WO2013145228A1 - Part mounting device - Google Patents

Part mounting device Download PDF

Info

Publication number
WO2013145228A1
WO2013145228A1 PCT/JP2012/058436 JP2012058436W WO2013145228A1 WO 2013145228 A1 WO2013145228 A1 WO 2013145228A1 JP 2012058436 W JP2012058436 W JP 2012058436W WO 2013145228 A1 WO2013145228 A1 WO 2013145228A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
suction
nozzle
flow rate
suction nozzle
Prior art date
Application number
PCT/JP2012/058436
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 河口
正隆 岩▲崎▼
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2012/058436 priority Critical patent/WO2013145228A1/en
Priority to JP2014507194A priority patent/JP5813210B2/en
Publication of WO2013145228A1 publication Critical patent/WO2013145228A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/0409Sucking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/041Incorporating a pick-up tool having multiple pick-up tools

Definitions

  • the present invention relates to a component mounter that mounts a plurality of components on a substrate, and more particularly to a component mounter that detects component adsorption abnormalities and mounting abnormalities.
  • a component mounter described in Patent Document 1 As an example of a component mounter that detects an abnormal suction of a component, for example, a component mounter described in Patent Document 1 is known.
  • the component mounting apparatus described in Patent Literature 1 includes a vacuum pressure sensor in a manifold that communicates a vacuum generation source and multiple nozzles. When the electronic components are sequentially mounted, the vacuum pressure in the manifold before and after the movement of the multiple nozzles is measured, and when the difference in vacuum pressure exceeds a predetermined threshold, the electronic components have fallen from the multiple nozzles. Deciding. In this case, the component mounting apparatus does not mount the electronic component.
  • a mounting abnormality such as so-called take-out of the component in which the component mounting fails and the component remains adsorbed to the multiple nozzles.
  • a mounting abnormality such as so-called take-out of the component in which the component mounting fails and the component remains adsorbed to the multiple nozzles.
  • a pressure sensor it is not always possible to correctly detect whether a component can be mounted due to the state of the nozzle surface of the multiple nozzle and the component suction surface, the influence of static electricity, etc. Not exclusively.
  • the component mounting machine becomes large for the imaging unit, resulting in an increase in cost.
  • This invention is made in view of such a situation, and makes it a subject to provide the component mounting machine which can detect the adsorption
  • a component mounter is a component mounter including a component mounting head having a plurality of suction nozzles for sucking and mounting a plurality of components on a substrate, and a suction abnormality detection unit that detects suction abnormality of the component.
  • the component mounting head has a flow sensor for measuring a flow rate of air sucked into the negative pressure source on a side of the negative pressure source of a branch flow path communicating with the negative pressure source and each of the suction nozzles.
  • the suction abnormality detection unit the amount of change in the air flow rate from when one suction nozzle of the plurality of suction nozzles picks up a component until the next suction nozzle picks up the component exceeds a predetermined threshold. Sometimes it is determined that the adsorption is abnormal.
  • the component mounter according to a second aspect of the present invention is the component mounter according to the first aspect, further comprising a component recognition camera that images each of the components that are attracted to the tip portions of the plurality of suction nozzles.
  • the detection unit determines whether or not the suction is abnormal based on a suction state of the imaged part.
  • a component mounting machine including a component mounting head having a plurality of suction nozzles for sucking and mounting a plurality of components on a substrate, and a mounting abnormality detecting unit for detecting a mounting abnormality of the component.
  • the component mounting head has a flow sensor for measuring a flow rate of air supplied from the positive pressure source to the positive pressure source side of a branch flow path communicating the positive pressure source and each of the suction nozzles, When the amount of change in the air flow from when one suction nozzle of the plurality of suction nozzles mounts a component to when the next suction nozzle mounts the component is less than a predetermined threshold, the mounting abnormality detection unit It is determined that the attachment is abnormal.
  • a component mounter is the component mounter according to any one of the first to third aspects, wherein the component mounting head rotates the plurality of suction nozzles on a circumference concentric with an axis.
  • a rotary head that is held movably.
  • the component mounting head measures the flow rate of air sucked into the negative pressure source on the negative pressure source side of the branch flow path communicating the negative pressure source and each suction nozzle.
  • the adsorption abnormality detection unit detects an adsorption abnormality of the component from the amount of change in the air flow rate on the negative pressure source side.
  • the adsorption abnormality detection unit can detect the adsorption abnormality of the component from the amount of change in the air flow rate, it is easy to determine whether or not the adsorption state of the component is stable.
  • the adsorption abnormality detection unit is configured to detect a change in the air flow rate from when one of the plurality of adsorption nozzles adsorbs a component until the next adsorption nozzle adsorbs the component exceeds a predetermined threshold value. Therefore, it is possible to detect the suction abnormality without depending on the air leak state of the suction nozzle that has already picked up the component. For this reason, it is possible to detect an abnormal suction of a component with high accuracy.
  • the suction abnormality detection unit determines whether or not there is a suction abnormality based on the suction state of the component imaged by the component recognition camera. Therefore, it can be recognized whether or not the component is sucked by the suction nozzle in the normal suction posture, and the detection accuracy of the suction abnormality can be improved.
  • the component mounting head measures the flow rate of air supplied from the positive pressure source to the positive pressure source side of the branch flow path communicating the positive pressure source and each suction nozzle.
  • the mounting abnormality detection unit detects a component mounting abnormality from the amount of change in the air flow rate on the positive pressure source side.
  • the suction port of the suction nozzle on which the component is mounted does not suck the component, so that the amount of change in the air flow rate on the positive pressure source side becomes large.
  • a mounting abnormality such as take-out of a part occurs, the suction port of the suction nozzle is blocked by the part, so that the amount of change in the air flow rate on the positive pressure source side becomes small.
  • the mounting abnormality detection unit can detect a component mounting abnormality from the amount of change in the air flow rate on the positive pressure source side, and detects a component mounting abnormality without being affected by the air path on the downstream side of the flow sensor. can do. Therefore, it is possible to detect a component mounting abnormality with high accuracy.
  • the component mounter since mounting abnormalities are detected using a flow sensor provided on the positive pressure source side, the component mounter is downsized and reduced compared to the case where the tip of the suction nozzle is imaged to detect component mounting abnormalities. Cost can be increased.
  • the component mounting head is a rotary head in which a plurality of suction nozzles are rotatably held on a circumference concentric with the axis.
  • a detection sensor for detecting a suction abnormality is generally arranged apart from the tip of the suction nozzle.
  • the adsorption abnormality detection unit can detect the component adsorption abnormality from the amount of change in the air flow rate, and can detect the component adsorption abnormality with high accuracy.
  • the mounting abnormality detection unit is configured such that the amount of change in the air flow rate on the positive pressure source side from when one suction nozzle of the plurality of suction nozzles mounts a component until the next suction nozzle mounts the component is a predetermined threshold value. If it is less than that, it is determined that there is a component mounting abnormality, so that it is possible to detect the mounting abnormality without depending on the air leak state of the suction nozzle that has already mounted the component. Therefore, in the rotary head, the component mounting abnormality can be detected with high accuracy.
  • FIG. 1 is a perspective view showing an example of a component mounter 1.
  • FIG. It is a front view which shows the component mounting head 10 of FIG. 2 is a configuration diagram schematically illustrating an example of a positive pressure / negative pressure supply device 14.
  • FIG. It is a figure which shows an example of the output characteristic of the flow sensor.
  • (A) is a side image showing a state in which the component P is sucked by the suction nozzle 18 in a normal suction posture.
  • (B) is a side image showing a state in which the component P is attracted to the suction nozzle 18 in an inclined posture.
  • It is a block diagram which shows an example of a control block.
  • FIG. 1 is a perspective view showing an example of a component mounter 1.
  • FIG. FIG. 2 is a front view showing the component mounting head 10 of FIG.
  • the component mounter 1 includes a component supply device 70, a board transfer device 60, and a component transfer device 80.
  • a plurality of cassette type feeders 71 are arranged in parallel on a base frame 90.
  • the cassette type feeder 71 includes a main body 72 that is detachably attached to the base frame 90, a supply reel 73 provided at the rear portion of the main body 72, and a component take-out portion 74 provided at the tip of the main body 72.
  • the supply reel 73 is wound and held with a long and narrow tape in which the parts P are sealed at a predetermined pitch, and the tape is pulled out at a predetermined pitch by a sprocket (not shown), and the parts P are released from the sealed state and sequentially fed to the part take-out portion 74. It is.
  • a CCD camera 75 that detects the holding position of the component P is provided between the component supply device 70 and the substrate transfer device 60.
  • the CCD camera 75 can detect a positional shift and an angular shift of the sucked component P with respect to the suction nozzle 18. The detection result of the positional deviation and the angular deviation can be used when correcting the mounting position of the component P.
  • the substrate transfer device 60 is a so-called double conveyor type device that transfers a printed circuit board in the X-axis direction shown in FIG. 1 and includes two rows of first transfer devices 61 and second transfer devices 62 arranged side by side.
  • first transfer devices 61 and second transfer devices 62 a pair of guide rails 64a, 64b, 65a, 65b are arranged in parallel on the base 63 so as to face each other in parallel.
  • first transport device 61 and the second transport device 62 a pair of conveyor belts (not shown) that support and transport the printed circuit boards guided by the guide rails 64a, 64b, 65a, and 65b are arranged opposite to each other.
  • the substrate transport device 60 is provided with a clamp device (not shown) that pushes up and clamps the printed circuit board transported to a predetermined position. The printed circuit board is positioned and fixed at the component mounting position by the clamp device.
  • the component transfer device 80 is of the XY robot type, is mounted on the base frame 90 and is disposed above the substrate transfer device 60 and the component supply device 70, and is moved in the Y axis direction by the Y axis servo motor 11.
  • the Y-axis slider 12 is provided. As shown in FIG. 2, an X-axis slider 13 is guided by the Y-axis slider 12 so as to be movable in the X-axis direction orthogonal to the Y-axis direction.
  • the X-axis slider 13 is connected to the Y-axis slider 12 via a pair of guide rails 12 a that are fixed to the Y-axis slider 12 and extend in the X-axis direction, and a pair of guide blocks 13 a that are fixed to the X-axis slider 13. In contrast, it is held movable.
  • An X-axis servo motor (not shown) is fixed to the Y-axis slider 12, and a ball screw shaft 12b extending in the X-axis direction is connected to the output shaft of the X-axis servo motor.
  • the ball screw shaft 12b is screwed to a ball nut 13b fixed to the X-axis slider 13 via a ball (not shown).
  • the component mounting head 10 includes a positive / negative pressure supply device 14, an R-axis motor 15, an index shaft 16, a nozzle holder 17, a suction nozzle 18, a ⁇ -axis motor 19, a Z-axis motor 20, and a component recognition camera 21. Yes.
  • the X-axis slider 13 is integrally provided with a first frame 25 and a second frame 26 extending in the horizontal direction so as to be separated from each other in the vertical direction (Z-axis direction).
  • An R-axis motor 15 is fixed.
  • the output shaft of the R-axis motor 15 is connected to an index shaft 16 that is rotatably supported around the vertical axis AL (R-axis direction).
  • a rotating body 28 that forms a driven gear 27 and a ⁇ -axis gear 29 is rotatably supported on the index shaft 16.
  • a cylindrical nozzle holder 17 is fixed to the lower end portion of the index shaft 16.
  • the nozzle holder 17 holds a plurality of suction nozzles 18 movably in the Z-axis direction on a circumference concentric with the vertical axis AL.
  • Each suction nozzle 18 is attached to a lower end portion of a nozzle spindle 33 supported by the nozzle holder 17 so as to be slidable in the Z-axis direction.
  • a large diameter portion 33 a is formed at the lower end portion of the nozzle spindle 33, and a nozzle gear 34 is fixed to the upper end portion of the nozzle spindle 33.
  • a compression spring 35 is provided between the nozzle gear 34 and the nozzle holder 17.
  • the compression spring 35 urges the nozzle spindle 33 and the suction nozzle 18 upward, and the large diameter portion 33 a is formed on the lower surface of the nozzle holder 17. By abutting, the upward movement of the nozzle spindle 33 and the suction nozzle 18 is restricted. A negative pressure is supplied to each suction nozzle 18 from the positive / negative pressure supply device 14 via the nozzle spindle 33, and each suction nozzle 18 can suck the component P at the tip 18a.
  • a cylindrical reflector 31 capable of reflecting light is fixed to the center of the lower end of the nozzle holder 17.
  • the nozzle holder 17 and the reflector 31 are rotated around the vertical axis AL together with the index shaft 16.
  • the nozzle holder 17 holding the plurality of suction nozzles 18 can be rotated around the vertical axis AL (R-axis direction) via the index shaft 16.
  • the suction nozzle 18 can be sequentially indexed to the work position S1.
  • FIG. 3 is a block diagram schematically showing an example of the positive / negative pressure supply device 14.
  • the positive / negative pressure supply device 14 includes a negative pressure source 14a, a negative pressure branch flow path 14b, a spool valve 14c, a positive pressure source 14d, and a positive pressure branch flow path 14e.
  • the negative pressure source 14a is a source of negative pressure
  • the negative pressure branch flow path 14b communicates the negative pressure source 14a with each suction nozzle 18.
  • the positive pressure source 14d is a source of positive pressure
  • the positive pressure branch flow path 14e communicates the positive pressure source 14d with each suction nozzle 18.
  • the spool valve 14c can open and close the negative pressure branch flow path 14b and the positive pressure branch flow path 14e, respectively.
  • the negative pressure source 14a is connected to the main stream side tip of the negative pressure branch flow path 14b, and the suction nozzle 18 is connected to the tributary side of the negative pressure branch flow path 14b.
  • the negative pressure source 14 a for example, a known vacuum pump can be used, and negative pressure can be supplied to each suction nozzle 18.
  • a spool valve 14c is provided on the tributary side of the negative pressure branch flow path 14b. By opening and closing the spool valve 14c, the negative pressure branch flow path 14b between the negative pressure source 14a and each suction nozzle 18 is provided. Can be opened and closed.
  • suction nozzles 18 and 18 are shown, but all the suction nozzles 18 arranged on the circumference concentric with the vertical axis AL are connected to the negative pressure source 14b by the negative pressure branch flow path 14b. Communication with 14a is possible.
  • the positive pressure source 14d is connected to the main stream side tip of the positive pressure branch flow path 14e, and the branch side of the positive pressure branch flow path 14e is connected to the spool valve 14c.
  • the positive pressure source 14d for example, a known compressor (compressor) can be used, and a positive pressure can be supplied to each suction nozzle 18.
  • the branch side of the positive pressure branch flow path 14e is connected to the spool valve 14c. By opening and closing the spool valve 14c, the positive pressure branch flow path 14e between the positive pressure source 14d and each suction nozzle 18 is opened and closed. can do. Similar to the negative pressure branch flow path 14b, all the suction nozzles 18 arranged on the circumference concentric with the vertical axis AL can communicate with the positive pressure source 14d by the positive pressure branch flow path 14e.
  • a spool (not shown) is fitted to the spool valve 14c so as to be relatively movable in the vertical direction (Z-axis direction) at the outer peripheral side portion of the nozzle holder 17.
  • the spool valve 14c has an initial position where the supply of negative pressure and positive pressure to each suction nozzle 18 is blocked, and the supply of negative pressure to the suction nozzle 18 is allowed while blocking the supply of positive pressure to the suction nozzle 18 And a positive pressure supply position that blocks supply of negative pressure to the suction nozzle 18 and allows supply of positive pressure to the suction nozzle 18.
  • a friction ring (not shown) is fitted to the spool valve 14c, and the spool is held at the initial position, the negative pressure supply position, or the positive pressure supply position by the frictional force between the spool and the friction ring.
  • the spool valve 14 c is provided for each nozzle spindle 33.
  • a pressing member that is moved up and down by a motor (not shown) is provided at a position facing the nozzle spindle 33 indexed to the work position S1.
  • the nozzle spindle 33 and the suction nozzle 18 indexed to the work position S1 move in the vertical direction as the pressing member moves in the vertical direction.
  • the spool of the spool valve 14c is moved and held from the initial position to the negative pressure supply position, and the negative pressure branch flow between the suction nozzle 18 indexed to the work position S1 and the negative pressure source 14a.
  • the path 14b is opened. And a negative pressure is supplied to the suction nozzle 18 indexed to the work position S1, and the component P can be sucked.
  • the spool of the corresponding spool valve 14c is moved from the initial position to the negative pressure supply position and held, and negative pressure is supplied to the indexed suction nozzle 18.
  • the part P is adsorbed.
  • the nozzle spindle 33 and the suction nozzle 18 indexed to the work position S1 move in the vertical direction as the pressing member moves in the vertical direction.
  • the spool of the spool valve 14c moves from the negative pressure supply position to the positive pressure supply position and is held, and the positive pressure between the suction nozzle 18 indexed to the work position S1 and the positive pressure source 14d.
  • the branch flow path 14e is opened. Then, a positive pressure is supplied to the suction nozzle 18 indexed at the work position S1, and the negative pressure in the indexed suction nozzle 18 disappears so that the part P can be released.
  • the spool of the corresponding spool valve 14c is moved from the negative pressure supply position to the positive pressure supply position and held, and positive pressure is supplied to the indexed suction nozzle 18. Then, the part P is released. By repeating this for all the suction nozzles 18, the component P can be released from each suction nozzle 18 and mounted on the printed circuit board. Note that the spool of each spool valve 14c is returned to the initial position until the next component suction.
  • the flow sensor 100 is provided on the negative pressure source 14a side of the negative pressure branch flow path 14b.
  • a flow sensor 101 is provided on the positive pressure source 14d side of the positive pressure branch flow path 14e.
  • a known mass flow sensor can be used as the flow sensors 100 and 101.
  • the flow sensor 100 can measure the air flow rate QN sucked from the suction nozzle 18 into the negative pressure source 14a.
  • the flow sensor 101 can measure the air flow rate QP supplied to the suction nozzle 18 from the positive pressure source 14d.
  • FIG. 4 is a diagram illustrating an example of output characteristics of the flow sensor 100.
  • the horizontal axis represents the air flow rate QN measured by the flow sensor 100, and the vertical axis represents the output voltage V of the flow sensor 100.
  • the flow sensor 100 outputs the measurement result of the air flow rate QN as the output voltage V.
  • the output voltage V of the flow sensor 100 is transmitted to the control device 51 described later, and the control device 51 A / D converts the output voltage V of the flow sensor 100.
  • the characteristics shown in the figure are stored in advance by a map, a table, a relational expression, and the like.
  • the air flow rate QN passing through can be converted. For example, when the output voltage V of the flow sensor 100 is V1, the control device 51 acquires the air flow rate Q1 corresponding to the output voltage V1 from the map. The same applies to the flow sensor 101.
  • the ⁇ -axis motor 19 is fixed to the first frame 25, and the drive gear 36 is fixed to the output shaft of the ⁇ -axis motor 19.
  • the drive gear 36 is meshed with a driven gear 27 on a rotating body 28 that is rotatably supported by the index shaft 16.
  • a ⁇ -axis gear 29 is formed on the rotating body 28 over a predetermined length in the axial direction, and the ⁇ -axis gear 29 is slidably engaged with each nozzle gear 34 fixed to the nozzle spindle 33. Yes. Accordingly, when the ⁇ -axis motor 19 is rotated, all the suction nozzles 18 can be rotated with respect to the nozzle holder 17 via the drive gear 36, the driven gear 27, the ⁇ -axis gear 29, and the nozzle gear 34.
  • the Z-axis motor 20 is fixed to the first frame 25, and a ball screw shaft 37 is connected to the output shaft of the Z-axis motor 20.
  • the ball screw shaft 37 is rotatably supported around an axis parallel to the vertical axis AL by a bearing 38 fixed to the first frame 25 and a bearing 39 fixed to the second frame 26.
  • a ball nut 40 that converts the rotational motion of the Z-axis motor 20 into a linear motion is screwed onto the ball screw shaft 37 via a ball (not shown).
  • the ball nut 40 is fixed to a nozzle lever 41 that is slidably guided in a vertical direction by a guide 42 extending in the vertical direction fixed to the first frame 25 and the second frame 26.
  • the nozzle lever 41 is provided with a pressing portion 41a that abuts the upper end of the nozzle spindle 33 indexed at the work position S1 and presses the nozzle spindle 33 downward in the Z-axis direction. Accordingly, when the Z-axis motor 20 is rotated, the ball screw shaft 37 is rotated, and the nozzle lever 41 is guided by the guide 42 via the ball nut 40 and moves up and down. When the nozzle lever 41 moves up and down, the nozzle spindle 33 and the suction nozzle 18 corresponding to the pressing portion 41a can be moved up and down.
  • the pressing portion 41a of the nozzle lever 41 has a predetermined width around the work position S1 in the rotation direction of the nozzle holder 17, and the suction nozzle 18 is located in a predetermined angle range before and after the work position S1.
  • the pressing portion 41a can be brought into contact with the upper end of the nozzle spindle 33 of the suction nozzle 18. Accordingly, the suction nozzle 18 can be moved in the vertical direction (Z-axis direction) during the rotation of the nozzle holder 17 in a predetermined angular range before and after the work position S1.
  • a support bracket 43 is suspended from the second frame 26, and the support bracket 43 is provided with one component recognition camera 21.
  • the component recognition camera 21 is a side imaging camera, and for example, a known CCD camera can be used.
  • the component recognition camera 21 includes a suction nozzle 18 indexed to a preceding position S1 + 1 ahead of the work position S1 in the rotation direction of the nozzle holder 17, and a component P sucked by the tip 18a of the suction nozzle 18.
  • the preceding position side image can be captured by the reflected light reflected by the reflector 31.
  • the component recognition camera 21 includes the suction nozzle 18 indexed to the succeeding position S1-1 that is one pitch behind the work position S1 in the rotation direction of the nozzle holder 17, and the tip of the suction nozzle 18.
  • the part P adsorbed by 18a and the succeeding position side image can be captured by the reflected light reflected by the reflector 31.
  • FIG. 5 is an example of a side image showing the suction state of the component P.
  • A is a side image showing a state in which the component P is sucked by the suction nozzle 18 in a normal suction posture.
  • B is a side image showing a state in which the component P is attracted to the suction nozzle 18 in an inclined posture.
  • the component recognition camera 21 can acquire a preceding position side image 77a and a following position side image 77b on one screen 78.
  • the preceding position side image 77a is an image obtained by capturing the preceding position side image
  • the succeeding position side image 77b is an image obtained by capturing the following position side image.
  • the component mounter 1 is controlled by the control device 51.
  • the control device 51 includes a CPU and a memory (not shown), and can drive the component mounter 1 by executing a program stored in the memory.
  • FIG. 6 is a block diagram illustrating an example of a control block.
  • the control device 51 includes a mounting control unit 511, a flow rate calculation unit 512, an image recognition unit 513, an adsorption abnormality detection unit 514, and a mounting abnormality detection unit 515 when viewed as control blocks.
  • the mounting control unit 511 drives the substrate transport device 60, the component supply device 70, and the component transfer device 80 based on a predetermined component mounting program to mount the component P on the printed board.
  • the flow rate calculation unit 512 When the component P is attracted to each suction nozzle 18, the flow rate calculation unit 512 has an air flow rate QN from when one suction nozzle 18 sucks the component P to when the next suction nozzle 18 sucks the component P. A change amount ⁇ QN is calculated. The flow rate calculation unit 512 calculates the change amount ⁇ QN of the air flow rate QN for all the suction nozzles 18.
  • the image recognizing unit 513 recognizes the component P imaged by the component recognition camera 21 and the preceding position side image 77a and the succeeding position side image 77b of the suction nozzle 18.
  • the adsorption abnormality detection unit 514 detects an adsorption abnormality of the component P based on the calculation result of the flow rate calculation unit 512 and the recognition result of the image recognition unit 513.
  • the flow rate calculation unit 512 has an air flow rate QP from when one suction nozzle 18 mounts the component P to when the next suction nozzle 18 mounts the component P.
  • a change amount ⁇ QP is calculated.
  • the flow rate calculation unit 512 calculates the change amount ⁇ QP of the air flow rate QP for all the suction nozzles 18.
  • the mounting abnormality detection unit 515 detects mounting abnormality of the component P based on the calculation result of the flow rate calculation unit 512.
  • the conveyor belt of the board conveying device 60 is driven, and the printed board is guided to the guide rails 64a and 64b (65a and 65b) and conveyed to a predetermined position. Then, the printed circuit board is pushed up and clamped by the clamping device, and is positioned and fixed at a predetermined position.
  • the Y-axis servo motor 11 and the X-axis servo motor are driven, the Y-axis slider 12 and the X-axis slider 13 are moved, and the component mounting head 10 is moved to the component extraction unit 74.
  • the R-axis motor 15 is rotated, the nozzle holder 17 is rotated by one pitch, and the nozzle spindle 33 equipped with the suction nozzle 18 that has been indexed at the subsequent position S1-1 is indexed at the work position S1. .
  • the nozzle spindle 33 When the Z-axis motor 20 is rotated forward while the nozzle holder 17 rotates by one pitch, the nozzle spindle 33 is pushed downward by the nozzle lever 41 against the urging force of the compression spring 35 and descends. . Before the nozzle spindle 33 is positioned at the descending end, the nozzle holder 17 stops the rotation by indexing the nozzle spindle 33 to the working position S1. In this state, the nozzle spindle 33 is pushed down to a position where the tip end portion 18a of the suction nozzle 18 approaches the component P conveyed to the component take-out portion 74, and negative pressure is applied from the positive / negative pressure supply device 14 to the suction nozzle 18. Is supplied, and the component P is sucked and held at the tip 18 a of the suction nozzle 18.
  • the flow rate calculation unit 512 measures the air flow rate QN sucked from the suction nozzle 18 to the negative pressure source 14a using the flow rate sensor 100 when each suction nozzle 18 is pushed up to the rising end position.
  • FIG. 7 is a diagram illustrating an example of the relationship between the nozzle number N of the suction nozzle 18 and the air flow rate QN during component suction.
  • the horizontal axis indicates the nozzle number N of the suction nozzle 18, and the vertical axis indicates the air flow rate QN.
  • the suction nozzle 18 that first picks up the component P among the plurality of suction nozzles 18 is referred to as the suction nozzle 18 having the nozzle number N1.
  • the air flow rate QN measured when the suction nozzle 18 with the nozzle number N1 sucks the component P and is pushed up to the rising end position is defined as Q1.
  • Q1 The air flow rate measured when the suction nozzle 18 with the nozzle number N1 sucks the component P
  • the suction port of the suction nozzle 18 is blocked by the component P
  • the air flow rate QN1 sucked into the negative pressure source 14a is saturated.
  • This figure shows a state in which the suction nozzle 18 with the nozzle number N1 sucks the component P and the air flow rate Q1 is saturated and constant.
  • the nozzle holder 17 is rotated by the mounting control unit 511, and the suction nozzle 18 of the next nozzle number N2 is indexed.
  • the air flow rate QN is measured when the suction nozzle 18 with the nozzle number N2 sucks the component P and is pushed up to the rising end position.
  • the air flow rate QN at this time is Q2.
  • the air flow rate QN is sequentially measured up to the suction nozzle 18 that finally sucks the component P.
  • a change in the air flow rate QN when the air flow rate QN is measured up to the suction nozzle 18 of the nozzle number N6 is indicated by a curve L1.
  • the air flow rate QN sucked into the negative pressure source 14a increases stepwise every time the suction nozzle 18 sucks the component P.
  • the flow rate calculation unit 512 calculates a change amount ⁇ QN of the air flow rate QN from when one suction nozzle 18 of the plurality of suction nozzles 18 sucks the component P to when the next suction nozzle 18 sucks the component P. .
  • the amount of change ⁇ Q1 of the suction nozzle 18 with the nozzle number N1 is the air flow rate Q1.
  • the change amount ⁇ Q2 of the suction nozzle 18 with the nozzle number N2 can be calculated by subtracting the air flow rate Q1 of the suction nozzle 18 with the nozzle number N1 from the air flow rate Q2 of the suction nozzle 18 with the nozzle number N2.
  • the amount of change ⁇ Q3 of the suction nozzle 18 having the nozzle number N3 can be calculated by subtracting the air flow rate Q2 of the suction nozzle 18 having the nozzle number N2 from the air flow rate Q3 of the suction nozzle 18 having the nozzle number N3. Thereafter, similarly, the change amount ⁇ QN of the air flow rate QN is calculated up to the suction nozzle 18 that finally sucks the component P.
  • the adsorption abnormality detection unit 514 determines whether or not the change amount ⁇ QN of the air flow rate QN of the adsorption nozzle 18 calculated by the flow rate calculation unit 512 exceeds a predetermined threshold value. For example, it is assumed that the change amount ⁇ Q3 of the air flow rate QN of the nozzle number N3 is not more than a predetermined threshold value. On the other hand, it is assumed that the change amount ⁇ Q4 of the air flow rate QN of the nozzle number N4 is larger than the change amount ⁇ Q3 as shown in FIG. In this case, the suction abnormality detection unit 514 determines that the suction nozzle 18 with the nozzle number N4 has a suction abnormality.
  • the adsorption abnormality detection unit 514 determines whether or not the amount of change ⁇ QN in the air flow rate QN exceeds a predetermined threshold for all the adsorption nozzles 18 to detect the presence or absence of an adsorption abnormality.
  • the predetermined threshold is an air leak flow rate that is allowed when the component P is sucked by the suction nozzle 18 in a normal suction posture, and can be derived in advance by simulation, measurement by an actual machine, or the like.
  • the predetermined threshold is stored in the memory of the control device 51.
  • the side image 77a is captured by the component recognition camera 21.
  • the suction nozzle 18 indexed at the trailing position S1-1 and the trailing position side image 77b of the component P are captured by the component recognition camera 21.
  • the preceding position side image 77a and the following position side image 77b are acquired on one screen 78.
  • the preceding position side image 77a and the following position side image 77b are input to the image recognition unit 513 and recognized.
  • the suction abnormality detection unit 514 determines whether or not there is a suction abnormality based on the suction state of the component P in the preceding position side image 77a and the succeeding position side image 77b. For example, the suction abnormality detection unit 514 measures the height of the component P sucked to the tip portion 18a of the suction nozzle 18 based on the preceding position side image 77a, and determines whether the front and back of the component P are sucked in the opposite direction. to decide. Further, the suction abnormality detection unit 514 determines whether or not the component P is sucked based on the succeeding position side image 77b. The suction abnormality detection unit 514 can determine that the suction is abnormal when the component P is not sucked in the normal suction posture.
  • FIG. 5A shows a state in which the part P is sucked by the suction nozzle 18 in a normal suction posture.
  • the adsorption abnormality detection unit 514 determines that there is no adsorption abnormality.
  • FIG. 5B shows a state where the component P is sucked by the suction nozzle 18 in an inclined posture.
  • the adsorption abnormality detection unit 514 determines that there is an adsorption abnormality. Thereby, the detection accuracy of the adsorption abnormality can be improved.
  • the suction of the component P to be imaged is performed when the component P is not sucked in a normal suction posture.
  • Absorption abnormality can be detected based on the state, and the detection accuracy of adsorption abnormality can be improved.
  • the suction abnormality detection unit 514 detects that the component P is normal to the suction nozzle 18 when the change amount ⁇ QN of the air flow rate QN of the suction nozzle 18 is equal to or less than a predetermined threshold and the suction state of the component P to be imaged is normal. Judged to be adsorbed on the surface. The adsorption abnormality detection unit 514 determines that there is an adsorption abnormality when at least one of the conditions is not satisfied. Similarly, the suction abnormality detection unit 514 determines whether or not all the suction nozzles 18 are suction abnormal.
  • the mounting control unit 511 stops mounting the component P using the suction nozzle 18 in which the suction abnormality is detected. Note that the mounting control unit 511 can also reduce the moving speed of the component mounting head 10 and continue mounting the component P using the suction nozzle 18 in which the suction abnormality is detected.
  • the Y-axis servo motor 11 and the X-axis servo motor are driven, and the Y-axis slider 12 and the X-axis slider 13 are moved.
  • the component mounting head 10 is moved onto the CCD camera 75, and the component P sucked and held by the plurality of suction nozzles 18 is imaged by the CCD camera 75.
  • the CCD camera 75 can detect a positional deviation and an angular deviation of the component P with respect to the suction nozzle 18.
  • the component mounting head 10 is moved onto the printed circuit board positioned at a predetermined position by the Y-axis servomotor 11 and the X-axis servomotor. At this time, the movement position of the component mounting head 10 is corrected according to the positional deviation and the angular deviation detected by the CCD camera 75.
  • the rotation of the ⁇ -axis motor 19 corrects the angular deviation of the component P sucked and held by the suction nozzle 18 indexed at the work position S1, and is controlled to a predetermined posture.
  • the Z-axis motor 20 is rotated forward, the nozzle spindle 33 is pushed downward against the urging force of the compression spring 35 by the nozzle lever 41, and the component P adsorbed by the tip 18a of the adsorption nozzle 18 is removed. It is pushed down until it is mounted on the printed circuit board. At this time, a positive pressure is supplied from the positive / negative pressure supply device 14 to the indexed suction nozzle 18 in the vicinity where the component P reaches the printed board.
  • the negative pressure in the indexed suction nozzle 18 can be eliminated, and the components P can be sequentially released from the suction nozzle 18 and mounted on the printed circuit board.
  • the nozzle lever 41 is moved upward, and is pushed up to the state where the suction nozzle 18 is moved to the uppermost end by the urging force of the compression spring 35.
  • the vertical movement (Z-axis direction) of the suction nozzle 18 is simultaneously performed during the rotation indexing operation of the nozzle holder 17.
  • the flow rate calculation unit 512 uses the flow rate sensor 101 to measure the air flow rate QP supplied from the positive pressure source 14d to the suction nozzle 18 when each suction nozzle 18 is pushed up to the rising end position.
  • FIG. 8 is a diagram showing an example of the relationship between the nozzle number N of the suction nozzle 18 and the air flow rate QP when components are mounted.
  • the horizontal axis indicates the nozzle number N of the suction nozzle 18, and the vertical axis indicates the air flow rate QP.
  • the suction nozzle 18 on which the component P is first mounted is defined as a suction nozzle 18 having a nozzle number N1.
  • the air flow rate QP measured when the suction nozzle 18 with the nozzle number N1 is pushed up to the rising end position after mounting the component P is defined as Q11.
  • the mounting control unit 511 drives the Y-axis servo motor 11 and the X-axis servo motor. Then, the component mounting head 10 moves to the next mounting position on the printed board. Thereafter, the nozzle holder 17 is rotated, and the suction nozzle 18 of the next nozzle number N2 is indexed.
  • the air flow rate QP is measured when the suction nozzle 18 with the nozzle number N2 is pushed up to the rising end position with the component P mounted thereon.
  • the air flow rate QP at this time is Q2. Thereafter, similarly, the air flow rate QP is measured in order up to the suction nozzle 18 to which the component P is finally mounted.
  • a change in the air flow rate QP when the air flow rate QP is measured up to the suction nozzle 18 of the nozzle number N5 is indicated by a curve L2.
  • the air flow rate QP supplied from the positive pressure source 14d to the suction nozzle 18 increases stepwise each time the suction nozzle 18 mounts the component P.
  • the flow rate calculation unit 512 calculates a change amount ⁇ QP of the air flow rate QP from when one suction nozzle 18 of the plurality of suction nozzles 18 mounts the component P to when the next suction nozzle 18 mounts the component P. .
  • the amount of change ⁇ Q11 of the suction nozzle 18 with the nozzle number N1 is an air flow rate Q11.
  • the change amount ⁇ Q12 of the suction nozzle 18 with the nozzle number N2 can be calculated by subtracting the air flow rate Q11 of the suction nozzle 18 with the nozzle number N1 from the air flow rate Q12 of the suction nozzle 18 with the nozzle number N2.
  • the amount of change ⁇ Q13 of the suction nozzle 18 having the nozzle number N3 can be calculated by subtracting the air flow rate Q12 of the suction nozzle 18 having the nozzle number N2 from the air flow rate Q13 of the suction nozzle 18 having the nozzle number N3. Thereafter, similarly, the change amount ⁇ QP of the air flow rate QP is calculated up to the suction nozzle 18 to which the component P is finally mounted.
  • the mounting abnormality detection unit 515 determines whether or not the change amount ⁇ QP of the air flow rate QP of the suction nozzle 18 calculated by the flow rate calculation unit 512 is less than a predetermined threshold value. For example, it is assumed that the change amount ⁇ Q13 of the air flow rate QP of the nozzle number N3 is equal to or greater than a predetermined threshold value. On the other hand, the change amount ⁇ Q14 of the air flow rate QP of the nozzle number N4 is smaller than the change amount ⁇ Q13 as shown in FIG. In this case, the mounting abnormality detection unit 515 determines that the suction nozzle 18 with the nozzle number N4 has a mounting abnormality. Similarly, the mounting abnormality detection unit 515 determines whether or not the change amount ⁇ QP of the air flow rate QP is less than a predetermined threshold for all the suction nozzles 18 to detect the presence or absence of mounting abnormality.
  • the predetermined threshold value is an air leak flow rate that is allowed when the component P is mounted on the printed circuit board without mounting abnormality such as take-out of the component P, and can be derived in advance by simulation, measurement by an actual machine, or the like.
  • the predetermined threshold is stored in the memory of the control device 51.
  • the component mounting head 10 measures the air flow rate QN sucked into the negative pressure source 14a on the negative pressure source 14a side of the negative pressure branch flow path 14b communicating with the negative pressure source 14a and each suction nozzle 18.
  • the flow rate sensor 100 is provided.
  • the adsorption abnormality detection unit 514 detects an adsorption abnormality of the component P from the change amount ⁇ QN of the air flow rate QN on the negative pressure source 14a side.
  • the suction port of the tip end portion 18a of the adsorption nozzle 18 is appropriately blocked by the component P, so that the change amount ⁇ QN of the air flow rate QN becomes small.
  • the adsorption abnormality detection unit 514 can detect the adsorption abnormality of the component P from the change amount ⁇ QN of the air flow rate QN, it is easy to determine whether or not the adsorption state of the component P is stable.
  • the suction abnormality detection unit 514 has a change amount ⁇ QN of the air flow rate QN from when one suction nozzle 18 of the plurality of suction nozzles 18 sucks the component P to when the next suction nozzle 18 sucks the component P. Therefore, the suction abnormality can be detected without depending on the air leak state of the suction nozzle 18 that has already sucked the component P. Therefore, the adsorption abnormality of the component P can be detected with high accuracy.
  • the suction abnormality detection unit 514 determines whether or not there is a suction abnormality based on the suction state of the component P imaged by the component recognition camera 21. Therefore, it can be recognized whether or not the component P is attracted to the suction nozzle 18 in the normal suction posture, and the detection accuracy of the suction abnormality can be improved.
  • the component mounting head 10 measures the air flow rate QP supplied from the positive pressure source 14d to the positive pressure source 14d side of the positive pressure branch flow path 14e that communicates the positive pressure source 14d and each suction nozzle 18.
  • a flow sensor 101 is provided.
  • the mounting abnormality detection unit 515 detects the mounting abnormality of the component P from the change amount ⁇ QP of the air flow rate QP on the positive pressure source 14d side.
  • the suction port 18 of the suction nozzle 18 mounted with the component P does not suck the component P, so the change amount ⁇ QP of the air flow rate QP on the positive pressure source 14d side becomes large.
  • the mounting abnormality detection unit 515 can detect the mounting abnormality of the component P from the change amount ⁇ QP of the air flow rate QP on the positive pressure source 14d side, and is not affected by the air path on the downstream side of the flow sensor 101. An abnormal mounting of the component P can be detected. Therefore, the mounting abnormality of the component P can be detected with high accuracy. Further, since the mounting abnormality is detected using the flow rate sensor 101 provided on the positive pressure source 14d side, the component mounting machine is compared with the case where the front end portion 18a of the suction nozzle 18 is imaged to detect the mounting abnormality of the component P. 1 can be reduced in size and cost.
  • the component mounting head 10 is a rotary head in which a plurality of suction nozzles 18 are rotatably held on a circumference concentric with the vertical axis AL.
  • the suction abnormality detection unit 514 can detect the suction abnormality of the component P from the change amount ⁇ QN of the air flow rate QN, and can detect the suction abnormality of the component P with high accuracy. Further, in the present embodiment, since one flow sensor 100 is provided on the negative pressure source 14a side of the negative pressure branch flow path 14b, it is compared with the case where the flow sensor 100 is provided at each tip 18a of the suction nozzle 18. Thus, the cost of the component mounter 1 can be reduced.
  • the mounting abnormality detection unit 515 detects the air on the positive pressure source 14d side from when one suction nozzle 18 of the plurality of suction nozzles 18 mounts the component P to when the next suction nozzle 18 mounts the component P.
  • the change amount ⁇ QP of the flow rate QP is less than the predetermined threshold value, it is determined that the component P is abnormally mounted. Therefore, the abnormal component is detected without depending on the air leak state of the suction nozzle 18 having the component P already mounted. can do. Therefore, in the rotary head, the mounting abnormality of the component P can be detected with high accuracy.
  • the suction abnormality detection unit 514 detects the suction abnormality of the component P using the two side images of the preceding position side image 77a and the subsequent position side image 77b. Can also detect a suction abnormality of the component P using one side image. Further, the suction abnormality detection unit 514 can detect the suction abnormality of the component P using three or more side images.
  • Component mounter 10: component mounting head, 100, 101: flow sensor, 14a: negative pressure source, 14b: negative pressure branch flow path, 14d: positive pressure source, 14e: positive pressure branch flow path, 18: suction nozzle, 21: Camera for component recognition 514: Absorption abnormality detection unit, 515: Wearing abnormality detection unit

Abstract

Provided is a part mounting device (1) that is capable of highly precisely detecting a suction-adhesion abnormality of a part (P) and a mounting abnormality of said part (P). In this part mounting device (1): a part mounting head (10) comprises a flow rate sensor (100) that measures an air flow rate (QN) of air drawn into a negative pressure source (14a) at the negative pressure source (14a) side of a branching flow channel (14b) that connects the negative pressure source (14a) and each of multiple suction-adhesion nozzles (18); and a suction-adhesion abnormality detection section (514) assesses that a suction-adhesion abnormality has occurred when the amount of change (ΔQN) of the air flow rate (QN) has exceeded a specified threshold value, said amount of change (ΔQN) being the amount of change in said air flow rate (QN) starting when one of the suction-adhesion nozzles (18) among the multiple suction-adhesion nozzles (18) has suction-adhered a part (P), until a next suction-adhesion nozzle (18) has suction-adhered a part (P).

Description

部品実装機Component mounter
 本発明は、複数の部品を基板に実装する部品実装機に関し、より詳細には、部品の吸着異常および装着異常を検出する部品実装機に関する。 The present invention relates to a component mounter that mounts a plurality of components on a substrate, and more particularly to a component mounter that detects component adsorption abnormalities and mounting abnormalities.
 部品の吸着異常を検出する部品実装機の一例として、例えば、特許文献1に挙げられる部品実装装置が知られている。特許文献1に記載の部品実装装置は、真空発生源と多連ノズルとを連通するマニホールドに真空圧センサを備えている。そして、電子部品を順次実装する際に多連ノズルの移動前後のマニホールド内の真空圧を測定し、真空圧の差が所定閾値を超えているときに、多連ノズルから電子部品が落下したと判断している。この場合、部品実装装置は、当該電子部品の実装を行わない。 As an example of a component mounter that detects an abnormal suction of a component, for example, a component mounter described in Patent Document 1 is known. The component mounting apparatus described in Patent Literature 1 includes a vacuum pressure sensor in a manifold that communicates a vacuum generation source and multiple nozzles. When the electronic components are sequentially mounted, the vacuum pressure in the manifold before and after the movement of the multiple nozzles is measured, and when the difference in vacuum pressure exceeds a predetermined threshold, the electronic components have fallen from the multiple nozzles. Deciding. In this case, the component mounting apparatus does not mount the electronic component.
特開2007-27247号公報JP 2007-27247 A
 しかしながら、特許文献1に記載の部品実装装置では、多連ノズルの先端部から離間して配される真空圧センサを用いて、多連ノズルから電子部品が落下したか否かを判断している。真空圧センサが多連ノズルの先端部から離間して配されていると、多連ノズルの配管径は非常に小さいので、多連ノズルの先端部の圧力変動を正確に検出することは困難である。 However, in the component mounting apparatus described in Patent Document 1, it is determined whether or not an electronic component has dropped from the multiple nozzles using a vacuum pressure sensor that is spaced apart from the tip of the multiple nozzles. . If the vacuum pressure sensor is arranged away from the tip of the multi-nozzle, the pipe diameter of the multi-nozzle is very small, so it is difficult to accurately detect pressure fluctuations at the tip of the multi-nozzle. is there.
 また、部品実装装置では、部品の装着に失敗して多連ノズルに部品が吸着されたままの状態になる所謂部品の持ち帰りなどの装着異常が生じることがある。例えば、圧力センサを用いてこのような部品の装着異常を検出しようとすると、多連ノズルのノズル面と部品吸着面の状態や静電気の影響などにより、必ずしも部品の装着可否を正しく検出できるとは限らない。また、多連ノズルの先端部を撮像して部品の装着異常を検出しようとすると、撮像部のために部品実装機が大型化し、高コスト化する。 Also, in the component mounting apparatus, there may occur a mounting abnormality such as so-called take-out of the component in which the component mounting fails and the component remains adsorbed to the multiple nozzles. For example, if an attempt is made to detect such a component mounting abnormality using a pressure sensor, it is not always possible to correctly detect whether a component can be mounted due to the state of the nozzle surface of the multiple nozzle and the component suction surface, the influence of static electricity, etc. Not exclusively. In addition, if it is attempted to detect an abnormal mounting of a component by imaging the tip of the multiple nozzles, the component mounting machine becomes large for the imaging unit, resulting in an increase in cost.
 本発明は、このような事情に鑑みて為されたものであり、部品の吸着異常および装着異常を高精度に検出することが可能な部品実装機を提供することを課題とする。 This invention is made in view of such a situation, and makes it a subject to provide the component mounting machine which can detect the adsorption | suction abnormality and mounting | wearing abnormality of components with high precision.
 請求項1に係る部品実装機は、複数の部品を吸着して基板に装着する複数の吸着ノズルを有する部品装着ヘッドと前記部品の吸着異常を検出する吸着異常検出部とを備える部品実装機であって、前記部品装着ヘッドは、負圧源と各前記吸着ノズルとを連通する分岐流路の前記負圧源側に前記負圧源に吸入される空気流量を測定する流量センサを有し、前記吸着異常検出部は、前記複数の吸着ノズルのうちの一の吸着ノズルが部品を吸着してから次の吸着ノズルが部品を吸着するまでの前記空気流量の変化量が所定閾値を超えているときに前記吸着異常であると判断することを特徴とする。 A component mounter according to claim 1 is a component mounter including a component mounting head having a plurality of suction nozzles for sucking and mounting a plurality of components on a substrate, and a suction abnormality detection unit that detects suction abnormality of the component. The component mounting head has a flow sensor for measuring a flow rate of air sucked into the negative pressure source on a side of the negative pressure source of a branch flow path communicating with the negative pressure source and each of the suction nozzles. In the suction abnormality detection unit, the amount of change in the air flow rate from when one suction nozzle of the plurality of suction nozzles picks up a component until the next suction nozzle picks up the component exceeds a predetermined threshold. Sometimes it is determined that the adsorption is abnormal.
 請求項2に係る部品実装機は、請求項1に記載の部品実装機において、前記複数の吸着ノズルの先端部にそれぞれ吸着される前記部品を撮像する部品認識用カメラをさらに備え、前記吸着異常検出部は、前記撮像される前記部品の吸着状態に基づいて前記吸着異常であるか否かを判断する。 The component mounter according to a second aspect of the present invention is the component mounter according to the first aspect, further comprising a component recognition camera that images each of the components that are attracted to the tip portions of the plurality of suction nozzles. The detection unit determines whether or not the suction is abnormal based on a suction state of the imaged part.
 請求項3に係る部品実装機は、複数の部品を吸着して基板に装着する複数の吸着ノズルを有する部品装着ヘッドと前記部品の装着異常を検出する装着異常検出部とを備える部品実装機であって、前記部品装着ヘッドは、正圧源と各前記吸着ノズルとを連通する分岐流路の前記正圧源側に前記正圧源から供給される空気流量を測定する流量センサを有し、前記装着異常検出部は、前記複数の吸着ノズルのうちの一の吸着ノズルが部品を装着してから次の吸着ノズルが部品を装着するまでの前記空気流量の変化量が所定閾値未満のときに前記装着異常であると判断することを特徴とする。 According to a third aspect of the present invention, there is provided a component mounting machine including a component mounting head having a plurality of suction nozzles for sucking and mounting a plurality of components on a substrate, and a mounting abnormality detecting unit for detecting a mounting abnormality of the component. The component mounting head has a flow sensor for measuring a flow rate of air supplied from the positive pressure source to the positive pressure source side of a branch flow path communicating the positive pressure source and each of the suction nozzles, When the amount of change in the air flow from when one suction nozzle of the plurality of suction nozzles mounts a component to when the next suction nozzle mounts the component is less than a predetermined threshold, the mounting abnormality detection unit It is determined that the attachment is abnormal.
 請求項4に係る部品実装機は、請求項1~3のいずれか一項に記載の部品実装機において、前記部品装着ヘッドは、前記複数の吸着ノズルが軸線と同芯の円周上において回動可能に保持されているロータリヘッドである。 A component mounter according to a fourth aspect is the component mounter according to any one of the first to third aspects, wherein the component mounting head rotates the plurality of suction nozzles on a circumference concentric with an axis. A rotary head that is held movably.
 請求項1に係る部品実装機によれば、部品装着ヘッドは、負圧源と各吸着ノズルとを連通する分岐流路の負圧源側に負圧源に吸入される空気流量を測定する流量センサを有している。そして、吸着異常検出部は、負圧源側の空気流量の変化量から部品の吸着異常を検出する。部品が安定した状態で吸着ノズルに吸着されている場合は、吸着ノズルの先端部の吸入口は部品によって適切に塞がれるので、空気流量の変化量は小さくなる。逆に、吸着ノズルに対して部品が不安定な状態で吸着されている場合は、吸着ノズルの先端部の吸入口と部品との間に間隙が生じて、空気流量の変化量は大きくなる。つまり、吸着異常検出部は、空気流量の変化量から部品の吸着異常を検出することができるので、部品の吸着状態が安定しているか否かの判断が容易である。 According to the component mounting machine of the first aspect, the component mounting head measures the flow rate of air sucked into the negative pressure source on the negative pressure source side of the branch flow path communicating the negative pressure source and each suction nozzle. Has a sensor. The adsorption abnormality detection unit detects an adsorption abnormality of the component from the amount of change in the air flow rate on the negative pressure source side. When the component is adsorbed by the adsorption nozzle in a stable state, the suction port at the tip of the adsorption nozzle is appropriately blocked by the component, so that the amount of change in the air flow rate is small. On the other hand, when the component is adsorbed in an unstable state with respect to the adsorption nozzle, a gap is generated between the suction port at the tip of the adsorption nozzle and the component, and the amount of change in the air flow rate increases. That is, since the adsorption abnormality detection unit can detect the adsorption abnormality of the component from the amount of change in the air flow rate, it is easy to determine whether or not the adsorption state of the component is stable.
 また、吸着異常検出部は、複数の吸着ノズルのうちの一の吸着ノズルが部品を吸着してから次の吸着ノズルが部品を吸着するまでの空気流量の変化量が所定閾値を超えているときに吸着異常であると判断するので、すでに部品を吸着している吸着ノズルのエアーのリーク状態に依存することなく、吸着異常を検出することができる。そのため、部品の吸着異常を高精度に検出することができる。 In addition, the adsorption abnormality detection unit is configured to detect a change in the air flow rate from when one of the plurality of adsorption nozzles adsorbs a component until the next adsorption nozzle adsorbs the component exceeds a predetermined threshold value. Therefore, it is possible to detect the suction abnormality without depending on the air leak state of the suction nozzle that has already picked up the component. For this reason, it is possible to detect an abnormal suction of a component with high accuracy.
 請求項2に係る部品実装機によれば、吸着異常検出部は、部品認識用カメラによって撮像される部品の吸着状態に基づいて吸着異常であるか否かを判断する。そのため、部品が正規の吸着姿勢で吸着ノズルに吸着されているか否かを認識することができ、吸着異常の検出精度を向上させることができる。 According to the component mounting machine of the second aspect, the suction abnormality detection unit determines whether or not there is a suction abnormality based on the suction state of the component imaged by the component recognition camera. Therefore, it can be recognized whether or not the component is sucked by the suction nozzle in the normal suction posture, and the detection accuracy of the suction abnormality can be improved.
 請求項3に係る部品実装機によれば、部品装着ヘッドは、正圧源と各吸着ノズルとを連通する分岐流路の正圧源側に正圧源から供給される空気流量を測定する流量センサを有している。そして、装着異常検出部は、正圧源側の空気流量の変化量から部品の装着異常を検出する。部品が基板に装着された場合、部品を装着した吸着ノズルの吸入口は部品を吸着していないので、正圧源側の空気流量の変化量は大きくなる。逆に、部品の持ち帰りなどの装着異常が生じると、吸着ノズルの吸入口は部品によって塞がれているので、正圧源側の空気流量の変化量は小さくなる。 According to the component mounting machine of the third aspect, the component mounting head measures the flow rate of air supplied from the positive pressure source to the positive pressure source side of the branch flow path communicating the positive pressure source and each suction nozzle. Has a sensor. The mounting abnormality detection unit detects a component mounting abnormality from the amount of change in the air flow rate on the positive pressure source side. When the component is mounted on the board, the suction port of the suction nozzle on which the component is mounted does not suck the component, so that the amount of change in the air flow rate on the positive pressure source side becomes large. On the other hand, when a mounting abnormality such as take-out of a part occurs, the suction port of the suction nozzle is blocked by the part, so that the amount of change in the air flow rate on the positive pressure source side becomes small.
 したがって、装着異常検出部は、正圧源側の空気流量の変化量から部品の装着異常を検出することができ、流量センサ下流側のエアー経路の影響を受けることなく、部品の装着異常を検出することができる。そのため、部品の装着異常を高精度に検出することができる。また、正圧源側に設けられる流量センサを用いて装着異常を検出するので、吸着ノズルの先端部を撮像して部品の装着異常を検出する場合と比べて、部品実装機を小型化、低コスト化することができる。 Therefore, the mounting abnormality detection unit can detect a component mounting abnormality from the amount of change in the air flow rate on the positive pressure source side, and detects a component mounting abnormality without being affected by the air path on the downstream side of the flow sensor. can do. Therefore, it is possible to detect a component mounting abnormality with high accuracy. In addition, since mounting abnormalities are detected using a flow sensor provided on the positive pressure source side, the component mounter is downsized and reduced compared to the case where the tip of the suction nozzle is imaged to detect component mounting abnormalities. Cost can be increased.
 請求項4に係る部品実装機によれば、部品装着ヘッドは、複数の吸着ノズルが軸線と同芯の円周上において回動可能に保持されているロータリヘッドである。ロータリヘッドは、一般に吸着異常を検出する検出センサが吸着ノズルの先端部から離間して配される。このようなロータリヘッドにおいても、吸着異常検出部は、空気流量の変化量から部品の吸着異常を検出することができ、部品の吸着異常を高精度に検出することができる。また、本発明では、分岐流路の負圧源側に流量センサを1つ設ければ良いので、吸着ノズルの各先端部にそれぞれ流量センサを設ける場合と比べて、部品実装機を低コスト化することができる。 According to the component mounting machine of the fourth aspect, the component mounting head is a rotary head in which a plurality of suction nozzles are rotatably held on a circumference concentric with the axis. In the rotary head, a detection sensor for detecting a suction abnormality is generally arranged apart from the tip of the suction nozzle. Also in such a rotary head, the adsorption abnormality detection unit can detect the component adsorption abnormality from the amount of change in the air flow rate, and can detect the component adsorption abnormality with high accuracy. Further, in the present invention, it is only necessary to provide one flow sensor on the negative pressure source side of the branch flow path, so that the component mounting machine can be reduced in cost compared with the case where the flow sensor is provided at each tip of the suction nozzle. can do.
 また、装着異常検出部は、複数の吸着ノズルのうちの一の吸着ノズルが部品を装着してから次の吸着ノズルが部品を装着するまでの正圧源側の空気流量の変化量が所定閾値未満のときに部品の装着異常であると判断するので、すでに部品を装着済みの吸着ノズルのエアーのリーク状態に依存することなく、装着異常を検出することができる。そのため、ロータリヘッドにおいて、部品の装着異常を高精度に検出することができる。 In addition, the mounting abnormality detection unit is configured such that the amount of change in the air flow rate on the positive pressure source side from when one suction nozzle of the plurality of suction nozzles mounts a component until the next suction nozzle mounts the component is a predetermined threshold value. If it is less than that, it is determined that there is a component mounting abnormality, so that it is possible to detect the mounting abnormality without depending on the air leak state of the suction nozzle that has already mounted the component. Therefore, in the rotary head, the component mounting abnormality can be detected with high accuracy.
部品実装機1の一例を示す斜視図である。1 is a perspective view showing an example of a component mounter 1. FIG. 図1の部品装着ヘッド10を示す正面図である。It is a front view which shows the component mounting head 10 of FIG. 正圧・負圧供給装置14の一例を模式的に示す構成図である。2 is a configuration diagram schematically illustrating an example of a positive pressure / negative pressure supply device 14. FIG. 流量センサ100の出力特性の一例を示す図である。It is a figure which shows an example of the output characteristic of the flow sensor. 部品Pの吸着状態を示す側面画像の一例である。(A)は、部品Pが正規の吸着姿勢で吸着ノズル18に吸着されている状態を示す側面画像である。(B)は、部品Pが傾斜した姿勢で吸着ノズル18に吸着されている状態を示す側面画像である。It is an example of the side image which shows the adsorption | suction state of the components P. (A) is a side image showing a state in which the component P is sucked by the suction nozzle 18 in a normal suction posture. (B) is a side image showing a state in which the component P is attracted to the suction nozzle 18 in an inclined posture. 制御ブロックの一例を示すブロック図である。It is a block diagram which shows an example of a control block. 部品吸着の際の吸着ノズル18のノズル番号Nと空気流量QNの関係の一例を示す図である。It is a figure which shows an example of the relationship between the nozzle number N of the adsorption nozzle 18 in the case of components adsorption | suction, and the air flow rate QN. 部品装着の際の吸着ノズル18のノズル番号Nと空気流量QPの関係の一例を示す図である。It is a figure which shows an example of the relationship between the nozzle number N of the suction nozzle 18 at the time of components mounting | wearing, and the air flow rate QP.
 以下、本発明の実施形態を図面に基づいて説明する。各図は概念図であり、細部構造の寸法まで規定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each figure is a conceptual diagram and does not define the dimensions of the detailed structure.
 (1)部品実装機1の構成
 図1は、部品実装機1の一例を示す斜視図である。図2は、図1の部品装着ヘッド10を示す正面図である。図1に示すように、部品実装機1は、部品供給装置70、基板搬送装置60および部品移載装置80を備えている。部品供給装置70は、基枠90上に複数のカセット式フィーダ71が並設されている。カセット式フィーダ71は、基枠90に着脱可能に取付けられる本体72と、本体72の後部に設けられる供給リール73と、本体72の先端に設けられる部品取出部74を備えている。供給リール73には部品Pが所定ピッチで封入される細長いテープが巻回保持され、テープが図示しないスプロケットにより所定ピッチで引き出され、部品Pが封入状態を解除されて部品取出部74に順次送り込まれる。
(1) Configuration of Component Mounter 1 FIG. 1 is a perspective view showing an example of a component mounter 1. FIG. FIG. 2 is a front view showing the component mounting head 10 of FIG. As shown in FIG. 1, the component mounter 1 includes a component supply device 70, a board transfer device 60, and a component transfer device 80. In the component supply device 70, a plurality of cassette type feeders 71 are arranged in parallel on a base frame 90. The cassette type feeder 71 includes a main body 72 that is detachably attached to the base frame 90, a supply reel 73 provided at the rear portion of the main body 72, and a component take-out portion 74 provided at the tip of the main body 72. The supply reel 73 is wound and held with a long and narrow tape in which the parts P are sealed at a predetermined pitch, and the tape is pulled out at a predetermined pitch by a sprocket (not shown), and the parts P are released from the sealed state and sequentially fed to the part take-out portion 74. It is.
 部品供給装置70と基板搬送装置60の間には、部品Pの保持位置を検出するCCDカメラ75が設けられている。CCDカメラ75は、吸着された部品Pの吸着ノズル18に対する位置ずれ及び角度ずれを検出することができる。位置ずれ及び角度ずれの検出結果は、部品Pの装着位置を補正する際に用いることができる。 A CCD camera 75 that detects the holding position of the component P is provided between the component supply device 70 and the substrate transfer device 60. The CCD camera 75 can detect a positional shift and an angular shift of the sucked component P with respect to the suction nozzle 18. The detection result of the positional deviation and the angular deviation can be used when correcting the mounting position of the component P.
 基板搬送装置60は、プリント基板を図1に示すX軸方向に搬送するもので、第1搬送装置61および第2搬送装置62を2列並設した、いわゆるダブルコンベアタイプのものである。第1搬送装置61および第2搬送装置62には、基台63上にそれぞれ一対のガイドレール64a、64b、65a、65bを互いに平行に対向させてそれぞれ水平に並設されている。第1搬送装置61および第2搬送装置62には、ガイドレール64a、64b、65a、65bによりそれぞれ案内されるプリント基板を支持して搬送する一対の図示しないコンベアベルトが互いに対向して並設されている。また、基板搬送装置60には所定位置まで搬送されたプリント基板を押し上げてクランプする図示しないクランプ装置が設けられている。クランプ装置によってプリント基板が部品装着位置で位置決め固定される。 The substrate transfer device 60 is a so-called double conveyor type device that transfers a printed circuit board in the X-axis direction shown in FIG. 1 and includes two rows of first transfer devices 61 and second transfer devices 62 arranged side by side. In the first transport device 61 and the second transport device 62, a pair of guide rails 64a, 64b, 65a, 65b are arranged in parallel on the base 63 so as to face each other in parallel. In the first transport device 61 and the second transport device 62, a pair of conveyor belts (not shown) that support and transport the printed circuit boards guided by the guide rails 64a, 64b, 65a, and 65b are arranged opposite to each other. ing. Further, the substrate transport device 60 is provided with a clamp device (not shown) that pushes up and clamps the printed circuit board transported to a predetermined position. The printed circuit board is positioned and fixed at the component mounting position by the clamp device.
 部品移載装置80はXYロボットタイプのものであり、基枠90上に装架されて基板搬送装置60および部品供給装置70の上方に配設され、Y軸サーボモータ11によりY軸方向に移動されるY軸スライダ12を備えている。Y軸スライダ12には、図2に示すように、X軸スライダ13がY軸方向と直交するX軸方向に移動可能に案内されている。 The component transfer device 80 is of the XY robot type, is mounted on the base frame 90 and is disposed above the substrate transfer device 60 and the component supply device 70, and is moved in the Y axis direction by the Y axis servo motor 11. The Y-axis slider 12 is provided. As shown in FIG. 2, an X-axis slider 13 is guided by the Y-axis slider 12 so as to be movable in the X-axis direction orthogonal to the Y-axis direction.
 X軸スライダ13は、Y軸スライダ12に固定されたX軸方向に延びる一対のガイドレール12aと、X軸スライダ13に固定された一対のガイドブロック13aと、を介して、Y軸スライダ12に対して移動可能に保持されている。Y軸スライダ12には、図示しないX軸サーボモータが固定され、X軸サーボモータの出力軸には、X軸方向に延びるボールねじ軸12bが連結されている。ボールねじ軸12bは、図示しないボールを介して、X軸スライダ13に固定されたボールナット13bに螺合されている。これにより、X軸サーボモータが回転するとボールねじ軸12bが回転し、X軸スライダ13はボールナット13bを介してガイドレール12aに案内されてX軸方向に移動する。 The X-axis slider 13 is connected to the Y-axis slider 12 via a pair of guide rails 12 a that are fixed to the Y-axis slider 12 and extend in the X-axis direction, and a pair of guide blocks 13 a that are fixed to the X-axis slider 13. In contrast, it is held movable. An X-axis servo motor (not shown) is fixed to the Y-axis slider 12, and a ball screw shaft 12b extending in the X-axis direction is connected to the output shaft of the X-axis servo motor. The ball screw shaft 12b is screwed to a ball nut 13b fixed to the X-axis slider 13 via a ball (not shown). Thus, when the X-axis servo motor rotates, the ball screw shaft 12b rotates, and the X-axis slider 13 is guided by the guide rail 12a via the ball nut 13b and moves in the X-axis direction.
 X軸スライダ13上には、部品Pを吸着してプリント基板に装着する部品装着ヘッド10が取付けられている。部品装着ヘッド10は、正圧・負圧供給装置14、R軸モータ15、インデックス軸16、ノズルホルダ17、吸着ノズル18、θ軸モータ19、Z軸モータ20および部品認識用カメラ21を備えている。 On the X-axis slider 13, a component mounting head 10 for attaching the component P to the printed circuit board is mounted. The component mounting head 10 includes a positive / negative pressure supply device 14, an R-axis motor 15, an index shaft 16, a nozzle holder 17, a suction nozzle 18, a θ-axis motor 19, a Z-axis motor 20, and a component recognition camera 21. Yes.
 図2に示すように、X軸スライダ13には、水平方向に延びる第1フレーム25および第2フレーム26が上下方向(Z軸方向)に離間して一体的に設けられ、第1フレーム25にR軸モータ15が固定されている。R軸モータ15の出力軸には、鉛直軸線ALの回り(R軸方向)に回転可能に支持されたインデックス軸16が接続されている。インデックス軸16上には、従動ギヤ27とθ軸ギヤ29を形成する回転体28が回転可能に支持されている。インデックス軸16の下端部には、円筒状のノズルホルダ17が固定されている。 As shown in FIG. 2, the X-axis slider 13 is integrally provided with a first frame 25 and a second frame 26 extending in the horizontal direction so as to be separated from each other in the vertical direction (Z-axis direction). An R-axis motor 15 is fixed. The output shaft of the R-axis motor 15 is connected to an index shaft 16 that is rotatably supported around the vertical axis AL (R-axis direction). A rotating body 28 that forms a driven gear 27 and a θ-axis gear 29 is rotatably supported on the index shaft 16. A cylindrical nozzle holder 17 is fixed to the lower end portion of the index shaft 16.
 ノズルホルダ17には、鉛直軸線ALと同芯の円周上において、複数の吸着ノズル18がZ軸方向に移動可能に保持されている。各吸着ノズル18は、ノズルホルダ17にZ軸方向に摺動可能に支持されるノズルスピンドル33の下端部に取付けられている。ノズルスピンドル33の下端部には大径部33aが形成され、ノズルスピンドル33の上端部にはノズルギヤ34が固定されている。ノズルギヤ34とノズルホルダ17との間には圧縮スプリング35が設けられ、圧縮スプリング35によって、ノズルスピンドル33および吸着ノズル18が上方に付勢されるとともに、大径部33aがノズルホルダ17の下面に当接することにより、ノズルスピンドル33および吸着ノズル18の上方への移動が規制されている。各吸着ノズル18には、ノズルスピンドル33を介して正圧・負圧供給装置14から負圧が供給され、各吸着ノズル18は、先端部18aで部品Pを吸着することができる。 The nozzle holder 17 holds a plurality of suction nozzles 18 movably in the Z-axis direction on a circumference concentric with the vertical axis AL. Each suction nozzle 18 is attached to a lower end portion of a nozzle spindle 33 supported by the nozzle holder 17 so as to be slidable in the Z-axis direction. A large diameter portion 33 a is formed at the lower end portion of the nozzle spindle 33, and a nozzle gear 34 is fixed to the upper end portion of the nozzle spindle 33. A compression spring 35 is provided between the nozzle gear 34 and the nozzle holder 17. The compression spring 35 urges the nozzle spindle 33 and the suction nozzle 18 upward, and the large diameter portion 33 a is formed on the lower surface of the nozzle holder 17. By abutting, the upward movement of the nozzle spindle 33 and the suction nozzle 18 is restricted. A negative pressure is supplied to each suction nozzle 18 from the positive / negative pressure supply device 14 via the nozzle spindle 33, and each suction nozzle 18 can suck the component P at the tip 18a.
 ノズルホルダ17の下端中央部には、光を反射可能な円筒状の反射体31が固定されている。ノズルホルダ17および反射体31は、インデックス軸16とともに鉛直軸線ALの回りに回動される。これにより、R軸モータ15を回転させると、インデックス軸16を介して複数の吸着ノズル18を保持したノズルホルダ17を鉛直軸線ALの回り(R軸方向)に回動させることができ、複数の吸着ノズル18を作業位置S1に順次、割出すことができる。 A cylindrical reflector 31 capable of reflecting light is fixed to the center of the lower end of the nozzle holder 17. The nozzle holder 17 and the reflector 31 are rotated around the vertical axis AL together with the index shaft 16. As a result, when the R-axis motor 15 is rotated, the nozzle holder 17 holding the plurality of suction nozzles 18 can be rotated around the vertical axis AL (R-axis direction) via the index shaft 16. The suction nozzle 18 can be sequentially indexed to the work position S1.
 図3は、正圧・負圧供給装置14の一例を模式的に示す構成図である。正圧・負圧供給装置14は、負圧源14a、負圧分岐流路14b、スプールバルブ14c、正圧源14dおよび正圧分岐流路14eを有している。負圧源14aは、負圧の発生源であり、負圧分岐流路14bは、負圧源14aと各吸着ノズル18とを連通する。正圧源14dは、正圧の発生源であり、正圧分岐流路14eは、正圧源14dと各吸着ノズル18とを連通する。スプールバルブ14cは、負圧分岐流路14bおよび正圧分岐流路14eをそれぞれ開閉することができる。 FIG. 3 is a block diagram schematically showing an example of the positive / negative pressure supply device 14. The positive / negative pressure supply device 14 includes a negative pressure source 14a, a negative pressure branch flow path 14b, a spool valve 14c, a positive pressure source 14d, and a positive pressure branch flow path 14e. The negative pressure source 14a is a source of negative pressure, and the negative pressure branch flow path 14b communicates the negative pressure source 14a with each suction nozzle 18. The positive pressure source 14d is a source of positive pressure, and the positive pressure branch flow path 14e communicates the positive pressure source 14d with each suction nozzle 18. The spool valve 14c can open and close the negative pressure branch flow path 14b and the positive pressure branch flow path 14e, respectively.
 負圧分岐流路14bの本流側の先端部には負圧源14aが接続され、負圧分岐流路14bの支流側には吸着ノズル18がそれぞれ接続されている。負圧源14aは、例えば、公知の真空ポンプを用いることができ、各吸着ノズル18に負圧を供給することができる。負圧分岐流路14bの支流側には、スプールバルブ14cが設けられており、スプールバルブ14cを開閉することにより、負圧源14aと各吸着ノズル18との間の負圧分岐流路14bを開閉することができる。なお、同図では、2つの吸着ノズル18、18が図示されているが、鉛直軸線ALと同芯の円周上に配されるすべての吸着ノズル18が負圧分岐流路14bによって負圧源14aと連通可能になっている。 The negative pressure source 14a is connected to the main stream side tip of the negative pressure branch flow path 14b, and the suction nozzle 18 is connected to the tributary side of the negative pressure branch flow path 14b. As the negative pressure source 14 a, for example, a known vacuum pump can be used, and negative pressure can be supplied to each suction nozzle 18. A spool valve 14c is provided on the tributary side of the negative pressure branch flow path 14b. By opening and closing the spool valve 14c, the negative pressure branch flow path 14b between the negative pressure source 14a and each suction nozzle 18 is provided. Can be opened and closed. In the figure, two suction nozzles 18 and 18 are shown, but all the suction nozzles 18 arranged on the circumference concentric with the vertical axis AL are connected to the negative pressure source 14b by the negative pressure branch flow path 14b. Communication with 14a is possible.
 正圧分岐流路14eの本流側の先端部には正圧源14dが接続され、正圧分岐流路14eの支流側はスプールバルブ14cに接続されている。正圧源14dは、例えば、公知の圧縮機(コンプレッサ)を用いることができ、各吸着ノズル18に正圧を供給することができる。正圧分岐流路14eの支流側は、スプールバルブ14cに接続されており、スプールバルブ14cを開閉することにより、正圧源14dと各吸着ノズル18との間の正圧分岐流路14eを開閉することができる。負圧分岐流路14bと同様に、鉛直軸線ALと同芯の円周上に配されるすべての吸着ノズル18が正圧分岐流路14eによって正圧源14dと連通可能になっている。 The positive pressure source 14d is connected to the main stream side tip of the positive pressure branch flow path 14e, and the branch side of the positive pressure branch flow path 14e is connected to the spool valve 14c. As the positive pressure source 14d, for example, a known compressor (compressor) can be used, and a positive pressure can be supplied to each suction nozzle 18. The branch side of the positive pressure branch flow path 14e is connected to the spool valve 14c. By opening and closing the spool valve 14c, the positive pressure branch flow path 14e between the positive pressure source 14d and each suction nozzle 18 is opened and closed. can do. Similar to the negative pressure branch flow path 14b, all the suction nozzles 18 arranged on the circumference concentric with the vertical axis AL can communicate with the positive pressure source 14d by the positive pressure branch flow path 14e.
 スプールバルブ14cには、図示しないスプールがノズルホルダ17の外周側部分において上下方向(Z軸方向)に相対移動可能に嵌合されている。スプールバルブ14cには、各吸着ノズル18への負圧および正圧の供給を阻止する初期位置と、吸着ノズル18への正圧の供給を遮断するとともに吸着ノズル18への負圧の供給を許容する負圧供給位置と、吸着ノズル18への負圧の供給を遮断するとともに吸着ノズル18への正圧の供給を許容する正圧供給位置と、が設けられている。また、スプールバルブ14cには、図示しない摩擦リングが嵌合されており、スプールと摩擦リングとの摩擦力によって、スプールは、初期位置、負圧供給位置または正圧供給位置に保持される。スプールバルブ14cは、ノズルスピンドル33毎に設けられている。 A spool (not shown) is fitted to the spool valve 14c so as to be relatively movable in the vertical direction (Z-axis direction) at the outer peripheral side portion of the nozzle holder 17. The spool valve 14c has an initial position where the supply of negative pressure and positive pressure to each suction nozzle 18 is blocked, and the supply of negative pressure to the suction nozzle 18 is allowed while blocking the supply of positive pressure to the suction nozzle 18 And a positive pressure supply position that blocks supply of negative pressure to the suction nozzle 18 and allows supply of positive pressure to the suction nozzle 18. A friction ring (not shown) is fitted to the spool valve 14c, and the spool is held at the initial position, the negative pressure supply position, or the positive pressure supply position by the frictional force between the spool and the friction ring. The spool valve 14 c is provided for each nozzle spindle 33.
 作業位置S1に割出されたノズルスピンドル33に対向する位置には、図示しないモータによって上下動される押圧部材が設けられている。部品吸着位置において、押圧部材が上下方向に移動すると、押圧部材の上下方向の移動に伴って作業位置S1に割出されたノズルスピンドル33および吸着ノズル18が上下方向に移動する。これに伴って、スプールバルブ14cのスプールは、初期位置から負圧供給位置へ移動して保持され、作業位置S1に割出された吸着ノズル18と負圧源14aとの間の負圧分岐流路14bが開路される。そして、作業位置S1に割出された吸着ノズル18に負圧が供給され、部品Pを吸着することができる。次の吸着ノズル18が割出されると、同様に、対応するスプールバルブ14cのスプールが初期位置から負圧供給位置へ移動して保持され、割出された吸着ノズル18に負圧が供給され、部品Pを吸着する。これをすべての吸着ノズル18について繰り返すことにより、各吸着ノズル18に対して順に負圧を供給して部品Pを吸着することができる。 A pressing member that is moved up and down by a motor (not shown) is provided at a position facing the nozzle spindle 33 indexed to the work position S1. When the pressing member moves in the vertical direction at the component suction position, the nozzle spindle 33 and the suction nozzle 18 indexed to the work position S1 move in the vertical direction as the pressing member moves in the vertical direction. Accordingly, the spool of the spool valve 14c is moved and held from the initial position to the negative pressure supply position, and the negative pressure branch flow between the suction nozzle 18 indexed to the work position S1 and the negative pressure source 14a. The path 14b is opened. And a negative pressure is supplied to the suction nozzle 18 indexed to the work position S1, and the component P can be sucked. When the next suction nozzle 18 is indexed, similarly, the spool of the corresponding spool valve 14c is moved from the initial position to the negative pressure supply position and held, and negative pressure is supplied to the indexed suction nozzle 18. The part P is adsorbed. By repeating this operation for all the suction nozzles 18, the negative pressure can be sequentially supplied to each suction nozzle 18 to suck the component P.
 一方、部品装着位置において、押圧部材が上下方向に移動すると、押圧部材の上下方向の移動に伴って作業位置S1に割出されたノズルスピンドル33および吸着ノズル18が上下方向に移動する。これに伴って、スプールバルブ14cのスプールは、負圧供給位置から正圧供給位置へ移動して保持され、作業位置S1に割出された吸着ノズル18と正圧源14dとの間の正圧分岐流路14eが開路される。そして、作業位置S1に割出された吸着ノズル18に正圧が供給され、割出された吸着ノズル18内の負圧を消失して部品Pを解放することができる。次の吸着ノズル18が割出されると、同様に、対応するスプールバルブ14cのスプールが負圧供給位置から正圧供給位置へ移動して保持され、割出された吸着ノズル18に正圧が供給され、部品Pが解放される。これをすべての吸着ノズル18について繰り返すことにより、各吸着ノズル18から部品Pを解放してプリント基板に装着することができる。なお、次回の部品吸着までの間に、各スプールバルブ14cのスプールは、初期位置に復帰される。 On the other hand, when the pressing member moves in the vertical direction at the component mounting position, the nozzle spindle 33 and the suction nozzle 18 indexed to the work position S1 move in the vertical direction as the pressing member moves in the vertical direction. Along with this, the spool of the spool valve 14c moves from the negative pressure supply position to the positive pressure supply position and is held, and the positive pressure between the suction nozzle 18 indexed to the work position S1 and the positive pressure source 14d. The branch flow path 14e is opened. Then, a positive pressure is supplied to the suction nozzle 18 indexed at the work position S1, and the negative pressure in the indexed suction nozzle 18 disappears so that the part P can be released. When the next suction nozzle 18 is indexed, similarly, the spool of the corresponding spool valve 14c is moved from the negative pressure supply position to the positive pressure supply position and held, and positive pressure is supplied to the indexed suction nozzle 18. Then, the part P is released. By repeating this for all the suction nozzles 18, the component P can be released from each suction nozzle 18 and mounted on the printed circuit board. Note that the spool of each spool valve 14c is returned to the initial position until the next component suction.
 負圧分岐流路14bの負圧源14a側には、流量センサ100が設けられている。正圧分岐流路14eの正圧源14d側には、流量センサ101が設けられている。流量センサ100、101は、例えば、公知のマスフローセンサを用いることができる。流量センサ100は、吸着ノズル18から負圧源14aに吸入される空気流量QNを測定することができる。流量センサ101は、正圧源14dから吸着ノズル18に供給される空気流量QPを測定することができる。 The flow sensor 100 is provided on the negative pressure source 14a side of the negative pressure branch flow path 14b. A flow sensor 101 is provided on the positive pressure source 14d side of the positive pressure branch flow path 14e. As the flow sensors 100 and 101, for example, a known mass flow sensor can be used. The flow sensor 100 can measure the air flow rate QN sucked from the suction nozzle 18 into the negative pressure source 14a. The flow sensor 101 can measure the air flow rate QP supplied to the suction nozzle 18 from the positive pressure source 14d.
 図4は、流量センサ100の出力特性の一例を示す図である。横軸は、流量センサ100によって測定される空気流量QNを示し、縦軸は、流量センサ100の出力電圧Vを示している。流量センサ100は、空気流量QNの測定結果を出力電圧Vとして出力する。流量センサ100の出力電圧Vは、後述する制御装置51に送信され、制御装置51は、流量センサ100の出力電圧VをA/D変換する。制御装置51のメモリには、予め同図に示す特性がマップ、テーブル、関係式などにより記憶されており、制御装置51は、デジタル値に変換された流量センサ100の出力電圧Vから流量センサ100を通過する空気流量QNを換算することができる。例えば、制御装置51は、流量センサ100の出力電圧VがV1のとき、出力電圧V1に対応する空気流量Q1をマップから取得する。これらのことは、流量センサ101についても同様である。 FIG. 4 is a diagram illustrating an example of output characteristics of the flow sensor 100. The horizontal axis represents the air flow rate QN measured by the flow sensor 100, and the vertical axis represents the output voltage V of the flow sensor 100. The flow sensor 100 outputs the measurement result of the air flow rate QN as the output voltage V. The output voltage V of the flow sensor 100 is transmitted to the control device 51 described later, and the control device 51 A / D converts the output voltage V of the flow sensor 100. In the memory of the control device 51, the characteristics shown in the figure are stored in advance by a map, a table, a relational expression, and the like. The air flow rate QN passing through can be converted. For example, when the output voltage V of the flow sensor 100 is V1, the control device 51 acquires the air flow rate Q1 corresponding to the output voltage V1 from the map. The same applies to the flow sensor 101.
 第1フレーム25にはθ軸モータ19が固定され、θ軸モータ19の出力軸には駆動ギヤ36が固定されている。駆動ギヤ36は、インデックス軸16に回転可能に支持された回転体28上の従動ギヤ27に噛合されている。また、回転体28上には軸方向の所定長さに亘ってθ軸ギヤ29が形成され、θ軸ギヤ29は、ノズルスピンドル33に固定された各ノズルギヤ34にそれぞれ摺動可能に噛合されている。これにより、θ軸モータ19を回転させると、駆動ギヤ36、従動ギヤ27、θ軸ギヤ29およびノズルギヤ34を介して、全ての吸着ノズル18をノズルホルダ17に対して自転させることができる。 The θ-axis motor 19 is fixed to the first frame 25, and the drive gear 36 is fixed to the output shaft of the θ-axis motor 19. The drive gear 36 is meshed with a driven gear 27 on a rotating body 28 that is rotatably supported by the index shaft 16. A θ-axis gear 29 is formed on the rotating body 28 over a predetermined length in the axial direction, and the θ-axis gear 29 is slidably engaged with each nozzle gear 34 fixed to the nozzle spindle 33. Yes. Accordingly, when the θ-axis motor 19 is rotated, all the suction nozzles 18 can be rotated with respect to the nozzle holder 17 via the drive gear 36, the driven gear 27, the θ-axis gear 29, and the nozzle gear 34.
 また、第1フレーム25にはZ軸モータ20が固定され、Z軸モータ20の出力軸にはボールねじ軸37が接続されている。ボールねじ軸37は、第1フレーム25に固定された軸受38および第2フレーム26に固定された軸受39によって、鉛直軸線ALと平行な軸線回りに回転可能に支持されている。ボールねじ軸37には、図示しないボールを介して、Z軸モータ20の回転運動を直線運動に変換するボールナット40が螺合されている。ボールナット40は、第1フレーム25および第2フレーム26に固定される上下方向に延びるガイド42に上下方向に摺動可能に案内されたノズルレバー41に固定されている。 Further, the Z-axis motor 20 is fixed to the first frame 25, and a ball screw shaft 37 is connected to the output shaft of the Z-axis motor 20. The ball screw shaft 37 is rotatably supported around an axis parallel to the vertical axis AL by a bearing 38 fixed to the first frame 25 and a bearing 39 fixed to the second frame 26. A ball nut 40 that converts the rotational motion of the Z-axis motor 20 into a linear motion is screwed onto the ball screw shaft 37 via a ball (not shown). The ball nut 40 is fixed to a nozzle lever 41 that is slidably guided in a vertical direction by a guide 42 extending in the vertical direction fixed to the first frame 25 and the second frame 26.
 ノズルレバー41には、作業位置S1に割出されたノズルスピンドル33の上端に当接して、ノズルスピンドル33をZ軸方向の下方に押圧する押圧部41aが突設されている。これにより、Z軸モータ20を回転させると、ボールねじ軸37が回転し、ノズルレバー41はボールナット40を介してガイド42に案内されて上下に移動する。ノズルレバー41が上下に移動すると、押圧部41aに対応するノズルスピンドル33および吸着ノズル18を上下に移動させることができる。 The nozzle lever 41 is provided with a pressing portion 41a that abuts the upper end of the nozzle spindle 33 indexed at the work position S1 and presses the nozzle spindle 33 downward in the Z-axis direction. Accordingly, when the Z-axis motor 20 is rotated, the ball screw shaft 37 is rotated, and the nozzle lever 41 is guided by the guide 42 via the ball nut 40 and moves up and down. When the nozzle lever 41 moves up and down, the nozzle spindle 33 and the suction nozzle 18 corresponding to the pressing portion 41a can be moved up and down.
 ノズルレバー41の押圧部41aは、ノズルホルダ17の回転方向に作業位置S1を中心として所定幅を有しており、吸着ノズル18が作業位置S1の前後の所定の角度範囲に位置している状態において、吸着ノズル18のノズルスピンドル33の上端に押圧部41aが当接可能になっている。これにより、作業位置S1の前後の所定の角度範囲において、ノズルホルダ17の回動動作中に吸着ノズル18の上下方向(Z軸方向)の移動を可能にしている。 The pressing portion 41a of the nozzle lever 41 has a predetermined width around the work position S1 in the rotation direction of the nozzle holder 17, and the suction nozzle 18 is located in a predetermined angle range before and after the work position S1. The pressing portion 41a can be brought into contact with the upper end of the nozzle spindle 33 of the suction nozzle 18. Accordingly, the suction nozzle 18 can be moved in the vertical direction (Z-axis direction) during the rotation of the nozzle holder 17 in a predetermined angular range before and after the work position S1.
 第2フレーム26には支持ブラケット43が懸架され、支持ブラケット43には、1台の部品認識用カメラ21が備えられている。部品認識用カメラ21は、側面撮像カメラであり、例えば、公知のCCDカメラを用いることができる。部品認識用カメラ21は、ノズルホルダ17の回転方向において、作業位置S1より1ピッチ先方の先行位置S1+1に割出された吸着ノズル18と、その吸着ノズル18の先端部18aに吸着された部品Pと、の先行位置側面像を反射体31により反射された反射光により撮像することができる。これと同時に、部品認識用カメラ21は、ノズルホルダ17の回転方向において、作業位置S1より1ピッチ後方の後行位置S1-1に割出された吸着ノズル18と、その吸着ノズル18の先端部18aに吸着された部品Pと、の後行位置側面像を反射体31により反射された反射光により撮像することができる。 A support bracket 43 is suspended from the second frame 26, and the support bracket 43 is provided with one component recognition camera 21. The component recognition camera 21 is a side imaging camera, and for example, a known CCD camera can be used. The component recognition camera 21 includes a suction nozzle 18 indexed to a preceding position S1 + 1 ahead of the work position S1 in the rotation direction of the nozzle holder 17, and a component P sucked by the tip 18a of the suction nozzle 18. The preceding position side image can be captured by the reflected light reflected by the reflector 31. At the same time, the component recognition camera 21 includes the suction nozzle 18 indexed to the succeeding position S1-1 that is one pitch behind the work position S1 in the rotation direction of the nozzle holder 17, and the tip of the suction nozzle 18. The part P adsorbed by 18a and the succeeding position side image can be captured by the reflected light reflected by the reflector 31.
 図5は、部品Pの吸着状態を示す側面画像の一例である。(A)は、部品Pが正規の吸着姿勢で吸着ノズル18に吸着されている状態を示す側面画像である。(B)は、部品Pが傾斜した姿勢で吸着ノズル18に吸着されている状態を示す側面画像である。同図に示すように、部品認識用カメラ21は、先行位置側面画像77aおよび後行位置側面画像77bを一画面78上に取得することができる。先行位置側面画像77aは、先行位置側面像を撮像した画像であり、後行位置側面画像77bは、後行位置側面像を撮像した画像である。 FIG. 5 is an example of a side image showing the suction state of the component P. (A) is a side image showing a state in which the component P is sucked by the suction nozzle 18 in a normal suction posture. (B) is a side image showing a state in which the component P is attracted to the suction nozzle 18 in an inclined posture. As shown in the figure, the component recognition camera 21 can acquire a preceding position side image 77a and a following position side image 77b on one screen 78. The preceding position side image 77a is an image obtained by capturing the preceding position side image, and the succeeding position side image 77b is an image obtained by capturing the following position side image.
 (2)吸着異常および装着異常の検出方法
 部品実装機1は、制御装置51によって制御される。制御装置51は、図示しないCPUおよびメモリを有しており、メモリに記憶されているプログラムを実行することによって、部品実装機1を駆動させることができる。図6は、制御ブロックの一例を示すブロック図である。制御装置51は、制御ブロックとして捉えると、実装制御部511、流量算出部512、画像認識部513、吸着異常検出部514および装着異常検出部515を有している。実装制御部511は、所定の部品装着プログラムに基づいて、基板搬送装置60、部品供給装置70および部品移載装置80を駆動して、プリント基板に部品Pを装着する。
(2) Method of detecting suction abnormality and mounting abnormality The component mounter 1 is controlled by the control device 51. The control device 51 includes a CPU and a memory (not shown), and can drive the component mounter 1 by executing a program stored in the memory. FIG. 6 is a block diagram illustrating an example of a control block. The control device 51 includes a mounting control unit 511, a flow rate calculation unit 512, an image recognition unit 513, an adsorption abnormality detection unit 514, and a mounting abnormality detection unit 515 when viewed as control blocks. The mounting control unit 511 drives the substrate transport device 60, the component supply device 70, and the component transfer device 80 based on a predetermined component mounting program to mount the component P on the printed board.
 各吸着ノズル18に部品Pが吸着される際に、流量算出部512は、一の吸着ノズル18が部品Pを吸着してから次の吸着ノズル18が部品Pを吸着するまでの空気流量QNの変化量ΔQNを算出する。流量算出部512は、すべての吸着ノズル18について空気流量QNの変化量ΔQNを算出する。画像認識部513は、部品認識用カメラ21によって撮像される部品Pと吸着ノズル18の先行位置側面画像77aおよび後行位置側面画像77bを画像認識する。吸着異常検出部514は、流量算出部512の算出結果および画像認識部513の認識結果に基づいて、部品Pの吸着異常を検出する。 When the component P is attracted to each suction nozzle 18, the flow rate calculation unit 512 has an air flow rate QN from when one suction nozzle 18 sucks the component P to when the next suction nozzle 18 sucks the component P. A change amount ΔQN is calculated. The flow rate calculation unit 512 calculates the change amount ΔQN of the air flow rate QN for all the suction nozzles 18. The image recognizing unit 513 recognizes the component P imaged by the component recognition camera 21 and the preceding position side image 77a and the succeeding position side image 77b of the suction nozzle 18. The adsorption abnormality detection unit 514 detects an adsorption abnormality of the component P based on the calculation result of the flow rate calculation unit 512 and the recognition result of the image recognition unit 513.
 また、部品Pがプリント基板に装着される際に、流量算出部512は、一の吸着ノズル18が部品Pを装着してから次の吸着ノズル18が部品Pを装着するまでの空気流量QPの変化量ΔQPを算出する。流量算出部512は、すべての吸着ノズル18について空気流量QPの変化量ΔQPを算出する。装着異常検出部515は、流量算出部512の算出結果に基づいて、部品Pの装着異常を検出する。 Further, when the component P is mounted on the printed circuit board, the flow rate calculation unit 512 has an air flow rate QP from when one suction nozzle 18 mounts the component P to when the next suction nozzle 18 mounts the component P. A change amount ΔQP is calculated. The flow rate calculation unit 512 calculates the change amount ΔQP of the air flow rate QP for all the suction nozzles 18. The mounting abnormality detection unit 515 detects mounting abnormality of the component P based on the calculation result of the flow rate calculation unit 512.
 以下、部品実装機1によって、部品Pをプリント基板に装着する手順について説明し、併せて部品Pの吸着異常および装着異常の検出方法について説明する。まず、実装制御部511からの指令に基づいて、基板搬送装置60のコンベアベルトが駆動され、プリント基板がガイドレール64a、64b(65a、65b)に案内されて所定の位置まで搬送される。そして、クランプ装置により、プリント基板が押し上げられてクランプされ、所定位置に位置決め固定される。続いて、Y軸サーボモータ11およびX軸サーボモータが駆動されて、Y軸スライダ12およびX軸スライダ13が移動され、部品装着ヘッド10が部品取出部74まで移動される。その後、R軸モータ15が回転されて、ノズルホルダ17が1ピッチ回動され、後行位置S1-1に割出されていた吸着ノズル18を装着したノズルスピンドル33が作業位置S1に割出される。 Hereinafter, a procedure for mounting the component P on the printed circuit board by the component mounting machine 1 will be described, and a method for detecting an adsorption abnormality and a mounting abnormality of the component P will be described. First, based on a command from the mounting control unit 511, the conveyor belt of the board conveying device 60 is driven, and the printed board is guided to the guide rails 64a and 64b (65a and 65b) and conveyed to a predetermined position. Then, the printed circuit board is pushed up and clamped by the clamping device, and is positioned and fixed at a predetermined position. Subsequently, the Y-axis servo motor 11 and the X-axis servo motor are driven, the Y-axis slider 12 and the X-axis slider 13 are moved, and the component mounting head 10 is moved to the component extraction unit 74. Thereafter, the R-axis motor 15 is rotated, the nozzle holder 17 is rotated by one pitch, and the nozzle spindle 33 equipped with the suction nozzle 18 that has been indexed at the subsequent position S1-1 is indexed at the work position S1. .
 ノズルホルダ17が1ピッチ回動する間にZ軸モータ20が正転されることにより、ノズルスピンドル33は、ノズルレバー41により圧縮スプリング35の付勢力に抗して下方に押下げられて下降する。ノズルスピンドル33が下降端に位置する前にノズルホルダ17は、ノズルスピンドル33を作業位置S1に割出して回転を停止する。その状態でノズルスピンドル33は、吸着ノズル18の先端部18aが部品取出部74に搬送された部品Pに接近する位置まで押下げられ、正圧・負圧供給装置14から吸着ノズル18に負圧が供給されて、吸着ノズル18の先端部18aに部品Pが吸着保持される。 When the Z-axis motor 20 is rotated forward while the nozzle holder 17 rotates by one pitch, the nozzle spindle 33 is pushed downward by the nozzle lever 41 against the urging force of the compression spring 35 and descends. . Before the nozzle spindle 33 is positioned at the descending end, the nozzle holder 17 stops the rotation by indexing the nozzle spindle 33 to the working position S1. In this state, the nozzle spindle 33 is pushed down to a position where the tip end portion 18a of the suction nozzle 18 approaches the component P conveyed to the component take-out portion 74, and negative pressure is applied from the positive / negative pressure supply device 14 to the suction nozzle 18. Is supplied, and the component P is sucked and held at the tip 18 a of the suction nozzle 18.
 その後、Z軸モータ20が逆転されることにより、ノズルレバー41が上方に移動され、圧縮スプリング35の付勢力により吸着ノズル18が上昇端位置まで押上げられる。吸着ノズル18が上昇端位置に後退する前に、ノズルホルダ17がR軸モータ15により回動され、作業位置S1に割出されていた吸着ノズル18が後行位置S1+1に割出される。このような動作を繰り返すことにより、複数の吸着ノズル18に部品Pが順次吸着保持される。これにより、ノズルホルダ17の回転割出し動作中に、吸着ノズル18の上下方向の進退移動を同時に行わせる、いわゆる同時動作制御が可能になり、部品Pを吸着するサイクルタイムを短縮して、生産性を向上することができる。 Thereafter, when the Z-axis motor 20 is reversed, the nozzle lever 41 is moved upward, and the suction nozzle 18 is pushed up to the rising end position by the urging force of the compression spring 35. Before the suction nozzle 18 moves back to the rising end position, the nozzle holder 17 is rotated by the R-axis motor 15, and the suction nozzle 18 that has been indexed at the work position S1 is indexed at the subsequent position S1 + 1. By repeating such an operation, the parts P are sequentially sucked and held by the plurality of suction nozzles 18. As a result, during the rotational indexing operation of the nozzle holder 17, so-called simultaneous operation control can be performed in which the suction nozzle 18 is simultaneously moved back and forth in the vertical direction. Can be improved.
 流量算出部512は、各吸着ノズル18が上昇端位置まで押上げられたときに、流量センサ100を用いて、吸着ノズル18から負圧源14aに吸入される空気流量QNを測定する。図7は、部品吸着の際の吸着ノズル18のノズル番号Nと空気流量QNの関係の一例を示す図である。横軸は、吸着ノズル18のノズル番号Nを示し、縦軸は、空気流量QNを示している。複数の吸着ノズル18のうち最初に部品Pを吸着する吸着ノズル18をノズル番号N1の吸着ノズル18とする。そして、ノズル番号N1の吸着ノズル18が部品Pを吸着して上昇端位置まで押上げられたときに測定される空気流量QNをQ1とする。ノズル番号N1の吸着ノズル18が部品Pを吸着すると、その吸着ノズル18の吸入口は部品Pによって塞がれ、負圧源14aに吸入される空気流量QN1は飽和する。同図は、ノズル番号N1の吸着ノズル18が部品Pを吸着して、空気流量Q1が飽和して一定になっている状態を示している。 The flow rate calculation unit 512 measures the air flow rate QN sucked from the suction nozzle 18 to the negative pressure source 14a using the flow rate sensor 100 when each suction nozzle 18 is pushed up to the rising end position. FIG. 7 is a diagram illustrating an example of the relationship between the nozzle number N of the suction nozzle 18 and the air flow rate QN during component suction. The horizontal axis indicates the nozzle number N of the suction nozzle 18, and the vertical axis indicates the air flow rate QN. The suction nozzle 18 that first picks up the component P among the plurality of suction nozzles 18 is referred to as the suction nozzle 18 having the nozzle number N1. The air flow rate QN measured when the suction nozzle 18 with the nozzle number N1 sucks the component P and is pushed up to the rising end position is defined as Q1. When the suction nozzle 18 with the nozzle number N1 sucks the component P, the suction port of the suction nozzle 18 is blocked by the component P, and the air flow rate QN1 sucked into the negative pressure source 14a is saturated. This figure shows a state in which the suction nozzle 18 with the nozzle number N1 sucks the component P and the air flow rate Q1 is saturated and constant.
 その後、実装制御部511によりノズルホルダ17が回動され、次のノズル番号N2の吸着ノズル18が割出される。そして、ノズル番号N2の吸着ノズル18が部品Pを吸着して上昇端位置まで押上げられたときに空気流量QNが測定される。このときの空気流量QNをQ2とする。以下、同様にして、最後に部品Pを吸着する吸着ノズル18まで順に空気流量QNを測定する。同図では、ノズル番号N6の吸着ノズル18まで空気流量QNが測定されたときの空気流量QNの変化を曲線L1で示している。同図に示すように、負圧源14aに吸入される空気流量QNは、吸着ノズル18が部品Pを吸着する毎に階段状に増加している。 Thereafter, the nozzle holder 17 is rotated by the mounting control unit 511, and the suction nozzle 18 of the next nozzle number N2 is indexed. The air flow rate QN is measured when the suction nozzle 18 with the nozzle number N2 sucks the component P and is pushed up to the rising end position. The air flow rate QN at this time is Q2. Thereafter, in the same manner, the air flow rate QN is sequentially measured up to the suction nozzle 18 that finally sucks the component P. In the figure, a change in the air flow rate QN when the air flow rate QN is measured up to the suction nozzle 18 of the nozzle number N6 is indicated by a curve L1. As shown in the figure, the air flow rate QN sucked into the negative pressure source 14a increases stepwise every time the suction nozzle 18 sucks the component P.
 流量算出部512は、複数の吸着ノズル18のうちの一の吸着ノズル18が部品Pを吸着してから次の吸着ノズル18が部品Pを吸着するまでの空気流量QNの変化量ΔQNを算出する。但し、ノズル番号N1の吸着ノズル18の変化量ΔQ1は、空気流量Q1とする。例えば、ノズル番号N2の吸着ノズル18の変化量ΔQ2は、ノズル番号N2の吸着ノズル18の空気流量Q2からノズル番号N1の吸着ノズル18の空気流量Q1を減算して算出することができる。ノズル番号N3の吸着ノズル18の変化量ΔQ3は、ノズル番号N3の吸着ノズル18の空気流量Q3からノズル番号N2の吸着ノズル18の空気流量Q2を減算して算出することができる。以下、同様にして、最後に部品Pを吸着する吸着ノズル18まで空気流量QNの変化量ΔQNを算出する。 The flow rate calculation unit 512 calculates a change amount ΔQN of the air flow rate QN from when one suction nozzle 18 of the plurality of suction nozzles 18 sucks the component P to when the next suction nozzle 18 sucks the component P. . However, the amount of change ΔQ1 of the suction nozzle 18 with the nozzle number N1 is the air flow rate Q1. For example, the change amount ΔQ2 of the suction nozzle 18 with the nozzle number N2 can be calculated by subtracting the air flow rate Q1 of the suction nozzle 18 with the nozzle number N1 from the air flow rate Q2 of the suction nozzle 18 with the nozzle number N2. The amount of change ΔQ3 of the suction nozzle 18 having the nozzle number N3 can be calculated by subtracting the air flow rate Q2 of the suction nozzle 18 having the nozzle number N2 from the air flow rate Q3 of the suction nozzle 18 having the nozzle number N3. Thereafter, similarly, the change amount ΔQN of the air flow rate QN is calculated up to the suction nozzle 18 that finally sucks the component P.
 吸着異常検出部514は、流量算出部512によって算出される吸着ノズル18の空気流量QNの変化量ΔQNが所定閾値を超えているか否かを判断する。例えば、ノズル番号N3の空気流量QNの変化量ΔQ3は所定閾値以下であるとする。これに対して、ノズル番号N4の空気流量QNの変化量ΔQ4は、同図に示すように変化量ΔQ3と比べて大きく、所定閾値を超えているとする。この場合、吸着異常検出部514は、ノズル番号N4の吸着ノズル18が吸着異常であると判断する。同様にして、吸着異常検出部514は、すべての吸着ノズル18について、空気流量QNの変化量ΔQNが所定閾値を超えているか否かを判断して、吸着異常の有無を検出する。なお、所定閾値は、部品Pが正規の吸着姿勢で吸着ノズル18に吸着されているときに許容されるエアーのリーク流量であり、予めシミュレーション、実機による測定等によって導出することができる。所定閾値は、制御装置51のメモリに記憶されている。 The adsorption abnormality detection unit 514 determines whether or not the change amount ΔQN of the air flow rate QN of the adsorption nozzle 18 calculated by the flow rate calculation unit 512 exceeds a predetermined threshold value. For example, it is assumed that the change amount ΔQ3 of the air flow rate QN of the nozzle number N3 is not more than a predetermined threshold value. On the other hand, it is assumed that the change amount ΔQ4 of the air flow rate QN of the nozzle number N4 is larger than the change amount ΔQ3 as shown in FIG. In this case, the suction abnormality detection unit 514 determines that the suction nozzle 18 with the nozzle number N4 has a suction abnormality. Similarly, the adsorption abnormality detection unit 514 determines whether or not the amount of change ΔQN in the air flow rate QN exceeds a predetermined threshold for all the adsorption nozzles 18 to detect the presence or absence of an adsorption abnormality. The predetermined threshold is an air leak flow rate that is allowed when the component P is sucked by the suction nozzle 18 in a normal suction posture, and can be derived in advance by simulation, measurement by an actual machine, or the like. The predetermined threshold is stored in the memory of the control device 51.
 ノズルホルダ17が回転停止され、作業位置S1に割出された吸着ノズル18が下降して部品Pを吸着している間に、先行位置S1+1に割出された吸着ノズル18と部品Pの先行位置側面画像77aが部品認識用カメラ21によって撮像される。これと同時に、後行位置S1-1に割出された吸着ノズル18と部品Pの後行位置側面画像77bが部品認識用カメラ21によって撮像される。先行位置側面画像77aおよび後行位置側面画像77bは、一画面78上に取得される。先行位置側面画像77aおよび後行位置側面画像77bは、画像認識部513に入力されて、画像認識される。 While the nozzle holder 17 is stopped rotating and the suction nozzle 18 indexed at the work position S1 descends and sucks the component P, the suction nozzle 18 indexed at the preceding position S1 + 1 and the preceding position of the component P The side image 77a is captured by the component recognition camera 21. At the same time, the suction nozzle 18 indexed at the trailing position S1-1 and the trailing position side image 77b of the component P are captured by the component recognition camera 21. The preceding position side image 77a and the following position side image 77b are acquired on one screen 78. The preceding position side image 77a and the following position side image 77b are input to the image recognition unit 513 and recognized.
 吸着異常検出部514は、先行位置側面画像77aおよび後行位置側面画像77bの部品Pの吸着状態に基づいて吸着異常であるか否かを判断する。例えば、吸着異常検出部514は、先行位置側面画像77aに基づいて吸着ノズル18の先端部18aに吸着された部品Pの高さを測定し、部品Pの表裏が反対に吸着されていないかを判断する。また、吸着異常検出部514は、後行位置側面画像77bに基づいて部品Pの吸着の有無を判断する。吸着異常検出部514は、部品Pが正規の吸着姿勢で吸着されていないときに吸着異常であると判断することができる。 The suction abnormality detection unit 514 determines whether or not there is a suction abnormality based on the suction state of the component P in the preceding position side image 77a and the succeeding position side image 77b. For example, the suction abnormality detection unit 514 measures the height of the component P sucked to the tip portion 18a of the suction nozzle 18 based on the preceding position side image 77a, and determines whether the front and back of the component P are sucked in the opposite direction. to decide. Further, the suction abnormality detection unit 514 determines whether or not the component P is sucked based on the succeeding position side image 77b. The suction abnormality detection unit 514 can determine that the suction is abnormal when the component P is not sucked in the normal suction posture.
 図5(A)は、部品Pが正規の吸着姿勢で吸着ノズル18に吸着されている状態を示している。この場合、吸着異常検出部514は、吸着異常でないと判断する。同図(B)は、部品Pが傾斜した姿勢で吸着ノズル18に吸着されている状態を示している。この場合、吸着異常検出部514は、吸着異常であると判断する。これにより、吸着異常の検出精度を向上させることができる。特に、空気流量QNの変化量ΔQNが所定閾値以下であり、部品Pの吸着状態が安定しているが、正規の吸着姿勢で部品Pが吸着されていない場合に、撮像される部品Pの吸着状態に基づいて吸着異常を検出することができ、吸着異常の検出精度を向上させることができる。 FIG. 5A shows a state in which the part P is sucked by the suction nozzle 18 in a normal suction posture. In this case, the adsorption abnormality detection unit 514 determines that there is no adsorption abnormality. FIG. 5B shows a state where the component P is sucked by the suction nozzle 18 in an inclined posture. In this case, the adsorption abnormality detection unit 514 determines that there is an adsorption abnormality. Thereby, the detection accuracy of the adsorption abnormality can be improved. In particular, when the change amount ΔQN of the air flow rate QN is equal to or less than a predetermined threshold value and the suction state of the component P is stable, the suction of the component P to be imaged is performed when the component P is not sucked in a normal suction posture. Absorption abnormality can be detected based on the state, and the detection accuracy of adsorption abnormality can be improved.
 吸着異常検出部514は、吸着ノズル18の空気流量QNの変化量ΔQNが所定閾値以下であり、かつ、撮像される部品Pの吸着状態が正常であるときに、部品Pが吸着ノズル18に正常に吸着されていると判断する。吸着異常検出部514は、少なくとも一方の条件を充足しない場合に吸着異常であると判断する。同様にして、吸着異常検出部514は、すべての吸着ノズル18について吸着異常であるか否かを判断する。実装制御部511は、吸着異常検出部514によって吸着異常が検出されると、吸着異常が検出された吸着ノズル18を用いた部品Pの装着を中止する。なお、実装制御部511は、部品装着ヘッド10の移動速度を低下させて、吸着異常が検出された吸着ノズル18を用いた部品Pの装着を継続することもできる。 The suction abnormality detection unit 514 detects that the component P is normal to the suction nozzle 18 when the change amount ΔQN of the air flow rate QN of the suction nozzle 18 is equal to or less than a predetermined threshold and the suction state of the component P to be imaged is normal. Judged to be adsorbed on the surface. The adsorption abnormality detection unit 514 determines that there is an adsorption abnormality when at least one of the conditions is not satisfied. Similarly, the suction abnormality detection unit 514 determines whether or not all the suction nozzles 18 are suction abnormal. When a suction abnormality is detected by the suction abnormality detection unit 514, the mounting control unit 511 stops mounting the component P using the suction nozzle 18 in which the suction abnormality is detected. Note that the mounting control unit 511 can also reduce the moving speed of the component mounting head 10 and continue mounting the component P using the suction nozzle 18 in which the suction abnormality is detected.
 すべての吸着ノズル18に部品Pが吸着されると、Y軸サーボモータ11およびX軸サーボモータが駆動されてY軸スライダ12およびX軸スライダ13が移動される。これにより、部品装着ヘッド10は、CCDカメラ75上に移動され、複数の吸着ノズル18に吸着保持された部品PがCCDカメラ75によって撮像される。CCDカメラ75は、部品Pの吸着ノズル18に対する位置ずれ、角度ずれを検出することができる。その後、部品装着ヘッド10は、Y軸サーボモータ11およびX軸サーボモータにより、所定位置に位置決めされたプリント基板上に移動される。このとき、部品装着ヘッド10は、CCDカメラ75によって検出された位置ずれ、角度ずれに応じて移動位置が補正される。 When the parts P are attracted to all the suction nozzles 18, the Y-axis servo motor 11 and the X-axis servo motor are driven, and the Y-axis slider 12 and the X-axis slider 13 are moved. Thereby, the component mounting head 10 is moved onto the CCD camera 75, and the component P sucked and held by the plurality of suction nozzles 18 is imaged by the CCD camera 75. The CCD camera 75 can detect a positional deviation and an angular deviation of the component P with respect to the suction nozzle 18. Thereafter, the component mounting head 10 is moved onto the printed circuit board positioned at a predetermined position by the Y-axis servomotor 11 and the X-axis servomotor. At this time, the movement position of the component mounting head 10 is corrected according to the positional deviation and the angular deviation detected by the CCD camera 75.
 続いて、θ軸モータ19の回転により、作業位置S1に割出された吸着ノズル18に吸着保持された部品Pの角度ずれが補正されて、所定の姿勢に制御される。また、Z軸モータ20が正転されて、ノズルレバー41によってノズルスピンドル33が圧縮スプリング35の付勢力に抗して下方に押下げられ、吸着ノズル18の先端部18aに吸着された部品Pがプリント基板に装着されるまで押下げられる。このとき、部品Pがプリント基板に到達する付近で、割出された吸着ノズル18に対して正圧・負圧供給装置14から正圧が供給される。 Subsequently, the rotation of the θ-axis motor 19 corrects the angular deviation of the component P sucked and held by the suction nozzle 18 indexed at the work position S1, and is controlled to a predetermined posture. Further, the Z-axis motor 20 is rotated forward, the nozzle spindle 33 is pushed downward against the urging force of the compression spring 35 by the nozzle lever 41, and the component P adsorbed by the tip 18a of the adsorption nozzle 18 is removed. It is pushed down until it is mounted on the printed circuit board. At this time, a positive pressure is supplied from the positive / negative pressure supply device 14 to the indexed suction nozzle 18 in the vicinity where the component P reaches the printed board.
 これにより、割出された吸着ノズル18内の負圧を消失させて、吸着ノズル18から部品Pを順に解放してプリント基板に装着することができる。その後、Z軸モータ20が逆転されることにより、ノズルレバー41が上方に移動され、圧縮スプリング35の付勢力により吸着ノズル18が最上端に移動した状態まで押上げられる。部品装着ヘッド10が装着位置に移動すると、ノズルホルダ17の回転割出し動作中に吸着ノズル18の上下方向(Z軸方向)の進退移動が同時に行われる。 Thereby, the negative pressure in the indexed suction nozzle 18 can be eliminated, and the components P can be sequentially released from the suction nozzle 18 and mounted on the printed circuit board. Thereafter, when the Z-axis motor 20 is reversed, the nozzle lever 41 is moved upward, and is pushed up to the state where the suction nozzle 18 is moved to the uppermost end by the urging force of the compression spring 35. When the component mounting head 10 moves to the mounting position, the vertical movement (Z-axis direction) of the suction nozzle 18 is simultaneously performed during the rotation indexing operation of the nozzle holder 17.
 流量算出部512は、各吸着ノズル18が上昇端位置まで押上げられたときに、流量センサ101を用いて、正圧源14dから吸着ノズル18に供給される空気流量QPを測定する。図8は、部品装着の際の吸着ノズル18のノズル番号Nと空気流量QPの関係の一例を示す図である。横軸は、吸着ノズル18のノズル番号Nを示し、縦軸は、空気流量QPを示している。複数の吸着ノズル18のうち最初に部品Pを装着する吸着ノズル18をノズル番号N1の吸着ノズル18とする。そして、ノズル番号N1の吸着ノズル18が部品Pを装着して上昇端位置まで押上げられたときに測定される空気流量QPをQ11とする。 The flow rate calculation unit 512 uses the flow rate sensor 101 to measure the air flow rate QP supplied from the positive pressure source 14d to the suction nozzle 18 when each suction nozzle 18 is pushed up to the rising end position. FIG. 8 is a diagram showing an example of the relationship between the nozzle number N of the suction nozzle 18 and the air flow rate QP when components are mounted. The horizontal axis indicates the nozzle number N of the suction nozzle 18, and the vertical axis indicates the air flow rate QP. Of the plurality of suction nozzles 18, the suction nozzle 18 on which the component P is first mounted is defined as a suction nozzle 18 having a nozzle number N1. The air flow rate QP measured when the suction nozzle 18 with the nozzle number N1 is pushed up to the rising end position after mounting the component P is defined as Q11.
 プリント基板の装着位置に部品Pの装着が終了すると、実装制御部511によりY軸サーボモータ11およびX軸サーボモータが駆動される。そして、部品装着ヘッド10は、プリント基板上の次の装着位置に移動する。その後、ノズルホルダ17が回動され、次のノズル番号N2の吸着ノズル18が割出される。そして、ノズル番号N2の吸着ノズル18が部品Pを装着して上昇端位置まで押上げられたときに空気流量QPが測定される。このときの空気流量QPをQ2とする。以下、同様にして、最後に部品Pを装着する吸着ノズル18まで順に空気流量QPを測定する。同図では、ノズル番号N5の吸着ノズル18まで空気流量QPが測定されたときの空気流量QPの変化を曲線L2で示している。同図に示すように、正圧源14dから吸着ノズル18に供給される空気流量QPは、吸着ノズル18が部品Pを装着する毎に階段状に増加している。 When the mounting of the component P is completed at the mounting position of the printed circuit board, the mounting control unit 511 drives the Y-axis servo motor 11 and the X-axis servo motor. Then, the component mounting head 10 moves to the next mounting position on the printed board. Thereafter, the nozzle holder 17 is rotated, and the suction nozzle 18 of the next nozzle number N2 is indexed. The air flow rate QP is measured when the suction nozzle 18 with the nozzle number N2 is pushed up to the rising end position with the component P mounted thereon. The air flow rate QP at this time is Q2. Thereafter, similarly, the air flow rate QP is measured in order up to the suction nozzle 18 to which the component P is finally mounted. In the figure, a change in the air flow rate QP when the air flow rate QP is measured up to the suction nozzle 18 of the nozzle number N5 is indicated by a curve L2. As shown in the figure, the air flow rate QP supplied from the positive pressure source 14d to the suction nozzle 18 increases stepwise each time the suction nozzle 18 mounts the component P.
 流量算出部512は、複数の吸着ノズル18のうちの一の吸着ノズル18が部品Pを装着してから次の吸着ノズル18が部品Pを装着するまでの空気流量QPの変化量ΔQPを算出する。但し、ノズル番号N1の吸着ノズル18の変化量ΔQ11は、空気流量Q11とする。例えば、ノズル番号N2の吸着ノズル18の変化量ΔQ12は、ノズル番号N2の吸着ノズル18の空気流量Q12からノズル番号N1の吸着ノズル18の空気流量Q11を減算して算出することができる。ノズル番号N3の吸着ノズル18の変化量ΔQ13は、ノズル番号N3の吸着ノズル18の空気流量Q13からノズル番号N2の吸着ノズル18の空気流量Q12を減算して算出することができる。以下、同様にして、最後に部品Pを装着する吸着ノズル18まで空気流量QPの変化量ΔQPを算出する。 The flow rate calculation unit 512 calculates a change amount ΔQP of the air flow rate QP from when one suction nozzle 18 of the plurality of suction nozzles 18 mounts the component P to when the next suction nozzle 18 mounts the component P. . However, the amount of change ΔQ11 of the suction nozzle 18 with the nozzle number N1 is an air flow rate Q11. For example, the change amount ΔQ12 of the suction nozzle 18 with the nozzle number N2 can be calculated by subtracting the air flow rate Q11 of the suction nozzle 18 with the nozzle number N1 from the air flow rate Q12 of the suction nozzle 18 with the nozzle number N2. The amount of change ΔQ13 of the suction nozzle 18 having the nozzle number N3 can be calculated by subtracting the air flow rate Q12 of the suction nozzle 18 having the nozzle number N2 from the air flow rate Q13 of the suction nozzle 18 having the nozzle number N3. Thereafter, similarly, the change amount ΔQP of the air flow rate QP is calculated up to the suction nozzle 18 to which the component P is finally mounted.
 装着異常検出部515は、流量算出部512によって算出される吸着ノズル18の空気流量QPの変化量ΔQPが所定閾値未満であるか否かを判断する。例えば、ノズル番号N3の空気流量QPの変化量ΔQ13は所定閾値以上であるとする。これに対して、ノズル番号N4の空気流量QPの変化量ΔQ14は、同図に示すように変化量ΔQ13と比べて小さく、所定閾値未満であるとする。この場合、装着異常検出部515は、ノズル番号N4の吸着ノズル18が装着異常であると判断する。同様にして、装着異常検出部515は、すべての吸着ノズル18について、空気流量QPの変化量ΔQPが所定閾値未満であるか否かを判断して、装着異常の有無を検出する。 The mounting abnormality detection unit 515 determines whether or not the change amount ΔQP of the air flow rate QP of the suction nozzle 18 calculated by the flow rate calculation unit 512 is less than a predetermined threshold value. For example, it is assumed that the change amount ΔQ13 of the air flow rate QP of the nozzle number N3 is equal to or greater than a predetermined threshold value. On the other hand, the change amount ΔQ14 of the air flow rate QP of the nozzle number N4 is smaller than the change amount ΔQ13 as shown in FIG. In this case, the mounting abnormality detection unit 515 determines that the suction nozzle 18 with the nozzle number N4 has a mounting abnormality. Similarly, the mounting abnormality detection unit 515 determines whether or not the change amount ΔQP of the air flow rate QP is less than a predetermined threshold for all the suction nozzles 18 to detect the presence or absence of mounting abnormality.
 なお、所定閾値は、部品Pの持ち帰りなどの装着異常がなく部品Pをプリント基板に装着するときに許容されるエアーのリーク流量であり、予めシミュレーション、実機による測定等によって導出することができる。所定閾値は、制御装置51のメモリに記憶されている。装着異常検出部515によって装着異常が検出されると、実装制御部511は、部品装着ヘッド10を停止させる。なお、部品装着ヘッド10の移動速度を低下させて、他の部品Pの装着を継続することもできる。 The predetermined threshold value is an air leak flow rate that is allowed when the component P is mounted on the printed circuit board without mounting abnormality such as take-out of the component P, and can be derived in advance by simulation, measurement by an actual machine, or the like. The predetermined threshold is stored in the memory of the control device 51. When a mounting abnormality is detected by the mounting abnormality detection unit 515, the mounting control unit 511 stops the component mounting head 10. Note that the moving speed of the component mounting head 10 can be reduced to continue mounting other components P.
 本実施形態では、部品装着ヘッド10は、負圧源14aと各吸着ノズル18とを連通する負圧分岐流路14bの負圧源14a側に負圧源14aに吸入される空気流量QNを測定する流量センサ100を有している。そして、吸着異常検出部514は、負圧源14a側の空気流量QNの変化量ΔQNから部品Pの吸着異常を検出する。部品Pが安定した状態で吸着ノズル18に吸着されている場合は、吸着ノズル18の先端部18aの吸入口は部品Pによって適切に塞がれるので、空気流量QNの変化量ΔQNは小さくなる。逆に、吸着ノズル18に対して部品Pが不安定な状態で吸着されている場合は、吸着ノズル18の先端部18aの吸入口と部品Pとの間に間隙が生じて、空気流量QNの変化量ΔQNは大きくなる。つまり、吸着異常検出部514は、空気流量QNの変化量ΔQNから部品Pの吸着異常を検出することができるので、部品Pの吸着状態が安定しているか否かの判断が容易である。 In the present embodiment, the component mounting head 10 measures the air flow rate QN sucked into the negative pressure source 14a on the negative pressure source 14a side of the negative pressure branch flow path 14b communicating with the negative pressure source 14a and each suction nozzle 18. The flow rate sensor 100 is provided. Then, the adsorption abnormality detection unit 514 detects an adsorption abnormality of the component P from the change amount ΔQN of the air flow rate QN on the negative pressure source 14a side. When the component P is adsorbed by the adsorption nozzle 18 in a stable state, the suction port of the tip end portion 18a of the adsorption nozzle 18 is appropriately blocked by the component P, so that the change amount ΔQN of the air flow rate QN becomes small. Conversely, when the component P is adsorbed in an unstable state with respect to the suction nozzle 18, a gap is generated between the suction port of the tip end portion 18a of the suction nozzle 18 and the component P, and the air flow rate QN The change amount ΔQN increases. That is, since the adsorption abnormality detection unit 514 can detect the adsorption abnormality of the component P from the change amount ΔQN of the air flow rate QN, it is easy to determine whether or not the adsorption state of the component P is stable.
 また、吸着異常検出部514は、複数の吸着ノズル18のうちの一の吸着ノズル18が部品Pを吸着してから次の吸着ノズル18が部品Pを吸着するまでの空気流量QNの変化量ΔQNが所定閾値を超えているときに吸着異常であると判断するので、すでに部品Pを吸着している吸着ノズル18のエアーのリーク状態に依存することなく、吸着異常を検出することができる。そのため、部品Pの吸着異常を高精度に検出することができる。 Further, the suction abnormality detection unit 514 has a change amount ΔQN of the air flow rate QN from when one suction nozzle 18 of the plurality of suction nozzles 18 sucks the component P to when the next suction nozzle 18 sucks the component P. Therefore, the suction abnormality can be detected without depending on the air leak state of the suction nozzle 18 that has already sucked the component P. Therefore, the adsorption abnormality of the component P can be detected with high accuracy.
 さらに、吸着異常検出部514は、部品認識用カメラ21によって撮像される部品Pの吸着状態に基づいて吸着異常であるか否かを判断する。そのため、部品Pが正規の吸着姿勢で吸着ノズル18に吸着されているか否かを認識することができ、吸着異常の検出精度を向上させることができる。 Further, the suction abnormality detection unit 514 determines whether or not there is a suction abnormality based on the suction state of the component P imaged by the component recognition camera 21. Therefore, it can be recognized whether or not the component P is attracted to the suction nozzle 18 in the normal suction posture, and the detection accuracy of the suction abnormality can be improved.
 本実施形態では、部品装着ヘッド10は、正圧源14dと各吸着ノズル18とを連通する正圧分岐流路14eの正圧源14d側に正圧源14dから供給される空気流量QPを測定する流量センサ101を有している。そして、装着異常検出部515は、正圧源14d側の空気流量QPの変化量ΔQPから部品Pの装着異常を検出する。部品Pがプリント基板に装着された場合、部品Pを装着した吸着ノズル18の吸入口は部品Pを吸着していないので、正圧源14d側の空気流量QPの変化量ΔQPは大きくなる。逆に、部品Pの持ち帰りなどの装着異常が生じると、吸着ノズル18の吸入口は部品Pによって塞がれているので、正圧源14d側の空気流量QPの変化量ΔQPは小さくなる。 In the present embodiment, the component mounting head 10 measures the air flow rate QP supplied from the positive pressure source 14d to the positive pressure source 14d side of the positive pressure branch flow path 14e that communicates the positive pressure source 14d and each suction nozzle 18. A flow sensor 101 is provided. Then, the mounting abnormality detection unit 515 detects the mounting abnormality of the component P from the change amount ΔQP of the air flow rate QP on the positive pressure source 14d side. When the component P is mounted on the printed circuit board, the suction port 18 of the suction nozzle 18 mounted with the component P does not suck the component P, so the change amount ΔQP of the air flow rate QP on the positive pressure source 14d side becomes large. On the other hand, when a mounting abnormality such as take-back of the part P occurs, the suction port of the suction nozzle 18 is blocked by the part P, so the change amount ΔQP of the air flow rate QP on the positive pressure source 14d side becomes small.
 したがって、装着異常検出部515は、正圧源14d側の空気流量QPの変化量ΔQPから部品Pの装着異常を検出することができ、流量センサ101下流側のエアー経路の影響を受けることなく、部品Pの装着異常を検出することができる。そのため、部品Pの装着異常を高精度に検出することができる。また、正圧源14d側に設けられる流量センサ101を用いて装着異常を検出するので、吸着ノズル18の先端部18aを撮像して部品Pの装着異常を検出する場合と比べて、部品実装機1を小型化、低コスト化することができる。 Therefore, the mounting abnormality detection unit 515 can detect the mounting abnormality of the component P from the change amount ΔQP of the air flow rate QP on the positive pressure source 14d side, and is not affected by the air path on the downstream side of the flow sensor 101. An abnormal mounting of the component P can be detected. Therefore, the mounting abnormality of the component P can be detected with high accuracy. Further, since the mounting abnormality is detected using the flow rate sensor 101 provided on the positive pressure source 14d side, the component mounting machine is compared with the case where the front end portion 18a of the suction nozzle 18 is imaged to detect the mounting abnormality of the component P. 1 can be reduced in size and cost.
 本実施形態では、部品装着ヘッド10は、複数の吸着ノズル18が鉛直軸線ALと同芯の円周上において回動可能に保持されているロータリヘッドである。ロータリヘッドにおいて、吸着異常検出部514は、空気流量QNの変化量ΔQNから部品Pの吸着異常を検出することができ、部品Pの吸着異常を高精度に検出することができる。また、本実施形態では、負圧分岐流路14bの負圧源14a側に流量センサ100が1つ設けられているので、吸着ノズル18の各先端部18aにそれぞれ流量センサ100を設ける場合と比べて、部品実装機1を低コスト化することができる。 In this embodiment, the component mounting head 10 is a rotary head in which a plurality of suction nozzles 18 are rotatably held on a circumference concentric with the vertical axis AL. In the rotary head, the suction abnormality detection unit 514 can detect the suction abnormality of the component P from the change amount ΔQN of the air flow rate QN, and can detect the suction abnormality of the component P with high accuracy. Further, in the present embodiment, since one flow sensor 100 is provided on the negative pressure source 14a side of the negative pressure branch flow path 14b, it is compared with the case where the flow sensor 100 is provided at each tip 18a of the suction nozzle 18. Thus, the cost of the component mounter 1 can be reduced.
 また、装着異常検出部515は、複数の吸着ノズル18のうちの一の吸着ノズル18が部品Pを装着してから次の吸着ノズル18が部品Pを装着するまでの正圧源14d側の空気流量QPの変化量ΔQPが所定閾値未満のときに部品Pの装着異常であると判断するので、すでに部品Pを装着済みの吸着ノズル18のエアーのリーク状態に依存することなく、装着異常を検出することができる。そのため、ロータリヘッドにおいて、部品Pの装着異常を高精度に検出することができる。 In addition, the mounting abnormality detection unit 515 detects the air on the positive pressure source 14d side from when one suction nozzle 18 of the plurality of suction nozzles 18 mounts the component P to when the next suction nozzle 18 mounts the component P. When the change amount ΔQP of the flow rate QP is less than the predetermined threshold value, it is determined that the component P is abnormally mounted. Therefore, the abnormal component is detected without depending on the air leak state of the suction nozzle 18 having the component P already mounted. can do. Therefore, in the rotary head, the mounting abnormality of the component P can be detected with high accuracy.
 (3)その他
 本発明は上記し且つ図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施することができる。例えば、本実施形態では、吸着異常検出部514は、先行位置側面画像77aおよび後行位置側面画像77bの2つの側面画像を用いて、部品Pの吸着異常を検出したが、吸着異常検出部514は、1つの側面画像を用いて部品Pの吸着異常を検出することもできる。また、吸着異常検出部514は、3つ以上の側面画像を用いて部品Pの吸着異常を検出することもできる。
(3) Others The present invention is not limited to the embodiment described above and shown in the drawings, and can be implemented with appropriate modifications within a range not departing from the gist. For example, in the present embodiment, the suction abnormality detection unit 514 detects the suction abnormality of the component P using the two side images of the preceding position side image 77a and the subsequent position side image 77b. Can also detect a suction abnormality of the component P using one side image. Further, the suction abnormality detection unit 514 can detect the suction abnormality of the component P using three or more side images.
1:部品実装機、
10:部品装着ヘッド、
100,101:流量センサ、
14a:負圧源、14b:負圧分岐流路、
14d:正圧源、14e:正圧分岐流路、
18:吸着ノズル、
21:部品認識用カメラ、
514:吸着異常検出部、
515:装着異常検出部
1: Component mounter,
10: component mounting head,
100, 101: flow sensor,
14a: negative pressure source, 14b: negative pressure branch flow path,
14d: positive pressure source, 14e: positive pressure branch flow path,
18: suction nozzle,
21: Camera for component recognition
514: Absorption abnormality detection unit,
515: Wearing abnormality detection unit

Claims (4)

  1.  複数の部品を吸着して基板に装着する複数の吸着ノズルを有する部品装着ヘッドと前記部品の吸着異常を検出する吸着異常検出部とを備える部品実装機であって、
     前記部品装着ヘッドは、負圧源と各前記吸着ノズルとを連通する分岐流路の前記負圧源側に前記負圧源に吸入される空気流量を測定する流量センサを有し、
     前記吸着異常検出部は、前記複数の吸着ノズルのうちの一の吸着ノズルが部品を吸着してから次の吸着ノズルが部品を吸着するまでの前記空気流量の変化量が所定閾値を超えているときに前記吸着異常であると判断することを特徴とする部品実装機。
    A component mounting machine comprising a component mounting head having a plurality of suction nozzles for sucking and mounting a plurality of components on a substrate, and a suction abnormality detection unit for detecting a suction abnormality of the component,
    The component mounting head has a flow rate sensor that measures a flow rate of air sucked into the negative pressure source on the negative pressure source side of a branch flow path that communicates the negative pressure source with each of the suction nozzles.
    In the suction abnormality detection unit, the amount of change in the air flow rate from when one suction nozzle of the plurality of suction nozzles picks up a component until the next suction nozzle picks up the component exceeds a predetermined threshold. A component mounter characterized in that it is sometimes determined that the adsorption is abnormal.
  2.  前記複数の吸着ノズルの先端部にそれぞれ吸着される前記部品を撮像する部品認識用カメラをさらに備え、
     前記吸着異常検出部は、前記撮像される前記部品の吸着状態に基づいて前記吸着異常であるか否かを判断する請求項1に記載の部品実装機。
    Further comprising a component recognition camera that images each of the components sucked at the tip portions of the plurality of suction nozzles,
    The component mounting machine according to claim 1, wherein the suction abnormality detection unit determines whether or not the suction abnormality is based on a suction state of the imaged component.
  3.  複数の部品を吸着して基板に装着する複数の吸着ノズルを有する部品装着ヘッドと前記部品の装着異常を検出する装着異常検出部とを備える部品実装機であって、
     前記部品装着ヘッドは、正圧源と各前記吸着ノズルとを連通する分岐流路の前記正圧源側に前記正圧源から供給される空気流量を測定する流量センサを有し、
     前記装着異常検出部は、前記複数の吸着ノズルのうちの一の吸着ノズルが部品を装着してから次の吸着ノズルが部品を装着するまでの前記空気流量の変化量が所定閾値未満のときに前記装着異常であると判断することを特徴とする部品実装機。
    A component mounting machine comprising a component mounting head having a plurality of suction nozzles for sucking and mounting a plurality of components on a substrate, and a mounting abnormality detection unit for detecting mounting abnormality of the component,
    The component mounting head has a flow sensor that measures the flow rate of air supplied from the positive pressure source to the positive pressure source side of the branch flow path that communicates the positive pressure source and each of the suction nozzles.
    When the amount of change in the air flow from when one suction nozzle of the plurality of suction nozzles mounts a component to when the next suction nozzle mounts the component is less than a predetermined threshold, the mounting abnormality detection unit A component mounter that determines that the mounting abnormality has occurred.
  4.  前記部品装着ヘッドは、前記複数の吸着ノズルが軸線と同芯の円周上において回動可能に保持されているロータリヘッドである請求項1~3のいずれか一項に記載の部品実装機。 4. The component mounting machine according to claim 1, wherein the component mounting head is a rotary head in which the plurality of suction nozzles are rotatably held on a circumference concentric with an axis.
PCT/JP2012/058436 2012-03-29 2012-03-29 Part mounting device WO2013145228A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/058436 WO2013145228A1 (en) 2012-03-29 2012-03-29 Part mounting device
JP2014507194A JP5813210B2 (en) 2012-03-29 2012-03-29 Component mounter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058436 WO2013145228A1 (en) 2012-03-29 2012-03-29 Part mounting device

Publications (1)

Publication Number Publication Date
WO2013145228A1 true WO2013145228A1 (en) 2013-10-03

Family

ID=49258592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058436 WO2013145228A1 (en) 2012-03-29 2012-03-29 Part mounting device

Country Status (2)

Country Link
JP (1) JP5813210B2 (en)
WO (1) WO2013145228A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117819A (en) * 2017-12-26 2019-07-18 パナソニックIpマネジメント株式会社 Component mounting device and manufacturing method of mounting substrate
WO2019193705A1 (en) * 2018-04-05 2019-10-10 株式会社Fuji Threshold changing method and inspection device
JP2020013819A (en) * 2018-07-13 2020-01-23 ヤマハ発動機株式会社 Component mounting apparatus
EP3589106A4 (en) * 2017-02-23 2020-03-04 Fuji Corporation Component mounting device
CN111108821A (en) * 2017-09-28 2020-05-05 株式会社富士 Component mounting machine
CN111788035A (en) * 2018-02-26 2020-10-16 环球仪器公司 Dispensing head, nozzle and method
US10935150B2 (en) 2016-01-19 2021-03-02 Fuji Corporation Component mounter
US11375651B2 (en) 2018-02-26 2022-06-28 Universal Instruments Corporation Dispensing head, nozzle and method
US11432445B2 (en) * 2016-12-02 2022-08-30 Fuji Corporation Substrate working machine that selects which lifting and lowering section to pick up a component
WO2023032073A1 (en) * 2021-09-01 2023-03-09 株式会社Fuji Mounting device, mounting system, and setting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090201A1 (en) * 2015-11-27 2017-06-01 富士機械製造株式会社 Work device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009166A (en) * 2002-06-04 2004-01-15 Yamatake Corp Negative pressure suction device and suction confirmation sensor
JP2009188052A (en) * 2008-02-04 2009-08-20 Yamaha Motor Co Ltd Electronic component transferring apparatus
JP2011066205A (en) * 2009-09-17 2011-03-31 Hitachi High-Tech Instruments Co Ltd Electronic component attaching device and electronic component attaching method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846320B2 (en) * 2002-01-29 2006-11-15 松下電器産業株式会社 Electronic component mounting apparatus and air blow circuit abnormality detection method in electronic component mounting apparatus
JP2006100594A (en) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd Component mounting method and component mounting apparatus
JP4821246B2 (en) * 2005-10-06 2011-11-24 パナソニック株式会社 Electronic component mounting method
JP4728286B2 (en) * 2007-06-13 2011-07-20 ヤマハ発動機株式会社 Surface mount machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009166A (en) * 2002-06-04 2004-01-15 Yamatake Corp Negative pressure suction device and suction confirmation sensor
JP2009188052A (en) * 2008-02-04 2009-08-20 Yamaha Motor Co Ltd Electronic component transferring apparatus
JP2011066205A (en) * 2009-09-17 2011-03-31 Hitachi High-Tech Instruments Co Ltd Electronic component attaching device and electronic component attaching method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10935150B2 (en) 2016-01-19 2021-03-02 Fuji Corporation Component mounter
US11432445B2 (en) * 2016-12-02 2022-08-30 Fuji Corporation Substrate working machine that selects which lifting and lowering section to pick up a component
US11419251B2 (en) 2017-02-23 2022-08-16 Fuji Corporation Component mounting device
EP3589106A4 (en) * 2017-02-23 2020-03-04 Fuji Corporation Component mounting device
CN111108821A (en) * 2017-09-28 2020-05-05 株式会社富士 Component mounting machine
CN111108821B (en) * 2017-09-28 2021-06-11 株式会社富士 Component mounting machine
JP7040001B2 (en) 2017-12-26 2022-03-23 パナソニックIpマネジメント株式会社 Manufacturing method of component mounting equipment and mounting board
JP2019117819A (en) * 2017-12-26 2019-07-18 パナソニックIpマネジメント株式会社 Component mounting device and manufacturing method of mounting substrate
CN111788035A (en) * 2018-02-26 2020-10-16 环球仪器公司 Dispensing head, nozzle and method
US11375651B2 (en) 2018-02-26 2022-06-28 Universal Instruments Corporation Dispensing head, nozzle and method
US11382248B2 (en) 2018-02-26 2022-07-05 Universal Instruments Corporation Dispensing head
US11412646B2 (en) 2018-02-26 2022-08-09 Universal Instruments Corporation Spindle bank, pick-and-place machine and method of assembly
US11464146B2 (en) * 2018-02-26 2022-10-04 Universal Instruments Corporation Dispensing head, nozzle and method
US11464147B2 (en) 2018-02-26 2022-10-04 Universal Instruments Corporation Spindle module, pick-and-place machine and method of assembly
WO2019193705A1 (en) * 2018-04-05 2019-10-10 株式会社Fuji Threshold changing method and inspection device
JP7068081B2 (en) 2018-07-13 2022-05-16 ヤマハ発動機株式会社 Component mounting device
JP2020013819A (en) * 2018-07-13 2020-01-23 ヤマハ発動機株式会社 Component mounting apparatus
WO2023032073A1 (en) * 2021-09-01 2023-03-09 株式会社Fuji Mounting device, mounting system, and setting method

Also Published As

Publication number Publication date
JP5813210B2 (en) 2015-11-17
JPWO2013145228A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5813210B2 (en) Component mounter
JP5014083B2 (en) Side image acquisition device for suction nozzle and parts to be sucked
US10555448B2 (en) Component mounting device
JP4904237B2 (en) Substrate processing apparatus, surface mounting machine, printing machine, inspection machine, and coating machine
US10492350B2 (en) Electronic component mounting method and electronic component mounting apparatus
JP2001345596A (en) Electrical component attaching apparatus
WO2017022098A1 (en) Component mounting apparatus
JP6717816B2 (en) Component mounter
JP2001345599A (en) Electrical component loading method, electrical component handling method, and electrical component loading equipment
JP5971992B2 (en) Component mounting device
JP2015216175A (en) Electronic component mounting device
JP7213920B2 (en) Mounting machine
JP6731420B2 (en) Work equipment
JP5800376B1 (en) Electronic component conveyor
JP6475165B2 (en) Mounting device
WO2019064449A1 (en) Component mounting machine
JP6673902B2 (en) Component mounting machine
JP5615092B2 (en) Electronic component mounting device
JP5971930B2 (en) Electronic component mounting equipment
WO2019012576A1 (en) Image pickup device, surface mounting machine, and inspection device
CN114073176B (en) Component mounting machine and substrate alignment system
JP3997092B2 (en) Electronic circuit component mounting machine
JP7003214B2 (en) Parts mounting machine
JPWO2018138911A1 (en) Component mounting machine, component adsorption method, nozzle arrangement method, and component supply device arrangement method
WO2022185428A1 (en) Substrate transfer apparatus and substrate transfer method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873259

Country of ref document: EP

Kind code of ref document: A1