を基準とする基準平面から前記情報記録媒体用ガラス基板の厚み方向に離れ、前記情報記録媒体用ガラス基板の中心軸から前記位置P2までの距離を距離R2とし、前記基準平面と前記位置P3との距離をΔhとして、0.001μm<Δh<5.0μmであるときに以下の条件式を満足することを特徴とする情報記録装置。
距離R3の値<半径Rsの値<距離R2の値
距離R3の値<半径Rpの値<距離R2の値
【0010】
2. 前記情報記録媒体用ガラス基板の表面と裏面とが対称的な形状であることを特徴とする請求項1に記載の情報記録装置。
【0011】
3. 前記情報記録媒体用ガラス基板の表面に磁性膜を有することを特徴とする請求項1に記載の情報記録装置。
【発明の効果】
【0012】
本発明によれば、定められた第1の形状を有する第1挟持部材と第2の形状を有する第2挟持部材とで情報記録媒体用ガラス基板を挟持してハブに固定する情報記録装置において、第1及び第2挟持部材の形状とガラス基板の内周端部の形状とが、定められた関係を有している。
【0013】
この定められた関係でガラス基板を挟持することによって、ガラス基板は第1及び第2挟持部材に対して適度な接触面積と隙間を有しつつスピンドルモータのハブに固定される。このため、落下等によるハブから情報記録媒体用ガラス基板に伝わる衝撃は、第1及び第2挟持部材を介して情報記録媒体用ガラス基板に伝達される際に十分に吸収、緩和される。
【0014】
従って、ガラス基板が安定してSPMのハブに固定される一方で、情報記録装置に強い衝撃が加えられた場合であっても、情報記録媒体用ガラス基板が破損しない。
【図面の簡単な説明】
【0015】
【図1】情報記録媒体用ガラス基板の中心を通り、主表面に垂直な面で切断した断面で、内周端周辺部分を拡大して模式的に示す図である。
【図2】情報記録媒体用ガラス基板の全体構成を示す図である。
【図3】情報記録媒体用ガラス基板の表主表面の上に磁性膜を備えている磁気記録媒体の一例を示す図である。
【図4】3枚の情報記録媒体用ガラス基板が磁気ディスク記録装置に装着されている様子を模式的に断面で示す図である。
【図5】記録媒体用ガラス基板の製造工程の例をフロー図で示す図である。
【図6】落下試験用に磁気ディスク記録装置を模した落下試験用治具を説明する図である。
【発明を実施するための形態】
【0016】
本発明を図示の実施の形態に基づいて説明するが、本発明は該実施の形態に限らない。
【0017】
発明者らは、磁気ディスク記録装置に組み込まれた状態で衝撃を加えられて破損したガラス基板及び磁気ディスク記録装置のガラス基板周辺部を詳細に検討した。その結果、衝撃を加えられたガラス基板が破損する原因は、次のように推測するに至った。
【0018】
スピンドルモータ(SPM)の回転軸であるハブに固定されるガラス基板の主表面は、記録層を設ける面であることから鏡面状態であり、またガラス基板を挟んで固定するスペーサーのガラス面が接触する端面も、通常高精度に研削仕上げされている。こうした平坦度、平面度が良好なスペーサーとガラス基板とを接触して固定すると、互いが対向する面の広い面積で接触し、しかも密着性が良い状態となる。従って、ハブにしっかりと固定されることになる。この状態でSPMが組み込まれている磁気ディスク記録装置に外部から落下等で衝撃が加えられると、ガラス基板のスペーサーに挟まれてハブに固定されている部分はハブと一体として振動する。その一方、ガラス基板のスペーサーに挟まれてハブに固定されていない部分は、ハブに固定されているスペーサーの外周端部を支点にガラス基板の主表面に垂直な方向に大きな撓みが生じると考えられる。この撓み量がある限度を超えるとガラス基板が破壊されるものと考えられる。よって、ガラス基板は、SPMで高速回転させても破損等の問題が生じることがないが、落下等の衝撃が加えられると破損することになる。これらの点から、ガラス基板を、ガラス基板を高速回転させても問題が生じない程度にしっかりと、且つ、衝撃が加わった際には破損する程大きな撓みが生じないように衝撃を吸収、緩和するように緩くハブに固定することができればよいと考えられる。本発明は、上記の点に着目して成されたものである。
【0019】
図2は、本発明に係わる情報記録媒体用ガラス基板(以降、ガラス基板とも称する。)1の全体構成を示している。図2に示す様に、ガラス基板1は、中心に孔13が形成されたドーナツ状の円板形状をしている。14は外周端面、15は内周端面、10aは表主表面、10bは裏主表面を示している。
【0020】
また、図3は、図2で示したガラス基板1の表主表面10aの上に磁性膜2を備えている磁気記録媒体Dの一例を示している。磁性膜2は裏主表面10bの上にも設けることができる。磁性膜2の厚みは、ガラス基板1の厚みに比較して十分に薄く、ほぼ一定である。このため、本発明に係わる内周端部の形状は、ガラス基板1、磁気記録媒体Dのどちらの場合であっても同じとして考えることができる。よって、以降、特に断らない限り、磁気記録媒体Dであっても、その基体を成すガラス基板1として説明する。
【0021】
図4は、3枚のガラス基板(磁気記録媒体)1A、1B、1Cが磁気ディスク記録装置に装着されている様子を模式的に断面で示している。40は磁気ディスク記録装置のベース、50はガラス基板1A、1B、1Cを回転させるためのスピンドルモータ(SPM)、60A、60Bはスペーサー、70はクランプ、20はクランプ70をハブ30の先端部に固定するためのねじを示している。SPM50は、回転するハブ30、ハブの下端部外周に設けてある磁気ディスク受け部として機能するフランジ30a、SPM50をベースに固定するためのモータブラケット30bで構成されている。
【0022】
スペーサー60A、60Bは、その中央にハブ30に嵌め込むための孔が設けてあるリング形状をしており、そのリング形状の両端面は平行で、且つ、高精度に平面研削されている。このスペーサー60A、60Bは、ガラス基板1A、1B、1Cそれぞれの間隔を一定距離を維持している。また、スペーサー60A、60Bの外周端の半径は半径Rsである。従って、スペーサー60A、60Bは、第1挟持部材に相当する。
【0023】
クランプ70は、ばね作用を有する材料から成る円板状をしている。このクランプ70の一方の面の外周端部には円環状の突起70pが設け有り、この突起70pの頂部分でガラス基板1Aに接する様になっており、この頂部分の形状は、丸みを有している。この突起70pの頂の位置は、クランプ70の中心から半径Rpにある。この半径Rpは半径Rsより小さい。従って、クランプ70は、第2挟持部材に相当する。
【0024】
フランジ30aは、ガラス基板1Cを受ける面の外周端部に円環状の突起30pが設け有り、この突起30pの頂部分で磁気記録媒体1Cに接する様になっており、この頂部分の形状は、丸みを有している。この突起30pの頂の位置は、フランジ30aの中心から半径Rpである。従って、フランジ30aは、第2挟持部材に相当する。
【0025】
フランジ30aの上に、磁気記録媒体1C、スペーサー60B、磁気記録媒体1B、スペーサー60A、磁気記録媒体1Aを順にハブ30に挿入して重ね、最後にクランプ70をねじ20でハブ30の先端に固定する。こうすることにより、クランプ70によるばね作用でクランプ70とフランジ30aとの間に押圧力が生じ、この力によりガラス基板1C、スペーサー60B、ガラス基板1B、スペーサー60A、ガラス基板1Aをハブ30に固定することができる。
【0026】
これまで説明した、フランジ、スペーサー、クランプを用いてハブに固定されるガラス基板の内周端部の形状について説明する。
【0027】
図2に示すガラス基板1の中心を通り、表主表面10aに垂直な面で切断した断面を考える。この断面において、ガラス基板1における内周端部の周辺部分を拡大して模式的に図1に示す。図1に示す形状は、裏主表面10bにおいても、加工上の誤差はあるものの、表主表面10aと対称的であるため、以降では表主表面10a側に関して説明し、裏主表面10b側の説明は省略する。
【0028】
図1において、Cはガラス基板1の回転中心軸、BLは表主表面10a側のガラス基板1の輪郭線、SHは主表面10aの平坦部を基準とする基準平面、Ptはガラス基板1の中心軸Cからの距離がR0である内周端面15の位置、P3は中心軸Cからの距離R3がR0+0.35mmの位置、P1は中心軸Cからの距離R1がR0+5mmの位置を示している。P2は位置P1と位置P3との間の位置で、中心軸Cからの距離R2の値は、距離R3の値を超えて距離R1の値未満である。輪郭線BLは、位置P1と位置P3との間の位置P2からガラス基板の内周端面15に向かって、主表面から離れる方向へ伸延している。
【0029】
2.5インチのガラス基板を例とすると、位置P1、位置P3、位置Ptは次の通りとなる。ガラス基板1の中心を0、位置Ptは10mm(=R0)とすると、位置P1は15mm、位置P3は10.35mmとなる。
【0030】
表主表面10aから内周端部方向の輪郭線BLは、位置P1を通過し、位置P2から基板側に下降し始め、位置P3を通過し、位置Ptにある内周端面15に至る。
【0031】
ここで、ガラス基板をハブに固定し磁気ディスク装置に組み込み、この磁気ディスク装置に衝撃を加えた場合、以下に示す条件(1)から(3)を満たすとガラス基板が破損しないことが実験により得られた。
【0032】
距離R3の値、距離R2の値は、スペーサー60A、60Bの外周端の半径Rsの値と以下の条件を満たしている。
距離R3の値 < 半径Rsの値 < 距離R2の値 (1)
また、距離R3の値、距離R2の値は、クランプ70、フランジ30aのそれぞれの円環状の突起70p、30pの位置をそれぞれ定めている半径Rpの値と、以下の条件を満たしている。
距離R3の値 < 半径Rpの値 < 距離R2の値 (2)
尚、半径Rpの値は半径Rsの値より小さい。
表主表面10aの平坦部を基準とする基準平面SHと位置P3との距離Δhは、以下の条件式を満たしている。
0.001μm < Δh < 5.0μm (3)
条件式(1)から(3)を満足するように、内周端部が形成されているガラス基板1A、1B、1Cは、クランプ、フランジ、スペーサーでもってハブ30に固定される。このとき、図4に示すガラス基板1A、1B、1Cの固定状態は以下のようになる。
【0033】
ガラス基板1Aの場合は以下のようになる。ガラス基板1Aとスペーサー60Aと接触する位置はクランプ70の円環状の突起70pがガラス基板1Aと接触する位置より外側となる。また、スペーサー60A及びクランプ70の円環状の突起70pがガラス基板1Aと接触する位置は、ガラス基板1Aの主表面が、主表面基準SHより下降し、且つ位置P3より外周側である。よって、ガラス基板1Aは、クランプ70の円環状の突起70pとスペーサー60Aの外縁部分との応力が加えられて挟持されている状態となる。このとき、ガラス基板1Aの位置P3の位置でのスペーサー60Aとの間隔は条件式(3)を満たすΔhとなる。従って、ガラス基板1Aは、スペーサー60Aの端面と適度な接触面積と隙間を有してハブ30に固定される。
【0034】
ガラス基板1Cの場合は、ガラス基板1Aの場合と上下が逆の場合と考えることができ以下のようになる。ガラス基板1Cとスペーサー60Bと接触する位置はフランジ30aの円環状の突起30pがガラス基板と接触する位置より外側となる。また、スペーサー60B及びフランジ30aの円環状の突起30pがガラス基板1Cと接触する位置は、ガラス基板1Cの主表面が、主表面基準SHより下降し、且つ位置P3より外周側である。よって、ガラス基板1Cは、フランジ30aの円環状の突起30pとスペーサー60Bの外縁部分とで応力が加えられて挟持されている状態となる。このとき、ガラス基板の位置P3の位置でのスペーサー60Bとの間隔は条件式(3)を満たすΔhとなる。従って、ガラス基板1Cは、スペーサー60Bの端面と適度な接触面積と隙間を有してハブ30に固定される。
【0035】
条件式(3)で示す距離Δhが5.0μm以上では、ガラス基板1A、1Cとスペーサー60A、60Bの接触面積が小さくなりすぎて衝撃が発生したときに、十分衝撃を吸収、緩和する効果が得られにくくなる。また、距離Δhが0.001μm以下では、ガラス基板1A、1Cとスペーサー60A、60Bの間に遊び(隙間)がなくなり、衝撃が発生したときにスペーサー60A、60Bの外周端部と接触するガラス基板1A、1Cの表面に応力が集中してしまい、十分な耐衝撃性が得られない。
【0036】
本実施形態では、フランジ30aが有する突起30pの頂の位置を定める値の半径Rpfをクランプ70が有する突起70pの頂の位置を定める値と同じ半径Rpの値としているが、同じである必要はなく、半径Rpfの値が半径Rsの値より小さく条件式(2)を満足すれば良い。
【0037】
条件式(1)から(3)を満足したガラス基板は、ガラス基板1Bのように両主表面をスペーサー60Aと60Bとで挟持した場合においても、例えばクランプ70とスペーサー60Aとで挟持されている場合と同じ条件の衝撃を加えても破損しない。このことから、両主表面をスペーサー60Aと60Bとで挟持した場合と同様に、フランジ30aを円環状の突起30pがなくスペーサー60Bの端面と同じようにガラス基板1Cと接する面を高精度な研削仕上げ状態としてもよい。この場合、フランジの外周端面までの半径を半径Rsfとすると、半径Rsfは、スペーサーの半径Rsと同じとするのが好ましい。
【0038】
本発明の情報記録媒体用ガラス基板は、磁気記録媒体に限定されるものではなく、光磁気ディスクや光ディスクなどにも用いることができる。
【0039】
(情報記録媒体用ガラス基板の製造工程)
情報記録媒体用ガラス基板の製造について説明する。図5に、情報記録媒体用ガラス基板の製造工程の例をフロー図で示す。まず、ガラス素材を溶融し(ガラス溶融工程)、溶融ガラスを下型に流し込み、上型によってプレス成形して円盤状のガラス基板前駆体を得る(プレス成形工程)。なお、円盤状のガラス基板前駆体は、プレス成形によらず、例えばダウンドロー法やフロート法で形成したシートガラスを研削砥石で切り出して作製してもよい。
【0040】
プレス成形されたガラス基板前駆体には、ダイヤモンド砥石で構成されているコアドリル等で中心部に孔が開けられる(コアリング工程)。次に、ガラス基板の両表面を例えばダイヤモンドペレットを用いた公知の両面研磨機に研削液を供給しながら研磨加工され、ガラス基板の全体形状、すなわちガラス基板の平行度、平坦度および厚みが予備調整される(第1ラッピング工程)。
【0041】
次に、ガラス基板の外周端面および内周端面が研削され面取りされて、ガラス基板の外径寸法および真円度、孔の内径寸法、並びにガラス基板と孔との同心度が微調整される(内・外径加工工程)。この後、ガラス基板の内周端面が研磨されて微細なキズ等が除去される(内周端面加工工程)。
【0042】
次に、ガラス基板の両表面が第1ラッピング工程より目の細かいダイヤモンドペレットを用いて再び研磨加工されて、ガラス基板の平行度、平坦度および厚みが微調整される(第2ラッピング工程)。次に、ガラス基板の外周端面が研磨されて微細なキズ等が除去される(外周端面加工工程)。
【0043】
次に、ガラス基板が洗浄された後、耐衝撃性や耐振動性等の向上を目的として、化学強化液にガラス基板を浸漬してガラス基板に化学強化層を形成する(化学強化工程)。化学強化方法としては、従来より公知の化学強化法であれば特に制限されないが、例えば、ガラス転移点の観点から転移温度を超えない領域でイオン交換を行う低温型化学強化などが好ましい。化学強化に用いるアルカリ溶融塩としては、硝酸カリウム、硝酸ナトリウム、あるいは、それらを混合した硝酸塩などが挙げられる。
【0044】
この後、ガラス基板の表面をパッドにウレタン発泡やスウェード等を用いた公知の両面研磨機に酸化セリウム等を研磨剤とする研磨液を供給しながら精密に仕上げる研磨加工を行う(ポリッシング工程)。ポリッシング工程は、製造効率や必要な面粗さ等によりパッドや研磨剤を変えて第1ポリッシング工程、第2ポリッシング工程のように複数の工程に分けても良い。使用するパッドや研磨液、研磨機の設定条件を調整することで面粗さをRmaxが2nmから6nm、Raが0.2nmから0.4nmの範囲とすることができる。尚、平面度は5μm以下とすることができる。そして洗浄工程及び検査工程を経て、製品としての情報記録媒体用ガラス基板となる。
【0045】
ここで、Ra(中心線平均粗さ)、Rmax(最大高さ)は、JIS B0601で規定されている。これらは、原子間力顕微鏡(AFM)等により測定することができる。
【0046】
尚、情報記録媒体用ガラス基板の製造方法においては、上記以外の種々の工程を有していても良い。例えば、ガラス基板の内部歪みを緩和するためのアニール工程、ガラス基板の強度の信頼性確認のためのヒートショック工程、ガラス基板の表面に残った研磨剤や化学強化処理液等の異物を除去する洗浄工程、種々の検査・評価工程等を有していても良い。また、ポリッシング工程によって、ガラス基板の表面の化学強化された領域が減少する。ポリッシング工程の後のガラス基板の表面に化学強化された領域が残っているか否か、あるいは残っている強化された領域の厚みについての制限はない。
【0047】
このようにして、情報記録媒体用ガラス基板は製造される。本発明の内周端部の形状を有する情報記録媒体用ガラス基板は上記の内周端面加工工程からポリッシング工程の条件を適宜調整することにより得られる。
【0048】
(ガラス基板の材料)
ガラス基板の材料としては、イオン交換による化学強化が可能なガラスであれば特に制限はない。例えば、SiO2、Na2O、CaOを主成分としたソーダライムガラス;SiO2、Al23、R2O(R=K、Na、Li)を主成分としたアルミノシリケートガラス;ボロシリケートガラス;Li2O−SiO2系ガラス;Li2O−Al23−SiO2系ガラス;R’O−Al23−SiO2系ガラス(R’=Mg、Ca、Sr、Ba)などを使用することができる。中でも、アルミノシリケートガラスやボロシリケートガラスは、耐衝撃性や耐振動性に優れるため特に好ましい。
【0049】
(磁気記録媒体)
本発明の情報記録媒体用ガラス基板の上に、少なくとも記録層を形成することで情報記録媒体を得ることができる。記録層は特に限定されず、磁気、光、光磁気等の性質を利用した種々の記録層を用いることができるが、特に磁性層を記録層として用いた磁気記録媒体(磁気ディスク)の製造に好適である。
【0050】
磁性層に用いる磁性材料としては、特に限定はなく公知の材料を適宜選択して用いることができる。例えば、Coを主成分とするCoPt、CoCr、CoNi、CoNiCr、CoCrTa、CoPtCr、CoNiPt、CoNiCrPt、CoNiCrTa、CoCrPtTa、CoCrPtSiOなどが挙げられる。また、磁性層を非磁性膜(例えば、Cr、CrMo、CrVなど)で分割してノイズの低減を図った多層構成としてもよい。
【0051】
磁性層として、上記のCo系材料の他、フェライト系や鉄−希土類系の材料や、SiO2、BNなどからなる非磁性膜中にFe、Co、CoFe、CoNiPt等の磁性粒子が分散された構造のグラニュラーなどを用いることもできる。磁性層は、面内型、垂直型の何れであっても良い。
【0052】
磁性膜の形成方法としては、公知の方法を用いることができる。例えば、スパッタリング法、無電解メッキ法、スピンコート法などが挙げられる。
【0053】
磁気記録媒体には、更に必要により下地層、保護層、潤滑層等を設けても良い。これらの層はいずれも公知の材料を適宜選択して用いることができる。下地層の材料としては、例えば、Cr、Mo、Ta、Ti、W、V、B、Al、Niなどが挙げられる。保護層の材料としては、例えば、Cr、Cr合金、C、ZrO2、SiO2などが挙げられる。また、潤滑層としては、例えば、パーフロロポリエーテル(PFPE)等からなる液体潤滑剤を塗布し、必要に応じ加熱処理を行ったものなどが挙げられる。
【実施例】
【0054】
情報記録媒体用ガラス基板として、図5の製造工程に沿って外径65mm、内径20mm、板厚0.635mmのアルミノシリケートガラス基板を製造した。
【0055】
具体的には、SiO2、Al23、R2O(R=K、Na、Li)を主成分とするガラス素材を溶融し(ガラス溶融工程)、溶融ガラスを下型に流し込み、上型によってプレス成形して円盤状のガラス基板前駆体を得た(プレス成形工程)。
【0056】
プレス成形されたガラス基板前駆体に、ダイヤモンド砥石で構成されているコアドリルで中心部に孔を開けた(コアリング工程)。次に、ガラス基板の両表面を#1000メッシュのダイヤモンドペレットを備えた公知の両面ラップ盤にて研削液を供給しながら研磨加工し、ガラス基板の平行度、平坦度および厚みを予備調整した(第1ラッピング工程)。
【0057】
次に、ガラス基板の外周端面および内周端面を鼓状のダイヤモンド砥石にて研削され約0.1mmの面取りをして、ガラス基板の外径寸法および真円度、孔の内径寸法、並びにガラス基板と孔との同心度を微調整した(内・外径加工工程)。次に、ガラス基板の内周端面を研磨液を供給しながらブラシ研磨を行い微細なキズ等を除去した(内周端面加工工程)。
【0058】
次に、ガラス基板の両表面を#1500メッシュのダイヤモンドペレットを備えた公知の両面ラップ盤にて研削液を供給しながら再び研磨加工して、ガラス基板の平行度、平坦度および厚みを微調整した(第2ラッピング工程)。そして、ガラス基板の外周端面を研磨液を供給しながらブラシ研磨を行い微細なキズ等を除去した(外周端面加工工程)。
【0059】
次に、ガラス基板を洗浄した後、化学強化液にガラス基板を浸漬してガラス基板に化学強化層を形成した(化学強化工程)。化学強化液は、NaNO3とKNO3とを質量比5:5の割合とした化学強化剤を化学強化槽に投入し375℃に加熱したものとした。
【0060】
この後、ガラス基板の表面を精密に仕上げる研磨加工を行った(ポリッシング工程)。ポリッシング工程では、ガラス基板の両面をパッドを備えた公知の両面研磨機にて研磨液を供給しながら研磨加工をした。研磨機に供給する研磨液に使用する研磨材の種類や粒径、ガラス基板の両面に接するパッドを備えた定盤の回転数及びガラス基板に対するパッドの圧力等の条件を変更することで、種々の内周端面形状を有するガラス基板No.1からNo.17をサンプルとして得た。これらのガラス基板の面粗さは、Rmaxが2nmから6nm、Raが0.2nmから0.4nmの範囲であった。
【0061】
この後、ガラス基板を洗浄した後、このガラス基板に磁性膜を設けて磁気記録媒体とした。磁性膜は、ガラス基板側から、Ni−Alからなる下地層(厚み約100nm)、Co−Cr−Ptからなる記録層(厚み20nm)、DLC(Diamond Like Carbon)からなる保護膜(厚み5nm)順次積層した。このように、磁性膜の厚みは、ガラス基板の厚みに比較して十分に薄い。
【0062】
完成した磁気記録媒体を図4に示すように、フランジを備えているSPMのハブに、ガラス基板、スペーサー、ガラス基板の順に挿入し、クランプを用いてガラス基板2枚を固定した。このSPMを図6に示す磁気ディスク記録装置を模した落下試験用治具80に組み込んだ。落下試験用治具80において、82はSPMを取り付けるアルミダイキャスト製のベース、84はSUS製のカバー、86、88はガラス基板、90はクランプを示している。また、実際の磁気ディスク記録装置と同様に、磁気ヘッドを待機させるためのランプ92を設けている。この落下試験用治具80を以下の各サンプルに対し5台づつ用意した。
【0063】
この後、各落下試験用治具80のSPMを7200rpmで回転させたところ、サンプルNo.1から17のいずれにおいても問題なく動作した。次に、落下試験を行いガラス基板の割れの有無を調べた。落下試験は、上記の落下試験用治具80を実際の磁気ディスク記録装置と同じ固定方法にて、別途用意した固定治具に水平状態(ガラス基板が水平な状態)に固定する。落下試験用治具80をこの固定治具と一緒に水平を維持した状態で落下させる。落下の衝撃は、固定治具に設けた加速度センサにより、落下の最初に生じる襲撃の加速度が1000G、この加速度が持続する時間幅が1msとなるように、落下する固定治具を下で受ける部分及び落下高さを調整した。落下試験用治具80の落下回数は、固定治具に落下試験用治具80をSPMのハブが下側になるように取り付けた状態、及びこれの上下逆さになるように取り付けた状態で各3回づつ落下させた。
【0064】
この結果を表1に示す。この時使用した、磁気記録媒体を落下試験用治具80が備えているSPMのハブに固定するためのフランジ、スペーサー、クランプの仕様を表2に示す。尚、ガラス基板の孔の半径が10mmであるため、距離R1の値が15mm、距離R3の値が10.35mmである。
【0065】
【表1】
【0066】
【表2】
【0067】
以上の結果より、条件式(1)〜(3)を満たした形状を有する磁気記録媒体は、安定してSPM(スピンドルモータ)のハブに固定され、SPMが組み込まれた磁気ディスク記録装置に強い衝撃が加えられた場合破損しないことが確認できた。
【符号の説明】
【0068】
1、1A、1B、1C 情報記録媒体用ガラス基板(ガラス基板)
2 磁性膜
10a 表主表面
10b 裏主表面
13 孔
14 外周端面
15 内周端面
20 ねじ
30 ハブ
30a フランジ
30b モータブラケット
40、82 ベース
50 スピンドルモータ
60A、60B スペーサー
70、90 クランプ
70p、30p 突起
80 落下試験用治具
84 カバー
92 ランプ
D、86、88 磁気記録媒体(磁気ディスク)
P1、P2、P3、Pt 位置
R1、R2、R3、Δh 距離
Rs、Rp 半径
BL 輪郭線
SH 基準平面
C 中心軸
【Technical field】
[0001]
The present invention Information recording device About.
[Background]
[0002]
Conventionally, as an information recording medium substrate in an information recording apparatus used in a computer or the like, an aluminum substrate has been generally used so far. However, in recent years, a glass substrate superior in hardness, strength and flatness compared to an aluminum substrate. The adoption of is increasing. In the case of a magnetic disk, the recording density has been increased along with the miniaturization and thinning of the magnetic disk, and the magnetic head mechanism has shifted from the CSS (Contact Start Stop) method to the LUL (Load Unload) method as the magnetic head is lowered. It's getting on. In the LUL method, since the magnetic head can be moved at a low flying height compared to the CSS method, higher density recording is possible and it is possible to cope with an increase in recording capacity. With the shift from the CSS system to the LUL system, the use of glass substrates is increasing.
[0003]
A magnetic disk having a magnetic layer on a glass substrate needs to be fixed to a hub that is a rotating shaft of a spindle motor (SPM) provided in the magnetic disk recording apparatus. As a method for fixing the magnetic disk to the hub, there are a method in which the magnetic disk is held between high-precision planes, and a method in which the magnetic disk is held between a high-precision plane and an annular protrusion. Specifically, the following cases can be considered. (1) The spacer is sandwiched between the end faces of a spacer having a high-precision plane. (2) It is sandwiched between an end face of a spacer having a highly accurate plane and a clamper having an annular projection. (3) It is sandwiched between a flange functioning as a magnetic disk receiving portion provided on the outer periphery of the lower end portion of the hub having the same projection as the clamper and an end surface of the spacer having a highly accurate plane.
[0004]
For example, consider a case where three magnetic disks are fixed to a hub. The magnetic disk, spacer, magnetic disk, spacer, and magnetic disk are inserted into the hub in order on the flange, and finally the clamper is fixed to the tip of the hub with a screw or the like. This clamper has a spring action. By applying this spring action and fixing the clamper to the tip of the hub, a pressing force is generated between the flange and the clamper, and the magnetic disk is fixed to the hub.
[0005]
These conventional magnetic disk fixing methods are methods in which the flat portion of the disk is clamped from both sides and fixed. If there is a bulge or the like at the inner peripheral edge of the magnetic disk fixed to the hub, that is, the inner peripheral edge of the glass substrate that is the base of the magnetic disk, there is a problem that the magnetic disk is tilted or distorted and fixed. When the mechanical strength of the substrate is weak, there is a problem that cracks occur. For this reason, the glass substrate which makes the shape of an inner peripheral edge part the shape fits in the range of +/- 0.35 micrometer on the basis of the flat surface of a main surface is known (refer patent document 1).
[Prior art documents]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-167427
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0006]
However, according to experiments by the inventors, the glass substrate may be damaged even in the shape of the inner peripheral end described in Patent Document 1. It does not cause a problem when a magnetic disk recording device incorporating a glass substrate is normally used, but when a strong impact such as dropping is applied to the magnetic disk recording device, the glass substrate is fixed to the hub. There was a case where it was damaged in the part.
[0007]
The present invention has been made in view of the above-described problems. The object of the present invention is to provide a strong impact on a magnetic disk recording apparatus that is stably fixed to a hub of a SPM (spindle motor) and incorporates the SPM. Glass substrate for information recording media that is not damaged even when Information recording apparatus having Is to provide.
[Means for Solving the Problems]
[0008]
Said subject is solved by the following structures.
[0009]
1. A glass substrate for an information recording medium in a donut shape having a main surface with a flat portion, a concentric outer peripheral end surface and an inner peripheral end surface;
A spindle motor including a rotatable hub;
The surface facing the main surface is flat when fitted to the outer periphery of the hub and inserted into the hole formed by the inner peripheral end surface, and the outer periphery of the opposing surface has a radius Rs with the hole as a central axis. A first clamping member having a first shape which is a circular shape of
An annular protrusion having a radius Rp smaller than the radius Rs with the hole as a central axis is formed on a surface facing the main surface. And the shape of the top of the protrusion is rounded A second clamping member having a second shape having
An information recording apparatus that holds the glass substrate for information recording medium between the first holding member and the second holding member and is fixed to the hub,
The distance R1 from the central axis of the glass substrate for information recording medium on the contour line of one main surface of the cross section perpendicular to the main surface in the radial direction of the glass substrate for information recording medium is the radius of the hole. A position P1 for R0 + 5 mm and a position P3 for setting a distance R3 from the central axis of the glass substrate for information recording medium to a radius R0 + 0.35 mm of the hole are defined in the same cross section, and the contour line is the position P1. And a position P2 between the position P3 and a reference plane with the flat portion of the main surface as a reference in the thickness direction of the glass substrate for information recording medium, and the position from the central axis of the glass substrate for information recording medium The following conditional expression is satisfied when 0.001 μm <Δh <5.0 μm, where the distance to P2 is distance R2 and the distance between the reference plane and the position P3 is Δh. Apparatus.
Value of distance R3 <value of radius Rs <value of distance R2
Value of distance R3 <value of radius Rp <value of distance R2
[0010]
2. The front surface and the back surface of the glass substrate for information recording medium are symmetrical shapes Claim The information recording apparatus according to 1.
[0011]
3. It has a magnetic film on the surface of the glass substrate for information recording media Claim The information recording apparatus according to 1.
【Effect of the invention】
[0012]
According to the present invention, in the information recording apparatus in which the glass substrate for information recording medium is sandwiched between the first sandwiching member having the defined first shape and the second sandwiching member having the second shape, and is fixed to the hub. The shapes of the first and second clamping members and the shape of the inner peripheral end of the glass substrate have a predetermined relationship.
[0013]
By sandwiching the glass substrate in this defined relationship, the glass substrate is fixed to the spindle motor hub while having an appropriate contact area and gap with respect to the first and second clamping members. For this reason, the impact transmitted from the hub to the information recording medium glass substrate due to dropping or the like is sufficiently absorbed and alleviated when transmitted to the information recording medium glass substrate via the first and second clamping members.
[0014]
Therefore, while the glass substrate is stably fixed to the hub of the SPM, the glass substrate for the information recording medium is not damaged even when a strong impact is applied to the information recording apparatus.
[Brief description of the drawings]
[0015]
FIG. 1 is a diagram schematically showing an enlarged peripheral portion of an inner peripheral end in a cross section cut through a plane perpendicular to a main surface through a center of a glass substrate for information recording medium.
FIG. 2 is a diagram showing an overall configuration of a glass substrate for information recording medium.
FIG. 3 is a diagram showing an example of a magnetic recording medium having a magnetic film on the front main surface of a glass substrate for information recording medium.
FIG. 4 is a cross-sectional view schematically showing a state in which three glass substrates for information recording media are mounted on a magnetic disk recording device.
FIG. 5 is a flowchart showing an example of a manufacturing process of a recording medium glass substrate.
FIG. 6 is a diagram for explaining a drop test jig simulating a magnetic disk recording device for a drop test.
BEST MODE FOR CARRYING OUT THE INVENTION
[0016]
Although the present invention will be described based on the illustrated embodiment, the present invention is not limited to the embodiment.
[0017]
The inventors examined in detail the glass substrate that was damaged by the impact in the state of being incorporated in the magnetic disk recording device and the peripheral portion of the glass substrate of the magnetic disk recording device. As a result, the reason why the glass substrate subjected to the impact was damaged has been estimated as follows.
[0018]
The main surface of the glass substrate fixed to the hub, which is the rotation shaft of the spindle motor (SPM), is a mirror surface because it is the surface on which the recording layer is provided, and the glass surface of the spacer fixed with the glass substrate in between is in contact. The end face is usually ground with high precision. When a spacer with good flatness and flatness and a glass substrate are brought into contact with each other and fixed, they come into contact with each other over a wide area on the surfaces facing each other and have good adhesion. Therefore, it is firmly fixed to the hub. In this state, when an impact is applied to the magnetic disk recording apparatus incorporating the SPM from the outside, the portion sandwiched between the spacers of the glass substrate and fixed to the hub vibrates integrally with the hub. On the other hand, the portion that is sandwiched between the spacers of the glass substrate and not fixed to the hub is considered to be greatly bent in the direction perpendicular to the main surface of the glass substrate with the outer peripheral edge of the spacer fixed to the hub as a fulcrum. It is done. It is considered that the glass substrate is destroyed when the amount of deflection exceeds a certain limit. Therefore, the glass substrate does not have a problem such as breakage even if it is rotated at a high speed by SPM. However, the glass substrate is broken when an impact such as a drop is applied. From these points, the glass substrate is absorbed and relaxed so that the glass substrate does not cause problems even if the glass substrate is rotated at high speed, and so that the glass substrate does not bend so much that it is damaged when an impact is applied. It would be good if it could be loosely fixed to the hub. The present invention has been made paying attention to the above points.
[0019]
FIG. 2 shows the overall configuration of a glass substrate for information recording medium (hereinafter also referred to as a glass substrate) 1 according to the present invention. As shown in FIG. 2, the glass substrate 1 has a donut-like disk shape with a hole 13 formed in the center. Reference numeral 14 denotes an outer peripheral end face, 15 denotes an inner peripheral end face, 10a denotes a front main surface, and 10b denotes a back main surface.
[0020]
FIG. 3 shows an example of a magnetic recording medium D provided with the magnetic film 2 on the front main surface 10a of the glass substrate 1 shown in FIG. The magnetic film 2 can also be provided on the back main surface 10b. The thickness of the magnetic film 2 is sufficiently thin compared to the thickness of the glass substrate 1 and is almost constant. For this reason, the shape of the inner peripheral edge according to the present invention can be considered to be the same for both the glass substrate 1 and the magnetic recording medium D. Therefore, hereinafter, unless otherwise specified, even the magnetic recording medium D will be described as the glass substrate 1 constituting the substrate.
[0021]
FIG. 4 schematically shows in cross section how three glass substrates (magnetic recording media) 1A, 1B, and 1C are mounted on a magnetic disk recording apparatus. 40 is a base of the magnetic disk recording device, 50 is a spindle motor (SPM) for rotating the glass substrates 1A, 1B and 1C, 60A and 60B are spacers, 70 is a clamp, 20 is a clamp 70 at the tip of the hub 30 A screw for fixing is shown. The SPM 50 includes a rotating hub 30, a flange 30a functioning as a magnetic disk receiving portion provided on the outer periphery of the lower end of the hub, and a motor bracket 30b for fixing the SPM 50 to the base.
[0022]
The spacers 60A and 60B have a ring shape in which a hole for fitting into the hub 30 is provided at the center thereof, and both end faces of the ring shape are parallel and surface-ground with high accuracy. The spacers 60A and 60B maintain a constant distance between the glass substrates 1A, 1B, and 1C. The radius of the outer peripheral ends of the spacers 60A and 60B is a radius Rs. Therefore, the spacers 60A and 60B correspond to the first clamping member.
[0023]
The clamp 70 has a disk shape made of a material having a spring action. An annular projection 70p is provided on the outer peripheral end of one surface of the clamp 70, and the top portion of the projection 70p is in contact with the glass substrate 1A. The shape of the top portion is rounded. doing. The position of the top of the projection 70p is at a radius Rp from the center of the clamp 70. This radius Rp is smaller than the radius Rs. Therefore, the clamp 70 corresponds to a second clamping member.
[0024]
The flange 30a is provided with an annular protrusion 30p at the outer peripheral end of the surface that receives the glass substrate 1C, and is in contact with the magnetic recording medium 1C at the top of the protrusion 30p. Has roundness. The position of the top of the protrusion 30p is a radius Rp from the center of the flange 30a. Therefore, the flange 30a corresponds to a second clamping member.
[0025]
The magnetic recording medium 1C, the spacer 60B, the magnetic recording medium 1B, the spacer 60A, and the magnetic recording medium 1A are sequentially inserted into the hub 30 and stacked on the flange 30a. Finally, the clamp 70 is fixed to the tip of the hub 30 with the screw 20. To do. By doing so, a pressing force is generated between the clamp 70 and the flange 30a by the spring action of the clamp 70, and the glass substrate 1C, the spacer 60B, the glass substrate 1B, the spacer 60A, and the glass substrate 1A are fixed to the hub 30 by this force. can do.
[0026]
The shape of the inner peripheral end portion of the glass substrate fixed to the hub using the flange, spacer, and clamp described so far will be described.
[0027]
Consider a cross-section cut through a plane that passes through the center of the glass substrate 1 shown in FIG. 2 and is perpendicular to the front main surface 10a. In this cross section, the peripheral portion of the inner peripheral end of the glass substrate 1 is enlarged and schematically shown in FIG. The shape shown in FIG. 1 is symmetrical with the front main surface 10a even though there is an error in processing on the back main surface 10b. Therefore, the following description will be made with respect to the front main surface 10a side. Description is omitted.
[0028]
In FIG. 1, C is a rotation center axis of the glass substrate 1, BL is a contour line of the glass substrate 1 on the front main surface 10 a side, SH is a reference plane based on a flat portion of the main surface 10 a, and Pt is the glass substrate 1. The position of the inner peripheral end face 15 whose distance from the central axis C is R0, P3 is the position where the distance R3 from the central axis C is R0 + 0.35 mm, and P1 is the position where the distance R1 from the central axis C is R0 + 5 mm. . P2 is a position between the position P1 and the position P3, and the value of the distance R2 from the central axis C exceeds the value of the distance R3 and is less than the value of the distance R1. The contour line BL extends from the position P2 between the positions P1 and P3 toward the inner peripheral end surface 15 of the glass substrate in a direction away from the main surface.
[0029]
Taking a 2.5-inch glass substrate as an example, the position P1, the position P3, and the position Pt are as follows. If the center of the glass substrate 1 is 0 and the position Pt is 10 mm (= R0), the position P1 is 15 mm and the position P3 is 10.35 mm.
[0030]
The contour line BL from the front main surface 10a toward the inner peripheral edge passes through the position P1, starts to descend from the position P2 to the substrate side, passes through the position P3, and reaches the inner peripheral end face 15 at the position Pt.
[0031]
Here, when a glass substrate is fixed to a hub and incorporated in a magnetic disk device and an impact is applied to this magnetic disk device, it is experimentally confirmed that the glass substrate is not damaged if the following conditions (1) to (3) are satisfied. Obtained.
[0032]
The value of the distance R3 and the value of the distance R2 satisfy the following conditions with the value of the radius Rs of the outer peripheral ends of the spacers 60A and 60B.
Value of distance R3 <value of radius Rs <value of distance R2 (1)
Further, the value of the distance R3 and the value of the distance R2 satisfy the following conditions, and the value of the radius Rp that defines the positions of the annular protrusions 70p and 30p of the clamp 70 and the flange 30a, respectively.
Value of distance R3 <value of radius Rp <value of distance R2 (2)
Note that the value of the radius Rp is smaller than the value of the radius Rs.
The distance Δh between the reference plane SH and the position P3 with reference to the flat portion of the front main surface 10a satisfies the following conditional expression.
0.001 μm <Δh <5.0 μm (3)
The glass substrates 1A, 1B, and 1C on which the inner peripheral ends are formed are fixed to the hub 30 with clamps, flanges, and spacers so as to satisfy the conditional expressions (1) to (3). At this time, the fixed state of the glass substrates 1A, 1B, and 1C shown in FIG. 4 is as follows.
[0033]
In the case of the glass substrate 1A, it is as follows. The position where the glass substrate 1A and the spacer 60A are in contact is outside the position where the annular protrusion 70p of the clamp 70 is in contact with the glass substrate 1A. Further, the positions where the annular projections 70p of the spacer 60A and the clamp 70 are in contact with the glass substrate 1A are such that the main surface of the glass substrate 1A is lowered from the main surface reference SH and is on the outer peripheral side from the position P3. Therefore, the glass substrate 1A is in a state of being sandwiched by applying stress between the annular protrusion 70p of the clamp 70 and the outer edge portion of the spacer 60A. At this time, the distance from the spacer 60A at the position P3 of the glass substrate 1A is Δh that satisfies the conditional expression (3). Accordingly, the glass substrate 1A is fixed to the hub 30 with an appropriate contact area and gap with the end face of the spacer 60A.
[0034]
In the case of the glass substrate 1C, it can be considered that the case of the glass substrate 1A is upside down and is as follows. The position where the glass substrate 1C and the spacer 60B are in contact is outside the position where the annular projection 30p of the flange 30a is in contact with the glass substrate. Further, the positions where the annular projections 30p of the spacer 60B and the flange 30a come into contact with the glass substrate 1C are such that the main surface of the glass substrate 1C is lowered from the main surface reference SH and is on the outer peripheral side from the position P3. Therefore, the glass substrate 1C is in a state of being sandwiched by applying stress between the annular protrusion 30p of the flange 30a and the outer edge portion of the spacer 60B. At this time, the distance from the spacer 60B at the position P3 of the glass substrate is Δh that satisfies the conditional expression (3). Therefore, the glass substrate 1C is fixed to the hub 30 with an appropriate contact area and gap with the end face of the spacer 60B.
[0035]
When the distance Δh shown in the conditional expression (3) is 5.0 μm or more, when the contact area between the glass substrates 1A and 1C and the spacers 60A and 60B becomes too small and an impact is generated, the effect of sufficiently absorbing and relaxing the impact is obtained. It becomes difficult to obtain. When the distance Δh is 0.001 μm or less, there is no play (gap) between the glass substrates 1A and 1C and the spacers 60A and 60B, and the glass substrate that comes into contact with the outer peripheral ends of the spacers 60A and 60B when an impact occurs. Stress concentrates on the surfaces of 1A and 1C, and sufficient impact resistance cannot be obtained.
[0036]
In the present embodiment, the radius Rpf of the value that determines the position of the top of the protrusion 30p that the flange 30a has is set to the same value of the radius Rp as the value that determines the position of the top of the protrusion 70p of the clamp 70. In other words, the value of the radius Rpf should be smaller than the value of the radius Rs and satisfy the conditional expression (2).
[0037]
The glass substrate that satisfies the conditional expressions (1) to (3) is sandwiched between, for example, the clamp 70 and the spacer 60A even when both main surfaces are sandwiched between the spacers 60A and 60B as in the glass substrate 1B. Even if the impact of the same condition is applied, it does not break. Therefore, as in the case where both main surfaces are sandwiched between the spacers 60A and 60B, the flange 30a has no annular protrusion 30p and the surface in contact with the glass substrate 1C is the same as the end surface of the spacer 60B with high precision grinding. It may be in a finished state. In this case, if the radius to the outer peripheral end face of the flange is a radius Rsf, the radius Rsf is preferably the same as the radius Rs of the spacer.
[0038]
The glass substrate for an information recording medium of the present invention is not limited to a magnetic recording medium, and can be used for a magneto-optical disk or an optical disk.
[0039]
(Manufacturing process of glass substrate for information recording medium)
The production of the glass substrate for information recording medium will be described. In FIG. 5, the example of the manufacturing process of the glass substrate for information recording media is shown with a flowchart. First, a glass material is melted (glass melting process), molten glass is poured into a lower mold, and press molding is performed with an upper mold to obtain a disk-shaped glass substrate precursor (press molding process). Note that the disk-shaped glass substrate precursor may be produced by cutting a sheet glass formed by, for example, a downdraw method or a float method with a grinding stone, without using press molding.
[0040]
The press-molded glass substrate precursor is perforated at the center with a core drill or the like made of a diamond grindstone (coring step). Next, both surfaces of the glass substrate are polished while supplying a grinding liquid to a known double-side polishing machine using, for example, diamond pellets, and the entire shape of the glass substrate, that is, the parallelism, flatness and thickness of the glass substrate are preliminarily reserved. It is adjusted (first lapping step).
[0041]
Next, the outer peripheral end surface and inner peripheral end surface of the glass substrate are ground and chamfered to finely adjust the outer diameter and roundness of the glass substrate, the inner diameter of the hole, and the concentricity between the glass substrate and the hole ( Inner and outer diameter machining process). Thereafter, the inner peripheral end face of the glass substrate is polished to remove fine scratches (inner peripheral end face processing step).
[0042]
Next, both surfaces of the glass substrate are polished again using diamond pellets finer than those in the first lapping step, and the parallelism, flatness and thickness of the glass substrate are finely adjusted (second lapping step). Next, the outer peripheral end face of the glass substrate is polished to remove fine scratches (outer peripheral end face processing step).
[0043]
Next, after the glass substrate is washed, the chemical strengthening layer is formed on the glass substrate by immersing the glass substrate in a chemical strengthening solution for the purpose of improving impact resistance, vibration resistance, and the like (chemical strengthening step). The chemical strengthening method is not particularly limited as long as it is a conventionally known chemical strengthening method. For example, low temperature type chemical strengthening in which ion exchange is performed in a region not exceeding the transition temperature is preferable from the viewpoint of the glass transition point. Examples of the alkali molten salt used for chemical strengthening include potassium nitrate, sodium nitrate, and nitrates obtained by mixing them.
[0044]
After that, a polishing process is performed to finish precisely while supplying a polishing liquid using cerium oxide or the like as an abrasive to a known double-side polishing machine using urethane foam, suede or the like with the surface of the glass substrate as a pad (polishing process). The polishing process may be divided into a plurality of processes such as the first polishing process and the second polishing process by changing the pad and the abrasive according to the manufacturing efficiency and the required surface roughness. By adjusting the setting conditions of the pad, polishing liquid, and polishing machine to be used, the surface roughness can be set in the range of Rmax from 2 nm to 6 nm and Ra from 0.2 nm to 0.4 nm. The flatness can be 5 μm or less. And it passes through a washing process and an inspection process, and becomes a glass substrate for information recording media as a product.
[0045]
Here, Ra (center line average roughness) and Rmax (maximum height) are defined in JIS B0601. These can be measured by an atomic force microscope (AFM) or the like.
[0046]
In addition, in the manufacturing method of the glass substrate for information recording media, you may have various processes other than the above. For example, an annealing process for relaxing internal distortion of the glass substrate, a heat shock process for confirming the reliability of the strength of the glass substrate, and removing foreign substances such as abrasives and chemical strengthening treatment liquid remaining on the surface of the glass substrate. You may have a washing process, various inspection and evaluation processes, etc. Also, the polishing process reduces the chemically strengthened area of the surface of the glass substrate. There is no restriction on whether or not chemically strengthened regions remain on the surface of the glass substrate after the polishing process, or on the thickness of the remaining strengthened regions.
[0047]
Thus, the glass substrate for information recording media is manufactured. The glass substrate for information recording media having the shape of the inner peripheral edge of the present invention can be obtained by appropriately adjusting the conditions of the polishing process from the inner peripheral end face processing step.
[0048]
(Material of glass substrate)
The material of the glass substrate is not particularly limited as long as it can be chemically strengthened by ion exchange. For example, SiO 2 , Na 2 Soda lime glass mainly composed of O and CaO; SiO 2 , Al 2 O Three , R 2 Aluminosilicate glass mainly composed of O (R = K, Na, Li); borosilicate glass; Li 2 O-SiO 2 Glass; Li 2 O-Al 2 O Three -SiO 2 Glass; R'O-Al 2 O Three -SiO 2 System glass (R ′ = Mg, Ca, Sr, Ba) or the like can be used. Among these, aluminosilicate glass and borosilicate glass are particularly preferable because they are excellent in impact resistance and vibration resistance.
[0049]
(Magnetic recording medium)
An information recording medium can be obtained by forming at least a recording layer on the glass substrate for information recording medium of the present invention. The recording layer is not particularly limited, and various recording layers utilizing properties such as magnetism, light, and magnetomagnetism can be used. Particularly, for the production of a magnetic recording medium (magnetic disk) using the magnetic layer as a recording layer. Is preferred.
[0050]
The magnetic material used for the magnetic layer is not particularly limited, and a known material can be appropriately selected and used. Examples thereof include CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, CoNiPt, CoNiCrPt, CoNiCrTa, CoCrPtTa, and CoCrPtSiO containing Co as a main component. The magnetic layer may be divided by a nonmagnetic film (for example, Cr, CrMo, CrV, etc.) to have a multilayer structure in which noise is reduced.
[0051]
As the magnetic layer, in addition to the above Co-based materials, ferrite-based and iron-rare earth-based materials, SiO 2 A granular material in which magnetic particles such as Fe, Co, CoFe, and CoNiPt are dispersed in a nonmagnetic film made of BN or the like can also be used. The magnetic layer may be either an in-plane type or a vertical type.
[0052]
As a method for forming the magnetic film, a known method can be used. For example, a sputtering method, an electroless plating method, a spin coating method, and the like can be given.
[0053]
The magnetic recording medium may be further provided with an underlayer, a protective layer, a lubricating layer, etc., if necessary. Any of these layers can be used by appropriately selecting a known material. Examples of the material for the underlayer include Cr, Mo, Ta, Ti, W, V, B, Al, and Ni. Examples of the material for the protective layer include Cr, Cr alloy, C, and ZrO. 2 , SiO 2 Etc. Moreover, as a lubrication layer, the thing etc. which apply | coated the liquid lubricant which consists of perfluoro polyether (PFPE) etc., and heat-processed as needed are mentioned, for example.
【Example】
[0054]
As an information recording medium glass substrate, an aluminosilicate glass substrate having an outer diameter of 65 mm, an inner diameter of 20 mm, and a plate thickness of 0.635 mm was manufactured according to the manufacturing process of FIG.
[0055]
Specifically, SiO 2 , Al 2 O Three , R 2 A glass material mainly composed of O (R = K, Na, Li) is melted (glass melting step), the molten glass is poured into a lower mold, and press-molded with an upper mold to obtain a disk-shaped glass substrate precursor. (Press molding process).
[0056]
A hole was made in the center portion of the press-molded glass substrate precursor with a core drill composed of a diamond grindstone (coring step). Next, both surfaces of the glass substrate were polished with a known double-sided lapping machine equipped with diamond pellets of # 1000 mesh while supplying a grinding liquid, and the parallelism, flatness and thickness of the glass substrate were preliminarily adjusted ( First wrapping step).
[0057]
Next, the outer peripheral end surface and the inner peripheral end surface of the glass substrate are ground with a drum-shaped diamond grindstone and chamfered by about 0.1 mm to obtain the outer diameter and roundness of the glass substrate, the inner diameter of the hole, and the glass. The concentricity between the substrate and the hole was finely adjusted (inner / outer diameter machining process). Next, brushing was performed on the inner peripheral end surface of the glass substrate while supplying a polishing liquid to remove fine scratches (inner peripheral end surface processing step).
[0058]
Next, both surfaces of the glass substrate are polished again with a known double-sided lapping machine equipped with # 1500 mesh diamond pellets while supplying the grinding liquid, and the parallelism, flatness and thickness of the glass substrate are finely adjusted. (Second wrapping step). Then, brush polishing was performed on the outer peripheral end surface of the glass substrate while supplying a polishing liquid to remove fine scratches (outer peripheral end surface processing step).
[0059]
Next, after washing the glass substrate, the glass substrate was immersed in a chemical strengthening solution to form a chemically strengthened layer on the glass substrate (chemical strengthening step). Chemical strengthening solution is NaNO Three And KNO Three Were added to a chemical strengthening tank and heated to 375 ° C.
[0060]
Then, the grinding | polishing process which finishes the surface of a glass substrate precisely was performed (polishing process). In the polishing process, both surfaces of the glass substrate were polished while supplying a polishing liquid with a known double-side polishing machine equipped with pads. By changing the conditions such as the type and particle size of the abrasive used for the polishing liquid supplied to the polishing machine, the number of rotations of the surface plate with pads contacting both surfaces of the glass substrate, and the pressure of the pad against the glass substrate, various Glass substrate No. having an inner peripheral end face shape of 1 to No. 17 was obtained as a sample. The surface roughness of these glass substrates was in the range of Rmax from 2 nm to 6 nm and Ra from 0.2 nm to 0.4 nm.
[0061]
Thereafter, the glass substrate was washed, and then a magnetic film was provided on the glass substrate to obtain a magnetic recording medium. From the glass substrate side, the magnetic film consists of a Ni—Al base layer (thickness of about 100 nm), a Co—Cr—Pt recording layer (thickness 20 nm), and a protective film (DLN 5 nm) made of DLC (Diamond Like Carbon). Laminated sequentially. Thus, the thickness of the magnetic film is sufficiently thin compared to the thickness of the glass substrate.
[0062]
As shown in FIG. 4, the completed magnetic recording medium was inserted into an SPM hub equipped with a flange in the order of a glass substrate, a spacer, and a glass substrate, and two glass substrates were fixed using a clamp. This SPM was incorporated into a drop test jig 80 simulating a magnetic disk recording device shown in FIG. In the drop test jig 80, reference numeral 82 denotes an aluminum die-cast base to which the SPM is attached, 84 denotes a SUS cover, 86 and 88 denote glass substrates, and 90 denotes a clamp. Further, similarly to an actual magnetic disk recording apparatus, a ramp 92 is provided for waiting the magnetic head. Five drop test jigs 80 were prepared for each of the following samples.
[0063]
Thereafter, when the SPM of each drop test jig 80 was rotated at 7200 rpm, the sample No. Any of 1 to 17 operated without any problem. Next, a drop test was performed to examine whether the glass substrate was cracked. In the drop test, the above-described drop test jig 80 is fixed in a horizontal state (a glass substrate is in a horizontal state) on a separately prepared fixing jig by the same fixing method as that of an actual magnetic disk recording apparatus. The dropping test jig 80 is dropped together with the fixing jig while maintaining the level. The impact of the drop is received by the falling fixture under the acceleration jig provided at the fixture so that the acceleration of the attack that occurs at the beginning of the fall is 1000G and the duration of this acceleration is 1 ms. And the fall height was adjusted. The number of drops of the drop test jig 80 is as follows: a state in which the drop test jig 80 is attached to the fixed jig so that the hub of the SPM is on the lower side, and a state in which the drop test jig 80 is upside down. Dropped 3 times.
[0064]
The results are shown in Table 1. Table 2 shows the specifications of the flange, spacer, and clamp for fixing the magnetic recording medium used at this time to the SPM hub included in the drop test jig 80. In addition, since the radius of the hole of a glass substrate is 10 mm, the value of distance R1 is 15 mm and the value of distance R3 is 10.35 mm.
[0065]
[Table 1]
[0066]
[Table 2]
[0067]
From the above results, the magnetic recording medium having a shape satisfying the conditional expressions (1) to (3) is stably fixed to the hub of the SPM (spindle motor) and strong against the magnetic disk recording apparatus in which the SPM is incorporated. It was confirmed that it was not damaged when an impact was applied.
[Explanation of symbols]
[0068]
1, 1A, 1B, 1C Information recording medium glass substrate (glass substrate)
2 Magnetic film
10a Front main surface
10b Back main surface
13 holes
14 Outer end face
15 Inner edge
20 screws
30 hub
30a Flange
30b Motor bracket
40, 82 base
50 spindle motor
60A, 60B spacer
70, 90 clamp
70p, 30p protrusion
80 Jig for drop test
84 Cover
92 lamp
D, 86, 88 Magnetic recording medium (magnetic disk)
P1, P2, P3, Pt position
R1, R2, R3, Δh distance
Rs, Rp radius
BL contour line
SH reference plane
C Center axis

Claims (3)

平坦部を備えた主表面と、同心の外周端面と内周端面とを有するドーナツ形状の情報記録媒体用ガラス基板と、
回転自在なハブを含むスピンドルモータと、
前記ハブの外周に嵌合し、前記内周端面がなす孔に挿通された状態で、前記主表面に対向する面が平坦で、前記対向する面の外周が前記孔を中心軸とする半径Rsの円形である第1の形状を有する第1挟持部材と、
前記主表面に対向する面に前記孔を中心軸とする前記半径Rsより小さい半径Rpに円環状の突起を有し、前記突起の頂部分の形状が丸みを有する第2の形状を有する第2挟持部材とを有し、
前記第1挟持部材と第2挟持部材とで前記情報記録媒体用ガラス基板を挟持して前記ハブに固定される情報記録装置であって、
前記情報記録媒体用ガラス基板の径方向の前記主表面に垂直な断面の一方の前記主表面の輪郭線の上で、前記情報記録媒体用ガラス基板の中心軸からの距離R1を前記孔の半径R0+5mmとする位置P1と、前記情報記録媒体用ガラス基板の中心軸からの距離R3を前記孔の半径R0+0.35mmとする位置P3と、を同一断面内に定め、前記輪郭線が、前記位置P1と前記位置P3との間の位置P2で前記主表面の平坦部を基準とする基準平面から前記情報記録媒体用ガラス基板の厚み方向に離れ、前記情報記録媒体用ガラス基板の中心軸から前記位置P2までの距離を距離R2とし、前記基準平面と前記位置P3との距離をΔhとして、0.001μm<Δh<5.0μmであるときに以下の条件式を満足することを特徴とする情報記録装置。
距離R3の値<半径Rsの値<距離R2の値
距離R3の値<半径Rpの値<距離R2の値
A glass substrate for an information recording medium in a donut shape having a main surface with a flat portion, a concentric outer peripheral end surface and an inner peripheral end surface;
A spindle motor including a rotatable hub;
The surface facing the main surface is flat when fitted to the outer periphery of the hub and inserted into the hole formed by the inner peripheral end surface, and the outer periphery of the opposing surface has a radius Rs with the hole as a central axis. A first clamping member having a first shape which is a circular shape of
A second surface having a second shape in which the shape of the top portion of the protrusion has a round shape with a radius Rp smaller than the radius Rs having the hole as a central axis on a surface facing the main surface. A clamping member,
An information recording apparatus that holds the glass substrate for information recording medium between the first holding member and the second holding member and is fixed to the hub,
The distance R1 from the central axis of the glass substrate for information recording medium on the contour line of one main surface of the cross section perpendicular to the main surface in the radial direction of the glass substrate for information recording medium is the radius of the hole. A position P1 for R0 + 5 mm and a position P3 for setting a distance R3 from the central axis of the glass substrate for information recording medium to a radius R0 + 0.35 mm of the hole are defined in the same cross section, and the contour line is the position P1. And a position P2 between the position P3 and a reference plane with the flat portion of the main surface as a reference in the thickness direction of the glass substrate for information recording medium, and the position from the central axis of the glass substrate for information recording medium The following conditional expression is satisfied when 0.001 μm <Δh <5.0 μm, where the distance to P2 is distance R2 and the distance between the reference plane and the position P3 is Δh. Apparatus.
Value of distance R3 <value of radius Rs <value of distance R2 value of distance R3 <value of radius Rp <value of distance R2
前記情報記録媒体用ガラス基板の表面と裏面とが対称的な形状であることを特徴とする請求項1記載の情報記録装置。   2. The information recording apparatus according to claim 1, wherein the front surface and the back surface of the glass substrate for information recording medium are symmetrical. 前記情報記録媒体用ガラス基板の表面に磁性膜を有することを特徴とする請求項1記載の情報記録装置。   The information recording apparatus according to claim 1, further comprising a magnetic film on a surface of the glass substrate for the information recording medium.
JP2009503973A 2007-03-06 2008-03-04 Information recording device Active JP5392075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009503973A JP5392075B2 (en) 2007-03-06 2008-03-04 Information recording device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007055369 2007-03-06
JP2007055369 2007-03-06
PCT/JP2008/053825 WO2008111427A1 (en) 2007-03-06 2008-03-04 Information recording apparatus, glass substrate for information recording medium used in the information recording apparatus and magnetic recording medium
JP2009503973A JP5392075B2 (en) 2007-03-06 2008-03-04 Information recording device

Publications (2)

Publication Number Publication Date
JPWO2008111427A1 JPWO2008111427A1 (en) 2010-06-24
JP5392075B2 true JP5392075B2 (en) 2014-01-22

Family

ID=39759370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009503973A Active JP5392075B2 (en) 2007-03-06 2008-03-04 Information recording device

Country Status (2)

Country Link
JP (1) JP5392075B2 (en)
WO (1) WO2008111427A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184298B2 (en) * 2008-10-22 2013-04-17 古河電気工業株式会社 Glass substrate for magnetic disk and method for producing glass substrate for magnetic disk
JP5425685B2 (en) * 2009-05-29 2014-02-26 Hoya株式会社 Method for manufacturing glass substrate for magnetic recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184758A (en) * 1990-11-20 1992-07-01 Seiko Epson Corp Driving arrangement for disk
JPH0676853U (en) * 1993-04-07 1994-10-28 昭和アルミニウム株式会社 Spindle adapter for circular plate work such as aluminum substrate for magnetic disk

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260910A (en) * 1990-03-09 1991-11-20 Fujitsu Ltd Glass substrate medium type magnetic disk device
JPH04195977A (en) * 1990-11-28 1992-07-15 Toshiba Corp Magnetic disk device
JP2004265582A (en) * 1999-09-30 2004-09-24 Hoya Corp Glass substrate for magnetic disk, and magnetic disk
JP2003217249A (en) * 2002-01-21 2003-07-31 Toshiba Corp Disk mounting mechanism and disk device having this mechanism
JP4911882B2 (en) * 2004-07-23 2012-04-04 コニカミノルタオプト株式会社 GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE
JP2006059463A (en) * 2004-08-20 2006-03-02 Toyo Kohan Co Ltd Glass substrate for magnetic disk, its reinforcement method and hard disk drive using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184758A (en) * 1990-11-20 1992-07-01 Seiko Epson Corp Driving arrangement for disk
JPH0676853U (en) * 1993-04-07 1994-10-28 昭和アルミニウム株式会社 Spindle adapter for circular plate work such as aluminum substrate for magnetic disk

Also Published As

Publication number Publication date
WO2008111427A1 (en) 2008-09-18
JPWO2008111427A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5593224B2 (en) Magnetic disk substrate, manufacturing method thereof, and magnetic disk
JP4998095B2 (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JP5321594B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
JP4748115B2 (en) Glass substrate for magnetic recording medium and magnetic recording medium
JP4894678B2 (en) Manufacturing method of glass substrate for information recording medium
JP5392075B2 (en) Information recording device
JP2008217918A (en) Glass substrate for magnetic recording medium, and magnetic recording medium
JP4952311B2 (en) Glass substrate for information recording medium and magnetic recording medium
WO2011021478A1 (en) Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium
JP4860580B2 (en) Magnetic disk substrate and magnetic disk
JP5898381B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND MAGNETIC DISC DEVICE
JP2008204499A (en) Glass substrate for information recording medium and magnetic recording medium
JP5755952B2 (en) Inspection and sorting method for HDD glass substrate, manufacturing method of HDD information recording medium, and HDD glass substrate
JP2015060614A (en) Method for manufacturing glass substrate for information recording medium
JP5719785B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE
JP5869241B2 (en) HDD glass substrate, HDD glass substrate manufacturing method, and HDD magnetic recording medium
JP5870187B2 (en) Glass substrate for magnetic disk, magnetic disk, magnetic disk drive device
JP6423935B2 (en) Manufacturing method of glass substrate for information recording medium and polishing brush
JP2008130180A (en) Glass substrate for information recording medium, manufacturing method of glass substrate for information recording medium, and information recording medium
JP4993047B1 (en) Method for manufacturing glass substrate for magnetic information recording medium
WO2015041011A1 (en) Method for manufacturing glass substrate for information recording medium
JP2013012283A (en) Glass substrate for hdd
WO2013145461A1 (en) Method for producing hdd glass substrate
WO2012131814A1 (en) Method for producing glass substrate for magnetic information recording medium, and glass substrate for magnetic information recording medium
WO2013146134A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130813

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5392075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250