WO2013137151A1 - グルコースの生産方法 - Google Patents

グルコースの生産方法 Download PDF

Info

Publication number
WO2013137151A1
WO2013137151A1 PCT/JP2013/056511 JP2013056511W WO2013137151A1 WO 2013137151 A1 WO2013137151 A1 WO 2013137151A1 JP 2013056511 W JP2013056511 W JP 2013056511W WO 2013137151 A1 WO2013137151 A1 WO 2013137151A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
glucosidase
glucose
microorganism
glucose according
Prior art date
Application number
PCT/JP2013/056511
Other languages
English (en)
French (fr)
Inventor
昭彦 小杉
▲隆▼ 森
Original Assignee
独立行政法人国際農林水産業研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人国際農林水産業研究センター filed Critical 独立行政法人国際農林水産業研究センター
Priority to BR112014022311A priority Critical patent/BR112014022311A2/pt
Priority to CN201380013568.0A priority patent/CN104583411A/zh
Publication of WO2013137151A1 publication Critical patent/WO2013137151A1/ja
Priority to PH12014502008A priority patent/PH12014502008B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/20Preparation of compounds containing saccharide radicals produced by the action of an exo-1,4 alpha-glucosidase, e.g. dextrose

Definitions

  • the present invention relates to a method for producing glucose by decomposing cellulose using a thermophilic anaerobic microorganism.
  • Cellulosic biomass such as bagasse, rice straw, rice husk, mushroom waste, compost, and wood chips is attracting attention as energy and chemical industry raw materials that do not impose food production.
  • a technique for efficiently saccharifying fermentation raw materials is highly desired.
  • cellulosic biomass is more difficult to saccharify than starch. This is due to the fact that cellulose, which is the main constituent of cellulosic biomass, is a hardly degradable polymer polysaccharide having a firm crystal structure.
  • Physical saccharification treatment includes physical saccharification such as ball mill, vibration mill, steaming explosion and pressurized hot water treatment, but physical treatment requires chemical energy and enzymatic saccharification. Often used in combination as a pretreatment. Some chemical saccharification treatments use alkalis and acids, but acid saccharification has been widely used for a long time. Acid saccharification includes concentrated sulfuric acid saccharification method and dilute sulfuric acid two-stage saccharification method, both of which use sulfuric acid, which requires waste treatment and reduction of environmental burden, and there is a limit to cost reduction and energy conversion efficiency It is said that.
  • enzymatic saccharification Compared with acid saccharification, enzymatic saccharification has advantages such as less waste liquid collection and processing, reduced equipment costs such as chemical resistance equipment, and high yield of sugar without overdegradation. It is put into practical use by enzymatic saccharification of biomass that contains a large amount.
  • cellulosic biomass has a complex structure in which cellulose has a crystalline structure and crystalline cellulose is surrounded by hemicellulose and lignin. Is extremely difficult.
  • cellulose-degrading enzymes such as Trichoderma microorganism-derived enzymes or anaerobic microorganism-derived cellulosomes in a method of degrading cellulose using microorganism-derived cellulose-degrading enzymes
  • the microorganisms are cultured and the enzymes are used.
  • a two-stage operation is required, that is, a step of obtaining a culture solution containing the enzyme, and a step of performing a decomposition reaction by adding cellulose to the culture solution containing the enzyme.
  • the present invention aims to provide a method for producing glucose by efficiently degrading cellulose without requiring a step of obtaining a culture solution containing an enzyme. To do.
  • thermophilic anaerobic microorganisms produce saccharide-degrading enzymes such as cellulose-degrading enzymes, but they do not produce ⁇ -glucosidase or produce very low activity.
  • Thermophilic anaerobic microorganisms that produce cellulose-degrading enzymes are known to have particularly slow glucose uptake, and prefer cellulo-oligosaccharides such as cellobiose, which are products of cellulolytic enzyme reactions, to grow as nutrient sources. Use.
  • thermophilic anaerobic microorganism producing a cellulolytic enzyme when cultured in the presence of ⁇ -glucosidase, the produced cellooligosaccharide and cellobiose are rapidly converted to glucose.
  • glucose assimilation performance has been confirmed. Usually, if glucose is present, it can be grown and consumes the glucose.
  • thermophilic anaerobic microorganisms and ⁇ -glucosidase coexist, the growth of microorganisms is poor and cellulolytic enzyme production is reduced and cellulolytic degradation is reduced compared to the case where cellooligosaccharides such as cellobiose are used as a carbon source. Or you may stop.
  • the inventors of the present invention cultured thermophilic anaerobic microorganisms in the presence of cellulose, and examined the conversion of cellooligosaccharide, which is a decomposition product of cellulose, to ⁇ -glucosidase in the medium with ⁇ -glucosidase.
  • the cellulose degradation rate in clostridium thermocellum medium was unchanged in the absence of ⁇ -glucosidase, and it was assumed that the degradation was poor, but surprisingly, the cellulose concentration was higher than in the absence of ⁇ -glucosidase. It turns out that it can be decomposed.
  • the present invention has been completed.
  • thermophilic anaerobic microorganisms have proliferated using cellobiose and cellooligosaccharides produced by cellulase production and cellulose degradation from the beginning of the culture, and enzyme production accompanying the growth of bacterial cells has been performed as usual. Is considered. However, as the enzyme production increases due to an increase in cell concentration, and the number of cellulose-degrading enzymes increases, the rate of cellulose degradation increases, and the released cellooligosaccharides are rapidly degraded to glucose by the action of the coexisting ⁇ -glucosidase. Is done.
  • thermophilic anaerobic microorganisms originally have a slow glucose assimilation performance, it can be interpreted that glucose that has already been converted cannot be successfully assimilated and glucose accumulates. That is, the present invention provides a time difference between the phenomenon in which cellooligosaccharide is converted to glucose by the presence of ⁇ -glucosidase when culturing cellulose and thermophilic anaerobic bacteria and the phenomenon in which the utilization rate of glucose is stagnant. It is used.
  • the glucose utilization of thermophilic anaerobic microorganisms producing cellulolytic enzymes is slow, and if they are slow, it is expected to negatively affect microbial growth and enzyme production. It is a very easy-to-use sugar source, and it is difficult to think about the accumulation of glucose in the medium without the use of microorganisms as in the present invention. is there.
  • the present invention is a method for producing glucose, characterized by allowing ⁇ -glucosidase to coexist when culturing a thermophilic anaerobic microorganism in the presence of cellulose.
  • the microorganism is preferably an anaerobic microorganism, more preferably a thermophilic anaerobic microorganism capable of degrading cellulose and hemicellulose.
  • the present invention also provides a method for producing glucose, characterized by culturing a thermophilic anaerobic microorganism in the presence of cellulosic biomass containing starch in the presence of ⁇ -glucosidase, ⁇ -amylase and glucoamylase. To do.
  • the step of culturing a thermophilic anaerobic microorganism to obtain a culture solution and an enzyme solution containing a saccharide-degrading enzyme can be omitted.
  • the culture condition can be set to a high temperature condition, so that the contamination of the microorganism is small and the medium containing glucose can be prevented from being spoiled.
  • Example 1 it is a graph which shows the decomposition
  • disassembly In Example 1, it is a graph which shows the decomposition
  • decomposability it is a graph which shows the decomposition
  • disassembly In Example 1, it is a graph which shows the decomposition
  • Example 2 it is a graph which shows the decomposition
  • disassembly In Example 2, it is a graph which shows the decomposition
  • decomposability it is a graph which shows the decomposition
  • disassembly In Example 2, it is a graph which shows the decomposition
  • Example 3 it is a graph which shows the resolution
  • Example 3 it is a graph which shows the resolution
  • Example 4 it is a graph which shows the amount of glucose accumulation by hydrothermal pretreatment rice straw decomposition
  • Example 6 it is a graph which shows the glucose production of cassava pulp at the time of adding a beta-glucosidase, alpha-amylase, and glucoamylase at the time of culture
  • the glucose production method of the present invention is characterized by culturing a thermophilic anaerobic microorganism in the presence of cellulose and ⁇ -glucosidase.
  • thermophilic anaerobic microorganism is an anaerobic microorganism having an optimum growth temperature of 50 ° C. or more and producing a carbohydrase that decomposes cellulose into cellooligosaccharide and / or monosaccharide. Sex microorganisms are desirable.
  • thermophilic anaerobic microorganisms that produce saccharide-degrading enzymes grow by assimilating cellooligosaccharides produced by saccharide degradation, but are known to have weak assimilating properties with respect to glucose, which is a monosaccharide. .
  • thermophilic anaerobic microorganism is a microorganism that produces a saccharide-degrading enzyme, more preferably a microorganism having a weak assimilation ability of glucose, and more preferably a microorganism having a slow glucose uptake rate.
  • thermophilic anaerobic microorganism that produces a saccharide-degrading enzyme is referred to as a thermophilic anaerobic microorganism having a carbohydrate resolution.
  • microorganisms include, for example, Clostridium thermocellum, Clostridium stercorarium, Clostridium thermolacticum, Caldicellulosiruptor saccharolyticus, Saccharolyticus, Sylpter Bessi (Caldicellulosiruptor bescii), Caldicellulosiruptor obsidiansis, Thermoanaerobacter cellulolyticus, Anaerocellum chathermophila Thermotoga maritima, Thermotoga neapolitana, Fer Dobakuteriumu-Ripariumu (Fervidobacterium riparium), Fell Bido Corynebacterium chair Randy cam (Fervidobacterium islandicum), it can be
  • thermophilic anaerobic microorganism having saccharide-degrading enzyme resolution is preferably a microorganism that produces cellulosome.
  • An example of such a microorganism is Clostridium thermocellum.
  • ⁇ -Glucosidase is an enzyme that breaks down the ⁇ -glycosidic bond of sugars.
  • contamination of other microorganisms can be prevented during culture.
  • ⁇ -glucosidase has a heat resistance with an optimum reaction temperature of 45 ° C. or higher and 70 ° C. or lower, preferably 50 ° C. or higher and 70 ° C. or lower. It is preferable to use an enzyme derived from a thermophilic microorganism.
  • thermophilic microorganisms include Acidothermus genus, Caldicellulosiruptor genus, Clostridium genus, Geobacillus genus, Thermobifida genus, Thermoanaerobacter genus, Thermobispora genus, Thermomodesulfovibrio genus, Thermoomicrobium genus, Thermomonospora genus, Thermomosiga Genus, Treponema, Aciduliprofundum, Caldivirga, Desulfurococcus, Picrophilus, Pyrobaculum, Pyrococcus, Staphylothermus, Sulfolobus, Thermococcus, Thermofilum, Thermoplasma, Thermoproteera, Thermoproteera, Thermoprotepha Can be used.
  • thermophilic anaerobic microorganism for example, an enzyme derived from Thermoanaerobacter brockii.
  • thermophilic anaerobic microorganism for example, an enzyme derived from Thermoanaerobacter brockii.
  • Thermoanaerobacter pseudethanolicus, Thermoanaerobacter ethanolicus, and Thermoanaerobacter wiegelii can be used as well.
  • Thermoanaerobacterium zylanolyticum (Thermoanaerobacterium xylanolyticum), Thermoanaerobacterium thermosaccharolyticum (Thermoanaerobacterium thermosaccharolyticum), Sulfobacillus acidophilus, Alicyclobacillus acidophila cillus ⁇ -glucosidase derived from acidocaldarius can also be used.
  • ⁇ -glucosidase is not limited to the enzyme produced by the above-mentioned microorganism, and the enzyme produced by Escherichia coli or the like by genetic recombination or an enzyme in which a part of the amino acid sequence is modified may be used as described above. Any enzyme may be used as long as it has an activity of decomposing ⁇ -glycoside bonds within the optimum reaction temperature range.
  • a chimeric ⁇ -glucosidase in which a cellulose binding domain (CBM) is fused to ⁇ -glucosidase can be used.
  • CBM belonging to Carbohydrate-Binding Module family classification from Carbohydrate-Active enzymes Database (http://www.cazy.org/) should be used as CBM. it can.
  • CBM belonging to family 3 is good in the module family classification table.
  • ⁇ -glucosidase may be added after culturing a thermophilic anaerobic microorganism in a medium containing cellulose.
  • ⁇ -glucosidase is added to the medium containing cellulose several hours after the start of cultivation of the thermophilic anaerobic microorganism.
  • the culture temperature and the culture pH may be performed under conditions suitable for thermophilic anaerobic microorganisms.
  • ⁇ -glucosidase may coexist in the medium from the beginning of the culture, or may be added to the medium during the culture.
  • thermophilic anaerobic microorganism When a thermophilic anaerobic microorganism is cultured with ⁇ -glucosidase in a medium containing cellulose, the cellulose is decomposed into cellooligosaccharides such as cellobiose and monosaccharides by a saccharide-degrading enzyme produced by the microorganisms. Then, the cellooligosaccharide that is a decomposition product is decomposed into glucose by ⁇ -glucosidase.
  • thermophilic anaerobic microorganisms use glucose as a carbon source because cellooligosaccharide, which is the main carbon source, decreases. However, it is considered that glucose is accumulated in the medium because the consumption rate of glucose is slow.
  • cellobiose is an inhibitor of saccharide-degrading activity, but it is removed from the medium by ⁇ -glucosidase, so that saccharide-degrading activity is maintained without being inhibited. .
  • Cellulose may be cellulosic biomass containing lignin such as bagasse, rice straw, rice husk, mushroom waste floor, compost, and wood chips in addition to paper.
  • the cellulosic biomass containing lignin is preferably pretreated to remove lignin in advance. Such treatment may be performed, for example, by immersing cellulosic biomass containing lignin in ammonia or sodium hydroxide.
  • saccharification may be performed by adding one or more selected from various proteinaceous blocking agents, polymer compounds and surfactants. Effective for increasing efficiency. Specifically, skim milk or casein as a proteinaceous blocking agent, and the surfactant is preferably a nonionic surfactant represented by Tween 20 or Tween 80.
  • a thermophilic anaerobic microorganism is cultured in the presence of ⁇ -glucosidase by adding a protein blocking agent or the like, lignin and lignin-hemicellulose complex existing in the plant cell wall, lignin-inorganic complex, etc. other than cellulose and hemicellulose It is considered that nonspecific adsorption with a saccharide-degrading enzyme to a substance having a reactive group such as a hydrophobic group is suppressed.
  • cellulosic biomass contains starch in addition to cellulose.
  • starch for example, cassava pulp, sugar beet extract residue, other residue after potato starch extraction, and remaining residue after tapioca starch extraction.
  • glucose is produced from such cellulosic biomass containing starch
  • thermophilic anaerobic microorganisms are cultured under conditions where ⁇ -amylase and glucoamylase are present in addition to ⁇ -glucosidase.
  • amylolytic enzymes generally ⁇ -amylase (EC 3.2.1.1), ⁇ -amylase (EC 3.2.1.2), glucoamylase (EC 3.2.1.3) and isoamylase ( EC 3.2.1.68) is known. Particularly important for starch degradation is the action of ⁇ -amylase and glucoamylase.
  • ⁇ -Amylase is an enzyme that generates polysaccharides or oligosaccharides by randomly cleaving 1,4- ⁇ -bonds of starch and glycogen.
  • Glucoamylase is required to convert the oligosaccharide having an ⁇ -glucoside bond into glucose.
  • Glucoamylase is formally called glucan 1,4- ⁇ -glucosidase, 1,4- ⁇ -D-glucan glucohydrase, exo 1,4- ⁇ -glucosidase, ⁇ -amylase, lysosomal ⁇ -glucosidase or amyloglucosidase Is an alias.
  • Glucoamylase breaks down the 1,4- ⁇ bond at the non-reducing end of the sugar chain to produce glucose. Those that also break 1,6- ⁇ bonds are also known.
  • thermophilic anaerobic microorganism When a thermophilic anaerobic microorganism is cultured in a medium containing cellulosic biomass mixed with starch in the presence of ⁇ -glucosidase, amylase, and glucoamylase, starch is degraded by amylase and glucoamylase to become glucose. It is decomposed into cellooligosaccharides such as cellobiose and monosaccharides by saccharide-degrading enzymes produced by microorganisms. Then, the cellooligosaccharide that is a decomposition product is decomposed into glucose by ⁇ -glucosidase.
  • thermophilic anaerobic microorganisms use glucose as a carbon source because cellooligosaccharide, which is the main carbon source, decreases. However, it is considered that glucose is accumulated in the medium because the glucose uptake rate is slow.
  • amylase and glucoamylase it is preferable to select an amylase and a glucoamylase that meet the optimum growth temperature range of a thermophilic anaerobic microorganism having a carbohydrate resolution. That is, amylase and glucoamylase having heat resistance are preferred.
  • amylase and glucoamylase having thermostability with a thermophilic anaerobic microorganism having a saccharide-decomposing ability with a temperature comparable to that of the amylase or glucoamylase as an optimum growth temperature, This is advantageous because contamination of seed microorganisms can be prevented.
  • Amylase and glucoamylase are enzymes having heat resistance of 45 ° C. or higher and 70 ° C. or lower, preferably 50 ° C. or higher and 70 ° C. or lower, and enzymes derived from thermophilic microorganisms can be used.
  • the amylase or glucoamylase having thermostability includes Bacillus genus, Acidothermus genus, Anaerocellum genus, Caldicellulosiruptor genus, Clostridium genus, Geobacillus genus, Thermobifida genus, Thermoanaerobacter genus, Thermobispora genus, Thermomodemosovi genus, Thermothemomostopho, Genus, Thermus genus, Tolumonas genus, Treponema genus, Aciduliprofundum genus, Caldivirga genus, Desulfurococcus genus, Picrophilus genus, Pseudomonas genus, Pyrobaculum genus, Pyrococcus genus, Staphylothermus genus, Sulfolobuscus genus, Streptococcus genus, Strepto
  • thermophilic amylase or glucoamylase derived from thermophilic microorganisms include, for example, clostridium thermocellum, clostridium saccharolyticum, Clostridium phytofermentans, clostridium thermoamylo Liticam (Clostridium thermoamylolyticum), Bacillus amyloliquefaciens (Bacillus amyloliquefaciens), Bacillus megaterium (Bacillus cereus), Bacillus licheniformis (Bacillus licheniformis) (Geobacillus thermodenitrificans), Geobacillus thermoglucosidasius, Geobacillus thermodenitrificans There are enzymes derived from Thermobaerolus (Gobacillus thermoleovorans) and Thermoanaerobacter brockii.
  • Thermoanaerobacter pseudethanolicus can be used as well.
  • Thermoanaerobacterium xylanolyticum can be used as well.
  • Thermoanaerobacterium thermosaccharolyticum can be used as well.
  • Sulfobacillus acidophilus can be used as well.
  • Alicyclobacillus acidcaldarius Alicyclobacillus) acidocaldarius
  • ⁇ -glucosidase derived from Anaerocellum thermophilum can also be used.
  • amylase or glucoamylase having thermostability is derived from archaea such as Pyrococcus and Thermococcus, as well as Rhizopus oryzae, Aspergillus niger, Aspergillus niger, Aspergillus oryzae, Talaromyces emersonii, and Clostridium acetobutylicum, Clostridium cellulolyticum, Bacillus subtilis, Pseudomonas putid and Lactobacillus microorganisms that can produce thermostable amylase and glucoamylase even at room temperature.
  • an enzyme produced by Escherichia coli or the like by genetic recombination or an enzyme in which a part of the amino acid sequence is modified is an enzyme having an activity of decomposing ⁇ -glycoside bond within the above-mentioned optimum reaction temperature range. I just need it.
  • thermophilic anaerobic microorganisms consume cellulose
  • an operation of adding cellulose and repeating the production of glucose may be performed to continuously produce glucose.
  • cellulose consumed by thermophilic anaerobic microorganisms may be supplemented by semi-batch culture.
  • the protein is selected from various protein blocking agents, polymer compounds and surfactants during the cultivation. Addition of one or more kinds to be cultured at an appropriate concentration is also effective in increasing saccharification efficiency.
  • Specific examples of the protein blocking agent include skim milk, casein, bovine serum albumin, gelatin, and polypeptone. Among them, a protein blocking agent containing casein is excellent.
  • the surfactant may be any of anionic, cationic, amphoteric, and nonionic surfactants, but is preferably a nonionic surfactant.
  • a nonionic surfactant represented by Tween 20 or Tween 80 is preferred.
  • glycols are preferable, and those having a polyethylene glycol (PEG) of 200 or more can be used.
  • polyethylene glycol 4000 to 6000 is preferable.
  • thermoanaerobic microorganism Thermoanaerobacter brochki ATCC 33075 (Thermoanaerobacter brockii) (Recombinant ⁇ -glucosidase (hereinafter referred to as CglT) based on ⁇ -glucosidase from American Type Culture Collection) was prepared.
  • Genomic DNA from Thermoanaerobacter broccoli was extracted by the following procedure.
  • Thermoanaerobacter block was cultured using a BM7CO-CB liquid medium containing 0.5% cellobiose, and then centrifuged at 10,000 rpm for 5 minutes at 4 ° C. to collect the cells.
  • 10% SDS sodium lauryl sulfate
  • the proteinase K (1 mg / ml) solution was adjusted to 5 ⁇ g / ml. And reacted at 37 ° C. for 1 hour.
  • cetyltrimethylammonium bromide-0.7M sodium chloride solution was added to a concentration of 1%, and the mixture was reacted at 65 ° C. for 10 minutes. Then, an equal volume of chloroform / isoamyl alcohol solution was added and stirred well. An aqueous layer was obtained by centrifugation at 1,000 rpm for 5 minutes.
  • the composition of BM7CO-CB medium is 1.5 g / L potassium dihydrogen phosphate, 2.9 g / L dipotassium hydrogen phosphate, 2.1 g / L urea, 6.0 g / L yeast extract, carbonic acid 4 g / L sodium, 0.05 g / L cysteine hydrochloride, mineral solution (5 g MgCl 2 .6H 2 O, 0.75 g CaCl 2 .2H 2 O, 0.0065 g FeSO 4 .6H 2 O, Was dissolved in 4 ml of water) and prepared from 0.2 ml. Cellobiose was added to the medium as a carbon source so as to be 5 g / L. The pH of the final medium was adjusted to around 7.0.
  • CglT uses the genomic DNA prepared above to synthesize oligonucleotide primers CglTF (shown in SEQ ID NO: 1: 5'-CGCGGATCCCGCAAAATTTCCAAGAGAT-3 ') and CglTR (shown in SEQ ID NO: 2: 5'-ATTGCTCCAGCTCTCTCATACATCATC-3')
  • CglTF shown in SEQ ID NO: 1: 5'-CGCGGATCCCGCAAAATTTCCAAGAGAT-3 '
  • CglTR shown in SEQ ID NO: 2: 5'-ATTGCTCCAGCTCTCTCATACATCATC-3'
  • SEQ ID NO: 3 A double-stranded amplified DNA sequence having a length of about 1.4 kilobases was obtained by PCR.
  • the amplified CglT gene sequence is shown in SEQ ID NO: 3.
  • the designed oligonucleotide primers CglTF and CglTR are added with restriction enzyme sites BamHI and Bpu1102 for insertion into an E. coli expression vector.
  • the ⁇ -glucosidase CglT gene sequence of Thermoanaerobacter broccoli ATCC 33075 is obtained through the National Biotechnology Information Center (NBIC) website (http://www.Ncbi.nlm.nih.gov/). (GenBank accession number; CAA91220.1).
  • PCR 16s rRNA gene was amplified by ExTaq DNA polymerase (manufactured by Takara Bio Inc.). PCR was carried out under the conditions of 30 cycles of 98 ° C, 1 minute, 55 ° C, 1 minute, 72 ° C, 2 minutes.
  • the PCR product was purified using a Qiagen PCR purification kit (Qiagen) after confirming the amplified band by 0.8% agarose gel electrophoresis.
  • the purified PCR product was subjected to restriction enzyme treatment at 37 ° C. overnight using BamHI (manufactured by Takara Bio Inc.) and Bpu1102 (manufactured by Takara Bio Inc.).
  • restriction enzyme-treated PCR product was again separated from the restriction enzyme degradation product by 0.8% agarose gel electrophoresis, and the target band was cut out from the gel and purified by a gel extraction kit (manufactured by Qiagen).
  • a pET19b expression vector (manufactured by Merck) was also used. This vector is designed so that a 6-residue histidine tag is fused to the N-terminal side of the target protein to be expressed.
  • the pET19b expression vector was similarly BamHI and Bpu1102, and was subjected to restriction enzyme treatment at 37 ° C. overnight. After the restriction enzyme treatment, alkaline phosphatase (manufactured by Takara Bio Inc.) was treated at 50 ° C. for 1 hour in order to dephosphorylate the restriction enzyme cleavage site. Phenol / chloroform extraction was repeated to inactivate alkaline phosphatase, followed by ethanol precipitation, and a restriction enzyme-treated pET19b expression vector was recovered.
  • CglT expression vector In order to construct a CglT expression vector, the restriction enzyme-treated CglT gene and the pET19b expression vector were incubated at 16 ° C. overnight with T4 ligase (Takara Bio) and linked.
  • T4 ligase Takara Bio
  • the expression vector CglT-pET19 was transformed once into E. coli JM109, and cultured overnight at 37 ° C. in Luria-Bertani medium (LB medium) containing 50 ⁇ g / ml ampicillin sodium and 1.5% agar.
  • the composition of the LB medium is shown below. Bactopeptone 1 g / L, sodium chloride 1 g / L, yeast extract 1 g / L, and the final pH of the medium were adjusted to around 7.0.
  • a clone having the desired expression vector CglT-pET19 was selected from the grown colonies.
  • an expression vector CglT-pET19 was extracted from an E. coli clone using a plasmid extraction kit (manufactured by Qiagen), and then BigDye (registered trademark) Terminator v3.1 (Applied Biosystems), PRISM (registered trademark) with the above primers.
  • the DNA sequence was read with 3100 Genetic TM Analyzer (Applied Biosystems) or PRISM (registered trademark) 3700 DNA Analyzer (Applied Biosystems).
  • E. coli BL21 having the expression vector CglT-pET19 was cultured at 37 ° C. for 4 hours in LB medium containing ampicillin sodium, and then 1 mM of isopropyl-D-thiogalactopyranoside was added. Incubation was further performed for 12 hours.
  • Escherichia coli BL21 (DE3) having CglT-pET19 was collected by centrifugation (8,000 rpm, 4 ° C., 10 minutes). The collected cells are once frozen overnight at ⁇ 80 ° C., suspended in a lysis buffer (50 mM phosphate buffer, 300 mM sodium chloride, 10 mM imidazole, pH 8.0), and then ultrasonicated in ice. Crushed by a crusher. The obtained lysate turbid solution was centrifuged to separate a transparent lysate and precipitated unbroken cells, and then only the lysate was collected and filtered through a 0.45 ⁇ m filter.
  • a lysis buffer 50 mM phosphate buffer, 300 mM sodium chloride, 10 mM imidazole, pH 8.0
  • the obtained lysate turbid solution was centrifuged to separate a transparent lysate and precipitated unbroken cells, and then only the lysate was collected and filtered through
  • the lysate was passed through a nickel agarose gel column (Ni-NTA agarose gel; manufactured by Qiagen) to obtain Histag-fused CglT. Further, the eluted CglT was purified through a desalting column (Bio-Rad). The protein amount of the Histag-fused CglT was measured with a BCA / protein measurement kit (manufactured by Thermo Scientific) after dilution with distilled water as necessary. A protein calibration curve was prepared using bovine serum albumin.
  • amino acid sequence of CglT is shown in SEQ ID NO: 4.
  • ⁇ -Glucosidase activity was measured by Wood, WA., Kellog, S.T., 1988. Methods Enzymology. The activity (unit) was calculated by measuring the amount of p-nitrophenol liberated by enzymatic reaction using p-nitrophenol galactopyranoside as a substrate described in 160, “New York: Academic Press”. The amount of 1 ⁇ mol p-nitrophenol produced per minute was defined as 1 unit (U) of enzyme activity.
  • Clostridium thermocellum JK-S14 strain (NITE P-627) was cultured at 60 ° C. for 4 days in BM7CO-CL medium containing 10 g / L of microcrystalline cellulose.
  • the remaining amount of cellulose in the culture solution was measured by sampling 0.5 ml of the well-suspended culture solution over time during the culture period, and a part of the sample was placed in a 0.45 ⁇ m filter cup that had been weighed in advance. added.
  • the filter cup was centrifuged (13,000 rpm, 5 minutes, 4 ° C.) to separate the culture solution and residual cellulose.
  • the filter cup containing the cellulose residue was dried at 70 ° C. for 2 days, the weight of the filter cup was measured again, and the remaining cellulose residual amount was calculated by subtracting from the weight of the empty filter cup.
  • Cellobiose and glucose concentrations in the culture solution are measured using the above culture solution sampled and centrifuged in a filter cup, and cellobiose and glucose in the culture solution are added to the Aminex HPX-87P and Aminex HPX-87H columns (BioRad).
  • Aminex HPX-87P and Aminex HPX-87H columns BioRad
  • the measured amount of glucose and amount of cellobiose was calculated as the total amount of glucose in terms of glucose and cellobiose based on the weight of cellulose used and made 100%.
  • FIGS. 1 and 2 The results are shown in FIGS. 1 and 2, respectively.
  • the solid line represents the consumption of cellulose over time
  • the black square mark ( ⁇ ) indicates the glucose content in the culture solution
  • the black circle mark ( ⁇ ) indicates the cellobiose content in the culture solution.
  • Cardicellulosyl butter saccharolyticus [Pre-culture of cardicellulosyl butter saccharolyticus] Cardis cellulosyl butter saccharolyticus ATCC 43494 (American Type Culture Collection) was cultured at 60 ° C. for 4 days in a BM7CO-CL medium containing 10 g / L of microcrystalline cellulose.
  • the residual amount of cellulose in the culture solution was the same as in Example 1, except that a 0.45 ⁇ m filter that had been previously weighed by sampling 0.5 ml of the well-suspended culture solution over time. A portion of the sample was added to the cup. The filter cup was centrifuged (13,000 rpm, 5 minutes, 4 ° C.) to separate the culture solution and residual cellulose. The filter cup containing the cellulose residue was dried at 70 ° C. for 2 days, the weight of the filter cup was measured again, and the remaining cellulose residual amount was calculated by subtracting from the weight of the empty filter cup.
  • Cellobiose and glucose concentrations in the culture solution were measured by using high-performance liquid chromatography (Prominence, manufactured by Shimadzu Corp.) using the culture solution sampled and centrifuged in a filter cup, as in Example 1. ).
  • the measured amount of glucose and amount of cellobiose was calculated as the total amount of glucose in terms of glucose and cellobiose based on the weight of cellulose used and made 100%.
  • the solid line represents the consumption of cellulose over time
  • the black square mark ( ⁇ ) indicates the glucose content in the culture solution
  • the black circle mark ( ⁇ ) indicates the cellobiose content in the culture solution.
  • Preparation of the alkali digestion-treated cedar pulp was performed by adding a sodium hydroxide solution so that sodium hydroxide was 23% with respect to 1 g of cedar chips and reacting in a pressure vessel at 170 ° C. for 3 hours. Thereafter, it was thoroughly washed with water and bleached with chlorous acid (3.5% per pulp) at 60 ° C. for 30 minutes. Further, 1 g of cedar pulp was treated with 4% sodium hydroxide at 60 ° C. for 30 minutes and washed repeatedly with water until neutrality. In order to measure the total sugar components and amount of bleached cedar pulp, a hydrolyzed solution was prepared by sulfuric acid hydrolysis and then measured by high performance liquid chromatography.
  • the BM7CO medium containing 5% (weight%) of ammonia-immersed rice straw or cedar bleached pulp was inoculated with clostridium thermocellum JK-S14 at the same time as ⁇ -glucosidase was added and cultured at 60 ° C. Sampling was performed over time to measure the weight of rice straw and the amount of glucose remaining in the culture solution.
  • Fig. 5 shows the amount of rice straw remaining and the amount of glucose accumulated in the culture solution when ⁇ -glucosidase was added to BM7CO medium containing 5% ammonia-immersed rice straw by dry weight and cultured with clostridium thermocellum JK-S14. showed that.
  • the solid line represents the remaining amount of rice straw in the culture solution over time, and the black squares ( ⁇ ) indicate the amount of glucose accumulated in the culture solution.
  • FIG. 6 shows the amount of rice straw remaining and the amount of accumulated glucose when clostridium thermocellum JK-S14 is cultured by adding ⁇ -glucosidase to a BM7CO medium containing 5% cedar bleached pulp by dry weight.
  • the solid line is a graph showing the remaining amount of rice straw in the culture solution over time. Black square marks ( ⁇ ) indicate the amount of glucose accumulated in the culture solution.
  • the cellulose content of the ammonia-immersed rice straw is 60% cellulose per dry weight. Moreover, it is known from HPLC analysis after hydrolysis that 90% of the dry weight of cedar bleached pulp is cellulose. On the other hand, when the cellulose content in the remaining rice straw and bleached cedar pulp is measured, the final residue contains no cellulose, and considering the amount of free glucose and the consumption of clostridium thermocellum JK-S14, In addition, the cellulose contained in the bleached cedar pulp is 100% utilized.
  • Non-patent Document 1 Non-patent Document 1
  • hydrothermal pretreated rice straw is considered to be less saccharified than pretreatment using alkali.
  • Preparation of hydrothermal pre-treated rice straw was performed by adding 3 times the amount of distilled water to 10 g of dry rice straw, placing it in a sealed container and reacting at 170 ° C. for 12 hours. Then, washing was repeated well until it became neutral with distilled water, and the water was squeezed into a hydrothermal pretreated rice straw sample.
  • a hydrolyzate was prepared by sulfuric acid hydrolysis and then measured by high performance liquid chromatography.
  • Casein (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the coating agent, Tween 20 (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the surfactant, and PEG 6000 (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the polymer compound.
  • ⁇ -glucosidase was added during the cultivation of clostridium thermocellum JK-S14, and 0.025 g of casein, 0.05 g of Tween 20 or 0.06 of PEG 6000 per 1 g of hydrothermal pretreated rice straw. 025g was added and culture
  • FIG. 7 shows a case where 10% (dry weight%) of hydrothermal pretreated rice straw is used for the medium, and ⁇ -glucosidase and a coating agent, surfactant or polymer compound are added during clostridium thermocellum culture. It is a graph which shows saccharification.
  • black diamonds ( ⁇ ) indicate no addition
  • black circles ( ⁇ ) indicate casein addition
  • black triangles ( ⁇ ) indicate addition of PEG6000
  • black squares ( ⁇ ) indicate hydrothermal pretreated rice when Tween 20 is added.
  • the amount of glucose released from the straw was shown. It is known that the cellulose concentration of hydrothermal pretreated rice straw is about 40%. Therefore, the glucose concentration released when saccharified to 100% is about 4%.
  • CBM-fused CglT A chimeric ⁇ -glucosidase (hereinafter referred to as CBM-fused CglT) was prepared by fusing CglT with CBM of the clostridium thermocellum JK-S14 (NITE BP-627) strain shown in SEQ ID NO: 5.
  • CBM-CglT a type in which CBM is fused on the N-terminal side
  • CglT-CBM a type in which CBM is fused on the C-terminal side
  • oligonucleotide primers CBMF1 shown in SEQ ID NO: 6: 5'-CGCGGATCCGGTTGGCAATGCAACACCCG-3 '
  • CBMFfusionN shown in SEQ ID NO: 7: 5'-ACGAAATCCTTGGCTGCGTCTGTGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTC It was.
  • Oligonucleotide primer CBMF1 was designed to give a BamHI restriction enzyme site, and CBMFusionN was designed to include a part of the N-terminal amino acid sequence of CglT.
  • CBM gene fragment was amplified by PCR using genomic DNA of Clostridium thermocellum JK-S14 strain (NITE BP-627) as a template.
  • the amplified CBM gene sequence is shown in SEQ ID NO: 8.
  • Primer CglTFusion was designed with a part of the CBM C-terminal side partially overlapped.
  • Each amplified CBM gene (including a gene encoding the N-terminal amino acid sequence of CglT on the 3 ′ side) and CglT gene (including a gene encoding the C-terminal amino acid sequence of CBM on the 5 ′ side) were used as templates.
  • PCR reaction was performed using oligonucleotide primers CBMF1 and CglTR.
  • a DNA fragment (SEQ ID NO: 11) of about 1.9 kb CBM-CglT was obtained by PCR reaction.
  • oligonucleotide primers CglTF SEQ ID NO: 1
  • CglTR-Fusion shown in SEQ ID NO: 12: 5′-
  • CGGTGTTGCCATGCCAACATCTTCGATACCATCATC-3 ' was used.
  • Oligonucleotide primer CglTR-Fusion (C) was designed in such a way that the N-terminal side of CBM partially overlapped.
  • oligonucleotide primer CBM3F-Fusion (shown in SEQ ID NO: 13: 5'-GATGGATGTATCGAAGATGTGGCAATGCAACACGCG-3 ') and oligonucleotide primer CBM3R (shown in SEQ ID NO: 14: 5 '-ATTGCTCAGAGCATTCGGATCATCGACGGCGGTAT-3') was used.
  • Oligonucleotide primer CBM3F-Fusion was designed such that the gene encoding the amino acid sequence on the C-terminal side of CglT was partially overlapped.
  • Oligonucleotide primer CBM3R was designed to give a cleavage site for restriction enzyme Bpu1102.
  • Each amplified CglT gene (including a gene encoding the C-terminal amino acid sequence of CBM on the 3 ′ side) and CBM gene (including a gene encoding the N-terminal amino acid sequence of CglT on the 5 ′ side) were used as templates.
  • PCR reaction was performed using oligonucleotide primers CglTF and CBM3F-Fusion (C).
  • One fusion gene obtained by PCR was cleaved with restriction enzymes BamHI and Bpu1102, respectively, purified, inserted between the BamHI and Bpu1102 restriction enzyme sites of pET19b, and a CBM fusion CglT expression plasmid was prepared.
  • Two expression plasmids were introduced into E. coli BL21 for transformation, and expression strains were obtained respectively.
  • each recombinant protein was expressed and purified. Since both of the purified proteins have a structure with a histidine tag on the N-terminal side, purification was performed on a nickel agarose column using SDS-PAGE until a single band was obtained in the same manner as the above-described recombinant CglT.
  • ⁇ -glucosidase activity was measured by Wood, WA., Kellog, S.T., 1988. Activity (unit) by measuring the amount of p-nitrophenol released by enzymatic reaction using p-nitrophenol galactopyranoside as a substrate, as described in Methodsmin Enzymology.160, New York: Academic ⁇ Press. Was calculated. The amount of ⁇ mole p-nitrophenol produced per minute was defined as 1 unit (U) of enzyme activity. The results are shown in Table 1.
  • CglT showed a very high activity of 25 U / mg protein, whereas for CBM-fused CglT, 4 U / mg protein in CBM-CglT and 2 U / mg protein and a dramatic ⁇ -glucosidase in CglT-CglT The activity decreased. This was considered to have influenced the enzyme catalyst part by the three-dimensional structure change by CBM fusion.
  • the frozen raw cassava pulp was thawed with warm water at 30 ° C., and then dried after removing moisture with a dryer at 60 ° C.
  • glucoamylase A recombinant glucoamylase (hereinafter referred to as CgA) based on the glucoamylase of Clostridium thermocellum JK-S14 strain was prepared.
  • the genomic DNA of clostridium thermocellum JK-S14 was extracted in the same manner as the genomic DNA from Thermoanaerobacter brocci using BM7CO-CB liquid medium containing 0.5% cellobiose.
  • CgA synthesized oligonucleotide primers CgAF shown in SEQ ID NO: 16: 5'-CGCGGATCCGGCGAACACATACTTT-3 '
  • CgAR shown in SEQ ID NO: 17: 5'-AAAGAGGCGGGGTTTTTAGCGACCGCCA-3'
  • SEQ ID NO: 18 A double-stranded amplified DNA sequence having a length of about 1.4 kilobases was obtained by PCR.
  • the amplified CglT gene sequence is shown in SEQ ID NO: 18.
  • the designed oligonucleotide primers CgAF and CgAR have restriction enzyme sites BamHI and SalI added for insertion into an E. coli expression vector.
  • the glucoamylase CgA gene sequence of clostridium thermocellum can be obtained through the homepage of the National Center for Biotechnology Information (NBIC) (http://www.Ncbi.nlm.nih.gov/) ( GenBank accession number; YP_001038201).
  • PCR 16s rRNA gene was amplified by ExTaq DNA polymerase (manufactured by Takara Bio Inc.). PCR was carried out under conditions of 30 cycles of 98 ° C. for 1 minute, 55 ° C. for 1 minute, and 72 ° C. for 30 minutes.
  • the PCR product was purified using a Qiagen PCR purification kit (Qiagen) after confirming the amplified band by 0.8% agarose gel electrophoresis.
  • the purified PCR product was subjected to restriction enzyme treatment at 37 ° C. overnight using BamHI (Takara Bio) and SalI (Takara Bio).
  • restriction enzyme-treated PCR product was again separated from the restriction enzyme degradation product by 0.8% agarose gel electrophoresis, and the target band was cut out from the gel and purified by a gel extraction kit (manufactured by Qiagen).
  • a pET22b expression vector (manufactured by Merck) was also used. This vector is designed so that a 6-residue histidine tag is fused to the N-terminal side of the target protein to be expressed.
  • the pET22b expression vector was similarly treated with BamHI and SalI and treated with restriction enzyme overnight at 37 ° C. After the restriction enzyme treatment, alkaline phosphatase (manufactured by Takara Bio Inc.) was treated at 50 ° C. for 1 hour in order to dephosphorylate the restriction enzyme cleavage site. Phenol / chloroform extraction was repeated to inactivate alkaline phosphatase, followed by ethanol precipitation, and a restriction enzyme-treated pET19b expression vector was recovered.
  • CgA expression vector In order to construct a CgA expression vector, the restriction enzyme-treated CgA gene and the pET22b expression vector were incubated with T4 ligase (Takara Bio) overnight at 16 ° C. and linked.
  • T4 ligase Takara Bio
  • the expression vector CgA-pET22 was once transformed into E. coli JM109, and cultured overnight at 37 ° C. in Luria-Bertani medium (LB medium) containing 50 ⁇ g / ml ampicillin sodium and 1.5% agar.
  • the composition of the LB medium is shown below. Bactopeptone 1 g / L, sodium chloride 1 g / L, yeast extract 1 g / L, and the final pH of the medium were adjusted to around 7.0.
  • a clone having the desired expression vector CgA-pET22 was selected from the grown colonies.
  • an expression vector CgA-pET22 was extracted from an E. coli clone using a plasmid extraction kit (Qiagen), and then BigDye (registered trademark) Terminator v3.1 (Applied Biosystems), PRISM (registered trademark) was used with the above primers. ) The DNA sequence was read by 3100 Genetic TM Analyzer (Applied Biosystems) or PRISM (registered trademark) 3700 DNA Analyzer (Applied Biosystems).
  • Escherichia coli BL21 having the expression vector CgA-pET22 was cultured in ampicillin sodium-containing LB medium at 37 ° C. for 4 hours, and isopropyl-D-thiogalactopyranoside was added at a concentration of 1 mM. Culturing was performed for 12 hours.
  • Escherichia coli BL21 (DE3) having CgA-pET22 was collected by centrifugation (8,000 rpm, 4 ° C., 10 minutes). The collected cells are once frozen overnight at ⁇ 80 ° C., suspended in a lysis buffer (50 mM phosphate buffer, 300 mM sodium chloride, 10 mM imidazole, pH 8.0), and then ultrasonicated in ice. Crushed by a crusher. The obtained lysate turbid solution was centrifuged to separate a transparent lysate and precipitated unbroken cells, and then only the lysate was collected and filtered through a 0.45 ⁇ m filter.
  • a lysis buffer 50 mM phosphate buffer, 300 mM sodium chloride, 10 mM imidazole, pH 8.0
  • the obtained lysate turbid solution was centrifuged to separate a transparent lysate and precipitated unbroken cells, and then only the lysate was collected and filtered through
  • the lysate was passed through a nickel agarose gel column (Ni-NTA agarose gel; manufactured by Qiagen) to obtain histag-fused CgA. Further, the eluted CgA was purified through a desalting column (manufactured by Bio-Rad). The protein amount of the Histag-fused CglT was measured with a BCA / protein measurement kit (manufactured by Thermo Scientific) after dilution with distilled water as necessary. A protein calibration curve was prepared using bovine serum albumin.
  • amino acid sequence of CgA is shown in SEQ ID NO: 19.
  • FIG. 8 shows that when clostridium thermocellum JK-S14 is cultured by adding ⁇ -glucosidase, ⁇ -amylase, and glucoamylase derived from the clostridium thermocellum JK-S14 to a BM7CO medium containing 5% cassava pulp by dry weight.
  • 1 shows the amount of glucose accumulated in the culture solution.
  • Black square marks ( ⁇ ) indicate the amount of glucose accumulated in the culture solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 好熱嫌気性微生物をセルロース及びβ-グルコシダーゼの存在下で培養することにより、セルラーゼを生産させ、セルロースをセロオリゴ糖等の糖類に分解し、得られたセロオリゴ糖をさらに、β-グルコシダーゼでグルコースに分解し、培地中に蓄積させる。また、好熱嫌気性微生物をデンプンとセルロースの混合物及びβ-グルコシダーゼ、α-アミラーゼ、グルコアミラーゼ存在下で培養することにより、セルラーゼを生産させ、デンプン・セルロース混合物をグルコースに分解し、培地中に蓄積させる。

Description

グルコースの生産方法
 本発明は、好熱嫌気性微生物を用い、セルロースを分解してグルコースを生産する方法に関する。
 バガス、稲わら、籾殻、キノコ廃床、堆肥、木材チップ等のセルロース系バイオマスが食糧生産を圧迫しないエネルギーや化学工業の原料資源として注目されている。特に、セルロース系バイオマスの燃料エタノールへの変換においては、発酵原料を効率良く糖化する技術が切望されている。
 しかし、セルロース系バイオマスはでん粉に比べて糖化技術の難易度が高い。これは、セルロース系バイオマスの構成主体であるセルロースが堅固な結晶構造を持つ難分解性の高分子多糖であることによる。
 セルロース系バイオマスの糖化方法には、物理的糖化、化学的糖化及び酵素糖化の3つの方法が知られている。
 物理的糖化処理はボールミルや振動ミル又は蒸煮爆砕や加圧熱水処理など物理的に糖化を施す処理があるが、物理的な処理は多大なエネルギーを必要とするため、化学的糖化や酵素糖化の前処理として併用されることが多い。
 化学的糖化処理は、アルカリ、酸を利用するものがあるが、古くより酸糖化がよく用いられている。酸糖化には濃硫酸糖化法と希硫酸二段糖化法とがあるが、何れも硫酸を用いるため、廃棄物処理や環境負荷の低減を必要とし、低コスト化及びエネルギー変換効率に限界があるといわれている。
 酵素糖化は、酸糖化に比べ、廃液回収や処理の負担が軽く、耐薬設備等の設備コストを低減できること、過分解が起こらずに糖の収率が高い等の利点があるため、澱粉質を多く含むバイオマスの酵素糖化で実用化されている。ところが、セルロース系バイオマスは、前述したように、セルロースが結晶構造を有していること及び結晶性セルロースをヘミセルロースやリグニンが取り囲んだ複雑な構造を有しているため、でん粉系に比べ、酵素糖化がきわめて困難である。
 セルロース系バイオマスを分解できるヘミセルラーゼやセルラーゼとして好気性糸状菌トリコデルマ属微生物由来の酵素について研究が活発に行われている(特許文献1参照)。
 また、近年、ある種の嫌気性微生物がセルロースを、セロオリゴ糖に効率よく分解する酵素複合体セルロソーム(Cellulosome)を生産することが明らかとなった(特許文献2参照)。
特開2007-319040号公報 特開2011-115110号公報
Science 333 pp. 1279-1282 (2011)
 微生物由来のセルロース分解酵素を用いてセルロースを分解する方法において、トリコデルマ微生物由来の酵素又は嫌気性微生物由来のセルロソームのようなセルロース分解酵素を得るためには、最初に、微生物を培養して酵素を含む培養液を得るステップと、次に、酵素を含んだ培養液にセルロースを添加して分解反応を行うステップの、2段階の操作を必要とする。
 しかし、セルロソームを産生する嫌気性微生物の場合、微生物の増殖速度が遅く、細胞密度も低いため、酵素を含んだ培養液を得るために多くの時間を要するという問題がある。さらに、セルロース分解の最終産物であるセルビオースの蓄積によりセルラーゼ酵素活性が阻害されるため、分解反応の後期にセルロース分解効率が低下するという問題がある。
 トリコデルマ・リーセイ由来のセルロース分解酵素に関しては、基質の分解速度が遅いため、実用化に際し、大量の酵素を必要とすることが指摘されている。
 上記の又は後述の種々の課題に鑑み、本発明は、酵素を含む培養液を得るステップを必要とすることなく、セルロースを効率よく分解して、グルコースを製造する方法を提供することを目的とするものである。
 ある種の微生物、特に、好熱嫌気性微生物は、セルロース分解酵素のような糖質分解酵素を産生するが、β-グルコシダーゼを産生しないか、生産しても非常に低い活性しか示さない。このようなセルロース分解酵素を産生する好熱嫌気性微生物は、特にグルコースの取り込み能が緩慢なことが知られ、セルロース分解酵素反応の産物であるセロビオース等のセロオリゴ糖を好んで栄養源として増殖に利用する。従って、セルロース分解酵素を産生する好熱嫌気性微生物をβ-グルコシダーゼの共存下で培養した場合、産生されたセロオリゴ糖やセロビオースは、速やかにグルコースに変換される。一方、これらの好熱嫌気性微生物においても、グルコース資化性能は確認されており、通常、グルコースが存在すれば生育は可能であり、そのグルコースを消費する。恐らく好熱嫌気性微生物とβ-グルコシダーゼが共存した場合、セロビオース等のセロオリゴ糖を炭素源に利用する場合と比べ、微生物の増殖が不良となり、セルロース分解酵素の生産低下を引き起こし、セルロース分解が低下、もしくはストップしてしまう可能がある。
 本発明者らは、好熱嫌気性微生物をセルロースの存在下で培養し、生成するセルロースの分解物であるセロオリゴ糖を、培地中でβ-グルコシダーゼでグルコースに変換させることを検討した。クロストリジウム・サーモセラム培地でのセルロース分解速度は、β-グルコシダーゼが存在しても、非存在下と不変であり、分解不良と想定していたが、驚くことにβ-グルコシダーゼ不在以上にセルロースを高濃度分解できることが分かった。加えて、その分解されたセルロースの最終分解産物であるグルコースの大部分が利用されずに培地中に蓄積できることに着目し、本発明を完成するに至った。
 好熱嫌気性微生物は、培養初期から、セルラーゼ産生とセルロース分解により生ずるセロビオース、セロオリゴ糖を利用し増殖していることが推察され、菌体の増殖に伴う酵素生産は通常通り行われていることが考察される。しかし菌体濃度の増加による酵素生産が進み、セルロース分解酵素が増えてくると、セルロース分解の速度は上昇し、共存するβ-グルコシダーゼの作用により、遊離してくるセロオリゴ糖はグルコースへ速やかに分解される。ところが、好熱嫌気性微生物は、もともとグルコース資化性能が緩慢なため、すでに変換されたグルコースをうまく資化することが出来ず、グルコースが蓄積していくものと解釈できる。
 すなわち、本発明は、セルロースと好熱嫌気性細菌を培養する際にβ-グルコシダーゼを存在させることで、セロオリゴ糖がグルコースへ変換する現象と、グルコースの利用速度が停滞していく現象の時間差を利用したものである。セルロース分解酵素を産生する好熱嫌気性微生物のグルコース資化性能が緩慢であるのと、もし緩慢であれば微生物増殖や酵素生産にネガティブに影響するという予見、さらに一般的にグルコースが微生物に対して非常に利用しやすい糖源で、本発明のようにグルコースを微生物が利用せずに培地中へ蓄積することが考え難いことから、これまでの知見や情報だけでは到底想到し得ない知見である。
 すなわち、本発明は、セルロースの存在下、好熱嫌気性微生物を培養する際にβ-グルコシダーゼを共存させることを特徴とする、グルコースの生産方法である。なお、微生物は、嫌気性微生物が好ましく、さらに好ましくは、セルロース、ヘミセルロースを分解できる好熱嫌気性微生物である。
 本発明はまた、デンプンを含有するセルロース系バイオマスの存在下、β-グルコシダーゼ、α-アミラーゼ及びグルコアミラーゼを共存させて、好熱嫌気性微生物を培養することを特徴とするグルコースの生産方法を提供する。
 本発明のグルコースの生産方法により、好熱嫌気性微生物を培養して糖質分解酵素を含む培養液および酵素溶液を得るステップを省略することができる。
 特に、好熱嫌気性微生物を用いた場合には、培養条件を高い温度条件にできるため、微生物のコンタミネーションが少なく、グルコースを含む培地の腐敗を防止することができる。
実施例1において、糖質分解能を有する好熱嫌気性微生物の培養時にβ-グルコシダーゼを添加しない場合のセルロースの分解効率を示すグラフである。 実施例1において、糖質分解能を有する好熱嫌気性微生物の培養時にβ-グルコシダーゼを添加した場合のセルロースの分解効率を示すグラフである。 実施例2において、糖質分解能を有する好熱嫌気性微生物の培養時にβ-グルコシダーゼを添加しない場合のセルロースの分解効率を示すグラフである。 実施例2において、糖質分解能を有する好熱嫌気性微生物の培養時にβ-グルコシダーゼを添加した場合のセルロースの分解効率を示すグラフである。 実施例3において、糖質分解能を有する好熱嫌気性微生物の培養時にβ-グルコシダーゼを添加した場合のアンモニア浸漬稲わらの分解能及びグルコース蓄積量を示すグラフである。 実施例3において、糖質分解能を有する好熱嫌気性微生物の培養時にβ-グルコシダーゼを添加した場合の杉パルプの分解能及びグルコース蓄積量を示すグラフである。 実施例4において、糖質分解能を有する好熱嫌気性微生物の培養時に界面活性剤等を添加した場合の水熱前処理稲わら分解によるグルコース蓄積量を示すグラフである。 実施例6において、糖質分解能を有する好熱嫌気性微生物の培養時にβ-グルコシダーゼ、α-アミラーゼ、グルコアミラーゼを添加した場合のキャッサバパルプのグルコース生産を示すグラフである。
 以下、本発明を、実施例を参照しながら詳細に説明する。
 本発明のグルコースの製造方法は、好熱嫌気性微生物をセルロース及びβ-グルコシダーゼの存在下で培養することを特徴とする。
 好熱嫌気性微生物は、嫌気性の微生物であって、至適生育温度が50℃以上の微生物であり、セルロースをセロオリゴ糖及び/又は単糖類に分解する糖質分解酵素を産生する好熱嫌気性微生物が望ましい。一般に、糖質分解酵素を産生する好熱嫌気性微生物は、糖質分解により生ずるセロオリゴ糖を資化して生育するが、単糖であるグルコースに関して、弱い資化性を有することが知られている。すなわち、好熱嫌気性微生物は、糖質分解酵素を産生する微生物で、グルコースの弱い資化性を有する微生物がより好ましく、グルコースの取り込み速度が遅い微生物がさらに望ましい。
 以下、糖質分解酵素を産生する好熱嫌気性微生物を、糖質分解能を有する好熱嫌気性微生物という。このような微生物として、例えば、クロストリジウム・サーモセラム(Clostridium thermocellum)、クロストリジウム・ステコラリウム(Clostridium stercorarium)、クロストリジウム・サーモラクティカム(Clostridium thermolacticum)、カルディセルロシルプター・サッカロリティカス(Caldicellulosiruptor saccharolyticus)、カルディセルロシルプター・ベシー(Caldicellulosiruptor bescii)、カルディセルロシルプター・オブシヂアンシス(Caldicellulosiruptor obsidiansis)、サーモアナエロバクター・セルロリティクス(Thermoanaerobacter cellulolyticus)、アナエロセーラム・サーモフィリム(Anaerocellum thermophilum)、スピロチャタ・サーモフィラ(Spirochaeta thermophila)、サーモトガ・マリティマ(Thermotoga maritima)、サーモトガ・ネアポリタナ(Thermotoga neapolitana)、フェルビドバクテリウム・リパリウム(Fervidobacterium riparium)、フェルビドバクテリウム・イスランディカム(Fervidobacterium islandicum)、を挙げることができる。
 糖質分解酵素分解能を有する好熱嫌気性微生物は、好ましくは、セルロソームを産生する微生物である。このような微生物として、クロストリジウム・サーモセラム(Clostridium thermocellum)を挙げることができる。
 β-グルコシダーゼは、糖のβ-グリコシド結合を分解する酵素であり、至適反応温度が糖質分解能を有する好熱嫌気性微生物の至適生育温度範囲に合致する、耐熱性のものを選択することが好ましい。好熱嫌気性微生物と耐熱性のβ-グルコシダーゼとを組み合わせることにより、培養中、他種微生物のコンタミネーションを防ぐことができる。
 β-グルコシダーゼは、至適反応温度が45℃以上70℃以下、好ましくは50℃以上70℃以下の耐熱性を有するものであり、好熱性微生物由来の酵素を用いることが好ましい。
 好熱性微生物由来のβ-グルコシダーゼは、Acidothermus属、Caldicellulosiruptor属、Clostridium属、Geobacillus属、Thermobifida属、Thermoanaerobacter属、Thermobispora属、Thermodesulfovibrio属、Thermomicrobium属、Thermomonospora属、Thermosipho属、Thermotoga属、Thermus属、Tolumonas属、Treponema属、Aciduliprofundum属、Caldivirga属、Desulfurococcus属、Picrophilus属、Pyrobaculum属、Pyrococcus属、Staphylothermus属、Sulfolobus属、Thermococcus属、Thermofilum属、Thermoplasma属、Thermoproteus属、Thermosphaera属、Thermosphaera属由来のものを用いることができる。
 さらに好ましくは、好熱嫌気性微生物由来のβ-グルコシダーゼであり、例えばサーモアナエロバクター・ブロッキ(Thermoanaerobacter brockii)由来の酵素がある。このほか、サーモアナエロバクター・シュードエタノリクス(Thermoanaerobacter pseudethanolicus)、サーモアナエロバクター・エタノリクス(Thermoanaerobacter ethanolicus)、サーモアナエロバクター・ウィーゲリイ(Thermoanaerobacter wiegelii)が同様に利用できる。また、サーモアナエロバクテリウム・ザイラノリティカム(Thermoanaerobacterium xylanolyticum)、サーモアナエロバクテリウム・サーモサッカロリティカム(Thermoanaerobacterium thermosaccharolyticum)、スルフォバチルス・アシドフィリス(Sulfobacillus acidophilus)、アリサイクロバチルス・アシドカルダリウス(Alicyclobacillus acidocaldarius)由来のβ-グルコシダーゼも同じく利用できる。
 なお、β-グルコシダーゼは、上述した微生物が生産する酵素に限定されるものではなく、遺伝子組み換えにより大腸菌等により生産される酵素又はアミノ酸配列の一部が改変された酵素であっても、上述の至適反応温度の範囲内でβ-グリコシド結合を分解する活性を有する酵素であればよい。
 例えば、β-グルコシダーゼにセルロース結合ドメイン(CBM)を融合したキメラ型のβ-グルコシダーゼを用いることができる。
 CBMとして、カルボハイドレイト・アクティブエンザイムデータベース(Carbohydrate-Active enzymes Database:http://www.cazy.org/)から糖質結合モジュールファミリー分類(Carbohydrate-Binding Module family classification)に属するCBMを用いることができる。好ましくは、そのモジュールファミリー分類表の中でもファミリー3に属するCBMが良い。
 本発明のグルコースを生産する方法は、セルロースを含む培地に好熱嫌気性微生物を培養開始後、β-グルコシダーゼを添加すればよい。好ましくは、セルロースを含む培地に好熱嫌気性微生物の培養が開始から数時間後にβ-グルコシダーゼを添加するのがよい。培養温度及び培養pHは、好熱嫌気性微生物に適した条件下で行えばよい。β-グルコシダーゼは、培養初期から培地中に共存させてもよく、培養中に培地中に添加してもよい。
 好熱嫌気性微生物をセルロースを含む培地でβ-グルコシダーゼと共に培養すると、セルロースは、微生物が産生する糖質分解酵素によって、セロビオース等のセロオリゴ糖及び単糖類に分解される。そして、分解生成物であるセロオリゴ糖は、β-グルコシダーゼによってグルコースに分解される。一方、好熱嫌気性微生物は、主要な炭素源であるセロオリゴ糖が少なくなるため、グルコースを炭素源として利用することになる。しかし、グルコースの消費速度が緩慢であるため、培地中にはグルコースが蓄積されるものと考えられる。
 糖質分解酵素がセルロソームである場合には、セロビオースが糖質分解活性の阻害物質となるが、β-グルコシダーゼにより培地中から除去されるので、糖質分解活性が阻害されることなく維持される。
 なお、本発明において、好熱嫌気性微生物が産生する糖質分解酵素の他に、補助的に、培養条件に適した他のセルラーゼやヘミセルラーゼを培地中に含んでいてもよい。
 セルロースは、紙等の他、バガス、稲わら、籾殻、キノコ廃床、堆肥、木材チップ等のリグニンを含むセルロース系バイオマスであってもよい。なお、リグニンを含むセルロース系バイオマスは、事前にリグニンを除去する前処理を行うことが望ましい。このような処理は、例えば、リグニンを含むセルロース系バイオマスをアンモニアや水酸化ナトリウムに浸漬すればよい。
 セルロースがセルロース系バイオマス又はリグニンが除去されたセルロース系バイオマスである場合には、各種タンパク性ブロッキング剤、高分子化合物及び界面活性剤から選択される1種以上を濃度添加して培養することも糖化効率上昇に効果がある。具体的には、タンパク性ブロッキング剤としてスキムミルク又はカゼイン、界面活性剤は、Tween20や又はTween80に代表される非イオン性界面活性剤の使用が好ましい。
 タンパク性ブロッキング剤等を添加し、β-グルコシダーゼの存在下、好熱嫌気性微生物を培養すると、植物細胞壁に存在するリグニン及びリグニン-ヘミセルロース複合体、リグニン-無機物複合体等、セルロース及びヘミセルロース以外の疎水性基等の反応基を持つとされる物質への糖質分解酵素との非特異的吸着が抑制されると考えられる。
 セルロース系バイオマスには、セルロースの他にデンプンが混在するものが多くある。例えば、キャッサバパルプ、甜菜の抽出残渣やその他イモ類のデンプン抽出後の残渣、タピオカデンプンを抽出した残りの残存物等である。
 このような、デンプンを含有するセルロース系バイオマスからグルコースを生産する場合には、β-グルコシダーゼ以外に、α-アミラーゼ及びグルコアミラーゼが存在する条件下で、好熱嫌気性微生物を培養する。
 デンプン分解酵素として、一般的に、α-アミラーゼ(EC3.2.1.1)、β-アミラーゼ(EC3.2.1.2)、グルコアミラーゼ(EC3.2.1.3)やイソアミラーゼ(EC3.2.1.68)が知られている。特にデンプン分解に重要であるのが、α-アミラーゼとグルコアミラーゼの作用である。α-アミラーゼは、デンプンやグリコーゲンの1,4-α-結合を不規則に切断し、多糖ないしオリゴ糖を生み出す酵素である。α-グルコシド結合を持つオリゴ糖をさらにグルコースにするためにはグルコアミラーゼが必要となる。グルコアミラーゼは正式にはグルカン1,4-α-グルコシダーゼといい、1,4-α-D-グルカングルコヒドラーゼ、エキソ1,4-α-グルコシダーゼ、γ-アミラーゼ、リソソーマルα-グルコシダーゼあるいはアミログルコシダーゼを別名としている。グルコアミラーゼは糖鎖の非還元末端の1,4-α結合を分解してグルコースを産生する。1,6-α結合も切断するものも知られている。
 好熱嫌気性微生物を、β-グルコシダーゼ、アミラーゼ、グルコアミラーゼの存在下、デンプンが混在するセルロース系バイオマスを含む培地で培養すると、デンプンはアミラーゼ、グルコアミラーゼにより分解されグルコースになると共に、セルロースは、微生物が産生する糖質分解酵素によって、セロビオース等のセロオリゴ糖及び単糖類に分解される。そして、分解生成物であるセロオリゴ糖は、β-グルコシダーゼによってグルコースに分解される。一方、好熱嫌気性微生物は、主要な炭素源であるセロオリゴ糖が少なくなるため、グルコースを炭素源として利用することになる。しかし、グルコースの取り込み速度が緩慢であるため、培地中にはグルコースが蓄積されるものと考えられる。
 アミラーゼ及びグルコアミラーゼは、至適反応温度が糖質分解能を有する好熱嫌気性微生物の至適生育温度範囲に合致するものを選択することが好ましい。すなわち、耐熱性を有するアミラーゼ及びグルコアミラーゼが好ましい。耐熱性を有するアミラーゼ及びグルコアミラーゼと、該アミラーゼ又はグルコアミラーゼの耐熱性と同程度の温度を至適生育温度とする糖質分解能を有する好熱嫌気性微生物とを組み合わせることにより、培養中、他種微生物のコンタミネーションを防ぐことができるので有利である。
 アミラーゼ及びグルコアミラーゼは、45℃以上70℃以下、好ましくは50℃以上70℃以下の耐熱性を有する酵素であり、好熱性微生物由来の酵素を用いることができる。
 耐熱性を持つアミラーゼ又はグルコアミラーゼは、Bacillus属、Acidothermus属、Anaerocellum属、Caldicellulosiruptor属、Clostridium属、Geobacillus属、Thermobifida属、Thermoanaerobacter属、Thermobispora属、Thermodesulfovibrio属、Thermomicrobium属、Thermomonospora属、Thermosipho属、Thermotoga属、Thermus属、Tolumonas属、Treponema属、Aciduliprofundum属、Caldivirga属、Desulfurococcus属、Picrophilus属、Pseudomonas属、Pyrobaculum属、Pyrococcus属、Staphylothermus属、Sulfolobus属、Lactobacillus属、Streptococcus属、Thermococcus属、Thermofilum属、Thermoplasma属、Thermoproteus属、Thermosphaera属、Thermosphaera属由来のものを用いることができる。
 さらに詳しくは、好熱性微生物由来の耐熱性を持つアミラーゼ又はグルコアミラーゼとして、例えば、クロストリジウム・サーモセラム、クロストリジウム・サッカロリティカム(Clostridium saccharolyticum)、クロストリジウム・ファイトファーメンタス(Clostridium phytofermentans)、クロストリジウム・サーモアミロリティカム(Clostridium thermoamylolyticum)、バチルス・アミロリクイファシエンス(Bacillus amyloliquefaciens)、バチルス・メガテリウム(Bacillus megaterium)、バチルス・セリウス(Bacillus cereus)、バチルス・リケニフォミス(Bacillus licheniformis)、ジオバチルス・サーモデニトリフィカンス(Geobacillus thermodenitrificans)、ジオバチルス・サーモグルコシダシウス(Geobacillus thermoglucosidasius)、ジオバチルス・サーモレオボランス(Geobacillus thermoleovorans)、サーモアナエロバクター・ブロッキ(Thermoanaerobacter brockii)由来の酵素がある。このほか、サーモアナエロバクター・シュードエタノリクス(Thermoanaerobacter pseudethanolicus)、サーモアナエロバクター・エタノリクス(Thermoanaerobacter ethanolicus)、サーモアナエロバクター・ウィーゲリイ(Thermoanaerobacter wiegelii)が同様に利用できる。
 また、サーモアナエロバクテリウム・ザイラノリティカム(Thermoanaerobacterium xylanolyticum)、サーモアナエロバクテリウム・サーモサッカロリティカム(Thermoanaerobacterium thermosaccharolyticum)、スルフォバチルス・アシドフィリス(Sulfobacillus acidophilus)、アリサイクロバチルス・アシドカルダリウス(Alicyclobacillus acidocaldarius)、アナエロセルム・サーモフィルム(Anaerocellum thermophilum)由来のβ-グルコシダーゼも同じく利用できる。
 耐熱性を持つアミラーゼ又はグルコアミラーゼは、上述した微生物以外に、Pyrococcus、Thermococcus属などアーケア(古細菌)由来や、黒麹菌リゾプス・オリゼ(Rhizopus oryzae)や麹菌アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・オリゼ(Aspergillus oryzae)やタラロマイセス・エマソニ(Talaromyces emersonii)、また常温菌でも耐熱性アミラーゼ及びグルコアミラーゼを生産できるClostridium acetobutylicum、Clostridium cellulolyticum、Bacillus subtilis、Pseudomonas putidやLactobacillus属微生物から得られるものでもよい。
 また、遺伝子組み換えにより大腸菌等により生産される酵素又はアミノ酸配列の一部が改変された酵素であっても、上述の至適反応温度の範囲内でβ-グリコシド結合を分解する活性を有する酵素であればよい。
 なお、好熱嫌気性微生物がセルロースを消費した後、セルロースを添加し、グルコースの生産を繰り返す操作を行い、グルコースを連続して生産してもよい。例えば、セミバッチ培養により、好熱嫌気性微生物が消費したセルロースを補充するようにすればよい。
 前記、β-グルコシダーゼ、及びアミラーゼ、グルコアミラーゼの存在下、好熱嫌気性微生物を培養するグルコースの生産方法においては、培養の際に、各種タンパク性ブロッキング剤、高分子化合物及び界面活性剤から選択される1種以上を適当な濃度添加して培養することも糖化効率上昇させるのに効果がある。
 具体的には、タンパク性ブロッキング剤としてスキムミルク、カゼイン、牛血清アルブミン、ゼラチン、ポリペプトン等が挙げられ、中でもカゼインを含むタンパク性ブロッキング剤が優れている。また界面活性剤は、陰イオン系、陽イオン系、両性、非イオン性界面活性剤のいずれでもよいが、好ましくは非イオン性界面活性剤である。特に、Tween20や又はTween80に代表される非イオン性界面活性剤の使用が好ましい。また高分子化合物においてはグリコール類がよく、ポリエチレングリコール(PEG)200以上のものが利用できる。特にポリエチレングリコール4000~6000が好ましい。
 タンパク性ブロッキング剤等を添加し、β-グルコシダーゼの存在下、好熱嫌気性微生物を培養すると、植物細胞壁が有するリグニン及びリグニン-ヘミセルロース複合体、リグニン-無機物複合体等、セルロース及びヘミセルロース以外の疎水性基等の反応基を持つとされる物質への糖質分解酵素との非特異的吸着が抑制されると考えられる。
 以下、実施例を挙げて本発明を詳しく説明する。なお、本発明は、以下に示す実施例に限定されるものではない。
 [β-グルコシダーゼの調製]
 好熱嫌気性微生物であるサーモアナエロバクター・ブロッキATCC33075(Thermoanaerobacter brockii)(アメリカンタイプカルチャーコレクションのβ-グルコシダーゼをもとにした組換えβ-グルコシダーゼ(以下、CglTという。)を作成した。
 サーモアナエロバクター・ブロッキからのゲノムDNAは、以下の手順により抽出した。
 0.5%セロビオースを含むBM7CO-CB液体培地を用いてサーモアナエロバクター・ブロッキを培養後、4℃にて10,000回転で5分間、遠心分離して菌体を回収した。得られた菌体を溶菌させるために、10%SDS(ラウリル硫酸ナトリウム)を最終濃度が0.5%になるように添加するとともに、プロテナーゼK(1mg/ml)溶液が5μg/mlになるように加え、37℃で1時間反応させた。さらに10%臭化セチルトリメチルアンモニウム-0.7M塩化ナトリウム溶液を1%濃度になるように加え、65℃、10分間反応させた後、等量のクロロフォルム・イソアミルアルコール溶液を加えよく攪拌し、15,000回転、5分間遠心分離にて水層を得た。
 この水層にフェノール・クロロフォルム・イソアミルアルコール混液を等量加え、攪拌して再度15,000回転し、5分間遠心分離にて水層を得た。この水層に対し0.6倍容量のイソプロパノールを加えゲノムDNAを析出させ、再度遠心分離によりゲノムDNAを調製した。このゲノムDNAを70%エタノールで洗浄、乾燥した。
 BM7CO-CB培地の組成は、リン酸二水素カリウムを1.5g/L、リン酸水素二カリウムを2.9g/L、尿素を2.1g/L、酵母エキスを6.0g/L、炭酸ナトリウムを4g/L、システイン塩酸塩を0.05g/L、ミネラル溶液(5gのMgCl・6HO、0.75gのCaCl・2HO、0.0063gのFeSO.6HO、を水4mlに溶解)0.2mlから調製した。また、培地に炭素源としてセロビオースを5g/Lになるように加えた。最終的な培地のpHを7.0前後に調整した。
 CglTは、上記調製したゲノムDNAを用い、オリゴヌクレオチドプライマーCglTF(配列番号1に示す:5´-CGCGGATCCGGCAAAATTTCCAAGAGAT-3´)及び、CglTR(配列番号2に示す:5´-ATTGCTCAGCATCTTCGATACCATCATC-3´)を合成し、PCRにより約1.4キロベース長の二本鎖増幅DNA配列を得た。増幅したCglT遺伝子配列を配列番号3に示す。
 デザインしたオリゴヌクレオチドプライマーCglTF及びCglTRは、大腸菌発現ベクターに挿入するため、制限酵素サイトBamHI及びBpu1102サイトを付加してある。なお、サーモアナエロバクター・ブロッキATCC33075のβ-グルコシダーゼCglT遺伝子配列は、国立バイオテクノロジー情報センター(NBIC)のホームページ(http://www.Ncbi.nlm.nih.gov/)を通じ、遺伝子配列を取得することができる(GenBankアクセッション番号;CAA91220.1)。
 PCRは、ExTaq DNAポリメラーゼ(タカラバイオ社製)により16srRNA遺伝子の増幅を行った。PCRの条件は98℃、1分間、55℃、1分間、72℃、2分間を30サイクルの条件において増幅を行なった。
 PCR産物は0.8%アガロースゲル電気泳動で増幅されたバンドを確認後、キアゲンPCR精製キット(キアゲン社製)を用い精製した。精製したPCR産物はBamHI(タカラバイオ社製)及びBpu1102(タカラバイオ社製)を用い、37℃で一晩、制限酵素処理を行った。
 制限酵素処理済みPCR産物は再度0.8%アガロースゲル電気泳動により制限酵素分解産物と分離し、ゲルから目的のバンドを切り出し、ゲル抽出キット(キアゲン社製)により精製した。
 CglT遺伝子を大腸菌において発現させるため、pET19b発現ベクター(メルク社製)も使用した。本ベクターは発現させたい目的のタンパク質のN末端側に6残基のヒスチジンタグが融合されるような設計になっている。pET19b発現ベクターは、同じくBamHI及びBpu1102を用い、37℃で一晩、制限酵素処理を行った。制限酵素処理後、制限酵素切断サイトの脱リン酸を行うため、アルカリフォスファターゼ(タカラバイオ社製)を50℃で1時間処理を行った。フェノール・クロロフォルム抽出を繰り返し、アルカリフォスファターゼを失活させた後、エタノール沈殿処理を行い、制限酵素処理済みpET19b発現ベクターを回収した。
 CglT発現ベクターを構築するため、上記制限酵素処理済みCglT遺伝子とpET19b発現ベクターはT4ライゲース(タカラバイオ社製)により16℃で一晩、インキュベートを行い、連結させた。その発現ベクターCglT-pET19は大腸菌JM109へ一度形質転換を行い、50μg/mlアンピシリンナトリウムと1.5%寒天を含むLuria-Bertani培地(LB培地)により37℃で一晩、培養を行った。
 LB培地の組成を以下に示す。バクトペプトン1g/L、塩化ナトリウム1g/L、イーストエキストラクト1g/L、最終的な培地のpHを7.0前後に調整した。
 生育してきたコロニーから目的の発現ベクターCglT-pET19を有するクローンを選択した。選択には大腸菌クローンからプラスミド抽出キット(キアゲン社製)を用いて発現ベクターCglT-pET19を抽出したのち上記プライマーによりBigDye(登録商標)Terminator v3.1(アプライドバイオシステムズ社)、PRISM(登録商標) 3100 Genetic Analyzer(アプライドバイオシステムズ社製)または、PRISM(登録商標)3700 DNA Analyzer(アプライドバイオシステムズ社製)によりDNA配列を読み取った。
 読み取った遺伝子配列が正確かどうかを確認するため、国立バイオテクノロジー情報センター(NBIC)のホームページを通じ、得られたDNA配列データを用いて、ホモロジー検索を行なって正確性を確かめた。正確な遺伝子配列を有する発現ベクターCglT-pET19はCglTタンパク質を多量発現させるため、再度大腸菌BL21(メルク社製)へ形質転換しタンパク質多量発現大腸菌クローンを得た。
 CglTを得るため、発現ベクターCglT-pET19を持つ大腸菌BL21をアンピシリンナトリウム含有LB培地で37℃、4時間培養を行った後、イソプロピル-D-チオガラクトピラノシド(isopropyl-D-thiogalactopyranoside)を1mMの濃度を加えさらに12時間培養を行った。
 CglT-pET19を持つ大腸菌BL21(DE3)は遠心分離(8,000回転、4℃、10分)により菌体を回収した。回収した菌体は一度-80℃で一晩凍結し、溶菌緩衝液(50mMのリン酸緩衝液、300mMの塩化ナトリウム、10mMのイミダゾール、pH8.0)に懸濁したのち、氷中において超音波破砕機により破砕した。得られた溶菌混濁液を遠心分離し、透明な溶菌液と沈殿している未破砕菌体とを分離後、溶菌液のみを回収し0.45μmフィルター濾過を行った。
 溶菌液はニッケルアガロースゲルカラム(Ni-NTAアガロースゲル;キアゲン社製)を通して、ヒスタグ融合CglTを得た。さらに溶出を行ったCglTは脱塩カラム(バイオラッド社製)に通して精製した。ヒスタグ融合CglTのタンパク量測定は、必要に応じて蒸留水で希釈後、BCA・タンパク測定キット(サーモサイエンティフィック社製)により測定を行った。タンパク質の検量線はウシ血清アルブミンを使用して作成した。
 CglTのアミノ酸配列を配列番号4に示す。
 β-グルコシダーゼの活性測定は、Wood, WA., Kellog, S.T., 1988. Methods in Enzymology.160, New York: Academic Press.に記載された、p-ニトロフェノールガラクトピラノシドを基質として酵素反応により遊離してくるp-ニトロフェノール量を測定することにより、活性(ユニット)を算出した。一分間に1μモルp-ニトロフェノールを生成する量を1ユニット(U)の酵素活性と定義した。
 [クロストリジウム・サーモセラムの前培養]
 クロストリジウム・サーモセラムJK-S14株(NITE P-627)を微結晶セルロース10g/Lを含むBM7CO-CL培地を用いて4日間、60℃にて培養を行った。
 [クロストリジウム・サーモセラムとβ-グルコシダーゼによるグルコースの生産]
 上記前培養したクロストリジウム・サーモセラムJK-S14株を用い、高濃度結晶性セルロース(100g/L)を含むBM7CO培地を使用の際、β-グルコシダーゼを添加しない場合、及びβ-グルコシダーゼ(CglT、10ユニット)を同時に添加した場合の培養液中のセルロース残存量、セロビオース生成量、グルコース生成量の経時的変化を測定した。
 培養液中のセルロース残存量は、培養期間中、よく懸濁した培養液を経時的に0.5mlずつサンプリングを行い、あらかじめ重量を測定していた0.45μmのフィルターカップへサンプルの一部を加えた。そのフィルターカップは遠心分離(13,000rpm、5分間、4℃)を行い、培養液と残渣のセルロースを分離した。セルロース残渣を含むフィルターカップは70℃で2日間乾燥させ、再度、フィルターカップの重量を測定し、空のフィルターカップの重量から差し引くことで残存しているセルロース残量を算出した。
 培養液中のセロビオース及びグルコース濃度の測定は、サンプリングしフィルターカップで遠心分離した上記培養液を用い、培養液中のセロビオースやグルコースをアミネックスHPX-87P及びアミネックスHPX-87Hカラム(バイオラッド社製)による示差屈折検出器を用いた高速液体クロマトグラフィー(島津製作所製、Prominence)により測定した。測定されたグルコース量及びセロビオース量は、使用したセルロース重量を参考にグルコース及びセロビオース換算での全糖量を算出し100%量とした。
 その結果をそれぞれ図1及び図2に示す。図中、実線がセルロースの消費を経時的に表したもので、黒四角印(■)が培養液中のグルコース含量、黒丸印(●)が培養液中のセロビオース含量を示す。
 図1に示すように、クロストリジウム・サーモセラムJK-S14株の培養時にβ-グルコシダーゼを添加しない場合、最終的にセルロースは約6%近く残存した。また培養期間中、グルコースの遊離はほとんど認められず、セロビオースも多少は培養液中に存在するが、1%以下と非常に低い量に保たれていた。
 図3に示すように、クロストリジウム・サーモセラムJK-S14株の培養時に同時にβ-グルコシダーゼを添加した場合、10%セルロースは、最終的にすべて分解され残存量はわずかであった。加えて培養液中の遊離セロビオース量は、低い状態に保たれていたが、遊離グルコース量は培養2日目以降、急激に上昇していくことが明らかとなった。この結果は、クロストリジウム・サーモセラムJK-S14の生産するセルロソームを含むセルラーゼ酵素がセルロースを分解するが、セルロースから遊離してくるセロビオースを速やかにβ-グルコシダーゼがグルコースに変換していることを示している。また、グルコースはセルロソーム等、セルラーゼ酵素の活性阻害への影響が低いため、セルロース分解反応はセロビオースが残存している状態よりも進む。一方、遊離生成されたグルコース量から換算すると、グルコースの約1.5%~2%が、クロストリジウム・サーモセラムJK-S14の生育等に消費されるが、約8%のグルコースは、培養液中に蓄積している。これは、クロストリジウム・サーモセラムのグルコース消費速度が極めて遅いことを示しており、セルロース分解反応がグルコース消費よりも先行して進むことによると考察できる。この結果、セルロース基質を炭素源にクロストリジウム・サーモセラムを培養する場合、同時にβ-グルコシダーゼを添加すると、その培養液中にグルコースを蓄積できることが明らかとなった。
 カルディセルロシルブター・サッカロリティカス
[カルディセルロシルブター・サッカロリティカスの前培養]
 カルディセルロシルブター・サッカロリティカスATCC 43494(アメリカンタイプカルチャーコレクション)を微結晶セルロース10g/Lを含むBM7CO-CL培地を用いて4日間、60℃にて培養を行った。
 [カルディセルロシルブター・サッカロリティカスとβ-グルコシダーゼによるグルコースの生産]
 上記前培養したカルディセルロシルブター・サッカロリティカスATCC 43494株を用い、高濃度結晶性セルロース(50g/L)を含むBM7CO培地を使用の際、β-グルコシダーゼを添加しない場合、及びβ-グルコシダーゼ(CglT、10ユニット)を同時に添加した場合の培養液中のセルロース残存量、セロビオース生成量、グルコース生成量の経時的変化を測定した。
 培養液中のセルロース残存量は、実施例1と同様に、培養期間中、よく懸濁した培養液を経時的に0.5mlずつサンプリングを行い、あらかじめ重量を測定していた0.45μmのフィルターカップへサンプルの一部を加えた。そのフィルターカップは遠心分離(13,000rpm、5分間、4℃)を行い、培養液と残渣のセルロースを分離した。セルロース残渣を含むフィルターカップは70℃で2日間乾燥させ、再度、フィルターカップの重量を測定し、空のフィルターカップの重量から差し引くことで残存しているセルロース残量を算出した。
 培養液中のセロビオース及びグルコース濃度の測定は、実施例1と同様に、サンプリングしフィルターカップで遠心分離した培養液を用い、培養液中のセロビオースやグルコースを高速液体クロマトグラフィー(島津製作所製、Prominence)により測定した。測定されたグルコース量及びセロビオース量は、使用したセルロース重量を参考にグルコース及びセロビオース換算での全糖量を算出し100%量とした。
 その結果をそれぞれ図3及び図4に示す。図中、実線がセルロースの消費を経時的に表したもので、黒四角印(■)は培養液中のグルコース含量、黒丸印(●)は培養液中のセロビオース含量を示す。
 図3に示すように、カルディセルロシルブター・サッカロリティカスATCC 43494株の培養時にβ-グルコシダーゼを添加しない場合、最終的にセルロースは約1.5%残存した。また培養期間中、グルコースの産生が認められた。これはカルディセルロシルブター・サッカロリティカス培養液中にβ-グルコシダーゼ活性が存在するものと考えられる。一方、セロビオースも多少は培養液中に存在するが、1%以下と非常に低い量に保たれていた。
 図4に示すように、カルディセルロシルブター・サッカロリティカスATCC 43494株の培養時にβ-グルコシダーゼを添加しない場合に比較し、明らかに培養液中のグルコースの蓄積が増加した。この結果は、セルロース基質を炭素源としてカルディセルロシルブター・サッカロリティカスを培養する場合、β-グルコシダーゼを添加すると、培養液中にグルコースを蓄積できることを示している。5%のセルロースは、最終的にすべて分解され残存量はわずかであった。培養液中の遊離セロビオース量は、低い状態に保たれていたが、グルコース量は培養3日目以降、急激に上昇していくことが明らかとなった。最終的に5%のセルロースから3.5%のグルコースが培養液中に蓄積した。この結果は、カルディセルロシルブター・サッカロリティカスの生産するセルラーゼ酵素がセルロースを分解し、増殖していることを示すと同時に、β-グルコシダーゼがセルロース分解から生じるセロビオースを速やかにグルコースに変換していることを示している。生成されたグルコース量から換算すると、約3割のグルコース分が生育に消費されることが明らかとなった。これは、カルディセルロシルブター・サッカロリティカスATCC 43494株も同様にグルコース消費速度が極めて遅いことを示しており、セルロース分解反応がグルコース消費よりも先行して進むことによると考察できる。
 セルロース系バイオマスを炭素源として使用した場合でも、グルコースを培養液中に蓄積することを確認するため、アンモニア浸漬処理を行った前処理稲わら及び、アルカリ蒸解及び漂白処理を行った杉チップを用いて試験を行った。
 アンモニア浸漬は乾燥稲わらを10gに10倍量の28%アンモニア水溶液を加え、密閉容器に入れて60℃で7日間放置した。その後、蒸留水により中性になるまでよく洗浄を繰り返し、水を絞ったものをアンモニア浸漬前処理稲わらサンプルとした。アンモニア浸漬前処理稲わらの全糖成分や量を測定するため、稲わらを硫酸加水分解により加水分解し、得られた加水分解液を高速液体クロマトグラフィーで測定した。
 アルカリ蒸解処理杉パルプの調製は、杉チップ1gに対し水酸化ナトリウムが23%となるように水酸化ナトリウム溶液を加え、耐圧容器中で170℃、3時間反応を行った。その後、十分に水洗し、亜塩素酸(対パルプ当たり3.5%)により60℃、30分間で漂白処理を行った。さらに杉パルプ1gに対し4%の水酸化ナトリウムで60℃、30分間処理を行い中性になるまで水洗を繰り返した。漂白杉パルプの全糖成分や量を測定するため、硫酸加水分解により加水分解液を調製後、高速液体クロマトグラフィーにて測定した。
 乾燥重量で5%(重量%)のアンモニア浸漬稲わら又は杉漂白パルプを含むBM7CO培地にクロストリジウム・サーモセラムJK-S14株を接種すると同時にβ-グルコシダーゼを添加し、60℃で培養を行った。経時的にサンプリングを行い培養液中に残る稲わらの重量及びグルコース量を測定した。
 図5に、乾燥重量で5%のアンモニア浸漬稲わらを含むBM7CO培地にβ-グルコシダーゼを添加し、クロストリジウム・サーモセラムJK-S14株を培養した際の培養液中の稲わら残存量とグルコース蓄積量を示した。実線が稲わらの培養液中の残存量を経時的に表したもので、黒四角印(■)は培養液中のグルコース蓄積量を示す。
 図6は、乾燥重量で5%の杉漂白パルプ含むBM7CO培地にβ-グルコシダーゼを添加し、クロストリジウム・サーモセラムJK-S14株を培養した際の培養液中の稲わら残存量とグルコース蓄積量を示すものである。実線が稲わらの培養液中の残存量を経時的に表したグラフである。黒四角印(■)は培養液中のグルコース蓄積量を示す。
 図5及び図6からわかるように、培養1日目以降から培養液中のグルコース濃度の上昇が認められ、アンモニア浸漬稲わらの場合(図5参照)、約2.5%のグルコース、及び杉漂白パルプの場合(図6参照)、約4%グルコースを培養液中に蓄積した。それに伴い培養液中の稲わらや杉漂白パルプ残量は減少した。
 アンモニア浸漬稲わらのセルロース含量は乾燥重量当たり60%がセルロースである。また杉漂白パルプは乾燥重量の90%がセルロースであることが加水分解後のHPLC分析からわかっている。一方、残った稲わらや漂白杉パルプ中のセルロース含量を測定すると、最終残渣にセルロースは含まれておらず、遊離したグルコース量とクロストリジウム・サーモセラムJK-S14株の消費量を考慮すると、稲わら及び漂白杉パルプ中に含まれるセルロースは100%利用されたことを示している。
 セルロース濃度をさらに高め、高濃度のグルコースを蓄積可能かどうか検討するため、アンモニア浸漬稲わら及び漂白杉パルプが分解されグルコース蓄積量が平衡状態になった時点(それぞれ、5日目)で、アンモニア浸漬稲わら又は漂白杉パルプをそれぞれ乾燥重量として再度5%追添加した。結果を図5及び図6に示す。セルロースを再添加した後、セルロースの残存量は急激に減少していき、またグルコース蓄積が生じた。セルロース再添加後のグルコース蓄積量は、初回の分解時に得られたグルコースの蓄積量とほぼ同様な傾向が認められ、最終的に、グルコース量としてアンモニア浸漬稲わらの場合、約5%、漂白杉パルプにおいては約8%、蓄積が可能であることが明らかとなった。
 また、この結果から、セルロースが分解した後、セルロースをさらに添加しても、グルコースの生産を繰り返して行うことが可能であることがわかる。
 前記シグマセルのような純粋なセルロースである場合は10%の濃度としても阻害無く完全分解することができる。一方、前記、稲わらなどの草本系バイオマスや杉などの木質系バイオマスを使用した場合、リグニン除去を行うような前処理を行ったとしても残存したヘミセルロースやリグニンが邪魔をし、高濃度基質を最初から添加すると糖化効率は著しく低下することが知られている。これは基質と酵素の非特異的吸着やそれによる酵素の失活、さらには酵素同士のセルロース表面での渋滞現象が起こることが最近の研究で明らかとなっている(非特許文献1)。この現象の解消方法として、界面活性剤、コーティング剤又は高分子化合物などを添加すると酵素の糖化能が向上することが知られている。しかし、クロストリジウム・サーモセラム培養時にβ-グルコシダーゼを添加した場合、上記薬剤添加による効果は不明である。特に、界面活性剤は微生物の細胞膜や壁を溶解させる薬剤としてDNAやタンパク質抽出時に使用されることが知られており、微生物に対して毒性を持つ。
 そこで、非イオン性界面活性剤を用い、水熱前処理稲わらに対して効果があるかを試験した。なお、水熱前処理稲わらは、アルカリを用いた前処理に比べ、糖化し難いとされている。
 水熱前処理稲わらの調製は、乾燥稲わらを10gに3倍量の蒸留水を加え、密閉容器に入れて170℃で12時間反応させた。その後、蒸留水により中性になるまでよく洗浄を繰り返し、水を絞ったものを水熱前処理稲わらサンプルとした。なお、この水熱前処理稲わらの全糖成分や量を測定するため、硫酸加水分解により加水分解液を調製後、高速液体クロマトグラフィーにて測定した。
 コーティング剤として、カゼイン(和光純薬社製)、界面活性剤として、Tween20(和光純薬社製)、また高分子化合物としてPEG6000(和光純薬社製)を用いた。
 実施例1と同様に、クロストリジウム・サーモセラムJK-S14株培養時にβ-グルコシダーゼを添加すると共に、1gの水熱前処理稲わらあたり、カゼイン0.025g、Tween20を0.05g、又はPEG6000を0.025g添加し、培養を開始した。
 図7は、培地に対し、水熱前処理稲わら10%(乾燥重量%)を用い、クロストリジウム・サーモセラム培養時に、β-グルコシダーゼ及び、コーティング剤、界面活性剤又は高分子化合物を添加した場合の糖化を示すグラフである。
 図中の黒菱形印(◆)は添加なし、黒丸印(●)はカゼイン添加、黒三角印(▲)はPEG6000添加、黒四角印(■)はTween20を添加した際の水熱前処理稲わらからの遊離したグルコース量を示した。水熱前処理稲わらのセルロース濃度は約40%含まれていることが知られている。従って100%糖化した際の遊離してくるグルコース濃度は約4%である。
 添加剤を入れない場合、水熱前処理稲わらでは1.4%のグルコースの培地中への蓄積が認められた。従って、少なくとも糖化効率は35%であったが、カゼイン添加物では2.1%のグルコースの蓄積、PEG6000添加では、2.7%のグルコースの蓄積、Tween20添加では2.9%のグルコースの蓄積となり、それぞれ糖化効率は52.5%、67.5%、72.5%とグルコース蓄積量及び、糖化効率共に劇的に上昇することが明らかとなった。特に高分子化合物や界面活性剤の添加により高い効果があることが明らかとなった。
 従って、クロストリジウム・サーモセラム培養時に同時にβ-グルコシダーゼ及び、コーティング剤、界面活性剤又は高分子化合物の添加することで、セルロースからのグルコース生産、培養液中への蓄積を飛躍的に高められることをも併せて明らかとなった。
 CglTに配列番号5に示すクロストリジウム・サーモセラムJK-S14(NITE BP-627)株のCBMを融合してキメラβ-グルコシダーゼ(以下、CBM融合CglTという)を作製した。
 CBM融合CglTをデザインするに当たり、N末端側にCBMを融合させたタイプ(以下、CBM-CglTとして示す。)とC末端側にCBMを融合させたタイプ(以下、CglT-CBMとして示す。)とをそれぞれ作成した。
[CBM-CglTの作製]
 CBM-CglTの作成にあたり、CBMの増幅にはオリゴヌクレオチドプライマーCBMF1(配列番号6に示す:5´-CGCGGATCCGGTTGGCAATGCAACACCG-3´)およびCBMFusionN(配列番号7に示す:5´-ACGAAATCTCTTGGAAATTTTGCATTCGGATCATCTGACGGCGG-3´)を用いた。
 オリゴヌクレオチドプライマーCBMF1にはBamHIの制限酵素サイトを付与するようにデザインし、またCBMFusionNにはCglTのN末端アミノ酸配列が一部含まれるようにデザインした。
 クロストリジウム・サーモセラムJK-S14株(NITE BP-627)のゲノムDNAを鋳型とし、PCRによりCBM遺伝子断片を増幅した。増幅したCBMの遺伝子配列を配列番号8に示す。
 CglTの作成にあたっては、プライマーCglTFusion(N)(配列番号9に示す:5´-CCGCCGTCAGATGATCCGAATGCAAAATTTCCAAGAGATTTCGTT-3´)、及びCglTR(配列番号10に示す)を用いた。
 プライマーCglTFusion(N)は、CBMのC末端側を一部重複した形でプライマーをデザインした。それぞれ増幅したCBM遺伝子(3´側にCglTのN末端アミノ酸配列をコードする遺伝子を含む。)及びCglT遺伝子(5´側にCBMのC末端アミノ酸配列をコードする遺伝子を含む。)を鋳型として用い、オリゴヌクレオチドプライマーCBMF1及びCglTRを用いPCR反応を行った。
 PCR反応により、約1.9kbのCBM-CglTのDNA断片(配列番号11)を得た。
[CglT-CBMの作製]
 C末端側にCBMを融合させたタイプのCglT-CBMの作成において、CglT遺伝子の増幅にはオリゴヌクレオチドプライマーCglTF(配列番号1)及びCglTR-Fusion(C)(配列番号12に示す:5´-CGGTGTTGCATTGCCAACATCTTCGATACCATCATC-3´)を用いた。
 オリゴヌクレオチドプライマーCglTR-Fusion(C)には、CBMのN末端側を一部重複した形でオリゴヌクレオチドプライマーをデザインした。
 C末端側へのCBM遺伝子の増幅においては、オリゴヌクレオチドプライマーCBM3F-Fusion(C)(配列番号13に示す:5´-GATGATGGTATCGAAGATGTTGGCAATGCAACACCG-3´)及びオリゴヌクレオチドプライマーCBM3R、(配列番号14に示す:5´-ATTGCTCAGCATTCGGATCATCTGACGGCGGTAT-3´)を用いた。
 オリゴヌクレオチドプライマーCBM3F-Fusion(C)にはCglTのC末端側のアミノ酸配列をコードする遺伝子が一部重複した形でデザインした。
 オリゴヌクレオチドプライマーCBM3Rは、制限酵素Bpu1102の切断サイトを付与するようにデザインした。
 それぞれ増幅したCglT遺伝子(3´側にCBMのC末端アミノ酸配列をコードする遺伝子を含む。)及びCBM遺伝子(5´側にCglTのN末端アミノ酸配列をコードする遺伝子を含む。)を鋳型として用い、オリゴヌクレオチドプライマーCglTF及びCBM3F-Fusion(C)を用い、PCR反応を行った。
 PCRの結果、CglTとCBMが融合した場合において得られる約2kbのDNA断片を得ることができた(配列番号15)。
 PCRで得られた1つの融合遺伝子をそれぞれBamHIとBpu1102の制限酵素により切断後、精製を行い、pET19bのBamHIとBpu1102制限酵素サイト間へ挿入し、CBM融合CglT発現プラスミドを作成した。2つの発現プラスミドを大腸菌BL21へ導入して形質転換を行い、それぞれ発現株を取得した。
 CBMを融合したβ-グルコシダーゼの一般的な特徴を確認するため、それぞれの組換えタンパク質を発現し精製した。精製したタンパク質は両者ともN末端側にヒスチジンタグが付与される構造となることから、上記記載の組換えCglTと同様にニッケルアガロースカラムにおいてSDS-PAGEで単一バンドになるまで精製を行った。
 精製したCBM融合型β-グルコシダーゼのセルロース結合能を測定するため、セルロースを使った結合能を試験した。セルロース結合能は精製タンパク質0.2mgを用い、10mgアビセルを含む50mM酢酸ナトリウム緩衝液(pH6.0)と混合し、4℃で一晩放置した。その後、遠心分離により上清と沈殿(すなわち、セルロース)を分離したのち、50mM酢酸ナトリウム緩衝液(pH6.0)で3回洗浄を行った。再度遠心分離により沈殿を回収したのち、50mM酢酸ナトリウム緩衝液(pH6.0)で懸濁し、SDS-PAGEに供した。
 CglTと比較した場合、CBM-CglT及びCglT-CBMともに沈殿画分にCglTと同一のバンドが認められた。CglTは上清及び緩衝液洗浄画分に認められたことから、この融合したCBM遺伝子はセルロース結合能を有しCglT内で機能していることが明らかとなった。
 また、β-グルコシダーゼ活性が変化しているかを確認するために、CBM-CglT
及びCglT-CBMのβ-グルコシダーゼ活性を測定した。
 β-グルコシダーゼの活性測定は、Wood, WA., Kellog, S.T., 1988. Methods in Enzymology.160, New York: Academic Press.に記載された、p-ニトロフェノールガラクトピラノシドを基質として酵素反応により遊離してくるp-ニトロフェノール量を測定することにより、活性(ユニット)を算出した。一分間にμモルp-ニトロフェノールを生成する量を1ユニット(U)の酵素活性と定義した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 CglTは25U/mgタンパク質と非常に高い活性を示したのに対し、CBM融合型のCglTに関し、CBM-CglTにおいては4U/mgタンパク質、CglT‐CglTでは2U/mgタンパク質と劇的なβ-グルコシダーゼ活性の低下を招いた。これはCBMを融合したことによる立体構造変化により酵素触媒部分へ影響したものと考えられた。
 CMB-CgIT及びCglT-CBMをCglTに代えて、クロストリジウム・サーモセラムJK-S14株を用い、それぞれ実施例1と同じ培養条件でセルロースの分解とグルコースの蓄積を調べたところ、培地中にグルコースの蓄積が確認された。
 デンプンを含むようなセルロース系バイオマスでも、グルコースが培養液中に蓄積されることを確認するため、キャッサバパルプ(スターチ抽出後の残渣)を用いて試験を行った。
冷凍生キャッサバパルプを30℃の温水で解凍し、これを60℃の乾燥機で水分を飛ばして乾燥した後に保存した。乾燥重量で5% (質量%)のキャッサバパルプを含むBM7CO培地にクロストリジウム・サーモセラムJK-S14株を接種すると同時に、β-グルコシダーゼ(10ユニット)、α-アミラーゼ(Bacillus amyloliquefaciens:シグマ・アルドリッチ社製、10ユニット)、及びクロストリジウム・サーモセラム由来の組換え型グルコアミラーゼ(10ユニット)を添加し、60℃で培養を行った。経時的にサンプリングを行い培養液中に残るグルコース量を測定した。糖化前のキャッサバパルプ中のデンプン量を、トータルスターチ測定キット(メガザイム社製)を用いて測定した結果、63.5質量%(乾燥キャッサバパルプベース)であった。またその脱デンプンしたセルロース繊維性残渣は一度上記条件で乾燥後、測定した結果、30.5質量%(乾燥キャッサバパルプベース)であった。
[グルコアミラーゼの調製]
 クロストリジウム・サーモセラムJK-S14株のグルコアミラーゼをもとにした組換えグルコアミラーゼ(以下、CgAという)を作成した。クロストリジウム・サーモセラムJK-S14株のゲノムDNAは0.5%セロビオースを含むBM7CO-CB液体培地を用いて、前記サーモアナエロバクター・ブロッキからのゲノムDNAの手順と同様に抽出した。
 CgAは、上記調製したゲノムDNAを用い、オリゴヌクレオチドプライマーCgAF(配列番号16に示す:5´-CGCGGATCCGGCGAACACATACTTT-3´)及び、CgAR(配列番号17に示す:5´-AAAGAGGCGGGGGTTTTAGTCGACCGCA-3´)を合成し、PCRにより約1.4キロベース長の二本鎖増幅DNA配列を得た。増幅したCglT遺伝子配列を配列番号18に示す。
 デザインしたオリゴヌクレオチドプライマーCgAF及びCgARは、大腸菌発現ベクターに挿入するため、制限酵素サイトBamHI及びSalIサイトを付加してある。なお、クロストリジウム・サーモセラムのグルコアミラーゼCgA遺伝子配列は、国立バイオテクノロジー情報センター(NBIC)のホームページ(http://www.Ncbi.nlm.nih.gov/)を通じ、遺伝子配列を取得することができる(GenBankアクセッション番号;YP_001038201)。
 PCRは、ExTaq DNAポリメラーゼ(タカラバイオ社製)により16srRNA遺伝子の増幅を行った。PCRの条件は98℃で1分間、55℃で1分間、72℃で分間、を30サイクルの条件において増幅を行なった。
 PCR産物は0.8%アガロースゲル電気泳動で増幅されたバンドを確認後、キアゲンPCR精製キット(キアゲン社製)を用いて精製した。精製したPCR産物はBamHI(タカラバイオ社製)及びSalI(タカラバイオ社製)を用い、37℃で一晩、制限酵素処理を行った。
 制限酵素処理済みPCR産物は再度0.8%アガロースゲル電気泳動により制限酵素分解産物と分離し、ゲルから目的のバンドを切り出し、ゲル抽出キット(キアゲン社製)により精製した。
 CgA遺伝子を大腸菌において発現させるため、pET22b発現ベクター(メルク社製)も使用した。本ベクターは発現させたい目的のタンパク質のN末端側に6残基のヒスチジンタグが融合されるような設計になっている。pET22b発現ベクターは、同じくBamHI及びSalIを用い、37℃で一晩、制限酵素処理を行った。制限酵素処理後、制限酵素切断サイトの脱リン酸を行うため、アルカリフォスファターゼ(タカラバイオ社製)を50℃で1時間処理を行った。フェノール・クロロフォルム抽出を繰り返し、アルカリフォスファターゼを失活させた後、エタノール沈殿処理を行い、制限酵素処理済みpET19b発現ベクターを回収した。
 CgA発現ベクターを構築するため、上記制限酵素処理済みCgA遺伝子とpET22b発現ベクターはT4ライゲース(タカラバイオ社製)により16℃で一晩、インキュベートを行い、連結させた。その発現ベクターCgA-pET22は大腸菌JM109へ一度形質転換を行い、50μg/mlアンピシリンナトリウムと1.5%寒天を含むLuria-Bertani培地(LB培地)により37℃で一晩、培養を行った。
 LB培地の組成を以下に示す。バクトペプトン1g/L、塩化ナトリウム1g/L、イーストエキストラクト1g/L、最終的な培地のpHを7.0前後に調整した。
 生育してきたコロニーから目的の発現ベクターCgA-pET22を有するクローンを選択した。選択には大腸菌クローンからプラスミド抽出キット(キアゲン社製)を用いて発現ベクターCgA-pET22を抽出したのち、上記プライマーによりBigDye(登録商標)Terminator v3.1(アプライドバイオシステムズ社)、PRISM(登録商標) 3100 Genetic Analyzer(アプライドバイオシステムズ社製)または、PRISM(登録商標)3700 DNA Analyzer(アプライドバイオシステムズ社製)によりDNA配列を読み取った。
 読み取った遺伝子配列が正確かどうかを確認するため、国立バイオテクノロジー情報センター(NBIC)のホームページを通じ、得られたDNA配列データを用いて、ホモロジー検索を行なって正確性を確かめた。正確な遺伝子配列を有する発現ベクターCgA-pET22はCgAタンパク質を多量発現させるため、再度大腸菌BL21(メルク社製)へ形質転換し、タンパク質多量発現大腸菌クローンを得た。
 発現ベクターCgA-pET22を持つ大腸菌BL21をアンピシリンナトリウム含有LB培地で37℃、4時間培養を行った後、イソプロピル-D-チオガラクトピラノシド(isopropyl-D-thiogalactopyranoside)を1mMの濃度を加えさらに12時間培養を行った。
 CgA-pET22を持つ大腸菌BL21(DE3)は遠心分離(8,000回転、4℃、10分)により菌体を回収した。回収した菌体は一度-80℃で一晩凍結し、溶菌緩衝液(50mMのリン酸緩衝液、300mMの塩化ナトリウム、10mMのイミダゾール、pH8.0)に懸濁したのち、氷中において超音波破砕機により破砕した。得られた溶菌混濁液を遠心分離し、透明な溶菌液と沈殿している未破砕菌体とを分離後、溶菌液のみを回収し0.45μmフィルター濾過を行った。
 溶菌液はニッケルアガロースゲルカラム(Ni-NTAアガロースゲル;キアゲン社製)を通して、ヒスタグ融合CgAを得た。さらに溶出を行ったCgAは脱塩カラム(バイオラッド社製)に通して精製した。ヒスタグ融合CglTのタンパク量測定は、必要に応じて蒸留水で希釈後、BCA・タンパク測定キット(サーモサイエンティフィック社製)により測定を行った。タンパク質の検量線はウシ血清アルブミンを使用し作成した。
 CgAのアミノ酸配列を配列番号19に示す。
 図8は、乾燥重量で5%キャッサバパルプを含むBM7CO培地にβ-グルコシダーゼ、α‐アミラーゼ、前記クロストリジウム・サーモセラムJK-S14由来のグルコアミラーゼを添加し、クロストリジウム・サーモセラムJK-S14株を培養した際の培養液中のグルコース蓄積量を示す。黒四角印(■)は培養液中のグルコース蓄積量を示す。
 図8からわかるように、クロストリジウム・サーモセラムJK-S14株をα-アミラーゼ、β-グルコシダーゼ、グルコアミラーゼの3種類の酵素と、デンプンを含むようなセルロース系バイオマスを含む培地で培養した場合、α-アミラーゼの添加以上にグルコース濃度の蓄積が認められ、3.6%とキャッサバパルプのスターチ以外にも繊維分約80%のグルコースを回収できたことになり、増殖や酵素生産のために消費した分を考慮すれば、グルコースを構成単位とする多糖質の90%以上を分解したことになる。これらの結果から、スターチを含むセルロース系バイオマスを用いてグルコースを効果的に蓄積させる場合、β-グルコシダーゼ以外に、α-アミラーゼおよびグルコアミラーゼを添加し、クロストリジウム・サーモセラムを培養することが効果的であることが示された。
 NITE BP-627(クロストリジウム・サーモセラムJK-S14株)
[規則26に基づく補充 16.05.2013] 
Figure WO-DOC-RO134

Claims (15)

  1.  セルロースの存在下、好熱嫌気性微生物を培養する際にβ-グルコシダーゼを共存させることを特徴とする、グルコースの生産方法。
  2.  前記好熱嫌気性微生物が糖質分解酵素を産生する、請求項1記載のグルコースの生産方法。
  3.  前記好熱嫌気性微生物がクロストリジウム属微生物又はカルディセルロシルブター属微生物である、請求項1記載のグルコースの生産方法。
  4.  前記好熱嫌気性微生物がクロストリジウム・サーモセラム又はカルディセルロシルブター・サッカロリティカスである、請求項1記載のグルコースの生産方法。
  5.  前記β-グルコシダーゼが50℃以上の耐熱性を有する、請求項1に記載のグルコースの生産方法。
  6.  前記β-グルコシダーゼが好熱性微生物由来である、請求項5記載のグルコースの生産方法。
  7.  前記好熱性由来のβ-グルコシダーゼが、サーモアナエロバクター属微生物由来である、請求項6記載のグルコースの生産方法。
  8.  セルロースの存在下、好熱嫌気性微生物を培養する際に、β-グルコシダーゼと共に、界面活性剤又は高分子化合物、タンパク性ブロッキング剤の一種以上を加えることを特徴とする、請求項1記載のグルコースの生産方法
  9.  前記界面活性剤がツイーン、前記高分子化合物がポリエチレングリコール、タンパク性ブロッキング剤がカゼインを含むものである、請求項8記載のグルコースの生産方法
  10.  前記セルロースがセルロース系バイオマスである、請求項1記載のグルコースの生産方法。
  11.  前記セルロース系バイオマスがデンプンを含有するものであり、β-グルコシダーゼ、α-アミラーゼ及びグルコアミラーゼと共に、好熱嫌気性微生物を培養することを特徴とする、請求項1記載のグルコースの生産方法。
  12.  前記α-アミラーゼ及びグルコアミラーゼが50℃以上の耐熱性を有する、請求項11記載のグルコースの生産方法。
  13.  前記グルコアミラーゼがクロストリジウム属微生物由来である、請求項12記載のグルコースの生産方法。
  14.  請求項1記載のグルコースの生産方法において、セルロースとβ-グルコシダーゼと共に、微生物を培養し、好熱嫌気性微生物がセルロースを消費した後に、セルロース系バイオマスの添加を繰り返すことを特徴とする、グルコースの連続生産方法。
  15.  前記セルロース系バイオマスがデンプンを含有するものである、請求項14記載のグルコースの連続生産方法。
PCT/JP2013/056511 2012-03-10 2013-03-08 グルコースの生産方法 WO2013137151A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112014022311A BR112014022311A2 (pt) 2012-03-10 2013-03-08 Método para produzir glicose
CN201380013568.0A CN104583411A (zh) 2012-03-10 2013-03-08 葡萄糖的生产方法
PH12014502008A PH12014502008B1 (en) 2012-03-10 2014-09-09 Method for producing glucose

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-053891 2012-03-10
JP2012053891 2012-03-10

Publications (1)

Publication Number Publication Date
WO2013137151A1 true WO2013137151A1 (ja) 2013-09-19

Family

ID=49161060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056511 WO2013137151A1 (ja) 2012-03-10 2013-03-08 グルコースの生産方法

Country Status (6)

Country Link
JP (1) JP5943326B2 (ja)
CN (1) CN104583411A (ja)
BR (1) BR112014022311A2 (ja)
MY (1) MY175253A (ja)
PH (1) PH12014502008B1 (ja)
WO (1) WO2013137151A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022168778A (ja) * 2021-04-26 2022-11-08 国立研究開発法人国際農林水産業研究センター β-グルコシダーゼを生産する好熱性微生物、そのスクリーニング方法及びβ-グルコシダーゼを生産する好熱性微生物を用いたセルロース系バイオマスの糖化方法、並びに好熱性微生物由来のβ-グルコシダーゼ及び該β-グルコシダーゼをコードする遺伝子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699349A (zh) * 2019-10-28 2020-01-17 广西科技师范学院 一种微生物食品发酵剂及其制备方法
CN118256574A (zh) * 2024-01-26 2024-06-28 中国热带农业科学院热带作物品种资源研究所 一种木薯抗氧化活性多糖的制备方法及木薯多糖的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128898A (ja) * 1984-11-29 1986-06-16 Res Assoc Petroleum Alternat Dev<Rapad> セルロ−スの糖化方法
US20100086981A1 (en) * 2009-06-29 2010-04-08 Qteros, Inc. Compositions and methods for improved saccharification of biomass
JP2010104361A (ja) * 2008-10-02 2010-05-13 Musashino Chemical Laboratory Ltd リグノセルロース系バイオマスを用いた糖化液の製造方法
WO2010123932A1 (en) * 2009-04-20 2010-10-28 Qteros, Inc. Compositions and methods for fermentation of biomass
JP2011004730A (ja) * 2009-05-22 2011-01-13 National Agriculture & Food Research Organization リグノセルロース系バイオマスの変換方法
JP2011115110A (ja) * 2009-12-04 2011-06-16 Japan International Research Center For Agricultural Services クロストリジウム属微生物を利用したセルロース分解酵素の生産方法及びクロストリジウム属微生物の培養増殖方法。

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007127912A2 (en) * 2006-04-28 2007-11-08 C5-6 Technologies, Inc. Thermostable cellulase and methods of use
EP2410061A1 (en) * 2010-07-20 2012-01-25 Wolfgang Schwarz Artificial cellulosome and the use of the same for enzymatic breakdown of resilient substrates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128898A (ja) * 1984-11-29 1986-06-16 Res Assoc Petroleum Alternat Dev<Rapad> セルロ−スの糖化方法
JP2010104361A (ja) * 2008-10-02 2010-05-13 Musashino Chemical Laboratory Ltd リグノセルロース系バイオマスを用いた糖化液の製造方法
WO2010123932A1 (en) * 2009-04-20 2010-10-28 Qteros, Inc. Compositions and methods for fermentation of biomass
JP2011004730A (ja) * 2009-05-22 2011-01-13 National Agriculture & Food Research Organization リグノセルロース系バイオマスの変換方法
US20100086981A1 (en) * 2009-06-29 2010-04-08 Qteros, Inc. Compositions and methods for improved saccharification of biomass
JP2011115110A (ja) * 2009-12-04 2011-06-16 Japan International Research Center For Agricultural Services クロストリジウム属微生物を利用したセルロース分解酵素の生産方法及びクロストリジウム属微生物の培養増殖方法。

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ECKARD AD ET AL.: "Analysis of casein biopolymers adsorption to lignocellulosic biomass as a potential cellulase stabilizer", J BIOMED BIOTECHNOL., vol. 2012, 2012 *
LI J ET AL.: "The mechanism of poly(ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose", COLLOIDS SURF B BIOINTERFACES., vol. 89, January 2012 (2012-01-01), pages 203 - 210, XP028324031, DOI: doi:10.1016/j.colsurfb.2011.09.019 *
MAHESHWARI R ET AL.: "Thermophilic Fungi: Their Physiology and Enzymes", MICROBIOL MOL BIOL REV., vol. 64, 2000, pages 461 - 488, XP002674236, DOI: doi:10.1128/MMBR.64.3.461-488.2000 *
SEO DJ ET AL.: "Structural changes of lignocelluloses by a nonionic surfactant, Tween 20, and their effects on cellulose adsorption and saccharification", BIORESOUR TECHNOL., vol. 102, 2011, pages 9605 - 9612, XP028290107, DOI: doi:10.1016/j.biortech.2011.07.034 *
SPECKA U ET AL.: "Purification and Properties of a Thermoactive Glucoamylase from Clostridium thermosaccharolyticum", APPL ENVIRON MICROBIOL., vol. 57, 1991, pages 2317 - 2323 *
WAEONUKUL R ET AL.: "Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii p-glucosidase", BIORESOUR TECHNOL., vol. 107, 2 January 2012 (2012-01-02), pages 352 - 357 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022168778A (ja) * 2021-04-26 2022-11-08 国立研究開発法人国際農林水産業研究センター β-グルコシダーゼを生産する好熱性微生物、そのスクリーニング方法及びβ-グルコシダーゼを生産する好熱性微生物を用いたセルロース系バイオマスの糖化方法、並びに好熱性微生物由来のβ-グルコシダーゼ及び該β-グルコシダーゼをコードする遺伝子
JP7460978B2 (ja) 2021-04-26 2024-04-03 国立研究開発法人国際農林水産業研究センター β-グルコシダーゼを生産する微生物及び該β-グルコシダーゼを生産する微生物を用いたセルロース系バイオマスの糖化方法。

Also Published As

Publication number Publication date
JP5943326B2 (ja) 2016-07-05
BR112014022311A2 (pt) 2017-08-22
JPWO2013137151A1 (ja) 2015-08-03
MY175253A (en) 2020-06-17
CN104583411A (zh) 2015-04-29
PH12014502008A1 (en) 2014-11-24
PH12014502008B1 (en) 2014-11-24

Similar Documents

Publication Publication Date Title
Paul et al. Aspects and recent trends in microbial α-amylase: a review
Yadav et al. Production, purification, and characterization of thermostable alkaline xylanase from Anoxybacillus kamchatkensis NASTPD13
Saha Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides
Bauer et al. An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes β-1, 4 bonds in mixed-linkage (1→ 3),(1→ 4)-β-d-glucans and cellulose
Dheeran et al. Characterization of hyperthermostable α-amylase from Geobacillus sp. IIPTN
Divakaran et al. Comparative study on production of α-amylase from Bacillus licheniformis strains
Huang et al. Purification and characterization of a cellulase (CMCase) from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov., sp. nov
Tachaapaikoon et al. Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain
Tariq et al. Optimization of endoglucanase production from thermophilic strain of Bacillus licheniformis RT-17 and its application for saccharification of sugarcane bagasse
US20170218354A1 (en) Highly potent cellulolytic enzyme preparations and processes for producing same
US20160168581A1 (en) Enzymes and uses thereof
Naidoo et al. Purification and Characterization of an Endoinulinase from Xanthomonas campestris pv. phaseoli KM 24 Mutant
JP5943326B2 (ja) グルコースの生産方法
JP5641478B2 (ja) 酵素の再利用方法
Mrudula et al. Effect of substrate and culture conditions on the production of amylase and pullulanase by thermophilic Clostridium thermosulforegenes SVM17 in solid state fermentation
Hassan et al. Characterization of cellulases from thermophilic bacilli and their application for the saccharification of sugarcane bagasse
Toor et al. TK-PUL, a pullulan hydrolase type III from Thermococcus kodakarensis, a potential candidate for simultaneous liquefaction and saccharification of starch
Kato et al. Two new β-glucosidases from ethanol-fermenting fungus Mucor circinelloides NBRC 4572: enzyme purification, functional characterization, and molecular cloning of the gene
Cheawchanlertfa et al. A novel amylolytic/xylanolytic/cellulolytic multienzyme complex from Clostridium manihotivorum that hydrolyzes polysaccharides in cassava pulp
Kim et al. Production and characterization of crystalline cellulose-degrading cellulase components from a thermophilic and moderately alkalophilic bacterium
JP7460978B2 (ja) β-グルコシダーゼを生産する微生物及び該β-グルコシダーゼを生産する微生物を用いたセルロース系バイオマスの糖化方法。
Gajula et al. Fermentation of enzymatically saccharified groundnut shell for fuel ethanol production by Pichia stipitis NCIM 3498
Woo et al. First thermostable endo-β-1, 4-glucanase from newly isolated xanthomonas sp. EC102
JP5810474B2 (ja) 酵素の再利用方法
WO2013133354A1 (ja) 新規なセルラーゼ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013544611

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201405355

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014022311

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13761892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014022311

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140909