WO2014156798A1 - Method of manufacturing glass substrate for information recording medium - Google Patents
Method of manufacturing glass substrate for information recording medium Download PDFInfo
- Publication number
- WO2014156798A1 WO2014156798A1 PCT/JP2014/057234 JP2014057234W WO2014156798A1 WO 2014156798 A1 WO2014156798 A1 WO 2014156798A1 JP 2014057234 W JP2014057234 W JP 2014057234W WO 2014156798 A1 WO2014156798 A1 WO 2014156798A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass substrate
- polishing
- carrier
- holding holes
- holding
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8404—Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/27—Work carriers
- B24B37/28—Work carriers for double side lapping of plane surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B7/00—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
- B24B7/20—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
- B24B7/22—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
- B24B7/24—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding or polishing glass
Definitions
- the present invention relates to a method for manufacturing a glass substrate for information recording medium, and more particularly to a method for manufacturing a glass substrate for information recording medium in which the glass substrate is polished using a polishing apparatus.
- An information recording medium such as a magnetic disk is mounted as a hard disk on a computer or the like.
- An information recording medium is manufactured by forming a magnetic thin film layer including a recording layer using properties such as magnetism, light, or magnetomagnetism on the surface of a substrate. As the recording layer is magnetized by the magnetic head, predetermined information is recorded on the information recording medium.
- the recording density of information recording media is improving year by year. Accordingly, high quality is required for the quality of substrates used for information recording media.
- an aluminum substrate has been used as a substrate for an information recording medium.
- the recording density is improved, it is gradually being replaced by a glass substrate that is superior in smoothness and strength of the substrate surface as compared with an aluminum substrate.
- the method for producing a glass substrate for an information recording medium has a polishing step for ensuring high surface shape accuracy.
- a polishing step for ensuring high surface shape accuracy.
- two or more stages of polishing processes in which slurry and polishing pads having different processing capabilities are effectively combined are applied.
- Patent Document 1 discloses a conventional technology relating to glass substrate manufacturing.
- the present invention has been made in view of the above-described problems, and an object thereof is to provide a method for manufacturing a glass substrate for an information recording medium, which can reduce variations in the thickness of the glass substrate.
- the disk-shaped carrier When polishing the main surface of a glass substrate with a conventional double-side polishing machine that uses a suede pad and a polishing carrier, the disk-shaped carrier rotates and revolves around the rotation axis of the upper and lower polishing surface plates. The surface is polished. At this time, since the glass substrate held by the holding hole at the same radial position from the center of the carrier moves relative to the polishing surface of the surface plate along the same locus, generally the processing characteristics are equal. There is expected.
- the present inventor In the process of manufacturing a large-diameter glass substrate, the present inventor has found that a variation in plate thickness occurs in the glass substrate held by the holding holes at the same radial position from the center of the carrier. Based on this, the present inventor has intensively studied a manufacturing method for reducing the variation in the thickness of the glass substrate held by the holding holes at the same radial position from the center of the carrier, and has completed the present invention. It was.
- the method for manufacturing a glass substrate for an information recording medium includes a polishing pad made of a member including a plurality of foam holes and a carrier that holds the glass substrate, and is held by the carrier using the polishing pad.
- the manufacturing method of the glass substrate for information recording media using the polishing apparatus which grinds the obtained glass substrate.
- the manufacturing method includes a step of preparing a glass substrate having a main surface and an outer diameter of 80 mm or more, and a step of polishing the main surface of the glass substrate using a polishing apparatus.
- the carrier of the polishing apparatus is provided to be able to rotate.
- the carrier is formed with a plurality of holding holes for accommodating the glass substrate.
- At least a part of the plurality of holding holes constitutes the same diameter hole group in which the distance between the rotation center of the carrier and the center of the holding hole is substantially equal.
- the distance between the two holding holes on a line segment connecting the centers of two holding holes that belong to the same diameter hole group and are adjacent to each other in the circumferential direction around the rotation center is 0.5 mm or more and 3.0 mm or less.
- the polishing pad preferably has a hardness of 75 to 85 in terms of a type AO durometer hardness defined by ISO7619.
- At least a part of the plurality of holding holes constitutes a different diameter hole group in which the distance between the rotation center of the carrier and the center of the holding hole is different from the holding holes belonging to the same diameter hole group. ing.
- the distance between the two holding holes on the line segment connecting the centers of the holding holes belonging to the same diameter hole group and the holding holes belonging to the different diameter hole group is 0.5 mm or more and 3.0 mm or less.
- the polishing step includes a step of roughly polishing the glass substrate and a step of precisely polishing the glass substrate after the step of rough polishing.
- the carrier is included in a polishing apparatus used in the rough polishing step.
- the information recording medium is preferably used for a heat-assisted magnetic recording apparatus.
- the carrier is preferably formed using glass fiber reinforced epoxy as a material.
- FIG. 1 is a perspective view showing a glass substrate 1 used for a magnetic disk 10 (see FIG. 2).
- FIG. 2 is a perspective view showing a magnetic disk 10 provided with a glass substrate 1 as an information recording medium.
- a glass substrate 1 (glass substrate for information recording medium) used for a magnetic disk 10 has an annular disk shape with a hole 1H formed in the center.
- the circular disk-shaped glass substrate 1 has a front main surface 1A, a back main surface 1B, an inner peripheral end surface 1C, and an outer peripheral end surface 1D.
- the size of the disk-shaped glass substrate 1 is defined as an outer diameter of 80 mm or more.
- the storage capacity of the magnetic disk 10 produced using the glass substrate 1 can be increased, and an information recording medium suitable for server use can be realized.
- the thickness of the glass substrate 1 is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage.
- the thickness of the glass substrate 1 is a value calculated by averaging the values measured at a plurality of arbitrary points that are point-symmetric on the glass substrate 1.
- the glass substrate 1 may be thin with a thickness of 0.630 mm or less. In this case, the glass substrate 1 can be reduced in weight, and power consumption during rotation of the magnetic disk 10 can be reduced.
- the magnetic disk 10 includes a magnetic thin film layer 2.
- the magnetic thin film layer 2 includes a magnetic recording layer formed by forming a magnetic film on the front main surface 1A of the glass substrate 1 described above.
- the magnetic thin film layer 2 is formed only on the front main surface 1A, but the magnetic thin film layer 2 may also be formed on the back main surface 1B.
- the magnetic thin film layer 2 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the front main surface 1A of the glass substrate 1 (spin coating method).
- the magnetic thin film layer 2 may be formed on the front main surface 1A of the glass substrate 1 by a sputtering method, an electroless plating method, or the like.
- the film thickness of the magnetic thin film layer 2 formed on the front main surface 1A of the glass substrate 1 is about 0.3 ⁇ m to about 1.2 ⁇ m in the case of the spin coating method, and about 0.04 ⁇ m to about 0.00 in the case of the sputtering method. In the case of electroless plating, the thickness is about 0.05 ⁇ m to about 0.1 ⁇ m. From the viewpoint of thinning and high density, the magnetic thin film layer 2 is preferably formed by sputtering or electroless plating.
- the magnetic material used for the magnetic thin film layer 2 is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Co having high crystal anisotropy is basically used for the purpose of adjusting the residual magnetic flux density. A Co-based alloy to which Ni or Cr is added is suitable. Further, as a magnetic layer material suitable for heat-assisted recording, an FePt-based material may be used.
- a lubricant may be thinly coated on the surface of the magnetic thin film layer 2 in order to improve the sliding of the magnetic recording head.
- the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
- an underlayer or a protective layer may be provided.
- the underlayer in the magnetic disk 10 is selected according to the magnetic film.
- the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
- the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked.
- a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
- Examples of the protective layer for preventing wear and corrosion of the magnetic thin film layer 2 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be continuously formed together with an underlayer, a magnetic film and the like by an in-line type sputtering apparatus. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers.
- Another protective layer may be formed on the protective layer or instead of the protective layer.
- tetraalkoxysilane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon oxide (SiO 2 ) layer. It may be formed.
- FIG. 3 is a flowchart showing a method for manufacturing the glass substrate 1 in the embodiment.
- the glass substrate manufacturing method in the present embodiment includes a glass blank material preparation step (step S10), a glass substrate formation / grinding step (step S20), a polishing step (step S30), a chemical strengthening step (step S40), and a cleaning.
- the process (step S50) is provided.
- the magnetic thin film forming step (step S60) may be performed on the glass substrate (corresponding to the glass substrate 1 in FIG. 1) obtained through the chemical strengthening treatment step (step S40).
- the magnetic disk 10 as an information recording medium is obtained by the magnetic thin film forming step (step S60).
- the glass material constituting the glass substrate is melted (step S11).
- a general aluminosilicate glass is used as the glass material.
- the aluminosilicate glass is composed of 58 mass% to 75 mass% SiO 2 , 5 mass% to 23 mass% Al 2 O 3 , 3 mass% to 10 mass% Li 2 O, and 4 mass% to 13 mass. % Na 2 O as a main component.
- the molten glass material is poured onto the lower mold and then press-molded with the upper mold and the lower mold (step S12).
- a disk-shaped glass blank (glass base material) is formed by press molding.
- a glass blank material may be formed by cutting sheet glass (plate glass) formed by a downdraw method or a float method with a grinding wheel. Further, the glass material is not limited to aluminosilicate glass, and may be any material.
- the first lapping process is performed on both main surfaces of the press-molded glass blank material for the purpose of improving dimensional accuracy and shape accuracy.
- Both main surfaces of a glass blank material are the main surfaces used as the front main surface 1A and the main surface used as the back main surface 1B in FIG. 1 through each process mentioned later (henceforth, both main surfaces) Also called).
- alumina abrasive grains having a particle size of # 400 particles size of about 40 to 60 ⁇ m
- the surface roughness Rmax is finished to about 6 ⁇ m.
- a coring (inner peripheral cut) process is performed on the center portion of the glass blank using a cylindrical diamond drill or the like (step S22).
- a coring process is performed on the center portion of the glass blank using a cylindrical diamond drill or the like.
- an annular glass substrate having a hole in the center is obtained.
- a predetermined chamfering process may be performed on the hole in the center.
- the inner peripheral end surface and the outer peripheral end surface of the glass substrate are polished into a mirror surface by a brush.
- abrasive grains a slurry containing cerium oxide abrasive grains is used.
- a second lapping process is performed on both main surfaces of the glass substrate (step S23).
- the second lapping step is performed using a double-side grinding apparatus that uses a planetary gear mechanism. Specifically, press the surface plate from above and below both main surfaces of the glass blank material, supply water, grinding liquid or lubricating liquid onto both main surfaces, and move the glass blank material and the lapping surface plate relatively. Then, the second lapping step is performed.
- the approximate parallelism, flatness, thickness, etc. of the glass substrate are preliminarily adjusted, and a glass base material having an approximately flat main surface is obtained.
- fine abrasive grains are used as compared with the first lapping step in order to reduce the generated grinding marks. For example, by attaching fixed abrasive grains such as a diamond tile pad on a surface plate, both surfaces of the glass substrate are finished to a surface roughness Rmax of about 2 ⁇ m.
- steps S10 and S20 are steps for preparing a glass substrate.
- step S30 As a first polishing process (rough polishing), while removing scratches remaining on both main surfaces of the glass substrate in the second lapping process (step S23), The warp is corrected (step S31).
- a double-side polishing apparatus using a planetary gear mechanism is used, and polishing is performed using a suede pad made of foamed polyurethane or the like as a polishing pad.
- the abrasive a slurry as a liquid abrasive mainly composed of general cerium oxide abrasive grains is used.
- the glass substrate is subjected to polishing again, and minute defects remaining on both main surfaces of the glass substrate are eliminated (step S33). Both main surfaces of the glass substrate are finished to have a mirror-like surface, thereby forming a desired flatness and eliminating the warpage of the glass substrate.
- a double-side polishing apparatus using a planetary gear mechanism is used. Polishing is performed using, for example, a suede pad, which is a soft polisher made of foamed polyurethane.
- FIG. 4 is a partial perspective view of a double-side polishing apparatus 2000 used in the polishing process.
- the double-side polishing apparatus 2000 includes an upper surface plate (upper whetstone holding surface plate) 300, a lower surface plate (lower whetstone holding surface plate) 400, and a side (glass substrate side) facing the lower surface plate 400 of the upper surface plate 300.
- the upper polishing pad 310 mounted on the lower surface and the lower polishing pad 410 mounted on the upper surface on the side facing the upper surface plate 300 (glass substrate side) of the lower surface plate 400 are provided.
- the upper polishing pad 310 and the lower polishing pad 410 are processing members for polishing both main surfaces of the glass substrate 1.
- the upper surface plate 300 and the lower surface plate 400 rotate in directions opposite to each other with respect to the revolution direction of the carrier 500.
- a surface of the upper polishing pad 310 facing the lower surface plate 400 forms an upper polishing surface 311.
- the surface of the lower polishing pad 410 facing the upper surface plate 300 forms a lower polishing surface 411.
- Carrier 500 is arranged in a gap formed between upper surface plate 300 and lower surface plate 400.
- a plurality of disk-shaped glass substrates 1 are held by the carrier 500. The detailed structure of the carrier 500 will be described later.
- the glass substrate 1 is sandwiched between the upper surface plate 300 and the lower surface plate 400, and stress is applied in the thickness direction of the glass substrate by the upper surface plate 300 and the lower surface plate 400.
- both main surfaces of the glass substrate are pressed against the polishing surface 311 of the upper polishing pad 310 and the polishing surface 411 of the lower polishing pad 410.
- the carrier 500 rotates and revolves around the rotation axes of the upper surface plate 300 and the lower surface plate 400, whereby the main surface of the glass substrate 1 slides relative to the polishing surfaces 311 and 411.
- the polishing surface 311 of the upper polishing pad 310 moves relative to one main surface of the glass substrate, the one main surface is polished.
- the polishing surface 411 of the lower polishing pad 410 moves relative to the other main surface of the glass substrate, whereby the other main surface is polished.
- both main surfaces of the glass substrate are polished simultaneously using the double-side polishing apparatus 2000.
- the glass substrate 1 attached to the polishing surface 311 of the upper polishing pad 310 and the polishing surface 411 of the lower polishing pad 410 is taken out from the polishing pad.
- the chemical strengthening layer is formed on both main surfaces of the glass substrate 1 by immersing the glass substrate 1 in the chemical strengthening treatment liquid (step S40). After the glass substrate 1 is cleaned, the glass substrate 1 is immersed for about 30 minutes in a chemical strengthening treatment solution such as a mixture solution of potassium nitrate (70%) and sodium nitrate (30%) heated to 300 ° C. By doing so, chemical strengthening is performed.
- a chemical strengthening treatment solution such as a mixture solution of potassium nitrate (70%) and sodium nitrate (30%) heated to 300 ° C.
- alkali metal ions such as lithium ions and sodium ions contained in the glass substrate 1 are replaced by alkali metal ions such as potassium ions having a larger ion radius than these ions (ion exchange method).
- Compressive stress is generated in the ion-exchanged region due to strain caused by the difference in ion radius, and both main surfaces of the glass substrate 1 are strengthened.
- a chemical strengthening layer may be formed in a range from the surface of the glass substrate 1 to about 5 ⁇ m to improve the rigidity of the glass substrate 1. As described above, a glass substrate corresponding to the glass substrate 1 shown in FIG. 1 is obtained.
- the glass substrate 1 may be further subjected to a polishing treatment with a machining allowance on both main surfaces of 0.1 ⁇ m to 0.5 ⁇ m.
- a polishing treatment with a machining allowance on both main surfaces of 0.1 ⁇ m to 0.5 ⁇ m.
- a chemical strengthening step may be performed between the first polishing step (rough polishing) and the second polishing step (precision polishing).
- the glass substrate is cleaned (step S50).
- the deposits adhering to both main surfaces of the glass substrate 1 are removed.
- the number of deposits on the surface of the glass substrate 1 is inspected using an optical defect inspection apparatus or the like.
- the magnetic thin film layer 2 is formed by forming a magnetic film on both main surfaces (or one of the main surfaces) of the glass substrate (corresponding to the glass substrate 1 shown in FIG. 1) that has been subjected to the chemical strengthening treatment. Is done.
- the magnetic thin film layer 2 is composed of an adhesion layer composed of a Cr alloy, a soft magnetic layer composed of a CoFeZr alloy, an orientation control underlayer composed of Ru, a perpendicular magnetic recording layer composed of a CoCrPt alloy, a protective layer composed of a C system, and an F system.
- the lubricating layer is formed by sequentially forming a film.
- the magnetic disk in the present embodiment is an example of a perpendicular magnetic disk composed of a magnetic thin film layer.
- the magnetic disk may be composed of a magnetic layer or the like as a so-called in-plane magnetic disk.
- FIG. 5 is a plan view schematically showing the carrier 500 of the first example.
- the carrier 500 in the present embodiment has a disc-shaped main body 510.
- the thickness of the carrier 500 is about 0.30 mm to 2.2 mm, and a thickness smaller than the thickness of the glass substrate 1 to be held is selected.
- the diameter of the carrier 500 is about 430 mm.
- As the material of the main body 510 aramid fiber, glass epoxy, PC (polycarbonate) or the like is used, and glass fiber reinforced epoxy having excellent strength is preferably used.
- Main body 510 of carrier 500 of the present embodiment is made of glass fiber reinforced epoxy.
- the double-side polishing apparatus 2000 includes a plurality of carriers 500.
- the double-side polishing apparatus 2000 according to the present embodiment includes five carriers 500 arranged in an annular shape between the upper surface plate 300 and the lower surface plate 400.
- a tooth portion (not shown) is formed on the outer peripheral surface of the carrier 500.
- the tooth portion provided on the outer peripheral surface of the carrier 500 meshes with a sun gear (not shown) provided at the center of the double-side polishing apparatus 2000 and an internal gear (not shown) provided on the outer periphery, and the carrier 500 revolves while rotating.
- the center of rotation of the carrier 500 is shown as the rotation center C in FIG.
- the diameter of the carrier 500 means the dimension at the time of measuring with the tip circle of a tooth part.
- the carrier 500 has a plurality of holding holes 520 for holding the glass substrate 1.
- the holding hole 520 is formed through the disc-shaped main body 510 of the carrier 500 in the thickness direction.
- the holding hole 520 has a shape that can accommodate the glass substrate 1 therein.
- the holding hole 520 has a circular shape in plan view so as to accommodate the disk-shaped glass substrate 1, and the circle has a diameter slightly larger than the diameter of the glass substrate 1. .
- the holding hole 520 may be formed so that the glass substrate 1 having an outer diameter of 80 mm or more has a diameter that is approximately 1.5 mm larger than the diameter of the glass substrate 1.
- the carrier 500 is provided with ten holding holes 520.
- the holding holes 520 are arranged in an annular shape in the circumferential direction around the rotation center C of the carrier 500.
- the holding holes 520 are arranged at equal intervals on the annular line r1 centered on the rotation center C.
- the center of the holding hole 520 having a circular shape in plan view exists on the annular line r1.
- Each holding hole 520 is arranged so that the distance between the center and the rotation center C of the carrier 500 is the same.
- the ten holding holes 520 shown in FIG. 5 constitute the same diameter hole group in which the distance between the rotation center of the carrier 500 and the center of the holding hole 520 is equal.
- the holding hole 520 indicates a distance between the two holding holes 520 on a line segment connecting the centers of the two holding holes 520 adjacent to each other in the circumferential direction around the rotation center C.
- the holding hole 520 is provided so that the distance d between two adjacent holding holes 520 is in the range of 0.5 mm to 3.0 mm.
- the reason why the distance d is 0.5 mm or more is that if the distance between the adjacent holding holes 520 is too small, the strength of the carrier 500 is lowered and the durability of the carrier 500 is disadvantageous.
- the lower limit value of the distance d to have is defined as 0.5 mm.
- the upper limit value of the distance d is defined as 3.0 mm.
- FIG. 6 is an enlarged vertical sectional view of the lower polishing pad 410.
- the lower polishing pad 410 will be mainly described, but the upper polishing pad 310 of the present embodiment also has the same configuration as the lower polishing pad 410.
- the lower polishing pad 410 is formed of a member including a plurality of foam holes 410h.
- a large number of foam holes 410h having relatively small sizes of the individual foam holes 410h are formed.
- the foam holes 410h having relatively large individual foam holes 410h are formed so as to extend in the thickness direction (vertical direction in FIG. 6) of the lower polishing pad 410 to a position away from the polishing surface 411 to some extent. Yes.
- the number of the foam holes 410h is relatively large at a position close to the polishing surface 411, and the number of the foam holes 410h is relatively small at a position away from the polishing surface 411.
- a dense region where a large number of foam holes 410h are densely formed is formed at a position close to the polishing surface 411, and a relatively small number of foam holes 410h are provided sparsely at a position away from the polishing surface 411.
- a sparse region is formed.
- a dense foam hole 410h having a small diameter is formed in the dense region of the surface layer portion, and a large foam hole 410h is formed in the sparse region of the deep layer portion.
- the glass substrate 1 held by the carrier 500 during the first polishing step (step S31) is pressed while being sandwiched between the upper polishing pad 310 and the lower polishing pad 410.
- the pressure from the glass substrate 1 acts on the lower polishing pad 410.
- the lower polishing pad 410 receives pressure from the glass substrate 1, the deformation amount in the dense region of the surface layer portion is small, and the sparse region in the deep layer portion is greatly deformed. Therefore, in the lower polishing pad 410 that has received pressure from the glass substrate 1, the area in contact with the main surface of the glass substrate 1 is deformed, and the area around the area in contact with the glass substrate 1 is deformed. The annular region that is not in contact with the glass substrate 1 is similarly deformed.
- FIG. 7 is a cross-sectional view schematically showing a glass substrate 1 held on a conventional carrier.
- FIG. 7 shows two glass substrates 1 held by adjacent holding holes among a plurality of holding holes provided in a conventional carrier.
- the glass substrate 1 applies pressure to the lower polishing pad 410, and the lower polishing pad 410 immediately below and around the glass substrate 1 is deformed so as to sink from the polishing surface 411.
- the distance D between adjacent holding holes is set to a relatively large value exceeding 3.0 mm. Therefore, deformation of the lower polishing pad 410 due to pressure from the glass substrate 1 held in one holding hole, and lowering due to pressure from the glass substrate 1 held in another holding hole adjacent to the one holding hole.
- the deformation of the side polishing pad 410 is independent of each other. In other words, the sinking of the lower polishing pad 410 generated by the pressure from each of the two glass substrates 1 held in the adjacent holding holes does not affect each other, and each glass substrate 1 is separately lower The polishing pad 410 is deformed.
- each glass substrate 1 is made uniform, and the polishing amount of the glass substrate 1 before and after the first polishing step becomes substantially the same.
- each glass substrate 1 is similarly polished. Therefore, the variation in the plate thickness also in the polished glass substrate 1. Remains, and the thickness of the polished glass substrate 1 does not converge to a constant value.
- FIG. 8 is a cross-sectional view schematically showing the glass substrate 1 held by the carrier 500 of the present embodiment.
- FIG. 8 shows two glass substrates 1 held by adjacent holding holes 520 among the plurality of holding holes 520 provided in the carrier 500 of the present embodiment shown in FIG.
- the distance d between the adjacent holding holes 520 is specified to be a value of 3.0 mm or less.
- the deformation of the lower polishing pad 410 that sinks under the pressure from the glass substrate 1 extends to the region that receives the pressure from the adjacent glass substrate 1.
- the sinking of the lower polishing pad 410 due to the pressure from the glass substrate 1 extends to a position directly below the other glass substrate 1 adjacent to the glass substrate 1, and the two glass substrates held in the adjacent holding holes 520. 1 causes the deformation of the lower polishing pad 410 to influence each other.
- board thickness of the glass substrate 1 comes to influence the processing rate of the other glass substrate 1 adjacent to the said glass substrate 1.
- the thickness of the second glass substrate 1 at the center is relatively larger than that of the first and third glass substrates 1.
- the deformation amount of the lower polishing pad 410 is relatively large immediately below and around the central glass substrate 1.
- the deformation of the lower polishing pad 410 by the central glass substrate 1 extends to the lower polishing pad 410 at a position immediately below the first and third glass substrates 1, and the first and third glass substrates 1 are The force received from the lower polishing pad 410 is weakened.
- the first and third glass substrates 1 are compared with the processing rate of the second glass substrate 1 at the center. The processing rate of becomes relatively small.
- the polishing rate of the adjacent glass substrates 1 non-uniform and making the polishing rate of the first and third glass substrates 1 relatively small By making the polishing rate of the adjacent glass substrates 1 non-uniform and making the polishing rate of the first and third glass substrates 1 relatively small, after the first polishing step is completed, The polishing amount becomes relatively large, and the polishing amount of the first and third glass substrates 1 becomes relatively smaller than that of the second glass substrate 1. That is, by increasing the polishing amount of the second glass substrate 1 having a relatively large plate thickness before polishing and decreasing the polishing amount of the first and third glass substrates having a relatively small plate thickness. The difference in plate thickness between the processed glass substrates 1 is reduced.
- the thickness of the glass substrate 1 can be converged to a constant value, and variations in the thickness of the glass substrate 1 can be reduced, so that the uniformity of the thickness of the plurality of glass substrates 1 after the polishing process can be improved. Can do.
- the thickness of the second glass substrate 1 at the center is relative to that of the first and third glass substrates 1. If it is small, the amount of deformation of the lower polishing pad 410 is relatively large immediately below and around the first and third glass substrates 1. At this time, the deformation of the lower polishing pad 410 by the first and third glass substrates 1 also reaches the lower polishing pad 410 at a position directly below the second glass substrate 1 in the center, and the second glass substrate. The force that 1 receives from the lower polishing pad 410 is weakened. As a result of the lower pressure acting on the second glass substrate 1 at the center of the lower polishing pad 410, the second glass substrate 1 at the center is compared with the processing rate of the first and third glass substrates 1. The processing rate of becomes relatively small.
- the first and third glass substrates 1 of the first and third glass substrates 1 are completed after the first polishing process is completed.
- the polishing amount becomes relatively large, and the polishing amount of the second glass substrate 1 becomes relatively small as compared with the first and third glass substrates 1. That is, by polishing the first and third glass substrates 1 having a relatively large plate thickness before polishing, and reducing the polishing amount of the second glass substrate having a relatively small plate thickness. The difference in plate thickness between the processed glass substrates 1 is reduced.
- the thickness of the glass substrate 1 can be converged to a constant value, and variations in the thickness of the glass substrate 1 can be reduced, so that the uniformity of the thickness of the plurality of glass substrates 1 after the polishing process can be improved. Can do.
- the upper polishing pad 310 and the lower polishing pad 410 used in the present embodiment have a value of type AO durometer hardness defined by ISO7619 and have a hardness of 75 to 85. Alternatively, it has a hardness of 75 or more and 85 or less as a value of Type E durometer or Asker C hardness defined by JIS K 6253.
- a polishing pad having such hardness the surface quality of the main surface of the glass substrate 1 after polishing can be ensured, so that both reduction in plate thickness variation and surface quality of the polished glass substrate 1 can be achieved. .
- the carrier 500 of the present embodiment is used in the first first polishing process among the plurality of polishing processes in the manufacturing process of the glass substrate 1.
- the polishing amount of the glass substrate 1 is relatively large as compared with the subsequent second polishing process. Therefore, the polishing process in the first polishing step has a great influence on the variation in the thickness of the glass substrate 1 after polishing. That is, if the carrier 500 according to the present embodiment is used in the first polishing process that has a relatively large processing amount and a large influence on the variation in the plate thickness, the effect of reducing the variation in the plate thickness is more remarkable. Can get to.
- the heat-assisted recording type magnetic recording apparatus it is possible to improve the recording density of the magnetic disk 10 by reducing the unit recording area of the medium as compared with the conventional one. In this case, if fluttering occurs in the magnetic disk 10, the reading position of the magnetic head is shifted, causing a reading error. If the heat-assisted magnetic disk 10 is manufactured using the glass substrate 1 of the present embodiment, variations in the thickness of the glass substrate 1 can be reduced, and variations in fluttering characteristics can be reduced. Therefore, the glass substrate 1 of the present embodiment can be particularly advantageously applied to a heat-assisted recording type magnetic recording apparatus.
- FIG. 9 is a plan view schematically showing the carrier 500 of the second example.
- the carrier 500 of the second example is provided with 13 holding holes 520 for holding the glass substrate 1.
- the holding holes 520 are arranged so as to form a double ring around the rotation center C of the carrier 500.
- Ten holding holes 521 are arranged at equal intervals in the outer annular line r1 in the radial direction of the carrier 500, and three holding holes 522 are arranged at equal intervals in the inner inner ring line r2.
- the carrier 500 is formed with three holding holes 522 arranged near the rotation center C and ten holding holes 521 arranged on the outer peripheral side of the carrier 500 with respect to the holding holes 522.
- the ten holding holes 521 present on the annular line r1 constitute a group of identical diameter holes in which the distance between the rotation center C of the carrier 500 and the center of the holding hole 521 is equal.
- the distance between the centers of the three holding holes 522 existing on the inner annular line r2 and the rotation center C of the carrier 500 is relative to the distance between the holding hole 521 belonging to the same diameter hole group and the rotation center C of the carrier 500. Is getting smaller.
- the three holding holes 522 have the same distance between the rotation center C of the carrier 500 and the center of the holding hole 522, and the distance between the rotation center C and the center of the holding hole 522 is the same as that of the rotation center C and the holding hole 521. It is formed so as to be different from the distance from the center.
- the three holding holes 522 provided on the inner peripheral side of the carrier 500 constitute a different diameter hole group different from the same diameter hole group constituted by the holding holes 521 on the outer peripheral side of the carrier 500.
- the distance d between two holding holes 521 adjacent in the circumferential direction is In the range of 0.5 mm to 3.0 mm. Furthermore, the distance d between the two holding holes 521 and 522 on the line segment connecting the centers of the holding hole 521 belonging to the same diameter hole group and the holding hole 522 belonging to the different diameter hole group is also 0. It exists in the range of 5 mm or more and 3.0 mm or less.
- the durability of the carrier 500 can be ensured by defining the distance d between the holding holes 521 and 522 to be 0.5 mm or more.
- the distance d between the holding holes 521 and 522 is 3.0 mm or less.
- the deformation of the polishing pad by the two glass substrates 1 held in the adjacent holding holes 521 and 522 affects each other.
- the amount of polishing of the glass substrate 1 adjacent in the radial direction of the carrier 500 can be changed in accordance with the thickness of the glass substrate 1 before polishing, thereby reducing variations in the thickness of the glass substrate 1 after polishing. Therefore, the uniformity of the thickness of the glass substrate 1 held by the holding hole 521 and the holding hole 522 having different distances from the rotation center C after the polishing process can be improved.
- FIG. 10 is a plan view schematically showing the carrier 500 of the third example.
- the carrier 500 of the third example is provided with ten holding holes 520 for holding the glass substrate 1.
- the two holding holes 523 and 524 adjacent around the rotation center C are arranged so that the distance between each center and the rotation center C is slightly different. That is, the holding holes 523 are arranged so that the centers thereof are on the annular line r3, while the holding holes 524 are arranged so that the centers thereof are on the annular line r4.
- the annular line r3 and the annular line r4 have slightly different distances from the rotation center C, and the annular line r4 has a slightly smaller diameter than the annular line r3.
- the center of the holding hole 520 exists in a band-like region B between the annular line r3 and the annular line r4.
- the distance between the rotation center C and the holding hole 523 and the distance between the rotation center C and the holding hole 524 are not the same, but are approximately equal.
- the holding holes 523 and 524 of the third example constitute the same diameter hole group in which the distance between the rotation center C of the carrier 500 and the center of the holding hole 520 is substantially equal.
- the carrier 500 of the third example is provided with holding holes 523 and holding holes 524 at five locations.
- the holding holes 523 and the holding holes 524 are alternately arranged in the circumferential direction around the rotation center C.
- a distance d shown in FIG. 10 indicates a distance between the two holding holes 523 and 524 on a line segment connecting the centers of the two holding holes 523 and 524 adjacent in the circumferential direction around the rotation center C. .
- the holding hole 520 is provided so that the distance d between two adjacent holding holes 523 and 524 is in the range of 0.5 mm or more and 3.0 mm or less.
- the distance d between the holding holes 523 and 524 By defining the distance d between the holding holes 523 and 524 to be 0.5 mm or more, the durability of the carrier 500 can be ensured.
- the distance d between the holding holes 523 and 524 By defining the distance d between the holding holes 523 and 524 to be 3.0 mm or less, the deformation of the polishing pad by the two glass substrates 1 held in the adjacent holding holes 523 and 524 influences each other.
- the amount of polishing of the glass substrate 1 adjacent in the circumferential direction of the carrier 500 can be changed according to the thickness of the glass substrate 1 before polishing, thereby reducing the variation in the thickness of the glass substrate 1 after polishing. Therefore, the effect of improving the uniformity of the thickness of the glass substrate 1 held by the holding hole 523 and the holding hole 524 that are not the same distance from the rotation center C but are almost equal can be obtained similarly. be able to.
- a glass substrate was produced according to the steps described with reference to FIG. Glass substrates 1 of Examples 1 and 2 and Comparative Example 1 in which only the carrier 500 used in the first polishing step (Step S31) was varied were produced.
- a total of 13 holding holes 520, 10 on the outer peripheral side and 3 on the inner peripheral side, are arranged so as to form a double ring around the rotation center C.
- the glass substrate 1 was polished using the carrier 500.
- the glass substrate 1 had an outer diameter of 91 mm and a thickness of 0.8 mm.
- the thickness of each carrier 500 was 0.65 mm.
- the material of the carrier 500 was a general glass epoxy.
- Example 1 the interval between the holding holes 520 adjacent in the circumferential direction of the carrier 500 was set to 2.5 mm.
- the centers of the holding holes 520 arranged on the outer peripheral side are arranged on the same circumference and the holding holes arranged on the inner peripheral side.
- the holding hole 520 is provided so that the center of the hole 520 (corresponding to the holding hole 522 shown in FIG. 9) is arranged on the same circumference.
- the interval between the holding holes 520 adjacent in the radial direction that is, the interval between the holding hole 520 on the inner peripheral side and the holding hole 520 on the outer peripheral side was set to a large value exceeding 3.0 mm.
- Example 2 the interval between the holding holes 520 adjacent in the circumferential direction of the carrier 500 was set to 2.5 mm.
- the center of the holding hole 520 arranged on the outer peripheral side (corresponding to the holding hole 521 shown in FIG. 9) is slightly shifted in the radial direction and is disposed in the band-shaped region.
- the holding holes 520 are provided so that the centers of the holding holes 520 arranged on the side (corresponding to the holding holes 522 shown in FIG. 9) are slightly shifted in the radial direction and arranged in the band-shaped region.
- the interval between the holding holes 520 adjacent in the radial direction that is, the interval between the holding hole 520 on the inner peripheral side and the holding hole 520 on the outer peripheral side was set to a small value of 0.5 mm or more and 3.0 mm or less.
- the interval between the holding holes 520 adjacent to each other in the circumferential direction of the carrier 500 was set to 4 mm and a value exceeding 3.0 mm.
- the centers of the holding holes 520 arranged on the outer peripheral side are arranged on the same circumference and the holding holes arranged on the inner peripheral side.
- the holding hole 520 is provided so that the center of the hole 520 (corresponding to the holding hole 522 shown in FIG. 9) is arranged on the same circumference.
- the interval between the holding holes 520 adjacent in the radial direction that is, the interval between the holding hole 520 on the inner peripheral side and the holding hole 520 on the outer peripheral side was set to a large value exceeding 3.0 mm.
- the set value of the processing amount of the glass substrate 1 in the first polishing process using the carrier 500 of Examples 1 and 2 and Comparative Example 1 is set to 30 ⁇ m, and the glass substrate 1 held by five carriers 500 and processed at one time It was evaluated how much the thickness of the glass substrate 1 after polishing had variation among all the numbers.
- the thickness of the glass substrate 1 was measured using SI-F80 manufactured by Keyence Corporation after the cleaning process (step S50). “Excellent” when the standard deviation ⁇ of the thickness value of the glass substrate 1 held by the same carrier 500 and polished simultaneously is less than 0.1 ⁇ m, “good” when less than 0.1 ⁇ m and less than 0.2 ⁇ m, The case of 0.2 ⁇ m or more and less than 0.5 ⁇ m was evaluated as “bad”.
- FIG. 11 is a diagram showing the arrangement and evaluation results of the holding holes in the examples and comparative examples.
- the standard deviation ⁇ of the plate thickness value was less than 0.2 ⁇ m, and good results were obtained in which the variation in the plate thickness was sufficiently small. In particular, the variation was small between the glass substrates 1 held in the holding holes 520 on the outer peripheral side or between the glass substrates 1 held in the holding holes 520 on the inner peripheral side.
- the standard deviation ⁇ was less than 0.1 ⁇ m, which was particularly favorable.
- the standard deviation ⁇ of the plate thickness value was large, and the variation in the plate thickness could not be reduced sufficiently.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Provided is a method of manufacturing a glass substrate for an information recording medium, the method enabling fluctuations in the thickness of the glass substrate to be reduced. The method of manufacturing a glass substrate for an information recording medium uses a polishing device that polishes a glass substrate held by a carrier (500) by using a polishing pad comprising a member having a plurality of foam holes. The carrier (500) is disposed so as to be rotatable. A plurality of holding holes (520) for accommodating glass substrates are formed in the carrier (500). The distance between the rotation center (C) of the carrier (500) and the centers of the holding holes (520) is substantially equal, and the holding holes (520) form a group in which the hole diameters are the same. A distance (d) that is between two holding holes (520, 520) and is on a line segment that connects the centers of the two holding holes that belong to the group in which the hole diameters are the same and that are adjacent in the circumferential direction around the rotation center (C), is 0.5mm-3.0mm.
Description
本発明は、情報記録媒体用ガラス基板の製造方法に関し、特に、研磨装置を用いてガラス基板を研磨する情報記録媒体用ガラス基板の製造方法に関する。
The present invention relates to a method for manufacturing a glass substrate for information recording medium, and more particularly to a method for manufacturing a glass substrate for information recording medium in which the glass substrate is polished using a polishing apparatus.
磁気ディスクなどの情報記録媒体は、コンピュータなどにハードディスクとして搭載される。情報記録媒体は、基板の表面上に、磁気、光、または光磁気などの性質を利用した記録層を含む磁気薄膜層が形成されて製造される。記録層が磁気ヘッドによって磁化されることによって、所定の情報が情報記録媒体に記録される。
An information recording medium such as a magnetic disk is mounted as a hard disk on a computer or the like. An information recording medium is manufactured by forming a magnetic thin film layer including a recording layer using properties such as magnetism, light, or magnetomagnetism on the surface of a substrate. As the recording layer is magnetized by the magnetic head, predetermined information is recorded on the information recording medium.
情報記録媒体は年々記録密度が向上している。それに伴い情報記録媒体に使用される基板の品質にも高い品質が要求されている。情報記録媒体用の基板としては、従来アルミニウム基板が用いられてきたが、記録密度の向上に伴い、アルミニウム基板に比較して基板表面の平滑性および強度に優れるガラス基板に徐々に置き換わりつつある。
The recording density of information recording media is improving year by year. Accordingly, high quality is required for the quality of substrates used for information recording media. Conventionally, an aluminum substrate has been used as a substrate for an information recording medium. However, as the recording density is improved, it is gradually being replaced by a glass substrate that is superior in smoothness and strength of the substrate surface as compared with an aluminum substrate.
情報記録媒体用のガラス基板の製造方法では、高い表面形状精度を確保するための研磨工程を有している。ガラス基板の高精度な形状品質を達成するために、加工処理能力の異なるスラリーや研磨パッドを効果的に組み合わせた2段階以上の研磨工程が適用されている。従来のガラス基板の製造に関する技術は、たとえば特開2007-015105号公報(特許文献1)に開示されている。
The method for producing a glass substrate for an information recording medium has a polishing step for ensuring high surface shape accuracy. In order to achieve highly accurate shape quality of the glass substrate, two or more stages of polishing processes in which slurry and polishing pads having different processing capabilities are effectively combined are applied. For example, Japanese Unexamined Patent Application Publication No. 2007-015105 (Patent Document 1) discloses a conventional technology relating to glass substrate manufacturing.
近年、熱アシスト方式への対応と記録面積確保とを両立させるため、より大径の情報記録媒体にもガラス基板を基板として用いることが求められている。
In recent years, it has been required to use a glass substrate as a substrate for a larger diameter information recording medium in order to achieve both compatibility with the heat assist method and securing a recording area.
大径の情報記録媒体をハードディスクに採用するにあたり、既存の情報記録媒体の製造方法を適用したところ、情報記録媒体が回転方向に対して垂直方向に振れるいわゆるフラッタリングの特性において、同時に加工を行なった基板の間でもバラツキが発生していることが分かった。この問題を精査したところ、このフラッタリング特性のバラツキは、主にガラス基板の板厚のバラツキに強く影響を受けていることが分かった。
When an information recording medium having a large diameter is used for a hard disk, an existing information recording medium manufacturing method is applied. The so-called fluttering characteristic in which the information recording medium swings in a direction perpendicular to the rotation direction is simultaneously processed. It was found that there was variation between the substrates. Examining this problem, it was found that the variation in fluttering characteristics was strongly influenced mainly by the variation in the thickness of the glass substrate.
本発明は、上記のような課題に鑑みてなされたものであって、その目的は、ガラス基板の板厚のバラツキを低減できる、情報記録媒体用ガラス基板の製造方法を提供することである。
The present invention has been made in view of the above-described problems, and an object thereof is to provide a method for manufacturing a glass substrate for an information recording medium, which can reduce variations in the thickness of the glass substrate.
スウェードパッドと研磨キャリアとを使用した従来の両面研磨機でガラス基板の主表面を研磨する場合、円盤状のキャリアが自転するとともに上下の研磨定盤の回転軸に対して公転することで、主表面が研磨される。このとき、キャリアの中心から等しい半径位置にある保持孔によって保持されているガラス基板は、定盤の研磨面に対して同一の軌跡で相対移動するため、一般的には加工特性が等しくなることが期待される。
When polishing the main surface of a glass substrate with a conventional double-side polishing machine that uses a suede pad and a polishing carrier, the disk-shaped carrier rotates and revolves around the rotation axis of the upper and lower polishing surface plates. The surface is polished. At this time, since the glass substrate held by the holding hole at the same radial position from the center of the carrier moves relative to the polishing surface of the surface plate along the same locus, generally the processing characteristics are equal. There is expected.
大径のガラス基板を製造する工程において、本発明者は、キャリアの中心から等しい半径位置にある保持孔によって保持されたガラス基板に板厚のバラツキが発生していることを見出した。これを踏まえて本発明者は、キャリアの中心から等しい半径位置にある保持孔によって保持されたガラス基板の板厚のバラツキを低減するための製造方法について鋭意検討し、本発明を完成するに至った。
In the process of manufacturing a large-diameter glass substrate, the present inventor has found that a variation in plate thickness occurs in the glass substrate held by the holding holes at the same radial position from the center of the carrier. Based on this, the present inventor has intensively studied a manufacturing method for reducing the variation in the thickness of the glass substrate held by the holding holes at the same radial position from the center of the carrier, and has completed the present invention. It was.
すなわち、本発明に係る情報記録媒体用ガラス基板の製造方法は、複数の発泡孔を含む部材からなる研磨パッドと、ガラス基板を保持するキャリアとを有し、研磨パッドを用いてキャリアに保持されたガラス基板を研磨する研磨装置を用いる、情報記録媒体用ガラス基板の製造方法である。当該製造方法は、主表面を有し、80mm以上の外径を有するガラス基板を準備する工程と、研磨装置を用いてガラス基板の主表面を研磨する工程とを備えている。研磨装置のキャリアは、自転可能に設けられている。キャリアには、ガラス基板を収容するための複数の保持孔が形成されている。複数の保持孔の少なくとも一部は、キャリアの回転中心と保持孔の中心との間の距離が略等しい、同一径孔群を構成している。同一径孔群に属し回転中心まわりの周方向に隣接する二つの保持孔の中心同士を結ぶ線分上の、該二つの保持孔間の距離が、0.5mm以上3.0mm以下である。
That is, the method for manufacturing a glass substrate for an information recording medium according to the present invention includes a polishing pad made of a member including a plurality of foam holes and a carrier that holds the glass substrate, and is held by the carrier using the polishing pad. The manufacturing method of the glass substrate for information recording media using the polishing apparatus which grinds the obtained glass substrate. The manufacturing method includes a step of preparing a glass substrate having a main surface and an outer diameter of 80 mm or more, and a step of polishing the main surface of the glass substrate using a polishing apparatus. The carrier of the polishing apparatus is provided to be able to rotate. The carrier is formed with a plurality of holding holes for accommodating the glass substrate. At least a part of the plurality of holding holes constitutes the same diameter hole group in which the distance between the rotation center of the carrier and the center of the holding hole is substantially equal. The distance between the two holding holes on a line segment connecting the centers of two holding holes that belong to the same diameter hole group and are adjacent to each other in the circumferential direction around the rotation center is 0.5 mm or more and 3.0 mm or less.
上記製造方法において好ましくは、研磨パッドは、ISO7619により規定されるタイプAOデュロメータ硬度の値で75以上85以下の硬度を有している。
In the above manufacturing method, the polishing pad preferably has a hardness of 75 to 85 in terms of a type AO durometer hardness defined by ISO7619.
上記製造方法において好ましくは、複数の保持孔のうちの少なくとも一部は、キャリアの回転中心と保持孔の中心との距離が同一径孔群に属する保持孔と異なる、異径孔群を構成している。同一径孔群に属する保持孔と、異径孔群に属する保持孔との中心同士を結ぶ線分上の、該二つの保持孔間の距離が、0.5mm以上3.0mm以下である。
Preferably, in the above manufacturing method, at least a part of the plurality of holding holes constitutes a different diameter hole group in which the distance between the rotation center of the carrier and the center of the holding hole is different from the holding holes belonging to the same diameter hole group. ing. The distance between the two holding holes on the line segment connecting the centers of the holding holes belonging to the same diameter hole group and the holding holes belonging to the different diameter hole group is 0.5 mm or more and 3.0 mm or less.
上記製造方法において好ましくは、研磨する工程は、ガラス基板を粗研磨する工程と、粗研磨する工程の後にガラス基板を精密研磨する工程とを含んでいる。上記キャリアは、粗研磨する工程で用いられる研磨装置に含まれている。
Preferably, in the above manufacturing method, the polishing step includes a step of roughly polishing the glass substrate and a step of precisely polishing the glass substrate after the step of rough polishing. The carrier is included in a polishing apparatus used in the rough polishing step.
上記製造方法において好ましくは、情報記録媒体は、熱アシスト方式の磁気記録装置に用いられている。
In the above manufacturing method, the information recording medium is preferably used for a heat-assisted magnetic recording apparatus.
上記製造方法において好ましくは、キャリアは、ガラス繊維強化エポキシを素材として形成されている。
In the above manufacturing method, the carrier is preferably formed using glass fiber reinforced epoxy as a material.
本発明の製造方法によると、情報記録媒体用ガラス基板の板厚のバラツキを低減することができる。
According to the manufacturing method of the present invention, variations in the thickness of the glass substrate for information recording media can be reduced.
本発明に基づいた実施の形態および実施例について、以下、図面を参照しながら説明する。実施の形態および実施例の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態および実施例の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。
Embodiments and examples based on the present invention will be described below with reference to the drawings. In the description of the embodiments and examples, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like, unless otherwise specified. In the description of the embodiments and examples, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
[ガラス基板1・磁気ディスク10]
図1および図2を参照して、まず、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって得られるガラス基板1、およびガラス基板1を備えた磁気ディスク10について説明する。図1は、磁気ディスク10(図2参照)に用いられるガラス基板1を示す斜視図である。図2は、情報記録媒体として、ガラス基板1を備えた磁気ディスク10を示す斜視図である。 [Glass substrate 1 and magnetic disk 10]
With reference to FIG. 1 and FIG. 2, theglass substrate 1 obtained by the manufacturing method of the glass substrate for information recording media based on this Embodiment and the magnetic disc 10 provided with the glass substrate 1 are demonstrated first. FIG. 1 is a perspective view showing a glass substrate 1 used for a magnetic disk 10 (see FIG. 2). FIG. 2 is a perspective view showing a magnetic disk 10 provided with a glass substrate 1 as an information recording medium.
図1および図2を参照して、まず、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって得られるガラス基板1、およびガラス基板1を備えた磁気ディスク10について説明する。図1は、磁気ディスク10(図2参照)に用いられるガラス基板1を示す斜視図である。図2は、情報記録媒体として、ガラス基板1を備えた磁気ディスク10を示す斜視図である。 [
With reference to FIG. 1 and FIG. 2, the
図1に示すように、磁気ディスク10に用いられるガラス基板1(情報記録媒体用ガラス基板)は、中心に孔1Hが形成された環状の円板形状を呈している。円形ディスク形状のガラス基板1は、表主表面1A、裏主表面1B、内周端面1C、および外周端面1Dを有している。
As shown in FIG. 1, a glass substrate 1 (glass substrate for information recording medium) used for a magnetic disk 10 has an annular disk shape with a hole 1H formed in the center. The circular disk-shaped glass substrate 1 has a front main surface 1A, a back main surface 1B, an inner peripheral end surface 1C, and an outer peripheral end surface 1D.
円盤状のガラス基板1の大きさは、外径80mm以上に規定されている。ガラス基板1の外径を大きくすることにより、このガラス基板1を用いて作製される磁気ディスク10の記憶容量を増大することができ、サーバー用途に好適な情報記録媒体を実現できる。たとえばガラス基板1の外径を91mm以上に規定してもよい。
The size of the disk-shaped glass substrate 1 is defined as an outer diameter of 80 mm or more. By increasing the outer diameter of the glass substrate 1, the storage capacity of the magnetic disk 10 produced using the glass substrate 1 can be increased, and an information recording medium suitable for server use can be realized. For example, you may prescribe | regulate the outer diameter of the glass substrate 1 to 91 mm or more.
ガラス基板1の厚さは、破損防止の観点から、たとえば0.30mm~2.2mmである。ガラス基板1の厚さとは、ガラス基板1上の点対称となる任意の複数の点で測定した値の平均によって算出される値である。たとえばガラス基板1を厚さ0.630mm以下の薄型としてもよく、この場合、ガラス基板1を軽量化でき、磁気ディスク10の回転時における消費電力を低減できるので望ましい。
The thickness of the glass substrate 1 is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage. The thickness of the glass substrate 1 is a value calculated by averaging the values measured at a plurality of arbitrary points that are point-symmetric on the glass substrate 1. For example, the glass substrate 1 may be thin with a thickness of 0.630 mm or less. In this case, the glass substrate 1 can be reduced in weight, and power consumption during rotation of the magnetic disk 10 can be reduced.
図2に示すように、磁気ディスク10は、磁気薄膜層2を備えている。磁気薄膜層2は、上記したガラス基板1の表主表面1A上に磁性膜が成膜されて形成された、磁気記録層を含んでいる。図2中では、表主表面1A上にのみ磁気薄膜層2が形成されているが、裏主表面1B上にも磁気薄膜層2が形成されていてもよい。
As shown in FIG. 2, the magnetic disk 10 includes a magnetic thin film layer 2. The magnetic thin film layer 2 includes a magnetic recording layer formed by forming a magnetic film on the front main surface 1A of the glass substrate 1 described above. In FIG. 2, the magnetic thin film layer 2 is formed only on the front main surface 1A, but the magnetic thin film layer 2 may also be formed on the back main surface 1B.
磁気薄膜層2は、磁性粒子を分散させた熱硬化性樹脂をガラス基板1の表主表面1A上にスピンコートすることによって形成されている(スピンコート法)。磁気薄膜層2は、ガラス基板1の表主表面1Aに対してスパッタリング法、または無電解めっき法等により形成されてもよい。
The magnetic thin film layer 2 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the front main surface 1A of the glass substrate 1 (spin coating method). The magnetic thin film layer 2 may be formed on the front main surface 1A of the glass substrate 1 by a sputtering method, an electroless plating method, or the like.
ガラス基板1の表主表面1Aに形成される磁気薄膜層2の膜厚は、スピンコート法の場合は約0.3μm~約1.2μm、スパッタリング法の場合は約0.04μm~約0.08μm、無電解めっき法の場合は約0.05μm~約0.1μmである。薄膜化および高密度化の観点からは、磁気薄膜層2はスパッタリング法または無電解めっき法によって形成されるとよい。
The film thickness of the magnetic thin film layer 2 formed on the front main surface 1A of the glass substrate 1 is about 0.3 μm to about 1.2 μm in the case of the spin coating method, and about 0.04 μm to about 0.00 in the case of the sputtering method. In the case of electroless plating, the thickness is about 0.05 μm to about 0.1 μm. From the viewpoint of thinning and high density, the magnetic thin film layer 2 is preferably formed by sputtering or electroless plating.
磁気薄膜層2に用いる磁性材料としては、特に限定はなく従来公知のものが使用できるが、高い保持力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などが好適である。また、熱アシスト記録用に好適な磁性層材料として、FePt系の材料が用いられてもよい。
The magnetic material used for the magnetic thin film layer 2 is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Co having high crystal anisotropy is basically used for the purpose of adjusting the residual magnetic flux density. A Co-based alloy to which Ni or Cr is added is suitable. Further, as a magnetic layer material suitable for heat-assisted recording, an FePt-based material may be used.
また、磁気記録ヘッドの滑りをよくするために磁気薄膜層2の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、たとえば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。
Further, a lubricant may be thinly coated on the surface of the magnetic thin film layer 2 in order to improve the sliding of the magnetic recording head. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
さらに、必要により下地層や保護層を設けてもよい。磁気ディスク10における下地層は磁性膜に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、またはNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。
Furthermore, if necessary, an underlayer or a protective layer may be provided. The underlayer in the magnetic disk 10 is selected according to the magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
また、下地層は単層とは限らず、同一または異種の層を積層した複数層構造としても構わない。たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層としてもよい。
Also, the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
磁気薄膜層2の摩耗や腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。これらの保護層は、下地層、磁性膜などと共にインライン型スパッタ装置で連続して形成できる。また、これらの保護層は、単層としてもよく、あるいは、同一または異種の層からなる多層構成としてもよい。
Examples of the protective layer for preventing wear and corrosion of the magnetic thin film layer 2 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be continuously formed together with an underlayer, a magnetic film and the like by an in-line type sputtering apparatus. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers.
上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。たとえば、上記保護層に替えて、Cr層の上にテトラアルコキシシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO2)層を形成してもよい。
Another protective layer may be formed on the protective layer or instead of the protective layer. For example, in place of the protective layer, tetraalkoxysilane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon oxide (SiO 2 ) layer. It may be formed.
[ガラス基板1の製造方法]
次に、図3に示すフローチャートを用いて、本実施の形態における情報記録媒体用ガラス基板(以下、単にガラス基板と称する。)の製造方法について説明する。図3は、実施の形態におけるガラス基板1の製造方法を示すフローチャートである。 [Method for Manufacturing Glass Substrate 1]
Next, a method for manufacturing a glass substrate for information recording medium (hereinafter simply referred to as a glass substrate) in the present embodiment will be described with reference to the flowchart shown in FIG. FIG. 3 is a flowchart showing a method for manufacturing theglass substrate 1 in the embodiment.
次に、図3に示すフローチャートを用いて、本実施の形態における情報記録媒体用ガラス基板(以下、単にガラス基板と称する。)の製造方法について説明する。図3は、実施の形態におけるガラス基板1の製造方法を示すフローチャートである。 [Method for Manufacturing Glass Substrate 1]
Next, a method for manufacturing a glass substrate for information recording medium (hereinafter simply referred to as a glass substrate) in the present embodiment will be described with reference to the flowchart shown in FIG. FIG. 3 is a flowchart showing a method for manufacturing the
本実施の形態におけるガラス基板の製造方法は、ガラスブランク材準備工程(ステップS10)、ガラス基板形成/研削工程(ステップS20)、研磨工程(ステップS30)、化学強化工程(ステップS40)、および洗浄工程(ステップS50)を備えている。化学強化処理工程(ステップS40)を経ることによって得られたガラス基板(図1におけるガラス基板1に相当)に対して、磁気薄膜形成工程(ステップS60)が実施されてもよい。磁気薄膜形成工程(ステップS60)によって、情報記録媒体としての磁気ディスク10が得られる。
The glass substrate manufacturing method in the present embodiment includes a glass blank material preparation step (step S10), a glass substrate formation / grinding step (step S20), a polishing step (step S30), a chemical strengthening step (step S40), and a cleaning. The process (step S50) is provided. The magnetic thin film forming step (step S60) may be performed on the glass substrate (corresponding to the glass substrate 1 in FIG. 1) obtained through the chemical strengthening treatment step (step S40). The magnetic disk 10 as an information recording medium is obtained by the magnetic thin film forming step (step S60).
以下、これらの各ステップS10~S60の詳細について順に説明する、以下には、各ステップS10~S60間に適宜行なわれる簡易的な洗浄については記載していない。
Hereinafter, details of each of these steps S10 to S60 will be described in order. In the following, simple cleaning appropriately performed between each of steps S10 to S60 is not described.
(ガラスブランク材準備工程)
ガラスブランク材準備工程(ステップS10)においては、ガラス基板を構成するガラス素材が溶融される(ステップS11)。ガラス素材として、たとえば一般的なアルミノシリケートガラスが用いられる。アルミノシリケートガラスは、58質量%~75質量%のSiO2と、5質量%~23質量%のAl2O3と、3質量%~10質量%のLi2Oと、4質量%~13質量%のNa2Oと、を主成分として含有する。溶融したガラス素材は、下型上に流し込まれた後、上型および下型によってプレス成形される(ステップS12)。プレス成形によって、円盤状のガラスブランク材(ガラス母材)が形成される。 (Glass blank material preparation process)
In the glass blank material preparation step (step S10), the glass material constituting the glass substrate is melted (step S11). As the glass material, for example, a general aluminosilicate glass is used. The aluminosilicate glass is composed of 58 mass% to 75 mass% SiO 2 , 5 mass% to 23 mass% Al 2 O 3 , 3 mass% to 10 mass% Li 2 O, and 4 mass% to 13 mass. % Na 2 O as a main component. The molten glass material is poured onto the lower mold and then press-molded with the upper mold and the lower mold (step S12). A disk-shaped glass blank (glass base material) is formed by press molding.
ガラスブランク材準備工程(ステップS10)においては、ガラス基板を構成するガラス素材が溶融される(ステップS11)。ガラス素材として、たとえば一般的なアルミノシリケートガラスが用いられる。アルミノシリケートガラスは、58質量%~75質量%のSiO2と、5質量%~23質量%のAl2O3と、3質量%~10質量%のLi2Oと、4質量%~13質量%のNa2Oと、を主成分として含有する。溶融したガラス素材は、下型上に流し込まれた後、上型および下型によってプレス成形される(ステップS12)。プレス成形によって、円盤状のガラスブランク材(ガラス母材)が形成される。 (Glass blank material preparation process)
In the glass blank material preparation step (step S10), the glass material constituting the glass substrate is melted (step S11). As the glass material, for example, a general aluminosilicate glass is used. The aluminosilicate glass is composed of 58 mass% to 75 mass% SiO 2 , 5 mass% to 23 mass% Al 2 O 3 , 3 mass% to 10 mass% Li 2 O, and 4 mass% to 13 mass. % Na 2 O as a main component. The molten glass material is poured onto the lower mold and then press-molded with the upper mold and the lower mold (step S12). A disk-shaped glass blank (glass base material) is formed by press molding.
プレス成形の他、ダウンドロー法またはフロート法などによって形成されたシートガラス(板ガラス)を研削砥石で切り出すことによって、ガラスブランク材を形成してもよい。またガラス素材も、アルミノシリケートガラスに限られるものではなく、任意の素材であってもよい。
In addition to press molding, a glass blank material may be formed by cutting sheet glass (plate glass) formed by a downdraw method or a float method with a grinding wheel. Further, the glass material is not limited to aluminosilicate glass, and may be any material.
(ガラス基板形成/研削工程)
次に、ガラス基板形成/研削工程(ステップS20)においては、プレス成形されたガラスブランク材の両方の主表面に対して、寸法精度および形状精度の向上を目的として、第1ラップ工程が施される(ステップS21)。ガラスブランク材の両方の主表面とは、後述する各処理を経ることによって、図1における表主表面1Aとなる主表面および裏主表面1Bとなる主表面のことである(以下、両主表面ともいう)。たとえば、粒度#400のアルミナ砥粒(粒径約40~60μm)を用い、表面粗さRmaxで6μm程度に仕上げる。 (Glass substrate formation / grinding process)
Next, in the glass substrate formation / grinding process (step S20), the first lapping process is performed on both main surfaces of the press-molded glass blank material for the purpose of improving dimensional accuracy and shape accuracy. (Step S21). Both main surfaces of a glass blank material are the main surfaces used as the frontmain surface 1A and the main surface used as the back main surface 1B in FIG. 1 through each process mentioned later (henceforth, both main surfaces) Also called). For example, alumina abrasive grains having a particle size of # 400 (particle size of about 40 to 60 μm) are used, and the surface roughness Rmax is finished to about 6 μm.
次に、ガラス基板形成/研削工程(ステップS20)においては、プレス成形されたガラスブランク材の両方の主表面に対して、寸法精度および形状精度の向上を目的として、第1ラップ工程が施される(ステップS21)。ガラスブランク材の両方の主表面とは、後述する各処理を経ることによって、図1における表主表面1Aとなる主表面および裏主表面1Bとなる主表面のことである(以下、両主表面ともいう)。たとえば、粒度#400のアルミナ砥粒(粒径約40~60μm)を用い、表面粗さRmaxで6μm程度に仕上げる。 (Glass substrate formation / grinding process)
Next, in the glass substrate formation / grinding process (step S20), the first lapping process is performed on both main surfaces of the press-molded glass blank material for the purpose of improving dimensional accuracy and shape accuracy. (Step S21). Both main surfaces of a glass blank material are the main surfaces used as the front
第1ラップ工程の後、円筒状のダイヤモンドドリルなどを用いて、ガラスブランク材の中心部に対してコアリング(内周カット)処理が施される(ステップS22)。コアリング処理によって、中心部に孔の開いた円環状のガラス基板が得られる。中心部の孔に対しては、所定の面取り加工が施されてもよい。ガラス基板の内周端面および外周端面は、ブラシによって鏡面状に研磨される。研磨砥粒としては、酸化セリウム砥粒を含むスラリーが用いられる。
After the first lapping step, a coring (inner peripheral cut) process is performed on the center portion of the glass blank using a cylindrical diamond drill or the like (step S22). By the coring process, an annular glass substrate having a hole in the center is obtained. A predetermined chamfering process may be performed on the hole in the center. The inner peripheral end surface and the outer peripheral end surface of the glass substrate are polished into a mirror surface by a brush. As the abrasive grains, a slurry containing cerium oxide abrasive grains is used.
次に、ガラス基板の両主表面に対して第2ラップ工程が施される(ステップS23)。第2ラップ工程は、遊星歯車機構を利用した両面研削装置を用いて行なわれる。具体的には、ガラスブランク材の両主表面に上下から定盤を押圧させ、水、研削液または潤滑液を両主表面上に供給し、ガラスブランク材とラップ定盤とを相対的に移動させて、第2ラップ工程が行なわれる。
Next, a second lapping process is performed on both main surfaces of the glass substrate (step S23). The second lapping step is performed using a double-side grinding apparatus that uses a planetary gear mechanism. Specifically, press the surface plate from above and below both main surfaces of the glass blank material, supply water, grinding liquid or lubricating liquid onto both main surfaces, and move the glass blank material and the lapping surface plate relatively. Then, the second lapping step is performed.
第2ラップ工程によって、ガラス基板としてのおおよその平行度、平坦度、および厚みなどが予備調整され、おおよそ平坦な主表面を有するガラス母材が得られる。第2ラップ工程では、発生する研削痕を小さくするため、上記第1ラップ工程と比較して微細な砥粒を用いる。たとえば、定盤上にダイヤモンドタイルパッド等の固定砥粒を取りつけることにより、ガラス基板両面上を表面粗さRmaxで2μm程度に仕上げる。本実施の形態では、ステップS10,S20が、ガラス基板を準備する工程となる。
In the second lapping step, the approximate parallelism, flatness, thickness, etc. of the glass substrate are preliminarily adjusted, and a glass base material having an approximately flat main surface is obtained. In the second lapping step, fine abrasive grains are used as compared with the first lapping step in order to reduce the generated grinding marks. For example, by attaching fixed abrasive grains such as a diamond tile pad on a surface plate, both surfaces of the glass substrate are finished to a surface roughness Rmax of about 2 μm. In the present embodiment, steps S10 and S20 are steps for preparing a glass substrate.
(研磨工程)
次に、研磨工程(ステップS30)においては、第1ポリッシュ工程(粗研磨)として、上記第2ラップ工程(ステップS23)においてガラス基板の両主表面に残留したキズを除去しつつ、ガラス基板の反りを矯正する(ステップS31)。第1ポリッシュ工程においては、遊星歯車機構を利用した両面研磨装置が使用され、研磨パッドとして発泡ポリウレタンなどを素材とするスウェードパッドを用いて研磨が行なわれる。研磨剤としては、一般的な酸化セリウム砥粒を主成分とする液体状研磨剤としてのスラリーが用いられる。 (Polishing process)
Next, in the polishing process (step S30), as a first polishing process (rough polishing), while removing scratches remaining on both main surfaces of the glass substrate in the second lapping process (step S23), The warp is corrected (step S31). In the first polishing step, a double-side polishing apparatus using a planetary gear mechanism is used, and polishing is performed using a suede pad made of foamed polyurethane or the like as a polishing pad. As the abrasive, a slurry as a liquid abrasive mainly composed of general cerium oxide abrasive grains is used.
次に、研磨工程(ステップS30)においては、第1ポリッシュ工程(粗研磨)として、上記第2ラップ工程(ステップS23)においてガラス基板の両主表面に残留したキズを除去しつつ、ガラス基板の反りを矯正する(ステップS31)。第1ポリッシュ工程においては、遊星歯車機構を利用した両面研磨装置が使用され、研磨パッドとして発泡ポリウレタンなどを素材とするスウェードパッドを用いて研磨が行なわれる。研磨剤としては、一般的な酸化セリウム砥粒を主成分とする液体状研磨剤としてのスラリーが用いられる。 (Polishing process)
Next, in the polishing process (step S30), as a first polishing process (rough polishing), while removing scratches remaining on both main surfaces of the glass substrate in the second lapping process (step S23), The warp is corrected (step S31). In the first polishing step, a double-side polishing apparatus using a planetary gear mechanism is used, and polishing is performed using a suede pad made of foamed polyurethane or the like as a polishing pad. As the abrasive, a slurry as a liquid abrasive mainly composed of general cerium oxide abrasive grains is used.
第2ポリッシュ工程(精密研磨)においては、ガラス基板に研磨加工が再度実施され、ガラス基板の両主表面上に残留した微小欠陥等が解消される(ステップS33)。ガラス基板の両主表面は鏡面状に仕上げられることによって所望の平坦度に形成され、ガラス基板の反りも解消される。第2ポリッシュ工程においては、遊星歯車機構を利用した両面研磨装置が使用される。研磨パッドには、たとえば、発泡ポリウレタンを素材とする軟質ポリッシャであるスウェードパッドを用いて研磨が行なわれる。研磨剤としては、第1ポリッシュ工程で用いた酸化セリウムよりも微細な、一般的なコロイダルシリカを主成分とする液体状研磨剤としてのスラリーが用いられる。
In the second polishing process (precise polishing), the glass substrate is subjected to polishing again, and minute defects remaining on both main surfaces of the glass substrate are eliminated (step S33). Both main surfaces of the glass substrate are finished to have a mirror-like surface, thereby forming a desired flatness and eliminating the warpage of the glass substrate. In the second polishing step, a double-side polishing apparatus using a planetary gear mechanism is used. Polishing is performed using, for example, a suede pad, which is a soft polisher made of foamed polyurethane. As the polishing agent, a slurry as a liquid polishing agent mainly composed of general colloidal silica, which is finer than the cerium oxide used in the first polishing step, is used.
ここで、図4を参照して、両面研磨装置2000の概略構成について説明する。図4は、研磨工程に用いられる両面研磨装置2000の部分斜視図である。
Here, a schematic configuration of the double-side polishing apparatus 2000 will be described with reference to FIG. FIG. 4 is a partial perspective view of a double-side polishing apparatus 2000 used in the polishing process.
両面研磨装置2000は、上定盤(上側砥石保持定盤)300と、下定盤(下側砥石保持定盤)400と、上定盤300の下定盤400に対向する側(ガラス基板側)の下面に装着された上側研磨パッド310と、下定盤400の上定盤300に対向する側(ガラス基板側)の上面に装着された下側研磨パッド410と、を備える。
The double-side polishing apparatus 2000 includes an upper surface plate (upper whetstone holding surface plate) 300, a lower surface plate (lower whetstone holding surface plate) 400, and a side (glass substrate side) facing the lower surface plate 400 of the upper surface plate 300. The upper polishing pad 310 mounted on the lower surface and the lower polishing pad 410 mounted on the upper surface on the side facing the upper surface plate 300 (glass substrate side) of the lower surface plate 400 are provided.
上側研磨パッド310および下側研磨パッド410は、ガラス基板1の両主表面を研磨加工するための加工部材である。上定盤300と下定盤400とは、キャリア500の公転方向に対して互いに反対方向に回転するようになっている。下定盤400と対向する上側研磨パッド310の表面は、上側の研磨面311を形成する。上定盤300と対向する下側研磨パッド410の表面は、下側の研磨面411を形成する。上定盤300と下定盤400との間に形成される隙間に、キャリア500が配置される。ディスク状のガラス基板1は、このキャリア500に複数枚保持される。なお、キャリア500の詳細構造については後述する。
The upper polishing pad 310 and the lower polishing pad 410 are processing members for polishing both main surfaces of the glass substrate 1. The upper surface plate 300 and the lower surface plate 400 rotate in directions opposite to each other with respect to the revolution direction of the carrier 500. A surface of the upper polishing pad 310 facing the lower surface plate 400 forms an upper polishing surface 311. The surface of the lower polishing pad 410 facing the upper surface plate 300 forms a lower polishing surface 411. Carrier 500 is arranged in a gap formed between upper surface plate 300 and lower surface plate 400. A plurality of disk-shaped glass substrates 1 are held by the carrier 500. The detailed structure of the carrier 500 will be described later.
ガラス基板1は、上定盤300と下定盤400との間に挟まれ、上定盤300と下定盤400とによってガラス基板の厚み方向に応力が加えられる。これにより、ガラス基板の両主表面は、上側研磨パッド310の研磨面311および下側研磨パッド410の研磨面411に押圧される。この状態で、キャリア500が自転するとともに上定盤300および下定盤400の回転軸に対して公転することで、ガラス基板1の主表面は研磨面311,411に対して摺動する。ガラス基板の一方の主表面に対して上側研磨パッド310の研磨面311が相対移動することにより、当該一方の主表面が研磨される。同時に、ガラス基板の他方の主表面に対して下側研磨パッド410の研磨面411が相対移動することにより、当該他方の主表面が研磨される。
The glass substrate 1 is sandwiched between the upper surface plate 300 and the lower surface plate 400, and stress is applied in the thickness direction of the glass substrate by the upper surface plate 300 and the lower surface plate 400. As a result, both main surfaces of the glass substrate are pressed against the polishing surface 311 of the upper polishing pad 310 and the polishing surface 411 of the lower polishing pad 410. In this state, the carrier 500 rotates and revolves around the rotation axes of the upper surface plate 300 and the lower surface plate 400, whereby the main surface of the glass substrate 1 slides relative to the polishing surfaces 311 and 411. As the polishing surface 311 of the upper polishing pad 310 moves relative to one main surface of the glass substrate, the one main surface is polished. At the same time, the polishing surface 411 of the lower polishing pad 410 moves relative to the other main surface of the glass substrate, whereby the other main surface is polished.
このようにして、両面研磨装置2000を使用して、ガラス基板の両主表面が同時に研磨される。両面研磨装置を使用した研磨処理後、上側研磨パッド310の研磨面311および下側研磨パッド410の研磨面411に貼り付いたガラス基板1を、研磨パッドから取り出す。
In this way, both main surfaces of the glass substrate are polished simultaneously using the double-side polishing apparatus 2000. After the polishing process using the double-side polishing apparatus, the glass substrate 1 attached to the polishing surface 311 of the upper polishing pad 310 and the polishing surface 411 of the lower polishing pad 410 is taken out from the polishing pad.
(化学強化工程)
ガラス基板1が洗浄された後、化学強化処理液にガラス基板1を浸漬することによって、ガラス基板1の両主表面に化学強化層を形成する(ステップS40)。ガラス基板1が洗浄された後、300℃に加熱された硝酸カリウム(70%)と硝酸ナトリウム(30%)との混合用液などの化学強化処理液中に、ガラス基板1を30分間程度浸漬することによって、化学強化を行なう。 (Chemical strengthening process)
After theglass substrate 1 is washed, the chemical strengthening layer is formed on both main surfaces of the glass substrate 1 by immersing the glass substrate 1 in the chemical strengthening treatment liquid (step S40). After the glass substrate 1 is cleaned, the glass substrate 1 is immersed for about 30 minutes in a chemical strengthening treatment solution such as a mixture solution of potassium nitrate (70%) and sodium nitrate (30%) heated to 300 ° C. By doing so, chemical strengthening is performed.
ガラス基板1が洗浄された後、化学強化処理液にガラス基板1を浸漬することによって、ガラス基板1の両主表面に化学強化層を形成する(ステップS40)。ガラス基板1が洗浄された後、300℃に加熱された硝酸カリウム(70%)と硝酸ナトリウム(30%)との混合用液などの化学強化処理液中に、ガラス基板1を30分間程度浸漬することによって、化学強化を行なう。 (Chemical strengthening process)
After the
ガラス基板1に含まれるリチウムイオン、ナトリウムイオン等のアルカリ金属イオンは、これらのイオンに比べてイオン半径の大きなカリウムイオン等のアルカリ金属イオンによって置換される(イオン交換法)。
The alkali metal ions such as lithium ions and sodium ions contained in the glass substrate 1 are replaced by alkali metal ions such as potassium ions having a larger ion radius than these ions (ion exchange method).
イオン半径の違いによって生じる歪みより、イオン交換された領域に圧縮応力が発生し、ガラス基板1の両主表面が強化される。たとえば、ガラス基板1の両主表面において、ガラス基板1表面から約5μmまでの範囲に化学強化層を形成し、ガラス基板1の剛性を向上させてもよい。以上のようにして、図1に示すガラス基板1に相当するガラス基板が得られる。
Compressive stress is generated in the ion-exchanged region due to strain caused by the difference in ion radius, and both main surfaces of the glass substrate 1 are strengthened. For example, on both the main surfaces of the glass substrate 1, a chemical strengthening layer may be formed in a range from the surface of the glass substrate 1 to about 5 μm to improve the rigidity of the glass substrate 1. As described above, a glass substrate corresponding to the glass substrate 1 shown in FIG. 1 is obtained.
ガラス基板1に対しては、両主表面上における取り代が0.1μm以上0.5μm以下のポリッシュ処理がさらに施されてもよい。化学強化工程を経た後にガラス基板1の主表面上に残留している付着物が除去されることによって、ガラス基板1を用いて製造される磁気ディスクにヘッドクラッシュが発生することが低減される。また、ポリッシュ処理における両主表面上の取り代を0.1μm以上0.5μm以下とすることによって、化学強化処理によって発生した応力の不均一性が表面に現れることもなくなる。本実施の形態におけるガラス基板の製造方法としては、以上のように構成される。
The glass substrate 1 may be further subjected to a polishing treatment with a machining allowance on both main surfaces of 0.1 μm to 0.5 μm. By removing the deposits remaining on the main surface of the glass substrate 1 after the chemical strengthening step, occurrence of head crashes in a magnetic disk manufactured using the glass substrate 1 is reduced. Further, by setting the machining allowance on both main surfaces in the polishing process to be 0.1 μm or more and 0.5 μm or less, the unevenness of stress generated by the chemical strengthening process does not appear on the surface. The manufacturing method of the glass substrate in the present embodiment is configured as described above.
なお、第1ポリッシュ工程(粗研磨)と第2ポリッシュ工程(精密研磨)との間に、化学強化工程を施しても構わない。
A chemical strengthening step may be performed between the first polishing step (rough polishing) and the second polishing step (precision polishing).
(洗浄工程)
次に、ガラス基板は洗浄される(ステップS50)。ガラス基板1の両主表面が洗剤、純水、オゾン、IPA(イソプロピルアルコール)、またはUV(ultraviolet)オゾンなどによって洗浄されることによって、ガラス基板1の両主表面に付着した付着物が除去される。 (Washing process)
Next, the glass substrate is cleaned (step S50). By cleaning both main surfaces of theglass substrate 1 with detergent, pure water, ozone, IPA (isopropyl alcohol), UV (ultraviolet) ozone, etc., the deposits adhering to both main surfaces of the glass substrate 1 are removed. The
次に、ガラス基板は洗浄される(ステップS50)。ガラス基板1の両主表面が洗剤、純水、オゾン、IPA(イソプロピルアルコール)、またはUV(ultraviolet)オゾンなどによって洗浄されることによって、ガラス基板1の両主表面に付着した付着物が除去される。 (Washing process)
Next, the glass substrate is cleaned (step S50). By cleaning both main surfaces of the
その後、ガラス基板1の表面上の付着物の数が、光学式欠陥検査装置等を用いて検査される。
Thereafter, the number of deposits on the surface of the glass substrate 1 is inspected using an optical defect inspection apparatus or the like.
(磁気薄膜形成工程)
化学強化処理が完了したガラス基板(図1に示すガラス基板1に相当)の両主表面(またはいずれか一方の主表面)に対し、磁性膜が形成されることにより、磁気薄膜層2が形成される。磁気薄膜層2は、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系からなる保護層、およびF系からなる潤滑層が順次成膜されることによって形成される。磁気薄膜層2の形成によって、図2に示す磁気ディスク10に相当する垂直磁気記録ディスクを得ることができる。 (Magnetic thin film formation process)
The magneticthin film layer 2 is formed by forming a magnetic film on both main surfaces (or one of the main surfaces) of the glass substrate (corresponding to the glass substrate 1 shown in FIG. 1) that has been subjected to the chemical strengthening treatment. Is done. The magnetic thin film layer 2 is composed of an adhesion layer composed of a Cr alloy, a soft magnetic layer composed of a CoFeZr alloy, an orientation control underlayer composed of Ru, a perpendicular magnetic recording layer composed of a CoCrPt alloy, a protective layer composed of a C system, and an F system. The lubricating layer is formed by sequentially forming a film. By forming the magnetic thin film layer 2, a perpendicular magnetic recording disk corresponding to the magnetic disk 10 shown in FIG. 2 can be obtained.
化学強化処理が完了したガラス基板(図1に示すガラス基板1に相当)の両主表面(またはいずれか一方の主表面)に対し、磁性膜が形成されることにより、磁気薄膜層2が形成される。磁気薄膜層2は、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系からなる保護層、およびF系からなる潤滑層が順次成膜されることによって形成される。磁気薄膜層2の形成によって、図2に示す磁気ディスク10に相当する垂直磁気記録ディスクを得ることができる。 (Magnetic thin film formation process)
The magnetic
本実施の形態における磁気ディスクは、磁気薄膜層から構成される垂直磁気ディスクの一例である。磁気ディスクは、いわゆる面内磁気ディスクとして磁性層等から構成されてもよい。
The magnetic disk in the present embodiment is an example of a perpendicular magnetic disk composed of a magnetic thin film layer. The magnetic disk may be composed of a magnetic layer or the like as a so-called in-plane magnetic disk.
[キャリア500]
以下、上述した研磨工程(ステップS30)中の第1ポリッシュ工程(ステップS31)において用いられる両面研磨装置2000に採用される、キャリア500の詳細構造について説明する。図5は、第一の例のキャリア500を模式的に示す平面図である。本実施の形態におけるキャリア500は、円盤形状の本体510を有している。 [Carrier 500]
Hereinafter, the detailed structure of thecarrier 500 employed in the double-side polishing apparatus 2000 used in the first polishing step (step S31) in the above-described polishing step (step S30) will be described. FIG. 5 is a plan view schematically showing the carrier 500 of the first example. The carrier 500 in the present embodiment has a disc-shaped main body 510.
以下、上述した研磨工程(ステップS30)中の第1ポリッシュ工程(ステップS31)において用いられる両面研磨装置2000に採用される、キャリア500の詳細構造について説明する。図5は、第一の例のキャリア500を模式的に示す平面図である。本実施の形態におけるキャリア500は、円盤形状の本体510を有している。 [Carrier 500]
Hereinafter, the detailed structure of the
キャリア500の厚さは、約0.30mm~2.2mmであり、保持するガラス基板1の厚さよりも薄い厚さが選択される。キャリア500の直径は、約430mmである。本体510の素材には、アラミド繊維、ガラスエポキシ、PC(ポリカーボネート)などが用いられ、好ましくは強度に優れるガラス繊維強化エポキシが用いられる。本実施の形態のキャリア500の本体510は、ガラス繊維強化エポキシを素材として形成されている。
The thickness of the carrier 500 is about 0.30 mm to 2.2 mm, and a thickness smaller than the thickness of the glass substrate 1 to be held is selected. The diameter of the carrier 500 is about 430 mm. As the material of the main body 510, aramid fiber, glass epoxy, PC (polycarbonate) or the like is used, and glass fiber reinforced epoxy having excellent strength is preferably used. Main body 510 of carrier 500 of the present embodiment is made of glass fiber reinforced epoxy.
図4を併せて参照して、両面研磨装置2000は、複数のキャリア500を備えている。本実施の形態における両面研磨装置2000は、上定盤300と下定盤400との間に環状に配置された、5枚のキャリア500を備えている。キャリア500の外周面には、図示しない歯部が形成されている。両面研磨装置2000の中心に設けられる太陽歯車(図示省略)と外周に設けられる内歯車(図示省略)とに、キャリア500の外周面に設けられた歯部が噛み合い、キャリア500は自転しながら公転する。キャリア500の自転の中心を、図5に回転中心Cとして示す。なお、キャリア500の直径は、歯部の歯先円で測定した場合の寸法を意味している。
Referring also to FIG. 4, the double-side polishing apparatus 2000 includes a plurality of carriers 500. The double-side polishing apparatus 2000 according to the present embodiment includes five carriers 500 arranged in an annular shape between the upper surface plate 300 and the lower surface plate 400. A tooth portion (not shown) is formed on the outer peripheral surface of the carrier 500. The tooth portion provided on the outer peripheral surface of the carrier 500 meshes with a sun gear (not shown) provided at the center of the double-side polishing apparatus 2000 and an internal gear (not shown) provided on the outer periphery, and the carrier 500 revolves while rotating. To do. The center of rotation of the carrier 500 is shown as the rotation center C in FIG. In addition, the diameter of the carrier 500 means the dimension at the time of measuring with the tip circle of a tooth part.
キャリア500には、ガラス基板1を保持する保持孔520が複数形成されている。保持孔520は、キャリア500の円盤形状の本体510を厚み方向に貫通して形成されている。両面研磨装置2000を用いてガラス基板1が研磨されるとき、ガラス基板1は保持孔520内に収容されて、キャリア500によって保持される。保持孔520は、ガラス基板1をその内部に収容可能な形状を有している。保持孔520は、円盤状のガラス基板1を収容可能なように、平面視した場合円形の形状を有しており、当該円はガラス基板1の直径よりもわずかに大きい直径を有している。たとえば、80mm以上の外径を有するガラス基板1に対して、ガラス基板1の直径よりも約1.5mm大きい直径を有するように、保持孔520を形成してもよい。
The carrier 500 has a plurality of holding holes 520 for holding the glass substrate 1. The holding hole 520 is formed through the disc-shaped main body 510 of the carrier 500 in the thickness direction. When the glass substrate 1 is polished using the double-side polishing apparatus 2000, the glass substrate 1 is accommodated in the holding hole 520 and held by the carrier 500. The holding hole 520 has a shape that can accommodate the glass substrate 1 therein. The holding hole 520 has a circular shape in plan view so as to accommodate the disk-shaped glass substrate 1, and the circle has a diameter slightly larger than the diameter of the glass substrate 1. . For example, the holding hole 520 may be formed so that the glass substrate 1 having an outer diameter of 80 mm or more has a diameter that is approximately 1.5 mm larger than the diameter of the glass substrate 1.
本実施の形態では、キャリア500には10箇所の保持孔520が設けられている。保持孔520は、キャリア500の回転中心Cまわりの周方向に並べられて、環状に配置されている。保持孔520は、回転中心Cを中心とする環状ラインr1上に、等間隔で配列されている。平面視円形の保持孔520の中心は、環状ラインr1上に存在している。各々の保持孔520は、その中心とキャリア500の回転中心Cとの距離が同一になるように配列されている。図5に示す10箇所の保持孔520は、キャリア500の回転中心と保持孔520の中心との距離が等しい、同一径孔群を構成している。
In the present embodiment, the carrier 500 is provided with ten holding holes 520. The holding holes 520 are arranged in an annular shape in the circumferential direction around the rotation center C of the carrier 500. The holding holes 520 are arranged at equal intervals on the annular line r1 centered on the rotation center C. The center of the holding hole 520 having a circular shape in plan view exists on the annular line r1. Each holding hole 520 is arranged so that the distance between the center and the rotation center C of the carrier 500 is the same. The ten holding holes 520 shown in FIG. 5 constitute the same diameter hole group in which the distance between the rotation center of the carrier 500 and the center of the holding hole 520 is equal.
図5に示す距離dは、回転中心Cまわりの周方向に隣接する二つの保持孔520の中心同士を結ぶ線分上の、当該二つの保持孔520間の距離を示している。保持孔520は、隣接する二つの保持孔520間の距離dが0.5mm以上3.0mm以下の範囲になるように、設けられている。
5 indicates a distance between the two holding holes 520 on a line segment connecting the centers of the two holding holes 520 adjacent to each other in the circumferential direction around the rotation center C. The holding hole 520 is provided so that the distance d between two adjacent holding holes 520 is in the range of 0.5 mm to 3.0 mm.
距離dを0.5mm以上にするのは、隣接する保持孔520間の距離が小さすぎるとキャリア500の強度が低下しキャリア500の耐久性において不利になるため、キャリア500が十分な耐久性を有するための距離dの下限値を0.5mmとして規定するものである。キャリア500の耐久性を考慮すると距離dは大きい方が有利であるが、本実施の形態では、距離dの上限値を3.0mmに規定している。
The reason why the distance d is 0.5 mm or more is that if the distance between the adjacent holding holes 520 is too small, the strength of the carrier 500 is lowered and the durability of the carrier 500 is disadvantageous. The lower limit value of the distance d to have is defined as 0.5 mm. Considering the durability of the carrier 500, it is advantageous that the distance d is larger, but in the present embodiment, the upper limit value of the distance d is defined as 3.0 mm.
以下、距離dの上限値を規定する思想について説明する。図6は、下側研磨パッド410の拡大縦断面図である。なお、以下の説明では主に下側研磨パッド410について説明するが、本実施の形態の上側研磨パッド310も下側研磨パッド410と同様の構成を有している。
Hereinafter, the concept of defining the upper limit value of the distance d will be described. FIG. 6 is an enlarged vertical sectional view of the lower polishing pad 410. In the following description, the lower polishing pad 410 will be mainly described, but the upper polishing pad 310 of the present embodiment also has the same configuration as the lower polishing pad 410.
図6に示すように、下側研磨パッド410は、複数の発泡孔410hを含む部材によって形成されている。下側研磨パッド410の研磨面411に近接する位置において、個々の発泡孔410hの大きさが相対的に小さい発泡孔410hが多数形成されている。個々の発泡孔410hの大きさが相対的に大きい発泡孔410hは、研磨面411からある程度離れる位置にまで下側研磨パッド410の厚み方向(図6中の上下方向)に延びるように形成されている。
As shown in FIG. 6, the lower polishing pad 410 is formed of a member including a plurality of foam holes 410h. In the position close to the polishing surface 411 of the lower polishing pad 410, a large number of foam holes 410h having relatively small sizes of the individual foam holes 410h are formed. The foam holes 410h having relatively large individual foam holes 410h are formed so as to extend in the thickness direction (vertical direction in FIG. 6) of the lower polishing pad 410 to a position away from the polishing surface 411 to some extent. Yes.
これにより、下側研磨パッド410の厚み方向において、研磨面411に近い位置では発泡孔410hの個数が相対的に多く、研磨面411から離れる位置では発泡孔410hの個数が相対的に少なくなっている。研磨面411に近い位置には、多数の発泡孔410hが密に設けられた密領域が形成されており、研磨面411から離れる位置には、相対的に少数の発泡孔410hが疎らに設けられた疎領域が形成されている。表層部分の密領域には小径の緻密な発泡孔410hが形成されており、深層部分の疎領域には大型の発泡孔410hが形成されている。
Thereby, in the thickness direction of the lower polishing pad 410, the number of the foam holes 410h is relatively large at a position close to the polishing surface 411, and the number of the foam holes 410h is relatively small at a position away from the polishing surface 411. Yes. A dense region where a large number of foam holes 410h are densely formed is formed at a position close to the polishing surface 411, and a relatively small number of foam holes 410h are provided sparsely at a position away from the polishing surface 411. A sparse region is formed. A dense foam hole 410h having a small diameter is formed in the dense region of the surface layer portion, and a large foam hole 410h is formed in the sparse region of the deep layer portion.
第1ポリッシュ工程(ステップS31)中にキャリア500に保持されたガラス基板1は、上側研磨パッド310および下側研磨パッド410に挟まれた状態で押圧されている。第1ポリッシュ工程(ステップS31)中、下側研磨パッド410には、ガラス基板1からの圧力が作用している。下側研磨パッド410は、ガラス基板1からの圧力を受けると、表層部の密領域における変形量は小さく、深層部の疎領域が大きく変形する。そのため、ガラス基板1からの圧力を受けた下側研磨パッド410では、ガラス基板1の主表面に接触している領域が変形するのに加えて、ガラス基板1に接触している領域の周辺の、ガラス基板1に接触していない環状の領域も、同様に変形する。
The glass substrate 1 held by the carrier 500 during the first polishing step (step S31) is pressed while being sandwiched between the upper polishing pad 310 and the lower polishing pad 410. During the first polishing process (step S31), the pressure from the glass substrate 1 acts on the lower polishing pad 410. When the lower polishing pad 410 receives pressure from the glass substrate 1, the deformation amount in the dense region of the surface layer portion is small, and the sparse region in the deep layer portion is greatly deformed. Therefore, in the lower polishing pad 410 that has received pressure from the glass substrate 1, the area in contact with the main surface of the glass substrate 1 is deformed, and the area around the area in contact with the glass substrate 1 is deformed. The annular region that is not in contact with the glass substrate 1 is similarly deformed.
図7は、従来のキャリアに保持されたガラス基板1を模式的に示す断面図である。図7には、従来のキャリアに設けられた複数の保持孔のうち、隣接する保持孔によって保持されている2枚のガラス基板1が図示されている。ガラス基板1が下側研磨パッド410に圧力を作用し、ガラス基板1の直下およびその周辺の下側研磨パッド410が研磨面411から沈み込むように変形している。
FIG. 7 is a cross-sectional view schematically showing a glass substrate 1 held on a conventional carrier. FIG. 7 shows two glass substrates 1 held by adjacent holding holes among a plurality of holding holes provided in a conventional carrier. The glass substrate 1 applies pressure to the lower polishing pad 410, and the lower polishing pad 410 immediately below and around the glass substrate 1 is deformed so as to sink from the polishing surface 411.
従来のキャリアでは、隣接する保持孔間の距離Dは3.0mmを超える比較的大きい値に定められている。そのため、一の保持孔に保持されたガラス基板1からの圧力による下側研磨パッド410の変形と、当該一の保持孔に隣接する他の保持孔に保持されたガラス基板1からの圧力による下側研磨パッド410の変形とは、互いに独立した変形になる。つまり、隣接する保持孔に保持された2枚のガラス基板1の各々からの圧力によって発生する下側研磨パッド410の沈み込みが互いに影響することなく、それぞれのガラス基板1が別個独立に下側研磨パッド410を変形させている。
In conventional carriers, the distance D between adjacent holding holes is set to a relatively large value exceeding 3.0 mm. Therefore, deformation of the lower polishing pad 410 due to pressure from the glass substrate 1 held in one holding hole, and lowering due to pressure from the glass substrate 1 held in another holding hole adjacent to the one holding hole. The deformation of the side polishing pad 410 is independent of each other. In other words, the sinking of the lower polishing pad 410 generated by the pressure from each of the two glass substrates 1 held in the adjacent holding holes does not affect each other, and each glass substrate 1 is separately lower The polishing pad 410 is deformed.
これにより、各々のガラス基板1の研磨速度が均一化され、第1ポリッシュ工程の前後におけるガラス基板1の研磨量がほぼ同一になる。この場合、第1ポリッシュ工程に先立つ工程でガラス基板1の板厚にバラツキが発生していると、各ガラス基板1が同様に研磨されるため、研磨後のガラス基板1においても板厚のバラツキがそのまま残り、研磨後のガラス基板1の板厚が一定値に収束しないことになる。
Thereby, the polishing rate of each glass substrate 1 is made uniform, and the polishing amount of the glass substrate 1 before and after the first polishing step becomes substantially the same. In this case, if there is a variation in the thickness of the glass substrate 1 in the step prior to the first polishing step, each glass substrate 1 is similarly polished. Therefore, the variation in the plate thickness also in the polished glass substrate 1. Remains, and the thickness of the polished glass substrate 1 does not converge to a constant value.
図8は、本実施の形態のキャリア500に保持されたガラス基板1を模式的に示す断面図である。図8には、図5に示す本実施の形態のキャリア500に設けられた複数の保持孔520のうち、隣接する保持孔520によって保持されている2枚のガラス基板1が図示されている。
FIG. 8 is a cross-sectional view schematically showing the glass substrate 1 held by the carrier 500 of the present embodiment. FIG. 8 shows two glass substrates 1 held by adjacent holding holes 520 among the plurality of holding holes 520 provided in the carrier 500 of the present embodiment shown in FIG.
本実施の形態のキャリア500では、隣接する保持孔520間の距離dが3.0mm以下の値に規定されている。保持孔520の間隔を小さくすると、ガラス基板1からの圧力を受けて沈み込む下側研磨パッド410の変形が、隣接するガラス基板1からの圧力を受ける領域に及ぶことになる。ガラス基板1からの圧力による下側研磨パッド410の沈み込みが、当該ガラス基板1に隣接する他のガラス基板1直下の位置にも及び、隣接する保持孔520に保持された2枚のガラス基板1による下側研磨パッド410の変形が互いに影響するようになる。これにより、ガラス基板1の板厚が、当該ガラス基板1に隣接する他のガラス基板1の加工レートに影響するようになる。
In the carrier 500 of the present embodiment, the distance d between the adjacent holding holes 520 is specified to be a value of 3.0 mm or less. When the interval between the holding holes 520 is reduced, the deformation of the lower polishing pad 410 that sinks under the pressure from the glass substrate 1 extends to the region that receives the pressure from the adjacent glass substrate 1. The sinking of the lower polishing pad 410 due to the pressure from the glass substrate 1 extends to a position directly below the other glass substrate 1 adjacent to the glass substrate 1, and the two glass substrates held in the adjacent holding holes 520. 1 causes the deformation of the lower polishing pad 410 to influence each other. Thereby, the plate | board thickness of the glass substrate 1 comes to influence the processing rate of the other glass substrate 1 adjacent to the said glass substrate 1. FIG.
たとえば、キャリア500の周方向に順に並べられた3枚のガラス基板1のうち、1,3枚目のガラス基板1に比較して中央の2枚目のガラス基板1の板厚が相対的に大きい場合、中央のガラス基板1の直下およびその周辺において下側研磨パッド410の変形量が相対的に大きくなる。このとき、中央のガラス基板1による下側研磨パッド410の変形が、1,3枚目のガラス基板1直下の位置の下側研磨パッド410にも及び、1,3枚目のガラス基板1が下側研磨パッド410から受ける力が弱まる。下側研磨パッド410が1,3枚目のガラス基板1に作用する圧力が小さくなる結果、中央の2枚目のガラス基板1の加工レートと比較して、1,3枚目のガラス基板1の加工レートが相対的に小さくなる。
For example, among the three glass substrates 1 arranged in order in the circumferential direction of the carrier 500, the thickness of the second glass substrate 1 at the center is relatively larger than that of the first and third glass substrates 1. When it is large, the deformation amount of the lower polishing pad 410 is relatively large immediately below and around the central glass substrate 1. At this time, the deformation of the lower polishing pad 410 by the central glass substrate 1 extends to the lower polishing pad 410 at a position immediately below the first and third glass substrates 1, and the first and third glass substrates 1 are The force received from the lower polishing pad 410 is weakened. As a result of the lower pressure acting on the first and third glass substrates 1 by the lower polishing pad 410, the first and third glass substrates 1 are compared with the processing rate of the second glass substrate 1 at the center. The processing rate of becomes relatively small.
隣接するガラス基板1の研磨速度を不均一にし、1,3枚目のガラス基板1の研磨速度を相対的に小さくすることで、第1ポリッシュ工程完了後において、2枚目のガラス基板1の研磨量が相対的に大きくなり、1,3枚目のガラス基板1の研磨量が2枚目のガラス基板1と比較して相対的に小さくなる。つまり、研磨前に相対的に板厚の大きかった2枚目のガラス基板1の研磨量を大きく、相対的に板厚の小さかった1,3枚目のガラス基板の研磨量を小さくすることにより、加工後のガラス基板1同士の板厚の差が小さくなる。このようにして、ガラス基板1の板厚を一定値に収束させ、ガラス基板1の板厚のバラツキを低減できるので、研磨処理後の複数のガラス基板1の板厚の均一性を向上することができる。
By making the polishing rate of the adjacent glass substrates 1 non-uniform and making the polishing rate of the first and third glass substrates 1 relatively small, after the first polishing step is completed, The polishing amount becomes relatively large, and the polishing amount of the first and third glass substrates 1 becomes relatively smaller than that of the second glass substrate 1. That is, by increasing the polishing amount of the second glass substrate 1 having a relatively large plate thickness before polishing and decreasing the polishing amount of the first and third glass substrates having a relatively small plate thickness. The difference in plate thickness between the processed glass substrates 1 is reduced. In this way, the thickness of the glass substrate 1 can be converged to a constant value, and variations in the thickness of the glass substrate 1 can be reduced, so that the uniformity of the thickness of the plurality of glass substrates 1 after the polishing process can be improved. Can do.
またたとえば、キャリア500の周方向に順に並べられた3枚のガラス基板1のうち、1,3枚目のガラス基板1に比較して中央の2枚目のガラス基板1の板厚が相対的に小さい場合、1,3枚目のガラス基板1の直下およびその周辺において下側研磨パッド410の変形量が相対的に大きくなる。このとき、1,3枚目のガラス基板1による下側研磨パッド410の変形が、中央の2枚目のガラス基板1直下の位置の下側研磨パッド410にも及び、2枚目のガラス基板1が下側研磨パッド410から受ける力が弱まる。下側研磨パッド410が中央の2枚目のガラス基板1に作用する圧力が小さくなる結果、1,3枚目のガラス基板1の加工レートと比較して、中央の2枚目のガラス基板1の加工レートが相対的に小さくなる。
Further, for example, among the three glass substrates 1 arranged in order in the circumferential direction of the carrier 500, the thickness of the second glass substrate 1 at the center is relative to that of the first and third glass substrates 1. If it is small, the amount of deformation of the lower polishing pad 410 is relatively large immediately below and around the first and third glass substrates 1. At this time, the deformation of the lower polishing pad 410 by the first and third glass substrates 1 also reaches the lower polishing pad 410 at a position directly below the second glass substrate 1 in the center, and the second glass substrate. The force that 1 receives from the lower polishing pad 410 is weakened. As a result of the lower pressure acting on the second glass substrate 1 at the center of the lower polishing pad 410, the second glass substrate 1 at the center is compared with the processing rate of the first and third glass substrates 1. The processing rate of becomes relatively small.
隣接するガラス基板1の研磨速度を不均一にし、2枚目のガラス基板1の研磨速度を相対的に小さくすることで、第1ポリッシュ工程完了後において、1,3枚目のガラス基板1の研磨量が相対的に大きくなり、2枚目のガラス基板1の研磨量が1,3枚目のガラス基板1と比較して相対的に小さくなる。つまり、研磨前に相対的に板厚の大きかった1,3枚目のガラス基板1の研磨量を大きく、相対的に板厚の小さかった2枚目のガラス基板の研磨量を小さくすることにより、加工後のガラス基板1同士の板厚の差が小さくなる。このようにして、ガラス基板1の板厚を一定値に収束させ、ガラス基板1の板厚のバラツキを低減できるので、研磨処理後の複数のガラス基板1の板厚の均一性を向上することができる。
By making the polishing rate of the adjacent glass substrates 1 non-uniform and relatively reducing the polishing rate of the second glass substrate 1, the first and third glass substrates 1 of the first and third glass substrates 1 are completed after the first polishing process is completed. The polishing amount becomes relatively large, and the polishing amount of the second glass substrate 1 becomes relatively small as compared with the first and third glass substrates 1. That is, by polishing the first and third glass substrates 1 having a relatively large plate thickness before polishing, and reducing the polishing amount of the second glass substrate having a relatively small plate thickness. The difference in plate thickness between the processed glass substrates 1 is reduced. In this way, the thickness of the glass substrate 1 can be converged to a constant value, and variations in the thickness of the glass substrate 1 can be reduced, so that the uniformity of the thickness of the plurality of glass substrates 1 after the polishing process can be improved. Can do.
キャリア500の各保持孔520に保持されているガラス基板1をそれぞれ自転させると、ガラス基板1が隣接するガラス基板1の特定の位置のみの研磨に影響することを抑制でき、一枚のガラス基板1の周方向において研磨量に差が発生することを回避できる。これにより、研磨後のガラス基板1の板厚に偏りが発生することを防止できるので、ガラス基板1全体の加工レートを均一化することができる。
When the glass substrate 1 held in each holding hole 520 of the carrier 500 is rotated, it is possible to suppress the glass substrate 1 from affecting the polishing of only a specific position of the adjacent glass substrate 1, and one glass substrate It is possible to avoid a difference in the polishing amount in the circumferential direction of 1. Thereby, since it can prevent that the board | substrate thickness of the glass substrate 1 after grinding | polishing generate | occur | produces, the processing rate of the glass substrate 1 whole can be equalized.
本実施の形態で用いられる上側研磨パッド310および下側研磨パッド410は、ISO7619により規定されるタイプAOデュロメータ硬度の値で、75以上85以下の硬度を有している。または、JIS K 6253により規定されるタイプEデュロメータ硬度の値もしくはアスカーC硬度の値で、75以上85以下の硬度を有している。このような硬度の研磨パッドを用いることにより、研磨後のガラス基板1の主表面の面品質を確保できるので、研磨後のガラス基板1の板厚バラツキの低減および面品質を両立することができる。
The upper polishing pad 310 and the lower polishing pad 410 used in the present embodiment have a value of type AO durometer hardness defined by ISO7619 and have a hardness of 75 to 85. Alternatively, it has a hardness of 75 or more and 85 or less as a value of Type E durometer or Asker C hardness defined by JIS K 6253. By using a polishing pad having such hardness, the surface quality of the main surface of the glass substrate 1 after polishing can be ensured, so that both reduction in plate thickness variation and surface quality of the polished glass substrate 1 can be achieved. .
本実施の形態のキャリア500は、ガラス基板1の製造工程における複数のポリッシュ工程のうち、最初の第1ポリッシュ工程で使用される。第1ポリッシュ工程では、その後の第2ポリッシュ工程と比較して、ガラス基板1の研磨量が相対的に大きい。そのため、第1ポリッシュ工程での研磨加工が、研磨後のガラス基板1の板厚のバラツキにより大きな影響を与える。つまり、相対的に加工量が大きく、板厚のバラツキへの影響がより大きい第1ポリッシュ工程で、本実施の形態のキャリア500を使用すれば、板厚のバラツキを低減できる効果を、より顕著に得ることができる。
The carrier 500 of the present embodiment is used in the first first polishing process among the plurality of polishing processes in the manufacturing process of the glass substrate 1. In the first polishing process, the polishing amount of the glass substrate 1 is relatively large as compared with the subsequent second polishing process. Therefore, the polishing process in the first polishing step has a great influence on the variation in the thickness of the glass substrate 1 after polishing. That is, if the carrier 500 according to the present embodiment is used in the first polishing process that has a relatively large processing amount and a large influence on the variation in the plate thickness, the effect of reducing the variation in the plate thickness is more remarkable. Can get to.
熱アシスト記録方式の磁気記録装置では、従来と比較して、媒体の単位記録面積を低減することで磁気ディスク10の記録密度を向上させることが可能とされている。この場合、磁気ディスク10にフラッタリングが発生すると、磁気ヘッドの読み取り位置がずれ、読み取りエラーの発生の原因となる。本実施の形態のガラス基板1を用いて熱アシスト方式の磁気ディスク10を作製すれば、ガラス基板1の板厚のバラツキを軽減し、フラッタリング特性のバラツキを低減することができる。したがって、本実施の形態のガラス基板1は、熱アシスト記録方式の磁気記録装置に特に有利に適用され得る。
In the heat-assisted recording type magnetic recording apparatus, it is possible to improve the recording density of the magnetic disk 10 by reducing the unit recording area of the medium as compared with the conventional one. In this case, if fluttering occurs in the magnetic disk 10, the reading position of the magnetic head is shifted, causing a reading error. If the heat-assisted magnetic disk 10 is manufactured using the glass substrate 1 of the present embodiment, variations in the thickness of the glass substrate 1 can be reduced, and variations in fluttering characteristics can be reduced. Therefore, the glass substrate 1 of the present embodiment can be particularly advantageously applied to a heat-assisted recording type magnetic recording apparatus.
図9は、第二の例のキャリア500を模式的に示す平面図である。第二の例のキャリア500には、ガラス基板1を保持する保持孔520が13箇所設けられている。第二の例では、保持孔520は、キャリア500の回転中心Cのまわりに二重の環状を形成するように配列されている。キャリア500の径方向における外側の環状ラインr1に10箇所の保持孔521が等間隔で配列され、内側の内環状ラインr2に3箇所の保持孔522が等間隔で配列されている。キャリア500には、回転中心Cの近傍に配置される3個の保持孔522と、保持孔522に対しキャリア500の外周側に配置される10個の保持孔521とが形成されている。
FIG. 9 is a plan view schematically showing the carrier 500 of the second example. The carrier 500 of the second example is provided with 13 holding holes 520 for holding the glass substrate 1. In the second example, the holding holes 520 are arranged so as to form a double ring around the rotation center C of the carrier 500. Ten holding holes 521 are arranged at equal intervals in the outer annular line r1 in the radial direction of the carrier 500, and three holding holes 522 are arranged at equal intervals in the inner inner ring line r2. The carrier 500 is formed with three holding holes 522 arranged near the rotation center C and ten holding holes 521 arranged on the outer peripheral side of the carrier 500 with respect to the holding holes 522.
環状ラインr1上に存在する10箇所の保持孔521は、キャリア500の回転中心Cと保持孔521の中心との距離が等しい、同一径孔群を構成している。内環状ラインr2上に存在する3箇所の保持孔522の中心とキャリア500の回転中心Cとの距離は、同一径孔群に属する保持孔521とキャリア500の回転中心Cとの距離に対して、より小さくなっている。3箇所の保持孔522は、キャリア500の回転中心Cと保持孔522の中心との距離が相等しく、かつ、回転中心Cと保持孔522の中心との距離が回転中心Cと保持孔521の中心との距離と異なるように、形成されている。キャリア500の内周側に設けられた3箇所の保持孔522は、キャリア500の外周側の保持孔521で構成される同一径孔群とは異なる、異径孔群を構成している。
The ten holding holes 521 present on the annular line r1 constitute a group of identical diameter holes in which the distance between the rotation center C of the carrier 500 and the center of the holding hole 521 is equal. The distance between the centers of the three holding holes 522 existing on the inner annular line r2 and the rotation center C of the carrier 500 is relative to the distance between the holding hole 521 belonging to the same diameter hole group and the rotation center C of the carrier 500. Is getting smaller. The three holding holes 522 have the same distance between the rotation center C of the carrier 500 and the center of the holding hole 522, and the distance between the rotation center C and the center of the holding hole 522 is the same as that of the rotation center C and the holding hole 521. It is formed so as to be different from the distance from the center. The three holding holes 522 provided on the inner peripheral side of the carrier 500 constitute a different diameter hole group different from the same diameter hole group constituted by the holding holes 521 on the outer peripheral side of the carrier 500.
図5に示す第一の例と同様に、第二の例のキャリア500においても、同一孔径群に属する複数の保持孔521のうち、周方向に隣接する二つの保持孔521間の距離dは、0.5mm以上3.0mm以下の範囲にある。さらに、同一径孔群に属する保持孔521と、異径孔群に属する保持孔522との中心同士を結ぶ線分上の、当該二つの保持孔521,522間の距離dもまた、0.5mm以上3.0mm以下の範囲にある。
Similarly to the first example shown in FIG. 5, in the carrier 500 of the second example, among the plurality of holding holes 521 belonging to the same hole diameter group, the distance d between two holding holes 521 adjacent in the circumferential direction is In the range of 0.5 mm to 3.0 mm. Furthermore, the distance d between the two holding holes 521 and 522 on the line segment connecting the centers of the holding hole 521 belonging to the same diameter hole group and the holding hole 522 belonging to the different diameter hole group is also 0. It exists in the range of 5 mm or more and 3.0 mm or less.
保持孔521,522間の距離dを0.5mm以上に規定することで、キャリア500の耐久性を確保することができる。保持孔521,522間の距離dを3.0mm以下に規定することで、隣接する保持孔521,522に保持された2枚のガラス基板1による研磨パッドの変形が互いに影響するようになる。その結果、キャリア500の径方向に隣接するガラス基板1の研磨量を研磨前のガラス基板1の板厚に従って変化させて、研磨後のガラス基板1の板厚のバラツキを低減することができる。したがって、回転中心Cからの距離の異なる保持孔521と保持孔522とによって保持されたガラス基板1の、研磨処理後の板厚の均一性を向上することができる。
The durability of the carrier 500 can be ensured by defining the distance d between the holding holes 521 and 522 to be 0.5 mm or more. By defining the distance d between the holding holes 521 and 522 to be 3.0 mm or less, the deformation of the polishing pad by the two glass substrates 1 held in the adjacent holding holes 521 and 522 affects each other. As a result, the amount of polishing of the glass substrate 1 adjacent in the radial direction of the carrier 500 can be changed in accordance with the thickness of the glass substrate 1 before polishing, thereby reducing variations in the thickness of the glass substrate 1 after polishing. Therefore, the uniformity of the thickness of the glass substrate 1 held by the holding hole 521 and the holding hole 522 having different distances from the rotation center C after the polishing process can be improved.
図10は、第三の例のキャリア500を模式的に示す平面図である。第三の例のキャリア500には、図5に示す第一の例と同様に、ガラス基板1を保持する保持孔520が10箇所設けられている。第三の例のキャリア500では、回転中心Cまわりに隣接する二つの保持孔523,524が、各々の中心と回転中心Cとの距離を僅かに異ならせるように、配列されている。つまり、保持孔523は、その中心が環状ラインr3上に存在するように配列されており、一方保持孔524は、その中心が環状ラインr4上に存在するように配列されている。環状ラインr3と環状ラインr4とは、回転中心Cからの距離が若干異なり、環状ラインr4は環状ラインr3よりも少し小さい径を有している。
FIG. 10 is a plan view schematically showing the carrier 500 of the third example. Similarly to the first example shown in FIG. 5, the carrier 500 of the third example is provided with ten holding holes 520 for holding the glass substrate 1. In the carrier 500 of the third example, the two holding holes 523 and 524 adjacent around the rotation center C are arranged so that the distance between each center and the rotation center C is slightly different. That is, the holding holes 523 are arranged so that the centers thereof are on the annular line r3, while the holding holes 524 are arranged so that the centers thereof are on the annular line r4. The annular line r3 and the annular line r4 have slightly different distances from the rotation center C, and the annular line r4 has a slightly smaller diameter than the annular line r3.
第三の例のキャリア500では、保持孔520の中心は、環状ラインr3および環状ラインr4の間の帯状の領域B内に存在している。回転中心Cと保持孔523との距離、および、回転中心Cと保持孔524との距離は、同一ではないがほぼ等しい。第三の例の保持孔523,524は、キャリア500の回転中心Cと保持孔520の中心との間の距離がほぼ等しい、同一径孔群を構成している。第三の例のキャリア500には、保持孔523と保持孔524とが各々5箇所に設けられている。保持孔523と保持孔524とは、回転中心Cまわりの周方向において交互に配列されている。
In the carrier 500 of the third example, the center of the holding hole 520 exists in a band-like region B between the annular line r3 and the annular line r4. The distance between the rotation center C and the holding hole 523 and the distance between the rotation center C and the holding hole 524 are not the same, but are approximately equal. The holding holes 523 and 524 of the third example constitute the same diameter hole group in which the distance between the rotation center C of the carrier 500 and the center of the holding hole 520 is substantially equal. The carrier 500 of the third example is provided with holding holes 523 and holding holes 524 at five locations. The holding holes 523 and the holding holes 524 are alternately arranged in the circumferential direction around the rotation center C.
図10に示す距離dは、回転中心Cまわりの周方向に隣接する二つの保持孔523,524の中心同士を結ぶ線分上の、当該二つの保持孔523,524間の距離を示している。保持孔520は、隣接する二つの保持孔523,524間の距離dが0.5mm以上3.0mm以下の範囲になるように、設けられている。
A distance d shown in FIG. 10 indicates a distance between the two holding holes 523 and 524 on a line segment connecting the centers of the two holding holes 523 and 524 adjacent in the circumferential direction around the rotation center C. . The holding hole 520 is provided so that the distance d between two adjacent holding holes 523 and 524 is in the range of 0.5 mm or more and 3.0 mm or less.
保持孔523,524間の距離dを0.5mm以上に規定することで、キャリア500の耐久性を確保することができる。保持孔523,524間の距離dを3.0mm以下に規定することで、隣接する保持孔523,524に保持された2枚のガラス基板1による研磨パッドの変形が互いに影響するようになる。その結果、キャリア500の周方向に隣接するガラス基板1の研磨量を研磨前のガラス基板1の板厚に従って変化させて、研磨後のガラス基板1の板厚のバラツキを低減することができる。したがって、回転中心Cからの距離が同一ではないがほぼ等しい保持孔523と保持孔524とによって保持されたガラス基板1の、研磨処理後の板厚の均一性を向上できる効果を、同様に得ることができる。
By defining the distance d between the holding holes 523 and 524 to be 0.5 mm or more, the durability of the carrier 500 can be ensured. By defining the distance d between the holding holes 523 and 524 to be 3.0 mm or less, the deformation of the polishing pad by the two glass substrates 1 held in the adjacent holding holes 523 and 524 influences each other. As a result, the amount of polishing of the glass substrate 1 adjacent in the circumferential direction of the carrier 500 can be changed according to the thickness of the glass substrate 1 before polishing, thereby reducing the variation in the thickness of the glass substrate 1 after polishing. Therefore, the effect of improving the uniformity of the thickness of the glass substrate 1 held by the holding hole 523 and the holding hole 524 that are not the same distance from the rotation center C but are almost equal can be obtained similarly. be able to.
以下、情報記録媒体用ガラス基板の実施例および比較例について説明する。図3を参照して説明した各ステップに従って、ガラス基板を作製した。第1ポリッシュ工程(ステップS31)で用いられるキャリア500のみ異ならせた実施例1,2および比較例1のガラス基板1を作製した。実施例1,2および比較例1では、回転中心Cのまわりに二重の環状を形成するように、外周側に10箇所、内周側に3箇所の計13箇所の保持孔520が配列されているキャリア500を用いて、ガラス基板1の研磨を実施した。ガラス基板1の外径は91mm、厚みは0.8mmとした。キャリア500の厚みはいずれも0.65mmとした。キャリア500の材質は一般的なガラスエポキシとした。
Hereinafter, examples and comparative examples of glass substrates for information recording media will be described. A glass substrate was produced according to the steps described with reference to FIG. Glass substrates 1 of Examples 1 and 2 and Comparative Example 1 in which only the carrier 500 used in the first polishing step (Step S31) was varied were produced. In Examples 1 and 2 and Comparative Example 1, a total of 13 holding holes 520, 10 on the outer peripheral side and 3 on the inner peripheral side, are arranged so as to form a double ring around the rotation center C. The glass substrate 1 was polished using the carrier 500. The glass substrate 1 had an outer diameter of 91 mm and a thickness of 0.8 mm. The thickness of each carrier 500 was 0.65 mm. The material of the carrier 500 was a general glass epoxy.
実施例1では、キャリア500の周方向において隣接する保持孔520の間隔を2.5mmとした。キャリア500の径方向においては、外周側に配列された保持孔520(図9に示す保持孔521に相当)の中心が同一の円周上に配置されるとともに、内周側に配列された保持孔520(図9に示す保持孔522に相当)の中心が同一の円周上に配置されるように、保持孔520を設けた。径方向に隣接する保持孔520の間隔、すなわち、内周側の保持孔520と外周側の保持孔520との間隔は、3.0mm超の大きい値とした。
In Example 1, the interval between the holding holes 520 adjacent in the circumferential direction of the carrier 500 was set to 2.5 mm. In the radial direction of the carrier 500, the centers of the holding holes 520 arranged on the outer peripheral side (corresponding to the holding holes 521 shown in FIG. 9) are arranged on the same circumference and the holding holes arranged on the inner peripheral side. The holding hole 520 is provided so that the center of the hole 520 (corresponding to the holding hole 522 shown in FIG. 9) is arranged on the same circumference. The interval between the holding holes 520 adjacent in the radial direction, that is, the interval between the holding hole 520 on the inner peripheral side and the holding hole 520 on the outer peripheral side was set to a large value exceeding 3.0 mm.
実施例2では、キャリア500の周方向において隣接する保持孔520の間隔を2.5mmとした。キャリア500の径方向においては、外周側に配列された保持孔520(図9に示す保持孔521に相当)の中心が径方向に僅かにずれて帯状の領域内に配置されるとともに、内周側に配列された保持孔520(図9に示す保持孔522に相当)の中心が径方向に僅かにずれて帯状の領域内に配置されるように、保持孔520を設けた。径方向に隣接する保持孔520の間隔、すなわち、内周側の保持孔520と外周側の保持孔520との間隔は、0.5mm以上3.0mm以下の小さい値とした。
In Example 2, the interval between the holding holes 520 adjacent in the circumferential direction of the carrier 500 was set to 2.5 mm. In the radial direction of the carrier 500, the center of the holding hole 520 arranged on the outer peripheral side (corresponding to the holding hole 521 shown in FIG. 9) is slightly shifted in the radial direction and is disposed in the band-shaped region. The holding holes 520 are provided so that the centers of the holding holes 520 arranged on the side (corresponding to the holding holes 522 shown in FIG. 9) are slightly shifted in the radial direction and arranged in the band-shaped region. The interval between the holding holes 520 adjacent in the radial direction, that is, the interval between the holding hole 520 on the inner peripheral side and the holding hole 520 on the outer peripheral side was set to a small value of 0.5 mm or more and 3.0 mm or less.
比較例1では、キャリア500の周方向において隣接する保持孔520の間隔を4mmとし、3.0mmを超える値とした。キャリア500の径方向においては、外周側に配列された保持孔520(図9に示す保持孔521に相当)の中心が同一の円周上に配置されるとともに、内周側に配列された保持孔520(図9に示す保持孔522に相当)の中心が同一の円周上に配置されるように、保持孔520を設けた。径方向に隣接する保持孔520の間隔、すなわち、内周側の保持孔520と外周側の保持孔520との間隔は、3.0mm超の大きい値とした。
In Comparative Example 1, the interval between the holding holes 520 adjacent to each other in the circumferential direction of the carrier 500 was set to 4 mm and a value exceeding 3.0 mm. In the radial direction of the carrier 500, the centers of the holding holes 520 arranged on the outer peripheral side (corresponding to the holding holes 521 shown in FIG. 9) are arranged on the same circumference and the holding holes arranged on the inner peripheral side. The holding hole 520 is provided so that the center of the hole 520 (corresponding to the holding hole 522 shown in FIG. 9) is arranged on the same circumference. The interval between the holding holes 520 adjacent in the radial direction, that is, the interval between the holding hole 520 on the inner peripheral side and the holding hole 520 on the outer peripheral side was set to a large value exceeding 3.0 mm.
実施例1,2および比較例1のキャリア500を用いた第1ポリッシュ工程におけるガラス基板1の加工量の設定値を30μmとし、5枚のキャリア500によって保持され一度に加工されたガラス基板1の全数の間で、研磨後のガラス基板1の板厚がどの位バラツキを有するかを評価した。ガラス基板1の板厚は、洗浄工程(ステップS50)後に、キーエンス社製SI-F80を用いて計測した。同一のキャリア500に保持されて同時に研磨されたガラス基板1の板厚値の標準偏差σが0.1μm未満の場合を「優」、0.1μm以上0.2μm未満の場合を「良」、0.2μm以上0.5μm未満の場合を「不良」として評価した。
The set value of the processing amount of the glass substrate 1 in the first polishing process using the carrier 500 of Examples 1 and 2 and Comparative Example 1 is set to 30 μm, and the glass substrate 1 held by five carriers 500 and processed at one time It was evaluated how much the thickness of the glass substrate 1 after polishing had variation among all the numbers. The thickness of the glass substrate 1 was measured using SI-F80 manufactured by Keyence Corporation after the cleaning process (step S50). “Excellent” when the standard deviation σ of the thickness value of the glass substrate 1 held by the same carrier 500 and polished simultaneously is less than 0.1 μm, “good” when less than 0.1 μm and less than 0.2 μm, The case of 0.2 μm or more and less than 0.5 μm was evaluated as “bad”.
図11は、実施例および比較例の保持孔の配置および評価結果を示す図である。図11に示すように、実施例1,2のガラス基板1では、板厚値の標準偏差σがいずれも0.2μm未満であり、板厚のバラツキが十分小さい良好な結果が得られた。特に、外周側の保持孔520に保持されたガラス基板1間、または内周側の保持孔520に保持されたガラス基板1間で、バラツキが小さかった。キャリア500の径方向に隣接する保持孔520の間隔を規定した実施例2においては、標準偏差σが0.1μm未満であり特に良好であった。これに対し、比較例1のガラス基板1では、板厚値の標準偏差σが大きく、板厚のバラツキを十分に低減できなかった。
FIG. 11 is a diagram showing the arrangement and evaluation results of the holding holes in the examples and comparative examples. As shown in FIG. 11, in the glass substrates 1 of Examples 1 and 2, the standard deviation σ of the plate thickness value was less than 0.2 μm, and good results were obtained in which the variation in the plate thickness was sufficiently small. In particular, the variation was small between the glass substrates 1 held in the holding holes 520 on the outer peripheral side or between the glass substrates 1 held in the holding holes 520 on the inner peripheral side. In Example 2 in which the interval between the holding holes 520 adjacent in the radial direction of the carrier 500 was defined, the standard deviation σ was less than 0.1 μm, which was particularly favorable. On the other hand, in the glass substrate 1 of Comparative Example 1, the standard deviation σ of the plate thickness value was large, and the variation in the plate thickness could not be reduced sufficiently.
以上説明した評価結果から、キャリア500の回転中心Cと保持孔520の中心との間の距離が略等しい同一径孔群に属し回転中心Cまわりの周方向に隣接する二つの保持孔520の中心同士を結ぶ線分上の、該二つの保持孔間の距離を0.5mm以上3.0mm以下にすることで、研磨処理後のガラス基板1の板厚のバラツキを低減することができることが示された。したがって、80mm以上の外径を有するガラス基板1から作製した磁気ディスク10においても、ガラス基板1の板厚のバラツキを十分に小さくすることでフラッタリング特性のバラツキを低減できることが明らかになった。
From the evaluation results described above, the centers of the two holding holes 520 that belong to the same diameter hole group in which the distance between the rotation center C of the carrier 500 and the center of the holding hole 520 are substantially equal and that are adjacent to each other around the rotation center C in the circumferential direction. It is shown that the variation in the thickness of the glass substrate 1 after the polishing treatment can be reduced by setting the distance between the two holding holes on the line connecting the two to 0.5 mm or more and 3.0 mm or less. It was done. Accordingly, it has been clarified that, even in the magnetic disk 10 manufactured from the glass substrate 1 having an outer diameter of 80 mm or more, the variation in fluttering characteristics can be reduced by sufficiently reducing the variation in the thickness of the glass substrate 1.
以上のように本発明の実施の形態について説明を行なったが、今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
As described above, the embodiment of the present invention has been described. However, it should be considered that the embodiment and example disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 ガラス基板、2 磁気薄膜層、10 磁気ディスク、300 上定盤、310 上側研磨パッド、311,411 研磨面、400 下定盤、410 下側研磨パッド、410h 発泡孔、500 キャリア、510 本体、520,521~524 保持孔、2000 両面研磨装置、C 回転中心、d 距離、r1~r4 環状ライン。
1 glass substrate, 2 magnetic thin film layer, 10 magnetic disk, 300 upper surface plate, 310 upper polishing pad, 311 and 411 polishing surface, 400 lower surface plate, 410 lower polishing pad, 410h foaming hole, 500 carrier, 510 body, 520 , 521 to 524 holding hole, 2000 double-side polishing machine, C rotation center, d distance, r1 to r4 annular line.
Claims (6)
- 複数の発泡孔を含む部材からなる研磨パッドと、ガラス基板を保持するキャリアとを有し、前記研磨パッドを用いて前記キャリアに保持された前記ガラス基板を研磨する研磨装置を用いる、情報記録媒体用ガラス基板の製造方法であって、
主表面を有し、80mm以上の外径を有するガラス基板を準備する工程と、
前記研磨装置を用いて前記ガラス基板の前記主表面を研磨する工程とを備え、
前記キャリアは、自転可能に設けられており、前記ガラス基板を収容するための複数の保持孔が形成されており、
前記複数の保持孔の少なくとも一部は、前記キャリアの回転中心と前記保持孔の中心との間の距離が略等しい、同一径孔群を構成し、
前記同一径孔群に属し前記回転中心まわりの周方向に隣接する二つの前記保持孔の中心同士を結ぶ線分上の、該二つの保持孔間の距離が、0.5mm以上3.0mm以下である、情報記録媒体用ガラス基板の製造方法。 An information recording medium having a polishing pad made of a member including a plurality of foam holes and a carrier for holding a glass substrate, and using a polishing apparatus for polishing the glass substrate held by the carrier using the polishing pad A method for producing a glass substrate,
Preparing a glass substrate having a main surface and an outer diameter of 80 mm or more;
Polishing the main surface of the glass substrate using the polishing apparatus,
The carrier is provided to be able to rotate, and a plurality of holding holes for accommodating the glass substrate are formed,
At least some of the plurality of holding holes constitute a group of identical diameter holes in which the distance between the rotation center of the carrier and the center of the holding hole is substantially equal.
The distance between the two holding holes on the line connecting the centers of the two holding holes that belong to the same diameter hole group and are adjacent to each other in the circumferential direction around the rotation center is 0.5 mm or more and 3.0 mm or less. The manufacturing method of the glass substrate for information recording media. - 前記研磨パッドは、ISO7619により規定されるタイプAOデュロメータ硬度の値で75以上85以下の硬度を有している、請求項1に記載の情報記録媒体用ガラス基板の製造方法。 The method for producing a glass substrate for an information recording medium according to claim 1, wherein the polishing pad has a hardness of 75 to 85 in terms of a type AO durometer hardness defined by ISO7619.
- 前記複数の保持孔のうちの少なくとも一部は、前記キャリアの回転中心と前記保持孔の中心との距離が前記同一径孔群に属する前記保持孔と異なる、異径孔群を構成し、
前記同一径孔群に属する保持孔と、前記異径孔群に属する保持孔との中心同士を結ぶ線分上の、該二つの保持孔間の距離が、0.5mm以上3.0mm以下である、請求項1または2に記載の情報記録媒体用ガラス基板の製造方法。 At least a part of the plurality of holding holes constitutes a different diameter hole group in which the distance between the center of rotation of the carrier and the center of the holding hole is different from the holding holes belonging to the same diameter hole group,
The distance between the two holding holes on the line connecting the centers of the holding hole belonging to the same diameter hole group and the holding hole belonging to the different diameter hole group is 0.5 mm or more and 3.0 mm or less. The manufacturing method of the glass substrate for information recording media of Claim 1 or 2. - 前記研磨する工程は、前記ガラス基板を粗研磨する工程と、前記粗研磨する工程の後に前記ガラス基板を精密研磨する工程とを含み、
前記キャリアは、前記粗研磨する工程で用いられる前記研磨装置に含まれている、請求項1~3のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法。 The step of polishing includes a step of rough polishing the glass substrate, and a step of precisely polishing the glass substrate after the step of rough polishing,
The method for producing a glass substrate for an information recording medium according to any one of claims 1 to 3, wherein the carrier is included in the polishing apparatus used in the rough polishing step. - 前記情報記録媒体は、熱アシスト方式の磁気記録装置に用いられる、請求項1~4のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法。 The method for producing a glass substrate for an information recording medium according to any one of claims 1 to 4, wherein the information recording medium is used in a heat-assisted magnetic recording apparatus.
- 前記キャリアは、ガラス繊維強化エポキシを素材として形成されている、請求項1~5のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法。 The method for producing a glass substrate for an information recording medium according to any one of claims 1 to 5, wherein the carrier is formed from glass fiber reinforced epoxy.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013072949 | 2013-03-29 | ||
JP2013-072949 | 2013-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014156798A1 true WO2014156798A1 (en) | 2014-10-02 |
Family
ID=51623778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/057234 WO2014156798A1 (en) | 2013-03-29 | 2014-03-18 | Method of manufacturing glass substrate for information recording medium |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014156798A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004058201A (en) * | 2002-07-29 | 2004-02-26 | Hoya Corp | Work polishing method and manufacturing method of substrate for electronic device |
JP2010221305A (en) * | 2009-03-19 | 2010-10-07 | Showa Denko Kk | Manufacturing method of disk-shaped substrate |
JP2010248031A (en) * | 2009-04-16 | 2010-11-04 | Hoya Corp | Manufacture method for near-sheet glass, press molding apparatus, manufacture method for substrate for information recording medium, manufacture method for information recording medium, and manufacture method for optical part |
JP2012111692A (en) * | 2010-04-27 | 2012-06-14 | Asahi Glass Co Ltd | Method for producing magnetic disk, and glass substrate for information recording medium |
-
2014
- 2014-03-18 WO PCT/JP2014/057234 patent/WO2014156798A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004058201A (en) * | 2002-07-29 | 2004-02-26 | Hoya Corp | Work polishing method and manufacturing method of substrate for electronic device |
JP2010221305A (en) * | 2009-03-19 | 2010-10-07 | Showa Denko Kk | Manufacturing method of disk-shaped substrate |
JP2010248031A (en) * | 2009-04-16 | 2010-11-04 | Hoya Corp | Manufacture method for near-sheet glass, press molding apparatus, manufacture method for substrate for information recording medium, manufacture method for information recording medium, and manufacture method for optical part |
JP2012111692A (en) * | 2010-04-27 | 2012-06-14 | Asahi Glass Co Ltd | Method for producing magnetic disk, and glass substrate for information recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012142044A (en) | Method for manufacturing glass substrate for information recording medium and information recording medium | |
JP2008080482A (en) | Manufacturing method and manufacturing device for magnetic disk glass substrate, magnetic disk glass substrate, magnetic disk manufacturing method, and magnetic disk | |
JP6138113B2 (en) | Method for manufacturing glass substrate for information recording medium, method for manufacturing magnetic disk, and carrier for grinding | |
WO2009081565A1 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP2014188668A (en) | Method of manufacturing glass substrate | |
JP2008217918A (en) | Glass substrate for magnetic recording medium, and magnetic recording medium | |
WO2011021478A1 (en) | Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium | |
JP6138114B2 (en) | Method for manufacturing glass substrate for information recording medium, method for manufacturing magnetic disk, and carrier for polishing | |
JP5778165B2 (en) | Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium | |
WO2014156798A1 (en) | Method of manufacturing glass substrate for information recording medium | |
JP5461936B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
WO2013099656A1 (en) | Glass substrate for information recording medium and method for producing same | |
WO2013146132A1 (en) | Manufacturing method for glass substrate for information recording medium, and information recording medium | |
JP2008071463A (en) | Method of manufacturing glass substrate for magnetic disk and method of manufacturing magnetic disk | |
JP6328052B2 (en) | Method for manufacturing glass substrate for information recording medium, method for manufacturing information recording medium, and polishing pad | |
WO2012132073A1 (en) | Method for manufacturing glass substrate for information recording medium, and information recording medium | |
JP5719785B2 (en) | GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE | |
JP5701938B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP2017228340A (en) | Method of manufacturing glass substrate for information recording medium and polishing brush | |
JP2010231841A (en) | Method for manufacturing glass substrate, glass substrate and magnetic recording medium | |
WO2012132074A1 (en) | Method for producing glass substrates for information recording medium, and information recording medium | |
WO2013146134A1 (en) | Manufacturing method for glass substrate for information recording medium, and information recording medium | |
WO2013146131A1 (en) | Manufacturing method for glass substrate for information recording medium, and information recording medium | |
WO2013099584A1 (en) | Method of manufacturing glass substrate for information recording medium | |
JP2015069685A (en) | Production method of magnetic disk glass substrate and magnetic disk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14774449 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14774449 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |