WO2013146134A1 - Manufacturing method for glass substrate for information recording medium, and information recording medium - Google Patents
Manufacturing method for glass substrate for information recording medium, and information recording medium Download PDFInfo
- Publication number
- WO2013146134A1 WO2013146134A1 PCT/JP2013/056081 JP2013056081W WO2013146134A1 WO 2013146134 A1 WO2013146134 A1 WO 2013146134A1 JP 2013056081 W JP2013056081 W JP 2013056081W WO 2013146134 A1 WO2013146134 A1 WO 2013146134A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass substrate
- polishing pad
- auxiliary
- information recording
- recording medium
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8404—Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
Definitions
- the present invention relates to a method for manufacturing a glass substrate for information recording medium and an information recording medium, and in particular, includes a method for manufacturing a glass substrate for information recording medium used for manufacturing an information recording medium, and the glass substrate for information recording medium.
- the present invention relates to an information recording medium.
- An information recording medium such as a magnetic disk is mounted as a hard disk on a computer or the like.
- An information recording medium is manufactured by forming a magnetic thin film layer including a recording layer using properties such as magnetism, light, or magnetomagnetism on the surface of a substrate. As the recording layer is magnetized by the magnetic head, predetermined information is recorded on the information recording medium.
- the recording density of information recording media is improving year by year. Accordingly, high quality is required for the quality of substrates used for information recording media.
- an aluminum substrate has been used as a substrate for an information recording medium.
- the recording density is improved, it is gradually being replaced by a glass substrate that is superior in smoothness and strength of the substrate surface as compared with an aluminum substrate.
- the method for producing a glass substrate for an information recording medium has a polishing step for ensuring high surface shape accuracy.
- two or more stages of polishing processes in which slurry and polishing pads having different processing capabilities are effectively combined are applied.
- Patent Document 1 discloses a conventional technology relating to glass substrate manufacturing.
- the slurry is supplied from an area near the center between the inner surface of the surface plate and the outer surface of the surface plate of the double-side polishing apparatus, but until the slurry is supplied to the entire double-side polishing apparatus after the double-side polishing apparatus is driven, There was a difference in the arrival time of the slurry between the inner and outer glass substrates. For this reason, a difference has occurred in the processing amount of the glass substrate in the initial stage of processing within the surface plate. For this reason, the removal state varied in the processing marks generated in the previous step of the polishing step.
- the amount of processing traces on glass substrates has been increased to reduce scratches and deposits on the substrate surface and to increase the recording density of magnetic media. It is essential to reduce the variation in the processing marks on the glass substrate.
- scratches and deposits generated during the final polishing of the glass substrate adversely affect the characteristics of the information recording medium on which the subsequent magnetic thin film layer is formed.
- An object of the present invention is to provide a method of manufacturing a glass substrate for an information recording medium and an information recording medium using a double-side polishing apparatus capable of reducing the variation in processing traces.
- the method for manufacturing a glass substrate for information recording medium is a method for manufacturing a glass substrate for information recording medium in which a magnetic thin film layer is formed on the main surface of a circular disk-shaped glass substrate, comprising a planetary gear mechanism.
- a surface polishing step of polishing the main surface of the glass substrate using a double-side polishing apparatus provided with an abrasive, and the double-side polishing apparatus is located on the upper side of the glass substrate.
- a disc-shaped carrier that is sandwiched between the upper polishing pad and the lower polishing pad and that performs a predetermined rotational movement by the planetary gear mechanism.
- the carrier has a plurality of auxiliary through holes, and the auxiliary through holes are at least when the radius of the carrier is Rmm and the distance from the center position of the carrier to the center position of the auxiliary through hole is rmm.
- One auxiliary through hole is provided at a position satisfying the relational expression [r ⁇ (3/4) ⁇ R], and when the diameter of the glass substrate is D mm, the diameter of the auxiliary through hole is 1 mm or more and less than Dmm.
- half or more of the plurality of auxiliary through holes 530 are provided at positions satisfying the relational expression [r ⁇ (3/4) ⁇ R].
- all of the plurality of auxiliary through holes 530 are provided at positions satisfying the relational expression [r ⁇ (3/4) ⁇ R].
- a plurality of grooves extending in parallel to each other are provided on the surfaces of the upper polishing pad and the lower polishing pad, and the interval between the adjacent grooves is not less than Dmm and less than [20 ⁇ D] mm. It is.
- the intervals between the plurality of grooves provided in the upper polishing pad are narrower than the intervals between the plurality of grooves provided in the lower polishing pad.
- the same number of auxiliary through holes as the through holding holes are provided at positions between the through holding holes at positions on the outer peripheral side of the through holding hole located on the outermost periphery.
- the auxiliary through hole has a diameter of 1 mm or more and less than 10 mm.
- the present invention by reducing the time difference between driving the double-side polishing apparatus and supplying the slurry to the glass substrates located on the outside and inside of the carrier, variation in processing marks on the glass substrate is reduced. It is possible to provide a method of manufacturing a glass substrate for an information recording medium and an information recording medium using a double-side polishing apparatus that can be reduced.
- FIG. 5 is a cross-sectional view taken along line V in FIG. 4. It is a top view which shows the carrier in embodiment. It is a top view which shows the dimensional relationship of the carrier in embodiment. It is a top view of a glass substrate. It is sectional drawing of the upper side polishing pad and lower side polishing pad in embodiment.
- FIG. 1 is a perspective view showing a glass substrate 1 used for a magnetic disk 10 (see FIG. 2).
- FIG. 2 is a perspective view showing a magnetic disk 10 provided with a glass substrate 1 as an information recording medium.
- a glass substrate 1 (glass substrate for information recording medium) used for a magnetic disk 10 has an annular disk shape with a hole 1H formed in the center.
- the circular disk-shaped glass substrate 1 has a front main surface 1A, a back main surface 1B, an inner peripheral end surface 1C, and an outer peripheral end surface 1D.
- the size of the glass substrate 1 is not particularly limited, and is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch outer diameter.
- the thickness of the glass substrate 1 is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage.
- the outer diameter is about 65 mm
- the inner diameter is about 20 mm
- the thickness is about 0.8 mm.
- the thickness of the glass substrate 1 is a value calculated by averaging the values measured at a plurality of arbitrary points that are point-symmetric on the glass substrate 1.
- a magnetic film is formed on the front main surface 1A of the glass substrate 1 to form a magnetic thin film layer 2 including a magnetic recording layer.
- the magnetic thin film layer 2 is formed only on the front main surface 1A, but the magnetic thin film layer 2 may also be formed on the back main surface 1B.
- the magnetic thin film layer 2 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the front main surface 1A of the glass substrate 1 (spin coating method).
- the magnetic thin film layer 2 may be formed on the front main surface 1A of the glass substrate 1 by a sputtering method, an electroless plating method, or the like.
- the film thickness of the magnetic thin film layer 2 formed on the front main surface 1A of the glass substrate 1 is about 0.3 ⁇ m to about 1.2 ⁇ m in the case of the spin coating method, and about 0.04 ⁇ m to about 0.00 in the case of the sputtering method. In the case of electroless plating, the thickness is about 0.05 ⁇ m to about 0.1 ⁇ m. From the viewpoint of thinning and high density, the magnetic thin film layer 2 is preferably formed by sputtering or electroless plating.
- the magnetic material used for the magnetic thin film layer 2 is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Co having high crystal anisotropy is basically used for the purpose of adjusting the residual magnetic flux density. A Co-based alloy to which Ni or Cr is added is suitable. Further, as a magnetic layer material suitable for heat-assisted recording, an FePt-based material may be used.
- a lubricant may be thinly coated on the surface of the magnetic thin film layer 2 in order to improve the sliding of the magnetic recording head.
- the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
- an underlayer or a protective layer may be provided.
- the underlayer in the magnetic disk 10 is selected according to the magnetic film.
- the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
- the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked.
- a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
- Examples of the protective layer for preventing wear and corrosion of the magnetic thin film layer 2 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers.
- protective layers may be formed on the protective layer or instead of the protective layer.
- colloidal silica fine particles are dispersed and coated on a Cr layer with tetraalkoxysilane diluted with an alcohol solvent, and then fired to form a silicon oxide (SiO2) layer. May be.
- FIG. 3 is a flowchart showing a method for manufacturing the glass substrate 1 in the embodiment.
- the glass substrate manufacturing method in the present embodiment includes a glass blank material preparation step (step S10), a glass substrate formation step (step S20), a grinding / polishing step (step S30), a chemical strengthening step (step S40), and a cleaning.
- the process (step S50) is provided.
- the magnetic thin film forming step (step S60) may be performed on the glass substrate (corresponding to the glass substrate 1 in FIG. 1) obtained through the chemical strengthening treatment step (step S40).
- the magnetic disk 10 as an information recording medium is obtained by the magnetic thin film forming step (step S60).
- the glass material constituting the glass substrate is melted (step S11).
- general aluminosilicate glass is used as the glass material.
- the aluminosilicate glass is composed of 58 mass% to 75 mass% SiO2, 5 mass% to 23 mass% Al2O3, 3 mass% to 10 mass% Li2O, and 4 mass% to 13 mass% Na2O. Contains as a main component.
- the molten glass material is poured onto the lower mold and then press-molded with the upper mold and the lower mold (step S12).
- a disk-shaped glass blank (glass base material) is formed by press molding.
- the glass blank material may be formed by cutting out sheet glass (sheet glass) formed by a downdraw method or a float method with a grinding wheel. Further, the glass material is not limited to aluminosilicate glass, and may be any material.
- the first lapping step is performed on both main surfaces of the press-molded glass blank material for the purpose of improving dimensional accuracy and shape accuracy (Ste S21).
- Both main surfaces of a glass blank material are the main surfaces used as the front main surface 1A and the main surface used as the back main surface 1B in FIG. 1 through each process mentioned later (henceforth, both main surfaces) Also called).
- alumina abrasive grains having a particle size of # 400 particles size of about 40 to 60 ⁇ m
- the surface roughness Rmax is finished to about 6 ⁇ m.
- a coring (inner peripheral cut) process is performed on the center portion of the glass blank using a cylindrical diamond drill or the like (step S22).
- a coring process is performed on the center portion of the glass blank using a cylindrical diamond drill or the like.
- a predetermined chamfering process may be performed on the hole in the center.
- the inner peripheral end surface and the outer peripheral end surface of the glass substrate are polished into a mirror surface by a brush (step S22).
- a slurry containing cerium oxide abrasive grains is used as the abrasive grains.
- a second lapping process is performed on both main surfaces of the glass substrate (step S31).
- the second lapping step is performed using a double-side grinding apparatus that uses a planetary gear mechanism. Specifically, press the surface plate from above and below both main surfaces of the glass blank material, supply water, grinding liquid or lubricating liquid onto both main surfaces, and move the glass blank material and the lapping surface plate relatively. Then, the second lapping step is performed.
- the approximate parallelism, flatness, thickness, etc. of the glass substrate are preliminarily adjusted, and a glass base material having an approximately flat main surface is obtained.
- fine abrasive grains are used as compared with the first lapping step in order to reduce the generated grinding marks. For example, by attaching fixed abrasive grains such as a diamond tile pad on a surface plate, both surfaces of the glass substrate are finished to a surface roughness Rmax of about 2 ⁇ m.
- step S31 warping of the glass substrate is corrected while removing scratches remaining on both main surfaces of the glass substrate in the second lapping process (step S33).
- a double-side polishing apparatus using a planetary gear mechanism is used.
- polishing is performed using a polishing pad such as hard velor, urethane foam, or pitch-impregnated suede.
- abrasive a slurry mainly composed of general cerium oxide abrasive grains is used.
- the glass substrate is subjected to polishing again, and minute defects remaining on both main surfaces of the glass substrate are eliminated (step S34). Both main surfaces of the glass substrate are finished to have a mirror-like surface, thereby forming a desired flatness and eliminating the warpage of the glass substrate.
- a double-side polishing apparatus using a planetary gear mechanism is used. For example, polishing is performed using a polishing pad which is a soft polisher made of suede or velor.
- a slurry mainly composed of general colloidal silica that is finer than the cerium oxide used in the first polishing step is used.
- FIG. 4 is a partial perspective view of a double-side polishing apparatus 2000 used in the polishing process.
- 5 is a cross-sectional view taken along the line V in FIG.
- the double-side polishing apparatus 2000 includes an upper surface plate (upper whetstone holding surface plate) 300, a lower surface plate (lower whetstone holding surface plate) 400, and a side (glass substrate side) facing the lower surface plate 400 of the upper surface plate 300.
- the upper polishing pad 310 attached to the lower surface, and the lower polishing pad 410 attached to the upper surface on the side (glass substrate side) facing the upper surface plate 300 of the lower surface plate 400 are provided.
- the upper surface plate 300 is provided with a plurality of slurry supply holes 320.
- the opening diameter of the slurry supply hole 320 is about 8 mm to 15 mm.
- the slurry supply holes 320 are provided at 16 locations near the outer peripheral edge of the upper surface plate 300.
- the number and positions of the slurry supply holes 320 are not limited to the present embodiment.
- the position, quantity, and opening diameter of the slurry supply holes 320 are determined according to the amount of slurry supplied.
- One end of a slurry supply tube 330 is connected to each of the slurry supply holes 320.
- the other end of the slurry supply tube 330 is connected to a tube-shaped powder ring 340 provided in an annular shape.
- a slurry supply port 350 is provided at a predetermined position of the powder ring 340. In the present embodiment, three slurry supply ports 350 are provided, but the quantity is arbitrary.
- the powder ring 340 rotates together with the upper surface plate 300, and when the slurry supply port 350 is positioned below, the slurry supply nozzle 360 that supplies the slurry to the slurry supply port 350 is provided above the powder ring 340. Yes.
- the slurry supplied from the slurry supply nozzle 360 is supplied between the side polishing pad 310 and the lower polishing pad 410 through the slurry supply tube 330 and the slurry supply hole 320.
- the upper polishing pad 310 and the lower polishing pad 410 are processing tools for polishing both main surfaces of the glass substrate 1.
- the upper surface plate 300 and the lower surface plate 400 rotate in directions opposite to each other with respect to the revolution direction of the carrier 500.
- Carrier 500 is arranged in a gap formed between upper surface plate 300 and lower surface plate 400. A plurality of disk-shaped glass substrates 1 are held by the carrier 500. The detailed structure of the carrier 500 will be described later.
- the surfaces of the upper polishing pad 310 and the lower polishing pad 410 may be cleaned.
- the surface of the upper polishing pad 310 and the lower polishing pad may be cleaned in any process during the grinding / polishing process (step S30), and between any processes in the grinding / polishing process (step S30). It may be performed or may be performed after completion of the grinding / polishing process (step S30).
- the surfaces of the upper polishing pad 310 and the lower polishing pad 410 are cleaned in the double-side polishing apparatus 2000.
- the surfaces of the upper polishing pad 310 and the lower polishing pad 410 may be periodically cleaned each time one or more polishings are performed, or may be cleaned irregularly.
- the chemical strengthening layer is formed on both main surfaces of the glass substrate by immersing the glass substrate in the chemical strengthening treatment liquid (step S40).
- the glass substrate 1 is immersed for about 30 minutes in a chemical strengthening treatment solution such as a mixture solution of potassium nitrate (70%) and sodium nitrate (30%) heated to 300 ° C. By doing so, chemical strengthening is performed.
- alkali metal ions such as lithium ions and sodium ions contained in the glass substrate 1 are replaced by alkali metal ions such as potassium ions having a larger ion radius than these ions (ion exchange method).
- Compressive stress is generated in the ion-exchanged region due to strain caused by the difference in ion radius, and both main surfaces of the glass substrate 1 are strengthened.
- a chemical strengthening layer may be formed in a range from the surface of the glass substrate 1 to about 5 ⁇ m to improve the rigidity of the glass substrate 1. As described above, a glass substrate corresponding to the glass substrate 1 shown in FIG. 1 is obtained.
- the glass substrate 1 may be further subjected to a polishing treatment with a machining allowance on both main surfaces of 0.1 ⁇ m to 0.5 ⁇ m.
- a polishing treatment with a machining allowance on both main surfaces of 0.1 ⁇ m to 0.5 ⁇ m.
- a chemical strengthening step may be performed between the first polishing step (rough polishing) and the second polishing step (precision polishing).
- the glass substrate is cleaned (step S50).
- the deposits attached to the two main surfaces of the glass substrate are removed.
- the number of deposits on the surface of the glass substrate 1 is inspected using an optical defect inspection apparatus or the like.
- the magnetic thin film layer 2 is formed by forming a magnetic film on both main surfaces (or one of the main surfaces) of the glass substrate (corresponding to the glass substrate 1 shown in FIG. 1) that has been subjected to the chemical strengthening treatment. Is done.
- the magnetic thin film layer includes an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and a lubrication made of an F system. It is formed by sequentially depositing layers. By forming the magnetic thin film layer, a perpendicular magnetic recording disk corresponding to the magnetic disk 10 shown in FIG. 2 can be obtained.
- the magnetic disk in the present embodiment is an example of a perpendicular magnetic disk composed of a magnetic thin film layer.
- the magnetic disk may be composed of a magnetic layer or the like as a so-called in-plane magnetic disk.
- FIGS. 6 is a plan view showing a carrier 500 in the present embodiment
- FIG. 7 is a plan view showing a dimensional relationship of the carrier 500 in the present embodiment
- FIG. 8 is a plan view of the glass substrate 1
- FIG. 4 is a cross-sectional view of an upper polishing pad 310 and a lower polishing pad 410 in the present embodiment.
- carrier 500 in the present embodiment has a disk-shaped main body 510, and has a thickness of about 0.30 mm to 2.2 mm, which is thinner than the thickness of glass substrate 1 to be held. The thickness is selected. The diameter of the carrier 500 is about 430 mm.
- aramid fiber, FRP (glass epoxy), PC (polycarbonate), or the like is used for the main body 510.
- the carrier 500 is provided with 22 through-holding holes 520 for holding the glass substrate 1.
- the through-holding holes 520 are arranged in a double ring shape, with eight through-holding holes 520 on the inner annular line r1 and through-holding holes 520 on the outer annular line r2. 14 are arranged.
- the diameter of the through-holding hole 520 is about 66.5 mm.
- the carrier 500 has a plurality of auxiliary through holes 530.
- the auxiliary through-hole 530 has a radius of the carrier 500 as Rmm and a distance from the center position C1 of the carrier 500 to the center position C2 of the auxiliary through-hole 530 as rmm. It is provided at a position satisfying the relational expression r ⁇ (3/4) ⁇ R].
- all the auxiliary through-holes 530 satisfy the above relational expression, and are the same number (14) as the through-holding holes 520 at positions on the outer peripheral side with respect to the through-holding hole 520 located on the outermost periphery.
- An auxiliary through hole 530 is provided at a position between the through holding holes 520. Therefore, the outermost through-holes 520 and the auxiliary through-holes 530 are arranged in a staggered manner.
- the position where the through-holding hole 520 is provided is sufficient if at least one auxiliary through-hole 530 is provided at a position satisfying the above relational expression. Therefore, if at least one auxiliary through hole 530 is provided at a position satisfying the above relational expression, even if the auxiliary through hole 530 is provided at a position [r ⁇ (3/4) ⁇ R]. Good.
- auxiliary through holes 530 provided in the carrier 500 are provided at positions satisfying the relational expression [r ⁇ (3/4) ⁇ R]. More preferably, all the auxiliary through holes 530 are provided at positions satisfying the relational expression [r ⁇ (3/4) ⁇ R].
- the diameter of the auxiliary through hole 530 is 1 mm or more and less than Dmm.
- the maximum diameter of the auxiliary through hole 530 is set to less than 65 mm.
- the distance r (mm) from the center position C1 of the carrier 500 to the center position C2 of the auxiliary through hole 530 is preferably 161.25 mm or more.
- the surface of upper polishing pad 310 is provided with a plurality of grooves 310g having a groove width G1, a groove depth D1, and an interval P1 between adjacent grooves.
- the lower polishing pad 410 is also provided with a similar groove 410g.
- the groove width G1 is about 1 mm to about 5 mm
- the groove depth D1 is about 0.3 mm to about 2.0 mm
- the interval P1 between adjacent grooves is about 20 mm to about 500 mm.
- a groove 410 g similar to the surface of the upper polishing pad 310 is also provided on the surface of the lower polishing pad 410.
- the interval between the grooves 310g of the upper polishing pad 310 is preferably set narrower than the interval between the grooves 410g of the lower polishing pad 410.
- the pattern shape of the groove 310g of the upper polishing pad 310 and the pattern shape of the groove 410g of the lower polishing pad 410 may be the same or different.
- the pattern shape of the groove 310g of the upper polishing pad 310 and the pattern shape of the groove 410g of the lower polishing pad 410 are straight shapes in which grooves are provided in parallel at predetermined intervals, as shown in FIG. As described above, it is possible to adopt a lattice shape in which grooves intersect and other pattern shapes. 10 and 11, the pattern shape of the groove 310g of the upper polishing pad 310 is illustrated, but the pattern shape of the groove 410g of the lower polishing pad 410 is the same.
- five carriers 500 are annularly arranged between the upper surface plate 300 and the lower surface plate 400.
- a gear is provided on the outer peripheral surface of the carrier 500, but the illustration of the gear is omitted. Further, the radius of the carrier 500 means a dimension when measured with a gear tip circle.
- a plurality of auxiliary through holes 530 are provided at positions satisfying the relational expression [r ⁇ (3/4) ⁇ R], and the glass substrate 1
- the carrier 500 having the auxiliary through-hole 530 having a diameter of 1 mm or more and less than Dmm is used to drive the double-side polishing apparatus and supply slurry to the double-side polishing apparatus.
- the slurry that moves to the outside in the radial direction due to the centrifugal force due to the above passes through the auxiliary through-hole 530, moves between the upper polishing pad 310 and the lower polishing pad 410, and by the upper polishing pad 310 and the lower polishing pad 410, The surface of the glass substrate 1 is polished.
- the convergence time from the time when the double-side polishing apparatus is driven to the time when the slurry is supplied to the entire double-side polishing apparatus is reduced to the average time of slurry dispersion. be able to.
- Example 2 Examples and comparative examples of the method for producing the glass substrate for information recording medium will be described below. In each of the following examples and comparative examples, the processes up to the “first polishing step (rough polishing)” in S33 shown in FIG. 3 were performed as described above. The total number of glass substrates is 110.
- the surface roughness of the glass substrate was measured. It was confirmed that there was no variation in the surface roughness of the glass substrate before performing S34.
- the surface roughness of 10 glass substrates was measured in each comparative example and each example, using Nanoscope Dimension V type manufactured by BECOL Instruments. It was confirmed that the surface roughness (Ra) measured for each glass substrate in a 10 ⁇ m square was within 6.0 mm to 7.2 mm.
- Example 1-6 and Comparative Example 1-4 the “second polishing step (precise polishing)” of S34 was performed using each of the glass substrates.
- Five carriers 500 were used in one “second polishing step (precision polishing)”.
- the number of glass substrates held by one carrier is 22.
- the diameter of the through-holding hole 520 is 66.5 mm.
- a soft polisher made of suede was used for the upper polishing pad 310 and the lower polishing pad 410.
- As the abrasive a slurry mainly composed of general colloidal silica, which is finer than the cerium oxide used in the first polishing step, was used.
- the carrier 500 of Comparative Example 1 is not provided with the auxiliary through hole 530.
- the carrier 500 of Comparative Example 2 has an auxiliary through hole 530 having a diameter of 0.7 mm on the same circle on the circumference having a radius of 130 mm from the center position C1 of the carrier 500 (indicated as “inside” in FIG. 12). 14 were provided at regular intervals.
- An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 40 mm.
- the carrier 500 of Comparative Example 3 has an auxiliary through hole 530 having a diameter of 1.2 mm on the same circle on the circumference having a radius of 130 mm from the center position C1 of the carrier 500 (indicated as “inside” in FIG. 12). 14 were provided at regular intervals.
- An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 40 mm.
- the carrier 500 of Comparative Example 4 has an auxiliary through hole 530 having a diameter of 0.7 mm on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 12). 14 were provided at regular intervals.
- An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 40 mm.
- an auxiliary through hole 530 having a diameter of 1.2 mm is provided on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 12). 14 were provided at regular intervals.
- An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 40 mm.
- an auxiliary through hole 530 having a diameter of 4.0 mm is provided on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 12). 14 were provided at regular intervals.
- An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 40 mm.
- an auxiliary through hole 530 having a diameter of 1.2 mm is provided on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 12). Seven were provided at equal intervals.
- An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 40 mm.
- FIG. 12 shows the results of Comparative Example 1-4 and Example 1-3 according to the conditions and defect evaluation.
- the yield yield by scratch evaluation
- OSA7120 manufactured by KLA-Tencor was used, and a defect having a count of 20 or less that was regarded as a scratch was determined to be a non-defective product
- Comparative Examples 1-4 and the implementation
- Example 1-3 50 sheets were measured, the ratio of non-defective products was investigated, and those with 88% or more were evaluated as “A” and passed. Moreover, the thing of less than 88% was set as evaluation "C", and was made disqualified.
- Comparative Examples 1-4 were all evaluated as “C” and failed. On the other hand, each of Examples 1-3 was evaluated as “A” and passed.
- an auxiliary through hole 530 having a diameter of 1.2 mm is provided on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 13). Fourteen were provided at equal intervals.
- An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 60 mm.
- an auxiliary through hole 530 having a diameter of 1.2 mm is provided on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 13). Fourteen were provided at equal intervals.
- An interval P1 between adjacent grooves of the grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 80 mm.
- an auxiliary through hole 530 having a diameter of 1.2 mm is formed on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 13). Fourteen were provided at equal intervals. The upper polishing pad 310 and the lower polishing pad 410 were not provided with the grooves 310g and 410g.
- FIG. 13 shows the results of the yield of each example and defect evaluation in Example 4-6.
- the yield (yield by scratch evaluation) is the same as described above.
- Example 4-6 the evaluation of microwaviness was also performed.
- micro waviness was measured using a non-contact surface profile measuring machine (New View 5,000) manufactured by Zygo.
- the measurement wavelength range of the swell component is 30 ⁇ m or more and 200 ⁇ m or less.
- 20 glass substrates 1 were measured, and those with an average value of less than 0.8 mm were evaluated as “A” and passed.
- the evaluation “B” having a lower pass rank than the evaluation “A” was set as a pass with a value of 0.8 to 1.0%.
- the waviness of the wide groove interval was smaller than that of the narrow groove interval. If the grooves 310g and 410g are not provided, troubles due to friction may occur during the polishing operation, and it is better to provide the grooves 310g and 410g.
- Example 4 As shown in FIG. 13, in Example 4, the evaluation of microwaviness was “B”, but the defect evaluation was “A” in all of Examples 4-6.
- the chemical strengthening step (S40), the cleaning step (S50), and the magnetic thin film forming step (shown in FIG. 3) are performed on the glass substrates obtained in Examples 1-6 and Comparative Example 1-4. S60) was carried out to obtain an information recording medium.
- This information recording medium was incorporated into a hard drive and a read / write test was conducted. Compared to the information recording medium using the glass substrate obtained by Comparative Example 1-4, the information recording medium using the glass substrate obtained by Example 1-6 has good recording characteristics, in particular, The information recording medium using the glass substrate obtained in Example 4-6 was excellent in recording characteristics.
- the auxiliary through hole 530 is provided at a position satisfying the relational expression [r ⁇ (3/4) ⁇ R] (outside; 200 mm position).
- a plurality of carriers 500 provided with a plurality of auxiliary through holes 530 having a diameter of 1.2 mm or 4 mm were used.
- the double-side polishing apparatus when the double-side polishing apparatus is driven and the slurry is supplied to the double-side polishing apparatus, the slurry that moves to the outside in the radial direction by the centrifugal force due to the rotation of the carrier 500 passes through the auxiliary through-hole 530, and the upper polishing pad 310 and The surface of the glass substrate 1 was polished by the upper polishing pad 310 and the lower polishing pad 410 while moving between the lower polishing pads 410.
- the surfaces of the upper polishing pad 310 and the lower polishing pad 410 are preferably provided with a plurality of grooves 310g and 410g extending in parallel with each other, and the interval (P1) between the adjacent grooves 310g and 410g is determined as an example. 1—40 mm is used in Example 3, 60 mm is used in Example 4, and 80 mm is used in Example 5.
- auxiliary through-hole 530 In the case where the auxiliary through-hole 530 is not provided in the carrier 500, the convergence of the slurry diffusion was slow, and there was a problem that the processing rate of the glass substrate at the initial stage of processing varied. However, by providing the auxiliary through hole 530 in the carrier 500, it was possible to suppress variation in the processing rate of the glass substrate.
- the surface of the upper polishing pad 310 and the lower polishing pad 410 is provided with a plurality of grooves 310g and 410g extending in parallel with each other, so that minute waviness is generated with respect to the glass substrate. It was confirmed in.
- the lower limit of the interval between the grooves 310g and 410g is preferably equal to or larger than the diameter (D) of the glass substrate 1, and the upper limit of the interval is less than [20 ⁇ D] mm. Preferably there is.
- the reason why it is less than [20 ⁇ D] mm is that it is considered that the state is substantially the same as when no groove is provided.
- the diameter of the auxiliary through hole 530 is preferably 1 mm or more and less than 10 mm.
- the defect evaluation is evaluated as “C”.
- the diameter of the auxiliary through hole 530 is 10 mm or more, there is a possibility that the rigidity of the carrier 500 may be lowered, and the upper limit of the diameter of the auxiliary through hole 530 is preferably less than 10 mm.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
A carrier (500) has a plurality of auxiliary through holes (530). If the radius of the carrier (500) is Rmm, and the distance from the center position (C1) of the carrier (500) to the center position (C2) of the auxiliary through holes (530) is rmm, at least one of the through holes (530) is provided in a position that satisfies the following relational expression: [r≥(3/4)×R]. Furthermore, if the diameter of a glass substrate is Dmm, the diameter of the auxiliary through holes (530) is at least 1mm less than Dmm.
Description
本発明は、情報記録媒体用ガラス基板の製造方法および情報記録媒体に関し、特に、情報記録媒体の製造に用いられる情報記録媒体用ガラス基板の製造方法、およびその情報記録媒体用ガラス基板を備えた情報記録媒体に関する。
The present invention relates to a method for manufacturing a glass substrate for information recording medium and an information recording medium, and in particular, includes a method for manufacturing a glass substrate for information recording medium used for manufacturing an information recording medium, and the glass substrate for information recording medium. The present invention relates to an information recording medium.
磁気ディスクなどの情報記録媒体は、コンピュータなどにハードディスクとして搭載される。情報記録媒体は、基板の表面上に、磁気、光、または光磁気などの性質を利用した記録層を含む磁気薄膜層が形成されて製造される。記録層が磁気ヘッドによって磁化されることによって、所定の情報が情報記録媒体に記録される。
An information recording medium such as a magnetic disk is mounted as a hard disk on a computer or the like. An information recording medium is manufactured by forming a magnetic thin film layer including a recording layer using properties such as magnetism, light, or magnetomagnetism on the surface of a substrate. As the recording layer is magnetized by the magnetic head, predetermined information is recorded on the information recording medium.
情報記録媒体は年々記録密度が向上している。それに伴い情報記録媒体に使用される基板の品質にも高い品質が要求されている。情報記録媒体用の基板としては、従来アルミニウム基板が用いられてきたが、記録密度の向上に伴い、アルミニウム基板に比較して基板表面の平滑性および強度に優れるガラス基板に徐々に置き換わりつつある。
The recording density of information recording media is improving year by year. Accordingly, high quality is required for the quality of substrates used for information recording media. Conventionally, an aluminum substrate has been used as a substrate for an information recording medium. However, as the recording density is improved, it is gradually being replaced by a glass substrate that is superior in smoothness and strength of the substrate surface as compared with an aluminum substrate.
情報記録媒体用のガラス基板の製造方法では、高い表面形状精度を確保するための研磨工程を有している。ガラス基板の高精度な形状品質を達成するために、加工処理能力の異なるスラリーや研磨パッドを効果的に組み合わせた2段階以上の研磨工程が適用されている。従来のガラス基板の製造に関する技術は、たとえば特開2006-95636号公報(特許文献1)に開示されている。
The method for producing a glass substrate for an information recording medium has a polishing step for ensuring high surface shape accuracy. In order to achieve highly accurate shape quality of the glass substrate, two or more stages of polishing processes in which slurry and polishing pads having different processing capabilities are effectively combined are applied. For example, Japanese Unexamined Patent Application Publication No. 2006-95636 (Patent Document 1) discloses a conventional technology relating to glass substrate manufacturing.
従来の両面研磨装置では、研磨加工後にガラス基板を取りだした後、純水を用いて定盤上の洗浄を行なっている。このため、研磨加工を再開する際には、スラリーを、再度両面研磨パッドに供給する必要がある。
In a conventional double-side polishing apparatus, a glass substrate is taken out after polishing, and then cleaned on a surface plate using pure water. For this reason, when restarting the polishing process, it is necessary to supply the slurry to the double-side polishing pad again.
スラリーは、両面研磨装置の定盤内周と定盤外周の間にある中央寄りの領域から供給されるが、両面研磨装置を駆動させてから両面研磨装置全体にスラリーが供給されるまで、キャリア内側およびキャリア外側のガラス基板の間でスラリーの到達時間に差が生じていた。このため、定盤内で加工初期のガラス基板の加工量に差異が発生していた。このため、研磨工程の前工程で発生した加工痕について、除去状態にバラツキが生じていた。
The slurry is supplied from an area near the center between the inner surface of the surface plate and the outer surface of the surface plate of the double-side polishing apparatus, but until the slurry is supplied to the entire double-side polishing apparatus after the double-side polishing apparatus is driven, There was a difference in the arrival time of the slurry between the inner and outer glass substrates. For this reason, a difference has occurred in the processing amount of the glass substrate in the initial stage of processing within the surface plate. For this reason, the removal state varied in the processing marks generated in the previous step of the polishing step.
特に近年は、ガラス基板に求められる品質水準が高まるにつれて、基板表面のキズ・付着物を低減すること、および、磁気メディアへの高記録密度化のため、ガラス基板への加工痕の許容量が低下しており、ガラス基板への加工痕のバラツキを低減することが必須となっている。
Particularly in recent years, as the quality level required for glass substrates has increased, the amount of processing traces on glass substrates has been increased to reduce scratches and deposits on the substrate surface and to increase the recording density of magnetic media. It is essential to reduce the variation in the processing marks on the glass substrate.
また、ガラス基板の最終研磨時に生じるキズ・付着物は、その後の磁気薄膜層の形成した情報記録媒体の特性に悪影響を与える。
Also, scratches and deposits generated during the final polishing of the glass substrate adversely affect the characteristics of the information recording medium on which the subsequent magnetic thin film layer is formed.
本発明は上記課題に鑑みてなされたものであり、両面研磨装置を駆動させてから、外側および内側に位置するガラス基板にスラリーが供給されるまでの時間差の短縮を図ることにより、ガラス基板への加工痕のバラツキを低減することが可能な両面研磨装置を用いた、情報記録媒体用ガラス基板の製造方法および情報記録媒体を提供することにある。
The present invention has been made in view of the above problems, and by reducing the time difference from driving the double-side polishing apparatus until the slurry is supplied to the glass substrates located outside and inside, the glass substrate can be reduced. An object of the present invention is to provide a method of manufacturing a glass substrate for an information recording medium and an information recording medium using a double-side polishing apparatus capable of reducing the variation in processing traces.
この発明に基づいた情報記録媒体用ガラス基板の製造方法においては、円形ディスク形状のガラス基板の主表面に磁気薄膜層が形成される情報記録媒体用ガラス基板の製造方法であって、遊星歯車機構を備えた両面研磨装置を用いて上記ガラス基板の主表面を、研磨剤を供給しながら研磨する表面研磨工程を有し、上記両面研磨装置は、上記ガラス基板の上側に位置し、上記ガラス基板側に上側研磨パッドを有する上定盤と、上記ガラス基板の下側に位置し、上記ガラス基板側に下側研磨パッドを有する下定盤と、上記ガラス基板を保持する貫通保持孔が複数設けられ、上記上側研磨パッドと上記下側研磨パッドとにより挟み込まれるとともに、上記遊星歯車機構により所定の回転運動を行なう円盤状のキャリアとを備える。
The method for manufacturing a glass substrate for information recording medium according to the present invention is a method for manufacturing a glass substrate for information recording medium in which a magnetic thin film layer is formed on the main surface of a circular disk-shaped glass substrate, comprising a planetary gear mechanism. A surface polishing step of polishing the main surface of the glass substrate using a double-side polishing apparatus provided with an abrasive, and the double-side polishing apparatus is located on the upper side of the glass substrate. An upper surface plate having an upper polishing pad on the side, a lower surface plate having a lower polishing pad on the glass substrate side, and a plurality of through-holding holes for holding the glass substrate. And a disc-shaped carrier that is sandwiched between the upper polishing pad and the lower polishing pad and that performs a predetermined rotational movement by the planetary gear mechanism.
上記キャリアは、複数の補助貫通孔を有し、上記補助貫通孔は、上記キャリアの半径をRmm、上記キャリアの中心位置から上記補助貫通孔の中心位置までの距離をrmmとした場合に、少なくとも一つの上記補助貫通孔は、[r≧(3/4)×R]の関係式を満足する位置に設けられるとともに、上記ガラス基板の直径をDmmとした場合に、上記補助貫通孔の直径は、1mm以上Dmm未満である。
The carrier has a plurality of auxiliary through holes, and the auxiliary through holes are at least when the radius of the carrier is Rmm and the distance from the center position of the carrier to the center position of the auxiliary through hole is rmm. One auxiliary through hole is provided at a position satisfying the relational expression [r ≧ (3/4) × R], and when the diameter of the glass substrate is D mm, the diameter of the auxiliary through hole is 1 mm or more and less than Dmm.
他の形態においては、複数の上記補助貫通孔530の半数以上が、[r≧(3/4)×R]の関係式を満足する位置に設けられている。
In another embodiment, half or more of the plurality of auxiliary through holes 530 are provided at positions satisfying the relational expression [r ≧ (3/4) × R].
他の形態においては、複数の上記補助貫通孔530の全てが、[r≧(3/4)×R]の関係式を満足する位置に設けられている。
In another embodiment, all of the plurality of auxiliary through holes 530 are provided at positions satisfying the relational expression [r ≧ (3/4) × R].
他の形態においては、上記上側研磨パッドおよび上記下側研磨パッドの表面には、相互に平行に延びる複数の溝が設けられ、隣り合う上記溝の間隔は、Dmm以上[20×D]mm未満である。
In another embodiment, a plurality of grooves extending in parallel to each other are provided on the surfaces of the upper polishing pad and the lower polishing pad, and the interval between the adjacent grooves is not less than Dmm and less than [20 × D] mm. It is.
他の形態においては、上記上側研磨パッドに設けられる複数の上記溝の間隔は、上記下側研磨パッドに設けられる複数の上記溝の間隔よりも狭く設けられている。
In another embodiment, the intervals between the plurality of grooves provided in the upper polishing pad are narrower than the intervals between the plurality of grooves provided in the lower polishing pad.
他の形態においては、最外周に位置する上記貫通保持孔よりも外周側の位置において、上記貫通保持孔と同数の上記補助貫通孔が、上記貫通保持孔の間の位置に設けられている。
In another embodiment, the same number of auxiliary through holes as the through holding holes are provided at positions between the through holding holes at positions on the outer peripheral side of the through holding hole located on the outermost periphery.
他の形態においては、上記補助貫通孔の直径は、1mm以上10mm未満である。
この発明に基づいた情報記録媒体においては、上記のいずれかに記載の情報記録媒体用ガラス基板の製造方法によって得られたガラス基板と、上記ガラス基板の主表面に形成された磁気薄膜層とを備える。 In another embodiment, the auxiliary through hole has a diameter of 1 mm or more and less than 10 mm.
In the information recording medium based on this invention, the glass substrate obtained by the manufacturing method of the glass substrate for information recording media described in any of the above, and the magnetic thin film layer formed on the main surface of the glass substrate Prepare.
この発明に基づいた情報記録媒体においては、上記のいずれかに記載の情報記録媒体用ガラス基板の製造方法によって得られたガラス基板と、上記ガラス基板の主表面に形成された磁気薄膜層とを備える。 In another embodiment, the auxiliary through hole has a diameter of 1 mm or more and less than 10 mm.
In the information recording medium based on this invention, the glass substrate obtained by the manufacturing method of the glass substrate for information recording media described in any of the above, and the magnetic thin film layer formed on the main surface of the glass substrate Prepare.
本発明によれば、両面研磨装置を駆動させてから、キャリア外側およびキャリア内側に位置するガラス基板にスラリーが供給されるまでの時間差の短縮を図ることにより、ガラス基板への加工痕のバラツキを低減することが可能な両面研磨装置を用いた、情報記録媒体用ガラス基板の製造方法および情報記録媒体を提供することを可能とする。
According to the present invention, by reducing the time difference between driving the double-side polishing apparatus and supplying the slurry to the glass substrates located on the outside and inside of the carrier, variation in processing marks on the glass substrate is reduced. It is possible to provide a method of manufacturing a glass substrate for an information recording medium and an information recording medium using a double-side polishing apparatus that can be reduced.
本発明に基づいた実施の形態および実施例について、以下、図面を参照しながら説明する。実施の形態および実施例の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態および実施例の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。
Embodiments and examples based on the present invention will be described below with reference to the drawings. In the description of the embodiments and examples, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like, unless otherwise specified. In the description of the embodiments and examples, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
[ガラス基板1・磁気ディスク10]
図1および図2を参照して、まず、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって得られるガラス基板1、およびガラス基板1を備えた磁気ディスク10について説明する。図1は、磁気ディスク10(図2参照)に用いられるガラス基板1を示す斜視図である。図2は、情報記録媒体として、ガラス基板1を備えた磁気ディスク10を示す斜視図である。 [Glass substrate 1 and magnetic disk 10]
With reference to FIG. 1 and FIG. 2, theglass substrate 1 obtained by the manufacturing method of the glass substrate for information recording media based on this Embodiment and the magnetic disc 10 provided with the glass substrate 1 are demonstrated first. FIG. 1 is a perspective view showing a glass substrate 1 used for a magnetic disk 10 (see FIG. 2). FIG. 2 is a perspective view showing a magnetic disk 10 provided with a glass substrate 1 as an information recording medium.
図1および図2を参照して、まず、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって得られるガラス基板1、およびガラス基板1を備えた磁気ディスク10について説明する。図1は、磁気ディスク10(図2参照)に用いられるガラス基板1を示す斜視図である。図2は、情報記録媒体として、ガラス基板1を備えた磁気ディスク10を示す斜視図である。 [
With reference to FIG. 1 and FIG. 2, the
図1に示すように、磁気ディスク10に用いられるガラス基板1(情報記録媒体用ガラス基板)は、中心に孔1Hが形成された環状の円板形状を呈している。円形ディスク形状のガラス基板1は、表主表面1A、裏主表面1B、内周端面1C、および外周端面1Dを有している。
As shown in FIG. 1, a glass substrate 1 (glass substrate for information recording medium) used for a magnetic disk 10 has an annular disk shape with a hole 1H formed in the center. The circular disk-shaped glass substrate 1 has a front main surface 1A, a back main surface 1B, an inner peripheral end surface 1C, and an outer peripheral end surface 1D.
ガラス基板1の大きさは、特に制限はなく、たとえば外径0.8インチ、1.0インチ、1.8インチ、2.5インチ、または3.5インチなどである。ガラス基板1の厚さは、破損防止の観点から、たとえば0.30mm~2.2mmである。本実施の形態におけるガラス基板1の大きさは、外径が約65mm、内径が約20mm、厚さが約0.8mmである。ガラス基板1の厚さとは、ガラス基板1上の点対称となる任意の複数の点で測定した値の平均によって算出される値である。
The size of the glass substrate 1 is not particularly limited, and is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch outer diameter. The thickness of the glass substrate 1 is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage. As for the size of the glass substrate 1 in the present embodiment, the outer diameter is about 65 mm, the inner diameter is about 20 mm, and the thickness is about 0.8 mm. The thickness of the glass substrate 1 is a value calculated by averaging the values measured at a plurality of arbitrary points that are point-symmetric on the glass substrate 1.
図2に示すように、磁気ディスク10は、上記したガラス基板1の表主表面1A上に磁性膜が成膜されて、磁気記録層を含む磁気薄膜層2が形成される。図2中では、表主表面1A上にのみ磁気薄膜層2が形成されているが、裏主表面1B上にも磁気薄膜層2が形成されていてもよい。
As shown in FIG. 2, in the magnetic disk 10, a magnetic film is formed on the front main surface 1A of the glass substrate 1 to form a magnetic thin film layer 2 including a magnetic recording layer. In FIG. 2, the magnetic thin film layer 2 is formed only on the front main surface 1A, but the magnetic thin film layer 2 may also be formed on the back main surface 1B.
磁気薄膜層2は、磁性粒子を分散させた熱硬化性樹脂をガラス基板1の表主表面1A上にスピンコートすることによって形成される(スピンコート法)。磁気薄膜層2は、ガラス基板1の表主表面1Aに対してスパッタリング法、または無電解めっき法等により形成されてもよい。
The magnetic thin film layer 2 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the front main surface 1A of the glass substrate 1 (spin coating method). The magnetic thin film layer 2 may be formed on the front main surface 1A of the glass substrate 1 by a sputtering method, an electroless plating method, or the like.
ガラス基板1の表主表面1Aに形成される磁気薄膜層2の膜厚は、スピンコート法の場合は約0.3μm~約1.2μm、スパッタリング法の場合は約0.04μm~約0.08μm、無電解めっき法の場合は約0.05μm~約0.1μmである。薄膜化および高密度化の観点からは、磁気薄膜層2はスパッタリング法または無電解めっき法によって形成されるとよい。
The film thickness of the magnetic thin film layer 2 formed on the front main surface 1A of the glass substrate 1 is about 0.3 μm to about 1.2 μm in the case of the spin coating method, and about 0.04 μm to about 0.00 in the case of the sputtering method. In the case of electroless plating, the thickness is about 0.05 μm to about 0.1 μm. From the viewpoint of thinning and high density, the magnetic thin film layer 2 is preferably formed by sputtering or electroless plating.
磁気薄膜層2に用いる磁性材料としては、特に限定はなく従来公知のものが使用できるが、高い保持力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などが好適である。また、熱アシスト記録用に好適な磁性層材料として、FePt系の材料が用いられてもよい。
The magnetic material used for the magnetic thin film layer 2 is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Co having high crystal anisotropy is basically used for the purpose of adjusting the residual magnetic flux density. A Co-based alloy to which Ni or Cr is added is suitable. Further, as a magnetic layer material suitable for heat-assisted recording, an FePt-based material may be used.
また、磁気記録ヘッドの滑りをよくするために磁気薄膜層2の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、たとえば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。
Further, a lubricant may be thinly coated on the surface of the magnetic thin film layer 2 in order to improve the sliding of the magnetic recording head. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
さらに、必要により下地層や保護層を設けてもよい。磁気ディスク10における下地層は磁性膜に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、またはNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。
Furthermore, if necessary, an underlayer or a protective layer may be provided. The underlayer in the magnetic disk 10 is selected according to the magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
また、下地層は単層とは限らず、同一または異種の層を積層した複数層構造としても構わない。たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層としてもよい。
Also, the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
磁気薄膜層2の摩耗や腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。これらの保護層は、下地層、磁性膜など共にインライン型スパッタ装置で連続して形成できる。また、これらの保護層は、単層としてもよく、あるいは、同一または異種の層からなる多層構成としてもよい。
Examples of the protective layer for preventing wear and corrosion of the magnetic thin film layer 2 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers.
上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。たとえば、上記保護層に替えて、Cr層の上にテトラアルコキシシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO2)層を形成してもよい。
Other protective layers may be formed on the protective layer or instead of the protective layer. For example, instead of the protective layer, colloidal silica fine particles are dispersed and coated on a Cr layer with tetraalkoxysilane diluted with an alcohol solvent, and then fired to form a silicon oxide (SiO2) layer. May be.
[ガラス基板の製造方法]
次に、図3に示すフローチャート図を用いて、本実施の形態における情報記録媒体用ガラス基板(以下、単にガラス基板と称する。)の製造方法について説明する。図3は、実施の形態におけるガラス基板1の製造方法を示すフローチャート図である。 [Glass substrate manufacturing method]
Next, a method for manufacturing a glass substrate for information recording medium (hereinafter simply referred to as a glass substrate) in the present embodiment will be described with reference to the flowchart shown in FIG. FIG. 3 is a flowchart showing a method for manufacturing theglass substrate 1 in the embodiment.
次に、図3に示すフローチャート図を用いて、本実施の形態における情報記録媒体用ガラス基板(以下、単にガラス基板と称する。)の製造方法について説明する。図3は、実施の形態におけるガラス基板1の製造方法を示すフローチャート図である。 [Glass substrate manufacturing method]
Next, a method for manufacturing a glass substrate for information recording medium (hereinafter simply referred to as a glass substrate) in the present embodiment will be described with reference to the flowchart shown in FIG. FIG. 3 is a flowchart showing a method for manufacturing the
本実施の形態におけるガラス基板の製造方法は、ガラスブランク材準備工程(ステップS10)、ガラス基板形成工程(ステップS20)、研削/研磨工程(ステップS30)、化学強化工程(ステップS40)、および洗浄工程(ステップS50)を備えている。化学強化処理工程(ステップS40)を経ることによって得られたガラス基板(図1におけるガラス基板1に相当)に対して、磁気薄膜形成工程(ステップS60)が実施されてもよい。磁気薄膜形成工程(ステップS60)によって、情報記録媒体としての磁気ディスク10が得られる。
The glass substrate manufacturing method in the present embodiment includes a glass blank material preparation step (step S10), a glass substrate formation step (step S20), a grinding / polishing step (step S30), a chemical strengthening step (step S40), and a cleaning. The process (step S50) is provided. The magnetic thin film forming step (step S60) may be performed on the glass substrate (corresponding to the glass substrate 1 in FIG. 1) obtained through the chemical strengthening treatment step (step S40). The magnetic disk 10 as an information recording medium is obtained by the magnetic thin film forming step (step S60).
以下、これらの各ステップS10~S60の詳細について順に説明する、以下には、各ステップS10~S60間に適宜行なわれる簡易的な洗浄については記載していない。
Hereinafter, details of each of these steps S10 to S60 will be described in order. In the following, simple cleaning appropriately performed between each of steps S10 to S60 is not described.
(ガラスブランク材準備工程)
ガラスブランク材準備工程(ステップS10)においては、ガラス基板を構成するガラス素材が溶融される(ステップS11)。ガラス素材は、たとえば一般的なアルミノシリケートガラスが用いられる。アルミノシリケートガラスは、58質量%~75質量%のSiO2と、5質量%~23質量%のAl2O3と、3質量%~10質量%のLi2Oと、4質量%~13質量%のNa2Oと、を主成分として含有する。溶融したガラス素材は、下型上に流し込まれた後、上型および下型によってプレス成形される(ステップS12)。プレス成形によって、円盤状のガラスブランク材(ガラス母材)が形成される。 (Glass blank material preparation process)
In the glass blank material preparation step (step S10), the glass material constituting the glass substrate is melted (step S11). For example, general aluminosilicate glass is used as the glass material. The aluminosilicate glass is composed of 58 mass% to 75 mass% SiO2, 5 mass% to 23 mass% Al2O3, 3 mass% to 10 mass% Li2O, and 4 mass% to 13 mass% Na2O. Contains as a main component. The molten glass material is poured onto the lower mold and then press-molded with the upper mold and the lower mold (step S12). A disk-shaped glass blank (glass base material) is formed by press molding.
ガラスブランク材準備工程(ステップS10)においては、ガラス基板を構成するガラス素材が溶融される(ステップS11)。ガラス素材は、たとえば一般的なアルミノシリケートガラスが用いられる。アルミノシリケートガラスは、58質量%~75質量%のSiO2と、5質量%~23質量%のAl2O3と、3質量%~10質量%のLi2Oと、4質量%~13質量%のNa2Oと、を主成分として含有する。溶融したガラス素材は、下型上に流し込まれた後、上型および下型によってプレス成形される(ステップS12)。プレス成形によって、円盤状のガラスブランク材(ガラス母材)が形成される。 (Glass blank material preparation process)
In the glass blank material preparation step (step S10), the glass material constituting the glass substrate is melted (step S11). For example, general aluminosilicate glass is used as the glass material. The aluminosilicate glass is composed of 58 mass% to 75 mass% SiO2, 5 mass% to 23 mass% Al2O3, 3 mass% to 10 mass% Li2O, and 4 mass% to 13 mass% Na2O. Contains as a main component. The molten glass material is poured onto the lower mold and then press-molded with the upper mold and the lower mold (step S12). A disk-shaped glass blank (glass base material) is formed by press molding.
ガラスブランク材は、ダウンドロー法またはフロート法によって形成されたシートガラス(板ガラス)を、研削砥石で切り出すことによって形成されてもよい。またガラス素材も、アルミノシリケートガラスに限られるものではなく、任意の素材であってもよい。
The glass blank material may be formed by cutting out sheet glass (sheet glass) formed by a downdraw method or a float method with a grinding wheel. Further, the glass material is not limited to aluminosilicate glass, and may be any material.
(ガラス基板形成工程)
次に、ガラス基板形成工程(ステップS20)においては、プレス成形されたガラスブランク材の両方の主表面に対して、寸法精度および形状精度の向上を目的として、第1ラップ工程が施される(ステップS21)。ガラスブランク材の両方の主表面とは、後述する各処理を経ることによって、図1における表主表面1Aとなる主表面および裏主表面1Bとなる主表面のことである(以下、両主表面ともいう)。たとえば、粒度#400のアルミナ砥粒(粒径約40~60μm)を用い、表面粗さRmaxで6μm程度に仕上げる。 (Glass substrate forming process)
Next, in the glass substrate forming step (step S20), the first lapping step is performed on both main surfaces of the press-molded glass blank material for the purpose of improving dimensional accuracy and shape accuracy ( Step S21). Both main surfaces of a glass blank material are the main surfaces used as the frontmain surface 1A and the main surface used as the back main surface 1B in FIG. 1 through each process mentioned later (henceforth, both main surfaces) Also called). For example, alumina abrasive grains having a particle size of # 400 (particle size of about 40 to 60 μm) are used, and the surface roughness Rmax is finished to about 6 μm.
次に、ガラス基板形成工程(ステップS20)においては、プレス成形されたガラスブランク材の両方の主表面に対して、寸法精度および形状精度の向上を目的として、第1ラップ工程が施される(ステップS21)。ガラスブランク材の両方の主表面とは、後述する各処理を経ることによって、図1における表主表面1Aとなる主表面および裏主表面1Bとなる主表面のことである(以下、両主表面ともいう)。たとえば、粒度#400のアルミナ砥粒(粒径約40~60μm)を用い、表面粗さRmaxで6μm程度に仕上げる。 (Glass substrate forming process)
Next, in the glass substrate forming step (step S20), the first lapping step is performed on both main surfaces of the press-molded glass blank material for the purpose of improving dimensional accuracy and shape accuracy ( Step S21). Both main surfaces of a glass blank material are the main surfaces used as the front
第1ラップ工程の後、円筒状のダイヤモンドドリルなどを用いて、ガラスブランク材の中心部に対してコアリング(内周カット)処理が施される(ステップS22)。コアリング処理によって、中心部に孔の開いた円環状のガラス基板が得られる。中心部の孔に対しては、所定の面取り加工が施されてもよい。
After the first lapping step, a coring (inner peripheral cut) process is performed on the center portion of the glass blank using a cylindrical diamond drill or the like (step S22). By the coring process, an annular glass substrate having a hole in the center is obtained. A predetermined chamfering process may be performed on the hole in the center.
また、ガラス基板の内周端面および外周端面がブラシによって鏡面状に研磨される(ステップS22)。研磨砥粒としては、酸化セリウム砥粒を含むスラリーが用いられる。
Also, the inner peripheral end surface and the outer peripheral end surface of the glass substrate are polished into a mirror surface by a brush (step S22). As the abrasive grains, a slurry containing cerium oxide abrasive grains is used.
(研削/研磨工程)
次に、研削/研磨工程(ステップS30)においては、ガラス基板の両主表面に対して第2ラップ工程が施される(ステップS31)。第2ラップ工程は、遊星歯車機構を利用した両面研削装置を用いて行なわれる。具体的には、ガラスブランク材の両主表面に上下から定盤を押圧させ、水、研削液または潤滑液を両主表面上に供給し、ガラスブランク材とラップ定盤とを相対的に移動させて、第2ラップ工程が行なわれる。 (Grinding / polishing process)
Next, in the grinding / polishing process (step S30), a second lapping process is performed on both main surfaces of the glass substrate (step S31). The second lapping step is performed using a double-side grinding apparatus that uses a planetary gear mechanism. Specifically, press the surface plate from above and below both main surfaces of the glass blank material, supply water, grinding liquid or lubricating liquid onto both main surfaces, and move the glass blank material and the lapping surface plate relatively. Then, the second lapping step is performed.
次に、研削/研磨工程(ステップS30)においては、ガラス基板の両主表面に対して第2ラップ工程が施される(ステップS31)。第2ラップ工程は、遊星歯車機構を利用した両面研削装置を用いて行なわれる。具体的には、ガラスブランク材の両主表面に上下から定盤を押圧させ、水、研削液または潤滑液を両主表面上に供給し、ガラスブランク材とラップ定盤とを相対的に移動させて、第2ラップ工程が行なわれる。 (Grinding / polishing process)
Next, in the grinding / polishing process (step S30), a second lapping process is performed on both main surfaces of the glass substrate (step S31). The second lapping step is performed using a double-side grinding apparatus that uses a planetary gear mechanism. Specifically, press the surface plate from above and below both main surfaces of the glass blank material, supply water, grinding liquid or lubricating liquid onto both main surfaces, and move the glass blank material and the lapping surface plate relatively. Then, the second lapping step is performed.
第2ラップ工程によって、ガラス基板としてのおおよその平行度、平坦度、および厚みなどが予備調整され、おおよそ平坦な主表面を有するガラス母材が得られる。第2ラップ工程では、発生する研削痕を小さくするため、上記第1ラップ工程と比較して微細な砥粒を用いる。たとえば、定盤上にダイヤモンドタイルパッド等の固定砥粒を取りつけることにより、ガラス基板両面上を表面粗さRmaxで2μm程度に仕上げる。
In the second lapping step, the approximate parallelism, flatness, thickness, etc. of the glass substrate are preliminarily adjusted, and a glass base material having an approximately flat main surface is obtained. In the second lapping step, fine abrasive grains are used as compared with the first lapping step in order to reduce the generated grinding marks. For example, by attaching fixed abrasive grains such as a diamond tile pad on a surface plate, both surfaces of the glass substrate are finished to a surface roughness Rmax of about 2 μm.
次に、第1ポリッシュ工程(粗研磨)として、第2ラップ工程(ステップS31)においてガラス基板の両主表面に残留したキズを除去しつつ、ガラス基板の反りを矯正する(ステップS33)。第1ポリッシュ工程においては、遊星歯車機構を利用した両面研磨装置が使用される。たとえば、硬質ベロア、ウレタン発泡、またはピッチ含浸スウェードなどの研磨パッドを用いて研磨が行なわれる。研磨剤としては、一般的な酸化セリウム砥粒を主成分とするスラリーが用いられる。
Next, as a first polishing process (rough polishing), warping of the glass substrate is corrected while removing scratches remaining on both main surfaces of the glass substrate in the second lapping process (step S31) (step S33). In the first polishing process, a double-side polishing apparatus using a planetary gear mechanism is used. For example, polishing is performed using a polishing pad such as hard velor, urethane foam, or pitch-impregnated suede. As the abrasive, a slurry mainly composed of general cerium oxide abrasive grains is used.
第2ポリッシュ工程(精密研磨)においては、ガラス基板に研磨加工が再度実施され、ガラス基板の両主表面上に残留した微小欠陥等が解消される(ステップS34)。ガラス基板の両主表面は鏡面状に仕上げられることによって所望の平坦度に形成され、ガラス基板の反りも解消される。第2ポリッシュ工程においては、遊星歯車機構を利用した両面研磨装置が使用される。たとえば、スウェードまたはベロアを素材とする軟質ポリッシャである研磨パッドを用いて研磨が行なわれる。研磨剤としては、第1ポリッシュ工程で用いた酸化セリウムよりも微細な、一般的なコロイダルシリカを主成分とするスラリーが用いられる。
In the second polishing step (precise polishing), the glass substrate is subjected to polishing again, and minute defects remaining on both main surfaces of the glass substrate are eliminated (step S34). Both main surfaces of the glass substrate are finished to have a mirror-like surface, thereby forming a desired flatness and eliminating the warpage of the glass substrate. In the second polishing step, a double-side polishing apparatus using a planetary gear mechanism is used. For example, polishing is performed using a polishing pad which is a soft polisher made of suede or velor. As the abrasive, a slurry mainly composed of general colloidal silica that is finer than the cerium oxide used in the first polishing step is used.
ここで、図4および図5を参照して、両面研磨装置2000の概略構成について説明する。図4は、研磨工程に用いられる両面研磨装置2000の部分斜視図である。図5は、図4中V線矢視断面図である。
Here, the schematic configuration of the double-side polishing apparatus 2000 will be described with reference to FIGS. FIG. 4 is a partial perspective view of a double-side polishing apparatus 2000 used in the polishing process. 5 is a cross-sectional view taken along the line V in FIG.
両面研磨装置2000は、上定盤(上側砥石保持定盤)300と、下定盤(下側砥石保持定盤)400と、上定盤300の下定盤400に対向する側(ガラス基板側)の下面に取り付けられた上側研磨パッド310と、下定盤400の上定盤300に対向する側(ガラス基板側)の上面に取り付けられた下側研磨パッド410と、を備える。
The double-side polishing apparatus 2000 includes an upper surface plate (upper whetstone holding surface plate) 300, a lower surface plate (lower whetstone holding surface plate) 400, and a side (glass substrate side) facing the lower surface plate 400 of the upper surface plate 300. The upper polishing pad 310 attached to the lower surface, and the lower polishing pad 410 attached to the upper surface on the side (glass substrate side) facing the upper surface plate 300 of the lower surface plate 400 are provided.
上定盤300には、スラリー供給孔320が複数設けられている。スラリー供給孔320の開口径は、8mm~15mm程度である。本実施の形態では、スラリー供給孔320は、上定盤300の外周縁部近傍に16か所設けられた場合を示している。スラリー供給孔320の数、設ける位置については、本実施の形態に限定されない。スラリーの供給量に応じて、スラリー供給孔320の位置、数量、および開口径が決定される。
The upper surface plate 300 is provided with a plurality of slurry supply holes 320. The opening diameter of the slurry supply hole 320 is about 8 mm to 15 mm. In the present embodiment, the slurry supply holes 320 are provided at 16 locations near the outer peripheral edge of the upper surface plate 300. The number and positions of the slurry supply holes 320 are not limited to the present embodiment. The position, quantity, and opening diameter of the slurry supply holes 320 are determined according to the amount of slurry supplied.
スラリー供給孔320には、それぞれスラリー供給チューブ330の一端が連結されている。スラリー供給チューブ330の他端は、環状に設けられたチューブ状のパウダーリング340に連結されている。パウダーリング340の所定箇所には、スラリー供給口350が設けられている。本実施の形態では、スラリー供給口350を3か所設けているが、数量は任意である。
One end of a slurry supply tube 330 is connected to each of the slurry supply holes 320. The other end of the slurry supply tube 330 is connected to a tube-shaped powder ring 340 provided in an annular shape. A slurry supply port 350 is provided at a predetermined position of the powder ring 340. In the present embodiment, three slurry supply ports 350 are provided, but the quantity is arbitrary.
パウダーリング340は、上定盤300とともに回転し、スラリー供給口350がその下方に位置したときに、スラリー供給口350にスラリーを供給するスラリー供給ノズル360が、パウダーリング340の上方に設けられている。
The powder ring 340 rotates together with the upper surface plate 300, and when the slurry supply port 350 is positioned below, the slurry supply nozzle 360 that supplies the slurry to the slurry supply port 350 is provided above the powder ring 340. Yes.
図5に示すように、スラリー供給ノズル360から供給されたスラリーは、スラリー供給チューブ330およびスラリー供給孔320を通して、側研磨パッド310と下側研磨パッド410との間に供給される。
As shown in FIG. 5, the slurry supplied from the slurry supply nozzle 360 is supplied between the side polishing pad 310 and the lower polishing pad 410 through the slurry supply tube 330 and the slurry supply hole 320.
上側研磨パッド310および下側研磨パッド410は、ガラス基板1の両主表面を研磨加工するための加工工具である。上定盤300と下定盤400とは、キャリア500の公転方向に対して互いに反対方向に回転するようになっている。上定盤300と下定盤400との間に形成される隙間に、キャリア500が配置される。ディスク状のガラス基板1は、このキャリア500に複数枚保持される。なお、キャリア500の詳細構造については、後述する。
The upper polishing pad 310 and the lower polishing pad 410 are processing tools for polishing both main surfaces of the glass substrate 1. The upper surface plate 300 and the lower surface plate 400 rotate in directions opposite to each other with respect to the revolution direction of the carrier 500. Carrier 500 is arranged in a gap formed between upper surface plate 300 and lower surface plate 400. A plurality of disk-shaped glass substrates 1 are held by the carrier 500. The detailed structure of the carrier 500 will be described later.
第2ポリッシュ工程(ステップS34)において、上側研磨パッド310および下側研磨パッド410の表面の洗浄が行なわれてもよい。上側研磨パッド310および下側研磨パッドの表面の洗浄は、研削/研磨工程(ステップS30)中の任意の工程において行なわれてもよく、研削/研磨工程(ステップS30)中の任意の工程間に行なわれてもよく、または、研削/研磨工程(ステップS30)の終了後に行なわれてもよい。
In the second polishing step (step S34), the surfaces of the upper polishing pad 310 and the lower polishing pad 410 may be cleaned. The surface of the upper polishing pad 310 and the lower polishing pad may be cleaned in any process during the grinding / polishing process (step S30), and between any processes in the grinding / polishing process (step S30). It may be performed or may be performed after completion of the grinding / polishing process (step S30).
ガラス基板1の両主表面を一回または複数回研磨加工した後に、両面研磨装置2000において上側研磨パッド310および下側研磨パッド410の表面の洗浄が行なわれる。上側研磨パッド310および下側研磨パッド410の表面は、一回もしくは複数回の研磨を行なう毎に定期的に洗浄されてもよく、または、不定期的に洗浄されてもよい。
After both main surfaces of the glass substrate 1 are polished once or a plurality of times, the surfaces of the upper polishing pad 310 and the lower polishing pad 410 are cleaned in the double-side polishing apparatus 2000. The surfaces of the upper polishing pad 310 and the lower polishing pad 410 may be periodically cleaned each time one or more polishings are performed, or may be cleaned irregularly.
(化学強化工程)
ガラス基板が洗浄された後、化学強化処理液にガラス基板を浸漬することによって、ガラス基板の両主表面に化学強化層を形成する(ステップS40)。ガラス基板1が洗浄された後、300℃に加熱された硝酸カリウム(70%)と硝酸ナトリウム(30%)との混合用液などの化学強化処理液中に、ガラス基板1を30分間程度浸漬することによって、化学強化を行なう。 (Chemical strengthening process)
After the glass substrate is washed, the chemical strengthening layer is formed on both main surfaces of the glass substrate by immersing the glass substrate in the chemical strengthening treatment liquid (step S40). After theglass substrate 1 is cleaned, the glass substrate 1 is immersed for about 30 minutes in a chemical strengthening treatment solution such as a mixture solution of potassium nitrate (70%) and sodium nitrate (30%) heated to 300 ° C. By doing so, chemical strengthening is performed.
ガラス基板が洗浄された後、化学強化処理液にガラス基板を浸漬することによって、ガラス基板の両主表面に化学強化層を形成する(ステップS40)。ガラス基板1が洗浄された後、300℃に加熱された硝酸カリウム(70%)と硝酸ナトリウム(30%)との混合用液などの化学強化処理液中に、ガラス基板1を30分間程度浸漬することによって、化学強化を行なう。 (Chemical strengthening process)
After the glass substrate is washed, the chemical strengthening layer is formed on both main surfaces of the glass substrate by immersing the glass substrate in the chemical strengthening treatment liquid (step S40). After the
ガラス基板1に含まれるリチウムイオン、ナトリウムイオン等のアルカリ金属イオンは、これらのイオンに比べてイオン半径の大きなカリウムイオン等のアルカリ金属イオンによって置換される(イオン交換法)。
The alkali metal ions such as lithium ions and sodium ions contained in the glass substrate 1 are replaced by alkali metal ions such as potassium ions having a larger ion radius than these ions (ion exchange method).
イオン半径の違いによって生じる歪みより、イオン交換された領域に圧縮応力が発生し、ガラス基板1の両主表面が強化される。たとえば、ガラス基板1の両主表面において、ガラス基板1表面から約5μmまでの範囲に化学強化層を形成し、ガラス基板1の剛性を向上させてもよい。以上のようにして、図1に示すガラス基板1に相当するガラス基板が得られる。
Compressive stress is generated in the ion-exchanged region due to strain caused by the difference in ion radius, and both main surfaces of the glass substrate 1 are strengthened. For example, on both the main surfaces of the glass substrate 1, a chemical strengthening layer may be formed in a range from the surface of the glass substrate 1 to about 5 μm to improve the rigidity of the glass substrate 1. As described above, a glass substrate corresponding to the glass substrate 1 shown in FIG. 1 is obtained.
ガラス基板1に対しては、両主表面上における取り代が0.1μm以上0.5μm以下のポリッシュ処理がさらに施されてもよい。化学強化工程を経た後にガラス基板1の主表面上に残留している付着物が除去されることによって、ガラス基板1を用いて製造される磁気ディスクにヘッドクラッシュが発生することが低減される。また、ポリッシュ処理における両主表面上の取り代を0.1μm以上0.5μm以下とすることによって、化学強化処理によって発生した応力の不均一性が表面に現れることもなくなる。本実施の形態におけるガラス基板の製造方法としては、以上のように構成される。
The glass substrate 1 may be further subjected to a polishing treatment with a machining allowance on both main surfaces of 0.1 μm to 0.5 μm. By removing the deposits remaining on the main surface of the glass substrate 1 after the chemical strengthening step, occurrence of head crashes in a magnetic disk manufactured using the glass substrate 1 is reduced. Further, by setting the machining allowance on both main surfaces in the polishing process to be 0.1 μm or more and 0.5 μm or less, the unevenness of stress generated by the chemical strengthening process does not appear on the surface. The manufacturing method of the glass substrate in the present embodiment is configured as described above.
なお、第1ポリッシュ工程(粗研磨)と第2ポリッシュ工程(精密研磨)との間に、化学強化工程を施してもかまわない。
It should be noted that a chemical strengthening step may be performed between the first polishing step (rough polishing) and the second polishing step (precision polishing).
(洗浄工程)
次に、ガラス基板は洗浄される(ステップS50)。ガラス基板の両主表面が洗剤、純水、オゾン、IPA(イソプロピルアルコール)、またはUV(ultraviolet)オゾンなどによって洗浄されることによって、ガラス基板の両主表面に付着した付着物が除去される。 (Washing process)
Next, the glass substrate is cleaned (step S50). By cleaning the two main surfaces of the glass substrate with detergent, pure water, ozone, IPA (isopropyl alcohol), UV (ultraviolet) ozone, or the like, the deposits attached to the two main surfaces of the glass substrate are removed.
次に、ガラス基板は洗浄される(ステップS50)。ガラス基板の両主表面が洗剤、純水、オゾン、IPA(イソプロピルアルコール)、またはUV(ultraviolet)オゾンなどによって洗浄されることによって、ガラス基板の両主表面に付着した付着物が除去される。 (Washing process)
Next, the glass substrate is cleaned (step S50). By cleaning the two main surfaces of the glass substrate with detergent, pure water, ozone, IPA (isopropyl alcohol), UV (ultraviolet) ozone, or the like, the deposits attached to the two main surfaces of the glass substrate are removed.
その後、ガラス基板1の表面上の付着物の数が、光学式欠陥検査装置等を用いて検査される。
Thereafter, the number of deposits on the surface of the glass substrate 1 is inspected using an optical defect inspection apparatus or the like.
(磁気薄膜形成工程)
化学強化処理が完了したガラス基板(図1に示すガラス基板1に相当)の両主表面(またはいずれか一方の主表面)に対し、磁性膜が形成されることにより、磁気薄膜層2が形成される。磁気薄膜層は、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系からなる保護層、およびF系からなる潤滑層が順次成膜されることによって形成される。磁気薄膜層の形成によって、図2に示す磁気ディスク10に相当する垂直磁気記録ディスクを得ることができる。 (Magnetic thin film formation process)
The magneticthin film layer 2 is formed by forming a magnetic film on both main surfaces (or one of the main surfaces) of the glass substrate (corresponding to the glass substrate 1 shown in FIG. 1) that has been subjected to the chemical strengthening treatment. Is done. The magnetic thin film layer includes an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and a lubrication made of an F system. It is formed by sequentially depositing layers. By forming the magnetic thin film layer, a perpendicular magnetic recording disk corresponding to the magnetic disk 10 shown in FIG. 2 can be obtained.
化学強化処理が完了したガラス基板(図1に示すガラス基板1に相当)の両主表面(またはいずれか一方の主表面)に対し、磁性膜が形成されることにより、磁気薄膜層2が形成される。磁気薄膜層は、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系からなる保護層、およびF系からなる潤滑層が順次成膜されることによって形成される。磁気薄膜層の形成によって、図2に示す磁気ディスク10に相当する垂直磁気記録ディスクを得ることができる。 (Magnetic thin film formation process)
The magnetic
本実施の形態における磁気ディスクは、磁気薄膜層から構成される垂直磁気ディスクの一例である。磁気ディスクは、いわゆる面内磁気ディスクとして磁性層等から構成されてもよい。
The magnetic disk in the present embodiment is an example of a perpendicular magnetic disk composed of a magnetic thin film layer. The magnetic disk may be composed of a magnetic layer or the like as a so-called in-plane magnetic disk.
(キャリア500)
次に、図6から図9を参照して、上述した研磨工程中の第1ポリッシュ工程および第2ポリッシュ工程において用いられる両面研磨装置2000に採用されるキャリア500の詳細構造について説明する。図6は、本実施の形態におけるキャリア500を示す平面図、図7は、本実施の形態におけるキャリア500の寸法関係を示す平面図、図8は、ガラス基板1の平面図、図9は、本実施の形態における上側研磨パッド310および下側研磨パッド410の断面図である。 (Carrier 500)
Next, a detailed structure of thecarrier 500 employed in the double-side polishing apparatus 2000 used in the first polishing process and the second polishing process in the above-described polishing process will be described with reference to FIGS. 6 is a plan view showing a carrier 500 in the present embodiment, FIG. 7 is a plan view showing a dimensional relationship of the carrier 500 in the present embodiment, FIG. 8 is a plan view of the glass substrate 1, and FIG. 4 is a cross-sectional view of an upper polishing pad 310 and a lower polishing pad 410 in the present embodiment. FIG.
次に、図6から図9を参照して、上述した研磨工程中の第1ポリッシュ工程および第2ポリッシュ工程において用いられる両面研磨装置2000に採用されるキャリア500の詳細構造について説明する。図6は、本実施の形態におけるキャリア500を示す平面図、図7は、本実施の形態におけるキャリア500の寸法関係を示す平面図、図8は、ガラス基板1の平面図、図9は、本実施の形態における上側研磨パッド310および下側研磨パッド410の断面図である。 (Carrier 500)
Next, a detailed structure of the
図6を参照して、本実施の形態におけるキャリア500は、円盤形状の本体510を有し、厚さは、約0.30mm~2.2mmであり、保持するガラス基板1の厚さよりも薄い厚さが選択される。キャリア500の直径は、約430mmである。本体510には、アラミド繊維、FRP(ガラスエポキシ)、PC(ポリカーボネート)等が用いられる。
Referring to FIG. 6, carrier 500 in the present embodiment has a disk-shaped main body 510, and has a thickness of about 0.30 mm to 2.2 mm, which is thinner than the thickness of glass substrate 1 to be held. The thickness is selected. The diameter of the carrier 500 is about 430 mm. For the main body 510, aramid fiber, FRP (glass epoxy), PC (polycarbonate), or the like is used.
キャリア500には、ガラス基板1を保持する貫通保持孔520が22箇所設けられている。本実施の形態では、貫通保持孔520は、2重の環状となるように配列され、内環状ラインr1上に、貫通保持孔520が8個、外環状ラインr2上に、貫通保持孔520が14個配列されている。貫通保持孔520の直径は、約66.5mmである。また、キャリア500は、複数の補助貫通孔530を有する。
The carrier 500 is provided with 22 through-holding holes 520 for holding the glass substrate 1. In the present embodiment, the through-holding holes 520 are arranged in a double ring shape, with eight through-holding holes 520 on the inner annular line r1 and through-holding holes 520 on the outer annular line r2. 14 are arranged. The diameter of the through-holding hole 520 is about 66.5 mm. The carrier 500 has a plurality of auxiliary through holes 530.
図7および図8を参照して、この補助貫通孔530は、キャリア500の半径をRmm、キャリア500の中心位置C1から補助貫通孔530の中心位置C2までの距離をrmmとした場合に、[r≧(3/4)×R]の関係式を満足する位置に設けられている。
Referring to FIGS. 7 and 8, the auxiliary through-hole 530 has a radius of the carrier 500 as Rmm and a distance from the center position C1 of the carrier 500 to the center position C2 of the auxiliary through-hole 530 as rmm. It is provided at a position satisfying the relational expression r ≧ (3/4) × R].
本実施の形態では、すべての補助貫通孔530が、上記関係式を満足するとともに、最外周に位置する貫通保持孔520よりも外周側の位置において、貫通保持孔520と同数(14個)の補助貫通孔530が、貫通保持孔520の間の位置に設けられている。よって、最外周の貫通保持孔520と補助貫通孔530とは千鳥状の配置となる。
In the present embodiment, all the auxiliary through-holes 530 satisfy the above relational expression, and are the same number (14) as the through-holding holes 520 at positions on the outer peripheral side with respect to the through-holding hole 520 located on the outermost periphery. An auxiliary through hole 530 is provided at a position between the through holding holes 520. Therefore, the outermost through-holes 520 and the auxiliary through-holes 530 are arranged in a staggered manner.
貫通保持孔520が設けられる位置は、少なくとも1つの補助貫通孔530が、上記関係式を満足する位置に設けられていればよい。したがって、上記関係式を満足する位置に、少なくとも1つの補助貫通孔530が設けられていれば、[r<(3/4)×R]の位置に、補助貫通孔530が設けられていてもよい。
The position where the through-holding hole 520 is provided is sufficient if at least one auxiliary through-hole 530 is provided at a position satisfying the above relational expression. Therefore, if at least one auxiliary through hole 530 is provided at a position satisfying the above relational expression, even if the auxiliary through hole 530 is provided at a position [r <(3/4) × R]. Good.
好ましくは、キャリア500に設けられる補助貫通孔530の半数以上が、[r≧(3/4)×R]の関係式を満足する位置に設けられているのがよい。さらに好ましくは、すべての補助貫通孔530が、[r≧(3/4)×R]の関係式を満足する位置に設けられているのがよい。
Preferably, more than half of the auxiliary through holes 530 provided in the carrier 500 are provided at positions satisfying the relational expression [r ≧ (3/4) × R]. More preferably, all the auxiliary through holes 530 are provided at positions satisfying the relational expression [r ≧ (3/4) × R].
さらに、ガラス基板1の直径をDmmとした場合に、補助貫通孔530の直径は、1mm以上Dmm未満に設けられている。本実施の形態では、ガラス基板1の直径は65mmであることから、補助貫通孔530の最大直径は、65mm未満に設定される。
Furthermore, when the diameter of the glass substrate 1 is Dmm, the diameter of the auxiliary through hole 530 is 1 mm or more and less than Dmm. In the present embodiment, since the diameter of the glass substrate 1 is 65 mm, the maximum diameter of the auxiliary through hole 530 is set to less than 65 mm.
本実施の形態の場合には、キャリア500の直径は、430mmであから、キャリア500の半径R(mm)は、215mmとなる。よって、キャリア500の中心位置C1から補助貫通孔530の中心位置C2までの距離r(mm)は、161.25mm以上であるとよい。
In the case of this embodiment, since the diameter of the carrier 500 is 430 mm, the radius R (mm) of the carrier 500 is 215 mm. Therefore, the distance r (mm) from the center position C1 of the carrier 500 to the center position C2 of the auxiliary through hole 530 is preferably 161.25 mm or more.
図9を参照して、本実施の形態においては、上側研磨パッド310の表面には、溝幅G1、溝深さD1、および隣り合う溝の間隔P1の複数の溝310gが設けられている。下側研磨パッド410にも同様の溝410gが設けられている。溝幅G1は、約1mm~約5mm、溝深さD1は、約0.3mm~約2.0mm、隣り合う溝の間隔P1は、約20mm~約500mmである。下側研磨パッド410の表面にも、上側研磨パッド310の表面と同様の溝410gが設けられている。
Referring to FIG. 9, in the present embodiment, the surface of upper polishing pad 310 is provided with a plurality of grooves 310g having a groove width G1, a groove depth D1, and an interval P1 between adjacent grooves. The lower polishing pad 410 is also provided with a similar groove 410g. The groove width G1 is about 1 mm to about 5 mm, the groove depth D1 is about 0.3 mm to about 2.0 mm, and the interval P1 between adjacent grooves is about 20 mm to about 500 mm. A groove 410 g similar to the surface of the upper polishing pad 310 is also provided on the surface of the lower polishing pad 410.
本実施の形態では、上側研磨パッド310の溝310gの間隔は、下側研磨パッド410の溝410gの間隔よりも狭く設けられているとよい。これにより、キャリア500およびガラス基板1は、下側研磨パッド410にき吸着され易くなる。これにより、上側研磨パッド310を上昇させた場合の、キャリア500およびガラス基板1の上側研磨パッド310への吸着を回避することができる。
In this embodiment, the interval between the grooves 310g of the upper polishing pad 310 is preferably set narrower than the interval between the grooves 410g of the lower polishing pad 410. Thereby, the carrier 500 and the glass substrate 1 are easily attracted to the lower polishing pad 410. Thereby, adsorption | suction to the upper side polishing pad 310 of the carrier 500 and the glass substrate 1 at the time of raising the upper side polishing pad 310 can be avoided.
上側研磨パッド310の溝310gのパターン形状と下側研磨パッド410の溝410gのパターン形状とは、同じであってもよいし、異なっていてもよい。上側研磨パッド310の溝310gのパターン形状、および、下側研磨パッド410の溝410gのパターン形状は、図10に示すように、溝が並行に所定の間隔で設けられるストレート形状、図11に示すように、溝が交差して交わる格子形状、その他のパターン形状を採用することができる。図10および図11では、上側研磨パッド310の溝310gのパターン形状を図示しているが、下側研磨パッド410の溝410gのパターン形状も同様である。
The pattern shape of the groove 310g of the upper polishing pad 310 and the pattern shape of the groove 410g of the lower polishing pad 410 may be the same or different. The pattern shape of the groove 310g of the upper polishing pad 310 and the pattern shape of the groove 410g of the lower polishing pad 410 are straight shapes in which grooves are provided in parallel at predetermined intervals, as shown in FIG. As described above, it is possible to adopt a lattice shape in which grooves intersect and other pattern shapes. 10 and 11, the pattern shape of the groove 310g of the upper polishing pad 310 is illustrated, but the pattern shape of the groove 410g of the lower polishing pad 410 is the same.
本実施の形態における両面研磨装置2000は、上定盤300と下定盤400との間に、5枚のキャリア500を環状に配置する。キャリア500の外周面には、ギヤが設けられているが、ギヤの図示は省略する。また、キャリア500の半径は、ギヤの歯先円で測定した場合の寸法を意味する。
In the double-side polishing apparatus 2000 in the present embodiment, five carriers 500 are annularly arranged between the upper surface plate 300 and the lower surface plate 400. A gear is provided on the outer peripheral surface of the carrier 500, but the illustration of the gear is omitted. Further, the radius of the carrier 500 means a dimension when measured with a gear tip circle.
以上にように、研磨工程中の第1ポリッシュ工程および第2ポリッシュ工程に、[r≧(3/4)×R]の関係式を満足する位置に補助貫通孔530を複数設け、ガラス基板1の直径をDmmとした場合に、補助貫通孔530の直径を1mm以上Dmm未満としたキャリア500を用いることで、両面研磨装置を駆動させて両面研磨装置にスラリーを供給した場合、キャリア500の回転による遠心力により半径方向の外側に移動するスラリーが補助貫通孔530を通過し、上側研磨パッド310および下側研磨パッド410の間を移動して、上側研磨パッド310および下側研磨パッド410により、ガラス基板1の表面の研磨が行なわれる。
As described above, in the first polishing step and the second polishing step in the polishing step, a plurality of auxiliary through holes 530 are provided at positions satisfying the relational expression [r ≧ (3/4) × R], and the glass substrate 1 When the diameter of the carrier is Dmm, the carrier 500 having the auxiliary through-hole 530 having a diameter of 1 mm or more and less than Dmm is used to drive the double-side polishing apparatus and supply slurry to the double-side polishing apparatus. The slurry that moves to the outside in the radial direction due to the centrifugal force due to the above passes through the auxiliary through-hole 530, moves between the upper polishing pad 310 and the lower polishing pad 410, and by the upper polishing pad 310 and the lower polishing pad 410, The surface of the glass substrate 1 is polished.
その結果、補助貫通孔530が設けられない場合に比較して、両面研磨装置を駆動させてから両面研磨装置全体にスラリーを供給する場合の、スラリーの散布の平均時間までの収束時間を短くすることができる。
As a result, compared with the case where the auxiliary through-hole 530 is not provided, the convergence time from the time when the double-side polishing apparatus is driven to the time when the slurry is supplied to the entire double-side polishing apparatus is reduced to the average time of slurry dispersion. be able to.
これにより、加工初期のガラス基板の取代量の差異が減少し、また、ガラス基板に残存する前工程の加工痕のバラツキも抑制されることになる。
This reduces the difference in the machining allowance of the glass substrate at the initial stage of processing, and also suppresses variations in the processing marks of the previous process remaining on the glass substrate.
(実施例)
上記情報記録媒体用ガラス基板の製造方法の各実施例および各比較例について以下説明する。以下に示す各実施例および各比較例においては、図3に示すS33の「第1ポリッシュ工程(粗研磨)」までは、上記した説明のとおり実施した。ガラス基板の枚数は、合計110枚である。 (Example)
Examples and comparative examples of the method for producing the glass substrate for information recording medium will be described below. In each of the following examples and comparative examples, the processes up to the “first polishing step (rough polishing)” in S33 shown in FIG. 3 were performed as described above. The total number of glass substrates is 110.
上記情報記録媒体用ガラス基板の製造方法の各実施例および各比較例について以下説明する。以下に示す各実施例および各比較例においては、図3に示すS33の「第1ポリッシュ工程(粗研磨)」までは、上記した説明のとおり実施した。ガラス基板の枚数は、合計110枚である。 (Example)
Examples and comparative examples of the method for producing the glass substrate for information recording medium will be described below. In each of the following examples and comparative examples, the processes up to the “first polishing step (rough polishing)” in S33 shown in FIG. 3 were performed as described above. The total number of glass substrates is 110.
S34の「第2ポリッシュ工程(精密研磨)」を行なう前に、ガラス基板の表面の粗さの計測を行なった。S34を行なう前のガラス基板の表面粗さに、ばらつきがないかを確認した。ビーコインスツルメンツ社製 Nanoscope Dimension V型を使用し、各比較例および各実施例でガラス基板10枚の表面粗さを計測した。いずれのガラス基板も10μm四方で計測した表面粗さ(Ra)は、6.0Å以上7.2Å以下に収まっていることを確認した。
Before the “second polishing step (precision polishing)” of S34, the surface roughness of the glass substrate was measured. It was confirmed that there was no variation in the surface roughness of the glass substrate before performing S34. The surface roughness of 10 glass substrates was measured in each comparative example and each example, using Nanoscope Dimension V type manufactured by BECOL Instruments. It was confirmed that the surface roughness (Ra) measured for each glass substrate in a 10 μm square was within 6.0 mm to 7.2 mm.
実施例1-6、および、比較例1-4として、上記ガラス基板をそれぞれ用いて、S34の「第2ポリッシュ工程(精密研磨)」を行なった。キャリア500は、1回の「第2ポリッシュ工程(精密研磨)」において、5枚使用した。1枚のキャリアのガラス基板の保持枚数は、22枚である。貫通保持孔520の直径は、66.5mmである。上側研磨パッド310および下側研磨パッド410には、スウェードを素材とする軟質ポリッシャを用いた。研磨剤としては、第1ポリッシュ工程で用いた酸化セリウムよりも微細な、一般的なコロイダルシリカを主成分とするスラリーを用いた。
As Example 1-6 and Comparative Example 1-4, the “second polishing step (precise polishing)” of S34 was performed using each of the glass substrates. Five carriers 500 were used in one “second polishing step (precision polishing)”. The number of glass substrates held by one carrier is 22. The diameter of the through-holding hole 520 is 66.5 mm. For the upper polishing pad 310 and the lower polishing pad 410, a soft polisher made of suede was used. As the abrasive, a slurry mainly composed of general colloidal silica, which is finer than the cerium oxide used in the first polishing step, was used.
(比較例1-4、実施例1-3)
比較例1のキャリア500には、補助貫通孔530を設けていない。比較例2のキャリア500には、キャリア500の中心位置C1から半径130mmの円周上に(図12においては、「内側」と表記)、直径0.7mmの補助貫通孔530を、同一円上に等間隔に14個設けた。上側研磨パッド310および下側研磨パッド410に設けられる溝310g,410gの隣り合う溝の間隔P1は、40mmである。 (Comparative Example 1-4, Example 1-3)
Thecarrier 500 of Comparative Example 1 is not provided with the auxiliary through hole 530. The carrier 500 of Comparative Example 2 has an auxiliary through hole 530 having a diameter of 0.7 mm on the same circle on the circumference having a radius of 130 mm from the center position C1 of the carrier 500 (indicated as “inside” in FIG. 12). 14 were provided at regular intervals. An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 40 mm.
比較例1のキャリア500には、補助貫通孔530を設けていない。比較例2のキャリア500には、キャリア500の中心位置C1から半径130mmの円周上に(図12においては、「内側」と表記)、直径0.7mmの補助貫通孔530を、同一円上に等間隔に14個設けた。上側研磨パッド310および下側研磨パッド410に設けられる溝310g,410gの隣り合う溝の間隔P1は、40mmである。 (Comparative Example 1-4, Example 1-3)
The
比較例3のキャリア500には、キャリア500の中心位置C1から半径130mmの円周上に(図12においては、「内側」と表記)、直径1.2mmの補助貫通孔530を、同一円上に等間隔に14個設けた。上側研磨パッド310および下側研磨パッド410に設けられる溝310g,410gの隣り合う溝の間隔P1は、40mmである。
The carrier 500 of Comparative Example 3 has an auxiliary through hole 530 having a diameter of 1.2 mm on the same circle on the circumference having a radius of 130 mm from the center position C1 of the carrier 500 (indicated as “inside” in FIG. 12). 14 were provided at regular intervals. An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 40 mm.
比較例4のキャリア500には、キャリア500の中心位置C1から半径200mmの円周上に(図12においては、「外側」と表記)、直径0.7mmの補助貫通孔530を、同一円上に等間隔に14個設けた。上側研磨パッド310および下側研磨パッド410に設けられる溝310g,410gの隣り合う溝の間隔P1は、40mmである。
The carrier 500 of Comparative Example 4 has an auxiliary through hole 530 having a diameter of 0.7 mm on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 12). 14 were provided at regular intervals. An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 40 mm.
実施例1のキャリア500には、キャリア500の中心位置C1から半径200mmの円周上に(図12においては、「外側」と表記)、直径1.2mmの補助貫通孔530を、同一円上に等間隔に14個設けた。上側研磨パッド310および下側研磨パッド410に設けられる溝310g,410gの隣り合う溝の間隔P1は、40mmである。
In the carrier 500 of the first embodiment, an auxiliary through hole 530 having a diameter of 1.2 mm is provided on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 12). 14 were provided at regular intervals. An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 40 mm.
実施例2のキャリア500には、キャリア500の中心位置C1から半径200mmの円周上に(図12においては、「外側」と表記)、直径4.0mmの補助貫通孔530を、同一円上に等間隔に14個設けた。上側研磨パッド310および下側研磨パッド410に設けられる溝310g,410gの隣り合う溝の間隔P1は、40mmである。
In the carrier 500 of the second embodiment, an auxiliary through hole 530 having a diameter of 4.0 mm is provided on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 12). 14 were provided at regular intervals. An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 40 mm.
実施例3のキャリア500には、キャリア500の中心位置C1から半径200mmの円周上に(図12においては、「外側」と表記)、直径1.2mmの補助貫通孔530を同一円上に等間隔に7個設けた。上側研磨パッド310および下側研磨パッド410に設けられる溝310g,410gの隣り合う溝の間隔P1は、40mmである。
In the carrier 500 of the third embodiment, an auxiliary through hole 530 having a diameter of 1.2 mm is provided on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 12). Seven were provided at equal intervals. An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 40 mm.
図12に、比較例1-4、および実施例1-3の、各条件およびディフェクト評価による収率の結果を示す。収率(キズ評価による収率)については、KLA-Tencor社製のOSA7120を使用し、キズとみなされるディフェクトのカウント数が20以下であるものを良品と判定、比較例1-4、および実施例1-3で、各50枚計測し、良品の割合を調査し、88%以上のものを評価「A」とし合格とした。また、88%未満のものを評価「C」とし、不合格とした。
FIG. 12 shows the results of Comparative Example 1-4 and Example 1-3 according to the conditions and defect evaluation. Regarding the yield (yield by scratch evaluation), OSA7120 manufactured by KLA-Tencor was used, and a defect having a count of 20 or less that was regarded as a scratch was determined to be a non-defective product, Comparative Examples 1-4, and the implementation In Example 1-3, 50 sheets were measured, the ratio of non-defective products was investigated, and those with 88% or more were evaluated as “A” and passed. Moreover, the thing of less than 88% was set as evaluation "C", and was made disqualified.
図12に示すように、比較例1-4は、いずれも評価「C」であり不合格であった。一方、実施例1-3は、いずれも評価「A」であり合格であった。
As shown in FIG. 12, Comparative Examples 1-4 were all evaluated as “C” and failed. On the other hand, each of Examples 1-3 was evaluated as “A” and passed.
(実施例4-6)
実施例4のキャリア500には、キャリア500の中心位置C1から半径200mmの円周上に(図13においては、「外側」と表記)、直径1.2mmの補助貫通孔530を同一円上に等間隔に14個設けた。上側研磨パッド310および下側研磨パッド410に設けられる溝310g,410gの隣り合う溝の間隔P1は、60mmである。 (Example 4-6)
In thecarrier 500 of the fourth embodiment, an auxiliary through hole 530 having a diameter of 1.2 mm is provided on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 13). Fourteen were provided at equal intervals. An interval P1 between adjacent grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 60 mm.
実施例4のキャリア500には、キャリア500の中心位置C1から半径200mmの円周上に(図13においては、「外側」と表記)、直径1.2mmの補助貫通孔530を同一円上に等間隔に14個設けた。上側研磨パッド310および下側研磨パッド410に設けられる溝310g,410gの隣り合う溝の間隔P1は、60mmである。 (Example 4-6)
In the
実施例5のキャリア500には、キャリア500の中心位置C1から半径200mmの円周上に(図13においては、「外側」と表記)、直径1.2mmの補助貫通孔530を同一円上に等間隔に14個設けた。上側研磨パッド310および下側研磨パッド410に設けられる溝310g,410gの隣り合う溝の間隔P1は、80mmである。
In the carrier 500 of the fifth embodiment, an auxiliary through hole 530 having a diameter of 1.2 mm is provided on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 13). Fourteen were provided at equal intervals. An interval P1 between adjacent grooves of the grooves 310g and 410g provided in the upper polishing pad 310 and the lower polishing pad 410 is 80 mm.
実施例6のキャリア500には、キャリア500の中心位置C1から半径200mmの円周上に(図13においては、「外側」と表記)、直径1.2mmの補助貫通孔530を同一円上に等間隔に14個設けた。上側研磨パッド310および下側研磨パッド410には、溝310g,410gを設けなかった。
In the carrier 500 of the sixth embodiment, an auxiliary through hole 530 having a diameter of 1.2 mm is formed on the same circle on the circumference having a radius of 200 mm from the center position C1 of the carrier 500 (indicated as “outside” in FIG. 13). Fourteen were provided at equal intervals. The upper polishing pad 310 and the lower polishing pad 410 were not provided with the grooves 310g and 410g.
図13に、実施例4-6の、各条件およびディフェクト評価による収率の結果を示す。収率(キズ評価による収率)については、上記と同じである。また、実施例4-6においては、微小うねりの評価も行なった。
FIG. 13 shows the results of the yield of each example and defect evaluation in Example 4-6. The yield (yield by scratch evaluation) is the same as described above. In Example 4-6, the evaluation of microwaviness was also performed.
微小うねりの評価は、Zygo社製の非接触表面形状測定機(New View 5,000)を使用して計測した。うねり成分の測定波長範囲は30μm以上200μm以下とする。実施例4-6のそれぞれにおいて、各20枚のガラス基板1を計測し、平均値が0.8Å未満のものを評価「A」とし合格とした。また、0.8Å以上1.0Å未満のものを評価「A」よりも合格ランクの低い評価「B」とし合格とした。
The evaluation of micro waviness was measured using a non-contact surface profile measuring machine (New View 5,000) manufactured by Zygo. The measurement wavelength range of the swell component is 30 μm or more and 200 μm or less. In each of Examples 4-6, 20 glass substrates 1 were measured, and those with an average value of less than 0.8 mm were evaluated as “A” and passed. Moreover, the evaluation “B” having a lower pass rank than the evaluation “A” was set as a pass with a value of 0.8 to 1.0%.
測定の結果、溝間隔の広いものは、溝間隔の狭いものと比較してうねりが小さかった。なお、溝310g,410gを設けない場合には、研磨作業中に摩擦によるトラブルが発生する場合があり、溝310g,410gは設けておく方がよい。
As a result of the measurement, the waviness of the wide groove interval was smaller than that of the narrow groove interval. If the grooves 310g and 410g are not provided, troubles due to friction may occur during the polishing operation, and it is better to provide the grooves 310g and 410g.
図13に示すように、実施例4は、微小うねりの評価が「B」であるものの、ディフェクト評価は、実施例4-6のすべてにおいて評価は「A」であった。
As shown in FIG. 13, in Example 4, the evaluation of microwaviness was “B”, but the defect evaluation was “A” in all of Examples 4-6.
さらに、上記実施例1-6、および、比較例1-4によって得られたガラス基板に対して、図3に示す、化学強化工程(S40)、洗浄工程(S50)、および磁気薄膜形成工程(S60)を実施し、情報記録媒体を得た。
Furthermore, the chemical strengthening step (S40), the cleaning step (S50), and the magnetic thin film forming step (shown in FIG. 3) are performed on the glass substrates obtained in Examples 1-6 and Comparative Example 1-4. S60) was carried out to obtain an information recording medium.
この情報記録媒体を、ハードドライブに組み込み、リードライト試験を行なった。比較例1-4によって得られたガラス基板を用いた情報記録媒体に比較して、実施例1-6によって得られたガラス基板を用いた情報記録媒体は、記録特性が良好であり、特に、実施例4-6によって得られたガラス基板を用いた情報記録媒体は、記録特性が優れていた。
This information recording medium was incorporated into a hard drive and a read / write test was conducted. Compared to the information recording medium using the glass substrate obtained by Comparative Example 1-4, the information recording medium using the glass substrate obtained by Example 1-6 has good recording characteristics, in particular, The information recording medium using the glass substrate obtained in Example 4-6 was excellent in recording characteristics.
このように、上記実施例1-6においては、第2ポリッシュ工程に、[r≧(3/4)×R]の関係式を満足する位置(外側;200mmの位置)に補助貫通孔530を複数設け、補助貫通孔530の直径を1.2mmまたは4mmとしたキャリア500を用いた。
Thus, in Example 1-6, in the second polishing step, the auxiliary through hole 530 is provided at a position satisfying the relational expression [r ≧ (3/4) × R] (outside; 200 mm position). A plurality of carriers 500 provided with a plurality of auxiliary through holes 530 having a diameter of 1.2 mm or 4 mm were used.
これにより、両面研磨装置を駆動させて両面研磨装置にスラリーを供給した場合、キャリア500の回転による遠心力により半径方向の外側に移動するスラリーが補助貫通孔530を通過し、上側研磨パッド310および下側研磨パッド410の間を移動して、上側研磨パッド310および下側研磨パッド410により、ガラス基板1の表面の研磨が行なわれた。
Accordingly, when the double-side polishing apparatus is driven and the slurry is supplied to the double-side polishing apparatus, the slurry that moves to the outside in the radial direction by the centrifugal force due to the rotation of the carrier 500 passes through the auxiliary through-hole 530, and the upper polishing pad 310 and The surface of the glass substrate 1 was polished by the upper polishing pad 310 and the lower polishing pad 410 while moving between the lower polishing pads 410.
その結果、補助貫通孔530が設けられない場合(比較例1)、補助貫通孔530の位置が内側(130mm)の場合(比較例2、3)、補助貫通孔530の孔径が1mm未満である場合(比較例4)に比べて、両面研磨装置を駆動させてから両面研磨装置全体にスラリーが供給されるまで、スラリーの散布の平均時間までの収束時間を短くすることができたと考えられる。これにより、加工初期のガラス基板の取代量の差異が減少し、また、ガラス基板に残存する前工程の加工痕のバラツキも抑制されたと考えられ、各実施例においては、ディフェクト評価はすべて評価「A」であった。
As a result, when the auxiliary through hole 530 is not provided (Comparative Example 1), when the position of the auxiliary through hole 530 is inside (130 mm) (Comparative Examples 2 and 3), the hole diameter of the auxiliary through hole 530 is less than 1 mm. Compared to the case (Comparative Example 4), it is considered that the convergence time from the time when the double-side polishing apparatus was driven to the time when the slurry was supplied to the entire double-side polishing apparatus could be shortened to the average time of slurry dispersion. As a result, the difference in the machining allowance of the glass substrate at the initial stage of processing was reduced, and it was considered that the variation in the processing marks of the previous process remaining on the glass substrate was also suppressed. A ".
また、上側研磨パッド310および下側研磨パッド410の表面には、相互に平行に延びる複数の溝310g,410gが設けられことが好ましく、隣り合う溝310g,410gの間隔(P1)は、実施例1-実施例3で40mmを採用し、実施例4で60mmを採用し、実施例5で80mmを採用している。
The surfaces of the upper polishing pad 310 and the lower polishing pad 410 are preferably provided with a plurality of grooves 310g and 410g extending in parallel with each other, and the interval (P1) between the adjacent grooves 310g and 410g is determined as an example. 1—40 mm is used in Example 3, 60 mm is used in Example 4, and 80 mm is used in Example 5.
キャリア500に補助貫通孔530を設けない場合には、スラリー拡散の収束が遅かったため、加工初期のガラス基板の加工レートがばらつく課題があった。しかし、キャリア500に補助貫通孔530を設けることで、ガラス基板の加工レートのばらつきを抑制すすることができた。
In the case where the auxiliary through-hole 530 is not provided in the carrier 500, the convergence of the slurry diffusion was slow, and there was a problem that the processing rate of the glass substrate at the initial stage of processing varied. However, by providing the auxiliary through hole 530 in the carrier 500, it was possible to suppress variation in the processing rate of the glass substrate.
一方、上側研磨パッド310および下側研磨パッド410の表面には、相互に平行に延びる複数の溝310g,410gを設けることで、ガラス基板に対して微小うねりが生じることが、実施例4-6において確認できた。
On the other hand, the surface of the upper polishing pad 310 and the lower polishing pad 410 is provided with a plurality of grooves 310g and 410g extending in parallel with each other, so that minute waviness is generated with respect to the glass substrate. It was confirmed in.
実施例4-6の微小うねりの評価結果から、溝310g,410gの間隔の下限は、ガラス基板1の直径(D)以上であることが好ましく、間隔の上限は[20×D]mm未満であることが好ましい。[20×D]mm未満としたのは、実質的には溝を設けない場合と同じ状態になると考えられるからである。
From the evaluation results of the microwaviness in Example 4-6, the lower limit of the interval between the grooves 310g and 410g is preferably equal to or larger than the diameter (D) of the glass substrate 1, and the upper limit of the interval is less than [20 × D] mm. Preferably there is. The reason why it is less than [20 × D] mm is that it is considered that the state is substantially the same as when no groove is provided.
また、補助貫通孔530の直径としては、1mm以上10mm未満であることが好ましい。補助貫通孔530の直径が1mm以下であると、比較例2および比較例4に示すように、ディフェクト評価が評価「C」となる。
The diameter of the auxiliary through hole 530 is preferably 1 mm or more and less than 10 mm. When the diameter of the auxiliary through hole 530 is 1 mm or less, as shown in Comparative Example 2 and Comparative Example 4, the defect evaluation is evaluated as “C”.
また、補助貫通孔530の直径が10mm以上であると、キャリア500の剛性を低下させるおそれが生じるおそれがあり、補助貫通孔530の直径の上限は、10mm未満であることが好ましい。
Further, if the diameter of the auxiliary through hole 530 is 10 mm or more, there is a possibility that the rigidity of the carrier 500 may be lowered, and the upper limit of the diameter of the auxiliary through hole 530 is preferably less than 10 mm.
以上のように本発明の実施の形態および実施例について説明を行なったが、今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
Although the embodiments and examples of the present invention have been described above, the embodiments and examples disclosed this time are illustrative in all respects and should not be considered as restrictive. It is. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1A 表主表面、1B 裏主表面、1C 内周端面、1D 外周端面、1H 孔、2 磁気薄膜層、10 磁気ディスク、300 上定盤、310 上側研磨パッド、310g,410g 溝、320 スラリー供給孔、330 スラリー供給チューブ、340 パウダーリング、350 スラリー供給口、360 スラリー供給ノズル、400 下定盤、410 下側研磨パッド、500 キャリア、510 本体、520 貫通保持孔、530 補助貫通孔、2000 両面研磨装置。
1A front main surface, 1B back main surface, 1C inner peripheral end surface, 1D outer peripheral end surface, 1H hole, 2 magnetic thin film layer, 10 magnetic disk, 300 upper surface plate, 310 upper polishing pad, 310g, 410g groove, 320 slurry supply hole , 330 slurry supply tube, 340 powder ring, 350 slurry supply port, 360 slurry supply nozzle, 400 lower surface plate, 410 lower polishing pad, 500 carrier, 510 main body, 520 through holding hole, 530 auxiliary through hole, 2000 double-side polishing machine .
Claims (8)
- 円形ディスク形状のガラス基板の主表面に磁気薄膜層が形成される情報記録媒体用ガラス基板の製造方法であって、
遊星歯車機構を備えた両面研磨装置を用いて前記ガラス基板の主表面を、研磨剤を供給しながら研磨する表面研磨工程を有し、
前記両面研磨装置は、
前記ガラス基板の上側に位置し、前記ガラス基板側に上側研磨パッドを有する上定盤と、
前記ガラス基板の下側に位置し、前記ガラス基板側に下側研磨パッドを有する下定盤と、
前記ガラス基板を保持する貫通保持孔が複数設けられ、前記上側研磨パッドと前記下側研磨パッドとにより挟み込まれるとともに、前記遊星歯車機構により所定の回転運動を行なう円盤状のキャリアと、を備え、
前記キャリアは、複数の補助貫通孔を有し、
前記補助貫通孔は、前記キャリアの半径をRmm、前記キャリアの中心位置から前記補助貫通孔の中心位置までの距離をrmmとした場合に、少なくとも一つの前記補助貫通孔は、[r≧(3/4)×R]の関係式を満足する位置に設けられるとともに、前記ガラス基板の直径をDmmとした場合に、前記補助貫通孔の直径は、1mm以上Dmm未満である、情報記録媒体用ガラス基板の製造方法。 A method for producing a glass substrate for an information recording medium in which a magnetic thin film layer is formed on the main surface of a circular disk-shaped glass substrate,
A surface polishing step of polishing the main surface of the glass substrate using a double-side polishing apparatus equipped with a planetary gear mechanism while supplying an abrasive;
The double-side polishing apparatus includes:
Located on the upper side of the glass substrate, an upper surface plate having an upper polishing pad on the glass substrate side,
Located on the lower side of the glass substrate, a lower surface plate having a lower polishing pad on the glass substrate side,
A plurality of through-holding holes for holding the glass substrate, and a disc-shaped carrier that is sandwiched between the upper polishing pad and the lower polishing pad and performs a predetermined rotational movement by the planetary gear mechanism,
The carrier has a plurality of auxiliary through holes,
When the radius of the carrier is Rmm and the distance from the center position of the carrier to the center position of the auxiliary through hole is rmm, at least one of the auxiliary through holes is [r ≧ (3 / 4) × R] is provided at a position satisfying the relational expression, and the diameter of the auxiliary through hole is 1 mm or more and less than Dmm when the diameter of the glass substrate is Dmm. A method for manufacturing a substrate. - 複数の前記補助貫通孔530の半数以上が、[r≧(3/4)×R]の関係式を満足する位置に設けられている、請求項1に記載の情報記録媒体用ガラス基板の製造方法。 The production of the glass substrate for an information recording medium according to claim 1, wherein more than half of the plurality of auxiliary through holes 530 are provided at a position satisfying a relational expression [r ≧ (3/4) × R]. Method.
- 複数の前記補助貫通孔530の全てが、[r≧(3/4)×R]の関係式を満足する位置に設けられている、請求項2に記載の情報記録媒体用ガラス基板の製造方法。 The method for producing a glass substrate for an information recording medium according to claim 2, wherein all of the plurality of auxiliary through holes 530 are provided at positions satisfying a relational expression of [r ≧ (3/4) × R]. .
- 前記上側研磨パッドおよび前記下側研磨パッドの表面には、相互に平行に延びる複数の溝が設けられ、
隣り合う前記溝の間隔は、Dmm以上[20×D]mm未満である、請求項1から3のいずれかに記載の情報記録媒体用ガラス基板の製造方法。 A plurality of grooves extending in parallel with each other are provided on the surfaces of the upper polishing pad and the lower polishing pad,
4. The method for manufacturing a glass substrate for an information recording medium according to claim 1, wherein an interval between the adjacent grooves is not less than D mm and less than [20 × D] mm. 5. - 前記上側研磨パッドに設けられる複数の前記溝の間隔は、前記下側研磨パッドに設けられる複数の前記溝の間隔よりも狭く設けられている、請求項4に記載の情報記録媒体用ガラス基板の製造方法。 5. The glass substrate for an information recording medium according to claim 4, wherein an interval between the plurality of grooves provided in the upper polishing pad is narrower than an interval between the plurality of grooves provided in the lower polishing pad. Production method.
- 最外周に位置する前記貫通保持孔よりも外周側の位置において、前記貫通保持孔と同数の前記補助貫通孔が、前記貫通保持孔の間の位置に設けられている、請求項1から5のいずれかに記載の情報記録媒体用ガラス基板の製造方法。 6. The auxiliary through hole of the same number as the through holding hole is provided at a position between the through holding holes at a position on the outer peripheral side with respect to the through holding hole located on the outermost periphery. The manufacturing method of the glass substrate for information recording media in any one.
- 前記補助貫通孔の直径は、1mm以上10mm未満である、請求項1から6のいずれかに記載の情報記録媒体用ガラス基板の製造方法。 The method for producing a glass substrate for an information recording medium according to any one of claims 1 to 6, wherein the diameter of the auxiliary through hole is 1 mm or more and less than 10 mm.
- 情報記録媒体用ガラス基板の製造方法によって得られたガラス基板と、
前記ガラス基板の主表面に形成された磁気薄膜層と、
を備える情報記録媒体であって、
前記情報記録媒体用ガラス基板の製造方法は、
遊星歯車機構を備えた両面研磨装置を用いて前記ガラス基板の主表面を、研磨剤を供給しながら研磨する表面研磨工程を有し、
前記両面研磨装置は、
前記ガラス基板の上側に位置し、前記ガラス基板側に上側研磨パッドを有する上定盤と、
前記ガラス基板の下側に位置し、前記ガラス基板側に下側研磨パッドを有する下定盤と、
前記ガラス基板を保持する貫通保持孔が複数設けられ、前記上側研磨パッドと前記下側研磨パッドとにより挟み込まれるとともに、前記遊星歯車機構により所定の回転運動を行なう円盤状のキャリアと、を備え、
前記キャリアは、複数の補助貫通孔を有し、
前記補助貫通孔は、前記キャリアの半径をRmm、前記キャリアの中心位置から前記補助貫通孔の中心位置までの距離をrmmとした場合に、少なくとも一つの前記補助貫通孔は、[r≧(3/4)×R]の関係式を満足する位置に設けられるとともに、前記ガラス基板の直径をDmmとした場合に、前記補助貫通孔の直径は、1mm以上Dmm未満である、情報記録媒体。 A glass substrate obtained by a method for producing a glass substrate for an information recording medium;
A magnetic thin film layer formed on the main surface of the glass substrate;
An information recording medium comprising:
The manufacturing method of the glass substrate for information recording medium,
A surface polishing step of polishing the main surface of the glass substrate using a double-side polishing apparatus equipped with a planetary gear mechanism while supplying an abrasive;
The double-side polishing apparatus includes:
Located on the upper side of the glass substrate, an upper surface plate having an upper polishing pad on the glass substrate side,
Located on the lower side of the glass substrate, a lower surface plate having a lower polishing pad on the glass substrate side,
A plurality of through-holding holes for holding the glass substrate, and a disc-shaped carrier that is sandwiched between the upper polishing pad and the lower polishing pad and performs a predetermined rotational movement by the planetary gear mechanism,
The carrier has a plurality of auxiliary through holes,
When the radius of the carrier is Rmm and the distance from the center position of the carrier to the center position of the auxiliary through hole is rmm, at least one of the auxiliary through holes is [r ≧ (3 / 4) × R] is provided at a position satisfying the relational expression, and the diameter of the auxiliary through hole is 1 mm or more and less than Dmm when the diameter of the glass substrate is Dmm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012080466 | 2012-03-30 | ||
JP2012-080466 | 2012-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146134A1 true WO2013146134A1 (en) | 2013-10-03 |
Family
ID=49259405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/056081 WO2013146134A1 (en) | 2012-03-30 | 2013-03-06 | Manufacturing method for glass substrate for information recording medium, and information recording medium |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013146134A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5981057A (en) * | 1982-11-01 | 1984-05-10 | Hitachi Ltd | Both-side polishing device |
JP2007301713A (en) * | 2006-04-10 | 2007-11-22 | Kemet Japan Co Ltd | Polishing implement |
JP2009190159A (en) * | 2008-02-18 | 2009-08-27 | Seiko Instruments Inc | Carrier and wafer grinder |
WO2009157306A1 (en) * | 2008-06-25 | 2009-12-30 | 旭硝子株式会社 | Apparatus for polishing both sides of glass substrate for magnetic disk, polishing method, and production process |
WO2010078312A1 (en) * | 2008-12-31 | 2010-07-08 | 3M Innovative Properties Company | Coated carrier for lapping and methods of making and using |
JP2010179375A (en) * | 2009-02-03 | 2010-08-19 | Sumco Corp | Grinding object carrier and manufacturing method of ground product |
WO2011021762A1 (en) * | 2009-08-21 | 2011-02-24 | Siltron Inc | Double side polishing apparatus and carrier therefor |
-
2013
- 2013-03-06 WO PCT/JP2013/056081 patent/WO2013146134A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5981057A (en) * | 1982-11-01 | 1984-05-10 | Hitachi Ltd | Both-side polishing device |
JP2007301713A (en) * | 2006-04-10 | 2007-11-22 | Kemet Japan Co Ltd | Polishing implement |
JP2009190159A (en) * | 2008-02-18 | 2009-08-27 | Seiko Instruments Inc | Carrier and wafer grinder |
WO2009157306A1 (en) * | 2008-06-25 | 2009-12-30 | 旭硝子株式会社 | Apparatus for polishing both sides of glass substrate for magnetic disk, polishing method, and production process |
WO2010078312A1 (en) * | 2008-12-31 | 2010-07-08 | 3M Innovative Properties Company | Coated carrier for lapping and methods of making and using |
JP2010179375A (en) * | 2009-02-03 | 2010-08-19 | Sumco Corp | Grinding object carrier and manufacturing method of ground product |
WO2011021762A1 (en) * | 2009-08-21 | 2011-02-24 | Siltron Inc | Double side polishing apparatus and carrier therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8728638B2 (en) | Magnetic disk substrate, method for manufacturing the same, and magnetic disk | |
JP5321594B2 (en) | Manufacturing method of glass substrate and manufacturing method of magnetic recording medium | |
WO2010041536A1 (en) | Process for producing glass substrate, and process for producing magnetic recording medium | |
JP6138113B2 (en) | Method for manufacturing glass substrate for information recording medium, method for manufacturing magnetic disk, and carrier for grinding | |
JPWO2010041537A1 (en) | Manufacturing method of glass substrate and manufacturing method of magnetic recording medium | |
JP5536481B2 (en) | Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium | |
JP2014188668A (en) | Method of manufacturing glass substrate | |
JP2008217918A (en) | Glass substrate for magnetic recording medium, and magnetic recording medium | |
WO2011021478A1 (en) | Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium | |
JP6138114B2 (en) | Method for manufacturing glass substrate for information recording medium, method for manufacturing magnetic disk, and carrier for polishing | |
JP5781845B2 (en) | HDD glass substrate, HDD glass substrate manufacturing method, and HDD magnetic recording medium | |
JP5706250B2 (en) | Glass substrate for HDD | |
WO2013146132A1 (en) | Manufacturing method for glass substrate for information recording medium, and information recording medium | |
WO2013146134A1 (en) | Manufacturing method for glass substrate for information recording medium, and information recording medium | |
JP5719785B2 (en) | GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE | |
JP5869241B2 (en) | HDD glass substrate, HDD glass substrate manufacturing method, and HDD magnetic recording medium | |
JP2012203960A (en) | Manufacturing method for glass substrate for magnetic information recording medium | |
JP5870187B2 (en) | Glass substrate for magnetic disk, magnetic disk, magnetic disk drive device | |
WO2013146131A1 (en) | Manufacturing method for glass substrate for information recording medium, and information recording medium | |
JP5859757B2 (en) | Manufacturing method of glass substrate for HDD | |
WO2012132073A1 (en) | Method for manufacturing glass substrate for information recording medium, and information recording medium | |
WO2014045653A1 (en) | Method for manufacturing glass substrate for information recording medium | |
WO2014156798A1 (en) | Method of manufacturing glass substrate for information recording medium | |
JP5960288B2 (en) | Method and apparatus for manufacturing glass substrate for information recording medium, and carrier | |
JP2015069685A (en) | Production method of magnetic disk glass substrate and magnetic disk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13769720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13769720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |