WO2013143199A1 - 基于led的双面光栅立体显示装置及其制作方法 - Google Patents

基于led的双面光栅立体显示装置及其制作方法 Download PDF

Info

Publication number
WO2013143199A1
WO2013143199A1 PCT/CN2012/074719 CN2012074719W WO2013143199A1 WO 2013143199 A1 WO2013143199 A1 WO 2013143199A1 CN 2012074719 W CN2012074719 W CN 2012074719W WO 2013143199 A1 WO2013143199 A1 WO 2013143199A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
led
display device
double
sided
Prior art date
Application number
PCT/CN2012/074719
Other languages
English (en)
French (fr)
Inventor
张永爱
郭太良
周雄图
叶芸
林志贤
姚剑敏
林金堂
胡利勤
胡海龙
徐胜
曾祥耀
杨倩
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Priority to EP12873469.6A priority Critical patent/EP2770365A4/en
Priority to US14/118,426 priority patent/US20150192780A1/en
Publication of WO2013143199A1 publication Critical patent/WO2013143199A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • Double-sided grating stereoscopic display device based on LED and manufacturing method thereof
  • the present invention relates to the field of autostereoscopic display, and in particular to a double-sided grating stereoscopic display device based on LED and a manufacturing method thereof.
  • the naked-eye 3D (Three-dimensional) display can view 3D images without the need for viewers to wear glasses or helmets, which has become a research hotspot in the field of display.
  • the raster naked-eye 3D display has attracted much attention due to its simple structure, low cost, and good compatibility with existing 2D displays.
  • the grating is simple to manufacture and low in cost, and the user can freely design the width of the light blocking area and the light transmitting area according to actual needs, and produces gratings of various specifications, in particular, the splicing technology can be used to realize the extra large size 3D display.
  • LED display technology has been widely used.
  • LED display technology has the advantages of high brightness, environmental protection, energy saving, fast response, impact resistance and stable performance.
  • LED display screen as display, display board, bulletin board The purpose is to be widely used in situations where large size and high brightness are required.
  • the LED display technology can arbitrarily splicing the display unit as needed to form display screens of different sizes, different resolutions and different shapes, and has advantages that cannot be replaced by other display technologies in the fields of advertising, culture, entertainment and scientific research.
  • LED displays for autostereoscopic display has always been the goal that people are constantly pursuing.
  • the naked eye 3D-LEDs for gratings have the advantages of simple preparation process and low cost.
  • a plurality of light emitting diodes are arranged in an array to form a display plane, or a plurality of LED display units are spliced to form a large-area display plane, resulting in an upper and lower display between the LEDs in the display or between the LED display units.
  • the present invention provides a double-sided grating stereoscopic display device based on LED and a manufacturing method thereof.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide an LED-based double-sided grating stereoscopic display device, which overcomes the problem that the LEDs of each LED display are not well aligned between each LED and each LED unit.
  • the problem is that it is easy to realize the naked-eye 3D display of large-area, high-brightness LEDs, and the manufacturing method is simple and the cost is low.
  • An LED-based double-sided grating stereoscopic display device comprising: an LED display screen and a double grating substrate disposed in front of the LED display screen; the double grating substrate comprises a front grating and a rear grating, wherein the rear grating is close to the surface of the LED display screen, and is used to ensure that the illumination center points of each of the LED sub-pixels constituting the LED display screen are consistent in the horizontal and vertical directions, and the front grating is a grating close to the viewer.
  • the double grating substrate comprises a front grating and a rear grating, wherein the rear grating is close to the surface of the LED display screen, and is used to ensure that the illumination center points of each of the LED sub-pixels constituting the LED display screen are consistent in the horizontal and vertical directions, and the front grating is a grating close to the viewer.
  • Another object of the present invention is to provide a method for fabricating a double-sided grating stereoscopic display device based on an LED, which solves the problem that the LEDs of a general LED display panel are not well aligned between each LED and each LED unit. It is easy to realize the naked-eye 3D display of large-area and high-brightness LEDs, and the manufacturing method is simple and low in cost.
  • the first solution adopted by the present invention is:
  • a method for manufacturing a double-sided grating stereoscopic display device based on LED characterized in that:
  • the second solution adopted by the present invention is:
  • a method for manufacturing a double-sided grating stereoscopic display device based on LED characterized in that:
  • the third solution adopted by the present invention is:
  • a method for manufacturing a double-sided grating stereoscopic display device based on LED characterized in that:
  • the invention has the significant advantages that the problem that the LEDs of the general LED display are not well aligned between each LED and each LED unit is effectively solved, and the naked-eye 3D display of the large-area and high-brightness LED is realized, and the manufacturing method is simple. low cost.
  • FIG. 1 is a top plan view of a display screen structure spliced by four LED unit modules.
  • FIG. 2 is a schematic diagram of an LED-based double-sided grating stereoscopic display device according to a first preferred embodiment of the present invention.
  • 3 is a side elevational view of an LED-based double-sided grating stereoscopic display device in accordance with a first preferred embodiment of the present invention.
  • 4 is a schematic view of a circular aperture rear grating of a metal film according to a first preferred embodiment of the present invention.
  • FIG. 5 is a schematic view of a double grating substrate according to a first preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an LED-based double-sided grating stereoscopic display device according to a second preferred embodiment of the present invention.
  • Figure 7 is a side elevational view of an LED-based double-sided raster stereoscopic display device in accordance with a second preferred embodiment of the present invention.
  • FIG. 8 is a schematic view of a metal circular hole flat back grating according to a second preferred embodiment of the present invention.
  • Figure 9 is a schematic view of a metal slit front grating in accordance with a second preferred embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an LED-based double-sided grating stereoscopic display device according to a third preferred embodiment of the present invention.
  • Figure 11 is a side elevational view of an LED-based double-sided grating stereoscopic display device in accordance with a third preferred embodiment of the present invention.
  • Figure 12 is a schematic view of a rear-plate grating of a thin film plastic circular hole according to a third preferred embodiment of the present invention.
  • Figure 13 is a schematic view of a light grid of a thin film plastic circular plate attached to the surface of a glass substrate according to a third preferred embodiment of the present invention.
  • Figure 14 is a schematic view of a front lens of a cylindrical lens according to a third preferred embodiment of the present invention.
  • Figure 15 is a schematic illustration of a double grating in accordance with a third preferred embodiment of the present invention.
  • the invention provides an LED-based double-sided grating stereoscopic display device, which comprises an LED display screen and a double grating substrate disposed in front of the LED display screen; the double grating substrate comprises a front grating and a rear grating, wherein the rear The grating is adjacent to the surface of the LED display screen for ensuring that the center of illumination of each of the LED sub-pixels constituting the LED display screen is aligned in the horizontal and vertical directions, and the front grating is a grating close to the viewer for stereoscopic light splitting.
  • FIG. 1 is a top view of a display screen structure spliced by four LED unit modules;
  • FIG. 2 is a schematic diagram of a double-sided grating stereoscopic display device based on LED;
  • Figures 4 and 5 are schematic views of the fabrication of the double grating of the present invention.
  • the LED-based double-sided grating stereoscopic display device and the manufacturing method thereof according to the first embodiment of the present invention will be described in detail below with reference to FIG. 2 to FIG.
  • the LED-based double-sided grating stereoscopic display device has a double grating substrate directly processed by a microporous flat plate back grating and a front grating in glass, ITO glass, polymethyl methacrylate (PMMA). Or polyethylene terephthalate (PET) transparent substrate on both sides of the surface.
  • the double grating substrate 108 can be directly disposed in front of the LED display screen, or a transparent heat insulation layer can be disposed between the double grating substrate and the LED display screen, and the transparent heat insulation layer can be glass, insulating glass or acrylic transparent heat insulating material.
  • the back grating is a microporous flat grating, and the shape of the transparent region of the grating after the microporous flat plate can be a circle
  • the light-transmissive region may be a combination of one or more technologies of laser mapping, screen printing, spray coating, vacuum coating, electroplating, photolithography, and the like, in the form of a shape, a rectangle, a square, a diamond, or an ellipse.
  • the front grating is any grating that can control the light propagation path in a certain manner, so that the left and right eyes of the viewer can view different parallax images, including a slit grating, a cylindrical lens grating, a vibration grating or a liquid crystal lens.
  • the slit grating may be coated with an opaque film or film on a transparent substrate of glass, polymethyl methacrylate (PMMA) or polyethylene terephthalate (PET), and the slit grating is transparent.
  • the light region may be processed by one or more technologies of mechanical method, laser drilling, laser drawing, screen printing, spraying, vacuum coating, electroplating, photolithography, etc.; the front grating may also be a column In the lens grating, the cylindrical lens of the cylindrical lens grating may be formed in a vertical direction or may be inclined, and the cylindrical lens grating designed and processed may be attached to the surface of the rear grating by physical, chemical and mechanical methods.
  • the front grating may also be a liquid crystal lens grating.
  • the liquid crystal lens may be processed on the surface of the ITO transparent substrate by photolithography and scratching techniques or printing and scratching techniques, and the liquid crystal lens may be a vertical vertical or inclined structure.
  • the back grating is a microporous flat grating, and the microporous grating is fabricated on the transparent substrate by using printing technology; or the opaque film is deposited on the transparent substrate by printing, physical vapor deposition, chemical vapor deposition or electroless plating. Or the film layer, and then use the exposure and etching techniques to make the microporous grating.
  • the front grating is a slit grating, which uses a printing technique to form a slit grating on a transparent substrate; or deposits an opaque film or film on a transparent substrate by printing, physical vapor deposition, chemical vapor deposition, or electroless plating. The layer is then exposed and etched to form a slit grating.
  • the front grating is a cylindrical lens grating, which is a vertical vertical or inclined structure which is processed on the surface of a transparent substrate by photolithography or mechanical hot pressing.
  • the front grating may also be a liquid crystal lens grating which is a longitudinal vertical or inclined structure which is processed on the surface of the transparent glass substrate by photolithography and scratching techniques or printing scratching techniques.
  • the present embodiment further describes the manufacturing process in a preferred manner:
  • the preferred dual grating substrate and the LED display screen are not transparent. Insulation layer, the front grating surface is preferably not provided with a protective layer, preferably on the glass side
  • the metal film round-hole back grating 102 is processed by vacuum coating and photolithography, and the metal film slit rear grating 105 is processed by vacuum coating and photolithography.
  • the specific manufacturing process includes the following steps. :
  • (S1U) Determine the parameters of the LED display 01 used, including the pixels of the LED display, the diameter D! of each LED, and the distance D 2 between adjacent LED sub-pixels.
  • the metal film round hole rear grating is disposed on the surface of the LED display screen, and the center point of the circular hole corresponds to the LED center point on the LED display screen in the horizontal direction and the vertical direction.
  • Each of the circular holes has the same diameter and is smaller than the diameter Di of the LED sub-pixels, and the center distance of the adjacent circular holes is D 2 .
  • the distance between adjacent circular aperture grating arrays is equal to the distance D 2 between adjacent LED sub-pixels.
  • the width can increase the light transmittance of the light passing through the grating, and improve the brightness of the autostereoscopic display, but at this time, the left eye may see part of the right eye image, and the right eye may also see the left eye image, that is, the stereoscopic visible area is better than the ideal situation.
  • the ratio of the slit width to the width of the light barrier in the slit grating may preferably be 1:8.
  • (5122) Printing of the mask Using a high-precision film printer, the mask is printed according to the designed raster computer file, that is, the laser is drawn at a transparent film interval to form a desired grating structure, and the mask plate is transparent. Part of the circular hole pattern, the edge of the circular black strip should be smoother, and there is less boundary between the pits, otherwise it will affect the size of the visible area.
  • a metal film is deposited on the surface of the cleaned glass substrate, and the material used may be Cu, W, Co, Ni, Ta, TaN, Ti, Zn, Al, Cr.
  • the metal thin film may be a composite metal thin film of one or more combinations.
  • the CrNi composite thin film is preferably deposited by a magnetron sputtering method.
  • the RZJ-304 photoresist was transferred to the surface of the glass substrate 200 with a CrNi composite film by a spin coating process and kept at 110 ° C for 25 minutes.
  • the pre-baked photoresist film layer is naturally cooled to room temperature and exposed, and the printed mask is covered on the photoresist film layer, and exposed to a 4.4 mW/cm 2 lithography machine for 11 seconds.
  • the encapsulating photosensitizer is positive, so the pattern illuminated by ultraviolet light is dissolved by light, and the pattern that is not subject to ultraviolet light remains unchanged.
  • Printing of the mask Printing of the grating film: Using a high-precision film printer, the grating film is printed according to the designed raster computer file, that is, the transparent grating film is printed to form the desired grating structure, the film grating black The edges of the bars should be relatively straight, with fewer pits and ridges, which would otherwise affect the size of the viewable area.
  • the opaque black strip of the grating is close to the ideal opaque black strip, so that the left and right The images seen by the eye are completely separated, reducing crosstalk between the images seen by the left and right eyes.
  • Fabrication of the metal film slit front grating 105 depositing a metal film on the surface of the cleaned glass substrate, and the materials used may be Cu, W, Co, Ni, Ta, TaN, Ti, Zn, Al, Cr.
  • the metal thin film may be a composite metal thin film of one or more combinations.
  • the CrNi composite thin film is preferably deposited by a magnetron sputtering method, and the specific implementation process includes:
  • an LED-based double-sided grating stereoscopic display device wherein the double-grating substrate is formed by combining a micro-hole flat grating and a front grating which are respectively processed.
  • the double grating substrate can be directly disposed in front of the LED display screen, or a transparent heat insulation layer can be disposed between the double grating substrate and the LED display screen, and the heat insulation layer can be glass, insulating glass or acrylic transparent heat insulating material.
  • the shape of the transparent region of the grating after the microporous plate may be a circle, a rectangle, a square, a diamond or an ellipse, and the material of the microplate flat grating may be an opaque metal plate, including a steel plate, an aluminum plate, a chrome plate, a chrome plate. , nickel plate, slab or titanium plate, can also be coated with opaque film or film on glass, polymethyl methacrylate (PMMA) or polyethylene terephthalate (PET) transparent substrate.
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • the transparent region of the grating after the microporous plate may be processed by one or more technologies of mechanical methods, laser drilling, laser drawing, screen printing, spraying, vacuum coating, electroplating, photolithography, and the like. to make.
  • the front grating is any one that can control the light propagation path in a certain manner, so that the left and right eyes of the viewer can view the light of different parallax images.
  • Grid including slit grating, cylindrical lens grating, vibration grating or liquid crystal lens
  • the material of the slit grating may be opaque metal plate, including steel plate, aluminum plate, chrome steel plate, chrome plate, nickel plate, slab plate or titanium plate, It is coated on a glass, polymethyl methacrylate (PMMA) or polyethylene terephthalate (PET) transparent substrate with an opaque film or film.
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • the transparent region of the slit grating can be mechanical.
  • the front grating may also be a cylindrical lens grating.
  • the cylindrical mirror of the grating may be formed in a vertical direction or may be inclined, and the cylindrical lens grating designed and processed may be attached to the surface of the rear grating by physical, chemical and mechanical methods.
  • the front grating may also be a liquid crystal lens grating.
  • the liquid crystal lens may be processed on the surface of the transparent substrate by photolithography and scratching techniques or printing and scratching techniques, and the liquid crystal lens may be a vertical vertical or inclined structure.
  • the front grating is a vibration grating, and the vibration direction of the vibration grating is a horizontal direction, a vertical direction, or an oblique direction.
  • the back grating is a microporous flat grating, which is processed by mechanical method or laser drilling on the surface of the opaque metal sheet; or is formed on a transparent substrate by using printing technology; or is formed on a transparent substrate by using laser drawing technology.
  • the front grating is a slit grating, which is processed by mechanical method or laser drilling on the surface of the opaque metal sheet; or is formed on a transparent substrate by using laser drawing technology; or is formed on a transparent substrate by using printing technology.
  • the front grating may also be a cylindrical lens grating, the cylindrical mirror of which is a longitudinal vertical or inclined structure, and the cylindrical lens grating is attached to the rear grating surface by physical, chemical and mechanical methods.
  • the front grating may also adopt a liquid crystal lens grating which is a vertical vertical or inclined structure which is processed on the surface of the ITO transparent glass substrate by photolithography and scratching techniques or printing and wiping techniques.
  • the front grating may also adopt a vibration grating whose vibration direction is a horizontal direction, a vertical direction or an oblique direction.
  • the present embodiment further describes the manufacturing process in a preferred manner:
  • the preferred double grating substrate and the LED display screen in this embodiment are not provided with transparent heat insulation.
  • the front grating surface is not provided with a protective layer
  • the preferred back grating is preferably a metal circular hole flat grating 201 which is processed by laser processing using a metal aluminum plate
  • the front grating is preferably a metal slit front grating which is processed by laser processing using a metal aluminum plate.
  • Design of the metal round hole flat grating 201 The metal film round hole rear grating is disposed on the surface of the LED display screen, and the center point of each circular hole array in the front grating substrate of the metal circular hole is horizontally and vertically One-to-one correspondence with the center points of the LED display sub-pixels, the diameter of each circular hole is equal, and smaller than the diameter D! of the LED sub-pixel, the center distance of the adjacent circular hole is D 2 , and the thickness of the grating substrate before the metal round hole is smaller than that of the metal
  • the circular plate rear grating 201 and the metal slit front grating 204 have a total thickness d 2 .
  • each circular aperture array preferably has a diameter of 0.5 Di and a thickness of 0.5 d 2 and the adjacent circular aperture array has a distance equal to the adjacent
  • the metal circular hole front grating substrate of the distance D 2 between the LED sub-pixels will be described in detail.
  • the width of the light strip can increase the light transmittance of the light passing through the grating and improve the brightness of the autostereoscopic display, but at this time, the left eye may see part of the right eye image, and the right eye may also see the left eye image, that is, the stereoscopic area ratio
  • the ideal case is small.
  • the ratio of the slit width to the width of the light barrier in the slit grating is 1: 6-8, and the thickness of the substrate of the grating before the metal slit is smaller than that of the metal hole.
  • the total thickness d 2 of the flat plate rear grating 201 and the metal slit front grating 204 is preferably 1.
  • the ratio of the slit width to the width of the light blocking strip in the slit grating is 1:8, and the thickness of the grating substrate after the slit is 0.5. after 2 d slit grating metal substrate is described in detail (S214) Determination of the relative position of the metal circular aperture flat grating 201 and the metal slit front grating 204: by using Matlab computer software simulation, the relative positions of the metal slit front grating 204 and the metal circular aperture flat grating 201 are obtained. And pre-align the mark in the computer file of the raster.
  • a metal round front grating 203 composed of a light-transmissive circular hole 202 and an opaque region is formed by laser processing.
  • a metal slit back grating composed of a light-transmitting slit 205 and a light-impermeable black strip 206 is formed by laser processing.
  • the alignment of the double grating substrate and the LED display screen is fixed: the metal round hole plate rear grating 201 is closely close to the LED display 01, and the center of the circular hole array has a one-to-one correspondence with the center of each sub-pixel in the LED display screen, the metal narrow
  • the pre-stitch grating 204 is attached to the surface of the grating 201 after the metal circular hole plate according to the designed positioning mark.
  • an LED-based double-sided grating stereoscopic display device wherein the double grating substrate can be directly processed by a microporous flat plate back grating and a front grating to be laminated on glass or polymethyl methacrylate. (PMMA), polyethylene terephthalate (PET) on both sides of the transparent substrate, the double grating substrate can be directly placed in front of the LED display, or a transparent insulation layer can be disposed between the double grating substrate and the LED display
  • the heat insulation layer may be glass, insulating glass or acrylic transparent heat insulating material.
  • the material of the grating after the microporous plate may be opaque metal plate, including steel plate, aluminum plate, chrome plate, chrome plate, nickel plate, slab or titanium plate, which may be in glass, polymethyl methacrylate (PMMA), poly
  • PMMA polymethyl methacrylate
  • PET polymethyl methacrylate
  • the transparent substrate of ethylene terephthalate (PET) is coated with an opaque film or film.
  • the transparent region of the microplate slab can be mechanical, laser drilling, laser drawing, screen printing, spraying. And one or more technologies of vacuum plating, electroplating, photolithography and the like are processed in combination.
  • the front grating is any kind of grating that can control the light propagation path in a certain way, so that the left and right eyes of the viewer can view different parallax images, including slit grating, cylindrical lens grating, vibration grating or liquid crystal lens, slit grating
  • the material may be opaque metal plates, including steel, aluminum, chrome, chrome, nickel, iridium or titanium, or in glass, polymethyl methacrylate (PMMA) or polyterephthalate.
  • PMMA polymethyl methacrylate
  • PET ethylene glycol ester
  • the transparent region of the slit grating can be mechanical, laser drilling, laser drawing, screen printing, spraying, vacuum coating, electroplating.
  • the front grating may also be a cylindrical lens grating, and the cylindrical mirror of the grating may be formed in a vertical direction or may be inclined.
  • the front grating may also be a liquid crystal lens grating.
  • the liquid crystal lens may be processed on the surface of the transparent substrate by photolithography and scratching techniques or printing and scratching techniques.
  • the liquid crystal lens may be vertically vertical or oblique.
  • the front grating is a vibration grating, and the vibration direction of the vibration grating is a horizontal direction, a vertical direction, or an oblique direction.
  • the back grating is a microporous flat grating, which is processed by mechanical method or laser drilling on the surface of the opaque metal sheet; or is formed on a transparent substrate by using printing technology; or using a laser drawing technique on the transparent base It is made on-chip; or it is deposited on a transparent substrate by printing, physical vapor deposition, chemical vapor deposition, or electroless plating, and then formed by exposure and etching techniques.
  • the front grating is a slit grating, which is processed by mechanical method or laser drilling on the surface of the opaque metal sheet; or is formed on a transparent substrate by using laser drawing technology; or is formed on a transparent substrate by using printing technology.
  • the front grating may also be a cylindrical lens grating whose cylindrical mirror is a longitudinal vertical or inclined structure.
  • the front grating may also be a liquid crystal lens grating which is formed in a longitudinal vertical direction or an oblique direction, which is processed on the surface of the transparent glass substrate by photolithography and scratching techniques or printing and scratching techniques.
  • the front grating may also employ a vibration grating whose vibration direction is a horizontal direction, a vertical direction, or an oblique direction.
  • the preferred double grating substrate and the LED display screen are provided with a transparent glass transparent partition.
  • the thermal layer and the front grating surface are not provided with a protective layer.
  • the double grating substrate is a front grating and a rear grating laminated on a glass substrate to form a composite, and the rear grating is preferably a thin film plastic circular aperture flat grating after drawing on a PET transparent substrate.
  • the front grating is preferably a cylindrical lens grating formed in a vertical direction, and the specific manufacturing process comprises the following steps:
  • (S31) Design of double grating the specific process includes: ( 5311) Determine the parameters of the LED display used. This parameter includes the pixels of the LED display, the diameter D! of each LED, and the distance D 2 between adjacent LED sub-pixels.
  • Film plastic round hole plate rear grating 302 The front grating is designed according to the selected LED display 01 parameters.
  • the front grating is designed as the film plastic round hole plate rear grating 302, and the center point of the circular hole is in the horizontal direction. And the vertical direction corresponds one-to-one with the center point of the LED on the LED display, each of the circular holes has the same diameter, and is smaller than the diameter D! of the LED sub-pixel, and the center distance of the adjacent circular hole is D 2 , which is preferably used in this embodiment.
  • Each of the circular aperture arrays has a diameter of 0.5 Di film plastic circular holes, and the adjacent circular aperture grating arrays have a distance equal to the distance D 2 between the adjacent LED sub-pixels.
  • the sub-pixel width of the LED display screen is the optimal stereo viewing distance
  • n is the refractive index of the grating material after the cylindrical lens
  • d is the thickness of the glass
  • u is the spacing between the eyes of the human person, and the value is 65 mm.
  • the image surface of the flat display screen that is, the surface of the thin film plastic circular hole plate rear grating 302 and the glass substrate 301 should be located on the focal plane of the cylindrical lens, so the two gratings
  • Production of film plastic round hole rear grating 301 Using a high-precision film printer, the mask file is printed according to the designed raster computer file, that is, the laser light is drawn on the PET film to form the required grating structure, on the mask plate.
  • the opaque portion is a circular hole pattern, and the edge of the circular black strip should be relatively straight, and the boundary of the pit is less likely to occur, otherwise the size of the visible area may be affected.
  • Fixing of the film plastic round hole rear grating 302 uniformly coating a UV photosensitive adhesive having a thickness of about 1 ⁇ m on the side of the cleaned glass substrate by a coating process, and cutting the film plastic round hole rear grating 302 into The size matched with the glass substrate was matched with the periphery of the glass and attached to the glass substrate 301 coated with UV photoresist, and placed upside down, and a high-pressure mercury lamp having a wavelength of 365 nm and an irradiance of 7 mW/cm 2 was started, and exposed for 10 minutes.
  • Fixing of the cylindrical lens front grating 305 uniformly coating a UV photosensitive adhesive having a thickness of about 1 ⁇ m on the other side of the glass substrate with the front grating fixed, and cutting the cylindrical lens front grating 305 into The matching size of the glass substrate is matched with the periphery of the glass to which the front grating is attached, and is attached to the glass substrate 301 coated with UV photoresist. The position is precisely aligned by the alignment mark on the grating, and then the entire grating plate is placed upside down and started. A high pressure mercury lamp having a wavelength of 365 nm and an irradiance of 7 mW/cm 2 was exposed for 10 minutes.
  • the alignment of the double grating 306 and the LED display screen is fixed: the insulating glass insulating layer 307 is screwed on the surface of the LED display screen, and when the double grating 306 is aligned with the LED display screen, the circular grating grating in the double grating 306 is The insulating glass insulation layer 307 is in close proximity, and the center of the circular aperture grating corresponds to the center of each sub-pixel in the LED display.
  • the LED-based double-sided grating three-dimensional display device and the manufacturing method thereof can solve the problem that the LEDs cannot be precisely aligned between each LED unit, and the 3D-LED is improved.
  • the display quality and the simple manufacturing process make it easy to manufacture large-area, high-brightness grating 3D-LED display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种基于LED的双面光栅立体显示装置,包括LED显示屏(01)和设置于该LED显示屏(01)前方的双光栅基板(101)。双光栅基板(101)包括前光栅(105)和后光栅(102)。后光栅(102)靠近LED显示屏(01)表面,从而使组成LED显示屏(01)的每个LED子像素的发光中心点在水平和垂直方向保持一致。前光栅(105)靠近观看者,用于立体分光。还公开了一种基于LED的双面光栅立体显示装置的制作方法。该装置和方法可以使LED显示屏(01)的每个LED之间以及每个LED单元之间很好的对齐,有利于实现大面积、高亮度LED的裸眼3D显示,同时制作方法简单,成本低廉。

Description

基于 LED的双面光栅立体显示装置及其制作方法 技术领域
本发明涉及自由立体显示领域, 尤其涉及一种基于 LED的双面光栅立体显 示装置及其制作方法。
背景技术
裸眼 3D (Three-dimensional)显示器因不需要观看者佩戴眼镜或者头盔等助 视设备就能观看到 3D影像, 成为现阶段显示领域研究热点。 光栅式裸眼 3D显 示器由于结构简单, 造价低廉, 与现有 2D显示屏兼容性好等优点而备受关注。 其中, 光栅的制作简单、成本低廉, 且用户可根据实际需要随意设计挡光区和透 光区的宽度, 制作出各种规格的光栅, 尤其是可利用拼接技术实现特大尺寸的 3D显示。
随着光电技术的发展, LED显示技术已经得到了普遍的应用, LED显示技 术具有高亮度、 环保节能、 响应速度快、 耐冲击和性能稳定等优点, LED显示 屏作为显示器、展示板、公告板等目的在需要大尺寸、高亮度的场合被广泛使用。 此外, LED显示技术可以根据需要任意地拼接显示单元, 以形成不同尺寸、 不 同分辨率和不同形状的显示屏,在广告宣传、文化娱乐和科研教学等领域有着其 它显示技术无法取代的优点。
利用 LED显示屏实现自由立体显示, 一直是人们不断追求的目标, 用于光 栅的裸眼 3D-LED具有制备工艺简单, 成本低廉的优点。 然而, 在 LED显示屏 中, 多个发光二极管排成阵列形成一个显示平面, 或多个 LED显示单元拼接形 成大面积的显示平面,导致显示屏中各个 LED之间或者各个 LED显示单元之间 上下、 左右、 前后很难精确对齐, 即上下左右出现倾斜、 歪曲, 表面出现凹凸不 平整等现象, 影响用于分光的光栅的制作和对齐, 妨碍了自由立体显示技术在 LED显示屏上的应用。
为了克服各个 LED之间或者各个 LED显示单元之间上下、 左右、 前后很难 精确对齐的缺点, 本发明提出一种基于 LED的双面光栅立体显示装置及其制作 方法。
发明内容 本发明的目的在于克服现有技术的不足, 提供一种基于 LED的双面光栅立 体显示装置, 该装置克服了一般 LED显示屏每个 LED之间以及每个 LED单元 之间不能很好对齐的问题, 易于实现大面积、 高亮度 LED的裸眼 3D显示, 同 时制作方法简单、 成本低廉。
本发明采用以下方案实现: 一种基于 LED的双面光栅立体显示装置, 其特 征在于: 包括 LED显示屏和设置于该 LED显示屏前方的双光栅基板; 所述的双 光栅基板包括前光栅和后光栅, 其中所述后光栅是靠近 LED显示屏表面, 用于 保证组成 LED显示屏的每个 LED子像素的发光中心点在水平和垂直方向保持一 致, 所述前光栅是靠近观看者的光栅, 用于立体分光。
本发明的另一目的是提供一种基于 LED的双面光栅立体显示装置的制作方 法, 该方法解决了一般 LED显示屏每个 LED之间以及每个 LED单元之间不能 很好对齐的问题, 易于实现大面积、 高亮度 LED的裸眼 3D显示, 同时制作方 法简单、 成本低廉。
为实现上述方法, 本发明的采用的第一方案是:
一种基于 LED的双面光栅立体显示装置的制作方法, 其特征在于:
1 ) 提供一 LED显示屏;
2)提供前光栅和后光栅, 将所述的后光栅和前光栅直接加工在一第一透明基 板上的两侧表面形成一双光栅基板;
3 ) 将双光栅与 LED显示屏对准固定。
为实现上述方法, 本发明的采用的第二方案是:
一种基于 LED的双面光栅立体显示装置的制作方法, 其特征在于:
1 ) 提供一 LED显示屏;
2) 提供一各自加工而成的后光栅和前光栅, 将所述前光栅和后光栅贴合在一 起形成一双光栅基板;
3 ) 将所述的双光栅基板与所述 LED显示屏对准固定。
为实现上述方法, 本发明的采用的第三方案是:
一种基于 LED的双面光栅立体显示装置的制作方法, 其特征在于:
1 ) 提供一 LED显示屏;
2) 提供前光栅、 后光栅和一第一透明基板, 将所述的前光栅和后光栅贴合在 该第一透明基板两侧形成一双光栅基板;
3 ) 将所述双光栅与所述 LED显示屏对准固定。 本发明的显著优点在于:有效解决了一般 LED显示屏每个 LED之间以及每个 LED单元之间不能很好对齐的问题, 实现大面积、 高亮度 LED的裸眼 3D显示, 同时制作方法简单、 成本低廉。
附图说明
图 1为由四个 LED单元模块拼接成的显示屏结构俯视示意图。
图 2为本发明第一优选实施例的基于 LED的双面光栅立体显示装置示意图。 图 3为本发明第一优选实施例的基于 LED的双面光栅立体显示装置侧面图。 图 4为本发明第一优选实施例的金属薄膜圆孔后光栅示意图。
图 5为本发明第一优选实施例的双光栅基板示意图。
图 6为本发明第二优选实施例的基于 LED的双面光栅立体显示装置示意图。 图 7为本发明第二优选实施例的基于 LED的双面光栅立体显示装置侧面图。 图 8为本发明第二优选实施例的金属圆孔平板后光栅示意图。
图 9为本发明第二优选实施例的金属狭缝前光栅示意图。
图 10为本发明第三优选实施例的基于 LED的双面光栅立体显示装置示意图。 图 11为本发明第三优选实施例的基于 LED的双面光栅立体显示装置侧面图。 图 12为本发明第三优选实施例的薄膜塑料圆孔平板后光栅示意图。
图 13为本发明第三优选实施例的贴合在玻璃基板表面的薄膜塑料圆孔平板后光 栅示意图。
图 14为本发明第三优选实施例的柱透镜前光栅示意图。
图 15为本发明第三优选实施例的双光栅示意图。
注: 01— LED显示屏; 02— LED显示屏发光区; 03— LED显示单元中的缝隙; 04— LED显示屏不发光区; 101—玻璃基板; 102—金属薄膜圆孔后光栅; 103—金属薄膜圆孔后光栅的透光圆孔; 104—金属薄膜圆孔后光栅的不透 光区; 105—金属薄膜狭缝前光栅; 106—金属薄膜狭缝前光栅的透光狭缝; 107—金属薄膜狭缝前光栅的黑条; 108—双光栅基板; 201—金属圆孔平 板后光栅; 202—金属圆孔平板后光栅的透光圆孔; 203—金属圆孔平板后 光栅的不透光区; 204—金属狭缝前光栅; 205—金属狭缝前光栅的透光狭 缝; 206—金属狭缝前光栅的黑条; 301—玻璃基板; 302—薄膜塑料圆孔 平板后光栅; 303—薄膜塑料圆孔平板后光栅的透光圆孔; 304—薄膜塑料 圆孔平板光后栅的不透光区; 305—柱透镜前光栅; 306—双光栅基板; 307 一中空玻璃隔热层。
具体实施方式
下面结合附图及实施例具体说明基于 LED的双面光栅立体显示装置及其制 作方法。 本发明提供的优选实施例, 但不应该被认为仅限于在此阐述的实施例。 在图中, 为了清楚放大了层和区域的厚度, 但作为示意图不应该被认为严格反映 了几何尺寸的比例关系。
在此参考图是本发明的理想化实施例的示意图,本发明所示的实施例不应该 被认为仅限于图中所示的区域的特定形状, 而是包括所得到的形状, 比如制造引 起的偏差。在本实施例中均以矩形表示, 图中的表示是示意性的, 但这不应该被 认为限制本发明的范围。
本发明提供一种基于 LED的双面光栅立体显示装置,其包括 LED显示屏和 设置于该 LED显示屏前方的双光栅基板; 所述的双光栅基板包括前光栅和后光 栅, 其中所述后光栅是靠近 LED显示屏表面, 用于保证组成 LED显示屏的每个 LED子像素的发光中心点在水平和垂直方向保持一致, 所述前光栅是靠近观看 者的光栅, 用于立体分光。
具体的请参照附图, 图 1是由四个 LED单元模块拼接成的显示屏结构俯视 示意图; 图 2为基于 LED的双面光栅立体显示装置示意图; 图 3为基于 LED的 双面光栅立体显示装置侧面图; 图 4和图 5为本发明的双光栅制作示意图。 以下 结合图 2至图 5对本发明第一实施例提供的一种基于 LED的双面光栅立体显示 装置及其制作方法进行详细的说明。
本发明第一实施例所提供的一种基于 LED的双面光栅立体显示装置, 其双 光栅基板由微孔平板后光栅和前光栅直接加工在玻璃、 ITO玻璃、聚甲基丙烯酸 甲酯 (PMMA) 或聚对苯二甲酸乙二醇酯 (PET)透明基板两侧表面而成。 双光 栅基板 108可以直接设置于 LED显示屏前,也可以在双光栅基板与 LED显示屏 之间设置透明隔热层, 该透明隔热层可以是玻璃、 中空玻璃或亚克力透明隔热材 料。所述后光栅是一种微孔平板光栅, 微孔平板后光栅的透光区域的形状可为圆 形、矩形、正方形、菱形或椭圆, 该透光区域可以是激光绘图、丝网印刷、喷涂、 真空镀膜、 电镀、光刻等技术中的一种或一种以上技术组合加工而成。所述前光 栅是任意一种可对光线传播路径进行一定方式的控制,使观看者的左右眼观看到 不同的视差图像的光栅, 包括狭缝光栅、 柱透镜光栅、 振动光栅或液晶透镜。其 中狭缝光栅可以是在玻璃、聚甲基丙烯酸甲酯(PMMA)或聚对苯二甲酸乙二醇 酯 (PET)透明基板上敷有不透光的膜料或膜层, 狭缝光栅的透光区域可以是机 械法、 激光钻孔、 激光绘图、 丝网印刷、 喷涂、 真空镀膜、 电镀、 光刻等技术中 的一种或一种以上技术组合加工而成; 该前光栅也可以是柱透镜光栅, 该柱透镜 光栅的柱镜可以是沿着垂直方向构成, 也可以倾斜构成, 将设计加工而成的柱透 镜光栅通过物理、化学和机械方法贴合在后光栅表面。所述的前光栅还可以是液 晶透镜光栅, 液晶透镜可采用光刻和刮擦技术或印刷和刮擦技术在 ITO透明基 板表面加工而成的, 液晶透镜可以是纵向垂直或倾斜结构。
在该实施例中, 我们采用以下方法制作该立体显示装置, 其包括以下步骤:
1 ) 提供一 LED显示屏;
2)提供前光栅和后光栅, 将所述的后光栅和前光栅直接加工在一第一透明基 板上的两侧表面形成一双光栅基板;
3 ) 将双光栅与 LED显示屏对准固定。
其中,所述的后光栅为微孔平板光栅, 采用印刷技术在透明基板上制作微孔 光栅; 或采用印刷、 物理气相沉积、 化学气相沉积、 化学镀在透明基板上沉积不 透光的膜料或膜层, 再采用曝光和刻蚀技术制作微孔光栅。所述的前光栅为狭缝 光栅,其采用印刷技术在透明基板上制作狭缝光栅;或采用印刷、物理气相沉积、 化学气相沉积、化学镀在透明基板上沉积不透光的膜料或膜层, 再采用曝光和刻 蚀技术制作狭缝光栅。所述的前光栅为柱透镜光栅, 该柱镜是纵向垂直或倾斜结 构,其采用光刻技术或机械热压技术在透明基板表面加工而成的。所述的前光栅 还可以是液晶透镜光栅, 该液晶透镜是纵向垂直或倾斜结构, 其采用光刻和刮擦 技术或印刷刮擦技术在 Π 透明玻璃基板表面加工而成的。
为了让一般技术人员更好的理解本发明上述的步骤,本实施例以优选的方案 对制作工艺做进一步具体的介绍: 在本实施例中优选的双光栅基板与 LED显示 屏之间不设置透明隔热层,前光栅表面优选没有设置保护层, 优选在玻璃一面用 真空镀膜和光刻技术相结合加工而成的金属薄膜圆孔后光栅 102, 另一面用真空 镀膜和光刻技术相结合加工而成的金属薄膜狭缝后光栅 105, 其具体制作过程包 括如下步骤:
(511) 双光栅基板的设计, 具体过程包括:
(S1U) 确定所用 LED显示屏 01的参数, 包括 LED显示屏的像素, 每个 LED 的直径 D!, 相邻的 LED子像素之间的距离 D2
( 5112) 金属薄膜圆孔后光栅 102的设计: 该金属薄膜圆孔后光栅设置于 LED 显示屏表面,圆孔中心点在水平方向和垂直方向上与 LED显示屏上的 LED中心 点一一对应, 每个圆孔的直径相等, 且小于 LED子像素的直径 Di, 相邻圆孔中 心距离为 D2, 本实施例优选用每个圆孔阵列的直径为 0.5 Di金属薄膜圆孔后光 栅、相邻圆孔光栅阵列的距离等于相邻的 LED子像素之间的距离 D2进行详细说 明。
( 5113) 金属薄膜狭缝前光栅 105的设计: 狭缝光栅周期 b由 LED显示屏的子 像素宽度确定, b=KXuX D2/(u+ D2), 其中 K为视点数, D2为所述相邻的 LED 子像素之间的距离, u为人两眼之间的间距, 取值为 65毫米; 在狭缝光栅周期 确定后的情况下,增加狭缝的宽度, 减小挡光条的宽度能增加光线经过光栅的透 光率, 提高自由立体显示器的亮度, 但此时左眼可能看到部分右眼图像, 右眼也 可能看到左眼图像, 即立体可视区域比理想情况下来得小, 为了平衡显示区域的 大小和显示亮度, 狭缝光栅中狭缝宽度和挡光条宽度的比例优选的可以取 1 : 8。
(5114)两光栅之间玻璃基板 101厚度的确定: 前光栅和后光栅之间的玻璃基板 厚度 d, d=s X D2/(u+ D2), s为最佳观看距离, D2为所述相邻的 LED子像素之间 的距离, u为人两眼之间的间距, 一般取值为 65毫米。
( 5115) 两光栅相对位置的确定: 通过用 Matlab计算机软件模拟仿真, 得出金 属薄膜狭缝前光栅 105和金属薄膜圆孔后光栅 102的相对位置,并在光栅的计算 机文件里预先做好对齐标记。
(512) 双光栅基板 108的制作, 具体过程包括:
(S121)玻璃基板 101清洗:选取一块所需厚度的透明玻璃基板按所需尺寸进行 划片, 将玻璃基板置于按体积比为 ^\¾1-10 : 01水 = 3 : 97清洗液中, 利用频率 为 32KHz的超声机清洗 15min,喷淋 2min后,再置于体积比为 Win-41: DI水 = 5 : 95清洗液中, 利用频率为 40KHz的超声机清洗 lOmin, 经循环自来水喷淋漂 洗 2min后, 再利用频率为 28KHz的超声机在 DI纯净水中清洗 lOmin, 经氮气 枪吹干后置于 50°C洁净烘箱中保温 30min。
(5122)掩膜板的打印: 采用高精密度的菲林打印机, 根据设计好的光栅计算机 文件打印掩膜板, 即在透明的胶片间隔激光绘图形成所需的光栅结构, 掩膜板上 透光部分为圆孔图形, 圆形黑条的边沿应该比光滑, 较少出现坑坑洼洼的边界, 否则会影响可视区域的大小。
(5123)金属薄膜圆孔后光栅 102的制作:在清洗干净的玻璃基板表面沉积一层 金属薄膜, 其所用材料可以选用 Cu, W, Co, Ni, Ta, TaN, Ti, Zn, Al, Cr, 金属薄膜可由一种或者一种以上的组合的复合金属薄膜,本实施例优选采用磁控 溅射方法沉积 CrNi复合薄膜。
(51231)光刻胶旋涂。利用旋涂工艺将 RZJ-304光刻胶转移至带有 CrNi复合薄 膜的玻璃基片 200表面, 并在 110°C保温 25min。
(51232) 曝光。 预烘干的光刻胶膜层自然冷却至室温后进行曝光, 将打印好的 掩膜版遮盖在光刻胶膜层上, 在光强为 4.4mW/cm2光刻机上曝光 11秒, 光刻胶 的光敏剂呈正性,所以受紫外光照的图形被光溶解, 不受紫外光照的图形保持不 变。
( 51233 ) 显影。 用浓度为 3%的 RZX-3038溶液显影, 被光固化的光刻胶被 RZX-3038溶液除去, 留下所需的图形。
(51234)湿法刻蚀。 用 15-20克硝酸铈, 5ml冰乙酸, 100毫升水所组成的混合 溶液在 50°C水浴中刻蚀。
(51235) 退胶。 将湿法刻蚀后的基片浸泡丙酮溶液中, 电极表面的光刻胶因溶 于丙酮而脱落,形成金属薄膜圆孔后光栅 102中的透光圆孔光栅 103和非透光区 域 104。
(5124) 表面有圆孔光栅的玻璃基板清洗, 具体工艺与 (S121 ) —致。
(5125)掩膜板的打印: 光栅菲林的打印: 采用高精密度的菲林打印机, 根据设 计好的光栅计算机文件打印光栅菲林,即在透明的胶片间隔印刷形成所需的光栅 结构, 菲林光栅黑条的边沿应该比较直, 较少出现坑坑洼洼的边界, 否则会影响 可视区域的大小。光栅的不透光黑条接近理想情况下的完全不透光黑条, 使左右 眼看到的图像完全区分开, 减小左右眼所看到的图像之间的串扰。
(S126)金属薄膜狭缝前光栅 105的制作:在清洗干净的玻璃基板表面沉积一层 金属薄膜, 其所用材料可以选用 Cu, W, Co, Ni, Ta, TaN, Ti, Zn, Al, Cr, 金属薄膜可由一种或者一种以上的组合的复合金属薄膜,本实施例优选采用磁控 溅射方法沉积 CrNi复合薄膜, 具体实施过程包括:
(51261) 光刻胶旋涂。 将玻璃基板两平面都涂覆光刻胶, 旋涂工艺与 (S1231) 工艺一致。
(51262) 曝光。 玻璃无图形的一面贴上掩膜板, 掩膜板与金属薄膜圆孔后光栅 精确对位后曝光, 曝光工艺与 (S1232) 工艺一致。
(51263) 显影。 与 (S1233 ) 工艺一致。
(51264) 湿法刻蚀。 与 (S1234) 工艺一致。
(51265) 退胶。 将湿法刻蚀后的基片浸泡丙酮溶液中, 光刻胶因溶于丙酮而脱 落, 形成金属薄膜狭缝前光栅 105的透光狭缝 106和狭缝光栅的黑条 107, 玻璃 清洗后,最终在玻璃基板的两面形成圆孔和狭缝双面光栅,形成双光栅基板 108。
(S13)双光栅基板 108与 LED显示屏 01的对准固定: 双光栅基板与 LED显示 屏的对准固定时,双光栅基板中金属薄膜圆孔后光栅 102与 LED显示屏 01紧密 靠近, 圆孔光栅的中心与 LED显示屏中每个子像素中心一一对应。
至此, 一种基于 LED的双面光栅立体显示装置制作形成。
本发明第二实施例所提供的一种基于 LED的双面光栅立体显示装置, 其所 述双光栅基板是由各自加工而成的微孔平板后光栅和前光栅组合而成。双光栅基 板可以直接设置于 LED显示屏前,也可以在双光栅基板与 LED显示屏之间设置 透明隔热层, 该隔热层可以是玻璃、 中空玻璃或亚克力透明隔热材料。微孔平板 后光栅的透光区域的形状可为圆形、 矩形、 正方形、 菱形或椭圆, 所述微孔平板 后光栅的材料可以是不透明的金属板, 包括钢板、 铝板、 铬钢板、 铬板、 镍板、 钽板或钛板, 也可以是在玻璃、聚甲基丙烯酸甲酯(PMMA)或聚对苯二甲酸乙 二醇酯 (PET)透明基板上敷上不透光的膜料或膜层; 微孔平板后光栅的透光区 域可以是机械法、 激光钻孔、 激光绘图、 丝网印刷、 喷涂、 真空镀膜、 电镀、光 刻等技术中的一种或一种以上技术组合加工而成。所述前光栅是任意一种可对光 线传播路径进行一定方式的控制,使观看者的左右眼观看到不同的视差图像的光 栅, 包括狭缝光栅、 柱透镜光栅、 振动光栅或液晶透镜, 狭缝光栅的材料可以是 不透明的金属板, 包括钢板、 铝板、 铬钢板、 铬板、 镍板、 钽板或钛板, 可以是 在玻璃、 聚甲基丙烯酸甲酯 (PMMA) 或聚对苯二甲酸乙二醇酯 (PET)透明基 板上敷有不透光的膜料或膜层, 狭缝光栅的透光区域可以是机械法、 激光钻孔、 激光绘图、 丝网印刷、 喷涂、 真空镀膜、 电镀、 光刻等技术中的一种或两种及两 种以上技术组合加工而成, 该前光栅也可以是柱透镜光栅, 该光栅的柱镜可以是 沿着垂直方向构成, 也可以倾斜构成, 将设计加工而成的柱透镜光栅通过物理、 化学和机械方法贴合在后光栅表面。所述的前光栅还可以是液晶透镜光栅, 液晶 透镜可采用光刻和刮擦技术或印刷和刮擦技术在 Π 透明基板表面加工而成的, 液晶透镜可以是纵向垂直或倾斜结构。所述的前光栅为振动光栅, 该振动光栅的 振动方向是水平方向、 垂直方向或倾斜方向。
在该实施例中, 我们采用以下方法制作该立体显示装置, 其包括以下步骤:
1 ) 提供一 LED显示屏;
2) 提供一各自加工而成的后光栅和前光栅, 将所述前光栅和后光栅贴合在一 起形成一双光栅基板;
3 ) 将所述的双光栅基板与所述 LED显示屏对准固定。
其中, 所述的后光栅为微孔平板光栅, 采用机械法或激光钻孔在不透明金 属板材表面加工而成; 或采用印刷技术在透明基板上制作而成; 或采用激光绘图 技术在透明基片上制作而成; 或采用印刷、 物理气相沉积、 化学气相沉积、 化学 镀在透明基板上沉积不透光的膜料或膜层, 再采用曝光和刻蚀技术制作而成。所 述的前光栅为狭缝光栅, 采用机械法或激光钻孔在不透明金属板材表面加工而 成; 或采用激光绘图技术在透明基片上制作而成; 或采用印刷技术在透明基板上 制作而成; 或采用印刷、 物理气相沉积、 化学气相沉积、 化学镀在透明基板上沉 积不透光的膜料或膜层, 再采用曝光和刻蚀技术制作而成。所述的前光栅还可以 为柱透镜光栅,该光栅的柱镜是纵向垂直或倾斜结构,该柱透镜光栅是通过物理、 化学和机械方法贴合在所述后光栅表面。 所述的前光栅还可以采用液晶透镜光 栅, 该液晶透镜是纵向垂直或倾斜结构, 其采用光刻和刮擦技术或印刷刮擦技术 在 ITO透明玻璃基板表面加工而成的。 所述的前光栅还可以采用振动光栅, 该 振动光栅的振动方向是水平方向、 垂直方向或倾斜方向。 为了让一般技术人员更好的理解本发明上述的步骤,本实施例以优选的方案 对制作工艺做进一步具体的介绍: 本实施例优选的双光栅基板与 LED显示屏之 间未设置透明隔热层,前光栅表面优选没有设置保护层, 优选的后光栅优选用金 属铝板通过激光加工而成的金属圆孔平板后光栅 201, 前光栅优选用金属铝板通 过激光加工而成的金属狭缝前光栅 204, 具体制作过程包括如下步骤:
(S21) 双光栅基板的设计, 具体过程包括:
(5211) 确定所用 LED显示屏 01的参数, 包括 LED显示屏的像素, 每个 LED 的直径 D!, 相邻的 LED子像素之间的距离 D2
( S114) 金属圆孔平板后光栅 201和金属狭缝前光栅 204总厚度 d2的确定: 金 属圆孔平板后光栅 201和金属狭缝前光栅 204总厚度 d2=s X D2/(u+ D2), s为最佳 观看距离, D2为所述相邻的 LED子像素之间的距离, u为人两眼之间的间距, 一般取值为 65毫米。
( 5212) 金属圆孔平板后光栅 201的设计: 该金属薄膜圆孔后光栅设置于 LED 显示屏表面,该金属圆孔前光栅基板中的每个圆孔阵列中心点在水平方向和垂直 方向上与 LED显示屏子像素中心点一一对应,每个圆孔的直径相等,且小于 LED 子像素的直径 D!, 相邻圆孔中心距离为 D2, 金属圆孔前光栅基板的厚度小于金 属圆孔平板后光栅 201和金属狭缝前光栅 204总厚度 d2,本实施例优选用每个圆 孔阵列的直径为 0.5 Di,厚度为 0.5 d2和相邻圆孔阵列的距离等于相邻的 LED子 像素之间的距离 D2的金属圆孔前光栅基板进行详细说明。
(5213) 金属狭缝前光栅 204的设计: 金属狭缝前光栅 204周期 b由 LED显示 屏 01的子像素宽度确定, b=KXuX D2/(u+ D2), 其中 K为视点数, D2为所述相 邻的 LED子像素之间的距离, u为人两眼之间的间距, 取值为 65毫米; 在狭缝 光栅周期确定后的情况下,增加狭缝的宽度, 减小挡光条的宽度能增加光线经过 光栅的透光率,提高自由立体显示器的亮度,但此时左眼可能看到部分右眼图像, 右眼也可能看到左眼图像, 即立体可视区域比理想情况下来得小, 为了平衡显示 区域的大小和显示亮度, 狭缝光栅中狭缝宽度和挡光条宽度的比例取 1 : 6-8, 金 属狭缝前光栅 204基板的厚度小于金属圆孔平板后光栅 201和金属狭缝前光栅 204总厚度 d2,本实施例优选用狭缝光栅中狭缝宽度和挡光条宽度的比例取 1 : 8, 属狭缝后光栅基板的厚度为 0.5 d2的金属狭缝后光栅基板进行详细说明。 (S214)金属圆孔平板后光栅 201和金属狭缝前光栅 204相对位置的确定:通过 用 Matlab计算机软件模拟仿真, 得出金属狭缝前光栅 204和金属圆孔平板后光 栅 201的相对位置, 并在光栅的计算机文件里预先做好对齐标记。
(522) 双光栅的制作, 具体过程包括:
( 5221) 金属圆孔平板后光栅 201的制作: 通过激光加工形成由透光圆孔 202 和不透光区组成的金属圆孔前光栅 203。
(5222)金属狭缝前光栅 204的制作:通过激光加工形成由透光狭缝 205和不透 光的黑条 206组合而成的金属狭缝后光栅。
(523)双光栅基板与 LED显示屏的对准固定:金属圆孔平板后光栅 201与 LED 显示屏 01紧密靠近,圆孔阵列的中心与 LED显示屏中每个子像素中心一一对应, 金属狭缝前光栅 204根据设计好的定位标志贴合在金属圆孔平板后光栅 201表 面。
至此, 一种基于 LED的双面光栅立体显示装置制作完成。
本发明第三实施例所提供的一种基于 LED的双面光栅立体显示装置, 其双 光栅基板可由各自加工而成的微孔平板后光栅和前光栅贴合在玻璃、聚甲基丙烯 酸甲酯 (PMMA)、 聚对苯二甲酸乙二醇酯 (PET) 透明基板两侧, 双光栅基板 可以直接设置于 LED显示屏前,也可以在双光栅基板与 LED显示屏之间设置透 明隔热层, 该隔热层可以是玻璃、 中空玻璃或亚克力透明隔热材料。微孔平板后 光栅的材料可以是不透明的金属板材, 包括钢板、 铝板、 铬钢板、 铬板、 镍板、 钽板或钛板, 可以是在玻璃、 聚甲基丙烯酸甲酯 (PMMA)、 聚对苯二甲酸乙二 醇酯 (PET)透明基板上敷有不透光的膜料或膜层, 微孔平板光栅的透光区域可 以是机械法、 激光钻孔、 激光绘图、 丝网印刷、 喷涂、 真空镀膜、 电镀、 光刻等 技术中的一种或一种以上技术组合加工而成。前光栅是任意一种可对光线传播路 径进行一定方式的控制,使观看者的左右眼观看到不同的视差图像的光栅, 包括 狭缝光栅、柱透镜光栅、振动光栅或液晶透镜, 狭缝光栅的材料可以是不透明的 金属板, 包括钢板、铝板、铬钢板、铬板、镍板、钽板或钛板, 也可以是在玻璃、 聚甲基丙烯酸甲酯 (PMMA) 或聚对苯二甲酸乙二醇酯 (PET)透明基板上敷有 不透光的膜料或膜层,狭缝光栅的透光区域可以是机械法、激光钻孔、激光绘图、 丝网印刷、 喷涂、 真空镀膜、 电镀、 光刻等技术中的一种或一种以上技术组合加 工而成, 前光栅也可以是柱透镜光栅, 该光栅的柱镜可以是沿着垂直方向构成, 也可以倾斜构成。所述的前光栅还可以是液晶透镜光栅, 液晶透镜可采用光刻和 刮擦技术或印刷和刮擦技术在 Π 透明基板表面加工而成的, 液晶透镜可以是 纵向垂直方向或倾斜方向构成。所述的前光栅为振动光栅, 该振动光栅的振动方 向是水平方向、 垂直方向或倾斜方向。
在该实施例中, 我们采用以下方法制作该立体显示装置, 其包括以下步骤:
1 ) 提供一 LED显示屏;
2) 提供前光栅、 后光栅和一第一透明基板, 将所述的前光栅和后光栅贴合 在该第一透明基板两侧形成一双光栅基板;
3 ) 将所述双光栅与所述 LED显示屏对准固定。
其中,所述的后光栅为微孔平板光栅, 采用机械法或激光钻孔在不透明金属 板材表面加工而成; 或采用印刷技术在一透明基板上制作而成; 或采用激光绘图 技术在透明基片上制作而成; 或采用印刷、 物理气相沉积、 化学气相沉积、 化学 镀在透明基板上沉积不透光的膜料或膜层, 再采用曝光和刻蚀技术制作而成。所 述的前光栅为狭缝光栅, 采用机械法或激光钻孔在不透明金属板材表面加工而 成; 或采用激光绘图技术在透明基片上制作而成; 或采用印刷技术在透明基板上 制作而成; 或采用印刷、 物理气相沉积、 化学气相沉积、 化学镀在透明基板上沉 积不透光的膜料或膜层, 再采用曝光和刻蚀技术制作而成。所述的前光栅还可以 是柱透镜光栅, 该光栅的柱镜是纵向垂直或倾斜结构。所述的前光栅还可以采用 液晶透镜光栅, 该液晶透镜是纵向垂直方向或倾斜方向构成, 其采用光刻和刮擦 技术或印刷和刮擦技术在 Π 透明玻璃基板表面加工而成的。 所述的前光栅还 可以采用振动光栅, 该振动光栅的振动方向是水平方向、 垂直方向或倾斜方向。
为了让一般技术人员更好的理解本发明上述的步骤,本实施例以优选的方案 对制作工艺做进一步具体的介绍: 本实施例优选的双光栅基板与 LED显示屏之 间设置中空玻璃透明隔热层,前光栅表面优选没有设置保护层优选的双光栅基板 是前光栅和后光栅贴合在玻璃基板组成合成, 后光栅优选在 PET透明基板用激 光绘图而成的薄膜塑料圆孔平板后光栅,前光栅优选沿垂直方向构成的柱透镜光 栅, 其具体制作过程包括如下步骤:
(S31) 双光栅的设计, 具体过程包括: ( 5311) 确定所用 LED显示屏的参数, 该参数包括 LED显示屏的像素, 每个 LED的直径 D!, 相邻的 LED子像素之间的距离 D2
(5312)薄膜塑料圆孔平板后光栅 302: 根据所选用的 LED显示屏 01参数设计 前光栅, 设计于 LED显示屏表面前光栅为薄膜塑料圆孔平板后光栅 302, 圆孔 中心点在水平方向和垂直方向上与 LED显示屏上的 LED中心点一一对应,每个 圆孔的直径相等, 且小于 LED子像素的直径 D!, 相邻圆孔中心距离为 D2, 本实 施例优选用每个圆孔阵列的直径为 0.5 Di薄膜塑料圆孔、相邻圆孔光栅阵列的距 离等于相邻的 LED子像素之间的距离 D2的薄膜塑料圆孔平板后光栅进行详细说 明。
( 5313) 柱透镜前光栅 305的设计: 柱透镜的曲率半径 r= D2X s X (n- l) /U ; 柱 透镜的节距 p=KXuX D2/(u+D2); 柱透镜的厚度 d2= nXr/(n-l)-nX d; 其中 D2
LED显示屏的子像素宽度, s为最佳立体观看距离, n为柱透镜后光栅材料的折 射率, d为玻璃厚度, u为人两眼之间的间距, 取值为 65毫米。
(5314)两光栅之间玻璃基板 301厚度的确定: 平面显示屏的图像面, 即薄膜塑 料圆孔平板后光栅 302与玻璃基板 301接触的面, 应位于柱透镜的焦平面上,因 此两光栅之间玻璃基板厚度应小于柱透镜的焦距 d<f, 其中 f= r/(n-l), r柱透镜 的曲率半径, n为柱透镜后光栅材料的折射率。
(5315) 薄膜塑料圆孔平板后光栅 302和柱透镜后光栅 305相对位置的确定:通 过用 Matlab计算机软件模拟仿真, 得出后光栅和前光栅的相对位置, 并在光栅 的计算机文件里预先做好对齐标记。
(S32) 双光栅基板 306的制作, 具体过程包括:
(5321)薄膜塑料圆孔后光栅 301制作: 采用高精密度的菲林打印机, 根据设计 好的光栅计算机文件打印掩膜板, 即在 PET胶片间隔激光绘图形成所需的光栅 结构, 掩膜板上不透光部分为圆孔图形, 圆形黑条的边沿应该比较直, 较少出现 坑坑洼洼的边界, 否则会影响可视区域的大小。
(5322)玻璃基板 302清洗:选取一块所需厚度的透明玻璃基板按所需尺寸进行 划片, 将玻璃基板置于按体积比为 ^\¾1-10 : 01水 = 3 : 97清洗液中, 利用频率 为 32KHz的超声机清洗 15min,喷淋 2min后,再置于体积比为 Win-41: DI水 = 5 : 95清洗液中, 利用频率为 40KHz的超声机清洗 lOmin, 经循环自来水喷淋漂 洗 2min后, 再利用频率为 28KHz的超声机在 DI纯净水中清洗 10min, 经氮气 枪吹干后置于 50°C洁净烘箱中保温 30min以上备用。
(5323)薄膜塑料圆孔后光栅 302的固定:在清洗好的玻璃基板一面采用涂覆工 艺均匀涂覆一层厚度约为 1 μ m的 UV感光胶, 把薄膜塑料圆孔后光栅 302切割 成与玻璃基板相匹配的尺寸,与玻璃四周匹配对接贴在涂有 UV感光胶的玻璃基 板 301上, 倒置平放, 启动波长为 365nm、 辐射照度为 7mW/cm2的高压汞灯, 曝光 10min。
(5324)柱透镜前光栅 305的固定:在固定好前光栅的玻璃基板另一面采用涂覆 工艺均匀涂覆一层厚度约为 1 μ m的 UV感光胶, 把柱透镜前光栅 305切割成与 玻璃基板相匹配的尺寸,与贴好前光栅的玻璃四周匹配对接贴在涂有 UV感光胶 的玻璃基板 301上,其位置通过光栅上的对齐标记精密对齐, 然后整个光栅板倒 置平放, 启动波长为 365nm、 辐射照度为 7mW/cm2的高压汞灯, 曝光 10min。
(S33)双光栅 306与 LED显示屏的对准固定: 将中空玻璃隔热层 307用螺丝固 定在 LED显示屏表面, 双光栅 306与 LED显示屏的对准时, 双光栅 306中圆孔 光栅与中空玻璃隔热层 307紧密靠近, 圆孔光栅的中心与 LED显示屏中每个子 像素中心——对应。
至此, 一种基于 LED的双面光栅三维立体显示装置制作形成。
综上所述, 本发明公开的一种基于 LED的双面光栅三维立体显示装置及其 制作方法,不仅可以解决每个 LED之间或每个 LED单元之间不能精确对齐的问 题, 提高 3D-LED的显示质量, 而且制作工艺简单, 易于实现大面积、 高亮度的 光栅 3D-LED显示器件的生产制造。
以上例子主要说明了本发明的基于 LED的双面光栅面光栅立体显示装置及 其制作方法。尽管只对其中一些本发明的实施方式进行了描述, 但是本领域普通 技术人员应当了解, 本发明可以在不偏离其主旨与范围内以许多其他的形式实 施。 因此, 所展示的例子与实施例方式被视为示意性的而非限制性的, 在不脱离 如所附各权利要求所定义的本发明精神及范围的情况下,本发明可能涵盖各种的 修改与替换。 以上所述仅为本发明的较佳实施例, 凡依本发明申请专利范围所做 的均等变化与修饰, 皆应属本发明的涵盖范围。

Claims

权利要求书
1. 一种基于 LED的双面光栅立体显示装置, 其特征在于: 包括 LED显示屏和 设置于该 LED显示屏前方的双光栅基板;所述的双光栅基板包括前光栅和后 光栅, 其中所述后光栅是靠近 LED显示屏表面, 用于保证组成 LED显示屏 的每个 LED子像素的发光中心点在水平和垂直方向保持一致,所述前光栅是 靠近观看者的光栅, 用于立体分光。
2. 根据权利要求 1所述的基于 LED的双面光栅立体显示装置, 其特征在于:所 述的前光栅是任意一种可对光线传播路径进行一定方式的控制, 使观看者的 左右眼观看到不同的视差图像的光栅。
3. 根据权利要求 2所述的基于 LED的双面光栅立体显示装置, 其特征在于:所 述的前光栅包括狭缝光栅、 柱透镜光栅、 振动光栅和液晶透镜。
4. 根据权利要求 3所述的基于 LED的双面光栅立体显示装置, 其特征在于:所 述狭缝光栅是在不透明的钢板、 铝板、 铬钢板、 铬板、 镍板、 钽板或钛板上 加工透光区域而成, 该透光区域的形状是直条形或阶梯形。
5. 根据权利要求 3所述的基于 LED的双面光栅立体显示装置, 其特征在于:所 述狭缝光栅是在一透明基板上敷上不透光的膜料或不透光的膜层, 该透明基 板包括玻璃、聚甲基丙烯酸甲酯(PMMA)或聚对苯二甲酸乙二醇酯(PET), 该不透光的膜料包括感光型油墨和印刷型油墨, 不透光的膜层包括 Cu, W, Co, Ni, Ta, TaN, Ti, Zn, Al, Cr一种或者一种以上组合的复合膜层。
6. 根据权利要求 3所述的基于 LED的双面光栅立体显示装置, 其特征在于:所 述柱透镜光栅的柱镜是纵向垂直或倾斜结构, 该柱透镜光栅是通过物理、 化 学和机械方法贴合在所述后光栅表面。
7. 根据权利要求 1所述的基于 LED的双面光栅立体显示装置, 其特征在于:所 述的后光栅是一微孔平板后光栅。
8. 根据权利要求 7所述的基于 LED的双面光栅立体显示装置, 其特征在于:所 述的微孔平板后光栅的透光区域形状为圆形、矩形、 正方形、菱形或椭圆形; 每个透光区域的中心点与所述 LED显示屏上的每个 LED子像素的中心点一 一对应, 且透光区域小于 LED子像素发光面积, 相邻微孔平板光栅中的透光 区的中心距离等于 LED显示屏中相邻 LED子像素的中心距离 D2
9. 根据权利要求 8所述的基于 LED的双面光栅立体显示装置, 其特征在于:所 述的微孔平板后光栅是在一不透明的钢板、 铝板、 铬钢板、 铬板、 镍板、 钽 板或钛板上加工所述透光区域而成。
10.根据权利要求 7所述的基于 LED的双面光栅立体显示装置, 其特征在于:所 述的微孔平板后光栅是在一透明基板上敷上不透光的膜料, 该透明基板包括 玻璃、 聚甲基丙烯酸甲酯 (PMMA) 或聚对苯二甲酸乙二醇酯 (PET), 该不 透光的膜料包括感光型油墨和印刷型油墨, 不透光的膜层包括 Cu, W, Co, M, Ta, TaN, Ti, Zn, Al, Cr一种或者两种及其以上的组合的复合膜层。
11.根据权利要求 1所述的基于 LED的双面光栅立体显示装置, 其特征在于:所 述的后光栅和前光栅是直接加工在一透明基板上的两侧表面形成所述的双光 栅基板。
12.根据权利要求 1所述的基于 LED的双面光栅立体显示装置, 其特征在于:所 述的双光栅基板是由各自加工而成的后光栅和前光栅贴合在一透明基板两侧 而成。
13.根据权利要求 11或 12所述的基于 LED的双面光栅立体显示装置,其特征在 于: 所述的透明基板是玻璃、 ITO透明玻璃、 聚甲基丙烯酸甲酯 (PMMA) 或聚对苯二甲酸乙二醇酯 (PET)。
14.根据权利要求 1所述的基于 LED的双面光栅立体显示装置, 其特征在于:所 述的双光栅基板是由各自加工而成的后光栅和前光栅经组合而成。
15.根据权利要求 1所述的基于 LED的双面光栅立体显示装置, 其特征在于:还 包括一透明隔热层, 其设于所述双面光栅基板与 LED显示屏之间。
16.根据权利要求 15所述的基于 LED的双面光栅立体显示装置, 其特征在于: 所述的透明隔热层是玻璃、 中空玻璃或亚克力透明隔热材料。
17.根据权利要求 1所述的基于 LED的双面光栅立体显示装置, 其特征在于:进 一步包括一透明保护层, 该透明保护层设于所述前光栅表面。
18.一种基于 LED的双面光栅立体显示装置的制作方法, 其特征在于:
1 ) 提供一 LED显示屏;
2)提供前光栅和后光栅, 将所述的后光栅和前光栅直接加工在一第一透明基 板上的两侧表面形成一双光栅基板;
3 ) 将双光栅与 LED显示屏对准固定。
19. 根据权利要求 18所述的一种基于 LED的双面光栅立体显示装置的制作方 法, 其特征在于, 所述的后光栅为微孔平板光栅, 采用印刷技术在透明基板上制 作微孔光栅; 或采用印刷、 物理气相沉积、 化学气相沉积、 化学镀在透明基板上 沉积不透光的膜料或膜层, 再采用曝光和刻蚀技术制作微孔光栅。
20. 根据权利要求 18所述的一种基于 LED的双面光栅立体显示装置的制作方 法, 其特征在于, 所述的前光栅为狭缝光栅, 其采用印刷技术在透明基板上制作 狭缝光栅; 或采用印刷、 物理气相沉积、 化学气相沉积、 化学镀在透明基板上沉 积不透光的膜料或膜层, 再采用曝光和刻蚀技术制作狭缝光栅。
21. 根据权利要求 18所述的一种基于 LED的双面光栅立体显示装置的制作方 法, 其特征在于, 所述的前光栅为柱透镜光栅, 该柱镜是纵向垂直或倾斜结构; 其采用光刻技术或机械热压技术在一透明基板表面加工而成的。
22. 根据权利要求 18所述的一种基于 LED的双面光栅立体显示装置的制作方 法, 其特征在于, 所述的前光栅为液晶透镜光栅, 该液晶透镜是纵向垂直或倾斜 结构; 其采用光刻和刮擦技术或印刷刮擦技术在一透明基板表面加工而成的。
23. 一种基于 LED的双面光栅立体显示装置的制作方法, 其特征在于:
1 ) 提供一 LED显示屏;
2) 提供一各自加工而成的后光栅和前光栅, 将所述前光栅和后光栅贴合在一 起形成一双光栅基板;
3 ) 将所述的双光栅基板与所述 LED显示屏对准固定。
24. 根据权利要求 23所述的一种基于 LED的双面光栅立体显示装置的制作方 法, 其特征在于: 所述的后光栅为微孔平板光栅, 采用机械法或激光钻孔在不透 明金属板材表面加工而成; 或采用印刷技术在透明基板上制作而成; 或采用激光 绘图技术在透明基片上制作而成; 或采用印刷、 物理气相沉积、 化学气相沉积、 化学镀在透明基板上沉积不透光的膜料或膜层, 再采用曝光和刻蚀技术制作而 成。
25. 根据权利要求 23所述的一种基于 LED的双面光栅立体显示装置的制作方 法, 其特征在于: 所述的前光栅为狭缝光栅, 采用机械法或激光钻孔在不透明金 属板材表面加工而成; 或采用激光绘图技术在透明基片上制作而成; 或采用印刷 技术在透明基板上制作而成; 或采用印刷、 物理气相沉积、 化学气相沉积、 化学 镀在透明基板上沉积不透光的膜料或膜层, 再采用曝光和刻蚀技术制作而成。
26. 根据权利要求 23所述的一种基于 LED的双面光栅立体显示装置的制作方 法, 其特征在于, 所述的前光栅为柱透镜光栅, 该光栅的柱镜是纵向垂直或倾斜 结构, 该柱透镜光栅是通过物理、 化学和机械方法贴合在所述后光栅表面。
27. 根据权利要求 23所述的一种基于 LED的双面光栅立体显示装置的制作方 法, 其特征在于, 所述的前光栅为液晶透镜光栅, 该液晶透镜是纵向垂直或倾斜 结构; 其采用光刻和刮擦技术或印刷刮擦技术在透明基板表面加工而成的。
28. 根据权利要求 23所述的一种基于 LED的双面光栅立体显示装置的制作方 法,其特征在于,所述的前光栅为振动光栅,该振动光栅的振动方向是水平方向、 垂直方向或倾斜方向。
29. 一种基于 LED的双面光栅立体显示装置的制作方法, 其特征在于:
1 ) 提供一 LED显示屏;
2) 提供前光栅、 后光栅和一第一透明基板, 将所述的前光栅和后光栅贴合在该 第一透明基板两侧形成一双光栅基板;
3 ) 将所述双光栅与所述 LED显示屏对准固定。
30. 根据权利要求 29所述的一种基于 LED的双面光栅立体显示装置的制作方 法, 其特征在于, 所述的后光栅为微孔平板光栅, 采用机械法或激光钻孔在不透 明金属板材表面加工而成; 或采用印刷技术在一透明基板上制作而成; 或采用激 光绘图技术在透明基片上制作而成;或采用印刷、物理气相沉积、化学气相沉积、 化学镀在透明基板上沉积不透光的膜料或膜层, 再采用曝光和刻蚀技术制作而 成。
31. 根据权利要求 29所述的一种基于 LED的双面光栅立体显示装置的制作方 法, 其特征在于, 所述的前光栅为狭缝光栅, 采用机械法或激光钻孔在不透明金 属板材表面加工而成; 或采用激光绘图技术在透明基片上制作而成; 或采用印刷 技术在透明基板上制作而成; 或采用印刷、 物理气相沉积、 化学气相沉积、 化学 镀在透明基板上沉积不透光的膜料或膜层, 再采用曝光和刻蚀技术制作而成。
32. 根据权利要求 29所述的一种基于 LED的双面光栅立体显示装置的制作方 法, 其特征在于, 所述的前光栅为柱透镜光栅, 该光栅的柱镜是纵向垂直或倾斜 结构。
33. 根据权利要求 29所述的一种基于 LED的双面光栅立体显示装置的制作方 法, 其特征在于, 所述的前光栅为液晶透镜光栅, 该液晶透镜是纵向垂直或倾斜 结构; 其采用光刻和刮擦技术或印刷刮擦技术在透明基板表面加工而成的。
34. 根据权利要求 29所述的一种基于 LED的双面光栅立体显示装置的制作方 法,其特征在于,所述的前光栅为振动光栅,该振动光栅的振动方向是水平方向、 垂直方向或倾斜方向。
PCT/CN2012/074719 2012-03-31 2012-04-26 基于led的双面光栅立体显示装置及其制作方法 WO2013143199A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12873469.6A EP2770365A4 (en) 2012-03-31 2012-04-26 THREE-DIMENSIONAL DISPLAY DEVICE WITH AN LED-BASED DOUBLE GRILLE AND MANUFACTURING METHOD THEREFOR
US14/118,426 US20150192780A1 (en) 2012-03-31 2012-04-26 Stereoscopic LED display with dual barrier and its fabrication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210094884.2A CN102608768B (zh) 2012-03-31 2012-03-31 基于led的双面光栅立体显示装置及其制作方法
CN201210094884.2 2012-03-31

Publications (1)

Publication Number Publication Date
WO2013143199A1 true WO2013143199A1 (zh) 2013-10-03

Family

ID=46526249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074719 WO2013143199A1 (zh) 2012-03-31 2012-04-26 基于led的双面光栅立体显示装置及其制作方法

Country Status (4)

Country Link
US (1) US20150192780A1 (zh)
EP (1) EP2770365A4 (zh)
CN (1) CN102608768B (zh)
WO (1) WO2013143199A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114895480A (zh) * 2022-05-18 2022-08-12 成都工业学院 宽视角集成成像3d显示装置
CN114895480B (zh) * 2022-05-18 2024-05-10 成都工业学院 宽视角集成成像3d显示装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866508A (zh) * 2012-10-12 2013-01-09 福州大学 可实现2d/3d切换的led裸眼立体显示装置及制作方法
CN103064136B (zh) * 2013-01-16 2014-12-31 福州大学 用于集成成像3d显示的组合微透镜阵列及其制作方法
CN103197427A (zh) * 2013-04-12 2013-07-10 福建泰德视讯数码科技有限公司 一种裸眼3d led显示屏及其生产工艺
CN104122670A (zh) * 2013-04-25 2014-10-29 邓兴峰 矩形球面光栅4d图片
CN103286767B (zh) * 2013-06-13 2015-09-09 沈阳飞机工业(集团)有限公司 一种蒙皮零件的钻孔划线方法
US20150043066A1 (en) * 2013-08-12 2015-02-12 Lighthouse Technologies (Huizhou) Limited Three-dimensional television display
CN103544888B (zh) * 2013-09-30 2016-07-06 深圳市奥拓电子股份有限公司 一种led裸眼3d显示屏及其安装方法
CN103676247B (zh) * 2013-12-31 2016-10-12 信利光电股份有限公司 一种立体显示器及其对位方法和对位系统
CN205451698U (zh) * 2014-11-19 2016-08-10 上海聚然智能科技有限公司 真像点多维度显示器及其组件
US9690110B2 (en) * 2015-01-21 2017-06-27 Apple Inc. Fine-coarse autostereoscopic display
DE102015102743A1 (de) * 2015-02-26 2016-09-01 Schott Ag Beschichteter Glas- oder Glaskeramikartikel
US9715066B2 (en) * 2015-12-24 2017-07-25 Intel Corporation Double-sided orthogonal grating optical coupler
CN105629487A (zh) * 2015-12-31 2016-06-01 京东方科技集团股份有限公司 一种视差装置及3d显示设备
CN106526843B (zh) * 2016-12-26 2020-07-17 Tcl新技术(惠州)有限公司 一种裸眼3d光栅的模拟方法和装置
US10244230B2 (en) * 2017-03-01 2019-03-26 Avalon Holographics Inc. Directional pixel for multiple view display
WO2019243046A1 (en) * 2018-06-18 2019-12-26 Lumileds Holding B.V. Lighting device comprising led and grating
CN111048015A (zh) * 2018-10-15 2020-04-21 青海荟源工贸有限公司 一种360度3d变化灯箱
US11243410B2 (en) * 2019-04-26 2022-02-08 Wuhan Tianma Micro-Electronics Co., Ltd. Display device
CN110346942B (zh) * 2019-07-28 2024-03-08 成都航空职业技术学院 基于障壁阵列的集成成像3d显示装置
WO2021024600A1 (ja) * 2019-08-02 2021-02-11 パナソニックIpマネジメント株式会社 表示装置
US20210071417A1 (en) * 2019-09-11 2021-03-11 Aluvision N.V. Curved LED Tile
CN111145674B (zh) * 2019-12-27 2023-06-13 上海辛格林纳新时达电机有限公司 显示面板的检测方法、电子设备和存储介质
CN111081162B (zh) * 2020-01-07 2022-01-25 深圳市丽晶光电科技股份有限公司 一种解决显示屏模组平整度的工艺
US11287669B2 (en) * 2020-04-13 2022-03-29 Lixel Inc. Integrated image display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426147A (zh) * 2008-01-08 2009-05-06 四川大学 复合柱面镜光栅自由立体显示器
CN101655609A (zh) * 2009-08-10 2010-02-24 深圳超多维光电子有限公司 一种全分辨率立体显示装置
CN101702057A (zh) * 2009-11-06 2010-05-05 四川大学 带聚光柱面光栅的自由立体显示器
WO2010090184A1 (ja) * 2009-02-03 2010-08-12 凸版印刷株式会社 位相型回折素子、その製造方法、および撮像装置
CN101819375A (zh) * 2010-04-16 2010-09-01 浙江大学 全视差三维显示装置
CN102063008A (zh) * 2010-11-03 2011-05-18 中航华东光电有限公司 多视点自由立体投影系统
CN202171686U (zh) * 2011-07-04 2012-03-21 天马微电子股份有限公司 一种双视角显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2278222A (en) * 1993-05-20 1994-11-23 Sharp Kk Spatial light modulator
JP2000078444A (ja) * 1998-08-31 2000-03-14 Matsushita Electric Ind Co Ltd ビューファインダ、表示パネル、表示パネルの製造方法、ビデオカメラ、映像表示装置、マイクロレンズ基板の製造方法、表示パネルの駆動方法、映像表示装置の駆動方法および投射型表示装置
GB0119176D0 (en) * 2001-08-06 2001-09-26 Ocuity Ltd Optical switching apparatus
US20050280894A1 (en) * 2004-04-02 2005-12-22 David Hartkop Apparatus for creating a scanning-column backlight in a scanning aperture display device
ES2553883T3 (es) * 2005-12-13 2015-12-14 Koninklijke Philips N.V. Dispositivo de visualización autoestereoscópica
WO2008049916A1 (en) * 2006-10-26 2008-05-02 Seereal Technologies S.A. Mobile tlephony system comprising holographic display
US8758144B2 (en) * 2007-10-23 2014-06-24 Igt Separable backlighting system
CN100595631C (zh) * 2008-04-18 2010-03-24 浙江大学 实现全视场空间三维显示的屏幕装置
US9213450B2 (en) * 2008-11-17 2015-12-15 Tpk Touch Solutions Inc. Touch sensor
TWM368074U (en) * 2009-05-06 2009-11-01 Chunghwa Picture Tubes Ltd Stereoscopic display device
CN102238409B (zh) * 2011-05-10 2013-07-24 湖南创图视维科技有限公司 一种裸眼3d电视墙

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426147A (zh) * 2008-01-08 2009-05-06 四川大学 复合柱面镜光栅自由立体显示器
WO2010090184A1 (ja) * 2009-02-03 2010-08-12 凸版印刷株式会社 位相型回折素子、その製造方法、および撮像装置
CN101655609A (zh) * 2009-08-10 2010-02-24 深圳超多维光电子有限公司 一种全分辨率立体显示装置
CN101702057A (zh) * 2009-11-06 2010-05-05 四川大学 带聚光柱面光栅的自由立体显示器
CN101819375A (zh) * 2010-04-16 2010-09-01 浙江大学 全视差三维显示装置
CN102063008A (zh) * 2010-11-03 2011-05-18 中航华东光电有限公司 多视点自由立体投影系统
CN202171686U (zh) * 2011-07-04 2012-03-21 天马微电子股份有限公司 一种双视角显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770365A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114895480A (zh) * 2022-05-18 2022-08-12 成都工业学院 宽视角集成成像3d显示装置
CN114895480B (zh) * 2022-05-18 2024-05-10 成都工业学院 宽视角集成成像3d显示装置

Also Published As

Publication number Publication date
EP2770365A4 (en) 2015-05-20
CN102608768A (zh) 2012-07-25
US20150192780A1 (en) 2015-07-09
EP2770365A1 (en) 2014-08-27
CN102608768B (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
WO2013143199A1 (zh) 基于led的双面光栅立体显示装置及其制作方法
TWI794456B (zh) 光學裝置
TWI390297B (zh) 照明裝置
US9952713B2 (en) Touch panel, display device, and touch panel manufacturing method
RU2510063C1 (ru) Жидкокристаллическое устройство отображения и способ его изготовления
US9448412B2 (en) Color filter substrate, fabrication method thereof and display device
CN102866508A (zh) 可实现2d/3d切换的led裸眼立体显示装置及制作方法
KR20160000377U (ko) 터치 센서 및 이 터치 센서를 포함하는 터치 패널
WO2015154368A1 (zh) 显示面板及其制作方法、显示装置
WO2017190535A1 (zh) 单侧发光光源及其制作方法、显示装置
JP2005222061A (ja) 半透過シート、それを備えた液晶表示装置、及び半透過シートの製造方法
CN106019434A (zh) 光学膜片及其制作方法、显示装置
KR101182491B1 (ko) 부분적으로 코팅된 구조물 어레이를 구비한 광학 필름 및 그의 제조 방법
CN102818219B (zh) 光学膜片及其制造方法及使用该光学膜片的液晶显示装置
KR20110093508A (ko) 입체 영상 표시 장치 및 그 제조 방법
WO2014153845A1 (zh) 半透半反液晶显示装置及其制作方法
WO2023225868A1 (zh) 微透镜基板、显示装置及微透镜基板的制备方法
KR20070083617A (ko) 3차원 영상 표현용 조립체
WO2012099373A2 (en) Optical film with partially coated structure array and manufacturing method thereof
KR20150044174A (ko) 마이크로 렌즈 필름 및 이의 제조 방법과 마이크로 렌즈 어레이 장치 및 마이크로 렌즈 필름의 적층 모듈
JP2006153982A (ja) 透過型スクリーンおよびそれを有する背面投射型プロジェクションテレビ
TWI840347B (zh) 光學裝置
JP2013003320A (ja) レンズシート、面光源装置、透過型表示装置、レンズシートの製造方法
TW201124964A (en) Flat panel display device.
JP5598097B2 (ja) 光学シート成形用金型の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012873469

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873469

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14118426

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE