WO2013135449A1 - Verfahren zur inbetriebnahme einer reibungskupplung - Google Patents

Verfahren zur inbetriebnahme einer reibungskupplung Download PDF

Info

Publication number
WO2013135449A1
WO2013135449A1 PCT/EP2013/052856 EP2013052856W WO2013135449A1 WO 2013135449 A1 WO2013135449 A1 WO 2013135449A1 EP 2013052856 W EP2013052856 W EP 2013052856W WO 2013135449 A1 WO2013135449 A1 WO 2013135449A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
friction clutch
determined
hysteresis
engine torque
Prior art date
Application number
PCT/EP2013/052856
Other languages
English (en)
French (fr)
Inventor
Bachar Ibrahim
Erhard Hodrus
Ekkehard Reibold
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN201380013195.7A priority Critical patent/CN104160170B/zh
Priority to DE112013001395.9T priority patent/DE112013001395A5/de
Publication of WO2013135449A1 publication Critical patent/WO2013135449A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30421Torque of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50236Adaptations of the clutch characteristics, e.g. curve clutch capacity torque - clutch actuator displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50245Calibration or recalibration of the clutch touch-point
    • F16D2500/50248During assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50245Calibration or recalibration of the clutch touch-point
    • F16D2500/50266Way of detection
    • F16D2500/50281Transmitted torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/51Relating safety
    • F16D2500/5116Manufacture, testing, calibrating, i.e. test or calibration of components during or soon after assembly, e.g. at the end of the production line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70252Clutch torque
    • F16D2500/70264Stroke

Definitions

  • the invention relates to a method for starting up a friction clutch in a motor vehicle.
  • German Offenlegungsschrift DE 10 2010 012 756 A1 discloses a method for
  • Determination of clutch parameters during initial commissioning of a friction clutch in a motor vehicle known, wherein in a first phase, the clutch is moved from an open to a closed and back to an open state at a given, constant slip of the clutch and while moving upon reaching predetermined clutch torque thresholds the position the clutch is detected and stored.
  • a method for controlling a friction clutch is known from German published patent application DE 10 201 1 01 1 152 A1, wherein a hysteresis occurring between a desired torque and an actual torque actually transmitted via the friction clutch along an actuating path is compensated. From the German patent application DE10 2006 056 630 A1 a method for the adaptive determination of a clutch torque of a motor vehicle is known, wherein the clutch torque is determined by means of a torque model.
  • the object of the invention is to improve the ride comfort after the commissioning of a friction clutch in a motor vehicle.
  • the object is achieved in a method for starting a friction clutch in a motor vehicle in that after replacement of the friction clutch hysteresis parameters of the replaced friction clutch can be determined.
  • the hysteresis parameters determined in this way are stored in a non-volatile memory for further use, preferably by a control unit.
  • the friction clutch is preferably designed as a double clutch with two partial clutches.
  • the hysteresis parameters of a simple coupling can also be determined if this is automated.
  • Double clutch with an engagement system installed together in a bell housing of the motor vehicle. After installation, the entire system is measured. Then the Coupling parameters determined, as described for example in German Patent Application DE 10 2010 012 756 A1.
  • the replaced clutch is a new clutch or replacement clutch, which has been installed in place of an old clutch in the vehicle.
  • a touch point of the friction clutch in the motor vehicle can be determined with a suitable routine.
  • the remaining coupling parameters can be initialized with default values. In a subsequent longer test drive, the system can be made to improve the other coupling parameters by adaptations. This can take a long time and does not always lead to a satisfactory result.
  • the hysteresis parameters are determined for relatively small moments during startup of the friction clutch, in particular the dual clutch, after a replacement of the clutch, for example in a workshop.
  • a preferred embodiment of the method is characterized in that after replacement of the friction clutch position hysteresis parameters of the replaced friction clutch are determined.
  • the hysteresis parameters are used to represent a coupling model.
  • a clutch model as is known, for example, from German Patent Application DE 10 2010 012 756 A1, a distinction is made between a position hysteresis and a torque hysteresis.
  • the position hysteresis represents a position compensation that is constant over the entire travel of the clutch actuator.
  • the torque hysteresis however, represents a position compensation, which is dependent on the clutch torque.
  • the position hysteresis is learned according to the method of the invention by observing the engine torque at a certain, rather small, moment. This avoids that the initial value of the position hysteresis deviates greatly from the actual value of the friction clutch. As a result, the ride comfort can be significantly improved.
  • a further preferred exemplary embodiment of the method is characterized in that, for the determination of the hysteresis parameters with an open partial clutch of a double clutch, a learned contact point of the exchanged friction clutch is assumed.
  • the touch point is a point at which the friction clutch begins to transmit torque.
  • a coupling position is called at the friction clutch transmits a defined moment of, for example, five Newton meters.
  • An internal combustion engine of the motor vehicle is in operation, and a gear of a transmission of the motor vehicle is inserted.
  • Another preferred exemplary embodiment of the method is characterized in that an engine torque offset is determined when the partial clutch of the double clutch is open.
  • the engine torque is monitored, measured or observed when the friction clutch is open, in particular when the partial clutch of the dual clutch is open.
  • the determination of the engine torque offset is therefore advantageous because the engine torque offset may change.
  • a further preferred exemplary embodiment of the method is characterized in that the following method steps are carried out successively at least once, preferably several times:
  • the opened friction clutch is closed in a ramp shape up to an engagement position above a touch point.
  • the engagement position can be calibrated.
  • the maximum engagement position of the clutch position ramps is preferably adjusted so that the engine is not strangled or reduced too much in its speed or is pressed. Therefore, the difference between a current engine speed signal and a desired engine speed signal is observed.
  • the closed clutch is held briefly in the engaged position and then fully opened ramp-shaped again.
  • the width of the occurring position hysteresis is usually dependent on the indentation depth. This leads to so-called partial loops. It is therefore important to close the friction clutch with each ramp ramp form with the same ramp slope and the same Kupplungsendposition.
  • Another preferred exemplary embodiment of the method is characterized in that the engine torque is monitored, measured or monitored during the closing and opening of the friction clutch.
  • the engine torque is preferably monitored, measured or observed in the form of an engine torque signal of an engine control unit. Since the displayed engine torque signal or engine torque signal has a higher accuracy in a warm engine, the commissioning of the replaced friction clutch should, if possible, be carried out with a warm combustion engine.
  • a further preferred exemplary embodiment of the method is characterized in that a corresponding clutch position during opening and closing of the friction clutch is determined at a defined engine torque threshold. Due to a position hysteresis occurring during operation, the clutch positions differ during opening and closing of the friction clutch.
  • a further preferred embodiment of the method is characterized in that a value for the position hysteresis is determined from a difference of the determined clutch positions when opening and when closing the friction clutch. This value is also called a position hysteresis parameter.
  • the position hysteresis parameters are determined in particular for the small moments during the startup of the replaced friction clutch.
  • a further preferred embodiment of the method is characterized in that the previously described method steps are repeated several times. From the values for the position hysteresis, an average value is advantageously formed. The mean value is stored in a non-volatile memory. By repeating and averaging the ride comfort in the operation of the replaced friction clutch can be significantly improved.
  • a further preferred embodiment of the method is characterized in that a course of the clutch position when opening and closing the friction clutch and a curve of an engine torque signal are smoothed.
  • the smoothing is advantageously carried out with a suitable filter.
  • the filters used to smooth the course of the coupling position and the course of the engine torque signal advantageously have substantially the same properties. This can be achieved that occurring phase delays do not affect the characteristic.
  • the invention also relates to an exchanged friction clutch which has been put into operation according to a method described above.
  • Figure 1 is a Cartesian coordinate diagram in which the time course of a
  • Figure 2 is another Cartesian coordinate diagram in which an observed and filtered engine torque is plotted against a filtered clutch position for a clutch position ramp.
  • the method according to the invention serves to determine hysteresis parameters for a clutch model when a motor vehicle is put into service after an exchange of a friction clutch.
  • the friction clutch is preferably designed as a double clutch with two partial clutches.
  • the double clutch is installed together with a clutch system in a bell housing.
  • the overall system can then be measured, and coupling parameters such as touch point, coefficient of friction, shape factors, hysteresis parameters can be determined and stored in the non-volatile memory of a control unit.
  • the touch point in the vehicle can be determined with a suitable routine.
  • the other parameters must be initialized with default values. In a subsequent longer test drive, the system is then enabled to improve the other parameters by adaptation.
  • the adaptation of the other parameters, in particular the hysteresis parameters, can sometimes take a very long time.
  • the hysteresis parameters of the clutch model are necessary.
  • the hysteresis parameters map the difference of the clutch positions for the same clutch torque when closing and opening the clutch via the associated hysteresis model.
  • the invention provides a method by which the hysteresis parameters for the small moments during commissioning of the dual clutch system can be determined after a replacement of the dual clutch in the workshop.
  • the position hysteresis is learned by observing the engine torque at a certain small moment. This avoids that the initial value of the position hysteresis deviates greatly from the actual value of the new clutch, as could be the case when using the default value.
  • the position hysteresis represents a position compensation, which is constant over the entire travel of a clutch actuator of the double clutch.
  • determining the position hysteresis is assumed by a learned sensing point of a first part clutch, while the second part clutch is open.
  • the internal combustion engine of the motor vehicle is in operation, and a gear is engaged.
  • the part clutch is open, the engine torque is monitored and an engine torque offset determined.
  • FIG. 1 shows a Cartesian coordinate diagram with an x-axis 1 and a y-axis 2.
  • the time is plotted in a suitable unit of time.
  • the coupling position of the replaced clutch is plotted in a suitable path unit or unit of length.
  • the clutch whose timing of the clutch position is shown in Figure 1, is engaged ramped up to the calibratable maximum clutch position 8.
  • the maximum coupling position 8 is therefore also referred to as engagement position.
  • the clutch will So closed to the engagement position 8 above the touch point 7. Thereafter, the clutch is held briefly in this coupling position and then fully opened ramp again.
  • the engine torque is observed, and determined at a fixed engine torque threshold, the associated clutch position. From the difference of the clutch position for closing and the clutch position for opening the clutch, the value for the position hysteresis is determined.
  • FIG. 2 shows a Cartesian coordinate diagram with an x-axis 21 and a y-axis 22.
  • the coupling position is plotted in a suitable path unit or unit of length.
  • the engine torque is applied in a suitable torque unit, such as Newtonmeter.
  • the engine torque is detected in the form of a motor torque signal of a control unit.
  • a dotted line 24 which is parallel to the x-axis 21, the engine torque when the clutch is engaged, that is at maximum clutch position shown.
  • the maximum coupling position is represented by a dotted line 25 which is parallel to the y-axis 22.
  • a dotted line 26 which is parallel to the x-axis 21, the touch point of the clutch is shown.
  • a double arrow 28 a determined position hysteresis is indicated.
  • a determined positional hysteresis can not be taken into account in the averaging. This may be the case, for example, if the engine torque offsets are too different before and after the clutch position ramp is executed. This This may also be the case if the engine speed is too strongly depressed or reduced during the clutch position ramp. If necessary, a filtered signal can also be considered here so that isolated disturbances do not lead to a termination. This may also be the case if too large fluctuations of the engine speed occur.
  • a clutch position ramp is aborted because of one of the previously mentioned points, an additional clutch position ramp can be added at the end.
  • the maximum engagement position for determining the position hysteresis can also be reduced, in particular if too many abortions occur.

Abstract

Die Erfindung betrifft ein Verfahren zur Inbetriebnahme einer Reibungskupplung in einem Kraftfahrzeug. Die Erfindung zeichnet sich dadurch aus, dass nach einem Austausch der Reibungskupplung Hystereseparameter der ausgetauschten Reibungskupplung bestimmt werden.

Description

Verfahren zur Inbetriebnahme einer Reibungskupplung
Die Erfindung betrifft ein Verfahren zur Inbetriebnahme einer Reibungskupplung in einem Kraftfahrzeug.
Aus der deutschen Offenlegungsschrift DE 10 2010 012 756 A1 ist ein Verfahren zur
Ermittlung von Kupplungsparametern bei Erstinbetriebnahme einer Reibungskupplung in einem Kraftfahrzeug bekannt, wobei in einer ersten Phase die Kupplung von einem offenen in einen geschlossenen und wieder in einen offenen Zustand bei vorgegebenem, konstantem Schlupf der Kupplung bewegt wird und während des Bewegens bei Erreichen vorgegebener Kupplungsmomentschwellenwerte die Position der Kupplung ermittelt und gespeichert wird. Aus der deutschen Offenlegungsschrift DE 10 201 1 01 1 152 A1 ist ein Verfahren zur Steuerung einer Reibungskupplung bekannt, wobei eine zwischen einem Sollmoment und einem über die Reibungskupplung tatsächlich übertragenen Istmoment entlang eines Betätigungswegs auftretende Hysterese kompensiert wird. Aus der deutschen Offenlegungsschrift DE10 2006 056 630 A1 ist ein Verfahren zur adaptiven Ermittlung eines Kupplungsmoments eines Kraftfahrzeugs bekannt, wobei das Kupplungsmoment mittels eines Drehmomentenmodells ermittelt wird.
Aufgabe der Erfindung ist es, den Fahrkomfort nach der Inbetriebnahme einer Reibungskupplung in einem Kraftfahrzeug zu verbessern.
Die Aufgabe ist bei einem Verfahren zur Inbetriebnahme einer Reibungskupplung in einem Kraftfahrzeug dadurch gelöst, dass nach einem Austausch der Reibungskupplung Hystereseparameter der ausgetauschten Reibungskupplung bestimmt werden. Die so bestimmten Hystereseparameter werden zur weiteren Verwendung, vorzugsweise von einem Steuergerät, in einem nicht flüchtigen Speicher hinterlegt. Die Reibungskupplung ist vorzugsweise als Doppelkupplung mit zwei Teilkupplungen ausgeführt. Es können aber auch die Hystereseparameter einer einfachen Kupplung bestimmt werden, wenn diese automatisiert ist.
Bei der Produktion von Neufahrzeugen wird die Reibungskupplung, insbesondere die
Doppelkupplung, mit einem Einrücksystem zusammen in eine Getriebeglocke des Kraftfahrzeugs eingebaut. Nach dem Einbau wird das Gesamtsystem vermessen. Dann werden die Kupplungsparameter bestimmt, wie es zum Beispiel in der deutschen Offenlegungsschrift DE 10 2010 012 756 A1 beschrieben ist. Als ausgetauschte Kupplung wird eine neue Kupplung oder Austauschkupplung bezeichnet, die an Stelle einer alten Kupplung in das Fahrzeug eingebaut wurde. Bei einem Austausch der Kupplung in einer Werkstatt ist eine Vermessung des Gesamtsystems beziehungsweise Bestimmung der Kupplungsparameter, wie bei dem Gesamtsystem, nicht möglich. Gegebenenfalls kann ein Tastpunkt der Reibungskupplung im Kraftfahrzeug mit einer geeigneten Routine ermittelt werden. Die übrigen Kupplungsparameter können mit Standardwerten initialisiert werden. Bei einer anschließenden längeren Testfahrt kann dem System ermöglicht werden, die übrigen Kupplungsparameter durch Adaptionen zu verbessern. Das kann sehr lange dauern und führt nicht immer zu einem zufrieden stellenden Ergebnis.
Gemäß einem wesentlichen Aspekt der Erfindung werden die Hystereseparameter für relativ kleine Momente während der Inbetriebnahme der Reibungskupplung, insbesondere der Doppelkupplung, nach einem Austausch der Kupplung, zum Beispiel in einer Werkstatt, bestimmt.
Ein bevorzugtes Ausführungsbeispiel des Verfahrens ist dadurch gekennzeichnet, dass nach einem Austausch der Reibungskupplung Positionshystereseparameter der ausgetauschten Reibungskupplung bestimmt werden. Die Hystereseparameter dienen zur Darstellung eines Kupplungsmodells. Bei einem Kupplungsmodell, wie es zum Beispiel aus der deutschen Offenlegungsschrift DE 10 2010 012 756 A1 bekannt ist, wird zwischen einer Positionshysterese und einer Momentenhysterese unterschieden. Die Positionshysterese stellt eine Positionskompensation dar, die konstant über den gesamten Verfahrweg des Kupplungsaktors ist. Die Momentenhysterese stellt dagegen eine Positionskompensation dar, die abhängig vom Kupplungsmoment ist. Die Positionshysterese wird gemäß dem erfindungsgemäßen Verfahren durch Beobachtung des Motormoments bei einem bestimmten, eher kleinen, Moment gelernt. Dadurch wird vermieden, dass der initiale Wert der Positionshysterese stark vom tatsächlichen Wert der Reibungskupplung abweicht. Dadurch kann der Fahrkomfort erheblich verbessert werden.
Ein weiteres bevorzugtes Ausführungsbeispiel des Verfahrens ist dadurch gekennzeichnet, dass zur Bestimmung der Hystereseparameter bei geöffneter Teilkupplung einer Doppelkupplung von einem gelernten Tastpunkt der ausgetauschten Reibungskupplung ausgegangen wird. Als Tastpunkt wird ein Punkt bezeichnet, bei dem die Reibungskupplung beginnt, Moment zu übertragen. Als Tastpunkt wird zum Beispiel eine Kupplungsposition bezeichnet, bei der die Reibungskupplung ein definiertes Moment von zum Beispiel fünf Newtonmeter überträgt. Ein Verbrennungsmotor des Kraftfahrzeugs ist dabei in Betrieb, und ein Gang eines Getriebes des Kraftfahrzeugs ist eingelegt.
Ein weiteres bevorzugtes Ausführungsbeispiel des Verfahrens ist dadurch gekennzeichnet, dass bei geöffneter Teilkupplung der Doppelkupplung ein Motormomentenoffset bestimmt wird. Das Motormoment wird bei geöffneter Reibungskupplung, insbesondere bei geöffneter Teilkupplung der Doppelkupplung, überwacht, gemessen beziehungsweise beobachtet. Die Bestimmung des Motormomentenoffsets ist deshalb vorteilhaft, da sich das Motormomentenoffset ändern kann.
Ein weiteres bevorzugtes Ausführungsbeispiel des Verfahrens ist dadurch gekennzeichnet, dass folgende Verfahrensschritte mindestens einmal, vorzugsweise mehrmals, nacheinander durchgeführt werden: Die geöffnete Reibungskupplung wird rampenformig bis zu einer Einrückposition über einem Tastpunkt geschlossen. Die Einrückposition ist kalibrierbar. Die maximale Einrückposition der Kupplungspositionsrampen wird vorzugsweise so abgestimmt, dass der Verbrennungsmotor nicht abgewürgt beziehungsweise zu stark in seiner Drehzahl reduziert beziehungsweise gedrückt wird. Daher wird die Differenz zwischen einem aktuellen Motordrehzahlsignal und einem Wunschmotordrehzahlsignal beobachtet. Die geschlossene Kupplung wird kurz in der Einrückposition gehalten und danach wieder rampenformig komplette geöffnet. Die Breite der auftretenden Positionshysterese ist in der Regel von der Einrücktiefe abhängig. Das führt zu so genannten Teilschleifen. Es ist deshalb wichtig, die Reibungskupplung bei jedem Schließen rampenformig mit gleicher Rampensteigung und gleicher Kupplungsendposition zu schließen.
Ein weiteres bevorzugtes Ausführungsbeispiel des Verfahrens ist dadurch gekennzeichnet, dass das Motormoment während des Schließens und des Öffnens der Reibungskupplung ü- berwacht, gemessen beziehungsweise beobachtet wird. Das Motormoment wird vorzugsweise in Form eines Motormomentsignals eines Motorsteuergeräts überwacht, gemessen beziehungsweise beobachtet. Da das angezeigte Motormomentsignal oder Motormomentensignal bei einem warmen Motor eine höhere Genauigkeit aufweist, sollte die Inbetriebnahme der ausgetauschten Reibungskupplung wenn möglich mit einem warmen Verbrennungsmotor durchgeführt werden. Ein weiteres bevorzugtes Ausführungsbeispiel des Verfahrens ist dadurch gekennzeichnet, dass zu einer definierten Motormomentenschwelle eine zugehörige Kupplungsposition beim Öffnen und beim Schließen der Reibungskupplung ermittelt wird. Aufgrund einer im Betrieb auftretenden Positionshysterese differieren die Kupplungspositionen beim Öffnen und beim Schließen der Reibungskupplung.
Ein weiteres bevorzugtes Ausführungsbeispiel des Verfahrens ist dadurch gekennzeichnet, dass aus einer Differenz der ermittelten Kupplungspositionen beim Öffnen und beim Schließen der Reibungskupplung ein Wert für die Positionshysterese bestimmt wird. Dieser Wert wird auch als Positionshystereseparameter bezeichnet. Die Positionshystereseparameter werden insbesondere für die kleinen Momente während der Inbetriebnahme der ausgetauschten Reibungskupplung bestimmt.
Ein weiteres bevorzugtes Ausführungsbeispiel des Verfahrens ist dadurch gekennzeichnet, dass die vorab beschriebenen Verfahrensschritte mehrfach wiederholt werden. Aus den Werten für die Positionshysterese wird vorteilhaft ein Mittelwert gebildet. Der Mittelwert wird in einem nicht flüchtigen Speicher hinterlegt. Durch die Wiederholung und die Mittelwertbildung kann der Fahrkomfort im Betrieb der ausgetauschten Reibungskupplung deutlich verbessert werden.
Ein weiteres bevorzugtes Ausführungsbeispiel des Verfahrens ist dadurch gekennzeichnet, dass ein Verlauf der Kupplungsposition beim Öffnen und beim Schließen der Reibungskupplung und ein Verlauf eines Motormomentsignals geglättet werden. Das Glätten erfolgt vorteilhaft mit einem geeigneten Filter. Die zum Glätten des Verlaufs der Kupplungsposition und des Verlaufs des Motormomentsignals verwendeten Filter haben vorteilhaft im Wesentlichen gleiche Eigenschaften. Dadurch kann erreicht werden, dass sich auftretende Phasenverzögerungen nicht in der Kennlinie auswirken.
Die Erfindung betrifft gegebenenfalls auch eine ausgetauschte Reibungskupplung, die gemäß einem vorab beschriebenen Verfahren in Betrieb genommen wurde.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung verschiedene Ausführungsbeispiele im Einzelnen beschrieben sind. Es zeigen: Figur 1 ein kartesisches Koordinatendiagramm, in welchem der zeitliche Verlauf einer
Kupplungsposition beim Ermitteln einer Positionshysterese dargestellt ist, und
Figur 2 ein weiteres kartesisches Koordinatendiagramm, in welchem ein beobachtetes und gefiltertes Motormoment über einer gefilterten Kupplungsposition für eine Kupplungspositionsrampe aufgetragen ist.
Das erfindungsgemäße Verfahren dient zur Ermittlung von Hystereseparametern für ein Kupplungsmodell bei der Inbetriebnahme eines Kraftfahrzeugs nach einem Austausch einer Reibungskupplung. Die Reibungskupplung ist vorzugsweise als Doppelkupplung mit zwei Teilkupplungen ausgeführt.
Bei der Produktion von Neufahrzeugen wird die Doppelkupplung mit einem Einrücksystem zusammen in eine Getriebeglocke eingebaut. Das Gesamtsystem kann dann vermessen werden, und es können Kupplungsparameter, wie Tastpunkt, Reibwert, Formfaktoren, Hystereseparameter, bestimmt und im nicht flüchtigen Speicher eines Steuergeräts abgespeichert werden.
Bei einem Tausch der Kupplung in der Werkstatt ist eine derartige Vermessung des
Gesamtsystems nicht möglich. Gegebenenfalls kann der Tastpunkt im Fahrzeug mit einer geeigneten Routine ermittelt werden. Die anderen Parameter müssen mit Standardwerten initialisiert werden. Bei einer anschließenden längeren Testfahrt wird dem System dann ermöglicht, die anderen Parameter durch Adaption zu verbessern.
Die Adaption der anderen Parameter, insbesondere der Hystereseparameter, kann mitunter sehr lange dauern. Für eine komfortable Steuerung eines Doppelkupplungsgetriebes im Antriebsstrang des Kraftfahrzeugs sind die Hystereseparameter des Kupplungsmodells aber nötig. Die Hystereseparameter bilden über das zugehörige Hysteresemodell die Differenz der Kupplungspositionen für das gleiche Kupplungsmoment beim Schließen und Öffnen der Kupplung ab. Diese Hystereseparameter werden bei der Testfahrt durch Adaptionen angepasst.
Im Rahmen der vorliegenden Erfindung wurde herausgefunden, dass bisher angenommene Standardwerte für die Hystereseparameter so stark von denen einer getauschten Reibungskupplung abweichen können, dass eine ausreichende Adaption während der Testfahrt nicht sichergestellt werden kann. Bei der Ansteuerung der einzelnen Kupplungen mit einer ungenauen Hysteresekompensation kann es, insbesondere in einem unteren Momentenbereich, das heißt bei kleinen Momenten, passieren, dass ein falsches Kupplungsmoment eingestellt beziehungsweise gefordert wird. Das kann, insbesondere beim Schalten und bei Kriechvorgängen, zu starken Einbußen im Fahrkomfort führen. Dieser Effekt kann bei jedem einzelnen Doppelkupplungssystem durch die Serienstreuung in unterschiedlich starker Ausprägung auftreten.
Durch die Erfindung wird ein Verfahren geschaffen, mit dem die Hystereseparameter für die kleinen Momente während der Inbetriebnahme des Doppelkupplungssystems nach einem Tausch der Doppelkupplung in der Werkstatt bestimmt werden können. Dabei wird die Positionshysterese durch Beobachtung des Motormoments bei einem bestimmten kleinen Moment gelernt. Dadurch wird vermieden, dass der initiale Wert der Positionshysterese stark vom tatsächlichen Wert der neuen Kupplung abweicht, wie das bei der Verwendung des Standardwertes der Fall sein könnte. Die Positionshysterese stellt eine Positionskompensation dar, die konstant über den gesamten Verfahrweg eines Kupplungsaktors der Doppelkupplung ist.
Bei der Bestimmung der Positionshysterese wird von einem gelernten Tastpunkt einer ersten Teilkupplung ausgegangen, während die zweite Teilkupplung geöffnet ist. Der Verbrennungsmotor des Kraftfahrzeugs ist in Betrieb, und ein Gang ist eingelegt. Bei geöffneter Teilkupplung wird das Motormoment beobachtet und ein Motormomentenoffset daraus bestimmt.
In Figur 1 ist ein kartesisches Koordinatendiagramm mit einer x-Achse 1 und einer y-Achse 2 dargestellt. Auf der x-Achse 1 ist die Zeit in einer geeigneten Zeiteinheit aufgetragen. Auf der y-Achse 2 ist die Kupplungsposition der ausgetauschten Kupplung in einer geeigneten Wegeinheit oder Längeneinheit aufgetragen.
Durch einen Doppelpfeil 4 ist der Zeitraum einer ersten Kupplungspositionsrampe bezeichnet. Durch einen gestrichelten Pfeil 5 ist der Zeitraum einer Wiederholungsrampe bezeichnet. Durch eine gestrichelte Linie 7, die parallel zur x-Achse 1 verläuft, ist der Tastpunkt der Kupplung dargestellt. Durch eine Linie 8, die ebenfalls parallel zur x-Achse 1 verläuft, ist eine maximale Kupplungsposition der Kupplung angedeutet.
Die Kupplung, deren zeitlicher Verlauf der Kupplungsposition in Figur 1 dargestellt ist, wird rampenförmig bis zu der kalibrierbaren maximalen Kupplungsposition 8 eingerückt. Die maximale Kupplungsposition 8 wird daher auch als Einrückposition bezeichnet. Die Kupplung wird also bis zur Einrückposition 8 über dem Tastpunkt 7 geschlossen. Danach wird die Kupplung kurz in dieser Kupplungsposition gehalten und danach wieder rampenförmig komplett geöffnet.
Während des Schließens und Öffnens der Kupplung wird das Motormoment beobachtet, und zu einer fest definierten Motormomentenschwelle die zugehörige Kupplungsposition ermittelt. Aus der Differenz der Kupplungsposition für das Schließen und der Kupplungsposition für das Öffnen der Kupplung wird der Wert für die Positionshysterese bestimmt.
Während des rampenförmigen Schließens und Öffnens der Kupplung werden der Verlauf der Kupplungsposition und das gesendete Motormomentsignal mit einem geeigneten Filter geglättet. Beide Filter müssen hierzu gleiche Eigenschaften aufweisen, damit sich Phasenverzögerungen nicht in der Kennlinie auswirken. Der Vorgang kann, wie durch die Wiederholungsrampe 5 angedeutet ist, mehrfach, zum Beispiel fünfmal, wiederholt werden.
In Figur 2 ist ein kartesisches Koordinatendiagramm mit einer x-Achse 21 und einer y-Achse 22 dargestellt. Auf der x-Achse 21 ist die Kupplungsposition in einer geeigneten Wegeinheit oder Längeneinheit aufgetragen. Auf der y-Achse 22 ist das Motormoment in einer geeigneten Momenteneinheit, wie Newtonmeter, aufgetragen. Das Motormoment wird in Form eines Motormomentsignals eines Steuergeräts erfasst.
Durch eine punktierte Linie 24, die parallel zur x-Achse 21 verläuft, ist das Motormoment bei eingerückter Kupplung, das heißt bei maximaler Kupplungsposition, dargestellt. Die maximale Kupplungsposition ist durch eine punktierte Linie 25 dargestellt, die parallel zur y-Achse 22 verläuft. Durch eine punktierte Linie 26, die parallel zur x-Achse 21 verläuft, ist der Tastpunkt der Kupplung dargestellt. Durch einen Doppelpfeil 28 ist eine ermittelte Positionshysterese angedeutet.
Aus den Positionshysteresen 28, die bei mehrfacher Wiederholung der Rampen ermittelt werden, wird ein Mittelwert gebildet. Dieser Mittelwert wird als Positionshysterese für die weitere Verwendung der ausgetauschten Kupplung abgespeichert.
In bestimmten Fällen kann eine ermittelte Positionshysterese in der Mittelwertbildung nicht berücksichtigt werden. Dies kann zum Beispiel der Fall sein, wenn die Motormomentenoffsets vor und nach der Durchführung der Kupplungspositionsrampe zu unterschiedlich sind. Dies kann auch der Fall sein, wenn die Motordrehzahl während der Kupplungspositionsrampe zu stark gedrückt beziehungsweise reduziert wird. Gegebenenfalls kann auch hier ein gefiltertes Signal betrachtet werden, damit vereinzelte Störungen zu keinem Abbruch führen. Dies kann auch der Fall sein, wenn zu große Schwankungen der Motordrehzahl auftreten.
Sollte eine Kupplungspositionsrampe wegen einem der vorab genannten Punkte abgebrochen werden, kann am Ende nochmals eine zusätzliche Kupplungspositionsrampe angehängt werden. Alternativ kann auch die maximale Einrückposition für das Ermitteln der Positionshysterese verringert werden, insbesondere wenn zu viele Abbrüche auftreten.
Bezugszeichenliste x-Achse
y-Achse
Doppelpfeil
gestrichelter Pfeil
gestrichelte Linie
gestrichelte Linie
x-Achse
y-Achse
punktierte Linie
punktierte Linie
punktierte Linie
Doppelpfeil

Claims

Patentansprüche
1 . Verfahren zur Inbetriebnahme einer Reibungskupplung in einem Kraftfahrzeug, dadurch gekennzeichnet, dass nach einem Austausch der Reibungskupplung Hystereseparameter der ausgetauschten Reibungskupplung bestimmt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass nach einem Austausch der Reibungskupplung Positionshystereseparameter (28) der ausgetauschten Reibungskupplung bestimmt werden.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Bestimmung der Hystereseparameter bei geöffneter Teilkupplung einer Doppelkupplung von einem gelernten Tastpunkt (7;26) der ausgetauschten Reibungskupplung ausgegangen wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei geöffneter Teilkupplung der Doppelkupplung ein Motormomentenoffset bestimmt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass folgende Verfahrensschritte mindesten einmal, vorzugsweise mehrmals, nacheinander durchgeführt werden:
- a) die geöffnete Reibungskupplung wird rampenförmig bis zu einer Einrückposition über einem Tastpunkt geschlossen;
- b) die geschlossene Kupplung wird kurz in der Einrückposition gehalten;
- c) die geschlossene Kupplung wird rampenförmig wieder komplett geöffnet.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Motormoment während des Schließens und des Öffnens der Reibungskupplung überwacht, gemessen beziehungsweise beobachtet wird.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass zu einer definierten Motormomentenschwelle eine zugehörige Kupplungsposition beim Öffnen und beim Schließen der Reibungskupplung ermittelt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass aus einer Differenz der ermittelten Kupplungspositionen beim Öffnen und beim Schließen der Reibungskupplung ein Wert für die Positionshysterese bestimmt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Verfahrensschritte a, b und c mehrfach wiederholt werden, und aus den Werten für die Positionshysterese ein Mittelwert gebildet wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Verlauf der Kupplungsposition beim Öffnen und beim Schließen der Reibungskupplung und ein Verlauf eines Motormomentsignals geglättet werden.
PCT/EP2013/052856 2012-03-12 2013-02-13 Verfahren zur inbetriebnahme einer reibungskupplung WO2013135449A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380013195.7A CN104160170B (zh) 2012-03-12 2013-02-13 用于启动摩擦离合器的方法
DE112013001395.9T DE112013001395A5 (de) 2012-03-12 2013-02-13 Verfahren zur Inbetriebnahme einer Reibungskupplung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012203811.6 2012-03-12
DE102012203811 2012-03-12

Publications (1)

Publication Number Publication Date
WO2013135449A1 true WO2013135449A1 (de) 2013-09-19

Family

ID=47749792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/052856 WO2013135449A1 (de) 2012-03-12 2013-02-13 Verfahren zur inbetriebnahme einer reibungskupplung

Country Status (3)

Country Link
CN (1) CN104160170B (de)
DE (2) DE112013001395A5 (de)
WO (1) WO2013135449A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014006208B4 (de) 2014-01-20 2024-03-21 Schaeffler Technologies AG & Co. KG Verfahren zur Steuerung einer Reibungskupplung
DE102017111966A1 (de) * 2017-05-31 2018-12-06 Schaeffler Technologies AG & Co. KG Verfahren zur Berechnung einer Sollposition eines Kupplungsaktors bei einer Steuerung einer Kupplung
CN114151468B (zh) * 2021-12-01 2024-03-26 中国第一汽车股份有限公司 离合器迟滞模型构建方法、控制方法、装置、设备、介质
US11898527B2 (en) * 2022-04-13 2024-02-13 Ford Global Technologies, Llc System and method for controlling engine starting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1430237A1 (de) * 2001-09-18 2004-06-23 Magna Steyr Powertrain AG & CO KG Vorrichtung und verfahren zur einstellung des von einer reibungskupplung übertagenen drehmomentes
DE102006056630A1 (de) 2006-11-30 2008-06-05 Bayerische Motoren Werke Ag Verfahren zur adaptiven Ermittlung eines Kupplungsmoments eines Kraftfahrzeugs
EP2009313A2 (de) * 2007-06-25 2008-12-31 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren zur Adaption einer Kupplungskennlinie bei vorhandener Kupplungshysterese
DE102010012756A1 (de) 2009-04-17 2010-10-21 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsparameter
DE102011011152A1 (de) 2010-03-04 2011-09-08 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Steuerung einer Reibungskupplung und Vorrichtung hierzu

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011103474B4 (de) * 2010-06-24 2023-04-20 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung von Kupplungsparametern, insbesondere von Kupplungshystereseparametern, bei der Erstinbetriebnahme einer Kupplung auf einem Getriebeprüfstand

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1430237A1 (de) * 2001-09-18 2004-06-23 Magna Steyr Powertrain AG & CO KG Vorrichtung und verfahren zur einstellung des von einer reibungskupplung übertagenen drehmomentes
DE102006056630A1 (de) 2006-11-30 2008-06-05 Bayerische Motoren Werke Ag Verfahren zur adaptiven Ermittlung eines Kupplungsmoments eines Kraftfahrzeugs
EP2009313A2 (de) * 2007-06-25 2008-12-31 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren zur Adaption einer Kupplungskennlinie bei vorhandener Kupplungshysterese
DE102010012756A1 (de) 2009-04-17 2010-10-21 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsparameter
DE102011011152A1 (de) 2010-03-04 2011-09-08 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Steuerung einer Reibungskupplung und Vorrichtung hierzu

Also Published As

Publication number Publication date
DE102013202318A1 (de) 2013-09-12
CN104160170A (zh) 2014-11-19
DE112013001395A5 (de) 2014-11-27
CN104160170B (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
DE112012001711B4 (de) Verfahren zur Inbetriebnahme einer Kupplung
DE112012001718B4 (de) Verfahren zur Adaption von Parametern einer Kupplung
EP2542796B1 (de) Verfahren zur steuerung einer reibungskupplung und vorrichtung hierzu
WO2014067516A1 (de) Verfahren zur betätigung einer reibungskupplung
DE112013003917B4 (de) Verfahren zur Ermittlung eines Tastpunkts einer Reibungskupplungseinrichtung
WO2016008463A1 (de) Verfahren zur bestimmung einer tastpunktänderung und zur adaption eines reibwertes einer hybridtrennkupplung eines hybridfahrzeuges
EP3589857B1 (de) Verfahren und vorrichtung zum betrieb eines antriebsstranges
WO2013075687A2 (de) Hydraulisches betätigungssystem
WO2012069034A1 (de) Verfahren zur ermittlung von kupplungsreibwerten sowie verfahren zur ermittlung von kupplungstastpunkten
WO2013152931A1 (de) Verfahren zur ermittlung einer vorspannkraftkennlinie einer kupplung
WO2014012541A1 (de) Verfahren zur ermittlung von parametern einer reibungskupplungseinrichtung
WO2013135449A1 (de) Verfahren zur inbetriebnahme einer reibungskupplung
DE102007025501A1 (de) Verfahren und Vorrichtung zur Steuerung einer Kupplung
DE112011103807B4 (de) Verfahren zur Ermittlung des Übersprechverhaltens eines Doppelkupplungssystems
DE102013201215A1 (de) Verfahren zur Ermittlung von Parametern einer Reibungskupplungseinrichtung
DE102012210201A1 (de) Verfahren zur Steuerung einer Doppelkupplung ein einem Doppelkupplungsgetriebe
EP1910699A1 (de) Verfahren und steuerungseinrichtung zum einstellen einer drehzahl einer welle eines zahnräderwechselgetriebes
DE102019204402A1 (de) Bestimmung eines Steuerstroms für ein Stetigventil
DE102007013495A1 (de) Verfahren zur Steuerung einer automatisierten Reibungskupplung eines Doppelkupplungsgetriebes
WO2011076177A1 (de) Verfahren zum ermitteln des übersprechverhaltens eines doppelkupplungssystems
DE102015218691A1 (de) Verfahren zur Bestimmung eines Reibwertes einer Kupplung eines Doppelkupplungsgetriebesystems
DE102015218884A1 (de) Verfahren zum Bestimmen mindestens einer Kenngröße einer Trennkupplung
DE102011010880A1 (de) Verfahren zur Steuerung einer automatisierten Reibungskupplung
WO2013124129A1 (de) Verfahren zur ermittlung und/oder kompensation eines übersprechverhaltens eines doppelkupplungsgetriebes
DE102008000770A1 (de) Verfahren und Vorrichtung zum Schließen einer Kupplung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13705956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130013959

Country of ref document: DE

Ref document number: 112013001395

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112013001395

Country of ref document: DE

Effective date: 20141127

122 Ep: pct application non-entry in european phase

Ref document number: 13705956

Country of ref document: EP

Kind code of ref document: A1