WO2013136432A1 - 電力計測器 - Google Patents

電力計測器 Download PDF

Info

Publication number
WO2013136432A1
WO2013136432A1 PCT/JP2012/056386 JP2012056386W WO2013136432A1 WO 2013136432 A1 WO2013136432 A1 WO 2013136432A1 JP 2012056386 W JP2012056386 W JP 2012056386W WO 2013136432 A1 WO2013136432 A1 WO 2013136432A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
unit
extension
units
main body
Prior art date
Application number
PCT/JP2012/056386
Other languages
English (en)
French (fr)
Inventor
明実 塩川
省互 一村
西川 誠
裕 荻野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2012/056386 priority Critical patent/WO2013136432A1/ja
Publication of WO2013136432A1 publication Critical patent/WO2013136432A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R11/00Electromechanical arrangements for measuring time integral of electric power or current, e.g. of consumption
    • G01R11/02Constructional details
    • G01R11/04Housings; Supporting racks; Arrangements of terminals

Definitions

  • the present invention generally relates to a power meter configured by connecting an extension unit to a main unit.
  • this power measuring instrument can increase the number of measurement points by connecting (sequentially connecting) one or more extension units to the main unit.
  • the main unit and the extension unit detect a physical quantity (circuit current, circuit voltage, etc.) at a power measurement location, and perform power calculation using the detection result of the physical quantity. Then, the main unit acquires power measurement data from each of the extension units, and manages each measurement data of the main unit and the extension unit.
  • a conventional power meter is disclosed in Japanese Patent Application Publication No. 2005-55404.
  • Each of the main unit and the extension unit includes a plurality of input units for detecting physical quantities at each measurement location so that one unit can measure the power at the plurality of measurement locations.
  • a current transformer (CT: Current Transformer) is used to detect circuit current, and the signal line of the current transformer is connected to the input unit of the main unit and the extension unit.
  • the main unit and the extension unit having a plurality of input units have different arrangements of the input units, and the design of each unit in the unit needs to be separately designed for the main unit and the extension unit. Therefore, there is a possibility that the physical quantity detection characteristics of the main unit and the extension unit are different from each other, which causes a reduction in the accuracy of power calculation.
  • the present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a power measuring instrument in which a physical quantity detection characteristic is substantially the same between a main unit and an extension unit, and a connection error can be prevented.
  • the power meter of the present invention is a power meter configured such that one or more extension units are connected to a main unit, and the number of the extension units can be increased or decreased.
  • One or more main body input units to which a first signal representing a detection result is input are provided, power calculation is performed based on the detection result of the physical quantity, and the extension unit is the first representing the detection result of the physical quantity in the measurement target.
  • the arrangement of the main body input section of the main body unit and the expansion input section of the expansion unit is the same.
  • the circuit design and pattern design can be made substantially the same on the board on which the main body input unit is mounted and the board on which the extension input unit is mounted. Therefore, the main unit and the extension unit can have substantially the same current detection characteristics, and the power calculation accuracy can be improved.
  • the connection state of the main body input unit and the additional input unit can be confirmed at a glance with one or more expansion units connected to the main unit. Therefore, connection mistakes can be visually confirmed, and connection mistakes can be reduced.
  • the physical quantity is a current in a measurement target.
  • the number of extension units increases in multi-circuit measurement.
  • the present invention works more effectively.
  • the main unit includes the main body input unit disposed on one side in a predetermined direction and the main body input unit disposed on the other side in the predetermined direction
  • the extension unit includes the predetermined unit.
  • the additional input unit disposed on one side of the direction and the additional input unit disposed on the other side of the predetermined direction, each of the main body input unit in the plurality of phases of the polyphase AC circuit
  • the first signal representing the detection result of the physical quantity is input for each phase
  • each of the additional input units receives the second signal representing the detection result of the physical quantity in a plurality of phases of a multiphase AC circuit. It is input for each phase, and the arrangement direction and arrangement order of the connection parts for each phase in the main body input unit are the same as the arrangement direction and arrangement order of the connection parts for each phase in the additional input unit.
  • the physical quantity detection characteristics of the main unit and the extension unit are substantially the same, and further, connection errors can be prevented.
  • the main body input unit receives the first signal representing the current detection result, and the main body unit receives or inputs a third signal other than the current detection result.
  • An output unit is provided, and the main body input unit is disposed closer to the extension unit than the signal input / output unit.
  • noise resistance can be improved by separating the signal input / output unit from the main body input unit and the extension input unit.
  • the first signal represents a current detection result as a current value
  • the third signal is a pulse signal or a communication signal according to a communication format.
  • the signal input / output unit is not easily affected by noise generated from the main body input unit and the extension input unit.
  • FIG. 1 and FIG. 2 show a configuration example of the power measuring instrument of this embodiment.
  • One to a plurality of extension units Si are connected (sequentially connected) to the main unit M.
  • the direction perpendicular to the up / down / left / right direction is defined as the front / rear direction with reference to the up / down / left / right direction in FIG.
  • the extension unit Si in FIG. 2 shows only one extension unit S1.
  • the main body unit M detects the current and voltage of the power circuit and performs power calculation, and has a housing 1 as an outer shell.
  • the housing 1 is configured in a box shape with a base 1a and a protruding portion 1b.
  • the base 1a is formed in a rectangular shape that is long in the left-right direction.
  • the protruding portion 1b is formed in a rectangular shape that protrudes forward along the left-right direction at the approximate center in the vertical direction of the base 1a. Note that the portion of the base 1a exposed forward in the upper portion of the protruding portion 1b is referred to as an upper base 1c, and the portion of the base 1a exposed in the lower portion of the protruding portion 1b is referred to as the lower base 1d. Call it.
  • the main unit M has two types of CT input units 10 and 11 (the main unit of the present invention so that one of two different types of current transformers (CT: Current Transformers) 31 and 32 can be selected and connected. Equivalent to the input unit) (see FIG. 3).
  • CT Current Transformers
  • the current transformer 31 detects a relatively large current. For example, the current transformer 31 detects a main current flowing through the main electric circuit and outputs a detection current via the signal line 31a.
  • the current transformer 32 detects a relatively small current. For example, the current transformer 32 detects a branch current flowing through the branch circuit, and outputs the detected current via the signal line 32a.
  • the current transformers 31 and 32 are selected and used depending on the current value to be measured.
  • the main unit M includes three CT input units 10 (101, 102, 103).
  • the CT input units 101 and 102 are arranged side by side in the left-right direction on the right end side of the upper base 1c.
  • the CT input unit 103 is disposed on the right end side of the lower base 1d.
  • CT input part 10 when not distinguishing CT input part 101,102,103, it is called CT input part 10.
  • the CT input unit 10 is a screw terminal to which the signal line 31a of the current transformer 31 is connected.
  • the input line 10a into which the signal line 31a is inserted and the signal line 31a in the input line 10a are fastened to a terminal plate (not shown). And a threaded portion 10b.
  • the CT input unit 10 is composed of 1 to 6 poles arranged side by side in the left-right direction, and can connect up to three current transformers 31 arranged in each of the three-phase (R, S, T) electric circuits.
  • the CT input unit 10 receives from the left, each detection current (corresponding to the first signal of the present invention) in which the first and second poles are in the R phase, the third and fourth poles are in the S phase, and the fifth and sixth poles are in the T phase. (See FIG. 4).
  • the entrance 10a of the CT input units 101 and 102 is provided on the upper surface of the upper base 1c, and the screw portion 10b of the CT input units 101 and 102 is provided on the front surface of the upper base 1c.
  • the entry port 10a of the CT input unit 103 is provided on the lower surface of the lower base 1d, and the screw portion 10b of the CT input unit 103 is provided on the front surface of the lower base 1d.
  • the main unit M further includes three CT input units 11 (111, 112, 113).
  • the CT input units 111 and 112 are arranged side by side in the left-right direction on the right end side of the upper base 1c.
  • the CT input unit 113 is disposed on the right end side of the lower base 1d.
  • CT input part 11 when not distinguishing CT input part 111,112,113, it is called CT input part 11.
  • the CT input unit 11 is a connector terminal having a plug insertion port 11a, and a plug (not shown) provided at the end of the signal line 32a of the current transformer 32 is inserted into the plug insertion port 11a.
  • the CT input unit 11 has three plug insertion ports 11a arranged in parallel in the left-right direction in order to connect up to three current transformers 32 arranged in each of the three-phase (R, S, T) electric circuits. Have.
  • the three plug insertion openings 11a receive detection currents (corresponding to the first signal of the present invention) in which the first from the left is the R phase, the second is the S phase, and the third is the T phase. (See FIG. 4).
  • the CT input portions 111 and 112 are provided on the front surface of the upper base 1c, and are arranged along the screw portions 10b below the screw portions 10b of the CT input portions 101 and 102.
  • the CT input unit 113 is provided on the front surface of the lower base 1 d, and is arranged along the screw part 10 b above the screw part 10 b of the CT input part 103.
  • a set of CT input units 101 and 111 and a set of CT input units 102 and 112 are arranged side by side.
  • a set of CT input units 103 and 113 is arranged on the right end side of the lower base 1d. That is, three sets of the CT input unit 10 and the CT input unit 11 are provided, and only one of the CT input unit 10 and the CT input unit 11 is used in each set of CT input units.
  • a communication terminal 121 having 1 to 6 poles arranged in parallel in the left-right direction is arranged.
  • the communication terminal 121 is a screw terminal through which a communication signal according to a communication format such as RS-485 is input / output.
  • the input port 12a into which the signal line is inserted and the signal board in the input port 12a are not illustrated.
  • a screw portion 12b to be tightened is provided.
  • the inlet 12a is provided on the upper surface of the upper base 1c, and the screw portion 12b is provided on the front surface of the upper base 1c.
  • a pulse input terminal 131 having 1 to 2 poles arranged in parallel in the left-right direction and a pulse output having 1 to 4 poles arranged in parallel in the left-right direction.
  • Terminal 141 is disposed.
  • the pulse input terminal 131 is a screw terminal to which a pulse signal as a detection result is input from an electric energy meter, a flow meter or the like (not shown), and an input port 13a into which a signal line is inserted and a signal line in the input port 13a. And a screw portion 13b for fastening to a terminal board (not shown).
  • the inlet 13a is provided on the upper surface of the upper base 1c, and the screw portion 13b is provided on the front surface of the upper base 1c.
  • the pulse output terminal 141 is a screw terminal that outputs a measurement result such as an electric energy and a flow rate as a pulse signal.
  • the input terminal 14a into which the signal line is inserted and the signal line in the input line 14a are fastened to a terminal plate (not shown). And a threaded portion 14b. And the entrance 14a is provided in the upper surface of the upper base 1c, and the screw part 14b is provided in the front surface of the upper base 1c.
  • the communication terminal 121, the pulse input terminal 131, and the pulse output terminal 141 correspond to a signal input / output unit to which a third signal other than the current detection result of the present invention is input or output.
  • the communication signal and the pulse signal correspond to the third signal of the present invention.
  • a voltage input terminal 151 is arranged on the left end side of the lower base 1d.
  • the voltage input terminal 151 is a screw terminal connected to each of the R-phase, S-phase, T-phase, and ground potential circuits, and the input line 15a into which the voltage line is inserted and the signal line in the input line 15a are not shown.
  • the inlet 15a is provided on the lower surface of the lower base 1c, and the screw portion 15b is provided on the front surface of the lower base 1c.
  • This voltage input terminal 151 is composed of 1 to 4 poles arranged in parallel in the left-right direction. From the left, 1 pole is R phase, 2 pole is S phase, 3 pole is T phase, 4 pole is ground potential. Is connected.
  • the power supply terminal 161 is a screw terminal to which the operation power of the main unit M is input, and includes an entry port 16a into which the power supply line is inserted, and a screw portion 16b for fastening the power supply line in the entry port 16a to a terminal plate (not shown).
  • the inlet 16a is provided on the lower surface of the lower base 1d, and the screw portion 16b is provided on the front surface of the lower base 1d.
  • a connector terminal 171 for inserting a plug connected to a display device (not shown) and a reset switch 172 for resetting the operation of the main unit M are arranged on the front surface of the projecting portion 1b.
  • the main unit M can communicate with a terminal on the network by connecting the communication terminal 121 to the network.
  • An address setting switch 173 is disposed on the front surface of the protruding portion 1b.
  • the address setting switch 173 is a dip switch and sets the network address of the main unit M.
  • a slide switch 174 for setting whether or not a termination resistor is connected is disposed in the upper base 1c.
  • a memory card insertion slot and a display unit showing various states such as power-on and occurrence of an abnormality may be provided on the front surface of the protruding portion 1b.
  • the extension unit Si performs power calculation by detecting the current and voltage of the power circuit, and has the casing 2 as an outer shell.
  • the housing 2 is formed in a box shape by the base 2a and the projecting portion 2b, and each dimension in the vertical direction and the front-rear direction is the same as that of the housing 1 of the main unit M.
  • the base 2a is formed in a rectangular shape.
  • the protruding portion 2b is formed in a rectangular shape that protrudes forward along the left-right direction at the approximate center in the vertical direction of the base 2a. Note that the portion of the base 2a exposed forward in the upper portion of the protruding portion 2b is referred to as an upper base 2c, and the portion of the base 2a exposed in the lower portion of the protruding portion 2b is referred to as the lower base 2d. Call it.
  • the extension unit Si includes two types of CT input sections 20 and 21 (corresponding to the extension input section of the present invention) so that two different types of current transformers 31 and 32 can be connected (see FIG. 5).
  • the extension unit Si includes three CT input units 20 (201, 202, 203).
  • the CT input units 201 and 202 are arranged side by side in the left-right direction between the left and right ends of the upper base 2c.
  • the CT input unit 203 is disposed on the right end side of the lower base 2d.
  • CT input part 20 when not distinguishing CT input part 201,202,203, it is called CT input part 20.
  • the CT input unit 20 is a screw terminal to which the signal line 31a of the current transformer 31 is connected, and the input line 20a into which the signal line 31a is inserted and the signal line 31a in the input line 20a are fastened to a terminal plate (not shown). And a threaded portion 20b.
  • the CT input unit 20 is composed of 1 to 6 poles arranged in parallel in the left-right direction, and can connect up to three current transformers 31 arranged in each of the three-phase (R, S, T) electric circuits.
  • the CT input unit 20 receives from the left, each detection current (corresponding to the second signal of the present invention) in which the first and second poles are in the R phase, the third and fourth poles are in the S phase, and the fifth and sixth poles are in the T phase. (See FIG. 6).
  • the entrance 20a of the CT input parts 201 and 202 is provided on the upper surface of the upper base 2c, and the screw part 20b of the CT input parts 201 and 202 is provided on the front surface of the upper base 2c.
  • the entry port 20a of the CT input unit 203 is provided on the lower surface of the lower base 2d, and the screw portion 20b of the CT input unit 203 is provided on the front surface of the lower base 2d.
  • the extension unit Si includes three CT input units 21 (211, 212, 213).
  • the CT input units 211 and 212 are arranged side by side in the left-right direction between the left and right ends of the upper base 2c.
  • the CT input unit 213 is disposed on the right end side of the lower base 2d.
  • CT input part 21 when not distinguishing CT input part 211,212,213, it is called CT input part 21.
  • the CT input unit 21 is a connector terminal having a plug insertion port 21a, and a plug (not shown) provided at the end of the signal line 32a of the current transformer 32 is inserted into the plug insertion port 21a.
  • the CT input unit 21 includes three plug insertion ports 21a arranged in parallel in the left-right direction in order to connect up to three current transformers 32 arranged in each of the three-phase (R, S, T) electric circuits. Have.
  • the three plug insertion ports 21a receive detection currents (corresponding to the second signal of the present invention) in which the first from the left is the R phase, the second is the S phase, and the third is the T phase. (See FIG. 6).
  • the CT input portions 211 and 212 are provided on the front surface of the upper base 2c, and are arranged along the screw portions 20b below the screw portions 20b of the CT input portions 201 and 202.
  • the CT input unit 213 is provided on the front surface of the lower base 2d, and is disposed along the screw part 20b above the screw part 20b of the CT input part 203.
  • a set of CT input units 201 and 211 and a set of CT input units 202 and 212 are disposed between the left and right ends of the upper base 1c.
  • a set of CT input units 203 and 213 is arranged on the right end side of the lower base 2d.
  • the CT input units 101 to 103, the CT input units 111 to 113, the communication terminal 121, the pulse input terminal 131, and the pulse output terminal 141 of the main unit M are housed in the housing 1. It is mounted on the substrate 180. Further, the CT input units 201 to 203 and the CT input units 211 to 213 of the extension unit S1 are mounted on a substrate 220 housed in the housing 2. Note that other components of the main unit M and the extension unit Si may also be mounted on the substrates housed in the casings 1 and 2.
  • a connector 181 is provided at the right end of the substrate 180 of the main unit M, and the connector 181 is exposed to the outside through an opening formed on the right side surface of the housing 1 (see FIG. 8).
  • a connector 221 is provided at the left end of the board 220 of the extension unit Si, and the connector 221 protrudes from the left side surface of the housing 2 (see FIGS. 1 and 9).
  • a connector 222 is provided at the right end of the board 220 of the extension unit Si, and the connector 222 is exposed to the outside through an opening formed on the right side surface of the housing 2 (see FIG. 10).
  • the left side of the extension unit S1 is attached to the right side of the main unit M so as to face.
  • the connector 221 of the extension unit S2 is connected to the connector 222 of the extension unit S1
  • the left side surface of the extension unit S2 is attached to the right side surface of the extension unit S1.
  • the extension units S3, S4,. . . Are the extension units S2, S3,. . . Connect the connector.
  • the main unit M and the one or more extension units Si connected to the main unit M are electrically connected via the connectors 181, 221, and 222.
  • a power supply path from the main unit M to the extension unit Si and a signal transmission path between the main unit M and the extension unit Si are secured.
  • the extension unit Si has locking pieces 231 protruding on the upper side and the lower side of the left side surface, and locking recesses 232 for locking to the locking pieces 231 of the subsequent stage extension unit Si on the upper side and the lower side of the right side surface.
  • the main body unit M has a locking recess 185 that is locked to the locking piece 231 of the extension unit Si on the right side surface.
  • the locking piece 231 of the extension unit S1 is locked in the locking recess 185 of the main unit M, and the expansion unit S1 is fixed to the main unit M. Furthermore, the locking piece 231 of the extension unit S2 is locked in the locking recess 232 of the extension unit S1, and the extension unit S2 is fixed to the extension unit S1. Similarly, the extension units S3, S4,. . . Are the extension units S2, S3,. . . Fixed to.
  • the main unit M and the extension unit Si are attached to, for example, an IEC (International Electrotechnical Commission) standard rail (not shown) (for example, a DIN rail).
  • IEC International Electrotechnical Commission
  • the main unit M has a groove 186 formed on the rear surface of the housing 1, and a rail is fitted into the groove 186.
  • the fixing tool 187 which can move to an up-down direction is elastically biased upward, and the fixing tool 187 fixes the main body unit M to a rail (refer FIG. 8).
  • the extension unit Si has a groove 236 formed on the rear surface of the housing 2, and a rail is fitted into the groove 236. Then, the fixture 237 that can move in the vertical direction is elastically biased upward, so that the fixture 237 fixes the extension unit Si to the rail (see FIGS. 9 and 10).
  • the main unit M divides the voltage of each phase input to the voltage input terminal 151 and detects the voltage of each phase. Further, the main unit M detects the current of each phase based on the detected current of each phase input to the CT input unit 10 or the CT input unit 11. The main unit M multiplies the voltage of each phase and the current of each phase to perform power calculation. In addition, a signal transmission path between the main unit M and the extension unit Si is formed via the connectors 181, 221, and 222, and the main unit M connects the detection result of the voltage of each phase to the main unit M. Is transmitted to the added extension unit Si.
  • the extension unit Si receives the detection result of the voltage of each phase transmitted from the main unit M. Furthermore, the extension unit Si detects the current of each phase based on each detected current of each phase input to the CT input unit 20 or the CT input unit 21. The extension unit Si performs power calculation by multiplying the voltage of each phase by the current of each phase. The extension unit Si transmits the result of the power calculation to the main unit M.
  • the main unit M manages the power calculation results of the main unit M and the extension unit Si. For example, the main unit M transmits the power calculation results of the main unit M and the extension unit Si to a display device (not shown) connected to the connector terminal 171. The display device displays the result of each received power calculation.
  • the main unit M and the extension unit Si perform power calculations for calculating the power of the three-phase four-wire system and the single-phase two-wire system.
  • the measurement target of the power meter may be, for example, a three-phase three-wire system, a single-phase three-wire system, or a single-phase two-wire power circuit other than the three-phase four-wire power circuit.
  • the CT input units 101 and 102 are arranged in parallel on the upper base 1c of the casing 1, and the CT input units 201 and 202 are arranged in parallel on the upper base 2c of the casing 2.
  • the CT input unit 103 is disposed on the lower base 1d of the housing 1
  • the CT input unit 203 is disposed on the lower base 2d of the housing 2. That is, the relative positional relationship between the CT input units 10 (101, 102, 103) of the main unit M and the relative positional relationship between the CT input units 20 (201, 202, 203) of the extension unit Si are expressed as follows. It is configured identically.
  • the CT input units 111 and 112 are arranged in parallel on the upper base 1c of the casing 1, and the CT input units 211 and 212 are arranged in parallel on the upper base 2c of the casing 2.
  • the CT input unit 113 is disposed on the lower base 1d of the housing 1
  • the CT input unit 213 is disposed on the lower base 2d of the housing 2. That is, the relative positional relationship between the CT input units 11 (111, 112, 113) of the main unit M and the relative positional relationship between the CT input units 21 (211, 212, 213) of the extension unit Si It is configured identically.
  • the arrangement direction of the CT input units 10 and 11 and the arrangement direction of the CT input units 20 and 21 are the same.
  • the main unit M and the extension unit Si have the same CT input unit arrangement.
  • the circuit design and pattern design around the CT input unit can be made substantially the same on the substrate 180 on which the CT input units 10 and 11 are mounted and the substrate 220 on which the CT input units 20 and 21 are mounted. Therefore, the main unit M and the extension unit Si can have substantially the same current detection characteristics, and the accuracy of power calculation can be improved.
  • connection state is changed. You can see at a glance. Therefore, connection mistakes can be visually confirmed, and connection mistakes can be reduced.
  • the CT input units 10 and 11 of the main unit M and the CT input units 20 and 21 of the extension unit Si are arranged with R phase, S phase, and T phase connections of a three-phase AC circuit in order from the left. Yes. That is, the arrangement direction and arrangement order of the connection parts for each phase in the CT input units 10 and 11 and the arrangement direction and arrangement order of the connection parts for each phase in the CT input parts 20 and 21 are the same. Therefore, when the signal lines 31a and 32a of the current transformers 31 and 32 are connected to the CT input units 10, 11, 20, and 21, the connection state for each phase can be confirmed at a glance. Therefore, the connection mistake for every phase can be confirmed visually, and the connection mistake of a phase can be reduced.
  • the CT input units 10 and 11 of the main unit M are biased and arranged on the right side of the housing 1, and the communication terminal 121, the pulse input terminal 131, and the pulse output terminal 141 are biased on the left side of the housing 1. Be placed. Therefore, the CT input units 10 and 11 of the main unit M are located near the CT input units 20 and 21 of the extension unit S1, and the communication terminal 121, the pulse input terminal 131, and the pulse output terminal 141 of the main unit M are added. It is arranged away from the CT input units 20 and 21 of the unit S1.
  • the communication terminal 121, the pulse input terminal 131, and the pulse output terminal 141 handle a minute current signal, and are arranged apart from the CT input units 10, 11, 20, and 21 that handle a relatively large current signal.
  • the communication terminal 121, the pulse input terminal 131, and the pulse output terminal 141 need to be electrically insulated from externally supplied power, and use a power supply system different from the CT input units 10, 11, 20, and 21. . Therefore, the communication terminal 121, the pulse input terminal 131, and the pulse output terminal 141 are separated from the CT input units 10, 11, 20, and 21 to improve noise resistance. That is, the communication terminal 121, the pulse input terminal 131, and the pulse output terminal 141 are not easily affected by noise emitted from the CT input units 10, 11, 20, and 21.
  • the current of the power circuit is illustrated as a physical quantity input to the main body input unit (CT input units 10 and 11) of the main unit M and the extension input unit (CT input units 20 and 21) of the extension unit Si.
  • the physical quantity input to the main body input unit and the extension input unit may be other detection values such as voltage and flow rate.
  • FIG. 11 shows a schematic configuration around the CT input units 10 and 11 of the main unit M.
  • the CT input unit 10 is provided with a pair of connection terminals T1 and T2 to which the signal line 31a of the current transformer 31 is screwed and connected for each phase.
  • the CT input unit 11 is provided with a pair of connection terminals T3 and T4 to which a plug P provided at an end of the signal line 32a of the current transformer 32 is connected for each phase.
  • a burden resistor Ra is connected between the connection terminals T1 and T2
  • a burden resistor Rb is connected between the connection terminals T3 and T4.
  • the connection terminals T2 and T3 are short-circuited, and the burden resistor Ra and the burden resistor Rb are connected in series.
  • the burden resistance Ra is a resistance element that converts the detection current of the current transformer 31 that detects a relatively large current into a voltage, and is a low-resistance and high-precision resistor that is made for measuring a large current. is there.
  • This burden resistance Ra is a shunt resistance of 1 m ⁇ , for example.
  • the burden resistance Rb is a resistance element that converts the detection current of the current transformer 32 that detects a relatively small current into a voltage, and is, for example, a 2.0 ⁇ resistor.
  • the power calculation unit K1 of the main unit M receives the voltage between the connection terminals T1 and T4, detects the current of each phase based on the voltage between the connection terminals T1 and T4, and performs power calculation.
  • the circuit switching is performed depending on which of the current transformers 31 and 32 is connected to the main unit M by appropriately setting the respective transformation ratios of the current transformers 31 and 32 and the respective resistance values of the burden resistors Ra and Rb.
  • the same power calculation unit K1 can be used without performing the above.
  • the vicinity of the CT input units 20 and 21 of the extension unit Si has the same schematic configuration, and a description thereof will be omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

 本体ユニットMは、変流器の検出電流が入力されるCT入力部10(101,102,103),11(111,112,113)を備え、この電流の検出結果に基づいて電力演算を行い、増設ユニットSiは、変流器の検出電流が入力されるCT入力部20(201,202,203),21(211,212,213)を複数備え、この電流の検出結果に基づいて電力演算を行う。そして、CT入力部10,11同士の相対的な位置関係と、ST入力部20,21同士の相対的な位置関係とは同一であり、本体ユニットMに連接された増設ユニットSiのCT入力部20,21の配置方向は、CT入力部10,11の配置方向と同一である。

Description

電力計測器
 本発明は一般に、本体ユニットに増設ユニットを連接して構成される電力計測器に関するものである。
 従来、本体ユニットと増設ユニットとで構成される電力計測器がある。この電力計測器は、電力の測定箇所が多い場合、1乃至複数の増設ユニットを本体ユニットに連接(順次連結)して、測定箇所を増やすことができる。本体ユニットおよび増設ユニットは、電力の測定箇所における物理量(回路電流、回路電圧等)を検出し、この物理量の検出結果を用いて電力演算を行う。そして、本体ユニットは、増設ユニットのそれぞれから電力の測定データを取得し、本体ユニットおよび増設ユニットの各測定データを管理する。従来の電力計測器としては、日本特許出願公報特開2005-55404に開示されている。
 本体ユニットおよび増設ユニットの各々は、複数の測定箇所における電力を1つのユニットが測定できるように、各測定箇所における物理量を検出する複数の入力部を備えるものがある。例えば、回路電流の検出には変流器(CT:Current Transformer)が用いられ、変流器の信号線は、本体ユニットおよび増設ユニットの入力部に接続される。
 しかしながら、複数の入力部を備える本体ユニットおよび増設ユニットは、その入力部の配列が互いに異なっており、ユニット内の各部の設計を、本体ユニットと増設ユニットとでは別設計とする必要があった。したがって、本体ユニットと増設ユニットとでは、物理量の検出特性が互いに異なる虞があり、電力演算の精度が低下する要因になっていた。
 また、本体ユニットと増設ユニットとでは、その入力部の配列が互いに異なっているため、本体ユニットに増設ユニットを連接した状態では、入力部への結線を間違え易いという問題があった。
 本発明は上記事由に鑑みてなされたものであり、その目的は、本体ユニットと増設ユニットとで物理量の検出特性を略同一とし、さらに結線間違いを防止できる電力計測器を提供することにある。
 本発明の電力計測器は、本体ユニットに1乃至複数の増設ユニットが連接し、前記増設ユニットの台数を増減可能に構成された電力計測器であって、前記本体ユニットは、測定対象における物理量の検出結果を表す第1の信号が入力される本体入力部を1乃至複数備え、この物理量の検出結果に基づいて電力演算を行い、前記増設ユニットは、測定対象における前記物理量の検出結果を表す第2の信号が入力される増設入力部を1乃至複数備え、この物理量の検出結果に基づいて電力演算を行い、1乃至複数の前記本体入力部同士の相対的な位置関係と、1乃至複数の前記増設入力部同士の相対的な位置関係とは同一であり、前記本体ユニットに連接された前記増設ユニットの1乃至複数の前記増設入力部の配置方向は、前記本体入力部の配置方向と同一であることを特徴とする。
 この発明によれば、本体ユニットの本体入力部と増設ユニットの増設入力部とは、配列が互いに同一になる。而して、本体入力部を実装した基板、増設入力部を実装した基板において、回路設計、パターン設計を略同一にできる。したがって、本体ユニットと増設ユニットとでは、電流の検出特性を略同一特性にすることができ、電力演算の精度を向上させることができる。さらに、本体ユニットに1乃至複数の増設ユニットを連接した状態で、本体入力部、増設入力部の各結線状態を一目で確認できる。したがって、結線ミスを視覚的に確認でき、結線ミスを減らすことができる。
 一実施形態において、前記物理量は、測定対象における電流である。
 この実施形態によれば、多回路計測では増設ユニットの台数が増えるが、このような場合に、本発明はより効果的に作用する。
 一実施形態において、前記本体ユニットは、所定方向の一方側に配置される前記本体入力部と、前記所定方向の他方側に配置される前記本体入力部とを備え、前記増設ユニットは、前記所定方向の一方側に配置される前記増設入力部と、前記所定方向の他方側に配置される前記増設入力部とを備え、前記本体入力部の各々は、多相交流回路の複数の相における前記物理量の検出結果を表す前記第1の信号が前記相毎に入力され、前記増設入力部の各々は、多相交流回路の複数の相における前記物理量の検出結果を表す前記第2の信号が前記相毎に入力され、前記本体入力部における前記相毎の接続部の配列方向および配列順序と、前記増設入力部における前記相毎の接続部の配列方向および配列順序とは同一である。
 この実施形態によれば、本体ユニットと増設ユニットとで物理量の検出特性を略同一とし、さらに結線間違いを防止できる。
 一実施形態において、前記本体入力部は、電流の検出結果を表す前記第1の信号が入力され、前記本体ユニットは、前記電流の検出結果以外の第3の信号が入力または出力される信号入出力部を備え、前記本体入力部を、前記信号入出力部に比べて、前記増設ユニットに近い側に配置する。
 この実施形態によれば、信号入出力部を、本体入力部および増設入力部と分離することによって、耐ノイズ性を向上させることができる。
 一実施形態において、前記第1の信号は、電流の検出結果を電流値で表し、前記第3の信号は、パルス信号、または通信フォーマットにしたがった通信信号である。
 この実施形態によれば、信号入出力部は、本体入力部および増設入力部から発せられるノイズの影響を受けにくくなる。
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
本発明の外観構成を示す平面図である。 同上の外観構成を示す平面図である。 同上の本体ユニットの配線を示す概略図である。 同上の本体ユニットのCT入力部の配列を示す概略図である。 同上の増設ユニットの配線を示す概略図である。 同上の増設ユニットのCT入力部の配列を示す概略図である。 同上のCT入力部が実装された基板を示す平面図である。 同上の本体ユニットの右側面を示す平面図である。 同上の増設ユニットの左側面を示す平面図である。 同上の増設ユニットの右側面を示す平面図である。 同上の本体ユニットのCT入力部周辺を示す概略構成図である。
 本実施形態の電力計測器の構成例を図1,図2に示す。電力計測器は、1台の本体ユニットMと、1乃至複数台の増設ユニットSi(i=1,2,…,n)とで構成される。本体ユニットMには、1乃至複数の増設ユニットSiが連接(順次連結)している。以下、図1における上下左右方向を基準とし、上下左右方向に直交する方向を前後方向として説明を行う。なお、図2における増設ユニットSiは、1台の増設ユニットS1のみを図示する。
 本体ユニットMは、電力回路の電流および電圧を検出して電力演算を行うものであり、筐体1を外郭として有する。
 筐体1は、基台1aと突設部1bとで箱状に構成される。基台1aは、左右方向に長い矩形体状に形成される。突設部1bは、基台1aの上下方向の略中央において、左右方向に沿って前方に突出した矩形体状に形成される。なお、突設部1bの上方において前方に露出する基台1aの部位を、上基台1cと称し、突設部1bの下方において前方に露出する基台1aの部位を、下基台1dと称す。
 まず、本体ユニットMは、異なる2種類の変流器(CT:Current Transformer)31,32のいずれか一方を選択して接続できるように、2種類のCT入力部10,11(本発明の本体入力部に相当)を備えている(図3参照)。
 変流器31は、比較的大きな電流を検出するものであり、例えば主幹電路を流れる主幹電流を検出し、信号線31aを介して検出電流を出力する。変流器32は、比較的小さな電流を検出するものであり、例えば分岐電路を流れる分岐電流を検出し、信号線32aを介して検出電流を出力する。この変流器31,32は、測定対象の電流値に応じていずれかを選択して用いられる。
 本体ユニットMは、3つのCT入力部10(101,102,103)を備える。CT入力部101,102は、上基台1cの右端側において、左右方向に並んで配置されている。CT入力部103は、下基台1dの右端側に配置されている。なお、CT入力部101,102,103を区別しない場合、CT入力部10と称す。
 CT入力部10は、変流器31の信号線31aが接続されるネジ端子であり、信号線31aが挿入される入線口10aと、入線口10a内の信号線31aを図示しない端子板に締め付けるネジ部10bとを有する。CT入力部10は、左右方向に並設した1~6極で構成され、3相(R,S,T)の各電路に配置された最大3個の変流器31を接続できる。このCT入力部10は、左方から1,2極がR相、3,4極がS相、5,6極がT相の各検出電流(本発明の第1の信号に相当)が入力される(図4参照)。
 そして、CT入力部101,102の入線口10aは、上基台1cの上面に設けられ、CT入力部101,102のネジ部10bは、上基台1cの前面に設けられる。CT入力部103の入線口10aは、下基台1dの下面に設けられ、CT入力部103のネジ部10bは、下基台1dの前面に設けられる。
 さらに本体ユニットMは、3つのCT入力部11(111,112,113)を備える。CT入力部111,112は、上基台1cの右端側において、左右方向に並んで配置されている。CT入力部113は、下基台1dの右端側に配置されている。なお、CT入力部111,112,113を区別しない場合、CT入力部11と称す。
 CT入力部11は、プラグ挿入口11aを有するコネクタ端子であり、変流器32の信号線32aの端部に設けたプラグ(図示なし)がプラグ挿入口11aに差し込まれる。CT入力部11は、3相(R,S,T)の各電路に配置された最大3個の変流器32を接続するために、左右方向に並設した3個のプラグ挿入口11aを有する。そして、3個のプラグ挿入口11aは、左方から1番目がR相、2番目がS相、3番目がT相の各検出電流(本発明の第1の信号に相当)が入力される(図4参照)。
 そして、CT入力部111,112は、上基台1cの前面に設けられ、CT入力部101,102のネジ部10bの下方において、このネジ部10bに沿って配置される。CT入力部113は、下基台1dの前面に設けられ、CT入力部103のネジ部10bの上方において、このネジ部10bに沿って配置される。
 すなわち、上基台1cの右端側には、CT入力部101,111の組、CT入力部102,112の組が並んで配置される。また、下基台1dの右端側には、CT入力部103,113の組が配置される。すなわち、CT入力部10とCT入力部11との組を3組設けて、このCT入力部の各組において、CT入力部10とCT入力部11とのいずれか一方のみが用いられる。
 また、上基台1cの左端側には、左右方向に1~6極を並設した通信端子121が配置される。通信端子121は、RS-485等の通信フォーマットにしたがった通信信号が入出力されるネジ端子であり、信号線が挿入される入線口12aと、入線口12a内の信号線を図示しない端子板に締め付けるネジ部12bとを有する。そして、入線口12aは、上基台1cの上面に設けられ、ネジ部12bは、上基台1cの前面に設けられる。
 さらに、上基台1cにおいて通信端子121とCT入力部101との間には、左右方向に1~2極を並設したパルス入力端子131,左右方向に1~4極を並設したパルス出力端子141が配置される。パルス入力端子131は、図示しない電力量メータ、流量メータ等から検知結果であるパルス信号が入力されるネジ端子であり、信号線が挿入される入線口13aと、入線口13a内の信号線を図示しない端子板に締め付けるネジ部13bとを有する。そして、入線口13aは、上基台1cの上面に設けられ、ネジ部13bは、上基台1cの前面に設けられる。パルス出力端子141は、電力量、流量等の測定結果をパルス信号で出力するネジ端子であり、信号線が挿入される入線口14aと、入線口14a内の信号線を図示しない端子板に締め付けるネジ部14bとを有する。そして、入線口14aは、上基台1cの上面に設けられ、ネジ部14bは、上基台1cの前面に設けられる。
 なお、通信端子121、パルス入力端子131、パルス出力端子141は、本発明の電流の検出結果以外の第3の信号が入力または出力される信号入出力部に相当する。また、通信信号、パルス信号が、本発明の第3の信号に相当する。
 また、下基台1dの左端側には、電圧入力端子151が配置される。電圧入力端子151は、R相,S相,T相,接地電位の各電路に接続されるネジ端子であり、電圧線が挿入される入線口15aと、入線口15a内の信号線を図示しない端子板に締め付けるネジ部15bとを有する。そして、入線口15aは、下基台1cの下面に設けられ、ネジ部15bは、下基台1cの前面に設けられる。この電圧入力端子151は、左右方向に並設した1~4極で構成され、左方から1極がR相、2極がS相、3極がT相、4極が接地電位の各電路が接続される。
 さらに、下基台1dにおいて電圧入力端子151とCT入力部103との間には、左右方向に1~3極を並設した電源端子161が配置される。電源端子161は、本体ユニットMの動作電源が入力されるネジ端子であり、電源線が挿入される入線口16aと、入線口16a内の電源線を図示しない端子板に締め付けるネジ部16bとを有する。そして、入線口16aは、下基台1dの下面に設けられ、ネジ部16bは、下基台1dの前面に設けられる。
 また、突設部1bの前面には、図示しないディスプレイ装置に接続したプラグを差し込むコネクタ端子171、本体ユニットMの動作をリセットするリセットスイッチ172が配置される。
 また、本体ユニットMは、通信端子121をネットワークに接続して、ネットワーク上の端末との間で通信を行うことができる。そして、突設部1bの前面には、アドレス設定スイッチ173が配置される。アドレス設定スイッチ173は、ディップスイッチからなり、本体ユニットMのネットワークアドレスを設定する。
 また、ネットワーク接続された本体ユニットMがネットワーク上の終端端末であれば、終端抵抗を接続する必要がある。そして、上基台1cにおいて、通信端子121の下方には、終端抵抗の接続の有無を設定するスライドスイッチ174が配置されている。
 また、突設部1bの前面には、メモリカードの挿入口、電源入や異常発生等の各種状態を示す表示部を設けてもよい。
 次に、増設ユニットSiは、電力回路の電流および電圧を検出して電力演算を行うものであり、筐体2を外郭として有する。
 筐体2は、基台2aと突設部2bとで箱状に構成され、上下方向および前後方向の各寸法は、本体ユニットMの筐体1と同一に構成される。基台2aは、矩形体状に形成される。突設部2bは、基台2aの上下方向の略中央において、左右方向に沿って前方に突出した矩形体状に形成される。なお、突設部2bの上方において前方に露出する基台2aの部位を、上基台2cと称し、突設部2bの下方において前方に露出する基台2aの部位を、下基台2dと称す。
 まず、増設ユニットSiは、異なる2種類の変流器31,32を接続できるように、2種類のCT入力部20,21(本発明の増設入力部に相当)を備える(図5参照)。
 増設ユニットSiは、3つのCT入力部20(201,202,203)を備える。CT入力部201,202は、上基台2cの左右両端間において、左右方向に並んで配置されている。CT入力部203は、下基台2dの右端側に配置されている。なお、CT入力部201,202,203を区別しない場合、CT入力部20と称す。
 CT入力部20は、変流器31の信号線31aが接続されるネジ端子であり、信号線31aが挿入される入線口20aと、入線口20a内の信号線31aを図示しない端子板に締め付けるネジ部20bとを有する。CT入力部20は、左右方向に並設した1~6極で構成され、3相(R,S,T)の各電路に配置された最大3個の変流器31を接続できる。このCT入力部20は、左方から1,2極がR相、3,4極がS相、5,6極がT相の各検出電流(本発明の第2の信号に相当)が入力される(図6参照)。
 そして、CT入力部201,202の入線口20aは、上基台2cの上面に設けられ、CT入力部201,202のネジ部20bは、上基台2cの前面に設けられる。CT入力部203の入線口20aは、下基台2dの下面に設けられ、CT入力部203のネジ部20bは、下基台2dの前面に設けられる。
 さらに増設ユニットSiは、3つのCT入力部21(211,212,213)を備える。CT入力部211,212は、上基台2cの左右両端間において、左右方向に並んで配置されている。CT入力部213は、下基台2dの右端側に配置されている。なお、CT入力部211,212,213を区別しない場合、CT入力部21と称す。
 CT入力部21は、プラグ挿入口21aを有するコネクタ端子であり、変流器32の信号線32aの端部に設けたプラグ(図示なし)がプラグ挿入口21aに差し込まれる。CT入力部21は、3相(R,S,T)の各電路に配置された最大3個の変流器32を接続するために、左右方向に並設した3個のプラグ挿入口21aを有する。そして、3個のプラグ挿入口21aは、左方から1番目がR相、2番目がS相、3番目がT相の各検出電流(本発明の第2の信号に相当)が入力される(図6参照)。
 そして、CT入力部211,212は、上基台2cの前面に設けられ、CT入力部201,202のネジ部20bの下方において、このネジ部20bに沿って配置される。CT入力部213は、下基台2dの前面に設けられ、CT入力部203のネジ部20bの上方において、このネジ部20bに沿って配置される。
 すなわち、上基台1cの左右両端間には、CT入力部201,211の組、CT入力部202,212の組が配置される。また、下基台2dの右端側には、CT入力部203,213の組が配置される。
 そして、図7に示すように、本体ユニットMのCT入力部101~103、CT入力部111~113、通信端子121、パルス入力端子131、パルス出力端子141は、筐体1内に収納された基板180上に実装されている。また、増設ユニットS1のCT入力部201~203、CT入力部211~213は、筐体2内に収納された基板220上に実装されている。なお、本体ユニットM、増設ユニットSiの他の構成部品も筐体1,2内に収納された基板上に実装してもよい。
 さらに、本体ユニットMの基板180の右端にはコネクタ181を設けており、コネクタ181は、筐体1の右側面に形成した開口を介して外部に露出している(図8参照)。一方、増設ユニットSiの基板220の左端にはコネクタ221を設けており、コネクタ221は、筐体2の左側面から突出している(図1,図9参照)。さらに、増設ユニットSiの基板220の右端にはコネクタ222を設けており、コネクタ222は、筐体2の右側面に形成した開口を介して外部に露出している(図10参照)。
 そして、本体ユニットMのコネクタ181に増設ユニットS1のコネクタ221を接続することによって、本体ユニットMの右側面に増設ユニットS1の左側面が対向して取り付けられる。さらに、増設ユニットS1のコネクタ222に増設ユニットS2のコネクタ221を接続することによって、増設ユニットS1の右側面に増設ユニットS2の左側面が対向して取り付けられる。同様に、増設ユニットS3,S4,...は、前段の増設ユニットS2,S3,...にコネクタ接続する。
 このように、本体ユニットMと、この本体ユニットMに連接される1乃至複数台の増設ユニットSiとは、コネクタ181,221,222を介して電気的に接続する。而して、本体ユニットMから増設ユニットSiへの電源供給経路、本体ユニットMと増設ユニットSiとの間の信号伝送路が確保される。
 また、増設ユニットSiは、左側面の上辺および下辺に係止片231を突設し、右側面の上辺および下辺に、後段の増設ユニットSiの係止片231に係止する係止凹部232を形成している。さらに、本体ユニットMは、増設ユニットSiの係止片231に係止する係止凹部185を右側面に形成している。
 そして、本体ユニットMの係止凹部185には、増設ユニットS1の係止片231が係止し、増設ユニットS1は本体ユニットMに固定される。さらに、増設ユニットS1の係止凹部232には、増設ユニットS2の係止片231が係止し、増設ユニットS2は増設ユニットS1に固定される。同様に、増設ユニットS3,S4,...は、前段の増設ユニットS2,S3,...に固定される。
 また、本体ユニットM、増設ユニットSiは、例えばIEC(International Electrotechnical Commission)規格のレール(図示なし)に取り付けられる(例えば、DINレール)。
 本体ユニットMは、筐体1の後面に溝部186が形成されており、この溝部186にレールを嵌め込む。そして、上下方向に移動可能な固定具187が上方向に弾性付勢されることによって、固定具187が、本体ユニットMをレールに固定する(図8参照)。また、増設ユニットSiは、筐体2の後面に溝部236が形成されており、この溝部236にレールを嵌め込む。そして、上下方向に移動可能な固定具237が上方向に弾性付勢されることによって、固定具237が、増設ユニットSiをレールに固定する(図9、図10参照)。
 そして、本体ユニットMは、電圧入力端子151に入力された各相の電圧を分圧して、各相の電圧を検出する。さらに本体ユニットMは、CT入力部10またはCT入力部11に入力された各相の各検出電流に基づいて、各相の電流を検出する。そして、本体ユニットMは、各相の電圧と各相の電流とを乗じて電力演算を行う。また、本体ユニットMと増設ユニットSiとの間の信号伝送路がコネクタ181,221,222を介して形成されており、本体ユニットMは、各相の電圧の検出結果を、本体ユニットMに連接された増設ユニットSiへ伝送する。
 増設ユニットSiは、本体ユニットMから伝送された各相の電圧の検出結果を受信する。さらに、増設ユニットSiは、CT入力部20またはCT入力部21に入力された各相の各検出電流に基づいて、各相の電流を検出する。そして、増設ユニットSiは、各相の電圧と各相の電流とを乗じて電力演算を行う。増設ユニットSiは、この電力演算の結果を、本体ユニットMへ伝送する。
 そして、本体ユニットMは、本体ユニットMおよび増設ユニットSiの電力演算の結果を管理する。例えば、本体ユニットMは、コネクタ端子171に接続された図示しないディスプレイ装置に対して、本体ユニットMおよび増設ユニットSiの電力演算の結果を送信する。ディスプレイ装置は、受信した各電力演算の結果を表示する。
 電力計測器の測定対象が3相4線式の電力回路である場合、本体ユニットMおよび増設ユニットSiは、3相4線の系統、単相2線の系統のそれぞれの電力を求める電力演算を行う。電力計測器の測定対象は、3相4線式の電力回路以外の、例えば3相3線式、単相3線式、単相2線式の電力回路であってもよい。
 そして、この電力計測器において、CT入力部101,102は、筐体1の上基台1cに並設され、CT入力部201,202は、筐体2の上基台2cに並設される。さらに、CT入力部103は、筐体1の下基台1dに配置され、CT入力部203は、筐体2の下基台2dに配置される。すなわち、本体ユニットMのCT入力部10同士(101,102,103)の相対的な位置関係と、増設ユニットSiのCT入力部20同士(201,202,203)の相対的な位置関係とを同一に構成している。
 さらに、この電力計測器において、CT入力部111,112は、筐体1の上基台1cに並設され、CT入力部211,212は、筐体2の上基台2cに並設される。さらに、CT入力部113は、筐体1の下基台1dに配置され、CT入力部213は、筐体2の下基台2dに配置される。すなわち、本体ユニットMのCT入力部11同士(111,112,113)の相対的な位置関係と、増設ユニットSiのCT入力部21同士(211,212,213)の相対的な位置関係とを同一に構成している。
 また、本体ユニットMに増設ユニットSiを連接した状態で、CT入力部10,11の配置方向と、CT入力部20,21の配置方向とは同一になる。
 つまり、上述の本体ユニットMおよび増設ユニットSiは、そのCT入力部の配列が互いに同一になる。而して、CT入力部10,11を実装した基板180、CT入力部20,21を実装した基板220において、CT入力部周辺の回路設計、パターン設計を略同一にできる。したがって、本体ユニットMと増設ユニットSiとでは、電流の検出特性を略同一特性にすることができ、電力演算の精度を向上させることができる。
 さらに、本体ユニットMに1乃至複数の増設ユニットSiを連接した状態で、CT入力部10,11,20,21に変流器31,32の信号線31a,32aを接続する場合、結線状態を一目で確認できる。したがって、結線ミスを視覚的に確認でき、結線ミスを減らすことができる。
 多回路計測では増設ユニットSiの台数が増えるが、このような場合に、本発明はより効果的に作用する。
 また、本体ユニットMのCT入力部10,11、増設ユニットSiのCT入力部20,21は、左方から順に3相交流回路のR相,S相,T相の各接続部を配置している。すなわち、CT入力部10,11における相毎の接続部の配列方向および配列順序と、CT入力部20,21における相毎の接続部の配列方向および配列順序とは同一である。したがって、CT入力部10,11,20,21に変流器31,32の信号線31a,32aを接続する場合、相毎の結線状態を一目で確認できる。したがって、相毎の結線ミスを視覚的に確認でき、相の結線ミスを減らすことができる。
 また、本体ユニットMのCT入力部10,11は、筐体1の右側に偏倚して配置され、通信端子121、パルス入力端子131、パルス出力端子141は、筐体1の左側に偏倚して配置される。したがって、本体ユニットMのCT入力部10,11は、増設ユニットS1のCT入力部20,21の近くに位置し、本体ユニットMの通信端子121、パルス入力端子131、パルス出力端子141は、増設ユニットS1のCT入力部20,21から離れて配置される。通信端子121、パルス入力端子131、パルス出力端子141は、微少電流の信号を扱うものであり、比較的大きな電流信号を扱うCT入力部10,11,20,21から離れて配置される。
 一般に、通信端子121、パルス入力端子131、パルス出力端子141は、外部から供給される電源と電気的に絶縁する必要があり、CT入力部10,11,20,21とは異なる電源系を用いる。そこで、通信端子121、パルス入力端子131、パルス出力端子141は、CT入力部10,11,20,21と分離することによって、耐ノイズ性を向上させている。すなわち、通信端子121、パルス入力端子131、パルス出力端子141は、CT入力部10,11,20,21から発せられるノイズの影響を受けにくくなる。
 また、本体ユニットMの本体入力部(CT入力部10,11)、増設ユニットSiの増設入力部(CT入力部20,21)に入力される物理量として、電力回路の電流を例示している。しかし、本体入力部および増設入力部に入力される物理量は、電圧、流量等の他の検出値であってもよい。
 また、図11に、本体ユニットMのCT入力部10,11周辺の概略構成を示す。CT入力部10は、変流器31の信号線31aがネジ止め接続される一対の接続端子T1,T2を、相毎に設ける。CT入力部11は、変流器32の信号線32aの端部に設けたプラグPがコネクタ接続される一対の接続端子T3,T4を、相毎に設ける。接続端子T1-T2間には、負担抵抗Raが接続され、接続端子T3-T4間には、負担抵抗Rbが接続される。そして、接続端子T2,T3は短絡されており、負担抵抗Raと負担抵抗Rbとは直列接続される。
 ここで、負担抵抗Raは、比較的大きな電流を検出する変流器31の検出電流を電圧に変換する抵抗素子であり、大電流の計測用に作られた低抵抗且つ高精度の抵抗器である。この負担抵抗Raは、例えば1mΩのシャント抵抗である。一方、負担抵抗Rbは、比較的小さな電流を検出する変流器32の検出電流を電圧に変換する抵抗素子であり、例えば2.0Ωの抵抗器である。
 そして、本体ユニットMの電力演算部K1は、接続端子T1-T4間の電圧が入力され、接続端子T1-T4間の電圧に基づいて各相の電流を検出し、電力演算を行う。ここで、変流器31,32の各変圧比、負担抵抗Ra,Rbの各抵抗値を適宜設定することによって、変流器31,32のいずれを本体ユニットMに接続しているかによって回路切替を行うことなく、同一の電力演算部K1を用いることができる。
 また、増設ユニットSiのCT入力部20,21周辺も、同様の概略構成を備えており、説明は省略する。
 本発明を幾つかの好ましい実施形態について記述したが、この発明の本来の精神および範囲、即ち請求の範囲を逸脱することなく、当業者によって様々な修正および変形が可能である。

Claims (5)

  1.  本体ユニットに1乃至複数の増設ユニットが連接し、前記増設ユニットの台数を増減可能に構成された電力計測器であって、
     前記本体ユニットは、測定対象における物理量の検出結果を表す第1の信号が入力される本体入力部を1乃至複数備え、この物理量の検出結果に基づいて電力演算を行い、
     前記増設ユニットは、測定対象における前記物理量の検出結果を表す第2の信号が入力される増設入力部を1乃至複数備え、この物理量の検出結果に基づいて電力演算を行い、
     1乃至複数の前記本体入力部同士の相対的な位置関係と、1乃至複数の前記増設入力部同士の相対的な位置関係とは同一であり、前記本体ユニットに連接された前記増設ユニットの1乃至複数の前記増設入力部の配置方向は、前記本体入力部の配置方向と同一である
     ことを特徴とする電力計測器。
  2.  前記物理量は、測定対象における電流であることを特徴とする請求項1記載の電力計測器。
  3.  前記本体ユニットは、所定方向の一方側に配置される前記本体入力部と、前記所定方向の他方側に配置される前記本体入力部とを備え、
     前記増設ユニットは、前記所定方向の一方側に配置される前記増設入力部と、前記所定方向の他方側に配置される前記増設入力部とを備え、
     前記本体入力部の各々は、多相交流回路の複数の相における前記物理量の検出結果を表す前記第1の信号が前記相毎に入力され、前記増設入力部の各々は、多相交流回路の複数の相における前記物理量の検出結果を表す前記第2の信号が前記相毎に入力され、前記本体入力部における前記相毎の接続部の配列方向および配列順序と、前記増設入力部における前記相毎の接続部の配列方向および配列順序とは同一である
     ことを特徴とする請求項1または2記載の電力計測器。
  4.  前記本体入力部は、電流の検出結果を表す前記第1の信号が入力され、
     前記本体ユニットは、前記電流の検出結果以外の第3の信号が入力または出力される信号入出力部を備え、
     前記本体入力部を、前記信号入出力部に比べて、前記増設ユニットに近い側に配置する
     ことを特徴とする請求項1乃至3いずれか記載の電力計測器。
  5.  前記第1の信号は、電流の検出結果を電流値で表し、
     前記第3の信号は、パルス信号、または通信フォーマットにしたがった通信信号である
     ことを特徴とする請求項4記載の電力計測器。
PCT/JP2012/056386 2012-03-13 2012-03-13 電力計測器 WO2013136432A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056386 WO2013136432A1 (ja) 2012-03-13 2012-03-13 電力計測器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056386 WO2013136432A1 (ja) 2012-03-13 2012-03-13 電力計測器

Publications (1)

Publication Number Publication Date
WO2013136432A1 true WO2013136432A1 (ja) 2013-09-19

Family

ID=49160402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056386 WO2013136432A1 (ja) 2012-03-13 2012-03-13 電力計測器

Country Status (1)

Country Link
WO (1) WO2013136432A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055404A (ja) * 2003-08-07 2005-03-03 Matsushita Electric Works Ltd 多回路電力量計及び多回路電力量計の増設ユニット
JP2011179831A (ja) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp 電力計測装置、拡張ユニット及び電力計測システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055404A (ja) * 2003-08-07 2005-03-03 Matsushita Electric Works Ltd 多回路電力量計及び多回路電力量計の増設ユニット
JP2011179831A (ja) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp 電力計測装置、拡張ユニット及び電力計測システム

Similar Documents

Publication Publication Date Title
US7330022B2 (en) Power monitoring system
US9384884B2 (en) Current transformer
US11215650B2 (en) Phase aligned branch energy meter
US7161345B2 (en) Power monitoring system that determines phase using a superimposed signal
JP5105591B2 (ja) ケーブル接続チェッカー
JP2013233023A (ja) 分電盤
JP4500130B2 (ja) 接地極付コンセントの配線接続チェック方法及び装置
WO2013136432A1 (ja) 電力計測器
JP6083018B2 (ja) 電流計測部材
US11408939B2 (en) Breaker measurement structure for power distribution unit
AU2018279036B2 (en) Energy metering for a building
JP5871132B2 (ja) 電力計測ユニットおよび分電盤
GB2590752A (en) A busbar adapter
JP6528322B2 (ja) 計測システム、分電盤、及び計測システムの施工方法
JP6649470B2 (ja) 単相多重回路計測装置
JP6216942B2 (ja) プラグインブレーカの接続相表示機構
KR20030065447A (ko) 무 접속형 전자식 전력량계
WO2013121506A1 (ja) 電流検出器
JP6956371B2 (ja) 判定システム、判定方法、及びプログラム
JP4493621B2 (ja) 電流変換装置
JP2017058332A (ja) 電流センサ及び分電盤
JP6570261B2 (ja) 単相3線式分電盤
KR200332001Y1 (ko) 무 접속형 전자식 전력량계
JP6400431B2 (ja) 分電盤計測装置
JP2019161869A (ja) 信号ケーブル、及び電力計測システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP