WO2013138936A1 - Spacecraft capture mechanism - Google Patents

Spacecraft capture mechanism Download PDF

Info

Publication number
WO2013138936A1
WO2013138936A1 PCT/CA2013/050227 CA2013050227W WO2013138936A1 WO 2013138936 A1 WO2013138936 A1 WO 2013138936A1 CA 2013050227 W CA2013050227 W CA 2013050227W WO 2013138936 A1 WO2013138936 A1 WO 2013138936A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing section
housing
capture
clamping jaws
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CA2013/050227
Other languages
English (en)
French (fr)
Inventor
Paul Roberts
Jason White
Steve Fisher
Richard REMBALA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MacDonald Dettwiler and Associates Inc
Original Assignee
MacDonald Dettwiler and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MacDonald Dettwiler and Associates Inc filed Critical MacDonald Dettwiler and Associates Inc
Priority to EP13764620.4A priority Critical patent/EP2828165B1/en
Priority to JP2015500727A priority patent/JP6322184B2/ja
Priority to EP20163736.0A priority patent/EP3693281B1/en
Priority to CA2867476A priority patent/CA2867476C/en
Publication of WO2013138936A1 publication Critical patent/WO2013138936A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0206Gripping heads and other end effectors servo-actuated comprising articulated grippers
    • B25J15/0226Gripping heads and other end effectors servo-actuated comprising articulated grippers actuated by cams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/402Propellant tanks; Feeding propellants
    • B64G1/4024Propellant tanks; Feeding propellants refuelling in space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
    • B64G1/646Docking or rendezvous systems
    • B64G1/6462Docking or rendezvous systems characterised by the means for engaging other vehicles

Definitions

  • Another embodiment includes a system for capturing a rail and or flange feature on a free flying spacecraft, comprising
  • An embodiment of a capture mechanism disclosed herein includes a) a first housing section, a quick grasp mechanism mounted in said first housing section, said quick grasp mechanism including
  • a biasing mechanism located in said first housing section configured for biasing distal sections of the clamping jaws apart, the biasing mechanism including an elongate plunger mounted for reciprocal movement along an axis of the first housing section, the biasing mechanism including a cam mechanism pivotally mounted to said elongate plunger and configured to have a cam portion engage said clamping jaws to bias the distal sections of the clamping jaws apart when the elongate plunger is fully extended forward of the first housing section, the cam mechanism being configured so that when the elongate plunger contacts a bracket mounted to a spacecraft and is moved inwardly into said first housing section the cam mechanism pivots with respect to said elongate plunger causing the cam portions engaging said clamping jaws to move forward forcing the distal ends of the clamping jaws to pivot toward each other thereby capturing a portion of the bracket; and
  • a capture mechanism for capturing a bracket mounted to a spacecraft comprises: a) a first housing section, a quick grasp mechanism mounted in said first housing section, said quick grasp mechanism including
  • Figure 8 is an expanded view of the cross section of Figure 5 of the clamping jaw portion with the clamping jaws in the open position
  • the capture mechanism disclosed herein achieves its goal of quickly capturing a target spacecraft by splitting the two basic actions involved into two separate mechanisms.
  • One mechanism performs the quick grasp of the target while the second mechanism rigidises that grasp to ensure that the target is held as firmly as desired.
  • the grasping action is powered by springs and an over-centre mechanism triggered either mechanically by a plunger or electronically by sensors and a solenoid. This forces two sets of jaws, one on either side of the object to be grasped, to close quickly over the target object.
  • the jaws can be configured to grasp gently, firmly, or even not close completely on the target.
  • cam drive link Quantity of 2
  • the trigger plunger 4 and cam drive links 22 sit within the frames 34 with the plunger 4 free to reciprocate fore and aft and the two cam drive links 22 pivoting about two cam drive link pivot pins 26 fixed within the frames 34.
  • the other ends of the two cam drive links 22 are connected by the cam drive pins 26 to the two capture mechanism cams 21.
  • the capture mechanism cams sit within guide slots 42 ( Figure 8) forming part of the surface of the frames 34. Slots in the cam drive links 22 permit the capture mechanism cams 21 to slide fore and aft as the cam drive links 22 rotate about the cam drive link pivot pins 26.
  • the system includes a computer control system 525 configured, and programmed to control movement of the robotic arm 403 during the entire procedure of capturing flange 39 on the client satellite 40.
  • Communication system 410 is interfaced with the robotic arm 403 and configured to allow remote operation (from the Earth 408 or from any other suitable location) of the vision system 550 (which may include one or more cameras), the robotic arm 403 and hence the tools.
  • the vision system 550 may include distinct markers mounted on capture mechanism 100.
  • the vision system 550 may include one or more video cameras. To improve depth perception, it may be augmented with a range finding device, such as a laser range finder or radar.
  • the cameras of vision system 550 may be used within a telerobotic control mode where an operator controlling the servicing actions on earth or from some other remote location views distinct views of the worksite on display screens at the command and control console.
  • the position of elements of the tool 100 or flange 39 may be determined by either a stereo camera and vision system which extracts 3D points and determines position and orientation of mechanism 100 or other relevant features on the flange 39, satellite 401 or capture mechanism 100 from which the robotic arm 403 can be driven to desired locations according the sensed 6 degree-of-freedom coordinates.
  • position in the context of the positioning of the servicing spacecraft with respect to the spacecraft to be captured includes the orientation of the object as well as the translation vector between the two objects, i.e. the overall relative pose of the capture feature on the client spacecraft with respect to servicer spacecraft.
  • ASIC application-specific integrated circuit
  • EEPROM electrically erasable programmable read-only memory
  • CPU/microprocessor central processing unit
  • bus 502 memory 535, which may include random access memory (RAM) and/or read only memory (ROM), one or more internal storage devices 540 (e.g. a hard disk drive, compact disk drive or internal flash memory), a power supply 545, one more communications interfaces 410, and various input/output devices and/or interfaces 555.
  • RAM random access memory
  • ROM read only memory
  • internal storage devices 540 e.g. a hard disk drive, compact disk drive or internal flash memory
  • power supply 545 e.g. a hard disk drive, compact disk drive or internal flash memory
  • Computer control system 525 may be programmed with a set of instructions which when executed in the processor causes the system to perform one or more methods described in the present disclosure.
  • Computer control system 525 may include many more or less components than those shown.
  • a computer readable medium can be used to store software and data which when executed by a data processing system causes the system to perform various methods.
  • the executable software and data can be stored in various places including for example ROM, volatile RAM, non-volatile memory and/or cache. Portions of this software and/or data can be stored in any one of these storage devices.
  • a machine readable medium includes any mechanism that provides (i.e., stores and/or transmits) information in a form accessible by a machine (e.g., a computer, network device, personal digital assistant, manufacturing tool, any device with a set of one or more processors, etc.).
  • Figures 1 and 3 show the mechanism in the armed configuration.
  • the mechanism is in the "armed” or “ready to capture” position when the capture mechanism cams 21 are held in the aft position by two cam drive springs 36 (also seen only in Figure 9) which are attached to the two cam drive links 22 (seen only in Figure 9). These springs keep the trigger plunger 4 pushed forward and keep the capture mechanism cams 21 pulled back within the tool. This forces the two jaws 5 and 6 to the open position.
  • the mechanism is triggered when the trigger plunger 4 is forced back within the tool by the contact forces that occur when the mechanism is forced into the target flange 39 as shown in Figure 5.
  • the two, connected capture mechanism frames 34 are free to move within the capture mechanism housing 1.
  • the trigger plunger As the trigger plunger is pulled aft by the motor it applies more torque to the two cam drive links 22 forcing the capture mechanism cams 21 even further forwards which grasps the Marman flange 39 even more securely and centres it within the jaws.
  • the rigidisation actuator starts to pull the entire capture mechanism (jaws, frames and cams) and the captured Marman flange 39 aft via the trigger plunger 4.
  • the motor continues to pull the Marman flange aft until the surface of the Marman flange contacts the front face of the two rigidisation brackets 7.
  • the motor 9 is reversed and the draw bar 27 moves forwards in slot 44 until it contacts the front of the slot and starts to push the trigger plunger forwards.
  • the two capture mechanism return springs 20 move the entire quick grasp mechanism in housing 1 forward and the Marman flange 39 is moved off of the rigidisation brackets 7, yet is still captured by the jaws 5 and 6 in their fully closed position.
  • the quick grasp mechanism contained in housing 1 continues to move forward until the capture mechanism frames 34 come in contact with the capture mechanism stop pins 18 which inhibit further forward movement of the quick grasp mechanism.
  • the motor 9 continues to drive the trigger plunger 4 forward and this causes the plunger drive pin 23 to cause the cam drive links 22 to rotate and pull the two capture mechanism cams 21 aft.
  • the present spacecraft capture mechanism is for capturing a rail and or flange feature on a free flying spacecraft.
  • the mechanism includes a capture mechanism including a two stage grasping tool.
  • the grasping tool includes a quick grasp mechanism mounted for movement in housing 1 , which is configured to clamp the feature when the feature is in close proximity to, and triggers the quick gasp mechanism to soft capture the feature (shown as Marman flange 39 in the figures).
  • the quick grasp mechanism includes jaws 5 and 6, and associated cam mechanism located in housing 1.
  • the capture mechanism includes a rigidizing mechanism located in housing 2 configured to draw the quick grasp mechanism and soft captured feature into housing 1 till the feature abuts against a rigidisation surface located in the first housing to rigidize the feature and spacecraft against housing 1 .
  • the rigidizing mechanism includes a pulling mechanism connected to the elongate plunger 4 configured to draw the elongate plunger 4 and the clamping jaws 5 and 6 further into the first housing section 1 , the first housing section 1 and the cam mechanism being configured so that as the clamping jaws 5 and 6 are withdrawn into the first housing section 1 the cam portions engaging the clamping jaws 5 and 6 are biased closer together.
  • the pulling mechanism is configured to further pull the clamping mechanism into the first housing 1 until a portion of the bracket abuts up against rigidisation brackets 7 to thereby rigidiize the captured spacecraft to the capture mechanism.
  • the recoil damper 54 comes into contact with the recoil damper 54 which absorbs almost all of any remaining deceleration forces and brings the recoil mass 53 to a stop.
  • a series of one-way brakes (not shown) in the recoil mass support carriage 56 help prevent the recoil mass 53 from rebounding back down the linear bearings 47 in an uncontrolled manner. These brakes can be of the limited slip type which would permit the recoil mass 53 to slowly move back towards the reset position or they can be rigid brakes permitting the actions of the various elements to be controlled individually.
  • a similar set of brakes on the capture mechanism support carriage 48 prevent its uncontrolled rebound when it reaches the end of its travel. If required to limit capture mechanism assembly 45 deceleration shocks a damper similar to the recoil damper 54 can be placed in the path of the capture mechanism assembly 45.
  • the capture mechanism support carriage 48 With the targeted area of Marman flange 39 captured in the jaws 5 and 6 of the capture mechanism assembly 45, the capture mechanism support carriage 48 is locked to the linear bearings 47 and the capture mechanism assembly 45 rigidises its grasp of the target flange 39 as described for the basic mechanism, above. Once the target Marman flange 39 (or any other graspable feature on the client satellite) is held rigidly in the grasp of the mechanism the capture mechanism assembly 45 may be pulled back into the device housing 46.
  • the speeds and accelerations of the mechanism 45 can be fine- tuned.
  • this fine-tuning can take place during the capture event permitting a significant level of control over the capture event.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manipulator (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Clamps And Clips (AREA)
  • Transmission Devices (AREA)
  • Load-Engaging Elements For Cranes (AREA)
PCT/CA2013/050227 2012-03-19 2013-03-19 Spacecraft capture mechanism Ceased WO2013138936A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13764620.4A EP2828165B1 (en) 2012-03-19 2013-03-19 Spacecraft capture mechanism
JP2015500727A JP6322184B2 (ja) 2012-03-19 2013-03-19 宇宙船捕獲メカニズム
EP20163736.0A EP3693281B1 (en) 2012-03-19 2013-03-19 Spacecraft capture mechanism
CA2867476A CA2867476C (en) 2012-03-19 2013-03-19 Spacecraft capture mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261612715P 2012-03-19 2012-03-19
US61/612,715 2012-03-19

Publications (1)

Publication Number Publication Date
WO2013138936A1 true WO2013138936A1 (en) 2013-09-26

Family

ID=49211091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2013/050227 Ceased WO2013138936A1 (en) 2012-03-19 2013-03-19 Spacecraft capture mechanism

Country Status (6)

Country Link
US (2) US9399295B2 (enExample)
EP (2) EP2828165B1 (enExample)
JP (1) JP6322184B2 (enExample)
CA (2) CA2917649C (enExample)
ES (1) ES2929594T3 (enExample)
WO (1) WO2013138936A1 (enExample)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015164983A1 (en) * 2014-05-02 2015-11-05 Macdonald, Dettwiler And Associates Inc. Spacecraft capture mechanism
CN105564669A (zh) * 2014-10-24 2016-05-11 塔莱斯公司 太空中卫星的操纵
US9399295B2 (en) 2012-03-19 2016-07-26 Macdonald, Dettwiler And Associates Inc. Spacecraft capture mechanism
PL422795A1 (pl) * 2017-09-08 2019-03-11 Przemysłowy Instytut Automatyki i Pomiarów PIAP Chwytak satelitów
WO2020150117A1 (en) * 2019-01-14 2020-07-23 Cu Aerospace, Llc Guideless resilient androgynous serial port docking mechanism
US11401054B2 (en) 2019-01-14 2022-08-02 Cu Aerospace, Llc Guideless resilient androgynous serial port docking mechanism
US11485522B2 (en) 2019-01-14 2022-11-01 Cu Aerospace, Llc Guideless resilient androgynous serial port docking mechanism
CN118419290A (zh) * 2024-05-31 2024-08-02 哈尔滨工业大学 一种仿叶片的轻量化高强度空间抓捕机构

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9187189B2 (en) * 2012-10-12 2015-11-17 The Aerospace Corporation System, apparatus, and method for active debris removal
FR3006673B1 (fr) * 2013-06-07 2016-12-09 Astrium Sas Dispositif de capture d'un objet spatial comprenant un element de pression et au moins deux elements refermables sur l'objet spatial
WO2015053063A1 (ja) * 2013-10-07 2015-04-16 アストロスケール プライベート リミテッド 回転抑制装置
TW201529220A (zh) * 2013-10-31 2015-08-01 Anca Pty Ltd 工具夾持裝置
CN103935530B (zh) * 2014-04-29 2016-05-11 西北工业大学 一种利用涡卷发条的卫星消旋装置
WO2015176182A1 (en) * 2014-05-19 2015-11-26 Macdonald, Dettwiler And Associates Inc. Payload ejection system
US9833903B1 (en) * 2014-08-25 2017-12-05 X Development Llc Controlling extendable legs of a robotic device for use of a mechanical gripper
RU2750349C2 (ru) * 2014-08-26 2021-06-28 Астроскейл Израэл Лтд. Система и способ стыковки для спутников
DE102014014105A1 (de) * 2014-09-24 2016-03-24 Festo Ag & Co. Kg Greifvorrichtung
CN105035369B (zh) * 2015-08-14 2017-07-28 西北工业大学 一种变构型模块丝杠自锁平面连接装置
WO2017044351A1 (en) * 2015-09-08 2017-03-16 The Johns Hopkins University Rigid temporary attachment device for a robotic gripper
US9672967B1 (en) * 2016-03-23 2017-06-06 Honda Motor Co., Ltd. Electromagnetic cart lock
EP3248737B1 (en) 2016-05-23 2018-12-26 Przemyslowy Instytut Automatyki i Pomiarów PIAP Satellites gripper
FR3054656B1 (fr) * 2016-08-01 2018-07-13 Nexter Systems Dispositif de blocage d'un obus et civiere comportant un tel dispositif de blocage
CN106628278B (zh) * 2016-12-16 2019-02-01 南京航空航天大学 非合作目标卫星捕获装置及捕获方法
CA3046252C (en) 2016-12-21 2024-03-19 Macdonald, Dettwiler And Associates Inc. Actuated resettable shockless hold down and release mechanism (ares hdrm)
CN106672611A (zh) * 2017-02-25 2017-05-17 中信戴卡股份有限公司 一种移栽轮毂地链托盘的装置
US10625882B2 (en) 2017-03-06 2020-04-21 Effective Space Solutions Ltd. Service satellite for providing in-orbit services using variable thruster control
US10414053B2 (en) * 2017-03-09 2019-09-17 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Robotic gripper for autonomous rendezvous and capture of satellites
US11104459B2 (en) 2017-04-13 2021-08-31 Northrop Grumman Systems Corporation Systems for capturing a client vehicle
US10733338B2 (en) * 2017-06-29 2020-08-04 The Boeing Company Methods and apparatus to generate a synthetic point cloud of a spacecraft
AU2018304706B2 (en) 2017-07-21 2024-10-24 Northrop Grumman Systems Corporation Spacecraft servicing devices and related assemblies, systems, and methods
JP6342567B1 (ja) * 2017-11-16 2018-06-13 シナノケンシ株式会社 カム型ハンド機構
CN107826270B (zh) * 2017-11-29 2024-01-30 中国科学院沈阳自动化研究所 一种多点夹持式锁紧释放机构
CN108382612B (zh) * 2018-02-05 2021-02-02 西北工业大学深圳研究院 一种针对空间旋转非合作目标的抓捕装置
US10793298B1 (en) * 2018-02-16 2020-10-06 United States Of America As Represented By The Administrator Of Nasa Clamping mechanism for a berthing system
RU181772U1 (ru) * 2018-02-26 2018-07-26 Федеральное государственное автономное научное учреждение "Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики" (ЦНИИ РТК) Специализированное захватное устройство для манипулятора космического назначения
CN108750115B (zh) * 2018-07-01 2021-05-25 朱荣茂 无人机投放装置
CN109050987B (zh) * 2018-08-08 2021-12-21 上海宇航系统工程研究所 一种盘链式星箭连接解锁机
CN109204891B (zh) * 2018-08-31 2023-03-28 上海宇航系统工程研究所 一种捕获锁紧机构
CN109131955B (zh) * 2018-10-18 2021-07-06 哈尔滨工业大学 一种三指式非合作目标捕获机构及其捕获方法
CN109131956B (zh) * 2018-10-18 2021-06-15 哈尔滨工业大学 一种非合作目标星箭对接环捕获机构及其捕获方法
EP3911574A4 (en) 2019-01-15 2022-09-14 Northrop Grumman Systems Corporation SPACECRAFT MAINTENANCE DEVICES AND RELATED ARRANGEMENTS, SYSTEMS AND PROCEDURES
DE102019109810B4 (de) * 2019-04-12 2023-01-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung und Verfahren zum Entfalten eines aufgerollten länglichen Hohlkörpers
IT201900006668A1 (it) * 2019-05-09 2020-11-09 Gimatic S R L Pinza per manipolatori industriali dotata di sensore e metodo per rilevare la presenza di un pezzo tra le griffe di una pinza per manipolatori industriali
CN110217410B (zh) * 2019-05-30 2021-09-03 北京控制工程研究所 一种对接环捕获锁紧机构及捕获锁紧方法
US11628561B2 (en) * 2019-08-19 2023-04-18 The Hong Kong University Of Science And Technology System and methods for robotic precision placement and insertion
US11643227B2 (en) * 2019-09-24 2023-05-09 Astroscale Israel, Ltd. In-orbit spacecraft servicing through umbilical connectors
US11518552B2 (en) * 2019-12-31 2022-12-06 The Aerospace Corporation Omni-directional extensible grasp mechanisms
CN111367314B (zh) * 2020-03-09 2021-07-27 西北工业大学 一种基于多航天器编队的空间非合作目标协同抓捕方法
US11827386B2 (en) 2020-05-04 2023-11-28 Northrop Grumman Systems Corporation Vehicle capture assemblies and related devices, systems, and methods
US12371195B2 (en) 2020-05-04 2025-07-29 Northrop Grumman Systems Corporation Vehicle capture assemblies and related devices, systems, and methods
WO2021263100A1 (en) * 2020-06-25 2021-12-30 Jabil Inc. Apparatus, system and method for clamping components
US11643226B1 (en) * 2020-09-01 2023-05-09 Lockheed Martin Corporation Spacecraft mating mechanisms
CN112093082B (zh) * 2020-09-25 2022-03-18 中国空间技术研究院 高轨卫星抓捕机构的在轨抓捕导引方法和装置
CN112276991B (zh) * 2020-10-20 2022-03-01 内蒙古工业大学 一种移动机器人的对接机构
CN112518794B (zh) * 2020-11-04 2022-03-18 中国空间技术研究院 一种抓取装置及其控制方法
EP4098568B1 (de) * 2021-05-31 2024-04-03 EXOLAUNCH GmbH Auslösevorrichtung
CA203910S (en) * 2021-06-03 2023-05-30 Macdonald Dettwiler & Associates Inc Robotic end effector and end of arm tool
US11554885B1 (en) * 2021-06-07 2023-01-17 H G Technologies, Llc Satellite rescue system and method
WO2023108293A1 (en) * 2021-12-16 2023-06-22 Macdonald, Dettwiler And Associates Inc. Robotic systems, methods, and devices for grappling and actuating a payload
JP2025503498A (ja) * 2021-12-23 2025-02-04 マクドナルド・デトワイラー・アンド・アソシエイツ・インコーポレイテッド フリーフライヤまたは他の支持されていない物体のロボット捕獲のためのシステム、方法、およびデバイス
UA150996U (uk) * 2022-01-04 2022-05-18 Товариство З Обмеженою Відповідальністю "Курс-Орбітал" Багатофункціональний модуль зближення і захвату
CN114476610B (zh) * 2022-03-24 2025-07-25 广东金龙东创智能装备有限公司 翻转供料设备
CN114955021B (zh) * 2022-06-14 2024-05-14 南京航空航天大学 一种仿章鱼触手空间抓捕机构
CN114986544B (zh) * 2022-06-15 2025-01-28 北京空间飞行器总体设计部 一种空间机械臂末端抓取机构与抓取方法
CN115477025B (zh) * 2022-10-31 2023-05-26 哈尔滨工业大学 实现卫星故障帆板辅助展开的被动式模块化接口夹持装置
US12338006B2 (en) 2022-11-18 2025-06-24 Northrop Grumman Systems Corporation Movable platforms for vehicle capture assemblies and related devices, assemblies, systems, and methods
CN115847470B (zh) * 2022-12-02 2024-04-26 西北工业大学 一种基于机械臂具有自适应性的空间包络捕获末端执行器
JP7775504B2 (ja) * 2022-12-26 2025-11-25 株式会社クボタ レバー装置及びそれを備えた作業機
CN115958622B (zh) * 2023-01-06 2025-10-17 成都航天烽火精密机电有限公司 单驱双控式夹持旋转驱动机构
US20250269985A1 (en) * 2023-05-05 2025-08-28 Katalyst Space Technologies, Llc Marman ring attachment mechanism
CN116853537B (zh) * 2023-06-13 2025-07-22 南京航空航天大学 一种空间抓捕机构
PL446192A1 (pl) 2023-09-20 2025-03-24 Piap Space Spółka Z Ograniczoną Odpowiedzialnością Chwytak satelitów
CN117464687B (zh) * 2023-12-05 2024-11-15 哈尔滨工业大学 一种基于深度强化学习的非合作目标捕获方法
CN118372292B (zh) * 2024-06-24 2024-09-10 中北大学 一种电触发气体推动的脱锁机构
DE102024120913B3 (de) 2024-07-23 2025-12-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Greifer für T-Profile
CN119018372B (zh) * 2024-09-12 2025-10-17 西北工业大学 一种差分绳驱空间碎片目标抓捕机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346929A (en) 1966-03-04 1967-10-17 James E Webb Latching mechanism
US4219171A (en) * 1979-02-06 1980-08-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Device for coupling a first vehicle to a second vehicle
US4718709A (en) * 1986-12-16 1988-01-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Orbital maneuvering vehicle end effectors
JPH04151400A (ja) * 1990-10-15 1992-05-25 Mitsubishi Heavy Ind Ltd リニアレール誘導装置
US5735626A (en) * 1996-09-26 1998-04-07 Mcdonnell Douglas Corp. Separating rail assembly
US20090173832A1 (en) * 2004-03-18 2009-07-09 Michigan Aerospace Corporation Docking system

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3391881A (en) * 1964-06-05 1968-07-09 Menasco Mfg Company Docking mechanism
GB1201749A (en) 1969-06-06 1970-08-12 Deeweld Ltd Improvements in or relating to lifting clamps
US3820741A (en) * 1972-10-26 1974-06-28 Nasa Latch mechanism
US4195804A (en) * 1978-03-30 1980-04-01 General Dynamics Corporation Space platform docking device
US4260187A (en) * 1979-03-23 1981-04-07 Nasa Terminal guidance sensor system
US4273305A (en) * 1979-07-03 1981-06-16 Spar Aerospace Limited Satellite servicing
US4391423A (en) * 1981-03-30 1983-07-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Satellite retrieval system
US4810019A (en) * 1987-02-05 1989-03-07 Bruecher Eberhard Mechanically operated collet chuck for gripping round objects
US4929011A (en) * 1988-02-04 1990-05-29 National Research Counsil Of Canada/Conseil National De Recherches Du Canada Grapple fixture
US4845834A (en) * 1988-02-22 1989-07-11 Kearney & Trecker Corporation Tool clamping mechanism
US4898348A (en) * 1988-12-30 1990-02-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Docking system for spacecraft
JPH0749280B2 (ja) * 1989-10-02 1995-05-31 宇宙開発事業団 構造物のアラインメント装置
US5094410A (en) * 1989-10-31 1992-03-10 Space Industries, Inc. Capture/berthing system for spacecraft
US5040748A (en) 1990-02-20 1991-08-20 General Dynamics Corporation/Space Systems Division Payload adapter ring
JP2676265B2 (ja) * 1990-04-27 1997-11-12 宇宙開発事業団 捕獲機構
US7070151B2 (en) * 2004-01-09 2006-07-04 Iostar Corporation In orbit space transportation and recovery system
US7857261B2 (en) * 2001-11-01 2010-12-28 Michigan Aerospace Corporation Docking system
JP3738290B2 (ja) * 2003-05-09 2006-01-25 独立行政法人 宇宙航空研究開発機構 人工衛星結合機構、それを有した宇宙機及び制御方法
DE10342953B4 (de) * 2003-09-17 2007-11-22 Astrium Gmbh Vorrichtung zum Greifen von Objekten im All
US6840481B1 (en) * 2003-09-30 2005-01-11 The Aerospace Corporation Adjustable multipoint docking system
US7370896B2 (en) * 2003-12-30 2008-05-13 Strider Labs, Inc. Robotic hand with extendable palm
US6988651B2 (en) 2004-02-17 2006-01-24 General Motors Corporation Friction stir rivet drive system and stir riveting methods
US7828249B2 (en) * 2004-03-18 2010-11-09 Michigan Aerospace Corporation Docking system
US6969030B1 (en) 2004-07-14 2005-11-29 Macdonald Dettwiler Space And Associates Inc. Spacecraft docking mechanism
US7861975B2 (en) 2006-03-31 2011-01-04 The Boeing Company Two part spacecraft servicing vehicle system with universal docking adaptor
US9399295B2 (en) 2012-03-19 2016-07-26 Macdonald, Dettwiler And Associates Inc. Spacecraft capture mechanism

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346929A (en) 1966-03-04 1967-10-17 James E Webb Latching mechanism
US4219171A (en) * 1979-02-06 1980-08-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Device for coupling a first vehicle to a second vehicle
US4718709A (en) * 1986-12-16 1988-01-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Orbital maneuvering vehicle end effectors
JPH04151400A (ja) * 1990-10-15 1992-05-25 Mitsubishi Heavy Ind Ltd リニアレール誘導装置
US5735626A (en) * 1996-09-26 1998-04-07 Mcdonnell Douglas Corp. Separating rail assembly
US20090173832A1 (en) * 2004-03-18 2009-07-09 Michigan Aerospace Corporation Docking system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Docking System Would Accommodate Misalignments", NTIS TECH NOTES, US DEPARTMENT OF COMMERCE, 1 December 1991 (1991-12-01)
See also references of EP2828165A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9399295B2 (en) 2012-03-19 2016-07-26 Macdonald, Dettwiler And Associates Inc. Spacecraft capture mechanism
US9764478B2 (en) 2012-03-19 2017-09-19 Macdonald, Dettwiler And Associates Inc. Spacecraft capture mechanism
EP3137379A4 (en) * 2014-05-02 2017-12-27 MacDonald, Dettwiler and Associates Inc. Spacecraft capture mechanism
US9669950B2 (en) 2014-05-02 2017-06-06 Macdonald, Dettwiler And Associates Inc. Spacecraft capture mechanism
JP2017520474A (ja) * 2014-05-02 2017-07-27 マクドナルド デットワイラー アンド アソシエイツ インコーポレーテッド 宇宙船キャプチャーメカニズム
WO2015164983A1 (en) * 2014-05-02 2015-11-05 Macdonald, Dettwiler And Associates Inc. Spacecraft capture mechanism
CN105564669A (zh) * 2014-10-24 2016-05-11 塔莱斯公司 太空中卫星的操纵
CN105564669B (zh) * 2014-10-24 2020-05-29 塔莱斯公司 太空中卫星的操纵
PL422795A1 (pl) * 2017-09-08 2019-03-11 Przemysłowy Instytut Automatyki i Pomiarów PIAP Chwytak satelitów
WO2020150117A1 (en) * 2019-01-14 2020-07-23 Cu Aerospace, Llc Guideless resilient androgynous serial port docking mechanism
US10882645B2 (en) 2019-01-14 2021-01-05 Cu Aerospace, Llc Guideless resilient androgynous serial port docking mechanism
US11401054B2 (en) 2019-01-14 2022-08-02 Cu Aerospace, Llc Guideless resilient androgynous serial port docking mechanism
US11485522B2 (en) 2019-01-14 2022-11-01 Cu Aerospace, Llc Guideless resilient androgynous serial port docking mechanism
CN118419290A (zh) * 2024-05-31 2024-08-02 哈尔滨工业大学 一种仿叶片的轻量化高强度空间抓捕机构

Also Published As

Publication number Publication date
JP6322184B2 (ja) 2018-05-09
EP3693281A1 (en) 2020-08-12
EP3693281B1 (en) 2022-09-14
JP2015516325A (ja) 2015-06-11
CA2867476C (en) 2016-01-26
CA2917649A1 (en) 2013-09-26
CA2917649C (en) 2018-05-29
US20130249229A1 (en) 2013-09-26
US20160332308A1 (en) 2016-11-17
CA2867476A1 (en) 2013-09-26
US9764478B2 (en) 2017-09-19
EP2828165A4 (en) 2015-12-09
ES2929594T3 (es) 2022-11-30
EP2828165B1 (en) 2020-05-06
US9399295B2 (en) 2016-07-26
EP2828165A1 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
US9764478B2 (en) Spacecraft capture mechanism
EP3137379B1 (en) Spacecraft capture mechanism
Bartelds et al. Compliant aerial manipulators: Toward a new generation of aerial robotic workers
Shan et al. Review and comparison of active space debris capturing and removal methods
Stolfi et al. A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target
Suarez et al. Anthropomorphic, compliant and lightweight dual arm system for aerial manipulation
Felicetti et al. Design of robotic manipulators for orbit removal of spent launchers’ stages
Jaekel et al. Design and operational elements of the robotic subsystem for the e. deorbit debris removal mission
Telaar et al. GNC architecture for the e. Deorbit mission
Lampariello On grasping a tumbling debris object with a free-flying robot
Hirano et al. Caging-based grasp with flexible manipulation for robust capture of a free-floating target
Telaar et al. Coupled control of chaser platform and robot arm for the e. deorbit mission
Nguyen et al. Deployable hook retrieval system for UAV rescue and delivery
Winck et al. Time-delayed teleoperation for interaction with moving objects in space
Fujii et al. Comparative analysis of robotic gripping solutions for cooperative and non-cooperative targets
Heemskerk et al. Extending ERA's capabilities to capture and transport large payloads
Kalantari et al. Design, Prototype, and Performance Assessment of an Autonomous Manipulation System for Mars Sample Recovery Helicopter
Schoelen et al. Development robotic arm system testbed for the mars sample return campaign
Aghili Cartesian control of space manipulators for on-orbit servicing
Matsushita et al. EXPERIMENTAL VERIFICATION ON CAGINGCAPTURE OF A FREE-FLOATING OBJECT BY A DUAL-ARM SPACE ROBOT
Matsumoto et al. Truss Structure Tele-operation using ETS-7 Space Robot
Toklu Maintenance satellite modular docking mechanism design for on orbit servicing to nanosatellites
Laha et al. Vision based Navigation, Guidance and Control of 6 DOF Robotic manipulator for Space Berthing application
Mukherjee et al. Testbeds and technologies for potential Mars orbital sample capture and manipulation
Wu et al. Multi-level speed planning based capturing strategy of simultaneous three-fingered end-effectors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2867476

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015500727

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013764620

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE