WO2013143118A1 - 对置铁芯及其制造方法及该对置铁芯的电磁风扇离合器 - Google Patents

对置铁芯及其制造方法及该对置铁芯的电磁风扇离合器 Download PDF

Info

Publication number
WO2013143118A1
WO2013143118A1 PCT/CN2012/073308 CN2012073308W WO2013143118A1 WO 2013143118 A1 WO2013143118 A1 WO 2013143118A1 CN 2012073308 W CN2012073308 W CN 2012073308W WO 2013143118 A1 WO2013143118 A1 WO 2013143118A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
groove
electromagnet core
hole
annular
Prior art date
Application number
PCT/CN2012/073308
Other languages
English (en)
French (fr)
Inventor
王兆宇
Original Assignee
Wang Zhaoyu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Zhaoyu filed Critical Wang Zhaoyu
Priority to RU2014143409/07A priority Critical patent/RU2592477C2/ru
Priority to US14/389,731 priority patent/US9534642B2/en
Priority to PCT/CN2012/073308 priority patent/WO2013143118A1/zh
Publication of WO2013143118A1 publication Critical patent/WO2013143118A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/004Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with permanent magnets combined with electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/14Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/01Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/02Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings
    • F16D27/04Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings with axially-movable friction surfaces
    • F16D27/06Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings with axially-movable friction surfaces with friction surfaces arranged within the flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D2027/001Means for electric connection of the coils of the electromagnetic clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D2027/005Details relating to the internal construction of coils or to clutches having more than one coil in the same housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49073Electromagnet, transformer or inductor by assembling coil and core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core

Definitions

  • the present invention relates to an opposed core for transmitting a rotary motion, a method of manufacturing the same, and a related clutch, and more particularly to an opposed iron core for an electromagnetic fan clutch for a vehicle, a method of manufacturing the same, and an electromagnetic fan clutch including the same.
  • the application date is December 07, 2010, the application number is 201010588608.2
  • the invention name is "an automobile electromagnetic fan clutch”
  • the application The application date is December 20, 2010, the application number is 201020659237.8, the invention name is "a kind of automobile electromagnetic fan clutch” Chinese patent application, and the application date is December 27, 2010, the application number is 201010621450.4
  • the invention name is " Chinese patent application for magnet fixing plate with cyclone cooling blade
  • the invention name is "magnet fixed disk with cyclone cooling blade” Application.
  • electromagnet cores are often in the form of Figure 1 as described in the present invention.
  • the electromagnet core body 1' is cast by a mold having one or more annular grooves 2', 3' whose openings are all facing the same side of the core body, and then placed in the annular grooves 2', 3'.
  • Electromagnetic coils 7', 8' have electromagnetic terminals 7', 8' respectively having pairs of terminals 9', 10', 11', 12', which can then pass through a single such as described
  • the annular friction linings are punched out through the corresponding pair of lead holes 16', and then the corresponding lead grooves are adaptively opened in the radial direction of the friction lining according to the random positions of the lead holes 16'.
  • the lead ends are brought into corresponding positions, for example, inside the drive shaft, and the lead ends are ultimately extended into the corresponding power supply circuit.
  • the single annular friction plate 13' is fixed to the sidewall end edge 6' of the corresponding annular groove opening by a plurality of spot welding, that is, the annular friction plate 13' completely covers the Side wall edge 6'.
  • the through hole 14' of the single annular friction plate is larger than the outer circumference of the electromagnet core through hole 4' and is correspondingly capped thereon.
  • the aforementioned electromagnet core may offset a part of the electromagnetic force due to the mutual interference of the electromagnetic coils, so that a larger coil is required to meet the actual requirements of the electromagnetic clutch in use, resulting in a larger volume and size.
  • One object of the present invention is to provide an electromagnetic core device for a clutch of a completely new configuration.
  • Another object of the present invention is to provide a method of manufacturing the aforementioned electromagnet core device.
  • the opposed electromagnet core of the present invention includes a core groove which is disposed away from each other in the axial direction on the electromagnet core body.
  • the opposed electromagnet core of the present invention further includes a friction plate disposed opposite to each other on the core groove.
  • the opposed electromagnet core of the present invention further includes coils disposed opposite to each other in the core groove.
  • the ground end of the coil is directly connected to the core body.
  • the terminal end and the grounding end are located on the same side of the core body.
  • the core groove includes a first annular groove and a second annular groove.
  • the core groove includes a first square groove and a second square groove.
  • the friction plate comprises an annular large friction plate and a ring-shaped small friction plate, and the annular large friction plate is engaged in the first annular groove opening, and the annular small friction plate card Connected in the second annular groove opening.
  • each of the core slots is provided with a reinforcing strip on the inner side wall of the open end.
  • the reinforcing grain has a cross-sectional height of 0.1 mm to 5 mm.
  • the bottom end surface of the second annular groove is provided with a first through groove, a first half through groove, a second half through groove, a third half through groove, and a first through hole. a second through hole, a third through hole, and a fourth through hole.
  • the foregoing various technical features further reduce the size, and further save manufacturing materials, making the wiring structure more reasonable.
  • the third through hole has a first trapezoidal stage, and the second through hole has a second trapezoidal stage.
  • a method of manufacturing a counter core according to the present invention includes directly stretching a core groove disposed opposite to each other on a core body.
  • the method for manufacturing the opposed iron core of the present invention comprises directly spinning a core groove disposed opposite to each other on the core body.
  • the manufacturing method of the opposite core of the present invention comprises placing coils opposite to each other, and each of the coils has only one terminal leading out to the core through hole of the core slot; the ground end of the coil The iron core body is connected; the friction plates are engaged with each other.
  • the foregoing technical solution makes the iron core process method simple, saves the process, saves the materials, and makes mass production possible.
  • the electromagnetic fan clutch of the opposing core of the present invention is the electromagnetic fan clutch of the opposing core of the present invention.
  • the opposite side of the opposing electromagnet core device has a first suction gap and a second suction gap.
  • each terminal of the coil is taken out from a lead groove of the main shaft.
  • the lead grooves are plural and symmetrical to each other.
  • the main shaft has a second stage.
  • the main shaft is a hollow tubular member.
  • the electromagnetic fan clutch of the present invention includes a fan fixed disk bearing that is tightly fitted to the left side of the drive plate, and the outer ring of the fan fixed disk bearing is tightly engaged with the fan fixing plate, and the fan fixed plate is abutted a second sleeve is tightly fitted on the left side of the bearing, and a large spring piece and a large suction cup are connected to the left side of the fan fixing plate, and the iron core through hole of the electromagnet core device is tightly fitted On the main shaft and adjacent to the left side of the second sleeve, a fastening cover fixed bearing is tightly fitted on the left side of the electromagnet core device, and the outer ring is tightly fitted and tightly mounted.
  • the fastening cover is further provided with a small spring piece and a small suction disk, and the fastening cover fixing bearing is received by the fastening hole of the fastening cover, and is fastened with the fastening
  • the inner wall of the hole is tightly fitted, and the fixing bolt and the thread of the main shaft are screwed to each other.
  • the fan fixed disk has a first ring that is sleeved on the electromagnet core device
  • the side wall is embedded with an annular soft iron at the end of the first annular side wall, and the fastening cover is connected with a magnet fixing disk cover, and the inner edge is connected with the annular magnet fixing plate.
  • the fan fixing plate has an annular groove for accommodating a magnet fixing plate
  • the fastening cover has a first annular side wall covering the electromagnet core device, An annular side wall is inlaid with a ring of soft iron.
  • Figure 1 is a schematic view of the background art of the present invention
  • FIG. 2 is a schematic view of a first embodiment of an electromagnet core device of the present invention
  • FIG. 3 is a schematic view showing a first embodiment of an electromagnet core device of the present invention placed in a three-speed electromagnetic clutch;
  • FIG. 4 is a schematic view showing another direction of the iron core body of FIG.
  • Figure 5A is a cross-sectional view of the core body of Figure 2 taken along line A-A;
  • Figure 5B is a cross-sectional view of the core body of Figure 2 taken along line B-B;
  • Figure 6 is a cross-sectional view of Figure 3;
  • Figure 7 is a schematic view showing the other direction of the driving disk and the main shaft of Figure 2;
  • Figure 8 is a schematic view showing a second embodiment of the electromagnet core device of the present invention.
  • Figure 9 is another side view of the iron core of Figure 8.
  • Figure 10 is a cross-sectional view taken along line C-C of the second embodiment of the electromagnet core device of the present invention.
  • Figure 11 is a cross-sectional view showing a second embodiment of the electromagnetic fan clutch of the present invention.
  • a first embodiment of the electromagnet core device of the present invention is a first embodiment of the electromagnet core device of the present invention.
  • FIG. 2 Fig. 3, Fig. 4, Fig. 5A, Fig. 5B, Fig. 6, there is shown a first embodiment of the electromagnet core device of the present invention.
  • a first annular groove 12 is opened at one end of the core body 11 of the present invention
  • a second annular groove 13 is opened at the other end of the core body 11 of the present invention.
  • the center of the first annular groove 12 and the center of the second annular groove 13 are both in the axial direction of the core body 11 and coincide with each other.
  • the core body 11 has a core through hole 4 at a central portion thereof, and a shaft pin sleeve 5 is formed after extending a portion in a direction toward the opening of the second annular groove 13.
  • the inner side wall 121 of the first annular groove 12 and the outer side wall 122 of the second annular groove 13 are mutually combined to form a common side wall.
  • the open end surface of the first annular groove 12 and the bottom end surface 124 of the second annular groove 13 are in the same horizontal plane.
  • the bottom end surface of the first annular groove 12 is located on the same horizontal plane as the opening end surface of the second annular groove 13.
  • the first annular groove 12 is located on the inner side of the outer wall of the opening portion and the inner side of the inner wall corresponding to the equidistant adhesive force and the first reinforcing grain 130 of the semi-circular cross section, and the cross-sectional radius of the semicircular portion, or
  • the height of the section is preferably from 0.1 mm to 5 mm.
  • the inner side of the outer wall of the second annular groove 13 at the opening portion and the inner side of the inner wall are correspondingly provided with an equidistant adhesive force and a second reinforcing pattern 131 having a semicircular cross section, and the semicircular portion thereof
  • the section radius, or section height is optimal from 0.1 mm to 5 mm.
  • a first through groove 125 having two openings is formed in the radially outward direction on the bottom end surface 124 of the second annular groove 13.
  • a first half-way groove 126 is opened in a radial inward direction of the bottom end surface 124 at a diametrically opposite position of the first through groove 125, and the first opening of the first half-way groove 126 faces the core through hole 4.
  • a first through hole 16 is formed perpendicular to the core body 11 at a farthest end of the first half through groove 126.
  • a second half-way groove 127 similar to the first half-way groove 126 is formed at a 90° clockwise angle with the first half-way groove 126 for weighting and balancing the core body 11 .
  • the single opening faces the core through hole 4, and the second through hole 180 is further opened perpendicular to the core body 11 at the farthest end of the second half through groove 127.
  • the second through hole 180 is enlarged to a portion having a larger sectional area before being extended into the inside of the second annular groove 13, and thus forms a second trapezoidal stage 133.
  • a fourth through hole 181 is further formed in the second through hole 180 along the second half through groove 127 in the direction of the core through hole 4. Referring to FIG. 2 and FIG.
  • the first through groove 125 is at an angle of 90° clockwise, and a third semi-through groove 128 is opened radially outward of the bottom end surface 124.
  • the first annular groove 12 defines a third through hole 129 perpendicularly formed at an innermost end of the third half through groove 128 in the radial direction.
  • the third through hole 129 is enlarged to a portion having a larger sectional area before being extended into the inside of the second annular groove 13, and thus forms the first trapezoidal stage 132.
  • a large coil 8 is placed in the first annular groove 12, which is covered with a large annular friction plate 138, and the outer annular edge 140 and the inner edge 141 of the large annular friction plate 138 are The first reinforcement 130 card is combined for further bonding.
  • One lead wire of the large coil 8 is fixed by a rivet through the third half-passing groove 128 and is grounded at the third through hole 129 and located in the third half-passing groove 128;
  • the other lead wire of the coil S is introduced into the through hole 4 of the core body 11 through the first through groove 125.
  • a small coil 7 is placed in the second annular groove 13 and covered with a small annular friction plate 139.
  • a lead wire of the small coil 7 passes through the fourth through hole 181 from one side of the second annular groove 13 and extends in a radially outward direction of the second half through groove 127. Fixing and tying the iron to the second through hole I SO and located in the second half through groove 127; the other lead wire of the small coil 7 passes through the first through hole
  • the riveting can also be replaced by a connection such as screwing or splicing, as long as the grounding is reliably placed on the core body 11.
  • the first annular groove 12 and the second annular groove 13 are disposed opposite to each other along the axial direction of the core body 11, and the openings are opposite to each other, that is, arranged and arranged opposite to each other.
  • the large coils 8 and the small coils 7 are also disposed opposite to each other in the direction of the opening of the annular grooves 12, 13, i.e., arranged and arranged opposite each other.
  • the large friction plate 138 and the small friction plate 139 are also disposed opposite to each other in the direction of opening of the annular grooves 12, 13, that is, arranged and arranged opposite each other.
  • a method of manufacturing the first embodiment of the electromagnet core device of the present invention is a method of manufacturing the first embodiment of the electromagnet core device of the present invention.
  • the core body 11 is provided by forging or casting or direct stretching or direct spinning or direct casting, and the iron core grooves are disposed opposite to each other by machining, that is, the first annular groove 12 and the second annular groove are formed opposite to each other. 13.
  • the first through groove 125, the first half through groove 126, the second half through groove 127, and the third half through groove 128 are formed on the bottom end surface 124 by machining or milling.
  • the first through hole 16, the second through hole 180, the third through hole 129, and the fourth through hole 181 are formed by the drill.
  • a first trapezoidal table 132 and a second trapezoidal table 133 are formed by using drills of different diameters.
  • the large coil 8 is placed into the first annular groove 12, and the first terminal end 111 of the large coil 8 is placed into the third half-channel along the opening of the third half-passing groove 128. Then, the first rivet 135 is placed into the first rivet 135, and then the remaining portion of the first leading end 111 is wound around the rivet and the first rivet 135 is fixed to the third half through with a riveting machine. A grounding is formed in the groove 128, after which the excess is cut. The second lead end 112 of the large coil 8 passes along the first through slot 125 and extends into the core through hole 4.
  • an adhesive such as an epoxy resin is poured over the large coil 8 located in the first annular groove 12, and then the outer edge 140 of the large annular friction plate and the inner edge 141 of the large annular friction plate are tightly fitted. They are respectively embedded on the first reinforcing grooves 130. The large friction lining is thereby further bonded and snapped to cover the large coil 8.
  • the small coil 7 is placed into the second annular groove 13, and the second leading end 19 of the small coil 7 is passed through the fourth through hole 181 to enter one side of the bottom end portion 124.
  • a second rivet 136 is placed through the second through hole 180 along the second trapezoidal table 133 side, and then the remaining portion of the second lead end 19 of the small coil 7 is along the second half pass
  • the groove 127 extends in a radially outward direction and is wound around the second rivet 136, and then the second rivet 136 is fixed by a riveting machine to the second half-way groove 127 of the core body 11 to form a grounding. Drop the excess.
  • the first lead end 110 of the small coil 7 extends through the first through hole 16 into one side of the bottom end portion 124, and then is placed along the first half through groove 126, and finally by the first The opening of the half through groove 126 extends into the core through hole 4.
  • an adhesive such as an epoxy resin is poured over the small coil 7 located in the second annular groove 13, and then the outer edge 145 of the small annular friction plate 139 and the inner edge 146 of the small annular friction plate are tightened.
  • the mating is respectively embedded in the second reinforcing strip 131.
  • the small friction lining 139 is thereby bonded and snapped to cover the small coil 7.
  • the electromagnet core device of the first embodiment of the present invention can be formed by the aforementioned first method of the present invention.
  • it also has two annular friction plates 138, 139 and facing electromagnets located in the opposite direction of the core body opening.
  • the two lead wires 110, 112 of the two coils of the core through hole 4 are respectively used to connect the power supply ends of the corresponding electromagnetic coils.
  • Another manufacturing method of the electromagnet core according to the first embodiment of the present invention is: in the case where the other steps of the first method are unchanged, the steps of forming the core groove are directly stretched out To the set core slot.
  • a further manufacturing method of the electromagnet core according to the first embodiment of the present invention is: in the case where the other steps of the first method are unchanged, the step of forming the core groove is to rotate the mutual back arrangement Core slot.
  • a second embodiment of the electromagnet core device of the present invention is a second embodiment of the electromagnet core device of the present invention.
  • FIG. 8 Figures 9, 10 there is shown a second embodiment of an electromagnet core device of the present invention.
  • the second core body 21 of the present invention has two first square grooves 22 at one end thereof, and the other two ends of the core body 21 have two other second square grooves 23 in the axial direction.
  • the core body 21 has a core through hole 24 at a central portion thereof, and a shaft pin sleeve 25 is formed after extending a portion in a direction toward the opening of the second square groove 23.
  • the core body 21 has a first fixed outer edge 290 in the circumferential direction, and the first fixed outer edge 290 has a triangular equidistant engaging force third reinforcing grain 234 at the inner wall opening thereof, and the triangular portion has a height of a section 0.1 mm to 5 mm is the optimum value.
  • the core body 21 has a second fixed outer edge 291 in the circumferential direction of the other side, and the second fixed outer edge 291 has a triangular equidistant engaging force fourth reinforcing grain 235 at the inner wall opening thereof, and the triangle
  • the partial height of the section is preferably from 0.1 mm to 5 mm, and the same fourth reinforcing grain 235 is also formed on the pin sleeve 25.
  • the two first square grooves 22 and the other two second square grooves 23 are evenly distributed on the core body 21, and the center lines of each other are perpendicular to each other in the plane position of the core body 21.
  • the first square groove 22 has an equidistant adhesive force and a first force of the clamping force 230 in a triangular cross section at the inner side wall of the opening portion thereof, and the height of the triangular portion is 0.1 mm to 5 mm. .
  • the inner side wall of the second square groove 23 at the opening portion thereof is also correspondingly provided with an equidistant adhesive force and a second reinforcing reinforcing 231 having a triangular cross section, and the triangular portion has a sectional height of 0.1 mm. Up to 5 mm is the optimum value.
  • Two first through grooves 225 are respectively opened in the radially inward direction of the two first square grooves 22, each of which has an opening toward the core through hole 24 and faces the first The opening of the square groove 22.
  • Two other first half-passing grooves 226 are respectively opened in parallel with the left side of the two first through grooves 225, and two first through holes are respectively opened at the end positions of the iron core through holes 24 The holes 26, the two first through holes 26 are enlarged to a portion having a larger cross-sectional area before being extended into the other side of the core body 21, and thus two first trapezoidal stages 232 are formed.
  • Two anti-"7"-shaped second half-passing grooves 227 are formed at 90° clockwise with the two first through grooves 225, and the openings of the two slots are all facing the core through hole 24
  • the two second through holes 227 are blind ends perpendicular to the core body 21 and have two second through holes 280.
  • the two second through holes 280 are enlarged to a portion having a larger sectional area before being extended into the other side of the core body 21, and thus two second trapezoidal stages 233 are formed.
  • a third through hole 229 is also formed at a corner of each of the anti-"7"-shaped second half-grooves 227, respectively.
  • Two first coils 28 are placed in the two first square slots 22, and the upper annular friction plates 238 are covered thereon.
  • the large annular friction rib 238 is engaged by the inner side wall of the first fixed outer edge 290 of the core body 21 to increase the engaging force by the third reinforcing rib 234, and may pass through the first reinforcing grain 230 such as a ring.
  • the adhesive of the oxygen resin is further bonded.
  • One lead wire 211 of the two first coils 28 passes through the two first half through slots 226 respectively and is then fixed by rivets and grounded at the two first through holes 26 and located at the The other two lead wires 212 of the two first coils 28 are respectively introduced into the through holes 24 of the core body 21 through the two first through grooves 225.
  • Two second coils 27 are respectively disposed in the two square grooves 23 on the other side of the core body 21, and are covered with a small annular friction plate 239, the inner edge 246 of the small annular friction plate 239 and the outer portion thereof.
  • the edge 245 is further bonded by the fourth reinforcing grain 235 card and by an adhesive such as an epoxy resin attached to the second reinforcing grain 23 1 .
  • Two pairs of lead wires of the two second coils 27 are respectively passed through the two through holes 229, one of which is along the blind end of the second half-passing groove 227 to the second
  • the through hole 280 is fixed by a rivet and is grounded at the second through hole 280 and located in the second half through groove 227; the other lead wires of the two second coils 27 are respectively along the first
  • the opening direction of the half through groove 227 is introduced into the through hole 24 of the core body 21.
  • the aforementioned riveting may also be replaced by a connection such as screwing or welding, as long as the grounding is reliably placed on the core body 21.
  • the two first square grooves 22 and the other two second square grooves 23 are mutually axially along the axial direction of the core body 21.
  • the arrangement is arranged in the opposite direction, and the openings of the two are opposite to each other, that is, arranged and arranged opposite each other.
  • the two first coils 28 and the other two second coils 27 are also disposed opposite to each other with respect to the opening direction of the square grooves, and SPs are arranged and arranged opposite each other.
  • the large friction 238 and the small friction 239 are also disposed opposite to each other in the direction of opening of the square grooves 22, 23, i.e., arranged and arranged opposite each other.
  • the large friction plate 238 and the small friction plate are also located in the opening of the core body and have four lead wires 210, 212 facing the four coils of the electromagnetic core through hole 24 for respectively connecting the power supply ends of the respective coils.
  • a method of manufacturing a second embodiment of the electromagnet core device of the present invention is a method of manufacturing a second embodiment of the electromagnet core device of the present invention.
  • the two first through grooves 225, the two first half through grooves 226, and the two second half through grooves 227 are formed on one of the end faces of the core body 21 by machining or milling.
  • the two first through holes 26, the two second through holes 280, and the two third through holes 229 are formed by the drill.
  • two first trapezoidal stages 232 and two second trapezoidal stages 233 are formed using drills of different diameters.
  • the two first coils 28 are placed in the first square slot 22, and the first terminals 211 of the two first coils 28 are placed along the opening of the first half-channel 226.
  • the first half-way groove 226 is then inserted into the first rivet 237 by the first trapezoidal table 232, and then the remaining portion of the first terminal 211 is wound around the rivet and used
  • the riveting machine fixes the first rivet 237 to the first through hole 26 in the first half through groove 226 to form a ground, and then cuts off the excess portion.
  • the second lead ends 212 of the first coil 28 respectively pass along the first through grooves 225 and extend into the core through holes 24 .
  • an adhesive such as an epoxy resin is poured over the two first coils 28 located in the first square groove 22, and then the outer edge 240 of the large annular friction plate 238 is embedded into the The third reinforcing ribs 234 are bonded to each other by an adhesive attached to the first reinforcing grooves 230. The large friction 238 is thereby further bonded and snapped to cover the two first coils 28.
  • the two second coils 27 are placed into the second square groove 23, and the two pairs of the leading ends 29, 210 of the two small coils 27 are respectively passed through the third through holes 229 to enter the One side of the first square groove 22 is then inserted into the second rivet 236 through the second through hole 280 along the second trapezoidal table 233 side, and then the second leading end 29 of the second coil 27 is The remaining portion extends toward the blind end of the second half-passing groove 227 and is wound around the second rivet 236, and then the second rivet 236 is fixed by the riveting machine to the second half-passing groove 227 on the core body 21 to form a lap. Iron, then cut off the excess.
  • the first lead end 210 of the second coil 27 extends into the core through hole 24 in the opening direction of the second half through groove 227. Thereafter, an adhesive such as an epoxy resin is poured over the second coil 27 located in the second square groove 23, and then the outer edge 245 of the small annular friction plate 239 and the inner edge 246 of the small annular friction plate are passed. The tight fit is respectively embedded on the fourth reinforcing rib 235 and the bonding is obtained by an adhesive attached to the second reinforcing rib 231. The small friction piece 239 is thereby further bonded and snapped to cover the second coil 7.
  • an adhesive such as an epoxy resin
  • the electromagnet core device of the second embodiment of the present invention can be formed by the first method of the present invention.
  • it has two annular friction plates 238, 239 disposed oppositely and engaged in the fixed edge of the core body, and a total of four lead wires 210, 212 facing the two pairs of coils of the electromagnet core through hole 24, respectively A power supply terminal for connecting the corresponding electromagnetic coil.
  • Another manufacturing method of the electromagnet core according to the second embodiment of the present invention is: in the case where the other steps of the first manufacturing method of the second embodiment are unchanged, the step of forming the core groove is direct Stretch out the core slots that are facing away from each other.
  • a further manufacturing method of the electromagnet core according to the second embodiment of the present invention is: in the case where the other steps of the first manufacturing method of the second embodiment are unchanged, the step of forming the core groove is Spin the core slots that are disposed opposite each other.
  • Fig. 3 shows a case where the electromagnetic fan clutch of the present invention is constructed by the first embodiment of the electromagnet core device of the present invention.
  • a first embodiment of the electromagnetic fan clutch of the present invention is a first embodiment of the electromagnetic fan clutch of the present invention.
  • the electromagnetic fan clutch of the present invention is constituted by a drive shaft 81 including a main shaft 816 which can be hollow and a drive disc body 80, on which a wire groove 83 is opened, and the wire groove 83 is adapted to accommodate A plurality of enameled wires, the wire groove 83 extending to a position close to the driving disk 80, which is covered with a dust jacket 82 and a brush device.
  • the dust jacket is tightly fitted to the side of the driving plate 80 of the main shaft 816 through the boot fixing bearing 84, and the outer ring is tightly fitted to the dust jacket. 82.
  • a first sleeve 827 made of a material steel 45 is mounted on the left side of the boot fixing bearing 84, and a fan fixed disc bearing 86 is tightly fitted to the left side of the boot sleeve 816.
  • the fan fixed disc bearing 86 The outer ring is tightly fitted to the fan fixing plate 85.
  • the left side of the dust jacket 82 is locked at the right end of the fan fixing plate 85 to be sealed.
  • a second sleeve 820 made of a material steel 45 is tightly fitted to the left side of the fan fixed disk bearing 86 on the left side of the fan fixed disk bearing 86 for the formation of the first suction gap 841. Referring to Fig. 6, Fig.
  • the main shaft 816 is radially reduced at the left side of the second sleeve to form a second stage 850, thereby further saving the material and weight of the electromagnetic fan clutch of the present invention.
  • a large spring piece 87 and a large suction cup 88 are screwed to the left side of the fan fixing plate 85.
  • the core through hole 4 of the electromagnet core device 11 of the first embodiment of the present invention is tightly fitted to the main shaft 816 and tightly fitted to the left side of the second sleeve 820, and then the large A first suction gap 841 is formed between the suction cups 88.
  • the electromagnet core device 11 of the first embodiment of the present invention may further be further fixed to the main shaft 816 by a pin or a flat key or a spline through a groove of its pin sleeve 5.
  • the other function of the pin sleeve 5 is to form a second suction gap 842, which can also be replaced by a third sleeve (not shown) made of material steel 45 for forming a The second suction gap 842 is described.
  • the fan fixing plate 85 has a first annular side wall 821 that is sleeved on the electromagnet core device 11 of the first embodiment of the present invention, and a ring-shaped soft iron is embedded in the top end of the first annular side wall 821.
  • a fastening cover fixing bearing 811 is tightly fitted to the main shaft 816 on the left side of the electromagnet core device 11 of the first embodiment of the present invention, and the outer ring is tightly fitted with the fastening cover 812.
  • the fastening cover 812 is also screwed with a magnet fixing disk cover 814, and an inner ring is screwed with a ring magnet fixing plate 813, and a plurality of disk-shaped permanent magnets are arranged thereon for generating a magnetic eddy current.
  • the magnet fixing plate 813 and the left side of the electromagnet core device have a second suction gap 842.
  • the small suction disk 867 and the left side of the electromagnet core device have a second suction gap 842.
  • the fastening cover 812 is also provided with a small spring piece 89 and a small suction plate 867 in this order.
  • the fastening cover fixing bearing 811 is received by the fastening hole 828 of the fastening cover 812 and is tightly engaged with the inner wall of the fastening hole 828, and then screwed to the thread of the main shaft 816 by the fixing bolt 815, and then The aforementioned components are pressed against the left side wall of the drive plate 80 on the spindle 816 to achieve mutual fixation.
  • the spindle 816 of the present invention can be a hollow tubular member and can be formed integrally with the drive plate 80 for further enhancing the strength of the electromagnetic clutch of the present invention and further reducing its weight while saving material.
  • the driving disc 80 drives the spindle 816 to rotate, because the boot fixing bearing 84 and the fan fixing disc bearing 86 and the fastening cover fixing bearing
  • the free slip of 811 causes the fan fixed disk 85 to freely rotate relative to the spindle 816.
  • the small coil When the large coil lead 112 is not energized and the small coil lead 110 is energized, the small coil generates electromagnetic force to pull the small friction disk 867 attached to the fastening cover 812 by the small spring piece 89 to the small friction of the electromagnet core 11
  • the sheet 139 is half-linked and finally relatively fixedly attracted, so that the angular velocity of the magnet fixing disc is raised from 0 to the angular velocity of the main shaft 816, and A corresponding magnetic eddy current is generated to drive the soft iron 822 to rotate at an angular velocity lower than the main shaft 816, thereby causing the fan fixed disk 85 to rotate at the second speed.
  • the small coil lead 110 and the large coil lead 112 When the small coil lead 110 and the large coil lead 112 are successively energized, the small coil generates an electromagnetic force to pull the small pull-in disc 867 attached to the fastening cover 812 by the small spring piece 89 toward the small friction plate of the electromagnet core 11.
  • the 139 direction and the half linkage are finally relatively fixedly attracted, so that the angular velocity of the magnet fixing disk is increased from 0 to the angular velocity of the driving shaft 816, and a corresponding magnetic eddy current is generated to drive the soft iron 822 to be lower than the main shaft 816.
  • the angular velocity is rotated, and then the electromagnetic force generated by the large coil is pulled by the large spring plate 87 connected to the large chuck disk 88 on the fan fixed disk 85 toward the large friction plate 138 of the electromagnet core, and finally half-linked. Relatively fixed suction, thereby driving the fan fixing plate to rotate at full speed at an angular velocity completely coincident with the main shaft 816, at which time the induced magnetic field of the soft iron 822 disappears.
  • a second embodiment of the electromagnetic fan clutch of the present invention is a second embodiment of the electromagnetic fan clutch of the present invention.
  • the second embodiment of the electromagnetic fan clutch of the present invention is constituted by a drive shaft 61.
  • the drive shaft 61 includes a main shaft 616 that can be hollow and a drive plate body 60.
  • a guide groove 63 is formed in the main shaft 616.
  • 63 is adapted to accommodate a plurality of enameled wires, the wire slots 63 extending to a position adjacent to the drive disk body 60, which is covered with a dust jacket 62 and a brush device.
  • the dust jacket is tightly fitted to the side of the driving plate 60 of the main shaft 616 through the boot fixing bearing 64, and the outer ring is tightly fitted to the dust jacket 62.
  • a first bushing 627 made of a material steel 45 is mounted on the left side of the boot fixing bearing 64, and a left side of the main shaft 616 is tightly fitted with a fan fixing disc bearing 66 on the left side thereof.
  • the fan fixing disc bearing 66 The outer ring is tightly fitted to the fan fixing plate 65.
  • the left side of the dust jacket 62 is sealed at the right end of the fan fixing plate 65.
  • a second bushing 620 made of a material steel 45 is tightly fitted to the left side of the fan fixed disk bearing 66 on the left side of the fan fixing plate bearing 66 for the formation of the first suction gap 641.
  • the main shaft 616 is radially reduced at the left side of the second sleeve to form a second stage 650 to further save the material and weight of the electromagnetic fan clutch of the present invention.
  • a large spring piece 67 and a large suction cup 68 are screwed to the left side of the fan fixing plate 65.
  • the core through hole 24 of the electromagnet core device 21 of the second embodiment of the present invention is tightly fitted to the main shaft 616 and tightly fitted to the left side of the second sleeve 620, and then the large A first suction gap 641 is formed between the suction cups 68.
  • the second embodiment 21 of the electromagnet core device of the present invention can be further further fixed to the spindle 616 by a pin or a flat key or a spline through the groove of the pin sleeve 25.
  • the other function of the pin sleeve 25 is to form a second suction gap 642.
  • the shaft sleeve 25 can also be replaced by a third sleeve (not shown) made of a material steel 45 for forming a
  • the second suction gap 642 is described.
  • the fan fixing plate 65 has an annular groove on the left side to accommodate the ring magnet fixing plate
  • a plurality of wafer-shaped permanent magnets are embedded thereon for generating a magnetic eddy current, and form a disk-like structure integrally with the fan fixing plate 65, and the right annular portion constitutes a magnet fixing disk cover 614.
  • the left side of the electromagnet core device 21 of the second embodiment of the present invention is closely fitted with a fastening cover fixing bearing 611 on the left side of the main shaft 616, and the outer ring is tightly fitted with the fastening cover 612.
  • the fastening cover 612 has a first annular side wall 621 that is sleeved on the electromagnet core device 21 of the second embodiment of the present invention.
  • the top end portion of the first annular side wall 621 is inlaid with an annular soft iron 622 for generating an induced magnetic field and driving the magnet fixing plate 613 when the magnetic eddy current is generated.
  • the inner ring of the fastening cover 612 is provided with a small spring piece 69 and a small suction plate 667 from left to right, and the small suction cup 667 and the left side of the electromagnet core device 21 have a second suction gap. 642.
  • the fastening cover fixing bearing 611 is received by the fastening hole 628 of the fastening cover 6] 2 and is tightly engaged with the inner wall of the fastening hole 628, and then passed through the fixing bolt 615 and the fastening pad 666 to the spindle
  • the threads of the 616 are screwed to each other, and the aforementioned components are then pressed against the left side wall of the drive plate 60 on the spindle 616 to achieve mutual fixation.
  • the main shaft 616 of the present invention may be a hollow tubular member and may be integrally formed with the drive plate 60 for further enhancing the strength of the second embodiment of the electromagnetic clutch of the present invention, and further reducing the weight thereof while saving material.
  • the drive disc 60 drives the spindle 616 to rotate, due to the boot fixing bearing 64 and the fan fixing disc bearing 66 and the fastening cover fixing bearing
  • the free slip action of 611 causes the fan fixed disk 65 to freely rotate relative to the spindle 616.
  • the small coil When the first coil lead 212 is not energized and the second coil lead 210 is energized, the small coil generates electromagnetic force to pull the small pull-in disc 667 connected to the tightening cover 612 by the small spring piece 69 toward the electromagnet core 21.
  • the small friction plates 239 are finally relatively fixedly engaged after being half-linked, such that the angular velocity of the magnet fixing disk is increased from 0 to the angular velocity of the main shaft 616, and a corresponding magnetic eddy current is generated in the soft iron 622 to drive the
  • the magnet fixing plate 613 rotates at an angular velocity lower than the main shaft 616, thereby causing the fan fixing plate 65 to rotate at the second speed.
  • the small coil When the second coil lead 210 and the first coil lead 212 are successively energized, the small coil generates electromagnetic force to pull the small pull-in disc 667 connected to the tightening cover 612 by the small spring piece 69 toward the small diameter of the electromagnet core 21.
  • the friction plates 239 After the friction plates 239 are aligned and semi-linked, they are finally relatively fixedly attracted, so that the angular velocity of the magnet fixing plate is increased from 0 to the angular velocity of the driving shaft 616, and a corresponding magnetic eddy current driving device is generated in the soft iron 622.
  • the magnet fixing plate 613 rotates at an angular velocity lower than the main shaft 616, and then the electromagnetic force generated by the first coil is pulled toward the electromagnet core by the large suction disk 68 connected to the fan fixing plate 65 by the large spring piece 67.
  • the direction of the large friction plate 238 is finally relatively fixedly attracted after the semi-coupling, thereby driving the fan fixing plate to rotate at full speed at an angular velocity completely coincident with the main shaft 616, at which time the induced magnetic field of the soft iron 622 disappears.
  • Each of the embodiments of the electromagnet core device of the present invention can save more than 20% of the manufacturing material, and in particular, the coil material can be saved by more than 30%. Its compact and concise structure directly leads to the various manufacturing methods of the various embodiments of the present invention being suitable for large-scale production while saving time and reducing related processes, and in particular, avoiding the necessity of manual operation as a manufacturing method.
  • the manufacturing material of the electromagnetic fan clutch including the electromagnet core device of the present invention can be saved by more than 30%, and in particular, the volume of the electromagnetic fan clutch can be reduced to at least two-thirds of the prior art, and in particular, the electromagnetic field can be greatly shortened.
  • the size of the fan clutching the main shaft direction makes the electromagnetic fan clutch of the present invention more suitable for accommodation in various engine compartments and better adapted to the automobile engine.
  • the dimensions and materials of the various components of the electromagnetic fan clutch corresponding to the electromagnet core of the present invention are correspondingly reduced by at least 30%.
  • the opposed core device of the present invention, the method of manufacturing the same, and the electromagnetic fan clutch including the opposed core can be applied to the manufacture of various brushless and brushless electromagnetic fan clutches, and the manufacture of automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnets (AREA)

Abstract

提供一种传送旋转运动的对置式铁芯及其制造方法以及由对置式电磁铁芯装置构成的电磁风扇离合器。对置式铁芯包括在电磁铁芯本体(11)上沿轴向相互背向设置的铁芯槽(12;13)。对置式铁芯的制造方法包括在铁芯本体(11)上直接拉伸出相互背向设置的铁芯槽,或者在铁芯本体(11)上直接旋压出相互背向设置的铁芯槽。由对置式电磁铁芯装置构成的电磁风扇离合器在对置式电磁铁芯装置的电磁铁芯本体(11)的两侧分别具有第一吸合间隙(841)和第二吸合间隙(842)。

Description

对置铁芯及其制造方法及该对置铁芯的电磁风扇离合器 技术领域
本发明涉及传送旋转运动的对置式铁芯及其制造方法以及相关的离合器, 特别是涉及汽 车用电磁风扇离合器的对置式铁芯及其制造方法以及包括该对置式铁芯的电磁风扇离合器。
背景技术
针对本发明, 本领域技术人员可以参考中国专利文献, 发明名称为 "大功率重型车用强 力柔性驱动的电磁风扇离合器", 公开号为 "CN101968004A" 的专利文本。
针对本发明,本领域技术人员还可以参考由申请人提出的,申请日为 2010年 12月 07日, 申请号为 201010588608.2, 发明名称为 "一种汽车电磁风扇离合器"的中国专利申请, 以及 申请日为 2010年 12月 07日, 申请号为 201020659237.8, 发明名称为 "一种汽车电磁风扇 离合器 "的中国专利申请, 以及申请日为 2010年 12月 27日, 申请号为 201010621450.4, 发 明名称为 "带有旋风散热风叶的磁铁固定盘"的中国专利申请, 以及申请日为 2010年 12月 27日, 申请号为 201020697219.9, 发明名称为 "带有旋风散热风叶的磁铁固定盘"的中国专 利申请。
针对本发明,本领域技术人员还可以参考由申请人提出的, 公开日为 2010年 3月 17日, 公开号为 CN101672210A, 发明名称为 "三速电磁风扇离合器"的发明专利申请的相关内容。
由于各种原因, 在现有的离合器中, 特别是在诸如前述例举的各种汽车电磁风扇离合器 中, 存在着电磁风扇离合器及其各组成部件和装置的体积过大, 稳定性差, 制造成本较高, 寿命较低的诸多缺点。
特别是, 在电磁风扇离合器的制造过程中, 传统电磁铁芯往往采用如本发明记载的图 1 中的形式.。 首先用模具浇铸出电磁铁芯本体 1 ', 其具有一个或多个开口都朝向铁芯本体 Γ 同一侧的环形槽 2'、 3', 其后在环形槽 2'、 3'内放置相应的电磁线圈 7'、 8Ό 所述的电磁线圈 7'、 8'分别具有成对的引出端 9'、 10'、 11 '、 12', 然后将所述的引出端可以通过诸如在所述 的单一环形摩擦片上冲出相应的成对的引线孔 16'中穿出, 然后根据所述各引线孔 16'的随机 位置沿所述摩擦片径向方向向内适应性地开设相应的引线槽, 以便将所述引线端接入相应位 置, 例如, 驱动轴内部, 所述引线端最终被延伸接入到相应的供电电路中。 最后再将所述的 单一环形摩擦片 13'通过若干点焊接固定在相应的所述环形槽开口的侧壁端缘 6'之上, 也就 是说, 所述环形摩擦片 13'完全覆盖所述侧壁端缘 6'。 所述的单一环形摩擦片的通孔 14'大于 电磁铁芯通孔 4'的外圆周并相应套盖在其上。 前述的电磁铁芯由于所述的电磁线圈的相互干扰会抵消一部分电磁力从而需要采用更大 的线圈来满足使用中的电磁离合器的实际要求而导致自身体积和尺寸都较大。 同时, 由于在 摩擦片上开设有引线孔或槽而导致长时间摩擦使用后产生应力及疲劳, 并导致缝隙或裂纹, 从而降低摩擦片和整体电磁离合器的寿命。 此外, 该种形式和结构导致其所用材料较多, 制 造成本高, 工艺部分中具有很多的手工因素, 不利于大规模生产和精细化加工。
发明内容
本发明的一个目的是提供一种全新结构的离合器用电磁铁芯装置。
本发明的另一个目的是提供一种制造前述电磁铁芯装置的方法。
本发明的再一个目的是, 提供一种全新结构的电磁风扇离合器。
本发明的对置式电磁铁芯, 包括在电磁铁芯本体上沿轴向相互背向设置的铁芯槽。
本发明的的对置式电磁铁芯, 还包括, 在所述铁芯槽上相互背向设置的摩擦片。
本发明的对置式电磁铁芯, 还包括, 在所述铁芯槽内容纳的相互背向设置的线圈。
前述各技术特征进一歩减小了铁芯的尺寸, 并进一步节省制造用料。
本发明的对置式电磁铁芯, 所述线圈的每个仅有一个接线端从所述铁芯本体的铁芯通孔 中引出。
本发明的对置式电磁铁芯, 所述线圈的搭铁端直接与所述铁芯本体连接。
本发明的对置式电磁铁芯, 所述的接线端和搭铁端都位于所述铁芯本体的同一侧。
前述各技术特征进一步缩减了铁芯的尺寸, 并进一步节省制造用料, 使得布线结构更加 合理。
本发明的对置式电磁铁芯, 所述铁芯槽包括第一环形槽和第二环形槽。
本发明的对置式电磁铁芯, 所述铁芯槽包括第一方形槽和第二方形槽。
本发明的对置式电磁铁芯, 所述的摩擦片包括环形大摩擦片和环形小摩擦片, 所述环形 大摩擦片卡接在所述第一环形槽开口内, 所述环形小摩擦片卡接在第二环形槽开口内。
前述各技术特征进一步缩减了铁芯尺寸, 并进一步节省制造用料, 使得铁芯结构更加合 理。
本发明的对置式电磁铁芯, 所述的铁芯槽的每个在开口端内侧壁开有增强纹。
本发明的对置式电磁铁芯, 所述的增强紋的截面高度为 0.1毫米至 5毫米。
前述各技术特征进一步提高了铁芯的整体强度和耐久性。
本发明的对置式电磁铁芯,所述的第二环形槽的底端面上设置有第一通槽, 第一半通槽, 第二半通槽, 第三半通槽, 第一通孔, 第二通孔, 第三通孔, 第四通孔。 前述各技术特征进一步缩减了尺寸, 并进一步节省制造用料, 使得布线结构更加合理。 本发明的对置式电磁铁芯, 所述的第三通孔具有第一梯形台, 所述第二通孔具有第二梯 形台。
前述各技术特征进一歩提高了铁芯整体的耐久性和引线端的结合强度。
本发明的对置式铁芯的制造方法, 包括在铁芯本体上直接拉伸相互背向设置的铁芯槽。 前述各技术特征使得铁芯的工艺方法简单, 节省工序, 节省用料, 使得大规模制造成为 可能。
本发明的对置式铁芯的制造方法, 包括在铁芯本体上直接旋压相互背向设置的铁芯槽。 前述各技术特征使得铁芯的工艺方法简单, 节省工序, 节省用料, 使得大规模制造成为 可能。
本发明的对置式铁芯的制造方法, 包括相互对向置入线圈, 线圈的每个仅有一个接线端 向所述铁芯槽的铁芯通孔引出; 所述线圈的搭铁端与所述铁芯本体连接; 相互对向卡接摩擦 片。
前述技术方案使得铁芯的工艺方法简单, 节省工序, 节省用料, 使得大规模制造成为可 能。
本发明的对置式铁芯的电磁风扇离合器。
本发明的的电磁风扇离合器, 所述的对置式电磁铁芯装置的两侧分别具有第一吸合间隙 与第二吸合间隙。
在铁芯装置两侧分别设置吸合间隙,提高了散热效率, 使得离合器尺寸得以进一步缩小。 本发明的电磁风扇离合器, 所述线圈的每个接线端从主轴的引线槽引出。
本发明的电磁风扇离合器, 所述引线槽为多个并相互对称。
本发明的电磁风扇离合器, 所述主轴具有二阶台。
本发明的电磁风扇离合器, 所述的主轴为中空的管状部件。
本发明的电磁风扇离合器,包括所述驱动盘左侧紧配合于所述主轴上的风扇固定盘轴承, 所述风扇固定盘轴承的外圈上紧配合风扇固定盘, 紧靠所述风扇固定盘轴承左侧在所述主轴 上紧配合装设第二轴套, 所述风扇固定盘左侧接有大弹簧片和大吸合盘, 所述电磁铁芯装置 的铁芯通孔紧配合于所述主轴上并紧邻所述第二轴套的左侧, 紧靠所述的电磁铁芯装置左侧 在所述主轴上紧配合装设有紧固罩固定轴承, 其外圈紧配合装设紧固罩, 所述的紧固罩上还 依次装设有小弹簧片和小吸合盘, 所述紧固罩固定轴承被所述紧固罩的紧固孔所容纳, 并与 所述紧固孔的内壁紧配合, 固定螺栓与所述主轴的螺纹相互旋紧。
本发明的电磁风扇离合器, 所述的风扇固定盘具有套盖在所述电磁铁芯装置上的第一环 形侧壁, 在所述第一环形侧壁端部镶嵌有环形软铁, 所述的紧固罩上接有磁铁固定盘罩, 其 内缘接有环形磁铁固定盘。
本发明的电磁风扇离合器, 所述的风扇固定盘具有环形槽以容纳磁铁固定盘, 所述的紧 固罩具有套盖在所述电磁铁芯装置上的第一环形侧壁, 在所述第一环形侧壁端部镶嵌有环形 软铁。
前述各技术特征使得电磁风扇离合器整体尺寸缩小, 整体制造成本降低, 节省用料, 结 构更加合理, 使用寿命明显增加。
下面结合附图对本发明的实施例作进一步说明。
附图说明
图 1为本发明的背景技术的示意图;
图 2为本发明电磁铁芯装置第一实施例的示意图;
图 3为本发明电磁铁芯装置第一实施例置于一种三速电磁离合器中的示意图; 图 4为本发明图 2中的铁芯本体的另一方向的示意图;
图 5A为图 2中的铁芯本体沿 A-A向的剖视图;
图 5B为图 2中的铁芯本体沿 B-B向的剖视图;
图 6为图 3的剖视图;
图 7为图 2中驱动盘和主轴的另一方向的示意图;
图 8为本发明电磁铁芯装置第二实施例的示意图;
图 9为图 8中的铁芯的另一侧视图;
图 10为图 8中本发明电磁铁芯装置第二实施例的 C-C向剖视图;
图 11为本发明电磁风扇离合器的第二实施例的剖视图。
具体实施方式
本发明电磁铁芯装置的第一实施例。
参见图 2、 图 3、 图 4、 图 5A, 图 5B, 图 6, 其示出了本发明的电磁铁芯装置的第一实 施例。
参考图 2、 图 4, 图 5A, 图 5B, 本发明的铁芯本体 1 1的一端开设有第一环形槽 12, 本 发明的铁芯本体 11的另一端开有第二环形槽 13, 所述的第一环形槽 12的圆心与所述的第二 环形槽 13的圆心都在所述铁芯本体 11的轴向上并彼此重合。所述的铁芯本体 11中心部位开 有一个铁芯通孔 4, 在朝向所述第二环形槽 13开口的方向上延伸一段后形成轴销套 5。 所述 第一环形槽 12的内侧壁 121与所述第二环形槽 13的外侧壁 122相互重合成一个共用的侧壁。 所述第一环形槽 12的开口端面与所述第二环形槽 13的底端面 124位于同一水平面。相应地, 所述第一环形槽 12的底端面与所述第二环形槽 13的开口端面位于同一水平面。 所述第一环 形槽 12位于其开口部位的外壁内侧和内壁内侧对应开有截面为半圆形的等距粘接力和卡合 力第一增强纹 130,半圆形部分的截面半径,或称为截面高度,为 0.1毫米至 5毫米为最优值。 同样地,在所述第二环形槽 13位于其开口部位的外壁内侧和内壁内侧对应开有截面为半圆形 的等距粘接力和卡合力第二增强纹 131, 其半圆形部分的截面半径, 或称为截面高度, 为 0.1 毫米至 5亳米为最优值。
参考图 2,在所述第二环形槽 13的底端面 124上沿着径向向外的方向开有第一通槽 125, 其具有两个开口。 在所述第一通槽 125径向相对位置沿着所述底端面 124的径向向内方向开 有第一半通槽 126, 所述第一半通槽 126的唯一开口朝向铁芯通孔 4。 在所述的第一半通槽 126的沿径向向外的最远一端垂直于铁芯本体 11开有第一通孔 16。与所述第一半通槽 126沿 顺时针夹角呈 90° 开有与第一半通槽 126类似的第二半通槽 127,用于对铁芯本体 11的配重 及动平衡, 其唯一开口朝向铁芯通孔 4, 在所述的第二半通槽 127的沿径向向外的最远一端 垂直于铁芯本体 11另开有第二通孔 180。参考图 5B,所述第二通孔 180在将要延伸入所述第 二环形槽 13内部前扩大成截面积较大的部分,并因此形成第二梯形台 133。参考图 2、图 5B, 在所述第二通孔 180沿着第二半通槽 127向铁芯通孔 4的方向还开有第四通孔 181。参考图 2、 图 5B, 与所述第一通槽 125沿顺时针夹角呈 90° , 沿着所述底端面 124的径向向外开有第 三半通槽 128, 其幵口朝向所述第一环形槽 12, 在所述的第三半通槽 128的沿着径向方向最 内端垂直开有第三通孔 129。所述第三通孔 129在将要延伸入所述第二环形槽 13内部前扩大 成截面积较大的部分, 并因此形成第一梯形台 132。
参考图 5A、 图 5B、 图 1, 在所述的第一环形槽 12内放置大线圈 8, 其上覆盖大环形摩 擦片 138, 所述的大环形摩擦片 138外缘 140和内缘 141与所述的第一增强纹 130卡合并进 一步粘接。 所述的大线圈 8的一个引出线穿过所述的第三半通槽 128用铆钉固定并搭铁于所 述第三通孔 129处并位于第三半通槽 128内; 所述的大线圈 S的另一个引出线穿过所述的第 一通槽 125引入铁芯本体 11的通孔 4内。 所述的第二环形槽 13内放置小线圈 7, 其上覆盖 小环形摩擦片 139,所述的小环形摩擦片 139的外缘 145和内缘 146与所述的第二增强纹 131 卡合并进一步粘接。所述的小线圈 7的一个引出线从所述第二环形槽 13的一侧穿过所述的第 四通孔 181并沿着所述第二半通槽 127的径向向外方向延伸, 用铆钉固定并搭铁于所述第二 通孔 I SO处并位于第二半通槽 127内; 所述的小线圈 7的另一个引出线穿过所述的第一通孔
16并沿着第一半通槽 126引入铁芯本体 11的通孔 4内。 所述的各铆接也可以采用螺接或悍 接等连接方式替换, 只要保证所述搭铁被可靠地置于铁芯本体 11上。
整体上看, 本发明第一实施例的电磁铁芯装置中, 所述第一环形槽 12与所述第二环形槽 13沿所述铁芯本体 11 的轴向相互背向设置, 彼此的开口方向相反, 即, 彼此呈对置式排列 与分布。所述的大线圈 8和小线圈 7对于所述的环形槽 12、 13的开口方向来说, 也彼此相互 背向设置, 即, 彼此呈对置式排列与分布。 所述的大摩擦片 138和所述的小摩擦片 139对于 所述的环形槽 12、 13的开口方向来说,也彼此相互背向设置, 即,彼此呈对置式排列与分布。
本发明电磁铁芯装置第一实施例的制造方法。
本发明第一实施例的其中第一种制造方法为:
锻打或者精铸或者直接拉伸或者直接旋压或者直接铸造提供铁芯本体 11, 通过车加工形 成相互背向设置的铁芯槽, 即相互背向形成第一环形槽 12和第二环形槽 13。 再通过车加工 或者铣刨在所述底端面 124上形成所述的第一通槽 125, 第一半通槽 126, 第二半通槽 127, 第三半通槽 128。其后通过钻具形成所述的第一通孔 16, 第二通孔 180, 第三通孔 129, 第四 通孔 181。 其后釆用另外不同直径的钻具形成第一梯形台 132和第二梯形台 133。
其后放置所述大线圈 8进入所述第一环形槽 12, 将所述大线圈 8的第一引出端 111沿所 述第三半通槽 128的开口置入所述第三半通槽内, 其后由第一梯形台 132—侧置入第一铆钉 135 ,然后将所述第一引出端 111剩余部分缠绕在所述铆钉上并用铆接机固定第一铆钉 135到 所述第三半通槽 128内形成搭铁, 其后裁掉多余部分。 所述大线圈 8的第二引出端 112沿着 所述第一通槽 125穿过, 延伸进入铁芯通孔 4。 此后向位于所述第一环形槽 12内的大线圈 8 之上灌入粘接剂,例如环氧树脂,然后将大环形摩擦片的外缘 140和大环形摩擦片的内缘 141 通过紧配合分别嵌入在所述的第一增强纹 130上。 所述的大摩擦片由此被进一步粘接并卡合 从而覆盖所述大线圈 8。
其后放置所述小线圈 7进入所述第二环形槽 13, 将所述小线圈 7的第二引出端 19穿过 所述第四通孔 181进入到所述底端部 124的一侧, 然后沿着第二梯形台 133—侧通过所述第 二通孔 180置入第二铆钉 136, 其后将所述小线圈 7的第二引出端 19的剩余部分沿着所述第 二半通槽 127径向向外的方向延伸并缠绕在所述第二铆钉 136上, 随后用铆接机固定第二铆 钉 136到铁芯本体 11上的第二半通槽 127内形成搭铁, 其后裁掉多余部分。所述小线圈 7的 第一引出端 110穿过所述第一通孔 16延伸进入所述底端部 124的一侧,然后沿所述第一半通 槽 126放置, 最后由所述第一半通槽 126的开口延伸入所述铁芯通孔 4中。 此后向位于所述 第二环形槽 13内的小线圈 7之上灌入粘接剂, 例如环氧树脂, 然后将小环形摩擦片 139的外 缘 145和小环形摩擦片的内缘 146通过紧配合分别嵌入在所述的第二增强纹 131上。 所述的 小摩擦片 139由此被进一歩粘接并卡合从而覆盖所述小线圈 7。
由此, 通过本发明的前述的第一种方法可以形成本发明第一实施例的电磁铁芯装置。 总 体上看,其还具有位于铁芯本体开口内且对向设置的两个环形摩擦片 138、 139和朝向电磁铁 芯通孔 4的两个线圈的两根引出线 110、 112, 分别用于连接相应电磁线圈的供电端。
本发明第一实施例的电磁铁芯的其中另一种制造方法为: 在前述第一种方法的其他步骤 不变的情况下, 形成所述铁芯槽的歩骤为直接拉伸出相互背向设置的铁芯槽。
本发明第一实施例的电磁铁芯的其中再一种制造方法为: 在前述第一种方法的其他步骤 不变的情况下, 形成所述铁芯槽的步骤为旋压出相互背向设置的铁芯槽。
本发明电磁铁芯装置的第二实施例。
参见图 8, 图 9, 图 10, 其示出了本发明的电磁铁芯装置的第二实施例。
本发明的第二铁芯本体 21的一端开设有有两个第一方形槽 22, 所述铁芯本体 21的轴向 的另一端开有另外两个第二方形槽 23。 所述的铁芯本体 21中心部位开有一个铁芯通孔 24, 在朝向所述第二方形槽 23开口的方向上延伸一段后形成轴销套 25。所述铁芯本体 21周向上 具有第一固定外缘 290, 所述的第一固定外缘 290内侧壁开口处开有三角形的等距卡合力第 三增强纹 234, 其三角形部分的截面高度为 0.1毫米至 5毫米为最优值。 所述铁芯本体 21在 另一侧的周向上具有第二固定外缘 291, 所述的第二固定外缘 291 内侧壁开口处开有三角形 的等距卡合力第四增强纹 235, 其三角形部分的截面高度为 0.1亳米至 5亳米为最优值, 所述 轴销套 25上也开有同样的第四增强纹 235。 所述的两个第一方形槽 22和所述的另外两个第 二方形槽 23均布在所述铁芯本体 21上,并且彼此的中心线在铁芯本体 21平面位置上相互垂 直。所述第一方形槽 22在位于其开口部位的内侧壁开有截面为三角形的等距粘接力和卡合力 第一增强纹 230, 三角形部分截面高度为 0.1毫米至 5毫米为最优值。 同样地, 在所述第二方 形槽 23 位于其开口部位的内侧壁上也对应开有截面为三角形的等距粘接力和卡合力第二增 强纹 231, 其三角形部分的截面高度为 0.1毫米至 5毫米为最优值。
在所述两个第一方形槽 22沿着径向向内的方向分别开有两个第一通槽 225, 其每个分别 具有一个向铁芯通孔 24的开口和朝向所述第一方形槽 22的开口。与所述的两个第一通槽 225 左侧平行位置还分别开有另外两个第一半通槽 226, 分别在其靠近所述铁芯通孔 24的端点位 置开有两个第一通孔 26, 所述的两个第一通孔 26在将要延伸入所述铁芯本体 21另一侧前扩 大成截面积较大的部分, 并因此形成两个第一梯形台 232。 与所述两个第一通槽 225分别沿 顺时针夹角呈 90° 开有两个反" 7 "字形第二半通槽 227, 两个槽的开口都朝向所述的铁芯通 孔 24,在所述的两个第二半通槽 227盲端垂直于铁芯本体 21幵有两个第二通孔 280。所述两 个第二通孔 280在将要延伸入所述铁芯本体 21另一侧前扩大成截面积较大的部分,并因此形 成两个第二梯形台 233。 在每个所述反 "7 "字形第二半通槽 227的拐角处还分别开有第三通 孔 229。
在所述的两个第一方形槽 22内分别放置两个第一线圈 28, 其上覆盖大环形摩擦片 238, 所述的大环形摩擦片 238通过铁芯本体 21的第一固定外缘 290内侧壁卡合并通过第三增加纹 234增加卡合力, 并可以通过附着在所述第一增强纹 230上的诸如环氧树脂的粘接剂得到进 一歩粘接。所述的两个第一线圈 28的一个引出线 211分别穿过两个所述的第一半通槽 226然 后用铆钉固定并搭铁于所述两个第一通孔 26处并位于所述第一半通槽 226内;所述的两个第 一线圈 28的另外两个引出线 212分别穿过所述的两个第一通槽 225引入铁芯本体 21的通孔 24内。所述的铁芯本体 21另一侧的两个方形槽 23内分别放置两个第二线圈 27,其上覆盖小 环形摩擦片 239, 所述的小环形摩擦片 239的内缘 246和其外缘 245通过所述的第四增强纹 235卡合并通过附着在所述第二增强纹 23 1上的诸如环氧树脂的粘接剂得到进一步粘接。 所 述的两个第二线圈 27的两个成对引出线分别从所述的两个通孔 229穿过,其中一根沿着所述 第二半通槽 227的盲端到所述第二通孔 280处用铆钉固定并搭铁于所述第二通孔 280处并位 于第二半通槽 227 内; 所述的两个第二线圈 27的另一根引出线分别沿着所述的第一半通槽 227的开口方向引入铁芯本体 21的通孔 24内。 前述的铆接也可以采用螺接或焊接等连接方 式替换, 只要保证搭铁被可靠地置于铁芯本体 21上。
整体上看, 本发明第二实施例的电磁铁芯装置中, 所述两个第一方形槽 22与所述的另外 两个第二方形槽 23沿所述铁芯本体 21的轴向相互背向设置, 彼此的开口方向相反, 即, 彼 此呈对置式排列与分布。 所述的两个第一线圈 28和另外两个第二线圈 27对于所述方形槽的 开口方向来说, 也彼此相互背向设置, SP, 彼此呈对置式排列与分布。 所述的大摩擦片 238 和所述的小摩擦 239片对于所述方形槽 22、 23的开口方向来说, 也彼此相互背向设置, 即, 彼此呈对置式排列与分布。 大摩擦片 238和小摩擦片还位于铁芯本体的开口内且具有朝向电 磁铁芯通孔 24的四个线圈的四根引出线 210、 212, 分别用于连接相应前述各线圈的供电端。
本发明电磁铁芯装置的第二实施例的制造方法。
本发明第二实施例的其中第一种制造方法为:
锻打或者精铸或者直接拉伸或者直接旋压或者直接铸造提供铁芯本体 21, 通过车加工同 时形成相互背向设置的铁芯槽, 即相互背向形成两个第一方形槽 22和两个第二方形槽 23。 再通过车加工或者铣刨在所述铁芯本体 21其中一个端面上形成所述的两个第一通槽 225, 两 个第一半通槽 226, 两个第二半通槽 227。 其后通过钻具形成所述的两个第一通孔 26, 两个 第二通孔 280,两个第三通孔 229。其后采用不同直径的钻具形成两个第一梯形台 232和两个 第二梯形台 233。
其后放置所述两个第一线圈 28分别进入所述第一方形槽 22, 将所述两个第一线圈 28的 第一引出端 211沿所述第一半通槽 226的开口置入所述第一半通槽 226内, 其后由第一梯形 台 232—侧置入第一铆钉 237, 然后将所述第一引出端 211剩余部分缠绕在所述铆钉上并用 铆接机固定第一铆钉 237到所述第一半通槽 226内的第一通孔 26处形成搭铁,其后裁掉多余 部分。所述第一线圈 28的第二引出端 212分别沿着所述第一通槽 225穿过, 延伸进入铁芯通 孔 24。此后向位于所述第一方形槽 22内的两个第一线圈 28之上灌入粘接剂,例如环氧树脂, 然后将大环形摩擦片 238的外缘 240通过紧配合嵌入到所述的第三增强纹 234上, 并通过附 着在所述第一增强纹 230上的粘接剂获得粘接。 所述的大摩擦片 238由此被进一步粘接并卡 合从而覆盖所述两个第一线圈 28。
其后放置所述两个第二线圈 27进入所述第二方形槽 23, 分别将两个所述小线圈 27的两 对引出端 29、 210穿过所述第三通孔 229进入到所述第一方形槽 22的一侧,然后沿着第二梯 形台 233—侧通过所述第二通孔 280置入第二铆钉 236, 其后将所述第二线圈 27的第二引出 端 29剩余部分向着所述第二半通槽 227盲端延伸并缠绕在所述第二铆钉 236上,随后用铆接 机固定第二铆钉 236到铁芯本体 21上的第二半通槽 227内形成搭铁,其后裁掉多余部分。所 述第二线圈 27的第一引出端 210沿着所述第二半通槽 227开口方向延伸进入所述所述铁芯通 孔 24中。 此后向位于所述第二方形槽 23内的第二线圈 27之上灌入粘接剂, 例如环氧树脂, 然后将小环形摩擦片 239的外缘 245和小环形摩擦片的内缘 246通过紧配合分别嵌入在所述 的第四增强纹 235上并通过附着在所述第二增强纹 231上的粘接剂获得粘接。 所述的小摩擦 片 239由此被进一步粘接并卡合从而覆盖所述第二线圈 7。
由此, 通过本发明的前述的第一种方法可以形成本发明第二实施例的电磁铁芯装置。 总 体上看,其具有对向设置并卡合在铁芯本体固定缘内的两个环形摩擦片 238、 239和朝向电磁 铁芯通孔 24的两对线圈的共四根引出线 210、 212, 分别用于连接相应电磁线圈的供电端。
本发明第二实施例的电磁铁芯的其中另一种制造方法为: 在前述第二实施例的第一种制 造方法的其他步骤不变的情况下, 形成所述铁芯槽的步骤为直接拉伸出相互背向设置的铁芯 槽。
本发明第二实施例的电磁铁芯的其中再一种制造方法为: 在前述第二实施例的第一种制 造方法的其他步骤不变的情况下, 形成所述铁芯槽的歩骤为旋压出相互背向设置的铁芯槽。
参见图 3以及图 2、 图 6。 图 3中示出了用本发明的电磁铁芯装置的第一实施例构成本发 明的电磁风扇离合器的情形。
本发明的电磁风扇离合器第一实施例。
本发明的电磁风扇离合器由驱动轴 81构成, 所述驱动轴 81包括可以为中空的主轴 816 和驱动盘体 80, 在所述主轴 816上开有导线槽 83, 所述导线槽 83适于容纳多根漆包线, 所 述导线槽 83延伸到靠近所述驱动盘体 80的位置, 其上覆盖防尘套 82及电刷装置.。 所述防 尘套通过防尘套固定轴承 84紧配合于主轴 816的驱动盘 80—侧, 其外圈紧配合所述防尘套 82。 所述防尘套固定轴承 84左侧装设由材质钢 45制成的第一轴套 827, 其左侧沿所述主轴 816上紧配合有风扇固定盘轴承 86, 所述风扇固定盘轴承 86的外圈上紧配合风扇固定盘 85。 所述防尘套 82左侧卡合在所述风扇固定盘 85的右侧端部密封。 紧靠所述风扇固定盘轴承 86 左侧在主轴 816上紧配合装设由材质钢 45制成的第二轴套 820, 用于第一吸合间隙 841的形 成。 参考图 6, 图 7, 主轴 816在所述的第二轴套左侧位置径向缩小形成二阶台 850, 以进一 步节省本发明的电磁风扇离合器的用料及重量。 参考图 6, 在所述风扇固定盘 85左侧螺接 有大弹簧片 87和大吸合盘 88。 本发明第一实施例的电磁铁芯装置 11的铁芯通孔 4紧配合于 所述主轴 816上并紧邻所述第二轴套 820的左侧紧配合套接,然后由此与所述大吸合盘 88之 间形成第一吸合间隙 841。 本发明第一实施例的电磁铁芯装置 11还可以进一步通过销钉或者 平键或花键通过其轴销套 5的槽进一步固定在所述的主轴 816上。 所述轴销套 5的另一个作 用在于形成第二吸合间隙 842,所述轴销套 5还可用材质钢 45制成的第三轴套(图中未示出) 所替代用于形成所述第二吸合间隙 842。所述的风扇固定盘 85具有套盖在所述本发明第一实 施例的电磁铁芯装置 11上的第一环形侧壁 821, 在所述第一环形侧壁 821顶端部镶嵌有环形 软铁 822, 用于在磁涡流产生时产生感应磁场并被磁涡流所驱动。 紧靠所述的本发明第一实 施例的电磁铁芯装置 11左侧在主轴 816上紧配合装设有紧固罩固定轴承 811, 其外圈紧配合 装设紧固罩 812。所述的紧固罩 812上还螺接有磁铁固定盘罩 814, 其内缘螺接有环形磁铁固 定盘 813, 其上镶嵌有多个圆片形永磁铁用于产生磁涡流, 所述的磁铁固定盘 813与所述的 电磁铁芯装置左侧具有第二吸合间隙 842, 特别是所述的小吸合盘 867与所述的电磁铁芯装 置左侧具有第二吸合间隙 842。 所述的紧固罩 812上还依次装设有小弹簧片 89和小吸合盘 867。紧固罩固定轴承 811被所述紧固罩 812的紧固孔 828所容纳, 并与紧固孔 828的内壁紧 配合, 然后通过固定螺栓 815与所述主轴 816的螺纹相互旋紧固定, 随后压紧前述各部件于 所述主轴 816上的驱动盘 80的左侧壁上从而实现整体相互固定。本发明所述的主轴 816可以 为空心的管状部件, 并可以与所述驱动盘 80—体形成,用来进一歩提高本发明电磁离合器的 强度, 并进一步减小其重量, 同时节省用料。
本发明前述电磁风扇离合器的第一实施例的工作过程如下:
当所述大线圈引线 112和小线圈引线 110均不得电时, 所述驱动盘 80驱动所述主轴 816 旋转, 由于所述防尘套固定轴承 84和风扇固定盘轴承 86和紧固罩固定轴承 811的自由滑转 作用而使得所述风扇固定盘 85相对于所述主轴 816自由转动。
当大线圈引线 112不得电而小线圈引线 110得电时, 小线圈产生电磁力将由小弹簧片 89 连接在所述紧固罩 812上的小吸合盘 867拉向电磁铁芯 11的小摩擦片 139方向并半联动后最 终相对固定吸合, 从而使得所述磁铁固定盘的角速度从 0升至与主轴 816的角速度一致, 并 产生相应的磁涡流驱动所述软铁 822以低于主轴 816的角速度旋转, 从而带动风扇固定盘 85 以第二速度旋转。
当小线圈引线 110和大线圈引线 112相继得电时,小线圈产生电磁力将由小弹簧片 89连 接在所述紧固罩 812上的小吸合盘 867拉向电磁铁芯 11的小摩擦片 139方向并半联动后最终 相对固定吸合, 从而使得所述磁铁固定盘的角速度从 0升至与驱动轴 816的角速度一致, 并 产生相应的磁涡流驱动所述软铁 822以低于主轴 816的角速度旋转, 随后大线圈产生的电磁 力将由所述大弹簧片 87连接在所述风扇固定盘 85上的大吸合盘 88拉向电磁铁芯的大摩擦片 138的方向, 半联动后最终相对固定吸合, 从而带动风扇固定盘以与主轴 816完全一致的角 速度全速旋转, 此时软铁 822的感应磁场消失。
本发明的电磁风扇离合器第二实施例。
参见图 11, 其中示出了本发明的电磁风扇离合器第二实施例。
本发明的电磁风扇离合器第二实施例由驱动轴 61构成, 所述驱动轴 61包括可以为中空 的主轴 616和驱动盘体 60, 在所述主轴 616上开有导线槽 63, 所述导线槽 63适于容纳多根 漆包线,所述导线槽 63延伸到靠近所述驱动盘体 60的位置,其上覆盖防尘套 62及电刷装置.。 所述防尘套通过防尘套固定轴承 64紧配合于主轴 616的驱动盘 60—侧, 其外圈紧配合所述 防尘套 62。 所述防尘套固定轴承 64左侧装设由材质钢 45制成的第一轴套 627, 其左侧沿所 述主轴 616上紧配合有风扇固定盘轴承 66, 所述风扇固定盘轴承 66的外圈上紧配合风扇固 定盘 65。 所述防尘套 62左侧卡合在所述风扇固定盘 65的右侧端部密封。 紧靠所述风扇固定 盘轴承 66左侧在主轴 616上紧配合装设由材质钢 45制成的第二轴套 620, 用于第一吸合间 隙 641的形成。 主轴 616在所述的第二轴套左侧位置径向缩小形成二阶台 650, 以进一步节 省本发明的电磁风扇离合器的用料及重量。 在所述风扇固定盘 65左侧螺接有大弹簧片 67和 大吸合盘 68。本发明第二实施例的电磁铁芯装置 21的铁芯通孔 24紧配合于所述主轴 616上 并紧邻所述第二轴套 620的左侧紧配合套接,然后由此与所述大吸合盘 68之间形成第一吸合 间隙 641。本发明电磁铁芯装置的第二实施例 21还可以进一步通过销钉或者平键或花键通过 其轴销套 25的槽进一步固定在所述的主轴 616上。 所述轴销套 25的另一个作用在于形成第 二吸合间隙 642, 所述轴销套 25还可用材质钢 45制成的第三轴套 (图中未示出)所替代用 于形成所述第二吸合间隙 642。所述的风扇固定盘 65左侧具有环形槽以容纳环形磁铁固定盘
613, 其上镶嵌有多个圆片形永磁铁用于产生磁涡流, 并与风扇固定盘 65整体形成圆片状构 造, 右侧环形部分构成磁铁固定盘罩 614。 紧靠所述的本发明第二实施例的电磁铁芯装置 21 左侧在主轴 616上紧配合装设有紧固罩固定轴承 611, 其外圈紧配合装设紧固罩 612。所述的 紧固罩 612具有套盖在所述本发明第二实施例的电磁铁芯装置 21上的第一环形侧壁 621, 在 所述第一环形侧壁 621顶端部镶嵌有环形软铁 622, 用于在磁涡流产生时产生感应磁场并驱 动所述磁铁固定盘 613。所述的紧固罩 612内圈从左至右依次装设有小弹簧片 69和小吸合盘 667, 小吸合盘 667与所述的电磁铁芯装置 21左侧具有第二吸合间隙 642。 所述紧固罩固定 轴承 611被所述紧固罩 6] 2的紧固孔 628所容纳, 并与紧固孔 628的内壁紧配合, 然后通过 固定螺栓 615和紧固垫 666与所述主轴 616的螺纹相互旋紧固定, 随后压紧前述各部件于所 述主轴 616上的驱动盘 60的左侧壁上从而实现整体相互固定。本发明所述的主轴 616可以为 空心的管状部件, 并可以与所述驱动盘 60—体形成,用来进一步提高本发明电磁离合器第二 实施例的强度, 并进一步减小其重量, 同时节省用料。
本发明的电磁风扇离合器的第二实施例的工作过程如下:
当第一线圈引线 212和第二线圈引线 210均不得电时, 所述驱动盘 60驱动所述主轴 616 旋转, 由于所述防尘套固定轴承 64和风扇固定盘轴承 66和紧固罩固定轴承 611的自由滑转 作用而使得所述风扇固定盘 65相对于所述主轴 616自由转动。
当第一线圈引线 212不得电而第二线圈引线 210得电时, 小线圈产生电磁力将由小弹簧 片 69连接在所述紧固罩 612上的小吸合盘 667拉向电磁铁芯 21的小摩擦片 239方向并半联 动后最终相对固定吸合, 从而使得所述磁铁固定盘的角速度从 0升至与主轴 616的角速度一 致, 并在软铁 622中产生相应的磁涡流以驱动所述磁铁固定盘 613以低于主轴 616的角速度 旋转, 从而带动风扇固定盘 65以第二速度旋转。
当第二线圈引线 210和 第一线圈引线 212相继得电时, 小线圈产生电磁力将由小弹簧 片 69连接在所述紧固罩 612上的小吸合盘 667拉向电磁铁芯 21的小摩擦片 239方向并半联 动后最终相对固定吸合, 从而使得所述磁铁固定盘的角速度从 0升至与驱动轴 616的角速度 一致, 并在所述软铁 622中产生相应的磁涡流驱动所述磁铁固定盘 613以低于主轴 616的角 速度旋转, 随后第一线圈产生的电磁力将由所述大弹簧片 67连接在所述风扇固定盘 65上的 大吸合盘 68拉向电磁铁芯的大摩擦片 238的方向, 半联动后最终相对固定吸合, 从而带动风 扇固定盘以与主轴 616完全一致的角速度全速旋转, 此时软铁 622的感应磁场消失。
本发明的电磁风扇离合器的其他实施例。
非常明显地, 本发明的电磁铁芯装置的前述的其他各实施例也可以直接替代本发明电磁 铁芯的第一实施例或者第二实施例装设在本发明的电磁风扇离合器的前述的具体实施例中并 与其他部件和装置相适配, 从而构成多个本发明电磁风扇离合器的其他实施例。
本领域技术人员应当理解, 通过阅读前述的本发明电磁风扇离合器的构造及该电磁风扇 离合器的工作原理及其构思, 本领域人员将本发明电磁铁芯装置的各实施例应用在现有的各 种单速、 双速、 三速以及更多级速度的电磁风扇离合器中并对与本发明的电磁铁芯各实施例 相配合的部件和装置进行变形而实现的各种技术方案均应属于本发明试图披露的技术方案。 本发明的电磁铁芯装置及其制造方法和相应的电磁离合器的用途及效果。
本发明的电磁铁芯装置的各实施例都可以使得制造用料节约 20%以上, 特别是线圈用料 节约 30%以上。 其结构紧凑和简洁并直接导致本发明各实施例的各制造方法适用于大规模生 产同时节省了时间和减少了相关工序, 特别是避免了手工操作成为制造方法的必要。
包含本发明的电磁铁芯装置的电磁风扇离合器的制造用料节约 30%以上, 特别是将电磁 风扇离合器的体积至少减小到现有技术的三分之二, 尤其是可以极大缩短沿电磁风扇离合主 轴方向的尺寸, 从而使得本发明的电磁风扇离合器更适合容纳于各种发动机舱中并与汽车发 动机更好地适配。 此外, 与本发明电磁铁芯相应的电磁风扇离合器各部件的尺寸及用料都由 此相应减小至少 30%。
以上所述的各个实施例仅仅是对本发明的优选实施方式进行描述, 并非对本发明的范围 进行限定, 在不脱离本发明设计精神的前提下, 本领域普通技术人员对本发明的技术方案作 出的各种变形和改进, 均应落入本发明权利要求确定的保护范围内。 工业实用性
本发明的对置式铁芯装置及其制造方法, 以及包括该对置式铁芯的电磁风扇离合器, 可 以适用于各种无刷式及有刷式的电磁风扇离合器生产制造, 以及汽车的生产制造。

Claims

1、 对置式电磁铁芯, 包括在电磁铁芯本体 (11, 21 ) 上沿轴向相互背向设置的铁芯槽 ( 12, 13,22,23 )。
2、 根据权利要求 1所述的对置式电磁铁芯, 还包括, 在所述铁芯槽 (12,13,22,23 )上相 互背向设置的摩擦片 (138, 139,238,239)。
3、 根据权利要求 2所述的对置式电磁铁芯, 还包括, 在所述铁芯槽 (12,13,22,23 ) 内容 纳的相互背向设置的线圈 (7,8,27,28)。
4、 根据权利要求 3所述的对置式电磁铁芯, 其特征在于: 所述线圈 (7,8,27,28 ) 的每个 仅有一个接线端 (112,110,212,210) 从所述铁芯本体 (11,21 ) 的铁芯通孔 (4,24) 中引出。
5、 根据权利要求 4所述的对置式电磁铁芯, 其特征在于: 所述线圈 (7,8,27,28 ) 的搭铁 端 (111,19,211,29) 直接与所述铁芯本体 (11,21 )连接。
6、根据权利要求 5所述的对置式电磁铁芯,其特征在于:所述的接线端(112, 110,212,210) 和搭铁端 (111, 19,211,29) 都位于所述铁芯本体 (11,21 ) 的同一侧。
7、根据权利要求 1所述的对置式电磁铁芯,其特征在于:所述铁芯槽包括第一环形槽(12) 和第二环形槽 (13 )。
8、根据权利要求 2至 6中任一项所述的对置式电磁铁芯, 其特征在于: 所述铁芯槽包括 第一环形槽 (12) 和第二环形槽 (13 )。
9、根据权利要求 1至 6中任一项所述的对置式电磁铁芯, 其特征在于, 所述铁芯槽包括 第一方形槽 (22) 和第二方形槽 (23 )。
10、 根据权利要求 8所述的对置式电磁铁芯, 其特征在于: 所述的摩擦片包括环形大摩 擦片 (138, 238 ) 和环形小摩擦片 (139, 239), 所述环形大摩擦片 ( 138,238 ) 卡接在所述 第一环形槽 (12) 开口内, 所述环形小摩擦片 (139,239) 卡接在第二环形槽 (13 ) 开口内。
11、根据权利要求 1至 10中任一项所述的对置式电磁铁芯, 其特征在于: 所述的铁芯槽 ( 12, 13,22,23,290,291 ) 的每个在开口端内侧壁开有增强纹 (130,230, 131,231,234,235)。
12、 根据权利要求 11 所述的对置式电磁铁芯, 其特征在于: 所述的增强纹 ( 130,230,131,231,234,235 ) 的截面高度为 0.1毫米至 5亳米。
13、 根据权利要求 8或 10或 11或 12所述的对置式电磁铁芯, 其特征在于: 所述的第二 环形槽(13 )的底端面(124)上设置有第一通槽(125),第一半通槽(126),第二半通槽(127) 第三半通槽 (128), 第一通孔 (16), 第二通孔 (180), 第三通孔 (129), 第四通孔 (181 )。
14、 根据权利要求 13所述的对置式电磁铁芯, 其特征在于: 所述的第三通孔 (129) 具 有第一梯形台 (132), 所述第二通孔 (180) 具有第二梯形台 (133 )。
15、 对置式电磁铁芯的制造方法, 包括:
在铁芯本体 (11,21 ) 上直接拉伸相互背向设置的铁芯槽 (12, 13,22,23 )。
16、 对置式电磁铁芯的制造方法, 包括:
在铁芯本体 (11,21 ) 上直接旋压相互背向设置的铁芯槽。
17、 根据权利要求 15或 16所述的对置式电磁铁芯的制造方法, 包括:
相互背向设置线圈 (7,8,27,28);
线圈的每个仅有一个接线端向所述铁芯槽 (12,13,22,23 ) 的铁芯通孔 (4,24) 引出; 所述线圈的搭铁端与所述铁芯本体 (11,21 ) 连接;
相互背向设置摩擦片 (138,238,139,239)。
18、 包括权利要求 1至 14中任一项所述的对置式电磁铁芯的电磁风扇离合器。
19、 根据权利要求 18所述的电磁风扇离合器, 其特征在于, 所述的对置式电磁铁芯装置 ( 11 ) 的两侧分别具有第一吸合间隙 (841, 641 ) 与第二吸合间隙 (842,642)。
20、 根据权利要求 19所述的电磁风扇离合器, 其特征在于, 包括主轴 (816, 616), 所 述线圈 (7,8,27,28 ) 的每个接线端从主轴 (816,616) 的引线槽 (83,63 ) 引出。
21、 根据权利要求 20所述的电磁风扇离合器, 其特征在于, 所述引线槽 (83,63 ) 为多 个并相互对称。
22、 根据权利要求 21 所述的电磁风扇离合器, 其特征在于, 所述主轴 (816,616) 具有 二阶台 (850,650)。
23、 根据权利要求 22 所述的电磁风扇离合器, 其特征在于, 所述的主轴 (816,616 ) 为 中空的管状部件。
24、 根据权利要求 23所述的电磁风扇离合器, 其特征在于, 包括驱动盘 (80, 60) , 在 所述驱动盘 (80,60) 左侧紧配合于所述主轴 (816,616)上的风扇固定盘轴承 (86,66), 所述风 扇固定盘轴承(86,66)的外圈上紧配合风扇固定盘(85,65),紧靠所述风扇固定盘轴承(86,66) 左侧在所述主轴 (816,616)上紧配合装设第二轴套 (820,820), 所述风扇固定盘 (85,65 )左 侧接有大弹簧片 (87, 67 ) 和大吸合盘 (88,98), 所述电磁铁芯装置 (11 ) 的铁芯通孔 (4) 紧配合于所述主轴(816,616)上并紧邻所述第二轴套(820,620) 的左侧, 紧靠所述的电磁铁 芯装置 (11 ) 左侧在所述主轴 (816) 上紧配合装设有紧固罩固定轴承 (811, 611 ), 其外圈 紧配合装设紧固罩(812, 612), 所述的紧固罩(812, 612)上还依次装设有小弹簧片(89,69) 和小吸合盘 (867,667), 所述紧固罩固定轴承 (811,611 )被所述紧固罩 (812,612) 的紧固孔
( 828,628 ) 所容纳, 并与所述紧固孔 (828,628 ) 的内壁紧配合, 固定螺栓 (815,615 ) 与所 述主轴 (816,616) 的螺纹相互旋紧。
25、 根据权利要求 24所述的电磁风扇离合器, 其特征在于, 所述的风扇固定盘(85)具 有套盖在所述电磁铁芯装置(11)上的第一环形侧壁(821), 在所述第一环形侧壁(821)端 部镶嵌有环形软铁(822), 所述的紧固罩(812)上接有磁铁固定盘罩(814), 其内缘接有环 形磁铁固定盘 (813)。
26、 根据权利要求 24所述的电磁风扇离合器, 其特征在于, 所述的风扇固定盘(65)具 有环形槽以容纳磁铁固定盘(613),所述的紧固罩(612)具有套盖在所述电磁铁芯装置(21) 上的第一环形侧壁 (621), 在所述第一环形侧壁 (621)端部镶嵌有环形软铁 (622)。
PCT/CN2012/073308 2012-03-30 2012-03-30 对置铁芯及其制造方法及该对置铁芯的电磁风扇离合器 WO2013143118A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2014143409/07A RU2592477C2 (ru) 2012-03-30 2012-03-30 Оппозитный стальной сердечник, способ его изготовления и электромагнитная муфта вентилятора, в которой используется оппозитный стальной сердечник
US14/389,731 US9534642B2 (en) 2012-03-30 2012-03-30 Opposed iron core, manufacturing method thereof, and electromagnetic fan clutch using opposite iron core
PCT/CN2012/073308 WO2013143118A1 (zh) 2012-03-30 2012-03-30 对置铁芯及其制造方法及该对置铁芯的电磁风扇离合器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/073308 WO2013143118A1 (zh) 2012-03-30 2012-03-30 对置铁芯及其制造方法及该对置铁芯的电磁风扇离合器

Publications (1)

Publication Number Publication Date
WO2013143118A1 true WO2013143118A1 (zh) 2013-10-03

Family

ID=49258106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073308 WO2013143118A1 (zh) 2012-03-30 2012-03-30 对置铁芯及其制造方法及该对置铁芯的电磁风扇离合器

Country Status (3)

Country Link
US (1) US9534642B2 (zh)
RU (1) RU2592477C2 (zh)
WO (1) WO2013143118A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466735B2 (en) 2020-03-13 2022-10-11 Rolls-Royce Corporation Electromagnetic clutch system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533251B (zh) * 2016-11-30 2018-10-26 沈阳工业大学 具有位移放大功能的动态永磁场驱动式磁致伸缩致动器
USD969699S1 (en) * 2020-10-02 2022-11-15 Bugatti International SA Automobile body part—diffuser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968004A (zh) * 2010-09-30 2011-02-09 龙口中宇机械有限公司 大功率重型车用强力柔性驱动的电磁风扇离合器
CN102003266A (zh) * 2010-12-07 2011-04-06 龙口中宇机械有限公司 一种汽车电磁风扇离合器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2605877A (en) * 1949-12-13 1952-08-05 Martin P Winther Magnetic clutch
US2684744A (en) * 1952-03-13 1954-07-27 Warner Electric Brake & Clutch Air-cooled magnetic friction element
US2825233A (en) * 1955-04-01 1958-03-04 Gen Motors Corp Drive mechanism for refrigerating apparatus
US3053364A (en) 1956-10-24 1962-09-11 Ite Circuit Breaker Ltd Electromagnetic claw clutches
FR1498392A (fr) 1966-06-22 1967-10-20 Perfectionnements aux ralentisseurs, aux freins et aux coupleurs à glissement permanent
DE3739537A1 (de) * 1987-11-21 1989-06-01 Linnig Karl Heinz Elektromagnetisch betaetigbare reibscheibenkupplung
US5445259A (en) * 1993-08-30 1995-08-29 Dana Corporation High strength electromagnetic coupling disc
US6731043B2 (en) * 2001-10-22 2004-05-04 A. J. Rose Manufacturing Co. One-piece field core shell
RU2004131101A (ru) * 2004-10-25 2006-04-10 Владислав Владимирович Синица (RU) Электромагнитная муфта привода вентилятора
CN1321279C (zh) 2005-03-18 2007-06-13 陆永平 双稳态电磁离合器
US7513349B2 (en) * 2005-11-30 2009-04-07 Tm4 Inc. Multi-position clutch
CN101782012B (zh) 2009-01-18 2013-07-10 龙口市汽车风扇离合器厂 永磁式电磁离合器
CN101881209A (zh) 2009-07-07 2010-11-10 龙口市汽车风扇离合器厂 三速电磁风扇离合器
RU97574U1 (ru) * 2010-02-24 2010-09-10 Алексей Анатольевич Бердников Электромагнитная муфта привода вентилятора
CN201689752U (zh) 2010-06-02 2010-12-29 龙口中宇机械有限公司 一种电磁离合器用的铁板旋挤压式电磁铁芯
CN202673430U (zh) 2012-03-30 2013-01-16 王兆宇 对置式电磁铁芯
CN202707212U (zh) 2012-03-30 2013-01-30 王兆宇 电磁风扇离合器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968004A (zh) * 2010-09-30 2011-02-09 龙口中宇机械有限公司 大功率重型车用强力柔性驱动的电磁风扇离合器
CN102003266A (zh) * 2010-12-07 2011-04-06 龙口中宇机械有限公司 一种汽车电磁风扇离合器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466735B2 (en) 2020-03-13 2022-10-11 Rolls-Royce Corporation Electromagnetic clutch system

Also Published As

Publication number Publication date
US20150060226A1 (en) 2015-03-05
US9534642B2 (en) 2017-01-03
RU2014143409A (ru) 2016-05-27
RU2592477C2 (ru) 2016-07-20

Similar Documents

Publication Publication Date Title
CN1639944A (zh) 设置有外置转子的电动机
JP2007006689A (ja) モータのロータ及びその製作方法
US7975818B2 (en) Rotational coupling device
US7732959B2 (en) Rotational coupling device
US20140062252A1 (en) Rotating electric machine
CN101584099A (zh) 电动机和压缩机
TW201216595A (en) Reinforcement structure for thin-plate motor
WO2023124152A1 (zh) 一种转子铁芯、转子、电机、电机驱动系统及电动车
JP2008289329A (ja) モータのエンドプレート
US10720800B2 (en) Brushless motor
WO2013143118A1 (zh) 对置铁芯及其制造方法及该对置铁芯的电磁风扇离合器
JPH0865932A (ja) 永久磁石式回転子
JP4655646B2 (ja) 永久磁石埋込型電動機
CN204633494U (zh) 外转子式电机的转子和具有该转子的压缩机
CN202673430U (zh) 对置式电磁铁芯
KR101967731B1 (ko) 계자코일용 지지 및 냉각 부재를 포함하는 권선형 여자전동기
JP6080734B2 (ja) 回転電機及びエレベータ用巻上機
JP2013188036A (ja) 電動機の回転子及び電動機並びに洗濯機
WO2015136912A1 (ja) 摩擦クラッチ
KR102515118B1 (ko) 매립형 영구자석 전동기용 로터
KR20140076380A (ko) 구동 모터용 로터의 마그네트 조립 기구 및 이를 이용한 구동 모터의 조립 방법
KR101031615B1 (ko) 아우터 로터형 모터의 로터 브라켓과 로터 부싱 체결 구조
CN110953250B (zh) 一种磁悬浮轴承转子结构、电机和空调器
JP2009268164A5 (zh)
US20050093383A1 (en) Fan motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14389731

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014143409

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12872897

Country of ref document: EP

Kind code of ref document: A1