JP2022168778A - β-グルコシダーゼを生産する好熱性微生物、そのスクリーニング方法及びβ-グルコシダーゼを生産する好熱性微生物を用いたセルロース系バイオマスの糖化方法、並びに好熱性微生物由来のβ-グルコシダーゼ及び該β-グルコシダーゼをコードする遺伝子 - Google Patents

β-グルコシダーゼを生産する好熱性微生物、そのスクリーニング方法及びβ-グルコシダーゼを生産する好熱性微生物を用いたセルロース系バイオマスの糖化方法、並びに好熱性微生物由来のβ-グルコシダーゼ及び該β-グルコシダーゼをコードする遺伝子 Download PDF

Info

Publication number
JP2022168778A
JP2022168778A JP2021074485A JP2021074485A JP2022168778A JP 2022168778 A JP2022168778 A JP 2022168778A JP 2021074485 A JP2021074485 A JP 2021074485A JP 2021074485 A JP2021074485 A JP 2021074485A JP 2022168778 A JP2022168778 A JP 2022168778A
Authority
JP
Japan
Prior art keywords
glucosidase
thermophilic
cellulosic biomass
microorganism
thermophilic microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021074485A
Other languages
English (en)
Other versions
JP2022168778A5 (ja
JP7460978B2 (ja
Inventor
昭彦 小杉
Akihiko Kosugi
ワイヌーク ラッティア
Waeonukul Rattiya
パトラ パソン
Pason Patthra
テアパイクーン チャクリット
Tachaapaikoon Chakrit
ラタナカノックシャイ カノック
Ratanakhanokchai Khanok
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
King Mongkut S University Of Technology Thonburi
KING MONGKUT'S UNIV OF TECHNOLOGY THONBURI
Japan International Research Center for Agricultural Sciences JIRCAS
Original Assignee
King Mongkut S University Of Technology Thonburi
KING MONGKUT'S UNIV OF TECHNOLOGY THONBURI
Japan International Research Center for Agricultural Sciences JIRCAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by King Mongkut S University Of Technology Thonburi, KING MONGKUT'S UNIV OF TECHNOLOGY THONBURI, Japan International Research Center for Agricultural Sciences JIRCAS filed Critical King Mongkut S University Of Technology Thonburi
Priority to JP2021074485A priority Critical patent/JP7460978B2/ja
Priority to PCT/JP2022/017696 priority patent/WO2022230670A1/ja
Publication of JP2022168778A publication Critical patent/JP2022168778A/ja
Publication of JP2022168778A5 publication Critical patent/JP2022168778A5/ja
Application granted granted Critical
Publication of JP7460978B2 publication Critical patent/JP7460978B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

【課題】微生物を用いセルロース系バイオマスを糖化する方法、β-グルコシダーゼを生産し分泌する好熱性微生物のスクリーニング方法、β-グルコシダーゼを生産し分泌するThermobrachium celere KM-A9株、並びに好熱性微生物由来のβ-グルコシダーゼ及び、該β-グルコシダーゼをコードする遺伝子を提供する。【解決手段】セルロース系バイオマスの存在下、セルロース分解能を有する好熱性微生物とβ-グルコシダーゼを生産する好熱性微生物とを培養することで、セルロース系バイオマスを糖化する方法、また、エスクリンをエスクリチンに変換可能な微生物を選抜してβ-グルコシダーゼ生産能を有する好熱性微生物をスクリーニングする方法、さらに、グルコース耐性に優れた好熱性微生物由来のβ-グルコシダーゼ及びそれをコードする遺伝子が提供される。【選択図】なし

Description

本発明は、セルロース系バイオマスを原料にする糖化技術に係り、特に、酸、アルカリ、酵素を用いることなく、微生物培養によりセルロース系バイオマスを糖化する方法に関する。また、本発明は、セルロース系バイオマスの糖化に用いることのできる好熱性微生物由来のβ-グルコシダーゼ及び、該β-グルコシダーゼをコードする遺伝子に関する。
稲わら、籾殻、キノコ廃床、堆肥、木材チップ等のセルロース系バイオマスを原料とするグルコース等の単糖を得るための糖化技術が、食糧生産を圧迫しないエネルギーの生産技術として注目されている。しかし、セルロース系バイオマスは、でん粉に比べて糖化技術の難易度が高い。これは、セルロース系バイオマスの構成主体であるセルロースが堅固な結晶構造を持つ難分解性の高分子多糖であることによる。
セルロース系バイオマスをセルロースへと分解する方法(以下、「セルロース分解」という)には、物理的分解、化学的分解及び酵素分解の3つの方法がよく知られている。
物理的分解処理法はボールミルや振動ミル又は蒸煮爆砕や加圧熱水処理など物理的に糖化を施す処理が存在するが、一般的に、化学的分解や酵素分解の前処理として併用されることが多い。
化学的分解法は、アルカリ、酸を利用するものが知られているが、古くより酸分解がよく用いられている。酸分解には濃硫酸糖化法と希硫酸二段糖化法とがあるが、何れも硫酸を用いるため、廃棄物処理や環境負荷の低減を必要とし、低コスト化及びエネルギー変換効率に限界があるといわれている。
酵素分解法は、セルロース分解酵素(主にセルラーゼ)によりセルロース分解を行うものである。酵素による分解は、酸分解に比べ廃液回収や処理の負担が軽く、耐薬設備等の設備コストを低減できること、過分解が起こらずに糖の収率が高い等の利点があるため、澱粉質を多く含むバイオマスの酵素糖化で実用化されている。
ところが、セルロース系バイオマスは、前述したように、セルロースが結晶構造を有していること及び結晶性セルロースをヘミセルロースやリグニンが取り囲んだ複雑な構造を有しているため、でん粉系に比べ、酵素による分解がきわめて困難であり、かつ、セルロース分解酵素を大量に必要としていた。
また、好熱嫌気性細菌であるClostridium thermocellum又は由来の酵素を用いた、セルロース系バイオマスのセルロース分解が知られている。
このような方法により得られたセルロースは、β-グルコシダーゼにより更なる分解を経て、グルコース等の単糖へと変換されることになる。
本発明者らは先に、β-グルコシダーゼの存在下でClostridium thermocellumを培養して、セルロース系バイオマスをワンステップで糖化するBSES法を提案している(特許文献1参照)。
WO2013/137151号公報
特許文献1は、好熱嫌気性微生物によるセルロース系バイオマスのセルロース分解と、得られたセルロースをβ-グルコシダーゼで単糖類に分解する反応とを好熱嫌気性微生物の培養条件下で同時に行う糖化方法を開示する。この方法では、好熱嫌気性微生物の培養条件が高温であるため、高温でも不活化しないβ-グルコシダーゼが求められており、これが実用化の障害となっていた。
本発明者らは、Clostridium thermocellumと共存して増殖可能な微生物を用いて糖化する方法を検討していたところ、高温の培養条件でも菌体外にβ-グルコシダーゼを分泌できる好熱性微生物を見出すとともに、高温での培養条件でも菌体外にβ-グルコシダーゼを分泌できる好熱性微生物のスクリーニング方法を見出し、本発明を完成するに至った。
本発明は、セルロース系バイオマスの存在下、セルロース分解能を有する好熱性微生物とβ-グルコシダーゼを生産する好熱性微生物とを培養することで、セルロース系バイオマスを糖化させる、セルロース系バイオマスの糖化方法である。
この糖化方法では、特許文献1で用いられるβ-グルコシダーゼに代えて、β-グルコシダーゼを生産する好熱性微生物を用いる。β-グルコシダーゼを生産する好熱性微生物が、好ましくは、Thermobrachium属微生物である。β-グルコシダーゼを生産するThermobrachium属微生物が、好ましくは、Thermobrachium celereである。セルロース分解能を有する好熱性微生物が、好ましくは、セルロース系バイオマス分解微生物である。セルロース分解能を有するセルロース系バイオマス分解微生物が、好ましくは、Clostridium thermocellumである。
本発明は、また、高温条件下でもβ-グルコシダーゼ生産能を有する微生物のスクリーニング方法を提供する。このスクリーニング方法は、エスクリンをエスクリチンに変換可能な微生物を選抜することにより行うものである。具体的には、本発明では、上述のスクリーニング方法により単離された、エスクリンをエスクリチンに変換可能な微生物として、β-グルコシダーゼを生産する能力を有する好熱性微生物であるThermobrachium celere KM-A9株(受託番号:NITE P-03454)を提供する。
さらに、本発明は、高い温度条件下でも活性を維持するβ-グルコシダーゼ及び、その遺伝子配列を提供する。
本発明の糖化方法を用いることにより、セルロース系バイオマスを微生物だけで糖化することが可能となる。
また、エスクリンを用いたことにより、高温条件下でもβ-グルコシダーゼ生産能を有する微生物を、容易にスクリーニングすることが可能になり、β-グルコシダーゼを生産する能力を有する好熱性微生物を効率的かつ効果的に選択することが可能になる。
本発明のβ-グルコシダーゼは、高い温度でも活性を維持するため、Clostridium thermocellumのように高温の培養条件下でも使用が可能であり、加えて、グルコース耐性が高いため糖化反応を効率よく行うことができる。
Thermobrachium celere KM-A9株の16S rRNAシーケンスによる系統樹解析結果を示す図である。 KM-A9株及び基準株の生育状況、β-グルコシダーゼ活性の程度を表す図である。 セルロース分解能を有するClostridium thermocellumとThermobrachium celere KM-A9株との共培養による糖化の結果を表す図である。 KM-A9株由来のβ-グルコシダーゼ遺伝子を発現して得られたβ-グルコシダーゼのSDS-PAGEの結果を表す図である。
本発明は、セルロース系バイオマスの存在下、セルロース分解能を有する好熱性微生物とβ-グルコシダーゼを生産する好熱性微生物とを培養することで、セルロース系バイオマスを糖化する方法である。
ここで、セルロース分解能を有する好熱性微生物とは、セルロース系バイオマスを分解できる微生物(以下、セルロース系バイオマス分解微生物という)であって、たとえば、至適培養温度が50℃以上の微生物が好ましく、糖質分解酵素を生産する好熱性微生物であればよく、望ましくは、酸素の存在下で生育できる好熱性の通性嫌気性微生物又は好熱嫌気性微生物である。
セルロース分解能を有する好熱通性嫌気性微生物には、例えば、Geobacillus、Thermus、ThermotogaやBacillales(バシラス目)に属するBacillus、Paenibacillusが挙げられる。
セルロース分解能を有する好熱嫌気性微生物としては、クロストリジウム・サーモセラム(Clostridium thermocellum)、クロストリジウム・ステコラリウム(Clostridium stercorarium)、クロストリジウム・サーモラクティカム(Clostridium thermolacticum)、カルディセルロシルプター・サッカロリティカス(Caldicellulosiruptor saccharolyticus)、カルディセルロシルプター・ベシー(Caldicellulosiruptor bescii)、カルディセルロシルプター・オブシヂアンシス(Caldicellulosiruptor obsidiansis)、サーモアナエロバクター・セルロリティクス(Thermoanaerobacter cellulolyticus)、アナエロセーラム・サーモフィリム(Anaerocellum thermophilum)、スピロチャタ・サーモフィラ(Spirochaeta thermophila)、サーモトガ・マリティマ(Thermotoga maritima)、サーモトガ・ネアポリタナ(Thermotoga neapolitana)、フェルビドバクテリウム・リパリウム(Fervidobacterium riparium)、フェルビドバクテリウム・イスランディカム(Fervidobacterium islandicum)、ハービボラックス・サクシノコラ(Herbivorax saccincola)やカピリバクテリウム・サーモキチニコラ(Capillibacterium thermochitinicola)を挙げることができる。
セルロース分解能を有する好熱嫌気性微生物は、好ましくは、セルロソームを生産する微生物である。このような微生物として、クロストリジウム・サーモセラム(Clostridium thermocellum)を挙げることができる。
セルロース分解能を有する好熱性微生物と共培養して糖化を行うためには、β-グルコシダーゼを生産し分泌する好熱性微生物が必要であるが、これまでセルロース分解能を有する好熱性微生物とマッチング可能なβ-グルコシダーゼを生産し分泌する好熱性微生物は知られていなかった。これは、公知のスクリーニング方法で用いるスクリーニング試薬が熱に弱いため、好熱性条件下の培養ではβ-グルコシダーゼを生産し分泌する好熱性微生物を探索することができなかったことが技術的な背景にある。
本発明では、スクリーニング試薬としてエスクリンを用いる。エスクリンはβ-グルコシダーゼにより分解されると、エスクリチンとなり、鉄の存在下で焦茶色を呈することが知られており、好熱性条件下の培養でもβ-グルコシダーゼを生産し分泌する好熱性微生物を効率的に探索することができる。
以下に、β-グルコシダーゼを生産し、分泌する好熱性微生物として、Thermobrachium属微生物を例に本発明の糖化方法を具体的に説明するが、本発明のエスクリンを用いたスクリーニングを適用して、さらに適切なβ-グルコシダーゼを生産し分泌する好熱性微生物を選択することが可能であることから、これに限定されないことは明らかである。
なお、β-グルコシダーゼを生産し、分泌する好熱性微生物は、至適培養温度が50℃以上の微生物が好ましく、望ましくは、酸素の存在下で生育できる好熱性の通性嫌気性微生物又は好熱嫌気性微生物である。また、Thermobrachium属微生物は、水素生産菌として知られているが、β-グルコシダーゼを生産する能力は知られていない。
(実施例1)
(β-グルコシダーゼを生産する微生物の探索)
β-グルコシダーゼ生産菌を検索するために、土壌、農産廃棄物等からエスクリンを基質に利用する分離方法を試みた。エスクリンはβ-グルコシダーゼにより分解されると、エスクリチンとなり、鉄の存在下で焦茶色を呈することが知られている。
タイ国のキングモンクット工科大学トンブリ校のパイロットプラント開発訓練研究所から採取した土壌から得られた800近くのサンプルを、エスクリチンを用いたスクリーニングで探索したところ、焦茶色を示す好熱嫌気性細菌(Thermobrachium celere KM-A9株(受託番号:NITE P-03454)と命名)を発見した。
具体的には、スクリーニングにあたり、p-ニトロフェノール-β-D-グルコシド(pNPG)と、収集した各サンプルの約1gとを、5g/Lのセロビオースを含むBM7CO培地に直接接種した。BM7CO培地は、2.9gK2HPO4、1.5gKH2PO4、2.1g尿素、6.0g酵母エキス、4.0g Na2CO3、0.01g CaCl2.2H2O、0.5gシステイン-HCl、0.0005gレサズリン、及び200μLミネラル溶液から構成されている。なお、ミネラル溶液は、リットルあたり25.0gのMgCl2.6H2O、37.5gのCaCl2.2H2O、及び0.312gのFeSO4.7H2Oで構成されていた。
接種後、培養物を60℃で2から3日間インキュベートした。そして、培養サンプルを5g/Lセロビオースを含むBM7CO培地に24時間培養した。なお、BM7CO培地は、沸騰水で脱気した後、高純度の二酸化炭素と窒素ガスをそれぞれバブリングしてから、嫌気的にハンゲートチューブに分配した。
次いで、8000rpm、4℃、10分間の遠心分離で得られたサンプルの培養上清を使用し、p-ニトロフェノール-β-D-グルコシド(pNPG)を基質としてβ-グルコシダーゼ活性を測定した。
高いβ-グルコシダーゼ活性を示す培養サンプルを選択し、同じ培養条件を使用して数回継代培養を繰り返した。その後、高いβ-グルコシダーゼ活性を示し続ける培養サンプルを、嫌気性ハンゲートロールチューブ技術による細胞外β-グルコシダーゼ生産嫌気性細菌の単離のために選択した。選択した培養物を段階希釈し、炭素源として5g/Lセロビオースを使用し、1g/Lエスクリンと2.5g/Lクエン酸鉄アンモニウムを添加した溶融BM7CO寒天培地に注入した。
β-グルコシダーゼ活性を持つコロニーは、コロニーの周りに暗褐色のハローが形成される。エスクリンの分解により大きな暗褐色のハローを生成する個々のコロニーをロールチューブから収集し、セロビオースを含むBM7CO培地に接種し培養した。得られた培養物を、エスクリンとクエン酸鉄アンモニウムを添加したセロビオース培地での単一コロニー分離手順を10回繰り返し、微生物を単離した。
(単離した微生物の同定)
以下に、単離した菌株の性質を示す。
桿菌
幅0.3から0.4μm、長さ2.0から12μm
至適生育温度50℃~60℃、至適生育pH6.0~8.0、グラム陽性、
グルコース、セロビオース、マルトース、スクロース、アラビノース、フルクトース、ガラクトース、マンノース、リボースに良く生育する。特にフルクトース、グルコース、セロビオース、マルトースが炭素源に使用された際、β-グルコシダーゼの高活性が見られる。また、グルコースからは、CO,H, acetate, ethanolが産物として認められる。
さらに、単離菌株の特徴を16S rRNAシーケンスによる系統樹解析により調べた。
PCRテンプレートとして使用するゲノムDNAは、NucleoSpin(登録商標)MicrobialDNAキット(タカラバイオ)を使用して各微生物から調製した。16S rRNA遺伝子のPCR増幅は以下のPCR法により行った。
PCRによる DNA増幅に用いたPCRプライマーは、細菌ドメインユニバーサルプライマー27F(5'-AGAGTTTGATCCTGGCTCAG-3';配列表の配列番号1)及びユニバーサルプライマー1492R(5'-GGTTACCTTGTTACGACTT-3';配列表の配列番号2)である。
PCR産物はDNAシーケンサー(3730xl DNA Analyzer; Applied Biosystems)でシーケンスし、シーケンスアセンブリはGENETYXソフトウェアバージョン13を使用した。
16SrRNA遺伝子系統分析は、BLASTによって行い、関連する分類群の配列とのマルチプルアラインメントは、GenBankデータベースとCLUSTAL_Xバージョン.1.81を使用した。
系統樹は、MEGAバージョンXバージョン10.1を使用し、近隣結合法で構築した。ツリーのトポロジーと距離は、1000回のリサンプリングに基づくブートストラップ分析によって確認した。
図1に、Thermobrachium celere KM-A9株(図中、「Strain A9」と表記)の16S rRNAシーケンスによる系統樹解析結果を示す。また、Thermobrachium celere A9株の16S rRNAシーケンスにより得られた塩基配列を配列表の配列番号3に示す。
Thermobrachium celereA9株と、既知のThermobrachium celereとの遺伝子配列相同性を確認するため、Collection of Microorganisms and Cell Cultures(DSMZ)から取り寄せたThermobrachium celere DSM 8682について、前述の方法で16SrRNA解析を行い、塩基配列を調べた。結果を配列表の配列番号4に示す。
16S rRNA解析では、Thermobrachium celereと99%の相同性を示した。
菌学的性質と16S rRNAシーケンスによる系統樹解析結果に基づき、単離した菌株をThermobrachium celere KM-A9株(受託番号:NITE P-03454)と命名した。
(実施例2)
(Thermobrachium celereのβ-グルコシダーゼ生産能)
Thermobrachium celereは、水素生産菌として既知であるが、β-グルコシダーゼを生産する能力は知られていない。そこで、既知のThermobrachium celereが、β-グルコシダーゼを生産するかどうかを確認するために、Collection of Microorganisms and Cell Cultures(DSMZ)から取り寄せたThermobrachium celere DSM 8682を基準株とし、Thermobrachium celere KM-A9株との比較実験を行った。
β-グルコシダーゼ活性は、p-ニトロフェニルβ-D-グルコシド(pNPG)の加水分解を測定することによって決定した。
KM-A9株とThermobrachium celere DSM 8682とを、それぞれ5g/Lセロビオースを含むYTG培地で24時間培養した。
YTG培地は(1リットルあたり)以下で構成される:
0.36g K2HPO4.2H2O、0.08g KCl、10gトリプトン、5g酵母抽出物、4.4g Na2CO3、0.5mLレサズリン(0.1%w/v)溶液、0.2gのシステイン及び0.2gのNa2S.9H2O
完成した培地のpHを3NのNaOHで9.0に調整した。
YTG培地は、沸騰水で脱気した後、高純度の二酸化炭素と窒素ガスをそれぞれバブリングしてから、嫌気的にハンゲートチューブに分配した。
反応混合物を、10μLの酵素及び100μLの1mM pNPG(4-ニトロフェニルβ-D-グルクロニド)を100mM酢酸ナトリウム緩衝液(pH6.0)に加え、60℃で10分間インキュベートした後、200μLの0.4 MNa2CO3を添加して反応を停止した。
加水分解により放出されたp-ニトロフェノールは、分光光度計を用い、波長405nmにて測定した。酵素アッセイは3回行った。
1ユニット(U)のβ-グルコシダーゼ活性は、酵素測定条件下で1mLあたり1分あたり1μmolのp-ニトロフェノールを遊離する酵素の量として定義した。
結果を図2に示す。図2中、「●」は基準株の生育、「■」は基準株が示すβ-グルコシダーゼ活性を表し、「○」はKM-A9株の生育、「□」はKM-A9株が示すβ-グルコシダーゼ活性の程度を表す。
この結果から、Thermobrachium celereは、β-グルコシダーゼを生産することがわかる。とりわけ、KM-A9株は、基準株に比べ、生育状況、β-グルコシダーゼ活性の程度が優れていることがわかる。
(実施例3)
(セルロースの糖化)
セルロース分解能を有するClostridium thermocellumとThermobrachium celere KM-A9株との共培養による糖化について調査した。
継代培養のために、Clostridium thermocellumストック培養物を10g/Lセルロースを含む5mLのBM7CO培地に注射器で接種し、嫌気性条件下60℃で2日間インキュベートした。
Thermobrachium celer KM-A9株 のストック培養物を、5g/Lセロビオースを含む5mLのBM7CO培地にシリンジで接種し、嫌気性条件下、60℃で16時間インキュベートした。Clostridium thermocellumの継代培養物を、50g/Lのセルロース粉末を含む5mLのBM7CO培地に注射器によって再び接種し、60℃で2日間インキュベートした。
その後、Thermobrachium celere KM-A9の継代培養物を上記のClostridium thermocellum培養物に注射器で接種し、嫌気性条件下、60℃でインキュベートし、10日間共培養した。
培養中のβ-グルコシダーゼ活性をモニターし、培養中の放出されたグルコースの濃度を、高速液体クロマトグラフィー(日本の京都市、島津製作所)を使用して検出した。
結果を図3に示す。図3中、「■」はClostridium thermocellumのみの培養におけるグルコース量、「□」はClostridium thermocellumのみの培養におけるβ-グルコシダーゼ活性の程度を表し、「●」は、Clostridium thermocellumとThermobrachium celere KM-A9株との共培養により生じたグルコース量、「○」はClostridium thermocellumとThermobrachium celere KM-A9株との共培養におけるβ-グルコシダーゼ活性の程度を表す。
この結果から、β-グルコシダーゼを添加しなくても、3.5%セルロース濃度でもほぼ完全に糖化されることがわかる。
(実施例4)
(Thermobrachium celere KM-A9株由来のβ-グルコシダーゼ遺伝子クローニング)
2つのオリゴヌクレオチドプライマー、すなわち、BamHI部位を有するセンスプライマー用の5-GGGGATCCATGCAAAAATACACTTTCCC-3(配列表の配列番号5)とBpu1102を含むアンチセンスプライマー用の5-GGCTCAGCTCATTCACAAAGGCTATTAT-3(配列表の配列番号6)をPCRによってβ-グルコシダーゼ遺伝子のコード領域を増幅するように設計した。PCR産物を2つの制限酵素BamHIとBpu1102で消化し、同じ制限酵素部位で消化したpET19bベクターにライゲーションした。構築されたプラスミドCcBG1-pET19bを大腸菌BL21(DE3)に形質転換し、標的タンパク質を発現させた。陽性クローンをDNAシーケンシングによって検証した。ヌクレオチドおよび推定アミノ酸配列アラインメントは、NCBIサーバー(http://www.ncbi.nlm.nih.gov/blast)を用いて行った。
Thermobrachium celere KM-A9株由来のβ-グルコシダーゼ遺伝子のアミノ酸配列を配列表の配列番号7に、Thermobrachium celere KM-A9株由来のβ-グルコシダーゼの遺伝子配列を配列表の配列番号8に示す。
(実施例5)
(KM-A9株由来のβ-グルコシダーゼの単離、精製)
陽性クローンを100μg/mlアンピシリンを添加したLB培地に接種し、37℃でインキュベートした。600nmでの培地の光学密度(OD600)が0.6から8.0に達したら、イソプロピル-β-D-チオガラクトピラノシド(IPTG)を最終濃度0.5mMになるように添加してタンパク質発現を誘導し、培養物をさらに4時間培養した。
その後、細胞を8,000rpmで10分間の遠心分離によって回収し、20mMイミダゾールを含む50mMリン酸ナトリウム緩衝液(pH7.0)に懸濁し、超音波処理によって破砕した。13000rpmで10分間遠心分離して破片を除去し、上清を回収して0.45μmフィルターでろ過した。
組換え酵素は、Bio-Scale Mini ProfinityIMACカートリッジとBio-GelP6脱塩カートリッジ(Bio-Rad Laboratories、Hercules、CA、USA)を使用し、Profinia Affinity Chromatography Protein Purification Systemで精製した。
タンパク質濃度は、Coomassie(Bradford)タンパク質アッセイキット(Thermo Fisher Scientific、米国マサチューセッツ州ウォルサム)を使用し、ウシ血清アルブミンを標準として使用して決定した。
精製されたタンパク質の均一性は、ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動(SDS-PAGE)によって分析した。SDS-PAGEによる結果を図4に示す。
(実施例6)
(KM-A9株由来のβ-グルコシダーゼの特性)
精製したタンパク質のβ-グルコシダーゼ酵素活性は、実施例2記載の酵素測定方法により調べた。
また、得られたKM-A9株由来の組換えβ-グルコシダーゼ(rTcBG)の熱安定性、β-グルコシダーゼ活性及びグルコース阻害について調べた。
熱安定性は、基質を含まない酵素を酢酸ナトリウム緩衝液(pH6.0)中で50から80℃で1時間プレインキュベートし、残存するβ-グルコシダーゼ活性を測定して、至適温度、熱耐性を調べた。
β-グルコシダーゼのグルコース阻害は、基質としてpNPGを用いた標準反応混合物に異なる濃度(0-1M)のグルコースを添加することによって測定し、アッセイ条件下で初期のβ-グルコシダーゼ活性の50%を阻害するのに必要なグルコースの濃度(グルコース耐性)を決定した。
なお、特許文献1の実施例1に記載された方法により調整した好熱性の組換えグルコシダーゼ(rCglT)との比較を行った。結果を表1に示す。
Figure 2022168778000001
この結果から、rTcBGは、rCglTに比べ、酵素活性、グルコース耐性が高いことがわかる。これは、本発明のβ-グルコシダーゼが、rCglTを含めた公知の微生物由来のβ-グルコシダーゼの構造及びシグナルシーケンスが異なることによるものと考えられる。本発明のβ-グルコシダーゼは、N末端部分に強い疎水性のアミノ酸が並んでいるため膜通過しやすくなっていると考えられる。
グルコース耐性が強ければ、糖化効率を上げることが可能である。
本発明のβ-グルコシダーゼは、公知の好熱性β-グルコシダーゼ又は特許文献1のrCglTと置き換えて使用することが可能であり、また、本発明におけるβ-グルコシダーゼを生産する好熱性微生物と併存させて使用することにより、さらに糖化効率を高めることが可能である。
NITE P-03454
配列表フリーテキスト

Claims (11)

  1. セルロース系バイオマスの存在下、セルロース分解能を有する好熱性微生物とβ-グルコシダーゼを生産する好熱性微生物とを培養することで、前記セルロース系バイオマスを糖化させる、セルロース系バイオマスの糖化方法。
  2. 前記β-グルコシダーゼを生産する好熱性微生物がThermobrachium属微生物である、請求項1記載のセルロース系バイオマスの糖化方法。
  3. 前記β-グルコシダーゼを生産するThermobrachium属微生物がThermobrachium celereである、請求項2記載のセルロース系バイオマスの糖化方法。
  4. 前記セルロース分解能を有する好熱性微生物がセルロース系バイオマス分解微生物である、請求項1記載のセルロース系バイオマスの糖化方法。
  5. 前記セルロース分解能を有するセルロース系バイオマス分解微生物がClostridium thermocellumである、請求項4記載のセルロース系バイオマスの糖化方法。
  6. エスクリンをエスクリチンに変換可能な微生物を選抜することを特徴とする、β-グルコシダーゼを生産する好熱性微生物のスクリーニング方法。
  7. エスクリンをエスクリチンに変換可能な微生物が、Thermobrachium celere KM-A9株(受託番号:NITE P-03454)である、β-グルコシダーゼを生産する好熱性微生物。
  8. 配列番号7に記載のアミノ酸配列を含む、β-グルコシダーゼ。
  9. 前記β-グルコシダーゼが、Thermobrachium celere KM-A9株に由来する、請求項8記載のβ-グルコシダーゼ。
  10. 配列番号7に記載のアミノ酸配列をコードする、β-グルコシダーゼ遺伝子。
  11. 前記β-グルコシダーゼ遺伝子が配列番号8に記載されたものである、請求項10記載のβ-グルコシダーゼ遺伝子。
JP2021074485A 2021-04-26 2021-04-26 β-グルコシダーゼを生産する微生物及び該β-グルコシダーゼを生産する微生物を用いたセルロース系バイオマスの糖化方法。 Active JP7460978B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021074485A JP7460978B2 (ja) 2021-04-26 2021-04-26 β-グルコシダーゼを生産する微生物及び該β-グルコシダーゼを生産する微生物を用いたセルロース系バイオマスの糖化方法。
PCT/JP2022/017696 WO2022230670A1 (ja) 2021-04-26 2022-04-13 β-グルコシダーゼを生産する好熱性微生物、そのスクリーニング方法及びβ-グルコシダーゼを生産する好熱性微生物を用いたセルロース系バイオマスの糖化方法、並びに好熱性微生物由来のβ-グルコシダーゼ及び該β-グルコシダーゼをコードする遺伝子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021074485A JP7460978B2 (ja) 2021-04-26 2021-04-26 β-グルコシダーゼを生産する微生物及び該β-グルコシダーゼを生産する微生物を用いたセルロース系バイオマスの糖化方法。

Publications (3)

Publication Number Publication Date
JP2022168778A true JP2022168778A (ja) 2022-11-08
JP2022168778A5 JP2022168778A5 (ja) 2023-10-26
JP7460978B2 JP7460978B2 (ja) 2024-04-03

Family

ID=83848139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021074485A Active JP7460978B2 (ja) 2021-04-26 2021-04-26 β-グルコシダーゼを生産する微生物及び該β-グルコシダーゼを生産する微生物を用いたセルロース系バイオマスの糖化方法。

Country Status (2)

Country Link
JP (1) JP7460978B2 (ja)
WO (1) WO2022230670A1 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128898A (ja) * 1984-11-29 1986-06-16 Res Assoc Petroleum Alternat Dev<Rapad> セルロ−スの糖化方法
WO2013137151A1 (ja) 2012-03-10 2013-09-19 独立行政法人国際農林水産業研究センター グルコースの生産方法
JP2022520026A (ja) * 2019-01-29 2022-03-28 スキンプロテクト コーポレイション スンディリアン ブルハド 合成エラストマー物品およびその生産方法

Also Published As

Publication number Publication date
WO2022230670A1 (ja) 2022-11-03
JP7460978B2 (ja) 2024-04-03

Similar Documents

Publication Publication Date Title
EP0850307B1 (en) Alkaliphilic and thermophilic microorganisms and enzymes obtained therefrom
Lee et al. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53
Chan et al. Characterization of a glucose-tolerant β-glucosidase from Anoxybacillus sp. DT3-1
Divakaran et al. Comparative study on production of α-amylase from Bacillus licheniformis strains
JP2009519005A (ja) バイオマス処理の酵素および方法
Li et al. Characterization of a halostable endoglucanase with organic solvent-tolerant property from Haloarcula sp. G10
Azadian et al. Purification and biochemical properties of a thermostable, haloalkaline cellulase from Bacillus licheniformis AMF-07 and its application for hydrolysis of different cellulosic substrates to bioethanol production
KR20110119386A (ko) 바실러스 벨렌첸시스 a-68 유래 섬유소 분해효소 유전자 및 이를 도입하여 형질전환된 에셰리키아 콜리 a-68 균주 및 이를 이용한 섬유소 분해효소의 생산 방법
Jang et al. Thermostable cellulases from Streptomyces sp.: scale-up production in a 50-l fermenter
Al-ZaZaee et al. Identification, characterization of novel halophilic Bacillus cereus Ms6: a source for extra cellular a-amylase
Ying et al. An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis
Tariq et al. Optimization of endoglucanase production from thermophilic strain of Bacillus licheniformis RT-17 and its application for saccharification of sugarcane bagasse
Lu et al. Production of novel alkalitolerant and thermostable inulinase from marine actinomycete Nocardiopsis sp. DN-K15 and inulin hydrolysis by the enzyme
Lu et al. Isolation of a novel cold-adapted amylase-producing bacterium and study of its enzyme production conditions
Choi et al. Purification and Characterization of an Extracellular ${\beta} $-Glucosidase Produced by Phoma sp. KCTC11825BP Isolated from Rotten Mandarin Peel
Naidoo et al. Purification and Characterization of an Endoinulinase from Xanthomonas campestris pv. phaseoli KM 24 Mutant
US5688668A (en) Pyrodictium xylanase amylase and pullulanase
Wang et al. Identification of archaeon-producing hyperthermophilic α-amylase and characterization of the α-amylase
JP2007319040A (ja) 酸性セルラーゼ生産菌
WO2022230670A1 (ja) β-グルコシダーゼを生産する好熱性微生物、そのスクリーニング方法及びβ-グルコシダーゼを生産する好熱性微生物を用いたセルロース系バイオマスの糖化方法、並びに好熱性微生物由来のβ-グルコシダーゼ及び該β-グルコシダーゼをコードする遺伝子
EP0793716A1 (en) $i(THERMOCOCCUS) AMYLASE AND PULLULANASE
Nam et al. Antarctic marine bacterium Pseudoalteromonas sp. KNOUC808 as a source of cold-adapted lactose hydrolyzing enzyme
JP5943326B2 (ja) グルコースの生産方法
Hussain et al. Enhancement effect of AgO nanoparticles on fermentative cellulase activity from thermophilic Bacillus subtilis Ag-PQ
KR20090085379A (ko) 바실러스 아밀로리퀘페이션스(Bacillusamyloliquefaciens) DL-3 유래셀룰라아제 단백질 및 이의 형질전환된 에셰리키아 콜리DL-3 균주

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231003

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240312

R150 Certificate of patent or registration of utility model

Ref document number: 7460978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150