WO2013137478A1 - 潤滑油組成物、該潤滑油組成物を用いた摺動機構 - Google Patents
潤滑油組成物、該潤滑油組成物を用いた摺動機構 Download PDFInfo
- Publication number
- WO2013137478A1 WO2013137478A1 PCT/JP2013/057750 JP2013057750W WO2013137478A1 WO 2013137478 A1 WO2013137478 A1 WO 2013137478A1 JP 2013057750 W JP2013057750 W JP 2013057750W WO 2013137478 A1 WO2013137478 A1 WO 2013137478A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- lubricating oil
- sliding
- oil composition
- acid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/10—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M163/00—Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/043—Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/26—Overbased carboxylic acid salts
- C10M2207/262—Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbasedsulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
- C10M2219/068—Thiocarbamate metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2080/00—Special pretreatment of the material to be lubricated, e.g. phosphatising or chromatising of a metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2206/00—Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
- F16C2206/02—Carbon based material
- F16C2206/04—Diamond like carbon [DLC]
Definitions
- the present invention relates to a lubricating oil composition and a sliding mechanism using the lubricating oil composition, and more specifically, a lubricating oil composition exhibiting a very low friction coefficient when used as a lubricating oil for a low friction sliding material, and The present invention relates to a sliding mechanism having a low coefficient of friction using the lubricating oil composition.
- the performance required for engine oil includes appropriate viscosity characteristics, oxidation stability, clean dispersibility, antiwear, antifoaming, etc. These performances can be improved by combining various base oils and additives. Is planned.
- zinc dialkyldithiophosphate (ZnDTP) is widely used as an additive for engine oil because it is excellent as an antiwear additive.
- sliding materials as materials for parts with severe frictional wear environments (for example, sliding parts of engines), there are hard films such as TiN films and CrN films that contribute to improved wear resistance.
- the material is known. Furthermore, it is known that a friction coefficient can be lowered in the air and in the absence of lubricating oil by using a diamond-like carbon (DLC) film, and a material having a DLC film (hereinafter referred to as a DLC material) has a low friction. Expected to be a sliding material.
- DLC diamond-like carbon
- Patent Document 1 discloses a lubricating oil composition used for a low friction sliding member containing an ether-based ashless friction reducing agent.
- Patent Documents 2 and 3 include a fatty acid ester-based ashless friction modifier and an aliphatic amine-based ashless friction adjustment on the sliding surface between the DLC member and the iron base member and the sliding surface between the DLC member and the aluminum alloy member.
- Patent Document 4 discloses a technique of using a low friction agent composition containing an oxygen-containing organic compound or an aliphatic amine compound in a low friction sliding mechanism having a DLC coating sliding member.
- Lubricating oil compositions for low-friction sliding materials have been developed in this way, but even when these technologies are applied, the friction coefficient can be increased by adding ZnDTP to further improve wear resistance. A phenomenon was observed in which low friction was not achieved. Therefore, in order to maintain and improve various performances required for the lubricating oil composition, for example, even a lubricating oil composition containing ZnDTP is extremely low when used as a lubricating oil for low friction sliding materials. There is a need for lubricating oil compositions that exhibit a coefficient of friction.
- a lubricating oil composition capable of exhibiting excellent low friction properties while maintaining various characteristics as such a lubricating oil composition is combined with a sliding member having the DLC film on a sliding surface. There is also a need for a sliding mechanism with excellent low friction.
- JP 2006-36850 A Japanese Patent Laid-Open No. 2003-238882 Japanese Patent Application Laid-Open No. 2004-155891 JP 2005-98495 A
- the present invention has been made in view of the above circumstances, and even when the lubricating oil composition contains zinc dialkyldithiophosphate, it has an extremely low friction when used as a lubricating oil composition for low friction sliding materials.
- An object of the present invention is to provide a lubricating oil composition exhibiting a coefficient. Further, even when a lubricating oil composition containing ZnDTP is used, a sliding mechanism having excellent low friction is provided by combining with a sliding member having a specific low friction sliding material film on the sliding surface. It is for the purpose.
- the present inventors have found that the above problem can be solved by a lubricating oil composition containing a specific additive. Further, the present invention has found that the above-mentioned problems can be solved by configuring a sliding mechanism with this lubricating oil composition and a sliding member on which a film of a specific low friction sliding material is formed. . The present invention has been completed based on such findings.
- the present invention 1.
- (A) zinc organic dithiophosphate is 0.005% by mass or more and 0.12% by mass or less in terms of phosphorus concentration
- (B) amide type friction reducing agent is added by 0.00. 05 mass% or more and 5.0 mass% or less
- (C) alkaline earth metal salicylate detergent and / or alkaline earth metal sulfonate detergent is 0.05 mass% or more in terms of alkaline earth metal concentration.
- a lubricating oil composition used for a low-friction sliding material containing 5% by mass or less, 2.
- DLC diamond-like carbon
- a sliding mechanism in which the lubricating oil composition according to any one of the above 1 to 4 is interposed on the sliding surfaces of two sliding members that slide relative to each other, and of the two sliding members A sliding mechanism in which a DLC film containing 5 atom% or more and 50 atom% or less of hydrogen is formed on at least one sliding surface; 6).
- a lubricating oil composition having an extremely low friction coefficient when used as a lubricating oil composition for a low friction sliding material even when the lubricating oil contains zinc dialkyldithiophosphate. can do.
- the present invention is excellent in low friction by combining a lubricating oil composition containing zinc dialkyldithiophosphate with a sliding member having a specific low friction sliding material film on the sliding surface. A sliding mechanism can be provided.
- the present invention relates to a lubricating oil composition and a sliding mechanism using the lubricating oil composition.
- Lubricating oil composition [Lubricant base oil]
- the lubricating oil composition of the present invention usually contains a lubricating base oil and a specific additive, and is used as a lubricating oil used for the sliding surface of a low friction sliding material.
- the lubricating base oil used in the present invention is not particularly limited, and known mineral base oils (hereinafter sometimes referred to as “mineral oil”) and synthetic base oils (hereinafter referred to as “synthetic oils”) that have been conventionally used. May be selected as appropriate from the above).
- mineral oil-based base oil for example, a distillate obtained by atmospheric distillation of paraffin-based crude oil, intermediate-based crude oil or naphthene-based crude oil, or by distillation of the residual oil of atmospheric distillation under reduced pressure
- refined oil obtained by refining it according to a conventional method such as solvent refined oil, hydrocracked oil, hydrorefined oil, dewaxed oil, clay-treated oil, and wax isomerized oil Can do.
- examples of synthetic oils include poly ⁇ -olefins, polybutenes, polyol esters, and alkylbenzenes, which are ⁇ -olefin oligomers having 8 to 14 carbon atoms.
- the lubricating base oil one kind of the above mineral oil may be used, or two or more kinds may be used in combination.
- the said synthetic oil may be used 1 type and may be used in combination of 2 or more type.
- one or more mineral oils and one or more synthetic oils may be used in combination.
- the lubricant base oil has a kinematic viscosity at 100 ° C. is usually 2 mm 2 / s or more 50mm 2 / s, 30mm 2 / s or less preferably 3 mm 2 / s or more, particularly preferably 3 mm 2 / s or more 15 mm 2 / Those less than or equal to s are advantageous.
- the kinematic viscosity at 100 ° C. is 2 mm 2 / s or more, the evaporation loss is small, and when it is 50 mm 2 / s or less, the power loss due to the viscous resistance is suppressed, and the fuel efficiency improvement effect is exhibited well.
- the lubricating base oil preferably has a viscosity index of 60 or more, more preferably 70 or more, and particularly preferably 80 or more. When the viscosity index is 60 or more, the viscosity change due to the temperature of the base oil is small, and stable lubricating performance is exhibited. Furthermore, the lubricating base oil preferably has a sulfur content of 1000 ppm by mass or less, more preferably 500 ppm by mass or less, and particularly preferably 100 ppm by mass or less. If sulfur content is 1000 mass ppm or less, there exists an effect which oxidation stability improves. Further, the lubricating base oil is preferably contained in an amount of 70% by mass or more, more preferably 80% by mass or more based on the total amount of the composition.
- Zinc dithiophosphate represented by the formula can be used.
- R 1 , R 2 , R 3 and R 4 in the general formula (I) each independently represent a hydrocarbon group having 1 to 24 carbon atoms.
- these hydrocarbon groups include linear or branched alkyl groups having 1 to 24 carbon atoms, linear or branched alkenyl groups having 3 to 24 carbon atoms, and cycloalkyl groups having 5 to 13 carbon atoms.
- the content of the component (A) zinc dithiophosphate is required to be 0.005% by mass or more and 0.12% by mass or less in terms of phosphorus concentration based on the total amount of the composition. If the amount is less than 0.005% by mass, a sufficient friction reduction effect or wear reduction effect may not be obtained. If the amount exceeds 0.12% by mass, a significant improvement in the effect cannot be expected. Therefore, the content of component (A) is preferably 0.01 or more and 0.11% by mass or less, and 0.02 or more and 0.10% by mass or less in terms of phosphorus concentration based on the total amount of the composition. It is more preferable that
- the zinc dithiophosphate of the component (A) preferably contains primary zinc dialkyldithiophosphate in an amount of 0.005% by mass or more and 0.05% by mass or less in terms of phosphorus concentration based on the total amount of the composition. More preferably, the content is 0.007% by mass or more and 0.05% by mass or less, and more preferably 0.01% by mass or more and 0.05% by mass or less.
- the presence of zinc dithiophosphate containing the specific amount of the primary zinc dialkyldithiophosphate in the presence of the amide-based friction reducing agent (B) described later Having the low friction sliding material can significantly increase the friction reducing effect on the sliding surface. At the same time, the wear resistance of the sliding surface that does not have the low friction sliding material can be further improved.
- an amide friction reducing agent is used as the component (B).
- the amide friction reducing agent an amide compound obtained from an amine compound and a carboxylic acid compound is usually used.
- the amine compound constituting the amide compound include an aliphatic monoamine, an alkylene oxide adduct of the aliphatic monoamine, an aliphatic polyamine, and an alkanolamine.
- the aliphatic monoamine an aliphatic monoamine having 6 to 30 carbon atoms, preferably 12 to 24 carbon atoms, and more preferably 16 to 22 carbon atoms is used. It may be a saturated or unsaturated one.
- aliphatic monoamines include, for example, hexylamine, heptylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine.
- an alkyloxide adduct having 2 to 3 carbon atoms of the aliphatic monoamine is preferable.
- Specific examples of such aliphatic monoamine alkylene oxide adducts include hexyl monoethanolamine, heptyl monoethanolamine, octyl monoethanolamine, 2-ethylhexyl monoethanolamine, nonyl monoethanolamine, decyl monoethanolamine, Undecyl monoethanolamine, dodecyl monoethanolamine, tridecyl monoethanolamine, tetradecyl monoethanolamine, pentadecyl monoethanolamine, hexadecyl monoethanolamine, heptadecyl monoethanolamine, octadecyl monoethanolamine, 2-heptylun Decyl monoethanolamine, nonadecyl monoethanolamine, icosyl monoethanolamine, heicosyl monoethanolamine, dokoshi
- dococenyl diethanolamine dococenyl diethanolamine, tricocenyl diethanolamine, tetracocenyl diethanolamine, pentacocenyl diethanolamine, hexa Aliphatic diethanolamines such as cocenyl diethanolamine, heptacocenyl diethanolamine, octacocenyl diethanolamine, nonacosenyl diethanolamine and triacontenyl diethanolamine;
- the alkanolamine is preferably 2-hydroxy aliphatic monoamine (the aliphatic monoamine is an aliphatic monoamine having 6 to 30, preferably 12 to 24, more preferably 16 to 22 carbon atoms).
- alkanolamines include 2-hydroxyhexylamine, 2-hydroxyheptylamine, 2-hydroxyoctylamine, 2-hydroxynonylamine, 2-hydroxydecylamine, 2-hydroxyundecylamine, 2-hydroxy Dodecylamine, 2-hydroxytridecylamine, 2-hydroxytetradecylamine, 2-hydroxypentadecylamine, 2-hydroxyhexadecylamine, 2-hydroxyheptadecylamine, 2-hydroxyoctadecylamine, 2-hydroxyheptylundecyl Amine, 2-hydroxynonadecylamine, 2-hydroxyicosylamine, 2-hydroxyhenicosylamine, 2-hydroxydocosylamine, 2-hydroxytricosylamine, 2-tetracosyl Amine, 11-eth
- aliphatic polyamine examples include aliphatic polyamines having a total carbon number of 6 to 30, preferably 12 to 24, and more preferably 16 to 20. Specific examples of such aliphatic polyamines include hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, , 12-diaminododecane, 1,13-diaminotridecane, 1,14-diaminotetradecane, 1,15-diaminopentadecane, 1,16-diaminohexadecane, 1,17-diaminoheptadecane, 1,18-diaminooctadecane, 1,19-diaminononadecane, 1,20-diaminoicosane, 1,2-diamino
- the carboxylic acid compound constituting the amide compound is preferably a monovalent fatty acid having 6 to 30, preferably 8 to 24, more preferably 12 to 24, and particularly preferably 18 to 22 carbon atoms of the hydrocarbon group.
- the fatty acid may be linear or branched and may be saturated or unsaturated.
- Examples of such carboxylic acid compounds include caproic acid, enanthic acid, caprylic acid, 2-ethylhexanoic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, marganic acid, stearic acid, isostearic acid, and arachidine.
- saturated fatty acids such as acid, behenic acid and lignoceric acid
- unsaturated fatty acids such as lauric acid, myristoleic acid, palmitoleic acid, oleic acid, linolenic acid and erucic acid.
- amide compound of component (B) composed of the above amine compound and carboxylic acid compound include, for example, caproic acid amide, enanthic acid amide, 2-ethylhexanoic acid amide, 2-ethylhexanoic acid amide, pelargon Acid amide, 2-ethylhexanoic acid amide, lauric acid amide, myristic acid amide, palmitic acid amide, margaric acid amide, stearic acid amide, isostearic acid amide, arachidic acid amide, behenic acid amide, lignoceric acid amide, lauric acid amide, C6-C30 fatty acid amides such as myristoleic acid amide, palmitoleic acid amide, oleic acid amide, linolenic acid amide, erucic acid amide; caproic acid monoethanolamide, enanthic acid monoethanolamide, pelargonic acid monoethanolamide ,
- amide friction reducing agents an aliphatic hydrocarbon group having a saturated or unsaturated linear or branched chain having 12 to 24 carbon atoms, more preferably 16 to 20 carbon atoms, is preferable in terms of a friction reducing effect.
- These amide type friction reducing agents as the component (B) may be used alone or in combination of two or more.
- the content of the component (B) in the present invention is 0.05% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 3% by mass or less based on the total amount of the composition. If the content of the component (B) is less than 0.05% by mass, the effect of reducing friction may be insufficient. On the other hand, if the content exceeds 5% by mass, a significant improvement in the effect corresponding to the increase in content cannot be expected.
- the present invention contains an alkaline earth metal salicylate detergent and / or an alkaline earth metal sulfonate detergent as the component (C).
- Alkaline earth metal salicylate is an alkaline earth metal salt of alkyl (usually an alkyl group having 4 to 30 carbon atoms) salicylic acid, and the alkaline earth metal salt is preferably a calcium salt, a magnesium salt or a barium salt, particularly calcium. A salt is preferably used.
- an alkaline earth metal salt of an alkyl aromatic sulfonic acid obtained by sulfonating an alkyl aromatic compound having a molecular weight of 300 to 1,500, preferably 400 to 700 is used. .
- the metal detergent may be any of a neutral salt, a basic salt, and an overbased salt.
- the total base number is 10 mgKOH / g or more and 500 mgKOH / g or less, preferably 15 mgKOH / g or more and 450 mgKOH. / G or less, more preferably 15 mgKOH / g or more and 400 mgKOH / g or less of metallic detergents selected from one or more kinds can be used in combination.
- the total base number referred to here is JIS K 2501 “Petroleum products and lubricants—neutralization number test method”. Means the total base number by potentiometric titration method (base number / perchloric acid method) measured according to the above.
- the metal-based detergent is usually commercially available in a state diluted with a light lubricating base oil or the like, and can be obtained, but generally the metal content is 1.0% by mass or more and 20%. It is desirable to use a material having a mass% or less, preferably 2.0 mass% or more and 16 mass% or less.
- the content of the metal detergent of the component (C) is 0.05% by mass or more and 0.5% by mass or less, preferably 0.1% by mass in terms of alkaline earth metal concentration, based on the total amount of the lubricating oil composition. % Or more and 0.3% by mass or less, more preferably 0.15% by mass or more and less than 0.25% by mass.
- the content of the component (C) is less than 0.05% by mass, the cleanability may be insufficient, and when it exceeds 0.5% by mass, the effect of reducing the friction coefficient may be insufficient in some cases. There is a fear.
- the lubricating oil composition of the present invention may contain conventionally known additives other than the components (A), (B), and (C) as long as the effects of the present invention are not impaired.
- Agents ashless dispersants, friction reducers, viscosity index improvers, pour point depressants, antioxidants, rust inhibitors and the like.
- the metal detergent include alkaline earth metal phenates.
- Examples of the ashless dispersant include succinimides, boron-containing succinimides, benzylamines, boron-containing benzylamines, succinic esters, monovalent or divalent typified by fatty acids or succinic acid. And carboxylic acid amides.
- the friction reducing agent examples include ashless friction reducing agents such as fatty acid esters, aliphatic amines, and higher alcohols.
- specific examples of the viscosity index improver include various methacrylic acid esters or copolymers based on any combination thereof, so-called non-dispersion type viscosity index improvers such as hydrides thereof, and various types including nitrogen compounds. Examples thereof include a so-called dispersed viscosity index improver obtained by copolymerizing a methacrylic acid ester.
- non-dispersed or dispersed ethylene- ⁇ -olefin copolymers for example, propylene, 1-butene, 1-pentene etc.
- hydrides thereof polyisobutylene and hydrides thereof, styrene-diene
- examples thereof include hydrides of copolymers, styrene-maleic anhydride copolymers, and polyalkylstyrenes.
- the molecular weight of these viscosity index improvers needs to be selected in consideration of shear stability.
- the number average molecular weight of the viscosity index improver is, for example, 5,000 to 1,000,000, preferably 100,000 to 800,000 for dispersed and non-dispersed polymethacrylates, and preferably 800 to 5,000 for polyisobutylene or a hydride thereof.
- an ethylene- ⁇ -olefin copolymer or a hydride thereof it is 800 to 300,000, preferably 10,000 to 200,000.
- the viscosity index improver can be contained alone or in any combination of plural kinds, but the content is usually 0.1% by mass or more and 40.0% by mass based on the total amount of the lubricating oil composition. It is about the following.
- the pour point depressant include polymethacrylate.
- antioxidants include phenolic antioxidants and amine antioxidants.
- phenolic antioxidants include 4,4′-methylenebis (2,6-di-t-butylphenol), 4,4′-bis (2,6-di-t-butylphenol), 4,4′- Bis (2-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 4 , 4′-butylidenebis (3-methyl-6-tert-butylphenol), 4,4′-isopropylidenebis (2,6-di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6- Nonylphenol), 2,2'-isobutylidenebis (4,6-dimethylphenol), 2,2'-methylenebis (4-methyl-6-cyclohexylphenol), 2,6-di t-butyl-4-methylphenol, 2,6-di
- amine antioxidants include monoalkyl diphenylamines such as monooctyl diphenylamine and monononyl diphenylamine, 4,4′-dibutyldiphenylamine, 4,4′-dipentyldiphenylamine, 4,4′-dihexyldiphenylamine, 4 , 4'-diheptyldiphenylamine, 4,4'-dioctyldiphenylamine, dialkyldiphenylamines such as 4,4'-dinonyldiphenylamine, polyalkyldiphenylamines such as tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine, tetranonyldiphenylamine And naphthylamine type, specifically ⁇ -naphthylamine, phenyl- ⁇ -naphthylamine, and further butyl
- dialkyldiphenylamine type and naphthylamine type are preferable.
- the rust inhibitor include alkyl benzene sulfonate, dinonyl naphthalene sulfonate, alkenyl succinate, polyhydric alcohol ester and the like.
- the lubricating oil composition of the present invention is applied to a sliding surface having a low-friction sliding material, and can impart excellent low-friction properties and wear resistance, especially when applied to an internal combustion engine. A fuel efficiency effect can be imparted.
- the sliding surface having the low friction sliding material preferably has a DLC material as a low friction sliding material on at least one side.
- examples of the material of the other sliding surface include a DLC material, an iron-based material, and an aluminum alloy material. That is, both sliding surfaces are DLC material, one sliding surface is DLC material, the other sliding surface is iron-based material, one sliding surface is DLC material, and the other sliding surface is aluminum alloy material. A case can be illustrated.
- the DLC material has a DLC film on the surface.
- the DLC constituting the film is amorphous mainly composed of carbon elements, and includes a diamond structure (SP 3 bond) and a graphite bond (SP 2 bond) as a bonding form between carbons.
- aC amorphous carbon
- aC hydrogen amorphous carbon
- aC hydrogen amorphous carbon
- examples thereof include MeDLC (metal doped DLC) partially containing a metal element.
- aC: H (hydrogen amorphous carbon) particularly aC: H containing 5 to 50 atom% of hydrogen is preferable.
- DLC is preferably DLC having a graphite crystal peak in the X-ray scattering spectrum.
- a DLC having such a graphite crystal peak can be formed in a high-density plasma atmosphere by a cathode PIG (Penning Ionization Gauge) plasma CVD method.
- PIG Powder Ionization Gauge
- examples of the iron base material include carburized steel SCM420 and SCr420 (JIS).
- the aluminum alloy material it is preferable to use a hypoeutectic aluminum alloy or a hypereutectic aluminum alloy containing 4% by mass to 20% by mass of silicon and 1.0% by mass to 5.0% by mass of copper.
- AC2A, AC8A, ADC12, ADC14 (JIS), etc. can be mentioned.
- the surface roughness of each of the DLC material and the iron base material, or the DLC material and the aluminum alloy material is preferably an arithmetic average roughness Ra of 0.1 ⁇ m or less from the viewpoint of sliding stability. is there.
- the DLC material preferably has a surface hardness of Hv 1000 or more and 3500 or less in terms of micro Vickers hardness (98 mN load) and a thickness of 0.3 ⁇ m or more and 2.0 ⁇ m or less.
- the iron base material preferably has a surface hardness of HRC45 or more and 60 or less in terms of Rockwell hardness (C scale). This case is effective because the durability of the film can be maintained even under sliding conditions under a high surface pressure of about 700 MPa as in a cam follower member.
- the aluminum alloy material preferably has a surface hardness of Brinell hardness HB 80 or more and 130 or less. When the surface hardness and thickness of the DLC material are within the above ranges, abrasion and peeling are suppressed. Further, when the surface hardness of the iron-based material is HRC45 or more, it is possible to suppress buckling and peeling under high surface pressure. On the other hand, if the surface hardness of the aluminum alloy material is within the above range, the wear of the aluminum alloy is suppressed.
- the sliding part to which the lubricating oil composition of the present invention is applied is not particularly limited as long as two metal surfaces are in contact with each other and at least one of them has a low friction sliding material.
- the sliding part of an engine can be mentioned preferably. In this case, it is effective because a low friction characteristic which is extremely excellent as compared with the conventional case is obtained and a fuel saving effect is exhibited.
- the DLC member a disk-shaped shim or lifter crown surface coated with DLC on a steel material substrate is exemplified
- the iron base member low alloy chilled cast iron, carburized steel or tempered carbon steel, and The cam lobe using the material which concerns on these arbitrary combinations is mentioned.
- the sliding mechanism of the present invention is a sliding mechanism in which the lubricating oil composition is interposed between the sliding surfaces of two sliding materials that slide with each other.
- a DLC film containing 5 atom% or more and 50 atom% or less of hydrogen is formed on at least one sliding surface.
- the DLC film is more preferably a DLC film having a graphite crystal peak in an X-ray scattering spectrum.
- FIG. 1 is a cross-sectional view schematically showing the structure of a sliding member having a DLC film of a sliding mechanism according to an embodiment of the present invention
- FIG. 2 shows another embodiment of the present invention. It is sectional drawing which shows typically the structure of the sliding member which has the DLC film of the sliding mechanism which concerns.
- 1 and 2 1 is a base material of a sliding material
- 3 is a DLC film
- 4 is a graphite crystal.
- An intermediate layer 2 as an adhesion layer is provided between the base material 1 of the sliding material and the DLC film 3.
- an underlayer 21 may be provided as a second intermediate layer between the base material 1 and the intermediate layer 2.
- a DLC film having such a graphite crystal peak can be formed in a high-density plasma atmosphere by a cathode PIG (Penning Ionization Gauge) plasma CVD method.
- the plasma generated in the cathode PIG is confined by being confined in a magnetic field formed by a coil, and the source gas is decomposed into active atoms, molecules, and ions with high efficiency.
- high energy ions can be irradiated by applying a direct current pulse to the substrate while depositing a highly active source gas component. Thereby, a DLC film excellent in sliding characteristics can be efficiently formed.
- the method described in JP 2010-156026 A is preferable.
- FIG. 3 is a diagram showing an outline of an example of the cathode PIG plasma CVD apparatus.
- 40 is a chamber
- 41 is a substrate
- 42 is a holder
- 43 is a plasma source
- 44 is an electrode
- 45 is a coil
- 46 is a cathode
- 47 is a gas inlet
- 48 is a gas outlet
- 49 is a bias power source.
- Reference numeral 50 denotes plasma formed in the chamber 40.
- a DLC film can be formed as follows. First, the base material 41 is supported by the holder 42 and placed in the chamber 40. Next, Ar gas is injected from the gas inlet 47, and the plasma 50 is generated and stabilized using the plasma source 43, the electrode 44, and the coil 45.
- the Ar gas decomposed in the plasma is attracted to the base material 41 by a bias power source 49, and surface etching is performed. Thereafter, a cathode 46 made of metal and a metal layer as an underlayer are formed using Ar gas. Furthermore, the raw material gas injected from the gas inlet 47 in a high-density plasma atmosphere is decomposed and reacted to generate graphite crystals in the DLC film. This is maintained until a DLC film having a predetermined thickness is obtained. At this time, the crystal diameter of the graphite crystal is controlled to be 15 nm or more and 100 nm or less.
- the cathode PIG plasma CVD apparatus it is possible to change the characteristics of the obtained DLC film by changing the plasma characteristics, gas types, etc.
- the slidability and durability can be improved by optimizing the amount, hardness and surface roughness of the DLC film.
- Confirmation of the presence of the graphite crystal and confirmation of the crystal diameter in the formed DLC film is preferably carried out using the following X-ray diffraction measurement.
- an X-ray diffraction spectrum of a crystal material has a plurality of sharp diffraction peaks corresponding to individual lattice planes, and these are generally collated to determine a crystal structure.
- FIG. 4 shows an X-ray diffraction spectrum actually measured under the following conditions for a DLC film containing graphite crystals.
- Measurement conditions X-ray source: radiation source, X-ray energy: 15 keV Incident slit width: 0.1 mm, Detector: Scintillation counter (a solar slit is placed in the previous stage), Measurement range of scattering angle 2 ⁇ : 5 to 100 ° Measurement step: 0.1 ° Integration time: 30 seconds / step The DLC film sample was peeled off from the substrate and filled into a glass capillary (capillary) for measurement.
- X-ray source radiation source
- X-ray energy 15 keV Incident slit width: 0.1 mm
- Detector Scintillation counter (a solar slit is placed in the previous stage)
- Measurement range of scattering angle 2 ⁇ 5 to 100 °
- Measurement step 0.1 ° Integration time: 30 seconds / step
- the DLC film sample was peeled off
- FIG. 5 shows a differential spectrum for the same DLC film sample used in FIG.
- 10 peaks are selected from the largest in the differential spectrum, and if there are at least 3 peaks that coincide with the peak positions of the graphite crystals, the DLC film contains graphite crystals. It was stipulated that This method is based on the Hanawalt method used in X-ray diffraction of a general crystal material, that is, a method of characterizing a diffraction pattern using three peaks having the highest intensity.
- the crystal diameter of the graphite crystal can be estimated from the broadening of the diffraction peak as described above. Specifically, it can be obtained by subtracting the amorphous halo pattern from the X-ray scattering spectrum as the background, extracting the graphite crystal peak, and then applying the Scherrer equation shown in Equation 1.
- D crystal diameter (nm) ⁇ : X-ray wavelength (nm)
- ⁇ Half width of crystal peak (radian)
- ⁇ Crystal peak position
- the obtained DLC film has an amorphous structure mainly composed of carbon, and the bonding form between carbons consists of both a diamond structure (SP 3 structure) and a graphite structure (SP 2 structure). Hydrogen of 10 atom% or more and 35 atom% or less is contained in the film.
- an intermediate layer as an adhesion layer is provided as described above.
- the intermediate layer for example, an intermediate layer composed of one or more of a metal layer, a metal nitride layer, and a metal carbide layer of any metal selected from Ti, Cr, W, and Si.
- a layer is desirable.
- the total thickness of the intermediate layer is preferably 0.1 ⁇ m or more and 3.5 ⁇ m or less. That is, if it is 0.1 ⁇ m or more, there is a possibility that the function as an intermediate layer can be secured.
- the underlayer specifically, for example, a metal film selected from Ti, Cr, W, and Si can be given.
- the sliding mechanism according to the present invention includes the above-described lubricating oil and sliding member. As described above, since both the lubricating oil and the sliding member have excellent low friction characteristics, a sufficiently low friction coefficient can be obtained.
- the DLC film is formed on at least one of the sliding surfaces that slide on each other.
- the sliding surface of the counterpart material is not particularly limited, and a DLC film may or may not be formed in the same manner.
- examples of the counterpart material include the iron-based material and the aluminum alloy material described above.
- Examples 1 and 2 and Comparative Examples 1 to 3 A lubricating oil composition having the composition shown in Table 1 was prepared, and the friction characteristic test shown below was conducted to obtain the friction coefficient. The results are shown in Table 1.
- Test equipment TE77 reciprocating friction tester
- Test piece Test ball SUJ-2 ball (diameter 10mm)
- Test plate DLC-coated plate (base material: SUJ-2, 58mm x 38mm x 4mm)
- Test conditions Load 100N, temperature 100 ° C, amplitude 8mm, frequency 10Hz
- the following DLC coated disks were used.
- the intermediate layer in the DLC coating is composed of a Ti layer, and the total thickness is 3.0 ⁇ m.
- Each component of Table 1 used for the preparation of the lubricating oil composition is as follows.
- Friction reduction Agent A cis-9-octadecenyl diethanolamide
- Friction reducing agent B Octadecyl diethanolamide
- Friction reducing agent C Mixing monoglycerol oleate and diglycerol oleate
- Friction reducing agent D Oxysulfide Molybdenum dithiocarbamate: trade name “SAKURA-LUBE 515” (manufactured by ADEKA Corporation), molybdenum content: 10.0% by mass, nitrogen content; 1.6% by mass, sulfur content; 11.5% by mass (6)
- Comparative Example 1 has a high friction coefficient because it does not contain a friction reducing agent.
- Comparative Examples 2 and 3 contain a molybdenum friction reducer or an ester friction reducer, but have a high coefficient of friction.
- the lubricating oil composition of the present invention is applied to a sliding surface made of a low-friction sliding material such as a DLC material and can impart excellent low-friction characteristics, particularly when applied to an internal combustion engine. A fuel efficiency effect can be imparted. Moreover, the sliding mechanism of the present invention in which such lubricating oil is interposed is excellent in low friction.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Lubricants (AREA)
Abstract
Description
例えば、特許文献1にはエーテル系無灰摩擦低減剤を含む、低摩擦摺動部材に用いられる潤滑油組成物が開示されている。特許文献2、3には、DLC部材と鉄基部材との摺動面やDLC部材とアルミニウム合金部材との摺動面に、脂肪酸エステル系無灰摩擦調整剤や脂肪族アミン系無灰摩擦調整剤を含有する潤滑油組成物を用いる技術が開示されている。また、特許文献4には、DLCコーティング摺動部材を有する低摩擦摺動機構において、含酸素有機化合物や脂肪族アミン系化合物を含有する低摩擦剤組成物を用いる技術が開示されている。
このように低摩擦摺動材料用の潤滑油組成物が開発されているが、これらの技術を応用した場合であっても、耐摩耗性等の更なる向上を求めてZnDTPを配合すると摩擦係数が大きくなり、低摩擦化を達成できない現象が認められた。
したがって、潤滑油組成物に求められる各種性能を維持・向上するために、例えば、ZnDTPを含有する潤滑油組成物であっても、低摩擦摺動材料用の潤滑油として用いた際に極めて低い摩擦係数を示す潤滑油組成物が求められている。
1.潤滑油基油に、組成物全量基準で、(A)有機ジチオリン酸亜鉛をリン濃度換算で0.005質量%以上0.12質量%以下、(B)アミド系摩擦低減剤を0.05質量%以上5.0質量%以下、並びに(C)アルカリ土類金属サリシレート系清浄剤及び/又はアルカリ土類金属スルフォネート系清浄剤をアルカリ土類金属濃度換算で0.05質量%以上0.5質量%以下を含有する低摩擦摺動材料に用いられる潤滑油組成物、
2.(B)成分のアミド系摩擦低減剤が、炭素数12~24の脂肪族炭化水素基を有するジエタノールアミドである上記1に記載の潤滑油組成物、
3.(A)成分中に、組成物全量基準で、第1級ジアルキルジチオリン酸亜鉛をリン濃度換算で0.005質量%以上0.05質量%以下を含む上記1又は2に記載の潤滑油組成物、
4.低摩擦摺動材料がダイヤモンドライクカーボン(DLC)皮膜を有する材料である上記1~3のいずれかに記載の潤滑油組成物、
5.相互に摺動する2つの摺動部材の摺動面に、上記1~4のいずれかに記載の潤滑油組成物を介在させた摺動機構であって、2つの摺動部材のうち少なくとも一方の摺動面に、水素を5atom%以上50atom%以下含有するDLC皮膜が形成されている摺動機構、
6.DLC皮膜が、X線散乱スペクトルにおいてグラファイト結晶ピークを有するDLC皮膜である上記5に記載の摺動機構、
7.DLC皮膜におけるグラファイト結晶の結晶径が、15nm以上100nm以下である上記6に記載の摺動機構、
8.DLC皮膜が、陰極PIGプラズマCVD法により、高密度プラズマ雰囲気下で形成されたものである上記5~7のいずれかに記載の摺動機構、
を提供するものである。
1.潤滑油組成物
[潤滑油基油]
本発明の潤滑油組成物は、通常、潤滑油基油および特定の添加剤を含有し、低摩擦摺動材料の摺動面に用いる潤滑油として用いられる。
ここで、鉱油系基油としては、例えば、パラフィン基系原油、中間基系原油あるいはナフテン基系原油を常圧蒸留するか、又は常圧蒸留の残渣油を減圧蒸留して得られる留出油、あるいはこれを常法に従って精製することによって得られる精製油、例えば溶剤精製油、水素化分解油、水素化精製油、脱ろう処理油、白土処理油、さらにはワックス異性化油などを挙げることができる。
一方、合成油としては、例えば炭素数8~14のα-オレフィンのオリゴマーであるポリα-オレフィン、ポリブテン、ポリオールエステル、アルキルベンゼンなどを挙げることができる。
本発明においては、潤滑油基油として、上記鉱油を一種用いてもよく、二種以上を組み合わせて用いてもよい。また、上記合成油を一種用いてもよく、二種以上を組み合わせて用いてもよい。さらには、鉱油一種以上と合成油一種以上とを組み合わせて用いてもよい。
また、潤滑油基油は、粘度指数が60以上、さらには70以上、特に80以上のものが好ましい。粘度指数が60以上であると、基油の温度による粘度変化が小さく、安定した潤滑性能を発揮する。
さらに、潤滑油基油は、硫黄含有量が、1000質量ppm以下であることが好ましく、500質量ppm以下がより好ましく、100質量ppm以下が特に好ましい。硫黄含有量が、1000質量ppm以下であれば、酸化安定性が向上する効果がある。
また、潤滑油基油は、組成物全量基準で、70質量%以上含むことが好ましく、80質量%以上含むことがより好ましい。
本発明の潤滑油組成物においては、潤滑油添加剤の(A)成分として、有機ジチオリン酸亜鉛を用いる。該有機ジチオリン酸亜鉛としては、通常下記の一般式(I)
一般式(I)中のR1、R2、R3及びR4は、それぞれ独立に炭素数1~24の炭化水素基を示す。これら炭化水素基としては、炭素数1~24の直鎖状又は分枝状のアルキル基、炭素数3~24の直鎖状又は分枝状のアルケニル基、炭素数5~13のシクロアルキル基又は直鎖状若しくは分枝状のアルキルシクロアルキル基、炭素数6~18のアリール基又は直鎖状若しくは分枝状のアルキルアリール基、及び炭素数7~19のアリールアルキル基のいずれかである。
前記(A)成分のジチオリン酸亜鉛の含有量は、組成物全量基準におけるリン濃度換算で0.005質量%以上0.12質量%以下であることを要する。0.005質量%未満では、十分な摩擦低減効果や摩耗低減効果が得られない恐れがあり、0.12質量%を超えても、それに見合う効果の著しい向上が期待できない。このようなことから、(A)成分の含有量は、組成物全量基準におけるリン濃度換算で0.01以上0.11質量%以下であることが好ましく、0.02以上0.10質量%以下であることがより好ましい。
本発明における前記(A)成分のジチオリン酸亜鉛は、第1級ジアルキルジチオリン酸亜鉛を、組成物全量基準におけるリン濃度換算で0.005質量%以上0.05質量%以下含むことが好ましく、0.007質量%以上0.05質量%以下含むことがより好ましく、0.01質量%以上0.05質量%以下含むことがさらに好ましい。
潤滑油中に、(A)成分として、前記特定量の第1級ジアルキルジチオリン酸亜鉛を含むジチオリン酸亜鉛が存在することによって、後述する(B)成分のアミド系摩擦低減剤の存在下で、低摩擦摺動材料を有するに摺動面における摩擦低減効果を著しく高めることができる。また、同時に低摩擦摺動材料を有していない摺動面における耐摩耗性をもさらに高めることができる。
上記アミド系摩擦低減剤としては、通常アミン化合物とカルボン酸化合物とから得られるアミド系化合物が用いられる。
前記アミド系化合物を構成するアミン化合物としては、脂肪族モノアミン、その脂肪族モノアミンのアルキレンオキシド付加物、脂肪族ポリアミン、アルカノールアミン等が例示できる。
脂肪族モノアミンとしては、炭素数6~30、好ましくは12~24、より好ましくは16~22の脂肪族モノアミンが用いられ、このような脂肪族モノアミンは、直鎖状であっても分岐鎖を有するものであってもよく、飽和のものでも不飽和のものでもよい。このような脂肪族モノアミンの具体例としては、例えば、ヘキシルアミン、へプチルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、ステアリルアミン、イソステアリルアミン、ノナデシルアミン、イコシルアミン、ヘンイコシルアミン、ドコシルアミン、トリコシルアミン、テトラコシルアミン、11-エチルトリコシルアミン、ペンタコシルアミン、ヘキサコシルアミン、ヘプタコシルアミン、オクタコシルアミン、ノナコシルアミン、トリアコンチルアミン、ヘキセニルアミン、ヘプテニルアミン、オクテニルアミン、ノネニルアミン、デセニルアミン、ウンデセニルアミン、ドデセニルアミン、トリデセニルアミン、テトラデセニルアミン、ペンタデセニルアミン、ヘキサデセニルアミン、ヘプタデセニルアミン、オクタデセニルアミン、ノナデセニルアミン、イコセニルアミン、ヘンイコセニルアミン、ドコセニルアミン、トリコセニルアミン、テトラコセニルアミン、ペンタコセニルアミン、ヘキサコセニルアミン、ヘプタコセニルアミン、オクタコセニルアミン、ノナコセニルアミン及びトリアコンテニルアミン等が挙げられる。
そのようなカルボン酸化合物としては、例えばカプロン酸、エナント酸、カプリル酸、2-エチルヘキサン酸、ペラルゴン酸、カプリン酸、ラウリル酸、ミリスチン酸、パルミチン酸、マルガン酸、ステアリン酸、イソステアリン酸、アラキジン酸、ベヘン酸、およびリグノセリン酸等の飽和脂肪酸やラウリン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、リノレン酸およびエルカ酸等の不飽和脂肪酸が挙げられる。
これらの(B)成分としてのアミド系摩擦低減剤は、1種を単独で用いてもよく、2種以上を組合わせて用いることができる。
本発明における(B)成分の含有量は、組成物全量基準で0.05質量%以上5質量%以下であり、より好ましくは0.1質量%以上3質量%以下である。(B)成分の含有量が0.05質量%未満では摩擦低減効果が不充分になる場合があり、一方、5質量%を越えても含有量の増大に見合う効果の著しい向上は期待できない。
アルカリ土類金属サリシレートは、アルキル(通常、炭素数4~30アルキル基)サリチル酸のアルカリ土類金属塩であり、アルカリ土類金属塩としては、カルシウム塩、マグネシウム塩、バリウム塩が好ましく、特にカルシウム塩が好ましく用いられる。
また、アルカリ土類金属スルフォネートは、分子量300以上1,500以下、好ましくは400以上700以下のアルキル芳香族化合物をスルフォン化することによって得られるアルキル芳香族スルフォン酸のアルカリ土類金属塩が用いられる。
なお、ここでいう全塩基価とは、JIS K 2501「石油製品及び潤滑油-中和価試験方法」の7.に準拠して測定される電位差滴定法(塩基価・過塩素酸法)による全塩基価を意味する。
上記(C)成分の金属系清浄剤の含有量は、潤滑油組成物全量基準で、アルカリ土類金属濃度換算で0.05質量%以上0.5質量%以下、好ましくは、0.1質量%以上0.3質量%以下、より好ましくは0.15質量%以上0.25質量%未満である。
(C)成分の含有量が、0.05質量%未満では、清浄性が不充分になることがあり、0.5質量%を越えると、場合によっては摩擦係数の低減効果が不充分になる恐れがある。
前記金属系清浄剤としては、アルカリ土類金属フェネートが挙げられる。
前記無灰系分散剤としては、例えばコハク酸イミド類、ホウ素含有コハク酸イミド類、ベンジルアミン類、ホウ素含有ベンジルアミン類、コハク酸エステル類、脂肪酸あるいはコハク酸で代表される一価又は二価のカルボン酸のアミド類などが挙げられる。
前記粘度指数向上剤としては、具体的には、各種メタクリル酸エステル又はこれらの任意の組合せに係る共重合体やその水素化物等のいわゆる非分散型粘度指数向上剤、及び更に窒素化合物を含む各種メタクリル酸エステルを共重合させたいわゆる分散型粘度指数向上剤等が例示できる。また、非分散型又は分散型エチレン-α-オレフィン共重合体(α-オレフィンとしては、例えばプロピレン、1-ブテン、1-ペンテン等)及びその水素化物、ポリイソブチレン及びその水素化物、スチレン-ジエン共重合体水素化物、スチレン-無水マレイン酸エステル共重合体、並びにポリアルキルスチレン等も例示できる。これら粘度指数向上剤の分子量は、せん断安定性を考慮して選定することが必要である。具体的には、粘度指数向上剤の数平均分子量は、例えば分散型及び非分散型ポリメタクリレートでは5000以上1000000以下、好ましくは100000以上800000以下であり、ポリイソブチレン又はその水素化物では800以上5000以下であり、エチレン-α-オレフィン共重合体又はその水素化物では800以上300000以下、好ましくは10000以上200000以下である。また、かかる粘度指数向上剤は、単独で又は複数種を任意に組合せて含有させることができるが、通常その含有量は、潤滑油組成物全量に基づき0.1質量%以上40.0質量%以下程度である。
流動点降下剤としては、例えばポリメタクリレートなどが挙げられる。
防錆剤としては、アルキルベンゼンスルフォネート、ジノニルナフタレンスルフォネート、アルケニルコハク酸エステル、多価アルコールエステル等が挙げられる。
前記の低摩擦摺動材料を有する摺動面としては、少なくとも一方の側に低摩擦摺動材料としてDLC材料を有するものが好ましい。この場合、他方の摺動面の材料については、例えば、DLC材料、鉄基材料あるいはアルミニウム合金材料などが挙げられる。つまり、2つの摺動面がともにDLC材料、一方の摺動面がDLC材料で他方の摺動面が鉄基材料、一方の摺動面がDLC材料で他方の摺動面がアルミニウム合金材料である場合が例示できる。
具体的には、炭素元素だけから成るa-C(アモルファスカーボン)、水素を含有するa-C:H(水素アモルファスカーボン)、及びケイ素(Si)やチタン(Ti)、モリブデン(Mo)等の金属元素を一部に含むMeDLC(metal doped DLC)が挙げられる。
これらの中でも、a-C:H(水素アモルファスカーボン)、中でも、水素を5atom%以上50atom%以下含有するa-C:Hが好ましい。
さらに、DLCは、X線散乱スペクトルにおいてグラファイト結晶ピークを有するDLCが好ましい。
このようなグラファイト結晶ピークを有するDLCは、陰極PIG(Penning Ionization Gauge)プラズマCVD法により高密度プラズマ雰囲気下で形成することができる。
また、前記DLC材料及び鉄基材料、あるいはDLC材料及びアルミニウム合金材料のそれぞれの表面粗さは、算術平均粗さRaで、0.1μm以下であることが摺動の安定性の面から好適である。0.1μm以下であると局部的なスカッフィングが形成しにくく、摩擦係数の増大を抑制することができる。更に、上記DLC材料は、表面硬さが、マイクロビッカーズ硬さ(98mN荷重)でHv1000以上3500以下、厚さが0.3μm以上2.0μm以下であることが好ましい。
また、前記アルミニウム合金材料は、表面硬さがブリネル硬さHB80以上130以下であることが好ましい。
DLC材料の表面硬さ及び厚さが上記範囲にあると摩滅や剥離が抑制される。また、鉄基材料の表面硬さがHRC45以上であると、高面圧下で座屈し剥離するのを抑制することができる。一方、アルミニウム合金材料の表面硬さが上記範囲にあれば、アルミニウム合金の摩耗が抑制される。
本発明の摺動機構は、相互に摺動する2つの摺動材料の摺動面間に、上記の潤滑油組成物を介在させた摺動機構であって、2つの摺動材料の少なくとも一方の摺動面に、水素を5atom%以上50atom%以下含有するDLC皮膜が形成されている摺動機構である。
前記DLC皮膜は、X線散乱スペクトルにおいてグラファイト結晶ピークを有するDLC皮膜であることがより好ましい。
図1は、本発明の一実施の形態に係る摺動機構のDLC皮膜を有す摺動部材の構造を模式的に示す断面図であり、図2は、本発明の他の実施の形態に係る摺動機構のDLC皮膜を有す摺動部材の構造を模式的に示す断面図である。
図1、図2において、1は摺動材料の基材、3はDLC皮膜であり、4はグラファイト結晶である。摺動材料の基材1とDLC皮膜3との間には密着層としての中間層2が設けられている。
基材1と中間層2との間には、図2に示すように、第2の中間層として下地層21を設けても良い。下地層21を設けることにより、基材1と中間層2との密着性をさらに向上させることができる。
具体的には、例えば、陰極PIGにて発生させたプラズマがコイルで形成された磁場に閉じ込められることにより高密度化され、原料ガスを高い効率で活性な原子、分子、イオンに分解する。さらに、高活性な原料ガス成分を堆積させながら、直流パルスを基材に印加することによって高エネルギーイオンを照射することができる。これによって、摺動特性に優れたDLC皮膜を効率的に形成することが出来る。形成方法の詳細は、特開2010-156026号公報に記載されている方法が好ましい。
図3において、40はチャンバー、41は基材、42はホルダー、43はプラズマ源、44は電極、45はコイル、46はカソード、47はガス導入口、48はガス排出口、49はバイアス電源である。そして、50はチャンバー40内に形成されたプラズマである。
上記装置を用いて、以下のようにしてDLC皮膜を形成することができる。
最初に、基材41をホルダー42に支持させてチャンバー40内に配置する。次いで、ガス導入口47よりArガスを注入すると共に、プラズマ源43、電極44、コイル45を用いて、プラズマ50を発生、安定させる。プラズマ中にて分解されたArガスをバイアス電源49にて基材41へ引きつけ、表面エッチングを行う。その後、金属よりなるカソード46、Arガスを用いて下地層である金属層を形成する。さらに、高密度プラズマ雰囲気下でガス導入口47より注入された原料ガスを分解、反応させることにより、DLC皮膜中にグラファイト結晶を生成させる。所定の厚さのDLC皮膜となるまでそのまま維持する。このとき、グラファイト結晶の結晶径は、15nm以上100nm以下となるように制御する。
通常、結晶材料のX線回折スペクトルには、個々の格子面に対応した鋭い回折ピークが複数本存在し、これらを照合して結晶構造が確定されるのが一般的である。これに対し、本発明の好ましいDLC皮膜の場合、非晶質に特有のハローパターンと呼ばれるブロードな散乱ピークに混じって、グラファイト結晶の回折ピークが存在する。
測定条件
X線源:放射光源、
X線エネルギー:15keV、
入射スリット幅:0.1mm、
検出器:シンチレーションカウンタ(前段にソーラースリットを配置)、
散乱角2θの測定範囲:5~100°
測定ステップ:0.1°
積算時間:30秒/ステップ
なお、DLC皮膜試料は、基板から剥離し、ガラス細管(キャピラリ)に充填して測定した。
D=(0.9×λ)/(β×cosθ) ・・・ 式1
但し、D:結晶径(nm)
λ:X線の波長(nm)
β:結晶ピークの半価幅(ラジアン)
θ:結晶ピークの位置
第1表に示す組成を有する潤滑油組成物を調製し、以下に示す摩擦特性試験を行い、摩擦係数を求めた。その結果を第1表に示す。
<摩擦特性試験>
試験装置: TE77往復動摩擦試験機
試験片 : 試験球 SUJ-2ボール(直径10mm)
試験板 DLCコーティングしたプレート(母材:SUJ-2、58mm×38mm×4mm)
試験条件:荷重100N,温度100℃,振幅8mm,周波数10Hz
なお,DLCコーティングしたディスクは以下のものを用いた。
水素20atom%含有DLC(グラファイトの結晶粒20nm)
DLCコーティングにおける中間層は,Ti層からなっており,その総厚は3.0μmである。
(1)水素化精製基油、40℃動粘度18mm2/s、100℃動粘度4.1mm2/s、粘度指数131、%CA0.0、硫黄含有量10質量ppm未満
(2)摩擦低減剤A: cis-9-オクタデセニルジエタノールアミド
(3)摩擦低減剤B: オクタデシルジエタノールアミド
(4)摩擦低減剤C: モノグリセロールオレート,ジグリセロールオレート混合
(5)摩擦低減剤D: 硫化オキシモリブデンジチオカーバメート:商品名「SAKURA-LUBE 515」(ADEKA Corporation製)、モリブデン含有量;10.0質量%、窒素含有量;1.6質量%、硫黄含有量;11.5質量%
(6)ジアルキルジチオリン酸亜鉛A:Zn含有量;8.9質量%、リン含有量;7.4質量%、第1級アルキル型ジアルキルジチオリン酸亜鉛
(7)ジアルキルジチオリン酸亜鉛B:Zn含有量;8.0質量%、リン含有量;7.2質量%、第2級アルキル型ジアルキルジチオリン酸亜鉛
(8)金属系清浄剤A:過塩基性カルシウムサリシレート、塩基価(過塩素酸法)226mgKOH/g、カルシウム含有量7.9質量%
(9)金属系清浄剤B:中性カルシウムスルホネート、塩基価(過塩素酸法)17mgKOH/g、カルシウム含有量2.4質量%
(10)コハク酸ビスイミド:ポリブテニル基の数平均分子量2000、塩基価(過塩素酸法)11.9mgKOH/g、窒素含有量0.99質量%
(11)コハク酸モノイミドホウ素化物:ポリブテニル基の数平均分子量1000、塩基価(過塩素酸法)25mgKOH/g、窒素含有量1.23質量%、ホウ素含有量1.3質量%
(12)粘度指数向上剤:ポリメタクリレート、質量平均分子量230,000
(13)その他の添加剤:酸化防止剤,流動点降下剤など
2 中間層
3 DLC皮膜
4 グラファイト結晶
21 下地層
40 チャンバー
42 ホルダー
43 プラズマ源
44 電極
45 コイル
46 カソード
47 ガス導入口
48 ガス排出口
49 バイアス電源
50 プラズマ
Claims (8)
- 潤滑油基油に、組成物全量基準で、(A)有機ジチオリン酸亜鉛をリン濃度換算で0.005質量%以上0.12質量%以下、(B)アミド系摩擦低減剤を0.05質量%以上5.0質量%以下、並びに(C)アルカリ土類金属サリシレート系清浄剤及び/又はアルカリ土類金属スルフォネート系清浄剤をアルカリ土類金属濃度換算で0.05質量%以上0.5質量%以下を含有する低摩擦摺動材料に用いられる潤滑油組成物。
- (B)成分のアミド系摩擦低減剤が、炭素数12~24の脂肪族炭化水素基を有するジエタノールアミドである請求項1に記載の潤滑油組成物。
- (A)成分中に、組成物全量基準で、第1級ジアルキルジチオリン酸亜鉛をリン濃度換算で0.005質量%以上0.05質量%以下を含む請求項1又は2に記載の潤滑油組成物。
- 低摩擦摺動材料がダイヤモンドライクカーボン(DLC)皮膜を有する材料である請求項1~3のいずれかに記載の潤滑油組成物。
- 相互に摺動する2つの摺動部材の摺動面に、請求項1~4のいずれかに記載の潤滑油組成物を介在させた摺動機構であって、2つの摺動部材のうち少なくとも一方の摺動面に、水素を5atom%以上50atom%以下含有するDLC皮膜が形成されている摺動機構。
- DLC皮膜が、X線散乱スペクトルにおいてグラファイト結晶ピークを有するDLC皮膜である請求項5に記載の摺動機構。
- DLC皮膜におけるグラファイト結晶の結晶径が、15nm以上100nm以下である請求項6に記載の摺動機構。
- DLC皮膜が、陰極PIGプラズマCVD法により、高密度プラズマ雰囲気下で形成されたものである請求項5~7のいずれかに記載の摺動機構。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147024590A KR20140135176A (ko) | 2012-03-16 | 2013-03-18 | 윤활유 조성물, 상기 윤활유 조성물을 이용한 접동 기구 |
US14/384,324 US9593291B2 (en) | 2012-03-16 | 2013-03-18 | Lubricating oil composition, and sliding mechanism using lubricating oil composition |
EP13760515.0A EP2826844B1 (en) | 2012-03-16 | 2013-03-18 | Sliding mechanism with a lubricating oil composition |
CN201380014613.4A CN104169403A (zh) | 2012-03-16 | 2013-03-18 | 润滑油组合物、使用该润滑油组合物的滑动机构 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012060605 | 2012-03-16 | ||
JP2012-060605 | 2012-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013137478A1 true WO2013137478A1 (ja) | 2013-09-19 |
Family
ID=49161367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057750 WO2013137478A1 (ja) | 2012-03-16 | 2013-03-18 | 潤滑油組成物、該潤滑油組成物を用いた摺動機構 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9593291B2 (ja) |
EP (1) | EP2826844B1 (ja) |
JP (1) | JP2013216872A (ja) |
KR (1) | KR20140135176A (ja) |
CN (1) | CN104169403A (ja) |
WO (1) | WO2013137478A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104087269A (zh) * | 2014-07-01 | 2014-10-08 | 青岛蓬勃石油技术服务有限公司 | 一种钻井液用耐高温耐磨耗润滑油及其制备方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9624975B2 (en) * | 2014-03-21 | 2017-04-18 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Sliding member and sliding machine |
WO2017003635A1 (en) * | 2015-06-30 | 2017-01-05 | Exxonmobil Chemical Patents Inc. | Lubricant compositions and methods of making and using same |
US20170002252A1 (en) | 2015-06-30 | 2017-01-05 | Exxonmobil Chemical Patents Inc. | Lubricant Compositions and Methods of Making and Using Same |
US10844264B2 (en) | 2015-06-30 | 2020-11-24 | Exxonmobil Chemical Patents Inc. | Lubricant compositions comprising diol functional groups and methods of making and using same |
JP7033399B2 (ja) * | 2017-05-15 | 2022-03-10 | 日産自動車株式会社 | 摺動機構 |
US20190203144A1 (en) * | 2017-12-29 | 2019-07-04 | Exxonmobil Research And Engineering Company | Lubrication of oxygenated diamond-like carbon surfaces |
JP7061006B2 (ja) * | 2018-04-20 | 2022-04-27 | 株式会社豊田中央研究所 | 摺動部材と摺動機械 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003238982A (ja) | 2002-02-22 | 2003-08-27 | Nippon Oil Corp | 低摩擦摺動材料及びこれに用いる潤滑油組成物 |
JP2004067812A (ja) * | 2002-08-05 | 2004-03-04 | Nippon Oil Corp | 潤滑油組成物 |
JP2004155891A (ja) | 2002-11-06 | 2004-06-03 | Nippon Oil Corp | 低摩擦摺動材料及びこれに用いる潤滑油組成物 |
JP2005060416A (ja) * | 2003-08-11 | 2005-03-10 | Nissan Motor Co Ltd | 低摩擦摺動部材及びこれに用いる潤滑油組成物 |
JP2005098495A (ja) | 2003-08-06 | 2005-04-14 | Nissan Motor Co Ltd | 低摩擦摺動機構、低摩擦剤組成物及び摩擦低減方法 |
JP2006036850A (ja) | 2004-07-23 | 2006-02-09 | Idemitsu Kosan Co Ltd | 潤滑油組成物 |
JP2008231189A (ja) * | 2007-03-19 | 2008-10-02 | Nippon Oil Corp | 潤滑油組成物 |
JP2008231192A (ja) * | 2007-03-19 | 2008-10-02 | Nippon Oil Corp | 潤滑油組成物 |
JP2008231191A (ja) * | 2007-03-19 | 2008-10-02 | Nippon Oil Corp | 潤滑油組成物 |
JP2010156026A (ja) | 2008-12-29 | 2010-07-15 | Sumitomo Electric Ind Ltd | 硬質炭素膜およびその形成方法 |
JP2011063654A (ja) * | 2009-09-15 | 2011-03-31 | Idemitsu Kosan Co Ltd | 潤滑油組成物 |
JP2011252073A (ja) * | 2010-06-01 | 2011-12-15 | Idemitsu Kosan Co Ltd | 低摩擦摺動材料用潤滑油組成物、及びこれを用いた摺動機構 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5851962A (en) * | 1992-08-18 | 1998-12-22 | Ethyl Japan Corporation | Lubricant composition for wet clutch or wet brake |
JP3556355B2 (ja) | 1995-10-11 | 2004-08-18 | 東燃ゼネラル石油株式会社 | 潤滑油組成物 |
JP5057603B2 (ja) * | 1998-05-01 | 2012-10-24 | 昭和シェル石油株式会社 | 内燃機関用潤滑油組成物 |
WO2000029523A1 (fr) * | 1998-11-13 | 2000-05-25 | Japan Energy Corporation | Composition d'huile pour boite sans rapport fixe |
US6300291B1 (en) * | 1999-05-19 | 2001-10-09 | Infineum Usa L.P. | Lubricating oil composition |
US7563752B2 (en) * | 2002-08-05 | 2009-07-21 | Nippon Oil Corporation | Lubricating oil compositions |
US6969198B2 (en) | 2002-11-06 | 2005-11-29 | Nissan Motor Co., Ltd. | Low-friction sliding mechanism |
WO2008047550A1 (fr) * | 2006-10-17 | 2008-04-24 | Idemitsu Kosan Co., Ltd. | Composition d'huile lubrifiante |
JP5203590B2 (ja) * | 2006-10-27 | 2013-06-05 | 出光興産株式会社 | 潤滑油組成物 |
US7871966B2 (en) | 2007-03-19 | 2011-01-18 | Nippon Oil Corporation | Lubricating oil composition |
-
2013
- 2013-03-05 JP JP2013043029A patent/JP2013216872A/ja active Pending
- 2013-03-18 US US14/384,324 patent/US9593291B2/en active Active
- 2013-03-18 CN CN201380014613.4A patent/CN104169403A/zh active Pending
- 2013-03-18 WO PCT/JP2013/057750 patent/WO2013137478A1/ja active Application Filing
- 2013-03-18 KR KR1020147024590A patent/KR20140135176A/ko not_active Application Discontinuation
- 2013-03-18 EP EP13760515.0A patent/EP2826844B1/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003238982A (ja) | 2002-02-22 | 2003-08-27 | Nippon Oil Corp | 低摩擦摺動材料及びこれに用いる潤滑油組成物 |
JP2004067812A (ja) * | 2002-08-05 | 2004-03-04 | Nippon Oil Corp | 潤滑油組成物 |
JP2004155891A (ja) | 2002-11-06 | 2004-06-03 | Nippon Oil Corp | 低摩擦摺動材料及びこれに用いる潤滑油組成物 |
JP2005098495A (ja) | 2003-08-06 | 2005-04-14 | Nissan Motor Co Ltd | 低摩擦摺動機構、低摩擦剤組成物及び摩擦低減方法 |
JP2005060416A (ja) * | 2003-08-11 | 2005-03-10 | Nissan Motor Co Ltd | 低摩擦摺動部材及びこれに用いる潤滑油組成物 |
JP2006036850A (ja) | 2004-07-23 | 2006-02-09 | Idemitsu Kosan Co Ltd | 潤滑油組成物 |
JP2008231189A (ja) * | 2007-03-19 | 2008-10-02 | Nippon Oil Corp | 潤滑油組成物 |
JP2008231192A (ja) * | 2007-03-19 | 2008-10-02 | Nippon Oil Corp | 潤滑油組成物 |
JP2008231191A (ja) * | 2007-03-19 | 2008-10-02 | Nippon Oil Corp | 潤滑油組成物 |
JP2010156026A (ja) | 2008-12-29 | 2010-07-15 | Sumitomo Electric Ind Ltd | 硬質炭素膜およびその形成方法 |
JP2011063654A (ja) * | 2009-09-15 | 2011-03-31 | Idemitsu Kosan Co Ltd | 潤滑油組成物 |
JP2011252073A (ja) * | 2010-06-01 | 2011-12-15 | Idemitsu Kosan Co Ltd | 低摩擦摺動材料用潤滑油組成物、及びこれを用いた摺動機構 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2826844A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104087269A (zh) * | 2014-07-01 | 2014-10-08 | 青岛蓬勃石油技术服务有限公司 | 一种钻井液用耐高温耐磨耗润滑油及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US9593291B2 (en) | 2017-03-14 |
CN104169403A (zh) | 2014-11-26 |
US20150036962A1 (en) | 2015-02-05 |
EP2826844B1 (en) | 2021-09-15 |
EP2826844A1 (en) | 2015-01-21 |
JP2013216872A (ja) | 2013-10-24 |
KR20140135176A (ko) | 2014-11-25 |
EP2826844A4 (en) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013137478A1 (ja) | 潤滑油組成物、該潤滑油組成物を用いた摺動機構 | |
EP2578669B1 (en) | Lubrication of low-friction sliding material | |
US8071515B2 (en) | Lubricating oil composition | |
WO2013137477A1 (ja) | 潤滑油組成物、該潤滑油組成物を用いた摺動機構 | |
WO2011034026A1 (ja) | 潤滑油組成物、該潤滑油組成物を用いた摺動機構 | |
KR20090069173A (ko) | 윤활유 조성물 | |
WO2006009012A1 (ja) | 潤滑油組成物 | |
JP5463108B2 (ja) | 潤滑油組成物 | |
JP2005060416A (ja) | 低摩擦摺動部材及びこれに用いる潤滑油組成物 | |
JP2004155881A (ja) | 省燃費型内燃機関用潤滑油組成物 | |
JP5950481B2 (ja) | 低摩擦摺動材料用潤滑油組成物、及びこれを用いた摺動機構 | |
JP2013087197A (ja) | 摺動機構 | |
JP2013087198A (ja) | 摺動機構 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13760515 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147024590 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14384324 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013760515 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |