WO2013143235A1 - 一种多点红外触摸屏触摸识别方法及系统 - Google Patents

一种多点红外触摸屏触摸识别方法及系统 Download PDF

Info

Publication number
WO2013143235A1
WO2013143235A1 PCT/CN2012/077857 CN2012077857W WO2013143235A1 WO 2013143235 A1 WO2013143235 A1 WO 2013143235A1 CN 2012077857 W CN2012077857 W CN 2012077857W WO 2013143235 A1 WO2013143235 A1 WO 2013143235A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
slope
infrared
scan
quasi
Prior art date
Application number
PCT/CN2012/077857
Other languages
English (en)
French (fr)
Inventor
王武军
刘新斌
周广道
Original Assignee
北京汇冠新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京汇冠新技术股份有限公司 filed Critical 北京汇冠新技术股份有限公司
Publication of WO2013143235A1 publication Critical patent/WO2013143235A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Definitions

  • the invention relates to an infrared touch screen touch recognition technology, in particular to a touch recognition method and system for a multi-point infrared touch screen.
  • the touch screen has been widely used as a simple and convenient human-computer interaction device.
  • the types of touch screens mainly include resistive touch screens, capacitive touch screens, surface acoustic wave touch screens, optical touch screens, and infrared touch screens.
  • the infrared touch screen is widely used in various fields because of its convenient installation, maintenance-free, high explosion resistance, high reliability, etc.
  • the common structure of the infrared touch screen is fixed around the touch screen.
  • a plurality of infrared transmitting tubes 101 and infrared receiving tubes 102 are sequentially installed.
  • the infrared transmitting tubes 101 and the infrared receiving tubes 102 are arranged along the edge of the touch screen to form an infrared transmitting and receiving tube pair, between the infrared transmitting tube 101 and the infrared receiving tube 102.
  • the light forms a vertical and horizontal infrared scanning network in front of the display screen, and detects the position of the touch object by detecting the infrared light blocked by the touch object such as a finger. This detection method can only detect one touch point, for two or more touches. When the point is operated at the same time, the system will calculate the wrong coordinate position, resulting in the recognized touch point not being the actual touch point.
  • the technical problem to be solved by the present invention is to provide a multi-point infrared touch screen touch recognition method and system capable of effectively identifying a plurality of touch points without changing the hardware structure of the existing infrared touch screen.
  • a multi-point infrared touch screen touch recognition method comprising the following steps:
  • the touch recognition method is a two-point touch recognition method, and the following steps are further included between step A and step B:
  • step B It is determined whether the number of quasi-touch points in the quasi-touch point set is 4, and if yes, step B is performed, otherwise the quasi-touch point in the quasi-touch point set is directly recognized as a real touch point.
  • the multi-point infrared touch screen touch recognition method, step B is specifically:
  • the scan lines of the first off-axis scan are parallel to each other, and processing the first off-axis scan data to obtain a first type of occlusion region blocked by the touch object;
  • step C is specifically:
  • step C is specifically:
  • step A is specifically:
  • the first direction scanning occlusion area and the second direction scanning occlusion area are respectively intersected, and the overlapping area according to the intersection is obtained.
  • step B is specifically:
  • the scan lines of the first off-axis scan are parallel to each other, and processing the first off-axis scan data to obtain a first type of occlusion region blocked by the touch object;
  • the present invention also provides a multi-point infrared touch screen touch recognition system, comprising a plurality of infrared emitting units, a plurality of infrared receiving units, a scanning control unit and a signal receiving and processing unit, wherein the infrared transmitting unit and the infrared receiving unit are The first direction and the second direction perpendicular thereto are arranged along the circumference of the touch detection area, and are oppositely disposed, the scan control unit,
  • the scan lines of the axis scan have opposite signs of slope, and the second scan data is sent to the signal receiving and processing unit.
  • the signal receiving and processing unit calculates the signal processing unit
  • the set of quasi-touch points is calibrated using the set of calibration touch points to obtain a real touch point.
  • the touch recognition system is a two-point touch recognition system
  • the signal receiving and processing unit determines whether the number of quasi-touch points in the quasi-touch point group is 4, and if so, The signal receiving and processing unit transmits an instruction to perform off-axis scanning to the scan control unit, the scan control unit performs the off-axis scan, otherwise the signal receiving and processing unit will not perform off-axis scanning
  • the instruction is sent to the scan control unit to directly identify the quasi-touch point in the quasi-touch point set as a real touch point.
  • the scan control unit Driving the infrared emitting unit in turn and simultaneously strobing the corresponding infrared receiving unit to perform a first off-axis scan on the infrared touch screen in a first direction, wherein scan lines of the first off-axis scan are parallel to each other, and
  • the first off-axis scan data is sent to the signal receiving and processing unit, and the signal receiving and processing unit processes the first off-axis scan data to obtain a first type of occlusion region that is blocked by the touch object;
  • the signal receiving and processing unit calculates the signal processing unit
  • the method for the signal receiving and processing unit to calibrate the quasi-touch point set using the calibration touch point set to obtain a real touch point is as follows:
  • the method for the signal receiving and processing unit to calibrate the quasi-touch point set using the calibration touch point set to obtain a real touch point is as follows:
  • the scan control unit Driving the infrared emitting unit in sequence and simultaneously strobing the corresponding infrared receiving unit to perform a first off-axis scan on the infrared touch screen in a second direction, wherein scan lines of the first off-axis scan are parallel to each other, and An off-axis scan data is sent to the signal receiving and processing unit, and the signal receiving and processing unit processes the first off-axis scan data to obtain a first type of occlusion region blocked by the touch object;
  • the signal receiving and processing unit calculates the signal processing unit
  • the invention provides a multi-point infrared touch screen touch recognition method and system, which acquires a calibration touch point set by scan data of two off-axis scans in a first direction or a second direction, and calibrates a touch point set to calibrate a real touch point. And the quasi-touch point set of the ghost point can effectively identify the real touch point.
  • This method can realize multi-touch without changing any hardware structure and without increasing the cost; further, for the two-point touch screen, the present invention has A regular off-axis scan acquires two special calibrated touch points by the slope of the line connecting the two special calibrated touch points to the slope of the two diagonals of the quadrilateral formed by the four quasi-touch points The sign or the absolute value of the difference is compared, which can quickly identify two real touch points, and the method is simple in logic, even if the two touch points can correctly identify two real touch points in the case of fast motion. High noise resistance.
  • FIG. 1 is a schematic structural view of an infrared touch screen in the prior art
  • FIG. 2 is a schematic structural diagram of a multi-point infrared touch screen touch recognition system provided by the present invention
  • FIG. 3 is a flowchart of a multi-touch recognition method according to a first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of obtaining a quasi-touch point set by one-to-many divergence scanning according to a first embodiment of the present invention
  • FIG. 5 is a schematic diagram of counter-clockwise and homeostatic needle off-axis scanning in a horizontal direction according to a first embodiment of the present invention
  • FIG. 6 is a flowchart of acquiring a calibration touch point set in the first embodiment of the present invention
  • FIG. 7 is a schematic diagram of obtaining a calibration touch point set by horizontal off-axis scanning in a first embodiment of the present invention
  • FIG. 8 is a flowchart of acquiring a calibration touch point set in a second embodiment of the present invention
  • FIG. 9 is a schematic diagram of obtaining a calibration touch point set by vertical off-axis scanning in a second embodiment of the present invention.
  • FIG. 10 is a flowchart of a two-point touch recognition method according to a third embodiment of the present invention.
  • Figure 11 is a schematic diagram of obtaining real touch points by comparing slopes in the third and fourth embodiments of the present invention.
  • a horizontally placed infrared touch screen is taken as an example, wherein the transmitting end is located on the lower side and the right side of the touch detecting area, and the receiving end is located on the upper side and the left side of the touch detecting area.
  • the touch recognition system includes a plurality of infrared transmitting units 201, a plurality of infrared receiving units 202, a scanning control unit 203, and signal receiving and processing.
  • the unit 204 wherein the infrared emitting unit 201 and the infrared receiving unit 202 are arranged along the circumference of the touch detection area in the first direction and the second direction perpendicular thereto, and the infrared emitting unit 201 is disposed opposite to the infrared receiving unit 202.
  • the first direction and the second direction are two directions perpendicular to each other, and for the horizontally placed infrared touch screen, the horizontal direction is taken as the first direction and the vertical direction is taken as the second direction.
  • Step 301 The scan control unit 201 sequentially drives the infrared emission unit 201 and gates the infrared receiving unit 202 to the infrared touch screen in the horizontal direction. Scanning in the vertical direction, obtaining the first scan data, and transmitting the first scan data to the signal receiving and processing unit 204, the signal receiving and processing unit 204 acquiring the quasi-touch point set according to the first scan data, that is, the signal receiving And processing unit 204 processes the first scan data to obtain a quasi-touch point set, the quasi-touch point set including real touch points and ghost points.
  • the first scan data here embodies the information that the scan line between the infrared transmitting tube and the infrared receiving tube is blocked by the touch object, and the signal receiving and processing unit 204 obtains the quasi-touch point set according to the scan data, which is actually the signal receiving and processing.
  • the unit 204 acquires a set of quasi-touch points including real touch points and ghost points according to the occlusion condition of the scan line.
  • the scanning in the horizontal direction and the vertical direction in this step may be a one-to-one coaxial scanning or a one-to-many divergence scanning, wherein one-to-one coaxial scanning is performed separately for each infrared transmitting tube.
  • Scanning the light between the infrared receiving tube and the opposite one, and the one-to-many divergent scanning is for each infrared transmitting tube and a plurality of infrared receiving tubes corresponding thereto (including the infrared transmitting tube being scanned)
  • the light between the pair of infrared receiving tubes and the a pair of infrared receiving tubes on both sides of the pair of infrared receiving tubes is scanned, a is a constant, and a pair of five, a pair are used in practical applications.
  • the first scan data acquired when the scan control unit 201 performs the one-to-five divergence scan in the first direction and the second direction in this step includes scan data acquired by performing a pair of five divergent scans in the horizontal direction and in the vertical direction.
  • One to five The scan data obtained by the divergence scan, the specific execution process in this step is as follows:
  • Step 3011 The scan control unit 201 sequentially drives the infrared emitting unit 201 to simultaneously strobe the corresponding infrared receiving unit 202 to perform a one-to-five divergent scan on the infrared touch screen in the horizontal direction, and sends the scan data to the signal receiving and processing unit 204, the signal.
  • the receiving and processing unit 204 acquires the horizontally scanned occlusion region occluded by each touch object based on the scan data.
  • the horizontal scanning occlusion area is an area blocked by each touch object when a pair of five divergent scans are performed in the horizontal direction, and the horizontal direction scanning occlusion area may be the first according to the scanning line blocked by each touch object.
  • the area between the strip scan line (called the start boundary line) and the last scan line (called the end boundary line) is obtained.
  • each scanning line is detected from the right to the left in the horizontal direction, and the light 401 and the light ray 402 are respectively touched by the first direction in the horizontal direction.
  • the first scanning line and the last scanning line are blocked by the object, so the area between the light 401 and the light ray 402 is the horizontal scanning occlusion area blocked by the first left horizontal touch object, and the light ray 403 and the light ray 404 are respectively The first scanning line and the last scanning line blocked by the second touch object horizontally to the left, so that the area between the light ray 403 and the light ray 404 is the horizontal scanning occlusion area blocked by the second touch object.
  • the method is the same.
  • Step 3012 The scan control unit 201 sequentially drives the infrared emitting unit 201 to simultaneously strobe the corresponding infrared receiving unit 202 to perform a one-to-five divergent scan on the infrared touch screen in the vertical direction, and sends the scan data to the signal receiving and processing unit 204.
  • the signal receiving and processing unit 204 acquires the scanning occlusion area in the vertical direction blocked by each of the touch objects based on the scan data.
  • the vertical scanning occlusion area is an area blocked by each touch object when a pair of five divergent scans are performed in the vertical direction, and the vertical direction scanning occlusion area can be obtained by acquiring the horizontal direction scanning occlusion area.
  • the area between the light ray 405 and the light ray 406 is the vertical direction scanning occlusion area blocked by the first touch object in the vertical upward direction, and the light ray 407 and the light ray 408 are vertically upward.
  • the occlusion area is scanned in the vertical direction of the two touch objects.
  • Step 3013 The signal receiving and processing unit 204 respectively intersects the horizontal scanning occlusion area and the vertical direction scanning occlusion area, and obtains the quasi-touch point set according to the intersecting overlapping area, that is,
  • the signal receiving and processing unit calculates the overlapping area of the area between the light 401 and the light ray 402 and the light 405 and the light 406 as the first overlapping area, the area between the light 401 and the light ray 402 and the light. 407.
  • the overlapping area of the area between the light rays 408 is used as the second overlapping area, and the overlapping area of the area between the light ray 403 and the light ray 404 and the light ray 405 and the light ray 406 is used as the third overlapping area, the line 403 and the light 404.
  • the overlapping area between the area and the area between the light 407 and the light ray 408 is used as the fourth overlapping area, and the set of quasi-touch points including all the quasi-touch points is obtained according to the four overlapping areas after the intersection, and the four overlapping layers can be
  • the area of the inscribed circle of the area is taken as the size of the four quasi-touch points 201, 202, 203, 204, and the centroids of the four overlapping areas are taken as the coordinates of the four quasi-touch points 201, 202, 203, 204. This is between the start boundary line and the end boundary line blocked by the touch object in the scan data.
  • the quasi-touch point coordinates obtained by the method of the intersection of the occlusion regions are relatively accurate.
  • the quasi-touch point set can also be obtained by other scanning methods and scanning data processing methods in the prior art.
  • Step 302 The scanning control unit sequentially drives the infrared emitting unit to simultaneously strobe the corresponding infrared receiving unit to perform off-axis scanning on the infrared touch screen in the horizontal direction twice to obtain the second scan data, and the slope sign of the scan line of the off-axis scan twice.
  • the second scan data is sent to the signal receiving and processing unit, and the signal receiving and processing unit 204 acquires the calibration touch point set according to the second scan data, that is, the signal receiving and processing unit 204 processes the second scan data to obtain Calibrate the set of touch points.
  • the off-axis scan is an oblique scan away from the main axis, and the scan line of the off-axis scan is called a partial line. As shown in FIG. 5, the scan line is centered on the emission end, and the scan line is deflected counterclockwise by a certain angle with respect to the main axis.
  • the scan line of the first off-axis scan is referred to as a first off-line 501, and the scan data acquired by the first off-axis scan is referred to as first off-axis scan data; the scan line is clockwise with respect to the main axis
  • the off-axis scan of a certain angle of deflection is referred to as a second off-axis scan
  • the scan line of the second off-axis scan is referred to as a second off-line 502
  • the scan data acquired by the second off-axis scan is referred to as second off-axis scan data
  • the second scan data acquired by the touch recognition system when performing step 302 should include first off-axis scan data and second off-axis scan data, and the related description of off-axis scan is also applicable to other embodiments.
  • the off-axis scan data is the same as the scan data of the one-to-many divergent scan in step 301, and the information indicating whether the off-axis scan line is blocked by the touch object is reflected, and the signal receiving and processing unit 204 acquires the calibration touch according to the off-axis scan data.
  • the point set in fact, also the signal receiving and processing unit 204 obtains a set of calibration touch points based on the occlusion of the off-axis scan line.
  • the tilt angle of the scan line of the off-axis scan that is, the angle between the scan line of the off-axis scan and the main axis
  • the receiving end of the bias line the end of the infrared receiving tube of the current scanned offset line
  • Deviation from the number of infrared receiving tubes of the receiving end of the main axis the end of the infrared receiving tube facing the currently scanned infrared transmitting tube
  • the more the number of infrared receiving tubes deviated from the deviation line The better, however, if the angle of the skew is too large, the area of the touch dead zone will be increased. In order to reduce the blind spot of the corner, the deflection angle of the partial line should not be too large.
  • the infrared receiving tube of the deviation is offset.
  • the number is 8 or 16, such a partial line can be called a partial 8 line, a partial line of 16 lines.
  • the deflection angle of a specific partial line can be determined according to the size of the infrared touch screen or the actual experimental effect.
  • Step 3021 The scan control unit 203 drives the infrared emission unit 201 to simultaneously strobe the corresponding infrared receiving unit 202 in the horizontal to the left direction.
  • the infrared touch screen performs a first off-axis scan, the scan lines of the first off-axis scan are parallel to each other, and the first off-axis scan data is sent to the signal receiving and processing unit 204, and the signal receiving and processing unit 204 scans the first off-axis data.
  • Processing to obtain a first type of occlusion area occluded by the touch object that is, the signal receiving and processing unit 204 acquires the first type of occlusion blocked by the touch object according to the occlusion condition of the scan line (first partial line) of the first off-axis scan.
  • Area, the number of occlusion areas in the first type of occlusion area is related to the number of touch objects and the distribution of the touch object, if the distance between the touch object and the touch object is far, and one line is different when passing through two
  • the number of occlusion areas should be equal to the number of touch objects. Otherwise, the number of occlusion areas in the first type of occlusion area is small. The number of objects touched. As shown in FIG.
  • the first inversion line 501, the second infrared transmitting tube and the 2+m infrared receiving tube between the first infrared transmitting tube and the first +m infrared receiving tube are sequentially scanned in the horizontal left direction.
  • the second occlusion area 702a is shown that, due to the presence of the touch object, the touch object blocks part of the partial line, and the first occlusion area 701a blocked by the first touch object in the first partial line of the scan recorded in the scanning direction is
  • Step 3022 The scanning control unit 203 drives the infrared emitting unit 201 to simultaneously strobe the corresponding infrared receiving unit 202 to perform a second off-axis scan on the infrared touch screen in a horizontally left direction, and the second off-axis scan scan line and the first off-axis
  • the scanned scan lines have the same slope
  • the second off-axis scan data is sent to the signal receiving and processing unit 204, and the signal receiving and processing unit 204 processes the scan data of the second off-axis scan to obtain the second type of occlusion area.
  • the signal receiving and processing unit 204 sequentially records the second type of occlusion area blocked by the touch object in the second off-axis scan line (second bias line), and the number of the occlusion area in the second type of occlusion area and the touch object The number is related to the distribution of the touch object.
  • the second bias line 502, the m+2 infrared transmitting tube and the second infrared receiving tube between the m+1th infrared transmitting tube and the first infrared receiving tube are sequentially scanned in the horizontal left direction.
  • the second bias line 502, ..., the m+i only infrared transmitting tube and the ith infrared receiving tube the second bias line 502, ..., where m and i are natural numbers, as shown in Fig. 7. It is shown that, due to the presence of the touch object, the touch object blocks a part of the partial line, and the third occlusion area 701b blocked by the first touch object among the second partial lines is recorded in the scanning direction, and is blocked by the second touch object.
  • Four occlusion regions 702b are shown in the horizontal left direction.
  • Step 3023 The signal receiving and processing unit 204 intersects the first type of occlusion area and the second type of occlusion area, and obtains a calibration touch point set according to the intersected overlapping area.
  • the first type of occlusion area has a An area of the second occlusion area 701b and the second occlusion area 702b, wherein the first occlusion area 701a and the third occlusion area 701b are respectively
  • the fourth occlusion area 702b intersects with two overlapping areas, and the second occlusion area also intersects the third occlusion area 701b and the fourth occlusion area 702b respectively with two overlapping areas, according to which the calibration touch point set can be obtained,
  • the area of the inscribed circle of each overlapping area can be used as the size of a calibration touch point, and the center of gravity or centroid of each overlapping area is used as the coordinate of the corresponding calibration touch point.
  • the number of overlapping regions in the touch detection region of the first type of the occlusion region and the second type of the occlusion region may be different. Therefore, the number of overlapping regions is not necessarily four (for two touch points), and may be less than four.
  • Step 303 The signal receiving and processing unit calibrates the quasi-touch point in the quasi-touch point set by using the calibration touch point in the calibration touch point set to obtain a real touch point, that is, the quasi-touch point concentration obtained by the signal receiving and processing unit according to step 301
  • the touch point and the positional relationship of the calibration touch points in the calibration touch point set obtained in step 302 obtain the real touch point, and the actual touch point is obtained by the following steps:
  • the distance between each quasi-touch point and each check touch point is less than or equal to
  • the touch point - the quasi-touch point in the check point pair is recognized as a real touch point.
  • the selection of the distance threshold can be selected from the results of empirical or actual experiments.
  • the method of calibrating the quasi-touch point set using the calibrated touch point set to obtain the real touch point in step 303 may also be other methods in the prior art.
  • the two-point touch is taken as an example.
  • the touch recognition method and system are also applicable to two or more touches.
  • the calibration touch point set is obtained by performing the first off-axis scan and the second off-axis scan on the infrared touch screen in the horizontal direction, and then comparing the quasi-touch point in the quasi-touch point set with the calibration touch point in the calibration touch point set. The distance between them to identify the real touch point, this method can effectively identify multiple touch points of the touch detection area without changing any hardware structure.
  • the embodiment provides a multi-point infrared touch screen touch recognition method and system, and the touch recognition method and system are different from the first embodiment in that: in this embodiment, the scan control unit 203 performs off-axis scanning in step 302. The scanning direction of the time becomes the first off-axis scan and the second off-axis scan in the vertical direction. For the sake of simplicity, only differences from the first embodiment will be described in detail in the present embodiment.
  • Step 302 ′ performing a first off-axis scan and a second off-axis scan on the infrared touch screen in a vertical direction.
  • the slopes of the scan lines of the off-axis scan are opposite in sign, and the calibration touch point set is obtained according to the scan data of the off-axis scan. .
  • step 302' is:
  • Step 302 The scan control unit 203 drives the infrared emitting unit 201 to simultaneously strobe the corresponding infrared receiving unit 202 to perform a first off-axis scan on the infrared touch screen in a vertically upward direction, and the scan lines of the first off-axis scan are parallel to each other, and
  • the first off-axis scan data is sent to the signal receiving and processing unit 204, and the signal receiving and processing unit 204 processes the first off-axis scan data to obtain the first type of occlusion area occluded by the touch object, that is, the signal receiving and processing unit.
  • 204 acquires a first type of occlusion region that is blocked by the touch object according to the occlusion condition of the scan line of the first off-axis scan.
  • FIG. 9 is a schematic view showing a partial occlusion region of an off-axis scan in a vertical upward direction, sequentially scanning a first partial line between the first +m infrared transmitting tube and the first infrared receiving tube in a vertical upward direction, The first directional line between the 2+m only infrared transmitting tube and the second infrared receiving tube, ..., the first bias line between the i+m infrared transmitting tube and the ith infrared receiving tube, ...
  • the touch object obscures part of the partial line due to the presence of the touch object, and the first occlusion area 901a blocked by the first touch object in the scanned first partial line is sequentially recorded in the scanning order, a second occlusion region 902a that is blocked by the second touch object.
  • Step 3022 ′ The scan control unit 203 drives the infrared emitting unit 201 to simultaneously strobe the corresponding infrared receiving unit 202 to perform a second off-axis scan on the infrared touch screen in a vertically upward direction, and the scan lines of the second off-axis scan are parallel to each other.
  • the second off-axis scan data is sent to the signal receiving and processing unit 204, and the signal receiving and processing unit 204 processes the scan data of the second off-axis scan to obtain the second type of occlusion area, that is, the signal receiving and processing unit 204.
  • a second type of occlusion region that is blocked by the touch object in the second off-axis scan line is sequentially recorded.
  • the second inversion line between the first infrared transmitting tube and the m+1th infrared receiving tube, the second infrared emitting tube, and the m+2th infrared receiving tube are sequentially scanned in the horizontal left direction.
  • the i-th infrared transmitting tube and the second bias line between the m+i only infrared receiving tube, ..., where m and i are natural numbers due to the presence of the touch object,
  • the touch object blocks part of the partial line, and the third occlusion area 901b blocked by the first touch object among the second partial lines is recorded in the scanning direction, and the fourth occlusion area 902b blocked by the second touch object.
  • Step 3023 ′ The signal receiving and processing unit 204 intersects the first type of occlusion area and the second type of occlusion area, and obtains a calibration touch point set according to the intersected overlapping area, as shown in FIG. 9 , the first type of occlusion area and the first type After the two types of occlusion areas are intersected, three overlapping areas are intersected in the touch detection area, and the area of the inscribed circle of each overlapping area is calculated as the size of the calibration touch point, and the center of gravity or centroid coordinate of each overlapping area is calculated as a calibration. Touch the coordinates of the point.
  • the calibration touch point set is obtained by the first off-axis scan and the second off-axis scan in the vertical direction, and the present embodiment can also effectively recognize the plurality of touch points as in the first embodiment.
  • the embodiment provides a multi-point infrared touch screen touch recognition method and system, and the multi-point infrared touch screen is specifically a two-point infrared touch screen.
  • the touch recognition system in this embodiment includes the same as the first embodiment and the second embodiment.
  • the sub-unit module performs the following steps when the sub-units of the touch recognition system perform two-point touch recognition (FIG. 10): Step 1001:
  • the scan control unit 203 sequentially drives the infrared emission unit 201 to simultaneously strobe the corresponding infrared receiving unit 202.
  • Performing a one-to-many divergence scan on the infrared touch screen in the horizontal direction and the vertical direction acquiring the first scan data, and transmitting the first scan data to the signal receiving and processing unit 204, and the signal receiving and processing unit 204 according to the first scan
  • the data acquires a quasi-touch point set.
  • the number of quasi-touch points in the quasi-touch point acquired is two or four
  • the quasi-touch point set includes the real touch point and the ghost point
  • the divergent scanning method and the method for obtaining the quasi-touch point set may adopt the first embodiment or the second method The method in the embodiment.
  • Step 1002 The signal receiving and processing unit 204 determines whether the number of quasi-touch points in the quasi-touch point set is 4, and if so, the signal receiving and processing unit 204 sends an instruction to perform off-axis scanning to the scan control unit 203, and scan control The unit 203 performs the two off-axis scans, otherwise the signal receiving and processing unit 204 does not send an instruction to perform the off-axis scan to the scan control unit 203, and directly recognizes the quasi-touch points in the quasi-touch point set as the real touch points.
  • the unit performs the step of off-axis scanning.
  • Step 1003 The scan control unit 203 sequentially drives the infrared emitting unit 202 to simultaneously strobe the corresponding infrared receiving unit 203 to perform the first off-axis scan and the second off-axis scan on the infrared touch screen in the horizontal direction, respectively.
  • the slopes of the scan lines are equal in magnitude and opposite in sign, and the second scan data is acquired, and the second off-axis scan data is sent to the signal receiving and processing unit 204, wherein the second scan data includes the first offset obtained by performing the first off-axis scan.
  • the method for obtaining the first type of occlusion area and the second type of occlusion area may adopt the method of the first embodiment or the second embodiment, and the signal receiving and processing unit 204 is configured according to the first type of occlusion area and the second type of occlusion area.
  • the method for obtaining the calibration touch point set may adopt the following method: As shown in FIG.
  • the signal receiving and processing unit 204 selects the distance from the right border of the infrared touch screen in the overlapping area of the first type of occlusion area and the second type of occlusion area.
  • the most recent overlap region as the first overlap region based on the first overlap region to obtain the first calibration touch , that is, according to the overlapping area of the first occlusion area 701a and the third occlusion area 701b in FIG. 7, the first calibration touch point is obtained, and the area of the inscribed circle of the first overlapping area can be used as the first calibration touch point.
  • the size, the centroid or barycentric coordinates of the first overlapping area is used as the coordinates of the first calibration touch point in the calibration touch point set.
  • the signal receiving and processing unit 204 selects the closest overlapping area from the left border of the infrared touch screen as the second overlapping area in the overlapping area of the first type of occlusion area and the second type of occlusion area, according to the second overlapping area.
  • Obtaining a second calibration touch point that is, obtaining a second calibration touch point according to the overlapping area of the second occlusion area 702a and the fourth occlusion area 702b in FIG. 7, and the area of the inscribed circle of the second overlapping area may be
  • the centroid or barycentric coordinates of the second overlap region are used as the coordinates of the second calibration touch point in the calibration touch point set.
  • the overlapping area of the first type of occlusion area and the second type of occlusion area should be four, because the first off-axis in the horizontal direction in this embodiment
  • the scan lines of the scan and the second off-axis scan are equal in magnitude, so that the lines of the centers of the two overlapping areas of the four overlapping areas must be positioned on the same vertical line, if the touch object is located in the two overlapping areas, Only two quasi-touch points can be obtained in step 1001.
  • step 1003 of off-axis scanning will not be performed, so the two touch objects in this step must be positioned at the first calibration touch point 703 and the second Calibrating the vicinity of the touch point 704, calibrating the quasi-touch point with the first calibration touch point 703 and the second calibration touch point 704 can quickly identify the real touch point in the quasi-touch point.
  • the first overlapping area that is closest to the left border of the infrared touch screen may be selected to obtain the first calibration touch point, and the second overlapping area closest to the right border of the infrared touch screen is selected to obtain the second calibration touch. point.
  • Step 1004 The signal receiving and processing unit 204 according to the sign of the slope of the line connecting the two calibration touch points acquired in step 1003 and the main diagonal and the pair of quads formed by the four quasi-touch points acquired in step 1004. Whether the symbols of the corners are the same to identify the real touch points, specifically:
  • the signal receiving and processing unit 204 calculates the slope a (first slope) of the two calibration touch point connections according to the coordinates of the two calibration touch points 703, 704 obtained in step 1003;
  • the signal receiving and processing unit 204 calculates the main diagonal of the quadrilateral composed of the four quasi-touch points according to the coordinates of the four quasi-touch points 201, 202, 203, 204 in the quasi-touch point set acquired in step 1001.
  • Slope b second slope
  • the signal receiving and processing unit 204 compares whether the symbols of a and b are the same, and whether the symbols of the comparison slopes are the same can be compared by the positive or negative of the symbols obtained by the slope multiplication. If the symbols are the same, the two are located on the main diagonal.
  • the quasi-touch points 203, 204 are two real touch points, and the quasi-touch points 203, 204 are positioned as real touch points, otherwise the two quasi-touch points 201, 202 located on the sub-diagonal are two real touches. Point, the quasi-touch points 201, 202 are positioned as real touch points.
  • the two quasi-touch points 201, 202 are two real touch points, and the main diagonal and sub diagonal lines here are consistent with the mathematical concepts of the main diagonal and the sub diagonal.
  • the relative position of the two touch objects is relatively small, even if the touch object has a rapid motion, due to The time of each scan cycle is very short.
  • the relative position of two touch objects in one-to-many divergence scan and off-axis scan generally does not change.
  • the sign of the slope of the connection between two touch objects does not occur. Mutation, so the real touch point can be identified by comparing the slope of the quasi-touch point connection obtained by one-to-many divergence scan with the sign of the slope of the line connecting the calibration touch points obtained by off-axis scanning.
  • the present embodiment provides a two-point infrared touch screen touch recognition method and system.
  • a set of quasi-touch points including real touch points and ghost points is obtained by a pair of five divergent scans, and secondly obtained by regular off-axis scans.
  • identifying the real touch point by comparing the slope of the two quasi-touch points on the diagonal with the slope of the two calibration touch points, this method of identifying the real touch point by the slope does not change any hardware of the infrared touch screen
  • the structure, and the logic is simple, the recognition speed is fast, and even in the case of rapid movement of two touch objects, two real touch points can be correctly recognized, and the noise resistance is high.
  • the present embodiment provides a two-point infrared touch screen touch recognition method and system.
  • This embodiment is an alternative embodiment of the third embodiment.
  • the specific execution method of step 1004 is different.
  • the other steps are the same, and for the sake of simplicity, the present embodiment will be described only in a place different from the third embodiment.
  • Step 1004' The signal receiving and processing unit 204 compares the slope of the line connecting the two calibration touch points with the absolute value of the difference between the main diagonal and the sub-diagonal of the quadrilateral composed of the four quasi-touch points, respectively. To identify the real touch point, specifically:
  • the signal receiving and processing unit 204 sits according to the two calibration touch points acquired in step 1003. Calculate the slope a (first slope) of the line connecting the two calibration touch points;
  • the signal receiving and processing unit 204 calculates the slope b (second slope) of the main diagonal of the quadrilateral composed of the four quasi-touch points according to the coordinates of the four quasi-touch points in the quasi-touch point set acquired in step 1001. And the slope c of the secondary diagonal (third slope);
  • the signal receiving and processing unit 204 calculates the difference between a and b, and a and c. If the absolute value of the difference between a and b is less than the absolute value of the difference between a and c, it will be located on the main diagonal.
  • the two quasi-touch points 203, 204 are identified as real touch points, otherwise the two quasi-touch points 201, 202 on the sub-diagonal are recognized as real touch points.
  • the relative position of the two touch objects is constant regardless of whether it is scanning or off-axis scanning, then the slope of the two real touch points in the quasi-touch point set should be the same as the two calibration touches.
  • the slope of the line of the point is the same, that is, the difference is zero; even if the touch object has a fast motion, since the time of each scan period is very short, the two touch objects are in the time of the positive scan and the off-axis scan.
  • the relative position does not change too much.
  • the absolute value of the difference between the slope of the line connecting the two real touch points and the slope of the line connecting the two touch points is also smaller than the slope of the line connecting the two ghost points. The absolute value of the difference between the slopes of the lines connecting the two touch points, so the difference in slope magnitude can be used to identify the true touch point.
  • the off-axis scanning in the horizontal direction or the vertical direction is not limited to one-to-one off-axis scanning, and The scanning directions of two off-axis scans, such as in the horizontal or vertical direction, may be reversed, and the present invention is intended to include such modifications, provided that such modifications and variations of the present invention are within the scope of the appended claims and their equivalents. And variants.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明提供一种多点红外触摸屏触摸识别方法,涉及多点触摸技术领域,所述多点红外触摸屏触摸识别方法包括:对所述红外触摸屏依次在第一方向和与之垂直的第二方向上进行扫描,获取第一扫描数据,根据第一扫描数据获取准触摸点集;对所述红外触摸屏在第一方向或者第二方向上进行两次偏轴扫描,获取第二扫描数据,两次偏轴扫描的扫描线的斜率符号相反,根据第二扫描数据获取校准触摸点集;利用所述校准触摸点集校准所述准触摸点集获得真实触摸点。本发明还提供一种多点红外触摸屏触摸识别系统。本发明提供的多点红外触摸屏触摸识别方法及系统逻辑简单,不需要改变任何硬件结构能够识别出触摸检测区域的无限多个触摸点。

Description

一种多点红外触摸屏触摸识别方法及系统 技术领域
本发明涉及红外触摸屏触摸识别技术, 尤其涉及一种多点红外触摸屏的触摸识别方法及 系统。
背景技术
随着多媒体技术的发展, 触摸屏作为一种简单方便的人机交互设备得到广泛应用。 目 前, 触摸屏的种类主要包括电阻式触摸屏、 电容式触摸屏、 表面声波触摸屏、 光学触摸屏和 红外触摸屏等。 作为触摸屏的一个分支, 红外触摸屏以其安装方便、 免维护、 高抗爆性、 高 可靠性等优点被广泛应用在各个领域, 如图 1所示, 红外触摸屏的常用结构是在触摸屏四周 按一定顺序安装多个红外发射管 101和红外接收管 102, 这些红外发射管 101和红外接收管 102沿触摸屏的边缘排列, 形成红外发射和接收管对, 红外发射管 101和红外接收管 102之 间的光线在显示屏幕的前方形成纵横交叉的红外扫描网络, 通过检测手指等触摸物所隔断的 红外光线, 实现触摸物位置的检测, 这种检测方式只能检测一个触摸点, 对于两个或以上触 摸点同时操作时, 系统将计算错误的坐标位置, 导致识别出的触摸点不是真实的触摸点。
随着科技的发展, 关于触摸技术的创新与发展也在不断进行, 红外触摸屏的发展经历了 从识别单点, 到识别两点, 甚至到识别多点的过程, 业内针对多点触摸 (包括两点触摸) 无 法识别的问题作了许多有益的尝试, 如通过设计复杂的辅助判断电路来增强红外触摸屏对多 个触摸点的判断能力, 在红外触摸屏的外边缘增加一个或两个摄像头来区分多个触摸点等 等, 这些方法都需要改变现有红外触摸屏的硬件结构, 相应也增加了较多的成本。
发明内容
针对现有技术中存在的缺陷, 本发明所要解决的技术问题是提供一种不改变现有红外触 摸屏的硬件结构就可以有效识别多个触摸点的多点红外触摸屏触摸识别方法及系统。
为解决上述技术问题, 本发明采用的技术方案如下:
一种多点红外触摸屏触摸识别方法, 所述方法包括以下步骤:
A、 对所述红外触摸屏依次在第一方向和与之垂直的第二方向上进行扫描, 获取第一扫描数 据, 根据所述第一扫描数据获取准触摸点集;
B、 对所述红外触摸屏在第一方向或者第二方向上进行两次偏轴扫描, 获取第二扫描数据, 两次偏轴扫描的扫描线的斜率符号相反, 根据所述第二扫描数据获取校准触摸点集;
C、 利用所述校准触摸点集校准所述准触摸点集获得真实触摸点。
如上所述的多点红外触摸屏触摸识别方法, 所述触摸识别方法为两点触摸识别方法, 在 步骤 A和步骤 B之间还包括下列步骤:
判断所述准触摸点集中准触摸点个数是否为 4, 若是, 则执行步骤 B, 否则将所述准触摸点 集中的准触摸点直接识别为真实触摸点。 如上所述的多点红外触摸屏触摸识别方法, 步骤 B具体为:
沿第一方向对所述红外触摸屏进行第一偏轴扫描, 所述第一偏轴扫描的扫描线相互平行, 对 第一偏轴扫描数据进行处理获取被触摸物遮挡的第一类遮挡区域;
沿第一方向对所述红外触摸屏进行第二偏轴扫描, 该第二偏轴扫描的扫描线的斜率与所述第 一偏轴扫描的扫描线的斜率大小相等, 对第二偏轴扫描数据进行处理获取被触摸物遮挡的第 二类遮挡区域;
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第一方向垂直的红外 触摸屏的第一边距离最近的第一个重叠区域, 根据该第一个重叠区域获取所述校准触摸点集 中的第一个校准触摸点;
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第一方向垂直的红外 触摸屏的第二边距离最近的第二个重叠区域, 根据该第二个重叠区域获取所述校准触摸点集 中的第二个校准触摸点。
如上所述的多点红外触摸屏触摸识别方法, 可选地, 步骤 C具体为:
计算所述第一个校准触摸点和所述第二个校准触摸点的连线的斜率作为第一斜率; 分别计算所述准触摸点集中的四个准触摸点组成的四边形的一个对角线的斜率作为第二斜 率;
判断所述第二斜率与所述第一斜率的符号是否相同, 若相同, 则将位于所述四边形的该第二 斜率对应的对角线上的两个准触摸点定位为真实触摸点, 否则, 将位于所述四边形的另一个 对角线上的两个准触摸点定位为真实触摸点。
如上所述的多点红外触摸屏触摸识别方法, 可选地, 步骤 C具体为:
计算所述第一个校准触摸点与所述第二个校准触摸点的连线的斜率作为第一斜率; 计算所述准触摸点集中的四个准触摸点组成的四边形的主对角线的斜率作为第二斜率和副对 角线的斜率作为第三斜率;
分别计算所述第一斜率与所述第二斜率、 所述第一斜率与所述第三斜率的差值, 若所述第一 斜率与所述第二斜率的差值的绝对值小于所述第一斜率与所述第三斜率的差值的绝对值, 则 将位于所述四边形的主对角线上的两个准触摸点定位为真实触摸点, 否则, 将位于所述四边 形的副对角线上的两个准触摸点定位为真实触摸点。
如上所述的多点红外触摸屏触摸识别方法, 上述步骤 A具体为:
沿第一方向对所述红外触摸屏进行一对多的发散扫描, 依次记录扫描线中被每一个触摸物遮 挡的第一方向扫描遮挡区域;
沿第二方向对所述红外触摸屏进行一对多的发散扫描, 依次记录扫描线中被每一个触摸物遮 挡的第二方向扫描遮挡区域;
分别将第一方向扫描遮挡区域和第二方向扫描遮挡区域进行相交, 根据相交后的重叠区域获 得包含所有准触摸点的准触摸点集。
如上所述的多点红外触摸屏触摸识别方法, 上述步骤 B具体为:
沿第二方向对所述红外触摸屏进行第一偏轴扫描, 所述第一偏轴扫描的扫描线相互平行, 对 第一偏轴扫描数据进行处理获取被触摸物遮挡的第一类遮挡区域;
沿第二方向对所述红外触摸屏进行第二偏轴扫描, 该第二偏轴扫描的扫描线的斜率与所述第 一偏轴扫描的扫描线的斜率大小相等, 对第二偏轴扫描数据进行处理获取被触摸物遮挡的第 二类遮挡区域;
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第二方向垂直的红外 触摸屏的第一边距离最近的第一个重叠区域, 根据该第一个重叠区域获取所述校准触摸点集 中的第一个校准触摸点;
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第二方向垂直的红外 触摸屏的第二边距离最近的第二个重叠区域, 根据该第二个重叠区域获取所述校准触摸点集 中的第二个校准触摸点。
本发明还提供一种多点红外触摸屏触摸识别系统, 包括多个红外发射单元、 多个红外接 收单元、 扫描控制单元和信号接收及处理单元, 其中所述红外发射单元与所述红外接收单元 在第一方向和与之垂直的第二方向上沿触摸检测区域的四周排列, 且相对设置, 所述扫描 控制单元,
依次驱动所述红外发射单元并同时选通相应的所述红外接收单元对所述红外触摸屏在第一方 向和第二方向上进行扫描, 获得第一扫描数据, 并将所述第一扫描数据发送给所述信号接收 及处理单元,
依次驱动所述红外发射单元并同时选通相应的所述红外接收单元对所述红外触摸屏在第一方 向或者第二方向上进行两次偏轴扫描, 获得第二扫描数据, 所述两次偏轴扫描的扫描线的斜 率符号相反, 并将该第二扫描数据发送给所述信号接收及处理单元,
所述信号接收及处理单元,
根据所述第一扫描数据获取准触摸点集;
根据所述第二扫描数据获取校准触摸点集;
利用所述校准触摸点集校准所述准触摸点集以获得真实触摸点。
如上所述的多点红外触摸屏触摸识别系统, 所述触摸识别系统是两点触摸识别系统, 所述信号接收及处理单元判断所述准触摸点集中准触摸点个数是否为 4, 若是, 则所述信号 接收及处理单元将执行偏轴扫描的指令发送给所述扫描控制单元, 所述扫描控制单元执行所 述两次偏轴扫描, 否则所述信号接收及处理单元不将执行偏轴扫描的指令发送给所述扫描控 制单元, 直接将所述准触摸点集中的准触摸点识别为真实触摸点。
如上所述的多点红外触摸屏触摸识别系统, 所述扫描控制单元, 依次驱动所述红外发射单元并同时选通相应的所述红外接收单元沿第一方向对所述红外触摸 屏进行第一偏轴扫描, 所述第一偏轴扫描的扫描线相互平行, 并将所述第一偏轴扫描数据发 送给所述信号接收及处理单元, 所述信号接收及处理单元对第一偏轴扫描数据进行处理获得 被触摸物遮挡的第一类遮挡区域;
依次驱动所述红外发射单元并同时选通相应的所述红外接收单元沿第一方向对所述红外触摸 屏进行第二偏轴扫描, 该第二偏轴扫描的扫描线的斜率与第一偏轴扫描的扫描线的斜率大小 相等, 并将第二偏轴扫描数据发送给所述信号接收及处理单元, 所述信号接收及处理单元对 所述第二偏轴扫描数据进行处理获取被触摸物遮挡的第二类遮挡区域;
所述信号接收及处理单元,
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第一方向垂直的红外 触摸屏的第一边距离最近的第一个重叠区域, 并根据该第一个重叠区域获取所述校准触摸点 集中的第一个校准触摸点;
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第一方向垂直的红外 触摸屏的第二边距离最近的第二个重叠区域, 并根据该第二个重叠区域获取所述校准触摸点 集中的第二个校准触摸点。
如上所述的多点红外触摸屏触摸识别系统, 可选地, 所述信号接收及处理单元利用所述 校准触摸点集校准所述准触摸点集以获得真实触摸点的方法如下:
首先计算所述第一个校准触摸点和所述第二个校准触摸点的连线的斜率作为第一斜率; 其次计算所述准触摸点集中的四个准触摸点组成的四边形的一个对角线的斜率作为第二斜 率;
最后比较所述第二斜率与所述第一斜率的符号是否相同, 若相同, 则将位于所述四边形的该 第二斜率对应的对角线上的两个准触摸点定位为真实触摸点, 否则, 将将位于所述四边形的 另一个对角线上的两个准触摸点定位为真实触摸点。
如上所述的多点红外触摸屏触摸识别系统, 可选地, 所述信号接收及处理单元利用所述 校准触摸点集校准所述准触摸点集以获得真实触摸点的方法如下:
首先计算所述第一个校准触摸点与所述第二个校准触摸点的连线的斜率作为第一斜率; 其次分别计算所述准触摸点集中的四个准触摸点组成的四边形的主对角线的斜率作为第二斜 率和副对角线的斜率作为第三斜率;
最后分别计算所述第一斜率与所述第二斜率、 所述第一斜率与所述第三斜率的差值, 若所述 第一斜率与所述第二斜率的差值的绝对值小于所述第一斜率与所述第三斜率的差值的绝对 值, 则将位于所述四边形的主对角线上的两个准触摸点定位为真实触摸点, 否则, 将位于所 述四边形的副对角线上的两个准触摸点定位为真实触摸点。
如上所述的多点红外触摸屏触摸识别系统, 所述扫描控制单元, 依次驱动所述红外发射单元并同时选通相应的所述红外接收单元沿第二方向对所述红外触摸 屏进行第一偏轴扫描, 所述第一偏轴扫描的扫描线相互平行, 并将第一偏轴扫描数据发送给 所述信号接收及处理单元, 所述信号接收及处理单元对所述第一偏轴扫描数据进行处理获取 被触摸物遮挡的第一类遮挡区域;
依次驱动所述红外发射单元并同时选通相应的所述红外接收单元沿第二方向对所述红外触摸 屏进行第二偏轴扫描, 该第二偏轴扫描的扫描线的斜率与第一偏轴扫描的扫描线的斜率大小 相等, 并将第二偏轴扫描数据发送给所述信号接收及处理单元, 所述信号接收及处理单元对 所述第二偏轴扫描数据进行处理获取第二类遮挡区域;
所述信号接收及处理单元,
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第二方向垂直的红外 触摸屏的第一边距离最近的第一个重叠区域, 并根据该第一个重叠区域获取所述校准触摸点 集中的第一个校准触摸点;
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第二方向垂直的红外 触摸屏的第二边距离最近的第二个重叠区域, 并根据该第二个重叠区域获取所述校准触摸点 集中的第二个校准触摸点。
本发明提供一种多点红外触摸屏触摸识别方法及系统, 通过在第一方向或第二方向的两 次偏轴扫描的扫描数据获取校准触摸点集, 通过校准触摸点集来校准包含真实触摸点和鬼点 的准触摸点集可以有效识别出真实触摸点, 这种方法不需要改变任何硬件结构、 也不需要增 加成本就能够实现多点触摸; 进一步地, 对于两点触摸屏, 本发明通过有规律的偏轴扫描获 取两个特殊的校准触摸点, 通过将这两个特殊的校准触摸点的连线的斜率分别与获取的四个 准触摸点所组成的四边形的两个对角线的斜率的符号或者差值的绝对值相比较, 能够快速识 别出两个真实触摸点, 且这种方法逻辑简单, 即使两个触摸点在快速运动的情况下也能正确 识别出两个真实触摸点, 抗噪性较高。
附图说明
图 1现有技术中红外触摸屏结构示意图;
图 2为本发明提供的多点红外触摸屏触摸识别系统的结构示意图;
图 3为本发明第一种实施方式中多点触摸识别方法流程图;
图 4为本发明第一种实施方式中通过一对多的发散扫描获取准触摸点集的示意图; 图 5为本发明第一种实施方式中沿水平方向进行逆时针和顺势针偏轴扫描示意图; 图 6为本发明第一种实施方式中获取校准触摸点集的流程图;
图 7为本发明第一种实施方式中通过水平方向偏轴扫描获取校准触摸点集的示意图; 图 8为本发明第二种实施方式中获取校准触摸点集的流程图;
图 9为本发明第二种实施方式中通过竖直方向偏轴扫描获取校准触摸点集的示意图; 图 10为本发明第三种实施方式中两点触摸识别方法的流程图;
图 11为本发明第三种和第四中实施方式中通过比较斜率来获取真实触摸点的示意图。
具体实施方式
下面结合实施方式和附图对本发明进行清楚完整地描述。
本发明中以水平放置的红外触摸屏为例进行说明, 其中发射端位于触摸检测区域的下侧 和右侧, 接收端位于触摸检测区域的上侧和左侧。
第一种实施方式
本实施方式提供一种多点红外触摸屏触摸识别系统及方法, 如图 2所示, 该触摸识别系统包 括多个红外发射单元 201、 多个红外接收单元 202、 扫描控制单元 203和信号接收及处理单 元 204, 其中红外发射单元 201与红外接收单元 202在第一方向和与之垂直的第二方向上沿 触摸检测区域的四周排列, 且红外发射单元 201与红外接收单元 202相对设置。
第一方向和第二方向为相互垂直的两个方向, 对于水平放置的红外触摸屏而言, 将水平 方向作为第一方向, 竖直方向作为第二方向。
如图 3所示, 该触摸识别系统进行触摸识别时, 其各个子单元具体执行以下步骤: 步骤 301 : 扫描控制单元 201依次驱动红外发射单元 201并选通红外接收单元 202对红外触 摸屏在水平方向和竖直方向上进行扫描, 获得第一扫描数据, 并将第一扫描数据发送给信号 接收及处理单元 204, 信号接收及处理单元 204根据第一扫描数据获取准触摸点集, 也即信 号接收及处理单元 204对第一扫描数据进行处理以获取准触摸点集, 该准触摸点集中包括真 实触摸点和鬼点。
这里的第一扫描数据体现了红外发射管和红外接收管之间的扫描线是否被触摸物遮挡的 信息, 信号接收及处理单元 204根据扫描数据获取准触摸点集, 实际上也是信号接收及处理 单元 204根据扫描线的遮挡情况获取包含真实触摸点和鬼点的准触摸点集。
此步骤中分别对水平方向和竖直方向进行的扫描可以为一对一的同轴扫描, 也可以为一 对多的发散扫描, 其中一对一的同轴扫描是分别对每一个红外发射管和与之正对的红外接收 管之间的光线进行扫描, 一对多的发散扫描是分别对每一个红外发射管和与之对应的多个红 外接收管 (包括与正在扫描的红外发射管正对的红外接收管以及位于该正对的红外接收管两 侧的 a个红外接收管) 之间的光线进行扫描, a 为常量, 在实际应用中用的较多的是一对 五、 一对七、 一对九、 一对十一等几种扫描方式, 一般情况下, 一个红外发射管对应的红外 接收管的数量越多, 最终获得准触摸点的坐标越精确, 但与此同时也牺牲了扫描时间, 因此 具体应用中采用一对几的扫描方式应根据实际需要来确定。 本实施方式中以一对五的发散扫 描方式进行说明。
本步骤中扫描控制单元 201进行第一方向和第二方向的一对五的发散扫描时获取的第一 扫描数据包括沿水平方向进行一对五的发散扫描获取的扫描数据和沿竖直方向进行一对五的 发散扫描获取的扫描数据, 本步骤中具体的执行过程如下:
步骤 3011 : 扫描控制单元 201依次驱动红外发射单元 201同时选通相应的红外接收单元 202 沿水平方向对红外触摸屏进行一对五的发散扫描, 并将扫描数据发送给信号接收及处理单元 204, 信号接收及处理单元 204根据扫描数据获取被每一个触摸物遮挡的水平方向扫描遮挡 区域。
这里的水平方向扫描遮挡区域是沿水平方向进行一对五的发散扫描时, 被每一个触摸物 遮挡的区域, 该水平方向扫描遮挡区域可以根据被每一个触摸物遮挡的扫描线中的第一条扫 描线 (称为起始边界线) 和最后一条扫描线 (称为终止边界线) 之间的区域获得。
如图 4所示, 以发射端 (红外发射管所在的一端) 的扫描数据为例, 沿水平方向从右到 左检测每一条扫描线, 光线 401和光线 402分别为水平方向被第一个触摸物遮挡的第一条扫 描线和最后一条扫描线, 因此光线 401和光线 402之间的区域即为被水平向左第一个触摸物 遮挡的水平方向扫描遮挡区域, 光线 403和光线 404分别为水平方向被水平向左第二个触摸 物遮挡的第一条扫描线和最后一条扫描线, 因此光线 403和光线 404之间的区域即为被第二 个触摸物遮挡的水平方向扫描遮挡区域, 对于两个以上的触摸物的情况, 方法相同。
步骤 3012: 扫描控制单元 201 依次驱动红外发射单元 201 同时选通相应的红外接收单 元 202沿竖直方向对红外触摸屏进行一对五的发散扫描, 并将扫描数据发送给信号接收及处 理单元 204, 信号接收及处理单元 204根据扫描数据获取被每一个触摸物遮挡的竖直方向扫 描遮挡区域。
这里的竖直方向扫描遮挡区域是沿竖直方向进行一对五的发散扫描时, 被每一个触摸物 遮挡的区域, 该竖直方向扫描遮挡区域的获取方法可以采用与获取水平方向扫描遮挡区域相 同的方法, 如图 4, 光线 405和光线 406之间的区域为被竖直向上方向上第一个触摸物遮挡 的竖直方向扫描遮挡区域, 光线 407和光线 408为竖直向上方向上第二个触摸物遮挡的竖直 方向扫描遮挡区域。
步骤 3013: 信号接收及处理单元 204 分别将水平方向扫描遮挡区域和竖直方向扫描遮 挡区域进行相交, 根据相交后的重叠区域获得准触摸点集, 也即,
如图 4, 信号接收及处理单元分别计算光线 401、 光线 402之间的区域与光线 405、 光线 406 之间的区域的重叠区域作为第一重叠区域, 光线 401、 光线 402之间的区域与光线 407、 光 线 408 之间的区域的重叠区域作为第二重叠区域, 光线 403、 光线 404之间的区域与光线 405、 光线 406之间的区域的重叠区域作为第三重叠区域, 线 403、 光线 404之间的区域与 光线 407、 光线 408之间的区域的重叠区域作为第四重叠区域, 根据相交组合后的四个重叠 区域获得包含所有准触摸点的准触摸点集, 可以将这四个重叠区域的内切圆的面积作为四个 准触摸点 201、 202、 203、 204 的大小, 将这四个重叠区域的形心作为四个准触摸点 201、 202、 203、 204 的坐标。 这种通过扫描数据中被触摸物遮挡的起始边界线和终止边界线之间 的遮挡区域的相交组合的方法获取的准触摸点坐标比较精确, 当然, 本实施方式中也可以通 过现有技术中其他扫描方式及扫描数据处理方法获取准触摸点集。
步骤 302: 扫描控制单元依次驱动红外发射单元同时选通相应的红外接收单元对红外触 摸屏在水平方向上进行两次偏轴扫描, 获取第二扫描数据, 两次偏轴扫描的扫描线的斜率符 号相反, 并将第二扫描数据发送给信号接收及处理单元, 信号接收及处理单元 204根据第二 扫描数据获取校准触摸点集, 也即信号接收及处理单元 204对第二扫描数据进行处理以获取 校准触摸点集。
所谓偏轴扫描为偏离主轴线的倾斜扫描, 偏轴扫描的扫描线称为偏线, 如图 5所示, 以 发射端为中心, 扫描线相对于主轴线逆时针偏转一定角度的偏轴扫描称为第一偏轴扫描, 第 一偏轴扫描的扫描线称为第一偏线 501, 第一偏轴扫描获取的扫描数据称为第一偏轴扫描数 据; 扫描线相对于主轴线顺时针偏转一定角度的偏轴扫描称为第二偏轴扫描, 第二偏轴扫描 的扫描线称为第二偏线 502, 第二偏轴扫描获取的扫描数据称为第二偏轴扫描数据, 因此触 摸识别系统执行步骤 302时获取的第二扫描数据应该包括第一偏轴扫描数据及第二偏轴扫描 数据, 这里对偏轴扫描的相关说明也适用于其他实施方式。
这里的偏轴扫描数据与步骤 301中的一对多的发散扫描的扫描数据一样, 体现了偏轴扫 描线是否被触摸物遮挡的信息, 信号接收及处理单元 204根据偏轴扫描数据获取校准触摸点 集, 实际上也是信号接收及处理单元 204根据偏轴扫描线的遮挡情况获取校准触摸点集。
通常情况下, 偏轴扫描的扫描线的倾斜角度, 也即偏轴扫描的扫描线与主轴线的夹角大 小, 可以通过偏线的接收端 (当前扫描的偏线的红外接收管所在的一端) 偏离主轴线的接收 端 (与当前扫描的红外发射管正对的红外接收管的一端) 的红外接收管的个数来衡量, 理论 上, 偏线偏离的红外接收管的个数越多效果越好, 但是, 如果偏线倾斜的角度太大, 会增大 触摸盲区的面积, 为了减少边角盲区, 偏线的偏转角度也不宜过大, 优选地, 偏线偏离的红 外接收管的个数为 8个或 16个, 这样的偏线可以称为偏 8线、 偏 16线, 在实际应用中具体 偏线的偏转角度可以根据红外触摸屏的尺寸或者实际实验的效果来定。
如图 6所示, 触摸识别系统执行步骤 302时其各个子单元具体执行以下步骤: 步骤 3021 : 扫描控制单元 203驱动红外发射单元 201 同时选通相应的红外接收单元 202沿 水平向左的方向对红外触摸屏进行第一偏轴扫描, 第一偏轴扫描的扫描线相互平行, 并将第 一偏轴扫描数据发送给信号接收及处理单元 204, 信号接收及处理单元 204对第一偏轴扫描 数据进行处理获取被触摸物遮挡的第一类遮挡区域, 也即信号接收及处理单元 204根据第一 偏轴扫描的扫描线 (第一偏线) 的遮挡情况获取被触摸物遮挡的第一类遮挡区域, 第一类遮 挡区域中的遮挡区域的个数与触摸物的个数及触摸物的分布有关, 如果触摸物与触摸物之间 的间隔较远, 且一条偏线不同时穿过两个以上的触摸物, 那么遮挡区域的个数应该等于触摸 物的个数, 否则, 第一类遮挡区域中遮挡区域的个数小于触摸物的个数。 如图 5, 沿水平向左方向依次扫描第 1只红外发射管和第 1+m只红外接收管之间的第一 偏线 501、 第 2只红外发射管和第 2+m只红外接收管之间的第一偏线 501、 ……、 第 i只红 外发射管和第 i+m只红外接收管之间的第一偏线 501、 ……, 其中 m和 i为自然数, 如图 7 所示, 由于触摸物的存在, 触摸物会遮挡部分偏线, 沿扫描方向上记录扫描的第一偏线中被 第一个触摸物遮挡的第一遮挡区域 701a, 被第二个触摸物遮挡的第二遮挡区域 702a。
步骤 3022: 扫描控制单元 203驱动红外发射单元 201同时选通相应的红外接收单元 202 沿水平向左的方向对红外触摸屏进行第二偏轴扫描, 第二偏轴扫描的扫描线与第一偏轴扫描 的扫描线的斜率大小相同, 并将第二偏轴扫描数据发送给信号接收及处理单元 204, 信号接 收及处理单元 204对第二偏轴扫描的扫描数据进行处理获取第二类遮挡区域, 也即信号接收 及处理单元 204依次记录第二偏轴扫描线 (第二偏线) 中被触摸物遮挡的第二类遮挡区域, 同样第二类遮挡区域中遮挡区域的个数与触摸物的个数及触摸物的分布有关。
如图 5, 沿水平向左方向依次扫描第 m+1只红外发射管和第 1只红外接收管之间的第二 偏线 502、 第 m+2只红外发射管和第 2只红外接收管之间的第二偏线 502、 ……、 第 m+i只 红外发射管和第 i只红外接收管之间的第二偏线 502、 ……, 其中 m和 i为自然数, 如图 7 所示, 由于触摸物的存在, 触摸物会遮挡部分偏线, 沿扫描方向上记录这些第二偏线中被第 一个触摸物遮挡的第三遮挡区域 701b, 被第二个触摸物遮挡的第四遮挡区域 702b。
步骤 3023: 信号接收及处理单元 204将第一类遮挡区域和第二类遮挡区域进行相交, 根据相交后的重叠区域获取校准触摸点集, 如图 7所示, 第一类遮挡区域中有第一遮挡区域 701a和第二遮挡区域 702a两个区域, 第二类遮挡区域中有第三遮挡区域 701b和第四遮挡区 域 702b两个区域, 其中第一遮挡区域 701a分别与第三遮挡区域 701b和第四遮挡区域 702b 相交存在两个重叠区域, 第二遮挡区域分别与第三遮挡区域 701b和第四遮挡区域 702b也相 交出两个重叠区域, 根据这些重叠区域可以获取校准触摸点集, 具体的, 可以将每一个重叠 区域的内切圆的面积作为一个校准触摸点的大小, 将每一个重叠区域的重心或形心作为相应 校准触摸点的坐标。
需要说明的是, 由于触摸点的分布不同、 偏轴扫描的偏线的倾斜角度不同, 第一类遮挡 区域和第二类遮挡区域的在触摸检测区域内的重叠区域的个数也会不同, 因此重叠区域的个 数不一定是 4个 (对于两个触摸点而言), 可能少于四个。
步骤 303: 信号接收及处理单元利用校准触摸点集中的校准触摸点校准准触摸点集中的 准触摸点以获得真实触摸点, 也即信号接收及处理单元根据步骤 301获取的准触摸点集中的 准触摸点和步骤 302 中获取的校准触摸点集中的校准触摸点的相互位置关系获得真实触摸 点, 具体的通过以下步骤获得真实触摸点:
i.设定一个距离阈值 t;
ii.在准触摸点集合和校验点集合中, 搜索各个准触摸点和各个校验触摸点之间距离小于等于 t 的准触摸点-校验触摸点对, 其中一个准触摸点最多只能和一个校准触摸点配对, 同样一个 校准触摸点最多只能和一个准触摸点配对, 将这些距离小于等于 t的准触摸点-校验点对中的 准触摸点识别为真实触摸点。
这里距离阈值的选取可以经验或者实际实验的结果进行选取。
步骤 303中利用校准触摸点集校准准触摸点集以获得真实触摸点的方法也可以是现有技 术中的其他方法。
本实施方式是以两点触摸为例进行说明的, 但是不局限于两点触摸, 上述触摸识别方法 及系统也适用于两点以上的触摸。
本实施方式通过沿水平方向分别对红外触摸屏进行第一偏轴扫描和第二偏轴扫描获取校 准触摸点集, 然后通过比较准触摸点集中的准触摸点与校准触摸点集中的校准触摸点之间的 距离来识别真实触摸点, 这种方法不需要改变任何硬件结构就可以有效识别出触摸检测区域 的多个触摸点。
第二种实施方式
本实施方式提供一种多点红外触摸屏触摸识别方法及系统, 该触摸识别方法及系统与第一种 实施方式的不同之处在于: 本实施方式中将步骤 302中扫描控制单元 203执行偏轴扫描时的 扫描方向变为沿竖直向上的第一偏轴扫描和第二偏轴扫描。 为了简单起见, 本实施方式中只 对与第一种实施方式的不同之处进行详细说明。
步骤 302' : 对红外触摸屏在沿竖直向上进行第一偏轴扫描和第二偏轴扫描, 两次偏轴 扫描的扫描线的斜率符号相反, 根据偏轴扫描的扫描数据获取校准触摸点集。
如图 8所示, 步骤 302' 的具体执行过程为:
步骤 302Γ: 扫描控制单元 203驱动红外发射单元 201同时选通相应的红外接收单元 202沿 竖直向上的方向对红外触摸屏进行第一偏轴扫描, 第一偏轴扫描的扫描线相互平行, 并将第 一偏轴扫描数据发送给信号接收及处理单元 204, 信号接收及处理单元 204对第一偏轴扫描 数据进行处理以获取被触摸物遮挡的第一类遮挡区域, 也即信号接收及处理单元 204根据第 一偏轴扫描的扫描线的遮挡情况获取被触摸物遮挡的第一类遮挡区域。
图 9示出了竖直向上方向的偏轴扫描的偏线遮挡区域示意图, 沿竖直向上方向依次扫描 第 1+m只红外发射管和第 1只红外接收管之间的第一偏线、 第 2+m只红外发射管和第 2只 红外接收管之间的第一偏线、 ……、 第 i+m只红外发射管和第 i只红外接收管之间的第一偏 线、 ……, 其中 m和 i为自然数, 由于触摸物的存在, 触摸物会遮挡部分偏线, 按照扫描的 顺序依次记录扫描的第一偏线中被第一个触摸物遮挡的第一遮挡区域 901a, 被第二个触摸 物遮挡的第二遮挡区域 902a。
步骤 3022' : 扫描控制单元 203 驱动红外发射单元 201 同时选通对应的红外接收单元 202沿竖直向上的方向对红外触摸屏进行第二偏轴扫描, 第二偏轴扫描的扫描线相互平行, 并将第二偏轴扫描数据发送给信号接收及处理单元 204, 信号接收及处理单元 204对第二偏 轴扫描的扫描数据进行处理以获取第二类遮挡区域, 也即信号接收及处理单元 204依次记录 第二偏轴扫描线中被触摸物遮挡的第二类遮挡区域。
图 9所示, 沿水平向左方向依次扫描第 1只红外发射管和第 m+1只红外接收管之间的 第二偏线、 第 2只红外发射管和第 m+2只红外接收管之间的第二偏线、 ……、 第 i只红外发 射管和第 m+i只红外接收管之间的第二偏线、 ……, 其中 m和 i为自然数, 由于触摸物的 存在, 触摸物会遮挡部分偏线, 沿扫描方向上记录这些第二偏线中被第一个触摸物遮挡的第 三遮挡区域 901b, 被第二个触摸物遮挡的第四遮挡区域 902b。
步骤 3023 ' : 信号接收及处理单元 204将第一类遮挡区域和第二类遮挡区域进行相交, 根据相交后的重叠区域获取校准触摸点集, 如图 9所示, 第一类遮挡区域与第二类遮挡区域 进行相交后在触摸检测区域内交出三个重叠区域, 计算每一个重叠区域的内切圆的面积作为 校准触摸点的大小, 计算每一个重叠区域的重心或形心坐标作为校准触摸点的坐标。
本实施方式通过对竖直方向上的第一偏轴扫描和第二偏轴扫描获取校准触摸点集, 与第 一种实施方式相同, 本实施方式也可以有效识别多个触摸点。
第三种实施方式
本实施方式提供一种多点红外触摸屏触摸识别方法及系统, 该多点红外触摸屏具体为两点红 外触摸屏, 本实施方式中的触摸识别系统包含与第一种实施方式和第二中实施方式相同的子 单元模块, 该触摸识别系统的各个子单元进行两点触摸识别时执行以下步骤 (如图 10): 步骤 1001 : 扫描控制单元 203依次驱动红外发射单元 201同时选通相应的红外接收单元 202 对红外触摸屏在水平方向和竖直方向上进行一对多的发散扫描, 获取第一扫描数据, 并将第 一扫描数据发送给信号接收及处理单元 204, 信号接收及处理单元 204根据第一扫描数据获 取准触摸点集, 对于两点触摸, 获取的准触摸点集中准触摸点的个数为两个或四个, 该准触 摸点集中包括真实触摸点和鬼点, 具体的一对多的发散扫描方法及获取准触摸点集的方法可 采用第一种实施方式或第二种实施方式中的方法。
步骤 1002: 信号接收及处理单元 204判断准触摸点集中准触摸点个数是否为 4, 若是, 则信号接收及处理单元 204将执行偏轴扫描的指令发送给所述扫描控制单元 203, 扫描控制 单元 203执行所述两次偏轴扫描, 否则信号接收及处理单元 204不将执行偏轴扫描的指令发 送给扫描控制单元 203, 直接将准触摸点集中的准触摸点识别为真实触摸点。
实际上, 对于两点触摸, 如果准触摸点集合中只存在两个准触摸点, 说明这两个准触摸 点都为真实触摸点, 可以直接输出, 不需要进行校准, 因此也不需要扫描控制单元执行偏轴 扫描的步骤。
步骤 1003: 扫描控制单元 203依次驱动红外发射单元 202 同时选通相应的红外接收单 元 203对红外触摸屏在水平方向上分别进行第一偏轴扫描和第二偏轴扫描, 两次偏轴扫描的 扫描线的斜率大小相等、 符号相反, 获取第二扫描数据, 并将第二偏轴扫描数据发送给信号 接收及处理单元 204, 其中第二扫描数据包括进行第一偏轴扫描获得的第一偏轴扫描数据和 进行第二偏轴扫描时获得的第二偏轴扫描数据, 信号接收及处理单元 204对第二偏轴扫描数 据进行处理以获取校准触摸点集, 具体偏轴扫描的扫描方式及获取第一类遮挡区域、 第二类 遮挡区域的方法可采用第一种实施方式或第二种实施方式中的方法, 而信号接收及处理单元 204根据第一类遮挡区域和第二类遮挡区域获取校准触摸点集的方法可以采用以下方法: 如图 7所示, 首先, 信号接收及处理单元 204在第一类遮挡区域与第二类遮挡区域的重叠区 域中选取与红外触摸屏的右边框距离最近的一个重叠区域作为第一个重叠区域, 根据该第一 个重叠区域获取第一个校准触摸点, 也即根据图 7 中第一遮挡区域 701a 与第三遮挡区域 701b 的重叠区域获取第一个校准触摸点, 可以将该第一个重叠区域的内切圆的面积作为第 一个校准触摸点的大小, 将第一个重叠区域的形心或重心坐标作为校准触摸点集中的第一个 校准触摸点的坐标。
其次, 信号接收及处理单元 204在第一类遮挡区域与第二类遮挡区域的重叠区域中选取 与红外触摸屏的左边框距离最近一个重叠区域作为第二个重叠区域, 根据该第二个重叠区域 获取第二个校准触摸点, 也即, 根据图 7中第二遮挡区域 702a与第四遮挡区域 702b的重叠 区域获取第二个校准触摸点, 可以将第二个重叠区域的内切圆的面积作为第二个校准触摸点 的大小, 将第二个重叠区域的形心或重心坐标作为校准触摸点集中的第二个校准触摸点的坐 标。
实际上, 如果不考虑触摸检测区域的边界, 对于两点触摸, 第一类遮挡区域与第二类遮 挡区域的交叉重叠区域应该为四个, 由于本实施方式中水平方向上的第一偏轴扫描和第二偏 轴扫描的扫描线的斜率大小相等, 因此四个重叠区域中有两个重叠区域的中心的连线必定位 于同一竖直线上, 如果触摸物位于这两个重叠区域内, 步骤 1001 中只能获得两个准触摸 点, 根据步骤 1002的判断, 将不会执行偏轴扫描的步骤 1003, 因此本步骤中两个触摸物必 定位于第一个校准触摸点 703和第二个校准触摸点 704的附近, 用第一个校准触摸点 703和 第二个校准触摸点 704来校准准触摸点可以快速识别出准触摸点中的真实触摸点。
需要说明的是, 也可以选取与红外触摸屏的左边框距离最近的第一重叠区域来获得第一 个校准触摸点, 选取与红外触摸屏右边框距离最近的第二重叠区域来获得第二个校准触摸 点。
步骤 1004: 信号接收及处理单元 204根据步骤 1003中获取的两个校准触摸点的连线的 斜率的符号与步骤 1004 中获取的四个准触摸点所组成的四边形的主对角线和副对角线的符 号是否相同来识别真实触摸点, 具体为:
如图 11 所示, 首先, 信号接收及处理单元 204 根据步骤 1003 中获取的两个校准触摸点 703、 704的坐标计算这两个校准触摸点连线的斜率 a (第一斜率); 其次, 信号接收及处理单元 204 根据步骤 1001 中获取的准触摸点集中的四个准触摸点 201、 202、 203、 204的坐标, 计算该四个准触摸点组成的四边形的主对角线的斜率 b (第二 斜率);
再次, 信号接收及处理单元 204比较 a与 b的符号是否相同, 比较斜率的符号是否相同可以 通过斜率相乘后的符号的正负来比较, 若符号相同, 则位于主对角线上的两个准触摸点 203、 204即为两个真实触摸点, 将准触摸点 203、 204定位为真实触摸点, 否则位于副对角 线上的两个准触摸点 201、 202即为两个真实触摸点, 将准触摸点 201、 202定位为真实触摸 点。 图 11中副对角线上的两个准触摸点 201、 202的连线的斜率的符号与两个近似真实触摸 点 703、 704的连线的斜率符号相同, 因此, 位于副对角线上的两个准触摸点 201、 202为两 个真实触摸点, 这里所说的主对角线和副对角线与数学上的主对角线和副对角线的概念相一 致。
也可以通过比较两个校准触摸点连线的斜率与四个准触摸点组成的四边形的副对角线上 的斜率的符号是否相同来识别真实触摸点。
实际上, 当触摸物静止时, 不管是一对多的发散扫描时还是偏轴扫描时, 两个触摸物的 相对位置是的变化是比较小的, 即使触摸物存在快速运动的情况下, 由于每一个扫描周期的 时间都非常短, 两个触摸物在一对多的发散扫描时和偏轴扫描时的相对位置一般不会发生突 变, 两个触摸物的连线的斜率的符号不会发生突变, 因此可以通过比较通过一对多的发散扫 描获得的准触摸点连线的斜率与通过偏轴扫描获得的校准触摸点连线的斜率的符号来识别真 实触摸点。
本实施方式提供一种两点红外触摸屏触摸识别方法及系统, 首先通过一对五的发散扫描 获得包括真实触摸点和鬼点的准触摸点集, 其次通过有规律的偏轴扫描获取获两个校准触摸 点, 通过比较位于对角上的两个准触摸点的斜率与两个校准触摸点的斜率的符号识别真实触 摸点, 这种通过斜率识别真实触摸点的方法没有改变红外触摸屏的任何硬件结构, 并且逻辑 简单, 识别速度快, 即使在两个触摸物快速运动情况下, 也能够正确地识别出两个真实触摸 点, 抗噪性高。
第四种实施方式
本实施方式提供一种两点红外触摸屏触摸识别方法及系统, 本实施方式是第三种实施方式的 一种替代实施方式, 与第三种实施方式相比, 除了步骤 1004 的具体执行方法不同之外, 其 他步骤都相同, 为了简便起见, 本实施方式只对与第三种实施方式不同的地方进行说明。
步骤 1004' : 信号接收及处理单元 204通过分别比较两个校准触摸点的连线的斜率与四 个准触摸点组成的四边形的主对角线和副对角线的差值的绝对值的大小来识别真实触摸点, 具体为:
如图 11所示, 首先, 信号接收及处理单元 204根据步骤 1003中获取的两个校准触摸点的坐 标计算这两个校准触摸点连线的斜率 a (第一斜率);
其次, 信号接收及处理单元 204根据步骤 1001 中获取的准触摸点集中的四个准触摸点的坐 标, 计算该四个准触摸点组成的四边形的主对角线的斜率 b (第二斜率) 和副对角线的斜率 c (第三斜率);
最后, 信号接收及处理单元 204计算 a与 b、 以及 a与 c的差值, 如果 a与 b的差值的绝对 值小于 a与 c的差值的绝对值, 那么将位于主对角线上的两个准触摸点 203、 204识别为真 实触摸点, 否则将位于副对角线上的两个准触摸点 201、 202识别为真实触摸点。
实际上, 当触摸物静止时, 不管是正扫描时还是偏轴扫描时, 两个触摸物的相对位置是 不变的, 那么准触摸点集中的两个真实触摸点的斜率应该与两个校准触摸点的连线的斜率相 同, 也即差值为零; 即使触摸物存在快速运动的情况下, 由于每一个扫描周期的时间都非常 短, 两个触摸物在正扫描时和偏轴扫描时的相对位置的变化也不会太大, 两个真实触摸点的 连线的斜率与两个校准触摸点的连线的斜率的差值的绝对值也会小于两个鬼点的连线的斜率 与两个校准触摸点的连线的斜率的差值的绝对值, 因此可以用斜率大小的差值来识别真实触 摸点。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范 围, 如沿水平方向或竖直方向的偏轴扫描不局限于一对一的偏轴扫描, 又如沿水平方向或竖 直方向的两次偏轴扫描的扫描方向可以相反, 倘若本发明的这些修改和变型属于本发明权利 要求及其同等技术的范围之内, 则本发明也意图包含这些改动和变型。

Claims

权利要求书
1. 一种多点红外触摸屏触摸识别方法, 其特征在于, 所述方法包括以下步骤:
A、 对所述红外触摸屏依次在第一方向和与之垂直的第二方向上进行扫描, 获取第一扫描数 据, 根据所述第一扫描数据获取准触摸点集;
B、 对所述红外触摸屏在第一方向或者第二方向上进行两次偏轴扫描, 获取第二扫描数据, 两次偏轴扫描的扫描线的斜率符号相反, 根据所述第二扫描数据获取校准触摸点集;
C、 利用所述校准触摸点集校准所述准触摸点集获得真实触摸点。
2. 根据权利要求 1 所述的多点红外触摸屏触摸识别方法, 其特征在于, 所述触摸识别方法 为两点触摸识别方法, 在步骤 A和步骤 B之间还包括下列步骤:
判断所述准触摸点集中准触摸点的个数是否为 4, 若是, 则执行步骤 B, 否则将所述准触摸 点集中的准触摸点直接识别为真实触摸点。
3. 根据权利要求 2所述的多点红外触摸屏触摸识别方法, 其特征在于, 步骤 B具体为: 沿第一方向对所述红外触摸屏进行第一偏轴扫描, 所述第一偏轴扫描的扫描线相互平行, 对 第一偏轴扫描数据进行处理获取被触摸物遮挡的第一类遮挡区域;
沿第一方向对所述红外触摸屏进行第二偏轴扫描, 该第二偏轴扫描的扫描线的斜率与所述第 一偏轴扫描的扫描线的斜率大小相等, 对第二偏轴扫描数据进行处理获取被触摸物遮挡的第 二类遮挡区域;
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第一方向垂直的红外 触摸屏的第一边距离最近的第一个重叠区域, 根据该第一个重叠区域获取所述校准触摸点集 中的第一个校准触摸点;
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第一方向垂直的红外 触摸屏的第二边距离最近的第二个重叠区域, 根据该第二个重叠区域获取所述校准触摸点集 中的第二个校准触摸点。
4. 根据权利要求 3所述的多点红外触摸屏触摸识别方法, 其特征在于,
步骤 C具体为:
计算所述第一个校准触摸点和所述第二个校准触摸点的连线的斜率作为第一斜率; 计算所述准触摸点集中的四个准触摸点组成的四边形的一个对角线的斜率作为第二斜率; 判断所述第二斜率与所述第一斜率的符号是否相同, 若相同, 则将位于所述四边形的该第二 斜率对应的对角线上的两个准触摸点定位为真实触摸点, 否则, 将位于所述四边形的另一个 对角线上的两个准触摸点定位为真实触摸点。
5. 根据权利要求 3所述的多点红外触摸屏触摸识别方法, 其特征在于,
步骤 C具体为:
计算所述第一个校准触摸点与所述第二个校准触摸点的连线的斜率作为第一斜率; 分别计算所述准触摸点集中的四个准触摸点组成的四边形的主对角线的斜率作为第二斜率和 副对角线的斜率作为第三斜率;
分别计算所述第一斜率与所述第二斜率、 所述第一斜率与所述第三斜率的差值, 若所述第一 斜率与所述第二斜率的差值的绝对值小于所述第一斜率与所述第三斜率的差值的绝对值, 则 将位于所述四边形的主对角线上的两个准触摸点定位为真实触摸点, 否则, 将位于所述四边 形的副对角线上的两个准触摸点定位为真实触摸点。
6. 根据权利要求 1 至 5 中任一项所述的多点红外触摸屏触摸识别方法, 其特征在于, 步骤 A具体为:
沿第一方向对所述红外触摸屏进行一对多的发散扫描, 依次记录扫描线中被每一个触摸物遮 挡的第一方向扫描遮挡区域;
沿第二方向对所述红外触摸屏进行一对多的发散扫描, 依次记录扫描线中被每一个触摸物遮 挡的第二方向扫描遮挡区域;
分别将第一方向扫描遮挡区域和第二方向扫描遮挡区域进行相交, 根据相交后的重叠区域获 得包含所有准触摸点的准触摸点集。
7. 根据权利要求 2所述的多点红外触摸屏触摸识别方法, 其特征在于, 步骤 B具体为: 沿第二方向对所述红外触摸屏进行第一偏轴扫描, 所述第一偏轴扫描的扫描线相互平行, 对 第一偏轴扫描数据进行处理获取被触摸物遮挡的第一类遮挡区域;
沿第二方向对所述红外触摸屏进行第二偏轴扫描, 该第二偏轴扫描的扫描线的斜率与所述第 一偏轴扫描的扫描线的斜率大小相等, 对第二偏轴扫描数据进行处理获取被触摸物遮挡的第 二类遮挡区域;
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第二方向垂直的红外 触摸屏的第一边距离最近的第一个重叠区域, 根据该第一个重叠区域获取所述校准触摸点集 中的第一个校准触摸点;
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第二方向垂直的红外 触摸屏的第二边距离最近的第二个重叠区域, 根据该第二个重叠区域获取所述校准触摸点集 中的第二个校准触摸点。
8. 一种多点红外触摸屏触摸识别系统, 包括多个红外发射单元、 多个红外接收单元、 扫描 控制单元和信号接收及处理单元, 其中所述红外发射单元与所述红外接收单元在第一方向和 与之垂直的第二方向上沿触摸检测区域的四周排列, 且相对设置, 其特征在于,
所述扫描控制单元,
依次驱动所述红外发射单元并同时选通相应的所述红外接收单元对所述红外触摸屏在第一方 向和第二方向上进行扫描, 获得第一扫描数据, 并将所述第一扫描数据发送给所述信号接收 及处理单元, 依次驱动所述红外发射单元并同时选通相应的所述红外接收单元对所述红外触摸屏在第一方 向或者第二方向上进行两次偏轴扫描, 获得第二扫描数据, 所述两次偏轴扫描的扫描线的斜 率符号相反, 并将该第二扫描数据发送给所述信号接收及处理单元,
所述信号接收及处理单元,
根据所述第一扫描数据获取准触摸点集;
根据所述第二扫描数据获取校准触摸点集;
利用所述校准触摸点集校准所述准触摸点集以获得真实触摸点。
9. 根据权利要求 8 所述的多点红外触摸屏触摸识别系统, 其特征在于, 所述触摸识别系统 是两点触摸识别系统,
所述信号接收及处理单元判断所述准触摸点集中准触摸点个数是否为 4, 若是, 则所述信号 接收及处理单元将执行偏轴扫描的指令发送给所述扫描控制单元, 所述扫描控制单元执行所 述两次偏轴扫描, 否则所述信号接收及处理单元不将执行偏轴扫描的指令发送给所述扫描控 制单元, 直接将所述准触摸点集中的准触摸点识别为真实触摸点。
10. 根据权利要求 9所述的多点红外触摸屏触摸识别系统, 其特征在于,
所述扫描控制单元,
依次驱动所述红外发射单元并同时选通相应的所述红外接收单元沿第一方向对所述红外触摸 屏进行第一偏轴扫描, 所述第一偏轴扫描的扫描线相互平行, 并将所述第一偏轴扫描数据发 送给所述信号接收及处理单元, 所述信号接收及处理单元对第一偏轴扫描数据进行处理获得 被触摸物遮挡的第一类遮挡区域;
依次驱动所述红外发射单元并同时选通相应的所述红外接收单元沿第一方向对所述红外触摸 屏进行第二偏轴扫描, 该第二偏轴扫描的扫描线的斜率与第一偏轴扫描的扫描线的斜率大小 相等, 并将第二偏轴扫描数据发送给所述信号接收及处理单元, 所述信号接收及处理单元对 所述第二偏轴扫描数据进行处理获取被触摸物遮挡的第二类遮挡区域;
所述信号接收及处理单元,
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第一方向垂直的红外 触摸屏的第一边距离最近的第一个重叠区域, 并根据该第一个重叠区域获取所述校准触摸点 集中的第一个校准触摸点;
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第一方向垂直的红外 触摸屏的第二边距离最近的第二个重叠区域, 并根据该第二个重叠区域获取所述校准触摸点 集中的第二个校准触摸点。
11. 根据权利要求 10 所述的多点红外触摸屏触摸识别系统, 其特征在于, 所述信号接收及 处理单元利用所述校准触摸点集校准所述准触摸点集以获得真实触摸点的方法如下: 首先计算所述第一个校准触摸点和所述第二个校准触摸点的连线的斜率作为第一斜率; 其次计算所述准触摸点集中的四个准触摸点组成的四边形的一个对角线的斜率作为第二斜 率;
最后比较所述第二斜率与所述第一斜率的符号是否相同, 若相同, 则将位于所述四边形的该 第二斜率对应的对角线上的两个准触摸点定位为真实触摸点, 否则, 将将位于所述四边形的 另一个对角线上的两个准触摸点定位为真实触摸点。
12. 根据权利要求 10 所述的多点红外触摸屏触摸识别系统, 其特征在于, 所述信号接收及 处理单元利用所述校准触摸点集校准所述准触摸点集以获得真实触摸点的方法如下: 首先计算所述第一个校准触摸点与所述第二个校准触摸点的连线的斜率作为第一斜率; 其次分别计算所述准触摸点集中的四个准触摸点组成的四边形的主对角线的斜率作为第二斜 率和副对角线的斜率作为第三斜率;
最后分别计算所述第一斜率与所述第二斜率、 所述第一斜率与所述第三斜率的差值, 若所述 第一斜率与所述第二斜率的差值的绝对值小于所述第一斜率与所述第三斜率的差值的绝对 值, 则将位于所述四边形的主对角线上的两个准触摸点定位为真实触摸点, 否则, 将位于所 述四边形的副对角线上的两个准触摸点定位为真实触摸点。
13. 根据权利要求 9所述的多点红外触摸屏触摸识别系统, 其特征在于,
所述扫描控制单元,
依次驱动所述红外发射单元并同时选通相应的所述红外接收单元沿第二方向对所述红外触摸 屏进行第一偏轴扫描, 所述第一偏轴扫描的扫描线相互平行, 并将第一偏轴扫描数据发送给 所述信号接收及处理单元, 所述信号接收及处理单元对所述第一偏轴扫描数据进行处理获取 被触摸物遮挡的第一类遮挡区域;
依次驱动所述红外发射单元并同时选通相应的所述红外接收单元沿第二方向对所述红外触摸 屏进行第二偏轴扫描, 该第二偏轴扫描的扫描线的斜率与第一偏轴扫描的扫描线的斜率大小 相等, 并将第二偏轴扫描数据发送给所述信号接收及处理单元, 所述信号接收及处理单元对 所述第二偏轴扫描数据进行处理获取第二类遮挡区域;
所述信号接收及处理单元,
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第二方向垂直的红外 触摸屏的第一边距离最近的第一个重叠区域, 并根据该第一个重叠区域获取所述校准触摸点 集中的第一个校准触摸点;
在所述第一类遮挡区域与所述第二类遮挡区域的重叠区域中选取与所述第二方向垂直的红外 触摸屏的第二边距离最近的第二个重叠区域, 并根据该第二个重叠区域获取所述校准触摸点 集中的第二个校准触摸点。
PCT/CN2012/077857 2012-03-27 2012-06-29 一种多点红外触摸屏触摸识别方法及系统 WO2013143235A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210083608.6 2012-03-27
CN201210083608.6A CN103365480B (zh) 2012-03-27 2012-03-27 一种多点红外触摸屏触摸识别方法及系统

Publications (1)

Publication Number Publication Date
WO2013143235A1 true WO2013143235A1 (zh) 2013-10-03

Family

ID=49258144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077857 WO2013143235A1 (zh) 2012-03-27 2012-06-29 一种多点红外触摸屏触摸识别方法及系统

Country Status (2)

Country Link
CN (1) CN103365480B (zh)
WO (1) WO2013143235A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105094454A (zh) * 2014-04-17 2015-11-25 青岛海信电器股份有限公司 一种触摸屏多点定位方法、装置及触屏设备
CN105094453A (zh) * 2014-04-17 2015-11-25 青岛海信电器股份有限公司 一种触摸屏多点定位方法、装置及触屏设备
CN105808019A (zh) * 2014-12-31 2016-07-27 鸿合科技有限公司 一种用于红外触摸屏的触点坐标检测方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105204693B (zh) * 2014-06-19 2019-12-10 青岛海信电器股份有限公司 一种触摸点识别方法、装置及触屏设备
TWI529583B (zh) * 2014-12-02 2016-04-11 友達光電股份有限公司 觸控系統與觸控偵測方法
CN104571728B (zh) * 2015-01-13 2017-05-31 滨州学院 一种红外触摸屏及快速识别两点的方法
CN105094463B (zh) * 2015-07-22 2018-09-25 深圳市天英联合教育股份有限公司 红外触控屏及其扫描方法
CN106569642B (zh) * 2015-10-13 2020-10-02 鸿合科技股份有限公司 一种触摸点识别方法和系统
CN105183244B (zh) * 2015-10-23 2018-07-31 浪潮(北京)电子信息产业有限公司 一种服务器触摸屏的多实点识别算法
CN106055143B (zh) * 2016-05-20 2019-03-26 广州视睿电子科技有限公司 触摸点位置检测方法和系统
CN107957826B (zh) * 2018-01-04 2020-10-30 河北华发教育科技股份有限公司 一种红外触屏多触摸点区域的识别方法及识别系统
CN108536337A (zh) * 2018-03-20 2018-09-14 广州华欣电子科技有限公司 红外触摸框扫描的方法及红外触摸框

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201142069Y (zh) * 2008-01-09 2008-10-29 广东威创视讯科技股份有限公司 一种红外线触摸屏
CN101995997A (zh) * 2009-08-21 2011-03-30 厦门信烨联动传媒有限公司 一种多点红外线触摸屏及其触摸定位方法
CN102331885A (zh) * 2011-05-30 2012-01-25 广州视睿电子科技有限公司 基于斜坐标系的红外触摸屏触摸定位方法及装置
CN102364415A (zh) * 2011-06-28 2012-02-29 广东威创视讯科技股份有限公司 红外触摸屏多触摸点识别方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226446B (zh) * 2008-01-09 2010-10-27 广东威创视讯科技股份有限公司 红外线触摸屏及多点触摸定位方法
CN102270071B (zh) * 2011-08-30 2013-09-18 广东威创视讯科技股份有限公司 多点触摸识别方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201142069Y (zh) * 2008-01-09 2008-10-29 广东威创视讯科技股份有限公司 一种红外线触摸屏
CN101995997A (zh) * 2009-08-21 2011-03-30 厦门信烨联动传媒有限公司 一种多点红外线触摸屏及其触摸定位方法
CN102331885A (zh) * 2011-05-30 2012-01-25 广州视睿电子科技有限公司 基于斜坐标系的红外触摸屏触摸定位方法及装置
CN102364415A (zh) * 2011-06-28 2012-02-29 广东威创视讯科技股份有限公司 红外触摸屏多触摸点识别方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105094454A (zh) * 2014-04-17 2015-11-25 青岛海信电器股份有限公司 一种触摸屏多点定位方法、装置及触屏设备
CN105094453A (zh) * 2014-04-17 2015-11-25 青岛海信电器股份有限公司 一种触摸屏多点定位方法、装置及触屏设备
CN105094453B (zh) * 2014-04-17 2019-06-14 青岛海信电器股份有限公司 一种触摸屏多点定位方法、装置及触屏设备
CN105094454B (zh) * 2014-04-17 2019-06-14 青岛海信电器股份有限公司 一种触摸屏多点定位方法、装置及触屏设备
CN105808019A (zh) * 2014-12-31 2016-07-27 鸿合科技有限公司 一种用于红外触摸屏的触点坐标检测方法
CN105808019B (zh) * 2014-12-31 2020-06-23 鸿合科技股份有限公司 一种用于红外触摸屏的触点坐标检测方法

Also Published As

Publication number Publication date
CN103365480A (zh) 2013-10-23
CN103365480B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2013143235A1 (zh) 一种多点红外触摸屏触摸识别方法及系统
US8711125B2 (en) Coordinate locating method and apparatus
US9395849B2 (en) Infrared touch screen multi-point recognizing method and infrared touch screen
JP5698846B2 (ja) タッチパネルとタッチ入力デバイス、及びマルチタッチポイントの真実座標を判定するための方法
US20090278816A1 (en) Systems and Methods For Resolving Multitouch Scenarios Using Software Filters
US8576200B2 (en) Multiple-input touch panel and method for gesture recognition
CN102364415B (zh) 红外触摸屏多触摸点识别方法及装置
TWI498785B (zh) 觸控感應裝置以及觸碰點偵測方法
WO2009102681A2 (en) Systems and methods for resolving multitouch scenarios for optical touchscreens
CN103984449A (zh) 一种触摸屏触摸区域定位方法
US20110199337A1 (en) Object-detecting system and method by use of non-coincident fields of light
US20150002470A1 (en) Method and system for determining true touch points on input touch panel using sensing modules
CN104598082A (zh) 一种确定候选触摸点的方法及装置
CN103092438B (zh) 一种红外触摸装置及多点触摸定位方法
US20160092032A1 (en) Optical touch screen system and computing method thereof
US9971429B2 (en) Gesture recognition method, apparatus and device, computer program product therefor
US10037107B2 (en) Optical touch device and sensing method thereof
TWI423094B (zh) 光學式觸控裝置及其運作方法
CN103984443A (zh) 红外线触摸屏及触摸点定位方法
CN105404433A (zh) 一种基于红外触摸屏的触控识别方法和显示装置
US10551934B2 (en) Gesture recognition method, apparatus and device, computer program product therefor
US9019243B2 (en) Optical coordinate input device
CN102364416B (zh) 红外触摸屏多触摸点识别方法及装置
WO2014000510A1 (zh) 一种红外触摸屏扫描方法
CN102184054A (zh) 多触摸点识别方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872923

Country of ref document: EP

Kind code of ref document: A1