WO2013140819A1 - 遠心圧縮機 - Google Patents

遠心圧縮機 Download PDF

Info

Publication number
WO2013140819A1
WO2013140819A1 PCT/JP2013/001968 JP2013001968W WO2013140819A1 WO 2013140819 A1 WO2013140819 A1 WO 2013140819A1 JP 2013001968 W JP2013001968 W JP 2013001968W WO 2013140819 A1 WO2013140819 A1 WO 2013140819A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
centrifugal compressor
main
sub
working fluid
Prior art date
Application number
PCT/JP2013/001968
Other languages
English (en)
French (fr)
Inventor
英俊 田口
西脇 文俊
晃 小森
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/126,311 priority Critical patent/US9394913B2/en
Priority to CN201380001726.0A priority patent/CN103620225B/zh
Priority to JP2013556095A priority patent/JP5490338B2/ja
Publication of WO2013140819A1 publication Critical patent/WO2013140819A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/682Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/023Details or means for fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Definitions

  • the present invention relates to a centrifugal compressor.
  • Patent Document 1 discloses a centrifugal compressor 100 as shown in FIG.
  • a cylindrical treatment chamber 130 is provided on the shroud wall 120 surrounding the impeller 110. From one end of the treatment chamber 130, a slit-shaped first flow path 131 opens toward the impeller 110, and from the other end of the treatment chamber 130, a slit-shaped second flow path 132 opens to the suction port 101. is doing.
  • the present disclosure aims to improve the performance of the centrifugal compressor.
  • a centrifugal compressor for compressing a working fluid An impeller in which main wings and sub-wings shorter than the main wings are alternately arranged; A shroud wall having a shape along the impeller and forming an inlet; An extraction chamber that faces the outer surface of the shroud wall and is connected to a discharge space with a pressure equal to or less than the pressure of the working fluid at the inlet; The shroud wall is provided with an extraction passage for guiding a part of the working fluid flowing between the pressure surface of the sub blade and the main wing to the extraction chamber, In the meridional projection obtained by rotating and projecting the main wing, the sub wing, and the shroud wall on the meridian plane passing through the rotation axis of the impeller, the intersection of the upstream end of the sub wing and the tip of the sub wing Is provided closer to the suction port than an opening edge on the side of the extraction passage near the suction port.
  • the performance of the centrifugal compressor can be improved.
  • Sectional drawing of the centrifugal compressor concerning one embodiment of this indication Partial cross-sectional perspective view of the centrifugal compressor shown in FIG. The figure explaining the positional relationship of a main wing and a 1st slit in a meridian surface, and the positional relationship of a sub wing and a 2nd slit Partial enlarged view of FIG. Sectional drawing of the centrifugal compressor which concerns on a modification Configuration diagram of a refrigeration cycle apparatus using the centrifugal compressor shown in FIG. 1 or FIG. Cross section of a conventional centrifugal compressor
  • An impeller of a centrifugal compressor usually has a configuration in which main wings and sub-wings shorter than the main wings are alternately arranged.
  • the working fluid sucked into the centrifugal compressor first flows between the main wings and then is divided by the sub wings.
  • the gap between the tip of these blades and the shroud wall is often set to less than 10% with respect to the height of the blade.
  • the gap between the blade tip and the shroud wall may be relatively large. In such a configuration, the working fluid leaks through the gap between the blade tip and the shroud wall (in other words, the working fluid gets over the blade tip), so that the working fluid flows between the main blades.
  • vortices are also generated in the working fluid flowing between the main wing and the sub wing.
  • the present inventors extract both the part of the working fluid that flows between the main wings and the part of the working fluid that flows between the main wings and the sub wings, and thereby the two-stage vortex as described above. It has been found that the occurrence of can be prevented or suppressed. Thereby, the performance of a centrifugal compressor can be improved.
  • the first aspect of the present disclosure is: A centrifugal compressor for compressing a working fluid, An impeller in which main wings and sub-wings shorter than the main wings are alternately arranged; A shroud wall having a shape along the impeller and forming an inlet; An extraction chamber that faces the outer surface of the shroud wall and is connected to a discharge space with a pressure equal to or less than the pressure of the working fluid at the inlet; The shroud wall is provided with an extraction passage for guiding a part of the working fluid flowing between the pressure surface of the sub blade and the main wing to the extraction chamber, In the meridional projection obtained by rotating and projecting the main wing, the sub wing, and the shroud wall on the meridian plane passing through the rotation axis of the impeller, the intersection of the upstream end of the sub wing and the tip of the sub wing Is provided closer to the suction port than an opening edge on the side of the extraction passage near the suction port.
  • the working fluid leaks through the gap between the tip of the sub wing and the shroud wall by extracting a part of the working fluid flowing between the pressurized surface of the sub wing and the main wing through the extraction passage. It is possible to prevent or suppress the occurrence of vortices caused by the above. Thereby, the performance of a centrifugal compressor can be improved. Further, when the inlet of the extraction passage is at the position as described above, a part of the working fluid flowing between the pressurized surface of the sub blade and the main blade can be efficiently guided to the extraction chamber.
  • the shroud wall is further provided with an additional extraction passage for guiding a part of the working fluid flowing between the adjacent main wings to the extraction chamber.
  • an additional extraction passage for guiding a part of the working fluid flowing between the adjacent main wings to the extraction chamber.
  • the length of the additional extraction passage in the circumferential direction of the shroud wall is such that the additional extraction passage is adjacent to the main wing at a position where the additional extraction passage opens toward the impeller.
  • a centrifugal compressor is provided that is shorter than the distance between.
  • the inlet of the additional extraction passage is the upstream of the main wing when the projection length of the tip of the main wing is L1.
  • a centrifugal compressor is provided that is in the range of 0.02L1 to 0.4L1 from the end. If the inlet of the additional extraction passage is located in such a range, the generation of vortices can be prevented or suppressed very effectively.
  • the extraction passage and the additional extraction passage there are a plurality of both of the extraction passage and the additional extraction passage, and the extraction passage and the additional extraction passage are arranged in a circumferential direction of the shroud wall.
  • a centrifugal compressor arranged alternately in a staggered pattern. According to such a configuration, it is possible to efficiently extract both part of the working fluid flowing between the main wings and part of the working fluid flowing between the main wing and the sub wing.
  • the number of the additional extraction passages is equal to the number of the main wings, and the additional extraction passages are arranged at the same angular pitch as the main wings.
  • the length of the extraction passage in the circumferential direction of the shroud wall is the length of the extraction passage at a position where the extraction passage opens toward the impeller.
  • a centrifugal compressor is provided that is shorter than a distance between a main wing and the sub wing. If it is this structure, the front-end
  • the inlet of the extraction passage may be configured so that the projection length of the tip of the sub wing is L2.
  • a centrifugal compressor is provided in the range of 0.02L2 to 0.4L2 from the upstream end of the sub wing. If the inlet of the extraction passage is located in such a range, the generation of vortices can be prevented or suppressed very effectively.
  • the ninth aspect is A main circuit in which an evaporator for storing the refrigerant liquid and evaporating the refrigerant liquid therein, a first compressor for compressing the refrigerant vapor, and a condenser for condensing the refrigerant vapor and storing the refrigerant liquid are connected in this order.
  • a second circulation path for circulating the refrigerant liquid stored in the condenser or the heat medium heated in the condenser via a heat dissipation heat exchanger
  • the refrigeration cycle apparatus wherein the first compressor is a centrifugal compressor according to any one of the first to eighth aspects, and further includes a reflux path for returning refrigerant vapor from the extraction chamber of the centrifugal compressor to the evaporator.
  • the refrigerant vapor is returned from the extraction chamber of the centrifugal compressor to the evaporator through the reflux path.
  • the tenth aspect provides the refrigeration cycle apparatus in addition to the ninth aspect, wherein the second compressor is a centrifugal type, and the first compressor and the second compressor are connected by a rotating shaft. If the 1st compressor and the 2nd compressor are connected with a rotating shaft, the number of parts of the 1st compressor and the 2nd compressor can be reduced.
  • the eleventh aspect provides a refrigeration cycle apparatus in addition to the ninth or tenth aspect, wherein a flow rate adjusting valve is provided in the reflux path.
  • the efficiency of the centrifugal compressor can be optimized by adjusting the flow rate of the refrigerant vapor with the flow rate adjusting valve.
  • FIG. 1 and 2 show a centrifugal compressor 1A according to an embodiment of the present invention.
  • Centrifugal compressor 1 ⁇ / b> A is connected to an electric motor or is connected to a turbine and a generator by rotating shaft 11.
  • the centrifugal compressor 1A is driven by the rotation of the rotary shaft 11 and compresses the working fluid.
  • the centrifugal compressor 1 ⁇ / b> A includes an impeller 2 fixed to the rotary shaft 11, a back plate 13 disposed on the back side of the impeller 2, and a housing 15 that houses the impeller 2.
  • the front side of the back plate 13 in the axial direction of the rotary shaft 11 may be referred to as the front, and the back side may be referred to as the rear.
  • the impeller 2 includes a main body 20 that smoothly expands from the minimum diameter portion to the maximum diameter portion along the axial direction of the rotary shaft 11, and a main wing 21 and a sub wing 22 that protrude from the flared outer peripheral surface of the main body portion 20. including.
  • the main wings 21 and the sub wings 22 are alternately arranged in the circumferential direction of the impeller 2.
  • the sub wing 22 is shorter than the main wing 21, and as shown in FIG. 3, the downstream end 22 c of the sub wing 22 is located at the same position as the downstream end 21 c of the main wing 21, while the upstream end 22 a of the sub wing 22 is It is located behind the upstream end 21 a of the main wing 21.
  • the surface on the rotational direction side of the impeller 2 is a pressure surface, and the surface on the opposite side is a non-pressure surface.
  • the housing 15 includes a shroud wall 3 having a shape along the impeller 2, a flange 5 extending radially outward from a front end portion of the shroud wall 3, a peripheral member 17 connected to the rear end portion of the shroud wall 3, and a peripheral member 17 and a front member 18 held between the flanges 5.
  • the shroud wall 3 extends forward from the impeller 2 to form a suction port 12, and the peripheral member 17 communicates with a diffuser formed between the back plate 13 and the shroud wall 3 around the impeller 2.
  • a spiral chamber 16 is formed.
  • the shroud wall 3 is divided into front and rear in the vicinity of the upstream end 21 a of the main wing 21 of the impeller 2, the front portion of the shroud wall 3 and the flange 5 are integrated, and the shroud wall 3 The rear portion and the peripheral member 17 are integrated.
  • the outer peripheral edge of the main wing 21 facing the suction port 12 is defined as the upstream end 21 a of the main wing 21.
  • the outer peripheral edge of the main wing 21 facing the shroud wall 3 is defined as the tip 21 b of the main wing 21.
  • the outer peripheral edge of the sub wing 22 facing the suction port 12 is defined as the upstream end 22 a of the sub wing 22.
  • the outer peripheral edge of the sub wing 22 facing the shroud wall 3 is defined as the tip 22 b of the sub wing 22.
  • the front member 18 covers the space facing the outer surface of the shroud wall 3 together with the flange 5. That is, the shroud wall 3, the flange 5, and the front member 18 form an annular extraction chamber (bleed chamber) 4 around the suction port 12.
  • the front member 18 has a cylindrical surface 18 a that extends forward beyond the flange 5.
  • the cylindrical surface 18 a forms a ring-shaped space (corresponding to the discharge space of the present invention) 18 b that faces the front surface of the flange 5 and is continuous with the suction port 12. Since the ring-shaped space 18 b is filled with the working fluid, the ring-shaped space 18 b has a pressure equal to the pressure of the working fluid at the suction port 12.
  • “equal” is a concept including not only a state in which the pressure in the ring-shaped space 18b completely matches the pressure of the working fluid in the suction port 12, but also a state in which the former is larger than the latter by the amount of pressure loss. is there.
  • the flange 5 is provided with an arc-shaped opening 51 through which the extraction chamber 4 is connected to the ring-shaped space 18b.
  • the shroud wall 3 is provided with a plurality of first slits 31 (additional extraction passages) and second slits 32 (extraction passages) extending in the circumferential direction.
  • the first slit 31 opens from the extraction chamber 4 in the vicinity of the upstream end 21 a of the main wing 21 of the impeller 2, and the second slit 32 opens from the extraction chamber 4 in the vicinity of the upstream end 22 a of the sub wing 22.
  • the first slits 31 and the second slits 32 are arranged in a staggered pattern alternately in the circumferential direction.
  • the 1st slit 31 and the 2nd slit 32 do not necessarily need to be completely parallel with the circumferential direction, and may incline slightly with respect to the circumferential direction.
  • the first slit 31 guides part of the working fluid flowing between the adjacent main wings 21 to the extraction chamber 4, and the second slit 32 flows between the pressurized surface of the sub wing 22 and the main wing 21. A part of the working fluid is guided to the extraction chamber 4.
  • the number of first slits 31 is equal to the number of main wings 21, and the first slits 31 are arranged at the same angular pitch as the main wings 21. If it is this structure, the front-end
  • the first slit 31 opens at a position behind the upstream end 21 a of the main wing 21 and ahead of the upstream end 22 a of the sub wing 22 in the axial direction of the rotary shaft 11. ing.
  • an intersection 21t between the upstream end 21a of the main wing 21 and the tip 21b of the main wing 21 is an opening on the side close to the inlet 12 of the inlet of the first slit 31. It is located closer to the inlet 12 than the edge 31e.
  • the entire entrance of the first slit 31 faces the tip 21b of the main wing. If there is an entrance of the first slit 31 at such a position, a part of the working fluid flowing between the main wings 21 can be efficiently guided to the extraction chamber 4.
  • the second slit 32 opens at a position behind the upstream end 22 a of the sub blade 22 in the axial direction of the rotary shaft 11. Specifically, as shown in FIG. 4, in the meridional projection, the intersection 22t of the upstream end 22a of the sub wing 22 and the tip 22b of the sub wing 22 is the side close to the inlet 12 of the inlet of the second slit 32. It is located closer to the suction port 12 than the opening edge 32e. In the present embodiment, the entire entrance of the second slit 32 faces the tip 22 b of the sub wing 22. When the inlet of the second slit 32 is located at such a position, a part of the working fluid flowing between the pressurized surface of the sub blade 22 and the main blade 21 can be efficiently guided to the extraction chamber 4.
  • the length of the first slit 31 in the circumferential direction of the shroud wall 3 is preferably shorter than the distance between adjacent main wings 21 at the position where the first slit 31 opens toward the impeller 2. If it is this structure, the front-end
  • the inlet of the first slit 31 (opening on the impeller 2 side) is the tip of the tip 21 b of the main wing 21.
  • the projection length is L1, it is in the range of, for example, 0.02L1 to 0.4L1 (or 0.05L1 to 0.1L1) from the upstream end 21a of the main wing 21.
  • the inlet (opening on the impeller 2 side) of the second slit 32 is, for example, 0.02L2 to 0.4L2 (from 0.02L2 to 0.4L2) from the upstream end 22a of the sub wing 22 when the projection length of the tip 22b of the sub wing 22 is L2. Or in the range of 0.05 L2 to 0.1 L2).
  • the width of the first slit 31 is, for example, 3 to 5 times the thickness of the main wing 21 at a position facing the first slit 31.
  • the width of the second slit 32 is, for example, 3 to 5 times the thickness of the sub blade 22 at a position facing the second slit 32.
  • “Projection length” means the length of an arc drawn by the tips 21b and 22b in the meridional projection of FIG.
  • centrifugal compressor 1 ⁇ / b> A described above a part of the working fluid flowing between the main blades 21 is extracted through the first slit 31, so that the working fluid flows through the gap between the tip 21 b of the main blade 21 and the shroud wall 3. The generation of vortices due to leakage can be prevented or suppressed. Further, by extracting a part of the working fluid flowing between the pressurized surface of the sub wing 22 and the main wing 21 through the second slit 32, the working fluid is passed through the gap between the tip 22 b of the sub wing 22 and the shroud wall 3. The generation of vortices due to leakage can be prevented or suppressed. Thereby, the performance of the centrifugal compressor 1A can be improved.
  • the vortex caused by the working fluid leaking through the gap between the tip of the blade and the shroud wall often appears immediately downstream of the upstream end of the blade.
  • the opening (inlet) of the first slit 31 is positioned within the range of, for example, 0.02L1 to 0.4L1 (or 0.05L1 to 0.1L1) from the upstream end 21a of the main wing 21, generation of a vortex is generated. It can be prevented or suppressed very effectively.
  • the opening (inlet) of the second slit 32 is positioned in the range of 0.02L2 to 0.4L2 (or 0.05L2 to 0.1L2) from the upstream end 22a of the sub blade 22, generation of vortices will occur. Can be prevented or suppressed extremely effectively.
  • the centrifugal compressor 1B according to the modification is the same as the centrifugal compressor 1A described with reference to FIGS. 1 to 4 except that the first slit 31 is not provided in the shroud wall 3. It has a structure.
  • the shroud wall 3 is provided with at least one second slit 32 as an extraction passage for guiding a part of the working fluid to the extraction chamber 4.
  • the description of the centrifugal compressor 1A can be applied to other parts of the centrifugal compressor 1B.
  • the extraction passage slit 32
  • the performance of the centrifugal compressor 1B is improved. It can be improved effectively.
  • first slits 31 and the second slits 32 are provided.
  • first slits 31 and the second slits 32 may be provided one by one.
  • the cross-sectional shape of the extraction passage for guiding a part of the working fluid to the extraction chamber 4 is not particularly limited.
  • a through hole having another cross-sectional shape such as a circle, an ellipse, or a rectangle may be provided.
  • extraction passages having different cross-sectional shapes may be formed along the circumferential direction of the shroud wall 3. This also applies to the second slit 32.
  • the extraction chamber 4 is connected to the ring-shaped space 18 b continuous with the suction port 12 by the opening 51 provided in the flange 5.
  • the extraction chamber 4 may be connected to a space smaller than the pressure of the working fluid at the suction port 12.
  • the extraction chamber 4 may be connected to a negative pressure source (for example, the suction side of another compressor) installed separately from the centrifugal compressor 1A or 1B by a flow path that penetrates the housing 15.
  • centrifugal compressors 1A and 1B are not particularly limited, but may be used in a stationary type or a gas turbine power generation device mounted on a vehicle such as an automobile.
  • the centrifugal compressors 1A and 1B can be used in a refrigeration cycle apparatus 10 as shown in FIG. 6, for example.
  • the refrigeration cycle apparatus 10 includes a main circuit 6 for circulating a refrigerant, a first circulation path 7 for heat absorption, and a second circulation path 8 for heat dissipation.
  • the main circuit 6, the first circulation path 7, and the second circulation path 8 are filled with a liquid refrigerant at room temperature.
  • a refrigerant having a negative saturated vapor pressure at room temperature is used as the refrigerant.
  • examples of such a refrigerant include a refrigerant mainly composed of water or alcohol.
  • the main circuit 6, the first circulation path 7, and the second circulation path 8 are in a negative pressure state lower than the atmospheric pressure.
  • the “main component” means a component that is contained most in mass ratio.
  • the main circuit 6 includes an evaporator 66, a first compressor 61, an intercooler 62, a second compressor 63, a condenser 64, and an expansion valve 65, and these devices are connected in this order by flow paths.
  • the evaporator 66 stores the refrigerant liquid and evaporates the refrigerant liquid inside. Specifically, the refrigerant liquid stored in the evaporator 66 is circulated through the heat absorption heat exchanger 71 by the first circulation path 7. For example, when the refrigeration cycle apparatus 10 is an air conditioner that cools a room, the heat-absorbing heat exchanger 71 is installed in the room and cools the room air supplied by the blower by heat exchange with the refrigerant liquid.
  • the first compressor 61 and the second compressor 63 compress the refrigerant vapor in two stages.
  • the first compressor 61 the centrifugal compressor 1A or 1B described above is used.
  • the second compressor 63 may be a positive displacement compressor independent of the first compressor 61, but in the present embodiment, the second compressor 63 is a centrifugal compressor connected to the first compressor 61 by the rotary shaft 11. .
  • the electric motor 67 that rotates the rotating shaft 11 may be disposed between the first compressor 61 and the second compressor 63, or may be disposed outside one of the compression devices. If the 1st compressor 61 and the 2nd compressor 63 are connected by the rotating shaft 11, the number of parts of the 1st compressor 61 and the 2nd compressor 63 can be reduced.
  • the intermediate cooler 62 cools the refrigerant vapor discharged from the first compressor 21 before being sucked into the second compressor 22.
  • the intermediate cooler 62 may be a direct contact heat exchanger or an indirect heat exchanger.
  • the condenser 64 condenses the refrigerant vapor inside and stores the refrigerant liquid. Specifically, the refrigerant liquid stored in the condenser 64 is circulated through the heat dissipation heat exchanger 81 by the second circulation path 8. For example, when the refrigeration cycle apparatus 10 is an air conditioner that cools an indoor room, the heat-dissipating heat exchanger 81 is installed outside and heats the outdoor air supplied by the blower by heat exchange with the refrigerant liquid.
  • the refrigeration cycle apparatus 10 does not necessarily need to be an air conditioning apparatus dedicated to cooling. For example, if each of the first heat exchanger installed indoors and the second heat exchanger installed outdoor is connected to the evaporator 66 and the condenser 64 via a four-way valve, the cooling operation and the heating operation are performed. A switchable air conditioner can be obtained. In this case, both the first heat exchanger and the second heat exchanger function as the heat absorption heat exchanger 71 and the heat dissipation heat exchanger 81. Further, the refrigeration cycle apparatus 10 is not necessarily an air conditioner, and may be a chiller, for example. Furthermore, the object to be cooled by the heat exchanger 71 for heat absorption and the object to be heated by the heat exchanger 81 for heat dissipation may be a gas or a liquid other than air.
  • the expansion valve 65 is an example of a decompression mechanism that decompresses the condensed refrigerant liquid.
  • the pressure reducing mechanism for example, the expansion valve 65 is not provided in the main circuit 6, and the liquid level of the refrigerant liquid in the evaporator 66 is higher than the liquid level of the refrigerant liquid in the condenser 64. It is also possible to adopt a configuration.
  • the extraction chamber 4 (see FIGS. 1 to 4) of the centrifugal compressor 1A or 1B is connected to the internal space of the evaporator 66 by the reflux path 9. That is, the internal space of the evaporator 66 corresponds to the discharge space of the present invention. For this reason, the refrigerant vapor is returned to the evaporator 66 from the extraction chamber 4 of the centrifugal compressor 1 ⁇ / b> A or 1 ⁇ / b> B through the reflux path 9. Thereby, the performance of the centrifugal compressor 1A or 1B can be improved, and as a result, the performance of the refrigeration cycle apparatus 10 can be improved. It is desirable that a flow rate adjusting valve 91 is provided in the reflux path 9. By adjusting the flow rate of the refrigerant vapor with the flow rate adjusting valve 91, the efficiency of the centrifugal compressor 1A or 1B can be optimized.
  • the evaporator 66 is not necessarily a direct contact heat exchanger, and may be an indirect heat exchanger. In this case, the heat medium cooled in the evaporator 66 circulates through the first circulation path 7.
  • the condenser 64 is not necessarily a direct contact heat exchanger, and may be an indirect heat exchanger. In this case, the heat medium heated in the condenser 64 circulates through the second circulation path 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 遠心圧縮機1は、主翼21および副翼22を有する羽根車2と、羽根車2に沿う形状を有し、吸入口12を形成するシュラウド壁3と、シュラウド壁3の外側面に面する抽出室4と、を備えている。抽出室4は、吸入口12での作動流体の圧力と等しいまたはそれよりも小さな圧力の排出空間に接続される。シュラウド壁3には、副翼22の加圧面と主翼21の間に流入した作動流体の一部を抽出室4に導くスリット32(抽出通路)が設けられている。

Description

遠心圧縮機
 本発明は、遠心圧縮機に関する。
 従来から、羽根車を通過する作動流体の一部が吸入口に戻されるように構成された遠心圧縮機が知られている。例えば、特許文献1には、図7に示すような遠心圧縮機100が開示されている。
 この遠心圧縮機100では、羽根車110を取り囲むシュラウド壁120に、円筒状のトリートメント室130が設けられている。トリートメント室130の一端からは、スリット状の第1流路131が羽根車110に向かって開口しており、トリートメント室130の他端からはスリット状の第2流路132が吸入口101に開口している。
特許第4100030号公報
 遠心圧縮機では、上記のような構成を採用したとしても、まだまだ性能に改善の余地がある。
 そこで、本開示は、遠心圧縮機の性能を向上させることを目的とする。
 すなわち、本開示は、
 作動流体を圧縮する遠心圧縮機であって、
 主翼と前記主翼よりも短い副翼とが交互に配置された羽根車と、
 前記羽根車に沿う形状を有し、吸入口を形成するシュラウド壁と、
 前記シュラウド壁の外側面に面する、前記吸入口での作動流体の圧力と等しいまたはそれよりも小さな圧力の排出空間に接続される抽出室と、を備え、
 前記シュラウド壁には、前記副翼の加圧面と前記主翼との間に流入した作動流体の一部を前記抽出室に導く抽出通路が設けられており、
 前記羽根車の回転軸を通る子午面に前記主翼、前記副翼および前記シュラウド壁を回転投影することによって得られる子午面投影図において、前記副翼の上流端と前記副翼の先端との交点が、前記抽出通路の入口の前記吸入口に近い側の開口縁よりも前記吸入口の近くに位置している、遠心圧縮機を提供する。
 本開示によれば、遠心圧縮機の性能を向上させることができる。
本開示の一実施形態に係る遠心圧縮機の断面図 図1に示す遠心圧縮機の一部断面斜視図 子午面における主翼と第1スリットの位置関係および副翼と第2スリットの位置関係を説明する図 図3の部分拡大図 変形例に係る遠心圧縮機の断面図 図1または図5に示す遠心圧縮機が用いられた冷凍サイクル装置の構成図 従来の遠心圧縮機の断面図
 まず、本開示の着眼点について説明する。
 遠心圧縮機の羽根車は、通常、主翼と主翼よりも短い副翼が交互に配置された構成を有している。遠心圧縮機に吸入された作動流体は、まず主翼同士の間に流入した後に、副翼によって分割される。これらの翼の先端とシュラウド壁との間の隙間は、翼の高さに対して10%未満に設定されることが多い。しかしながら、遠心圧縮機を小型化した場合は、翼の先端とシュラウド壁との間の隙間が比較的に大きくなることがある。このような構成では、翼の先端とシュラウド壁との間の隙間を通じて作動流体が漏れる(換言すれば、翼の先端を作動流体が乗り越える)ことで、主翼同士の間に流入した作動流体中に渦が発生するだけでなく、主翼と副翼との間に流入した作動流体中にも渦が発生する。本発明者らは、主翼同士の間に流入した作動流体の一部および主翼と副翼との間に流入した作動流体の一部の双方を抜き出すことで、上述したような二段階での渦の発生を防止ないし抑制できることを見出した。これにより、遠心圧縮機の性能を向上させることができる。
 ただし、主翼と副翼との間に流入した作動流体の一部のみを抜き出したとしても、上述した渦の発生を防止ないし抑制できる。また、主翼同士の間に流入した作動流体の一部のみを抜き出したとしても、上述した渦の発生を防止ないし抑制できる。本明細書に開示された技術は、このような観点から成されたものである。
 本開示の第1態様は、
 作動流体を圧縮する遠心圧縮機であって、
 主翼と前記主翼よりも短い副翼とが交互に配置された羽根車と、
 前記羽根車に沿う形状を有し、吸入口を形成するシュラウド壁と、
 前記シュラウド壁の外側面に面する、前記吸入口での作動流体の圧力と等しいまたはそれよりも小さな圧力の排出空間に接続される抽出室と、を備え、
 前記シュラウド壁には、前記副翼の加圧面と前記主翼との間に流入した作動流体の一部を前記抽出室に導く抽出通路が設けられており、
 前記羽根車の回転軸を通る子午面に前記主翼、前記副翼および前記シュラウド壁を回転投影することによって得られる子午面投影図において、前記副翼の上流端と前記副翼の先端との交点が、前記抽出通路の入口の前記吸入口に近い側の開口縁よりも前記吸入口の近くに位置している、遠心圧縮機を提供する。
 第1態様によれば、副翼の加圧面と主翼との間に流入した作動流体の一部を抽出通路を通じて抜き出すことで、副翼の先端とシュラウド壁との間の隙間を通じて作動流体が漏れることに起因する渦の発生を防止ないし抑制することができる。これにより、遠心圧縮機の性能を向上させることができる。また、上記のような位置に抽出通路の入口があると、副翼の加圧面と主翼との間に流入した作動流体の一部を効率的に抽出室に導くことができる。
 主翼の上流端の近傍において、主翼の加圧面における作動流体の圧力と主翼の非加圧面における作動流体の圧力との間には未だ大きな差は生じていない。一方、作動流体が副翼に到達するころには、主翼の加圧面における作動流体の圧力と主翼の非加圧面における作動流体の圧力との間に比較的大きい差が生じている。そのため、翼の先端を作動流体が乗り越えるという現象は、主翼よりも副翼で起こりやすい。従って、副翼の加圧面と主翼との間に流入した作動流体の一部を抽出室に導くように抽出通路(スリット)が形成されていると、遠心圧縮機の性能を効果的に向上させることができる。
 第2態様は、第1態様に加え、前記シュラウド壁には、隣り合う前記主翼の間に流入した作動流体の一部を前記抽出室に導く追加の抽出通路がさらに設けられており、前記子午面投影図において、前記主翼の上流端と前記主翼の先端との交点は、前記追加の抽出通路の入口の前記吸入口に近い側の開口縁よりも前記吸入口の近くに位置している、遠心圧縮機を提供する。上記のような位置に追加の抽出通路の入口があると、主翼同士の間に流入した作動流体の一部を効率的に抽出室に導くことができる。
 第3態様は、第2態様に加え、前記シュラウド壁の周方向における前記追加の抽出通路の長さは、当該追加の抽出通路が前記羽根車に向かって開口する位置での隣り合う前記主翼の間の距離よりも短い、遠心圧縮機を提供する。この構成であれば、1つの追加の抽出通路上に2つの主翼の先端が同時に位置することがなく、各主翼による追加の抽出通路を通じた作動流体の掻き出しを良好に行うことができる。
 第4態様は、第2または第3態様に加え、前記子午面投影図において、前記追加の抽出通路の前記入口は、前記主翼の前記先端の投影長をL1としたときに前記主翼の前記上流端から0.02L1~0.4L1の範囲にある、遠心圧縮機を提供する。このような範囲に追加の抽出通路の入口が位置していると、渦の発生を極めて効果的に防止ないし抑制することができる。
 第5態様は、第2~第4態様のいずれか1つに加え、前記抽出通路および前記追加の抽出通路は共に複数あり、前記抽出通路と前記追加の抽出通路が前記シュラウド壁の周方向に交互に千鳥状に並んでいる、遠心圧縮機を提供する。このような構成によれば、主翼同士の間に流入した作動流体の一部および主翼と副翼との間に流入した作動流体の一部の双方を効率的に抜き出すことができる。
 第6態様は、第2~第5態様のいずれか1つに加え、前記追加の抽出通路の数は前記主翼の数と等しく、前記追加の抽出通路は前記主翼と同一角度ピッチで配置されている、遠心圧縮機を提供する。このような構成によれば、1つの追加の抽出通路上に2つの主翼の先端が同時に位置することがなく、各主翼による追加の抽出通路を通じた作動流体の掻き出しを良好に行うことができる。
 第7態様は、第1~第6態様のいずれか1つに加え、前記シュラウド壁の周方向における前記抽出通路の長さは、当該抽出通路が前記羽根車に向かって開口する位置での前記主翼と前記副翼との間の距離よりも短い、遠心圧縮機を提供する。この構成であれば、1つの抽出通路上に主翼の先端および副翼の先端が同時に位置することがなく、主翼および副翼による抽出通路を通じた作動流体の掻き出しを良好に行うことができる。
 第8態様は、第1~第7態様のいずれか1つに加え、前記子午面投影図において、前記抽出通路の前記入口は、前記副翼の前記先端の投影長をL2としたときに前記副翼の前記上流端から0.02L2~0.4L2の範囲にある、遠心圧縮機を提供する。このような範囲に抽出通路の入口が位置していると、渦の発生を極めて効果的に防止ないし抑制することができる。
 第9態様は、
 冷媒液を貯留するとともに内部で冷媒液を蒸発させる蒸発器、冷媒蒸気を圧縮する第1圧縮機、および内部で冷媒蒸気を凝縮させるとともに冷媒液を貯留する凝縮器がこの順に接続された主回路と、
 前記蒸発器に貯留された冷媒液または前記蒸発器内で冷却された熱媒体を吸熱用熱交換器を経由して循環させる第1循環路と、
 前記凝縮器に貯留された冷媒液または前記凝縮器内で加熱された熱媒体を放熱用熱交換器を経由して循環させる第2循環路と、を備え、
 前記第1圧縮機が第1~第8態様のいずれか1つの遠心圧縮機であり、前記遠心圧縮機の前記抽出室から前記蒸発器に冷媒蒸気を戻す還流路をさらに備える、冷凍サイクル装置を提供する。
 第9態様によれば、還流路を通じて、遠心圧縮機の抽出室から蒸発器に冷媒蒸気が戻される。これにより、遠心圧縮機の性能を向上させることができ、ひいては冷凍サイクル装置の性能を向上させることができる。
 第10態様は、第9態様に加え、前記第2圧縮機は遠心型であり、前記第1圧縮機と前記第2圧縮機は、回転シャフトによって連結されている、冷凍サイクル装置を提供する。第1圧縮機と第2圧縮機とを回転シャフトによって連結すれば、第1圧縮機および第2圧縮機の部品点数を減らすことができる。
 第11態様は、第9または第10態様に加え、前記還流路には流量調整弁が設けられている、冷凍サイクル装置を提供する。流量調整弁で冷媒蒸気の流量を調整することによって、遠心圧縮機の効率を最適化できる。
 以下、本発明の実施形態について、図面を参照しながら説明する。ただし、本発明は以下の実施形態によって限定されるものではない。
 (実施形態)
 図1および図2に、本発明の一実施形態に係る遠心圧縮機1Aを示す。遠心圧縮機1Aは、回転シャフト11により、電動機と連結されたり、タービンおよび発電機と連結されたりする。遠心圧縮機1Aは、回転軸11の回転により駆動され、作動流体を圧縮する。
 具体的に、遠心圧縮機1Aは、回転シャフト11に固定された羽根車2と、羽根車2の裏側に配置されたバックプレート13と、羽根車2を収容するハウジング15とを備えている。なお、以下の説明では、説明の便宜のために、回転シャフト11の軸方向のうちバックプレート13の表面側を前方、裏面側を後方ということもある。
 羽根車2は、回転シャフト11の軸方向に沿って最小径部から最大径部まで滑らかに拡径する本体部20と、本体部20のフレア状の外周面から突出する主翼21および副翼22を含む。主翼21と副翼22は、羽根車2の周方向に交互に並んでいる。副翼22は主翼21よりも短く、図3に示すように、副翼22の下流端22cは主翼21の下流端21cと同位置に位置している一方で、副翼22の上流端22aは主翼21の上流端21aよりも後方に位置している。主翼21および副翼22については、羽根車2の回転方向側の面が加圧面であり、それと反対側の面が非加圧面である。
 ハウジング15は、羽根車2に沿う形状を有するシュラウド壁3と、シュラウド壁3の前端部から径方向外側に広がるフランジ5と、シュラウド壁3の後端部につながれた周縁部材17と、周縁部材17とフランジ5に挟持されるフロント部材18と、を含む。シュラウド壁3は、羽根車2よりも前方に延びて吸入口12を形成し、周縁部材17は、羽根車2の周囲に、バックプレート13とシュラウド壁3との間に形成されるディフューザと連通する渦巻き室16を形成する。なお、本実施形態では、シュラウド壁3が羽根車2の主翼21の上流端21a近傍で前後に分割されており、シュラウド壁3の前側部分とフランジ5が一体となっており、シュラウド壁3の後側部分と周縁部材17が一体となっている。
 なお、図3は、羽根車2の回転軸Aを通る子午面に主翼21(full blade)、副翼22(splitter blade)およびシュラウド壁3を回転投影することによって得られる子午面投影図(回転投影図)である。子午面投影図に表わされた形状は、ターボ機械の分野において、「子午面形状」と呼ばれている。また、本明細書では、吸入口12に面する主翼21の外周縁を主翼21の上流端21aと定義する。シュラウド壁3に面する主翼21の外周縁を主翼21の先端21bと定義する。同様に、吸入口12に面する副翼22の外周縁を副翼22の上流端22aと定義する。シュラウド壁3に面する副翼22の外周縁を副翼22の先端22bと定義する。
 フロント部材18は、フランジ5と共にシュラウド壁3の外側面に面する空間を覆っている。すなわち、シュラウド壁3、フランジ5およびフロント部材18は、吸入口12の周囲に環状の抽出室(bleed chamber)4を形成している。また、フロント部材18は、フランジ5を越えて前方に延びる筒状面18aを有している。筒状面18aは、フランジ5の前面に面する、吸入口12と連続するリング状空間(本発明の排出空間に相当)18bを形成する。リング状空間18bは作動流体で満たされるために、リング状空間18bは、吸入口12での作動流体の圧力と等しい圧力を有する。ここで、「等しい」とは、リング状空間18bの圧力が吸入口12での作動流体の圧力と完全に一致する状態だけでなく、圧力損失分だけ前者が後者よりも大きい状態を含む概念である。
 フランジ5には円弧状の開口51が設けられており、この開口51によって抽出室4がリング状空間18bに接続されている。
 シュラウド壁3には、周方向に延びる複数の第1スリット31(追加の抽出通路)および第2スリット32(抽出通路)が設けられている。第1スリット31は、抽出室4から羽根車2の主翼21の上流端21a近傍に開口しており、第2スリット32は、抽出室4から副翼22の上流端22a近傍に開口している。第1スリット31と第2スリット32は、周方向に交互に千鳥状に並んでいる。なお、第1スリット31および第2スリット32は、必ずしも周方向と完全に平行である必要はなく、周方向に対して僅かに傾斜していてもよい。
 第1スリット31は、隣り合う主翼21の間に流入した作動流体の一部を抽出室4に導くものであり、第2スリット32は、副翼22の加圧面と主翼21との間に流入した作動流体の一部を抽出室4に導くものである。例えば、第1スリット31の数は主翼21の数と等しく、第1スリット31は主翼21と同一角度ピッチで配置される。この構成であれば、1つの第1スリット31上に2つの主翼21の先端21bが同時に位置することがなく、各主翼21による第1スリット31を通じた作動流体の掻き出しを良好に行うことができる。
 図3および図4に示すように、第1スリット31は、回転シャフト11の軸方向において、主翼21の上流端21aよりも後方、かつ副翼22の上流端22aよりも前方の位置で開口している。詳細には、図4に示すように、子午面投影図において、主翼21の上流端21aと主翼21の先端21bとの交点21tは、第1スリット31の入口の吸入口12に近い側の開口縁31eよりも吸入口12の近くに位置している。本実施形態では、第1スリット31の入口の全部が主翼の先端21bに面している。このような位置に第1スリット31の入口があると、主翼21同士の間に流入した作動流体の一部を効率的に抽出室4に導くことができる。
 第2スリット32は、回転シャフト11の軸方向において、副翼22の上流端22aよりも後方の位置で開口している。詳細には、図4に示すように、子午面投影図において、副翼22の上流端22aと副翼22の先端22bとの交点22tが、第2スリット32の入口の吸入口12に近い側の開口縁32eよりも吸入口12の近くに位置している。本実施形態では、第2スリット32の入口の全部が副翼22の先端22bに面している。このような位置に第2スリット32の入口があると、副翼22の加圧面と主翼21との間に流入した作動流体の一部を効率的に抽出室4に導くことができる。
 シュラウド壁3の周方向における第1スリット31の長さは、当該第1スリット31が羽根車2に向かって開口する位置での隣り合う主翼21の間の距離よりも短いことが望ましい。この構成であれば、1つの第1スリット31上に2つの主翼21の先端21bが同時に位置することがなく、各主翼21による第1スリット31を通じた作動流体の掻き出しを良好に行うことができるからである。同様の観点から、シュラウド壁3の周方向における第2スリット32の長さは、当該第2スリット32が羽根車2に向かって開口する位置での主翼21と副翼22との間の距離よりも短いことが望ましい。
 図3に示すように、羽根車2の回転軸A(回転シャフト11の中心軸)を通る子午面において、第1スリット31の入口(羽根車2側の開口)は、主翼21の先端21bの投影長をL1としたときに主翼21の上流端21aから例えば0.02L1~0.4L1(または0.05L1~0.1L1)の範囲にある。一方、第2スリット32の入口(羽根車2側の開口)は、副翼22の先端22bの投影長をL2としたときに副翼22の上流端22aから例えば0.02L2~0.4L2(または0.05L2~0.1L2)の範囲にある。第1スリット31の幅は、例えば、第1スリット31に向かい合う位置における主翼21の厚さの3~5倍である。同様に、第2スリット32の幅は、例えば、第2スリット32に向かい合う位置における副翼22の厚さの3~5倍である。なお、「投影長」とは、図3の子午面投影図において、先端21bおよび22bが描く弧の長さを意味する。
 以上説明した遠心圧縮機1Aでは、主翼21同士の間に流入した作動流体の一部を第1スリット31を通じて抜き出すことで、主翼21の先端21bとシュラウド壁3との間の隙間を通じて作動流体が漏れることに起因する渦の発生を防止ないし抑制することができる。また、副翼22の加圧面と主翼21との間に流入した作動流体の一部を第2スリット32を通じて抜き出すことで、副翼22の先端22bとシュラウド壁3との間の隙間を通じて作動流体が漏れることに起因する渦の発生を防止ないし抑制することができる。これにより、遠心圧縮機1Aの性能を向上させることができる。
 ところで、翼の先端とシュラウド壁との間の隙間を通じて作動流体が漏れることに起因する渦は、翼の上流端の直ぐ下流側に現れることが多い。このため、主翼21の上流端21aから例えば0.02L1~0.4L1(または0.05L1~0.1L1)の範囲に第1スリット31の開口(入口)を位置させれば、渦の発生を極めて効果的に防止ないし抑制することができる。同様に、副翼22の上流端22aから例えば0.02L2~0.4L2(または0.05L2~0.1L2)の範囲に第2スリット32の開口(入口)を位置させれば、渦の発生を極めて効果的に防止ないし抑制することができる。
 <変形例>
 図5に示すように、変形例に係る遠心圧縮機1Bは、シュラウド壁3に第1スリット31が設けられていない点を除き、図1~4を参照して説明した遠心圧縮機1Aと同じ構造を有する。シュラウド壁3には、作動流体の一部を抽出室4に導く抽出通路として、少なくとも1つの第2スリット32が設けられている。遠心圧縮機1Bのその他の部分には、遠心圧縮機1Aの説明が適用され得る。
 主翼21の上流端21aの近傍において、主翼21の加圧面における作動流体の圧力と主翼21の非加圧面における作動流体の圧力との間には未だ大きな差は生じていない。一方、作動流体が副翼22に到達するころには、主翼21の加圧面における作動流体の圧力と主翼21の非加圧面における作動流体の圧力との間に比較的大きい差が生じている。そのため、翼の先端を作動流体が乗り越えるという現象は、主翼21よりも副翼22で起こりやすい。従って、副翼22の加圧面と主翼21との間に流入した作動流体の一部を抽出室4に導くように抽出通路(スリット32)が形成されていると、遠心圧縮機1Bの性能を効果的に向上させることができる。
 <その他の変形例>
 前記実施形態では、第1スリット31および第2スリット32が共に複数設けられていたが、第1スリット31および第2スリット32は1つずつ設けられていてもよい。
 また、作動流体の一部を抽出室4に導く抽出通路の断面形状は特に限定されない。例えば、第1スリット31に代えて、円形、楕円形、矩形などの他の断面形状を有する貫通孔が設けられていてもよい。さらに、互いに異なる断面形状を有する抽出通路がシュラウド壁3の周方向に沿って形成されていてもよい。このことは、第2スリット32にも当てはまる。
 また、前記実施形態では、フランジ5に設けられた開口51により抽出室4が吸入口12と連続するリング状空間18bに接続されていた。しかし、抽出室4は、吸入口12での作動流体の圧力よりも小さな空間に接続されていてもよい。例えば、抽出室4は、ハウジング15を貫通する流路により、遠心圧縮機1Aまたは1Bとは別に設置される負圧源(例えば、他の圧縮機の吸入側)に接続されていてもよい。
 (適用例)
 上述した遠心圧縮機1Aおよび1Bは、特にその用途が限定されるものではないが、定置式や例えば自動車などの車両に搭載されるガスタービン発電装置に用いられてもよい。あるいは、遠心圧縮機1Aおよび1Bは、例えば図6に示すような冷凍サイクル装置10に用いることができる。
 冷凍サイクル装置10は、冷媒を循環させる主回路6、吸熱用の第1循環路7および放熱用の第2循環路8を備えている。主回路6、第1循環路7および第2循環路8内には、常温で液体の冷媒が充填されている。詳細には、冷媒として、常温での飽和蒸気圧が負圧である冷媒が使用されている。そのような冷媒として、水またはアルコールを主成分とする冷媒が挙げられる。主回路6、第1循環路7および第2循環路8内は大気圧よりも低い負圧状態になっている。本明細書において、「主成分」とは質量比で最も多く含まれた成分を意味する。
 主回路6は、蒸発器66、第1圧縮機61、中間冷却器62、第2圧縮機63、凝縮器64および膨張弁65を含み、これらの機器は流路によってこの順に接続されている。
 蒸発器66は、冷媒液を貯留するとともに内部で冷媒液を蒸発させる。具体的に、蒸発器66に貯留された冷媒液は、第1循環路7により吸熱用熱交換器71を経由して循環させられる。例えば、冷凍サイクル装置10が室内の冷房を行う空気調和装置である場合、吸熱用熱交換器71は室内に設置され、送風機により供給される室内の空気を冷媒液との熱交換により冷却する。
 第1圧縮機61および第2圧縮機63は、冷媒蒸気を二段階で圧縮する。第1圧縮機61として、上述した遠心圧縮機1Aまたは1Bが用いられる。第2圧縮機63は、第1圧縮機61から独立した容積型圧縮機であってもよいが、本実施形態では、第1圧縮機61と回転シャフト11により連結された遠心型圧縮機である。回転シャフト11を回転させる電動機67は、第1圧縮機61と第2圧縮機63との間に配置されていてもよいし、どちらかの圧縮機器の外側に配置されていてもよい。第1圧縮機61と第2圧縮機63とを回転シャフト11によって連結すれば、第1圧縮機61および第2圧縮機63の部品点数を減らすことができる。
 中間冷却器62は、第1圧縮機21から吐出された冷媒蒸気を第2圧縮機22に吸入される前に冷却する。中間冷却器62は、直接接触式の熱交換器であってもよいし、間接式の熱交換器であってもよい。
 凝縮器64は、内部で冷媒蒸気を凝縮させるとともに冷媒液を貯留する。具体的に、凝縮器64に貯留された冷媒液は、第2循環路8により放熱用熱交換器81を経由して循環させられる。例えば、冷凍サイクル装置10が室内の冷房を行う空気調和装置である場合、放熱用熱交換器81は室外に設置され、送風機により供給される室外の空気を冷媒液との熱交換により加熱する。
 ただし、冷凍サイクル装置10は、必ずしも冷房専用の空気調和装置である必要はない。例えば、室内に設置された第1熱交換器および室外に設置された第2熱交換器のそれぞれを四方弁を介して蒸発器66および凝縮器64に接続すれば、冷房運転と暖房運転とを切り替え可能な空気調和装置を得ることができる。この場合、第1熱交換器および第2熱交換器の双方が吸熱用熱交換器71および放熱用熱交換器81として機能する。また、冷凍サイクル装置10は、必ずしも空気調和装置である必要はなく、例えばチラーであってもよい。さらに、吸熱用熱交換器71の冷却対象および放熱用熱交換器81の加熱対象は、空気以外の気体または液体であってもよい。
 膨張弁65は、凝縮した冷媒液を減圧する減圧機構の一例である。ただし、減圧機構としては、例えば、主回路6に膨張弁65が設けられておらず、蒸発器66内の冷媒液の液面が凝縮器64内の冷媒液の液面よりも高くなるような構成を採用することも可能である。
 図6に示す構成では、遠心圧縮機1Aまたは1Bの抽出室4(図1~4参照)が還流路9により蒸発器66の内部空間に接続されている。すなわち、蒸発器66の内部空間は本発明の排出空間に相当する。このため、還流路9を通じて遠心圧縮機1Aまたは1Bの抽出室4から蒸発器66に冷媒蒸気が戻される。これにより、遠心圧縮機1Aまたは1Bの性能を向上させることができ、ひいては冷凍サイクル装置10の性能を向上させることができる。還流路9には、流量調整弁91が設けられていることが望ましい。流量調整弁91で冷媒蒸気の流量を調整することによって、遠心圧縮機1Aまたは1Bの効率を最適化できる。
 なお、蒸発器66は、必ずしも直接接触式の熱交換器である必要はなく、間接式の熱交換器であってもよい。この場合、蒸発器66内で冷却された熱媒体が第1循環路7を循環する。同様に、凝縮器64は、必ずしも直接接触式の熱交換器である必要はなく、間接式の熱交換器であってもよい。この場合、凝縮器64内で加熱された熱媒体が第2循環路8を循環する。

Claims (11)

  1.  作動流体を圧縮する遠心圧縮機であって、
     主翼と前記主翼よりも短い副翼とが交互に配置された羽根車と、
     前記羽根車に沿う形状を有し、吸入口を形成するシュラウド壁と、
     前記シュラウド壁の外側面に面する、前記吸入口での作動流体の圧力と等しいまたはそれよりも小さな圧力の排出空間に接続される抽出室と、を備え、
     前記シュラウド壁には、前記副翼の加圧面と前記主翼との間に流入した作動流体の一部を前記抽出室に導く抽出通路が設けられており、
     前記羽根車の回転軸を通る子午面に前記主翼、前記副翼および前記シュラウド壁を回転投影することによって得られる子午面投影図において、前記副翼の上流端と前記副翼の先端との交点が、前記抽出通路の入口の前記吸入口に近い側の開口縁よりも前記吸入口の近くに位置している、遠心圧縮機。
  2.  前記シュラウド壁には、隣り合う前記主翼の間に流入した作動流体の一部を前記抽出室に導く追加の抽出通路がさらに設けられており、
     前記子午面投影図において、前記主翼の上流端と前記主翼の先端との交点は、前記追加の抽出通路の入口の前記吸入口に近い側の開口縁よりも前記吸入口の近くに位置している、請求項1に記載の遠心圧縮機。
  3.  前記シュラウド壁の周方向における前記追加の抽出通路の長さは、当該追加の抽出通路が前記羽根車に向かって開口する位置での隣り合う前記主翼の間の距離よりも短い、請求項2に記載の遠心圧縮機。
  4.  前記子午面投影図において、前記追加の抽出通路の前記入口は、前記主翼の前記先端の投影長をL1としたときに前記主翼の前記上流端から0.02L1~0.4L1の範囲にある、請求項2に記載の遠心圧縮機。
  5.  前記抽出通路および前記追加の抽出通路は共に複数あり、前記抽出通路と前記追加の抽出通路が前記シュラウド壁の周方向に交互に千鳥状に並んでいる、請求項2に記載の遠心圧縮機。
  6.  前記追加の抽出通路の数は前記主翼の数と等しく、前記追加の抽出通路は前記主翼と同一角度ピッチで配置されている、請求項2に記載の遠心圧縮機。
  7.  前記シュラウド壁の周方向における前記抽出通路の長さは、当該抽出通路が前記羽根車に向かって開口する位置での前記主翼と前記副翼との間の距離よりも短い、請求項1に記載の遠心圧縮機。
  8.  前記子午面投影図において、前記抽出通路の前記入口は、前記副翼の前記先端の投影長をL2としたときに前記副翼の前記上流端から0.02L2~0.4L2の範囲にある、請求項1に記載の遠心圧縮機。
  9.  冷媒液を貯留するとともに内部で冷媒液を蒸発させる蒸発器、冷媒蒸気を圧縮する第1圧縮機、および内部で冷媒蒸気を凝縮させるとともに冷媒液を貯留する凝縮器がこの順に接続された主回路と、
     前記蒸発器に貯留された冷媒液または前記蒸発器内で冷却された熱媒体を吸熱用熱交換器を経由して循環させる第1循環路と、
     前記凝縮器に貯留された冷媒液または前記凝縮器内で加熱された熱媒体を放熱用熱交換器を経由して循環させる第2循環路と、を備え、
     前記第1圧縮機が請求項1に記載の遠心圧縮機であり、前記遠心圧縮機の前記抽出室から前記蒸発器に冷媒蒸気を戻す還流路をさらに備える、冷凍サイクル装置。
  10.  前記第2圧縮機は遠心型であり、
     前記第1圧縮機と前記第2圧縮機は、回転シャフトによって連結されている、請求項9に記載の冷凍サイクル装置。
  11.  前記還流路には流量調整弁が設けられている、請求項9に記載の冷凍サイクル装置。
PCT/JP2013/001968 2012-03-22 2013-03-22 遠心圧縮機 WO2013140819A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/126,311 US9394913B2 (en) 2012-03-22 2013-03-22 Centrifugal compressor
CN201380001726.0A CN103620225B (zh) 2012-03-22 2013-03-22 制冷循环装置
JP2013556095A JP5490338B2 (ja) 2012-03-22 2013-03-22 遠心圧縮機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-065933 2012-03-22
JP2012065933 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013140819A1 true WO2013140819A1 (ja) 2013-09-26

Family

ID=49222291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001968 WO2013140819A1 (ja) 2012-03-22 2013-03-22 遠心圧縮機

Country Status (4)

Country Link
US (1) US9394913B2 (ja)
JP (1) JP5490338B2 (ja)
CN (1) CN103620225B (ja)
WO (1) WO2013140819A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141691A (ja) * 2016-02-08 2017-08-17 三菱重工業株式会社 遠心回転機械
WO2019111690A1 (ja) * 2017-12-04 2019-06-13 パナソニックIpマネジメント株式会社 冷凍サイクル装置及び冷凍サイクル装置の駆動方法
CN111065865A (zh) * 2017-12-04 2020-04-24 松下知识产权经营株式会社 制冷循环装置和制冷循环装置的驱动方法
JP2020139420A (ja) * 2019-02-27 2020-09-03 三菱重工業株式会社 遠心圧縮機及びターボチャージャ

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944060B1 (fr) * 2009-04-06 2013-07-19 Turbomeca Systeme d'air secondaire pour compresseur centrifuge ou mixte
CN107255371B (zh) * 2013-06-24 2020-04-24 三菱重工制冷空调系统株式会社 涡轮制冷机
EP3376048B1 (en) * 2017-03-17 2020-08-12 Panasonic Intellectual Property Management Co., Ltd. Turbo compressor
CN108194419B (zh) * 2018-01-11 2019-10-11 南京航空航天大学 离心压气机周向大间隔小开孔吹抽联合脉冲激励机匣
DE102018209558A1 (de) * 2018-06-14 2019-12-19 BMTS Technology GmbH & Co. KG Radialverdichter
US11143193B2 (en) * 2019-01-02 2021-10-12 Danfoss A/S Unloading device for HVAC compressor with mixed and radial compression stages
US10876549B2 (en) 2019-04-05 2020-12-29 Pratt & Whitney Canada Corp. Tandem stators with flow recirculation conduit
MX2021010819A (es) * 2019-04-08 2021-10-01 Zhongshan Ebs Tech Co Ltd Ventilador centrifugo con paletas hacia atras.
US11598347B2 (en) * 2019-06-28 2023-03-07 Trane International Inc. Impeller with external blades
CN111396328A (zh) * 2020-04-30 2020-07-10 北京动力机械研究所 一种用于惰性混合工质的高效离心压缩装置
CN111396329A (zh) * 2020-04-30 2020-07-10 北京动力机械研究所 一种适用于惰性混合工质的高效离心压缩装置
CN112503002A (zh) * 2020-11-18 2021-03-16 靳普 一种斜向推力结构的压气机及转子系统
WO2022225743A1 (en) * 2021-04-21 2022-10-27 Danfoss A/S Refrigerant compressor with impeller having slotted shroud

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136598A (ja) * 1988-07-01 1990-05-25 Schwitzer Us Inc ガス圧縮機ステージ
WO2011099418A1 (ja) * 2010-02-09 2011-08-18 株式会社Ihi 非対称自己循環ケーシングトリートメントを有する遠心圧縮機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248566A (en) * 1978-10-06 1981-02-03 General Motors Corporation Dual function compressor bleed
JPH04100030A (ja) 1990-08-18 1992-04-02 Brother Ind Ltd 画像記録装置
JP4100030B2 (ja) * 2002-04-18 2008-06-11 株式会社Ihi 遠心圧縮機
FI20020901A (fi) 2002-05-13 2003-11-14 High Speed Tech Ltd Oy Menetelmä kylmälaitteen yhteydessä ja kylmälaite
US7189059B2 (en) * 2004-10-27 2007-03-13 Honeywell International, Inc. Compressor including an enhanced vaned shroud
DE102006007347A1 (de) 2006-02-17 2007-08-30 Daimlerchrysler Ag Verdichter für eine Brennkraftmaschine
WO2007111595A1 (en) 2006-03-27 2007-10-04 Carrier Corporation Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor
JP4281770B2 (ja) * 2006-08-31 2009-06-17 株式会社日立製作所 ヒートポンプシステム
JP4958591B2 (ja) * 2007-03-19 2012-06-20 株式会社ササクラ 液体の蒸発式冷却装置
JP2009150594A (ja) 2007-12-19 2009-07-09 Mitsubishi Heavy Ind Ltd 冷凍装置
JP5125718B2 (ja) 2008-04-16 2013-01-23 株式会社Ihi 遠心圧縮機
DE102008047506A1 (de) 2008-09-17 2010-04-15 Daimler Ag Radialverdichter, insbesondere für einen Abgasturbolader einer Brennkraftmaschine
EP2417406B1 (en) 2009-04-09 2019-03-06 Carrier Corporation Refrigerant vapor compression system with hot gas bypass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136598A (ja) * 1988-07-01 1990-05-25 Schwitzer Us Inc ガス圧縮機ステージ
WO2011099418A1 (ja) * 2010-02-09 2011-08-18 株式会社Ihi 非対称自己循環ケーシングトリートメントを有する遠心圧縮機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141691A (ja) * 2016-02-08 2017-08-17 三菱重工業株式会社 遠心回転機械
US11041497B1 (en) 2016-02-08 2021-06-22 Mitsubishi Heavy Industries Compressor Corporation Centrifugal rotary machine
WO2019111690A1 (ja) * 2017-12-04 2019-06-13 パナソニックIpマネジメント株式会社 冷凍サイクル装置及び冷凍サイクル装置の駆動方法
CN111065865A (zh) * 2017-12-04 2020-04-24 松下知识产权经营株式会社 制冷循环装置和制冷循环装置的驱动方法
JP2020139420A (ja) * 2019-02-27 2020-09-03 三菱重工業株式会社 遠心圧縮機及びターボチャージャ
JP7220097B2 (ja) 2019-02-27 2023-02-09 三菱重工業株式会社 遠心圧縮機及びターボチャージャ

Also Published As

Publication number Publication date
JP5490338B2 (ja) 2014-05-14
CN103620225A (zh) 2014-03-05
US9394913B2 (en) 2016-07-19
US20140202202A1 (en) 2014-07-24
JPWO2013140819A1 (ja) 2015-08-03
CN103620225B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP5490338B2 (ja) 遠心圧縮機
JP2011043130A (ja) 遠心圧縮機及び冷凍装置
US11391289B2 (en) Interstage capacity control valve with side stream flow distribution and flow regulation for multi-stage centrifugal compressors
US20170211584A1 (en) Impeller, centrifugal compressor, and refrigeration cycle apparatus
JP2019210929A (ja) 速度型圧縮機及び冷凍サイクル装置
WO2012144182A1 (ja) 凝縮装置
KR20120080789A (ko) 공기조화기의 실외기
JP6653157B2 (ja) 遠心圧縮機械の戻り流路形成部、遠心圧縮機械
US11248613B2 (en) Centrifugal compressor
US11098953B2 (en) Integrated fan heat exchanger
WO2018092262A1 (ja) プロペラファン及び冷凍サイクル装置
EP3376048B1 (en) Turbo compressor
US20230272804A1 (en) System and method for directing fluid flow in a compressor
CN112145475A (zh) 具有外部叶片的叶轮
KR20120057687A (ko) 터보 압축기
JP5466654B2 (ja) 遠心圧縮機
JP2018068021A (ja) ターボ機械及びそれを用いた冷凍サイクル装置
CN109891101B (zh) 螺旋桨风扇、室外机和制冷循环装置
JP2022126944A (ja) ターボ送風機
KR20160091614A (ko) 터보 압축기 및 이를 포함하는 터보 냉동기
KR20120076047A (ko) 공기조화기의 실외기
JP2022107074A (ja) 速度型圧縮機及び冷凍サイクル装置
JP2019183738A (ja) 軸流送風機
JP2013024056A (ja) 遠心圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13765017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556095

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14126311

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13765017

Country of ref document: EP

Kind code of ref document: A1