WO2013145132A1 - 半導体発光素子用の測定装置 - Google Patents

半導体発光素子用の測定装置 Download PDF

Info

Publication number
WO2013145132A1
WO2013145132A1 PCT/JP2012/057987 JP2012057987W WO2013145132A1 WO 2013145132 A1 WO2013145132 A1 WO 2013145132A1 JP 2012057987 W JP2012057987 W JP 2012057987W WO 2013145132 A1 WO2013145132 A1 WO 2013145132A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting element
led
unit
light emitting
Prior art date
Application number
PCT/JP2012/057987
Other languages
English (en)
French (fr)
Inventor
望月 学
昭一 藤森
Original Assignee
パイオニア株式会社
株式会社パイオニアFa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 株式会社パイオニアFa filed Critical パイオニア株式会社
Priority to JP2014507101A priority Critical patent/JP5813861B2/ja
Priority to PCT/JP2012/057987 priority patent/WO2013145132A1/ja
Priority to CN201280068969.1A priority patent/CN104094091B/zh
Publication of WO2013145132A1 publication Critical patent/WO2013145132A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0266Field-of-view determination; Aiming or pointing of a photometer; Adjusting alignment; Encoding angular position; Size of the measurement area; Position tracking; Photodetection involving different fields of view for a single detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0425Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0289Field-of-view determination; Aiming or pointing of a spectrometer; Adjusting alignment; Encoding angular position; Size of measurement area; Position tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/504Goniometric colour measurements, for example measurements of metallic or flake based paints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/06Restricting the angle of incident light
    • G01J2001/067Restricting the angle of incident light for angle scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4247Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources
    • G01J2001/4252Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources for testing LED's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the present invention relates to a measuring apparatus for measuring light from a semiconductor light emitting element such as an LED.
  • Patent Document 1 and Patent Document 2 disclose a technique of measuring one place at a time in order to measure a distribution of light distribution intensity (light distribution intensity distribution), which is an intensity of light according to an angle from a light emission central axis.
  • Patent Document 3 discloses a technique for simultaneously measuring a plurality of locations in order to measure the light distribution intensity distribution.
  • Patent Document 4 discloses a technique for measuring the total light emission amount.
  • the present invention has been made in view of the above problems, and an example of the object thereof is to provide a measurement device for a semiconductor light emitting element capable of simultaneously measuring the wavelength of each angle and the light emission amount up to that angle. There is.
  • the measuring device for a semiconductor light emitting element includes a light receiving unit that receives light emitted from the semiconductor light emitting element, a distance changing unit that can change a distance between the semiconductor light emitting element and the light receiving unit, and the semiconductor light emitting element.
  • a measurement unit capable of measuring the wavelength or intensity of light in one direction among the light emitted from the light source, and the measurement unit has an incident surface on which light emitted from the semiconductor light emitting element is incident, and the measurement unit Even if the distance between the semiconductor light emitting element and the light receiving portion is changed by the distance changing means, the light of the outermost peripheral line of the light received by the light receiving portion is received.
  • FIG. It is explanatory drawing of the light emission condition of LED in embodiment of this invention. It is explanatory drawing about the light distribution intensity distribution E.
  • FIG. It is explanatory drawing of the light reception module of the measuring apparatus for light emitting elements for test
  • FIG. 1 is an explanatory diagram of the light emission state of the LED 101 in the embodiment of the present invention.
  • an LED (Light Emitting Diode) 101 emits light from a light emitting surface 1011.
  • the normal line of the light emitting surface 1011 of the LED 101 is referred to as a light emission central axis LCA.
  • LCA light emission central axis
  • X axis the counterclockwise angle from the X axis on this plane.
  • the angle formed with the light emission central axis when ⁇ is fixed.
  • the intensity of light emitted from the light emitting surface 1011 of the LED 101 varies depending on the angle ⁇ from the light emission central axis, etc. (see also FIG. 2).
  • the intensity of light of the LED 101 is different for each ⁇ and ⁇ .
  • a diagram as shown in FIG. 1B is used.
  • FIG. 1C is a cross-sectional view at a position where the value of ⁇ is constant.
  • the light intensity at the same distance from the LED 101 and at the position of the angle ⁇ from the light emission center axis LCA is defined as the light distribution intensity E ( ⁇ ).
  • the light distribution intensity distribution E is illustrated with the light distribution intensity E ( ⁇ ) corresponding to each ⁇ .
  • a specific example of the light distribution intensity distribution E will be described with reference to FIG.
  • LED101 can be considered as a point substantially by measuring in the position far enough from LED101.
  • the LED 101 is assumed to be almost a dot. This is because the LED 101 is usually very small compared to the photodetector 105 and can be assumed in this way.
  • FIG. 2 is an explanatory diagram of the light distribution intensity distribution E.
  • the light distribution intensity distribution E is the intensity of light at each ⁇ at a constant ⁇ angle at a position where the distance r from the LED 101 is constant.
  • the LED 101 usually has a different light distribution intensity distribution E for each LED 101 due to an error in the manufacturing process.
  • the different LEDs 101 may include the cos-type LED 101 in FIG. 2B and the donut-type LED 101 in FIG.
  • the cos-type and donut-type LEDs 101 are merely examples, and are not intended to limit the LEDs 101 having these two characteristics to the measurement target.
  • FIG. 3 is an explanatory diagram of the light receiving module 1 of the measuring device 3 for the light emitting element for inspecting the LED 101 in the embodiment. More specifically, FIG. 3 is an apparatus capable of simultaneously measuring the total amount of light emission up to a predetermined angle of the LED 101 and the wavelength of light (light intensity (light distribution intensity E ( ⁇ )) at the predetermined angle. It is explanatory drawing of the light reception module 1 of a certain measuring apparatus 3.
  • FIG. 3 is an explanatory diagram of the light receiving module 1 of the measuring device 3 for the light emitting element for inspecting the LED 101 in the embodiment. More specifically, FIG. 3 is an apparatus capable of simultaneously measuring the total amount of light emission up to a predetermined angle of the LED 101 and the wavelength of light (light intensity (light distribution intensity E ( ⁇ )) at the predetermined angle. It is explanatory drawing of the light reception module 1 of a certain measuring apparatus 3.
  • FIG. 3 is an explanatory diagram of the light receiving module 1 of the measuring device 3 for the light emitting element for inspecting the LED 101 in the
  • the light receiving module 1 of FIG. 3 is used to obtain data for measuring and inspecting the LED 101.
  • the configuration of the light receiving module 1 of FIG. 3 will be described.
  • the light receiving module 1 includes a table 102 b (sample mounting table), a photodetector 105, a holder 107, a signal line 111, an amplifier 113, a communication line 115, and a probe needle 109 in this embodiment.
  • the light receiving module 1 has a measuring unit 120.
  • the measurement unit 120 includes a light guide unit 117, an optical fiber 119, and a spectroscope 121.
  • the light guide unit 117 has an incident surface 117 a on which light from the LED 101 is received and light enters the light guide unit 117. The light incident from the incident surface 117 a is guided in parallel with the longitudinal direction of the light guide unit 117. A method of guiding light in the longitudinal direction of the light guide unit 117 will be described with reference to FIG.
  • the optical fiber 119 guides the light guided by the light guide unit 117 to the spectroscope 121.
  • the spectroscope 121 measures at least one of the light intensity and the light wavelength. Note that all of these are not essential components of the light receiving module 1, and it is sufficient that at least the photodetector 105 and the light guide unit 117 are provided.
  • a plurality of LEDs 101 are arranged on a horizontally installed table 102b.
  • a holder 107 is disposed at a position facing the table 102b with a space therebetween.
  • a photo detector 105 is disposed inside the holder 107.
  • the LED 101, the table 102b, and the photodetector 105 are arranged so as to be parallel to each other.
  • the probe needle 109 is in contact with the electrode of the LED 101 and applies a voltage to the LED 101 when measuring the light reception state and measuring the electrical characteristics.
  • the probe needle 109 may move while the table 102b and the LED 101 are fixed, and the probe needle 109 and the LED 101 may contact each other.
  • the table 102b and the LED 101 may move while the probe needle 109 is fixed, and the probe needle 109 and the LED 101 may contact each other.
  • the probe needle 109 is connected to the electrical characteristic measuring unit 125.
  • the probe needle 109 extends radially in a direction perpendicular to the normal line of the LED 101 substantially parallel to the light emitting surface 1011 of the LED 101.
  • the holder 107 has a cylindrical side surface portion 107b.
  • the photodetector 105 is disposed in a hollow space formed by the inner peripheral surface of the side surface portion 107b.
  • a circular opening 107c that forms a cylindrical hollow portion is formed at the center of the shielding portion 107a. Due to the circular opening 107c, the photodetector 105 can receive the light emitted from the LED 101.
  • a plurality of LEDs 101 are arranged on a sheet 102c arranged on the table 102b.
  • the total amount of light emission up to a predetermined angle and the wavelength (intensity) of light at the predetermined angle are determined at high speed (simultaneously) and with accuracy. It aims to get well.
  • the photodetector 105 (holder 107) is configured to be movable in a direction G that is close to the LED 101 and a direction F that is separated from the LED 101. However, instead of the photo detector 105 moving, the LED 101 (table 102b) may move. Means for moving the photodetector 105 or the LED 101 to change the distance between the photodetector 105 and the LED 101 is referred to as distance changing means.
  • the incident surface 117a of the light guide unit 117 is held by the holding unit so as to be equidistant from the LED 101 to be measured. Moreover, this holding
  • the light guide unit 117 is arranged at a position different from the outermost peripheral line L of the light received by the photodetector 105, but the light guide unit 117 is located on the outermost peripheral line L as will be described later. It is appropriate to arrange in
  • a plurality of LEDs 101 are arranged on the sheet 102c.
  • the light guide unit 117 is also moved and rotated, so that the total amount of light emission up to a predetermined angle and the wavelength of light at the predetermined angle (light intensity (light distribution intensity E ( ⁇ )) can be measured simultaneously. Therefore, each measurement of the LED 101 can be performed continuously and at high speed.
  • FIG. 4 is an explanatory diagram of the outline of the measuring device 3 for the LED 101.
  • the measurement device 3 for the LED 101 includes an electrical characteristic measurement unit 125, a storage unit 161, an output unit 163, and a calculation unit 151.
  • the light receiving module 1 includes a table 102b (sample mounting table), a photodetector 105, a holder 107, a signal line 111, an AMP 113, a communication line 115, an optical fiber 119, and a spectrometer 121.
  • the electrical characteristic measurement unit 125 includes an HV unit 153, an ESD unit 155, a switching unit 157, and a positioning unit 159.
  • the photodetector 105 receives the light emitted from the LED 101. Then, the electrical signal (received light amount information) output according to the amount obtained by adding all the intensities of the light received by the photodetector 105 is output to the AMP 113 as an analog signal. It is also possible to calculate the light distribution intensity distribution using the received light amount information output from the photodetector 105.
  • the AMP 113 amplifies the received light amount information and converts it into a voltage value that can be detected by a calculation unit 151 described later.
  • the optical fiber 119 is connected to a spectroscope 121 that can measure the wavelength of the guided light and the intensity of the light (light distribution intensity E ( ⁇ )). Then, the spectroscope 121 outputs information on the wavelength of light and the light distribution intensity E ( ⁇ ) to the calculation unit 151.
  • the probe needle 109 has a function of applying a voltage for causing the LED 101 to emit light by physically contacting the surface of the LED 101.
  • the probe needle 109 is positioned and fixed by a positioning unit 159. If the positioning unit 159 is of a type in which the table 102b moves, it has a function of holding the tip position of the probe needle 109 at a fixed position. Conversely, if the positioning unit 159 is of a type in which the probe needle 109 moves, the tip position of the probe needle 109 is moved to a predetermined position on the table 102b on which the LED 101 is placed, and then moved to that position. Has the function of holding.
  • the HV unit 153 has a role of detecting various characteristics of the LED 101 with respect to the rated voltage by applying the rated voltage. Normally, the photodetector 105 measures the light emitted from the LED 101 in a state where the voltage from the HV unit 153 is applied. Various characteristic information detected by the HV unit 153 is output to the calculation unit 151.
  • the ESD unit 155 is a unit that inspects whether or not the LED 101 is electrostatically discharged by applying a large voltage to the LED 101 for a moment to cause electrostatic discharge.
  • the electrostatic breakdown information detected by the ESD unit 155 is output to the calculation unit 151.
  • the switching unit 157 switches between the HV unit 153 and the ESD unit 155. That is, the voltage applied to the LED 101 via the probe needle 109 is changed by the switching unit 157. And by this change, the inspection item of LED101 is each changed to the detection of the various characteristics in a rated voltage, or the presence or absence of an electrostatic breakdown.
  • the calculation unit 151 includes the voltage output by the AMP 113, information on the wavelength and light distribution intensity of the light from the spectroscope 121, various electrical characteristic information detected by the HV unit 153, and electrostatic breakdown information detected by the ESD unit 155. Receive input. Then, the calculation unit 151 analyzes and sorts the characteristics of the LED 101 from these inputs.
  • FIG. 5 shows a method of measuring the light distribution intensity E ( ⁇ ) in the present embodiment.
  • the figure which moved the photodetector 105 to LED101 side by the distance change means is FIG.5 (b).
  • the holding unit holds the light guide unit 117 so that the distance between the incident surface 117a and the LED 101 is constant regardless of the distance of the photodetector 105.
  • the reason why the distance between the incident surface 117a and the LED 101 is constant will be described. This is because the light distribution intensity E ( ⁇ ) needs to be measured at the same distance from the LED 101 because the light intensity at the same point is the distance from the LED 101. But if this is correct
  • the light guide unit 117 is rotated by the holding unit. A specific rotation angle will be described with reference to FIG.
  • FIG. 6 is an explanatory diagram of the angle of the incident surface 117a when the light guide unit 117 is inclined.
  • the light guide 117 is inclined by ⁇ 4 with respect to the horizontal.
  • sin (90 ° ⁇ 3 + ⁇ 2 ⁇ 4) nsin ( ⁇ 2)
  • n is a relative refractive index of the light guide unit 117 with respect to the air.
  • ⁇ 2 which is the angle of the incident surface 117a
  • ⁇ 3 which is the angle of the incident surface 117a with respect to the normal line of the LED 101
  • ⁇ 4 which is the angle at which the light guide unit 117 is inclined with respect to the horizontal
  • the incident surface 117a is preferably subjected to APC (Angle Physical contact) polishing.
  • APC polishing is a polishing method in which an oblique convex spherical polishing surface is applied. By this APC polishing, reflection attenuation can be suppressed.
  • the measuring apparatus 3 for the LED 101 includes a photodetector 105 that receives light emitted from the LED 101 semiconductor light emitting element, distance changing means that can change the distance between the LED 101 and the photodetector 105, and light in one direction among the light emitted from the LED 101. And a measuring unit 120 capable of measuring the wavelength or intensity of the. Even if the distance between the LED 101 and the photodetector 105 is changed by the distance changing unit, the measuring unit 120 receives the light on the outermost peripheral line of the light received by the photodetector 105. Since it has such a configuration, it becomes possible to simultaneously measure the wavelength of each angle and the light emission amount up to that angle.
  • the measuring unit 120 has an incident surface 117a on which the light emitted from the LED 101 is incident.
  • the measuring unit 120 has a distance between the LED 101 and the incident surface 117a even if the distance between the LED 101 and the photodetector 105 is changed by the distance changing unit.
  • the incident surface 117a is formed so as not to change, and rotates as the distance between the LED 101 and the photodetector 105 changes by the distance changing means. Since it has such a structure, it becomes possible to measure the wavelength of each angle more reliably.
  • the measurement unit 120 can move on an equal distance around the LED 101. With such a configuration, it is possible to easily obtain the light distribution intensity E ( ⁇ ), which is the intensity of light at an equal distance.
  • the measuring unit 120 rotates to an angle that refracts incident light in a direction in which the light incident on the incident surface 117a is guided.
  • the measurement unit 120 can measure the intensity of light (light distribution intensity E ( ⁇ )) and / or the wavelength of light with higher accuracy.
  • the measurement unit 120 is disposed outside the range of light received by the photodetector 105. With such a configuration, the measurement unit 120 can perform measurement without affecting the measurement by the photodetector 105.
  • the LED 101 is a wafer-like LED 101. Since it has such a configuration, it is possible to perform measurement at high speed and continuously.
  • the distance changing means in the present invention may move on the photodetector 105 side or on the LED 101 side.
  • the photodetector 105 according to the embodiment is an example of a light receiving unit in the present invention. That is, the light receiving unit in the present invention may be any one as long as it can measure the light intensity.
  • the LED 101 is an example of a semiconductor light emitting element in the present invention. That is, the semiconductor light emitting element may be any element that emits light.
  • the light is not limited to visible light, and may be, for example, infrared rays or ultraviolet rays.
  • the emission center axis LCA is an axis that becomes the center of light when the semiconductor light emitting element emits light.
  • an example of the calculation unit is the calculation unit 151 of the embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Led Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 各角度の波長と発光量を同時に測定することが可能な半導体発光素子用の測定装置を提供する。 LED101用の測定装置3は、LED101用の測定装置3は、LED101半導体発光素子が放射する光を受光するフォトディテクタ105と、LED101とフォトディテクタ105との距離を変更可能な距離変更手段と、LED101が放射する光のうち一方向の光の波長又は強度を測定可能な測定部120と、を有し、測定部120は、距離変更手段によってLED101とフォトディテクタ105との距離が変化しても、フォトディテクタ105が受光する光の最外周ラインの光を受光する。

Description

半導体発光素子用の測定装置
 本発明は、LEDなどの半導体発光素子からの光を測定する測定装置に関する。
 特許文献1及び特許文献2には、発光中心軸からの角度に応じた光の強度である配光強度の分布(配光強度分布)を測定するために、1か所ずつ測定する技術が開示されている。
 また、特許文献3には、配光強度分布を測定するために、複数個所を同時に測定する技術が開示されている。
 さらに、特許文献4には、全発光量を測定する技術が開示されている。
特開平5―107107号公報 特開平8―114498号公報 特開2005―172665号公報 特開2008―76126号公報
 特許文献1~特許文献4のいずれの方法においても、各角度の波長の分布と発光量とを同時に測定することはできない。
 しかし、各角度の波長(若しくは、光の強度)とその角度までの発光量を同時に測定したいというニーズがある。
 本発明は、上記課題に鑑みてなされたものであり、その目的の一例は、各角度の波長とその角度までの発光量を同時に測定することが可能な半導体発光素子用の測定装置を提供することにある。
 本発明の半導体発光素子用の測定装置は、半導体発光素子が放射する光を受光する受光部と、前記半導体発光素子と前記受光部との距離を変更可能な距離変更手段と、前記半導体発光素子が放射する光のうち一方向の光の波長又は強度を測定可能な測定部と、を有し、前記測定部は前記半導体発光素子が放射した光が入射する入射面を有し、前記測定部は、前記距離変更手段によって前記半導体発光素子と前記受光部との距離が変化しても、前記受光部が受光する光の最外周ラインの光を受光する。
本発明の実施形態におけるLEDの発光状況の説明図である。 配光強度分布Eについての説明図である。 実施形態においてLEDの検査を行うための発光素子用の測定装置の受光モジュールの説明図である。 LED用の測定装置3の概要の説明図である。 本実施形態における、配光強度E(θ)の測定方法である。 導光部自体が傾いている場合の入射面の角度についての説明図である。
<実施形態>
 以下、本発明の実施形態を、図1を用いて詳細に説明する。
 図1は、本発明の実施形態におけるLED101の発光状況の説明図である。
 図1の(a)に記載されているように、LED(Light Emitting Diode)101は発光面1011から光を発光する。このLED101の発光面1011の法線を発光中心軸LCAという。また、発光面1011を含む平面上の、一方向を基準軸(X軸)とした場合に、この平面上のX軸からの反時計回りの角度をφとする。
 また、φを固定した場合における、発光中心軸となす角度をθと定義する。
 LED101の発光面1011から放射される光の強度は、発光中心軸からの角度θ等によって異なる(図2も参照のこと)。
 ところで、LED101の発光状況を測定したいというニーズが存在する。この発光状況とは、例えば、発光量、波長、光の強度の分布(=配光強度分布)の様子等である。
 この発光状況を知ることによって、そのLED101が各種の使用に適切であるか否かを判断することが可能となる。
 さらに、LED101の発光状況を測定する際に、できるだけ高速で測定したいとのニーズも存在する。
 LED101の光の強度は、θ及びφ毎に異なる値となる。
 そのような、光の強度を視覚的に表わすために、図1(b)のような図が用いられる。
 この図1の(b)において、X軸とY軸との交点部分がθ=0°を表わしている。
 そして、円上の各点がθ=90°の各φの位置をそれぞれ表わしている。
 なお、図1の(c)は、φの値が一定の位置における断面図である。
 このような、図1において、LED101からの同一の距離、かつ、発光中心軸LCAからの角度θの位置における、光の強度を配光強度E(θ)と定義する。
 そして、この配光強度E(θ)を各θに応じて図示したものが配光強度分布Eである。配光強度分布Eの具体例は図2のところで説明する。
 なお、以上の説明は、LED101から十分に遠い位置で測定したことによって、LED101がほぼ点として考えることができるとして記載している。
 以後の説明も、特に記載のない限り、LED101がほぼ点であると仮定して記載している。なぜなら、LED101は通常、フォトディテクタ105と比較すると極めて小さいことから、このように仮定することができるからである。
 図2は、配光強度分布Eについての説明図である。
 図2の(a)は、図1の(c)と同じ図である。
 図2の(a)のように、配光強度分布Eとは、LED101からの距離rが一定の位置において、一定のφの角度での、各θにおける光の強度のことである。
 なお、LED101は通常、その製造工程の誤差等によってLED101毎に異なる配光強度分布Eを有する。
 この異なるLED101は、図2の(b)のcos型のLED101及び図2の(c)のドーナツ型のLED101が存在しうる。
 cos型及びドーナツ型のLED101は、あくまで例であり、この2つの特性を有するLED101を測定の対象に限定する趣旨ではない。もっとも、通常のLED101は、光のピークがcos型のLED101とθ=30°に光の強度のピークをもつドーナツ型のLED101の間の特性を持つことが多い。つまり、検査対象の通常のLED101は、θが0°~30°の範囲に光の強度のピークがあることが多い。
 図3は、実施形態においてLED101の検査を行うための発光素子用の測定装置3の受光モジュール1の説明図である。
 より具体的には、図3は、LED101の所定角度までの発光量の総量とこの所定角度における光の波長(光の強度(配光強度E(θ))を同時に測定することができる装置である測定装置3の受光モジュール1の説明図である。
 図3の受光モジュール1は、LED101の測定及び検査を行うためのデータを得るために用いられている。
 以下、図3の受光モジュール1の構成を説明する。
 図3のように、受光モジュール1は、本実施形態では、テーブル102b(試料設置台)、フォトディテクタ105、ホルダ107、信号線111、アンプ113、通信線115、プローブ針109を有している。
 また、受光モジュール1は、測定部120を有している。
 この測定部120は、導光部117、光ファイバ119及び分光器121を有している。
 導光部117は、LED101からの光を受けて、導光部117の内部に光が入射する入射面117aを有している。
 この入射面117aから入射した光は、導光部117の長手方向と平行に導光される。なお、導光部117の長手方向へ導光する方法については、図6において説明する。
 光ファイバ119は、この導光部117によって導光された光を、分光器121に導光する。
 分光器121は、少なくとも光の強度又は光の波長のいずれか一方の測定を行う。
 なお、この全てが受光モジュール1の必須の構成ではなく、少なくとも、フォトディテクタ105、導光部117を有していれば足りる。
 LED101は水平に設置されているテーブル102b上に複数個配置されている。
 このテーブル102bと対向する位置に、ホルダ107が、空間を隔てて配置されている。
 ホルダ107の内部には、フォトディテクタ105が配置されている。
 LED101、テーブル102b及びフォトディテクタ105は互いに平行となる様に配置されている。
 プローブ針109は、受光状況の測定及び電気特性測定時にはLED101の電極に接触して、電圧をLED101に印加する。
 テーブル102b及びLED101が固定されている状態でプローブ針109が移動して、プローブ針109とLED101とが接触してもよい。逆に、プローブ針109が固定されている状態でテーブル102b及びLED101が移動して、プローブ針109とLED101とが接触してもよい。
 また、プローブ針109は、電気特性計測部125と接続されている。
 プローブ針109は、LED101の発光面1011とほぼ平行に、LED101の法線と直角方向に放射状に延在している。
 ホルダ107は、円筒形状の側面部107bを有している。
 側面部107bは円筒形状を有し、θ=0°の方向に延在した形状を有している。
 遮蔽部107a及び側面部107bの中心はθ=0°の方向を有しており、LED101の発光面1011の発光中心軸と同一である。
 側面部107bの内周面が形成する中空空間に、フォトディテクタ105が配置されている。
 遮蔽部107aの中心部には、円柱形の中空部を形成する円形開口部107cが形成されている。この円形開口部107cがあることによって、LED101から放射された光をフォトディテクタ105が受光可能となっている。
 テーブル102b上に配置されたシート102cに複数のLED101が配設されている。
 なお、本実施形態では、このシート102c上に配置された複数のLED101について、所定角度までの発光量の総量、及び、この所定角度における光の波長(強度)を、高速に(同時に)かつ精度よく得ることを目的としている。
 フォトディテクタ105(ホルダ107)は、LED101に対して近接する方向G、及び、離間する方向Fに移動可能に構成される。
 もっとも、フォトディテクタ105が移動するのではなく、LED101(テーブル102b)が移動しても良い。
 このフォトディテクタ105又はLED101を移動させて、フォトディテクタ105とLED101との間の距離を変更する手段を距離変更手段という。
 導光部117の入射面117aは、測定対象のLED101から等距離になるように保持部によって保持される。
 また、この保持部は、導光部117を回転可能に保持している。
 具体的には、保持部は、導光部117をθ=90°側方向Aに移動可能であるし、導光部117をθ=0°側方向Bに移動可能である。
 また、保持部は、導光部117を時計回り方向C方向に回転可能であるし、導光部117を反時計回り方向Dに回転可能である。
 この保持部は、図示しないが、入射面117aを測定対象のLED101から等距離に、かつ、回転可能に保持できるものであればどのようなものであっても良い。
 なお、図3において、導光部117は、フォトディテクタ105が受光する光の最外周ラインLとは別の位置に配置しているが、後述するように、導光部117は最外周ラインL上に配置することが適切である。
 図3のように、LED101はシート102c上に複数個配置されている。このように複数個のLED101が配置されている場合には、この複数のLED101をできるだけ連続して高速に測定したいという要求がある。
 本実施形態では、フォトディテクタ105の移動に加えて、導光部117も移動・回転を行うことによって、所定角度までの発光量の総量と所定角度における光の波長(光の強度(配光強度E(θ))を同時に測定できる。
 そのため、連続してかつ高速にLED101の各測定を行うことが可能となる。
 図4は、LED101用の測定装置3の概要の説明図である。
 LED101の測定装置3は、受光モジュール1に加え、電気特性計測部125、記憶部161、出力部163及び演算部151を有している。
 なお、受光モジュール1は、本実施形態では、テーブル102b(試料設置台)、フォトディテクタ105、ホルダ107、信号線111、AMP113、通信線115、光ファイバ119及び分光器121を有している。
 もっとも、この全てがLED101の測定装置3の必須の構成ではなく、少なくとも、フォトディテクタ105、光ファイバ119及び分光器121を有していれば足りる。
 電気特性計測部125は、HVユニット153、ESDユニット155、切替えユニット157及び位置決めユニット159を有している。
 フォトディテクタ105は、LED101から放射された光を受光する。
 そして、フォトディテクタ105が受光した光の全ての強度を足した量に応じて出力された電気信号(受光光量情報)をアナログ信号として、AMP113に出力する。
 このフォトディテクタ105が出力する受光光量情報を用いて、配光強度分布を計算することも可能である。
 AMP113は、この受光光量情報を増幅して、後述する演算部151が検出可能な電圧値に変換する。
 また、光ファイバ119は、導光された光の波長及び光の強度(配光強度E(θ))を測定可能な分光器121に接続されている。
 そして、分光器121は、光の波長及び配光強度E(θ)の情報を、演算部151に出力する。
 プローブ針109は、LED101の表面に物理的に接触してLED101を発光させるための電圧を印加する機能を有している。
 また、プローブ針109は位置決めユニット159によって位置決め固定されている。
 この位置決めユニット159は、テーブル102bが移動する形式のものであれば、プローブ針109の先端位置を一定の位置に保持する機能を有する。逆に、この位置決めユニット159は、プローブ針109が移動する形式のものであれば、プローブ針109の先端位置をLED101が載置されるテーブル102b上の所定の位置に移動させ、その後その位置に保持する機能を有する。
 HVユニット153は、定格電圧を印加して、定格電圧に対するLED101での各種特性を検出する役割を有している。
 通常、このHVユニット153からの電圧の印加状態で、LED101が発光する光をフォトディテクタ105が測定を行う。
 HVユニット153が検出した各種特性情報は演算部151に出力される。
 ESDユニット155は、LED101に一瞬の間大きな電圧をかけて静電気放電させ静電気破壊されないか等の検査を行うユニットである。
 ESDユニット155が検出した静電破壊情報は演算部151に出力される。
 切替えユニット157は、HVユニット153とESDユニット155との切替えを行う。
 つまり、この切替えユニット157によって、プローブ針109を介してLED101に印加される電圧が変更される。そして、この変更によって、LED101の検査項目が、定格電圧での各種特性を検出、又は、静電破壊の有無を検出にそれぞれ変更される。
 演算部151は、AMP113によって出力された電圧、分光器121からの光の波長及び配光強度の情報、HVユニット153が検出した各種電気特性情報、ESDユニット155が検出した静電破壊情報、の入力を受ける。
 そして、演算部151は、これらの入力からLED101の特性を分析・分別を行う。
 図5は、本実施形態における、配光強度E(θ)の測定方法である。
 図5の(a)のように、フォトディテクタ105とLED101との間の距離をLAとしてθ=θcとなる位置において、光の波長及び配光強度E(θc)を測定している。
 そして、距離変更手段によって、フォトディテクタ105をLED101側に移動させた図が図5の(b)である。
 この場合には、フォトディテクタ105とLED101との間の距離をLBとしてθ=θDなる位置において、光の波長及び配光強度E(θD)を測定している。
 なお、フォトディテクタ105がどのような距離となっていても、入射面117aとLED101の距離が一定になるように保持部が導光部117を保持している。
 ここで、入射面117aとLED101の距離が一定とする理由を説明する。配光強度E(θ)は、LED101からの距離が同一の点における光の強度であるから、LED101から同一の距離で測定する必要があるからである。もっとも、これを補正するのであれば、必ずしも、入射面117aとLED101の距離が一定でなくても良い。
 また保持部は、導光部117がフォトディテクタ105での受光に影響の無い位置に保持する。
 具体的には、図5の(a)においてはθc=θAとなるように、導光部117を移動さる。図5の(b)においては、θD=θBとなるように、導光部117を移動させる。
 つまり、最外周ラインLの位置に導光部117を移動させる。
 この場合には、発光量を測定しつつそのθA又はθBでの光の波長(若しくは、光の強度)を測定することも可能となる。
 なお、導光部117の存在によって、フォトディテクタ105の測定結果に悪影響が無いかと疑問も生ずるが、導光部117(特に先端)は比較的細いため、フォトディテクタ105の受光には影響がほとんど生じない。
 また、導光部117も保持部によって回転される。具体的な回転の角度については、図6のところで説明する。
 図6は、導光部117自体が傾いている場合の入射面117aの角度についての説明図である。
 図6のように、導光部117が水平に対してθ4だけ傾いている場合である。
 この場合に、入射面117aに入射した光が導光部117の延在方向(導光方向)に進むためには、以下の式を満足する必要がある。
 sin(90°-θ3+θ2-θ4)=nsin(θ2)
 ここで、nは導光部117の空気に対する相対屈折率である。
 この式を満たすように入射面117aの角度であるθ2、LED101の法線に対する入射面117aの角度であるθ3及び導光部117が水平に対して傾いている角度であるθ4を選択すれば、導光部117を導光される光は導光部117の延在方向に真っ直ぐ伝播する事ができる。
 そして、導光部117に導光される光りが真っ直ぐに導光される事によって、確実に入射光を分光器121に導光することができる。
 つまり、より高精度で、LED101から放射されたθ3における光の波長(強度)を測定することが可能となる。
 入射面117aは、APC(Angle Physical contact)研磨を行うと好適である。
 ここで、APC研磨とは、斜め凸球面状研磨面を施した研磨方法である。このAPC研磨によって、反射減衰を抑えることが可能となる。
<実施形態の構成及び効果>
 LED101用の測定装置3は、LED101半導体発光素子が放射する光を受光するフォトディテクタ105と、LED101とフォトディテクタ105との距離を変更可能な距離変更手段と、LED101が放射する光のうち一方向の光の波長又は強度を測定可能な測定部120と、を有している。
 測定部120は、距離変更手段によってLED101とフォトディテクタ105との距離が変化しても、フォトディテクタ105が受光する光の最外周ラインの光を受光する。
 このような構成を有することから、各角度の波長とその角度までの発光量を同時に測定することが可能となる。
 測定部120はLED101が放射した光が入射する入射面117aを有し、測定部120は、距離変更手段によってLED101とフォトディテクタ105との距離が変化しても、LED101と入射面117aとの距離が変化しないように形成され、入射面117aは、距離変更手段によってLED101とフォトディテクタ105との距離が変化するのに伴い回転する。
 このような構成を有することから、各角度の波長をより確実に測定することが可能となる。
 測定部120は、LED101を中心にして等距離上を移動可能である。
 このような構成を有することから、等距離での光の強度である配光強度E(θ)を容易に得ることが可能となる。
 測定部120は、入射面117aに入射した光を導光する方向に、入射光を屈折させる角度に回転する。
 このような構成を有することから、測定部120は、より高精度での光の強度(配光強度E(θ))及び/又は光の波長を測定することが可能となる。
 測定部120は、フォトディテクタ105が受光する光の範囲外に配置される。
 このような構成を有することから、フォトディテクタ105による測定に影響を与えずに測定部120は測定することが可能となる。
 LED101はウエハ状のLED101である。
 このような構成を有することから、高速かつ連続して測定が可能となる。
<定義等>
 本発明における距離変更手段は、フォトディテクタ105側が移動しても良いし、LED101側が移動しても良い。
 また、実施形態のフォトディテクタ105は、本発明における受光部の一例である。つまり、本発明における受光部は、光の強度を測定可能なものであればどのようなものであっても良い。
 また、LED101は、本発明における半導体発光素子の一例である。つまり、半導体発光素子とは、光を発光する素子であればどのようなものであっても良い。ここで、光は可視光に限定されるものではなく、例えば、赤外線、紫外線等であってよい。
 本発明において発光中心軸LCAは、半導体発光素子が光を発する際に光の中心となる軸をいう。
 本発明において演算部の一例が、実施形態の演算部151である。
 1    受光モジュール
 3    測定装置
 101  LED(半導体発光素子)
 102b テーブル
 105  フォトディテクタ(受光部)
 151  演算部

Claims (6)

  1.  半導体発光素子が放射する光を受光する受光部と、
     前記半導体発光素子と前記受光部との距離を変更可能な距離変更手段と、
     前記半導体発光素子が放射する光のうち一方向の波長又は強度を測定可能な測定部と、を有し、
     前記測定部は前記半導体発光素子が放射した光が入射する入射面を有し、
     前記測定部は、
      前記距離変更手段によって前記半導体発光素子と前記受光部との距離が変化しても、
      前記受光部が受光する光の最外周ラインの光を受光する
     半導体発光素子用の測定装置。
  2.  前記測定部は、前記距離変更手段によって前記半導体発光素子と前記受光部との距離が変化しても、前記半導体発光素子と前記入射面との距離が変化しないように形成され、
     前記入射面は、前記距離変更手段によって前記半導体発光素子と前記受光部との距離が変化するのに伴い回転する
     請求項1に記載の半導体発光素子用の測定装置。
  3.  前記測定部は、前記半導体発光素子を中心にして等距離上を移動可能である
     請求項2に記載の半導体発光素子用の測定装置。
  4.  前記測定部は、
      前記入射面に入射した光を導光する方向に、入射光を屈折させる角度に回転する
     請求項3に記載の半導体発光素子用の測定装置。
  5.  前記測定部は、前記受光部が受光する光の範囲外に配置される
     請求項1~4いずれか1項に記載の半導体発光素子用の測定装置。
  6.  前記半導体発光素子はウエハ状のLEDである
     請求項1~5いずれか1項に記載の半導体発光素子用の測定装置。
     
PCT/JP2012/057987 2012-03-27 2012-03-27 半導体発光素子用の測定装置 WO2013145132A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014507101A JP5813861B2 (ja) 2012-03-27 2012-03-27 半導体発光素子用の測定装置および半導体発光素子用の測定方法
PCT/JP2012/057987 WO2013145132A1 (ja) 2012-03-27 2012-03-27 半導体発光素子用の測定装置
CN201280068969.1A CN104094091B (zh) 2012-03-27 2012-03-27 半导体发光元件用测定装置以及半导体发光元件用测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057987 WO2013145132A1 (ja) 2012-03-27 2012-03-27 半導体発光素子用の測定装置

Publications (1)

Publication Number Publication Date
WO2013145132A1 true WO2013145132A1 (ja) 2013-10-03

Family

ID=49258499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057987 WO2013145132A1 (ja) 2012-03-27 2012-03-27 半導体発光素子用の測定装置

Country Status (3)

Country Link
JP (1) JP5813861B2 (ja)
CN (1) CN104094091B (ja)
WO (1) WO2013145132A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211538A (ja) * 1986-03-12 1987-09-17 Oki Electric Ind Co Ltd 半導体発光素子の発光特性測定方法
JPH07201945A (ja) * 1993-12-28 1995-08-04 Ricoh Co Ltd 半導体検査装置
JPH09113411A (ja) * 1995-10-17 1997-05-02 Hitachi Cable Ltd 受光装置
JP2002005785A (ja) * 2000-06-26 2002-01-09 Matsushita Electric Works Ltd 赤外線モジュールの特性測定方法
JP2005283217A (ja) * 2004-03-29 2005-10-13 Technologue:Kk Led発光測定装置
JP2007019237A (ja) * 2005-07-07 2007-01-25 Tokyo Seimitsu Co Ltd 両面発光素子用プロービング装置
JP2008180661A (ja) * 2007-01-26 2008-08-07 Shin Etsu Handotai Co Ltd 電子デバイス検査装置及び電子デバイス検査方法
JP2010091441A (ja) * 2008-10-09 2010-04-22 Arkray Inc 光量モニタリング装置、および光量モニタリング方法
JP4892118B1 (ja) * 2010-11-30 2012-03-07 パイオニア株式会社 発光素子用受光モジュール及び発光素子用検査装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107107A (ja) * 1991-10-16 1993-04-27 Omron Corp 発光素子検査装置
TWI360158B (en) * 2003-10-28 2012-03-11 Nikon Corp Projection exposure device,exposure method and dev
US8937706B2 (en) * 2007-03-30 2015-01-20 Asml Netherlands B.V. Lithographic apparatus and method
US8064058B2 (en) * 2007-07-18 2011-11-22 GE Lighting Solutions, LLC Light distribution measurement system
CN101320216B (zh) * 2008-06-18 2010-06-09 上海微电子装备有限公司 一种微光刻照明光瞳的整形结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211538A (ja) * 1986-03-12 1987-09-17 Oki Electric Ind Co Ltd 半導体発光素子の発光特性測定方法
JPH07201945A (ja) * 1993-12-28 1995-08-04 Ricoh Co Ltd 半導体検査装置
JPH09113411A (ja) * 1995-10-17 1997-05-02 Hitachi Cable Ltd 受光装置
JP2002005785A (ja) * 2000-06-26 2002-01-09 Matsushita Electric Works Ltd 赤外線モジュールの特性測定方法
JP2005283217A (ja) * 2004-03-29 2005-10-13 Technologue:Kk Led発光測定装置
JP2007019237A (ja) * 2005-07-07 2007-01-25 Tokyo Seimitsu Co Ltd 両面発光素子用プロービング装置
JP2008180661A (ja) * 2007-01-26 2008-08-07 Shin Etsu Handotai Co Ltd 電子デバイス検査装置及び電子デバイス検査方法
JP2010091441A (ja) * 2008-10-09 2010-04-22 Arkray Inc 光量モニタリング装置、および光量モニタリング方法
JP4892118B1 (ja) * 2010-11-30 2012-03-07 パイオニア株式会社 発光素子用受光モジュール及び発光素子用検査装置

Also Published As

Publication number Publication date
CN104094091B (zh) 2016-08-24
CN104094091A (zh) 2014-10-08
JPWO2013145132A1 (ja) 2015-08-03
JP5813861B2 (ja) 2015-11-17

Similar Documents

Publication Publication Date Title
JP4892118B1 (ja) 発光素子用受光モジュール及び発光素子用検査装置
TWI460405B (zh) Light amount measuring device and light amount measuring method
JP4975199B1 (ja) 半導体発光素子用受光モジュール及び半導体発光素子用検査装置
US9429472B2 (en) Illumination device and reflection characteristic measuring device
CN105866029A (zh) 光学分析仪
JP6082758B2 (ja) 光量測定装置
JP5813861B2 (ja) 半導体発光素子用の測定装置および半導体発光素子用の測定方法
TWI573990B (zh) 測定裝置及控制方法
WO2012073346A1 (ja) 半導体発光素子用受光モジュール及び半導体発光素子用検査装置
JP2011214976A (ja) 金型検査装置、金型検査方法、防眩製品ヘイズ予測方法および防眩製品反射像鮮明度予測方法
JP5213147B2 (ja) 半導体発光素子検査装置
JP5247892B2 (ja) 発光状況測定装置
WO2015107655A1 (ja) 光学測定装置
JP2009271012A (ja) 厚さ測定装置の距離センサの位置調整方法
JP6118801B2 (ja) 光量測定装置及び光量測定方法
TWI442031B (zh) 光學量測系統及其裝置
JP5779711B2 (ja) 半導体発光素子用の発光量推定装置及び発光量推定方法
JP2011226801A (ja) 赤外線分析装置
JP5567223B2 (ja) 光量測定装置及び光量測定方法
KR101490457B1 (ko) 검사 장치
KR20190106830A (ko) 카메라 일체형 광학 센서 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872547

Country of ref document: EP

Kind code of ref document: A1