WO2016008463A1 - Verfahren zur bestimmung einer tastpunktänderung und zur adaption eines reibwertes einer hybridtrennkupplung eines hybridfahrzeuges - Google Patents

Verfahren zur bestimmung einer tastpunktänderung und zur adaption eines reibwertes einer hybridtrennkupplung eines hybridfahrzeuges Download PDF

Info

Publication number
WO2016008463A1
WO2016008463A1 PCT/DE2014/200619 DE2014200619W WO2016008463A1 WO 2016008463 A1 WO2016008463 A1 WO 2016008463A1 DE 2014200619 W DE2014200619 W DE 2014200619W WO 2016008463 A1 WO2016008463 A1 WO 2016008463A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid
disconnect clutch
combustion engine
internal combustion
clutch
Prior art date
Application number
PCT/DE2014/200619
Other languages
English (en)
French (fr)
Inventor
Georg Göppert
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN201480080613.9A priority Critical patent/CN106662176B/zh
Priority to DE112014006821.7T priority patent/DE112014006821A5/de
Publication of WO2016008463A1 publication Critical patent/WO2016008463A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/106Engine
    • F16D2500/1066Hybrid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30406Clutch slip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3065Torque of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50236Adaptations of the clutch characteristics, e.g. curve clutch capacity torque - clutch actuator displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50245Calibration or recalibration of the clutch touch-point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50245Calibration or recalibration of the clutch touch-point
    • F16D2500/50251During operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • F16D2500/70414Quick displacement to clutch touch point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70452Engine parameters
    • F16D2500/70458Engine torque

Definitions

  • the invention relates to a method for determining a touch point change of a hybrid disconnect clutch of a hybrid vehicle according to the preamble of claim 1 and a method for adapting a friction value of a disconnect clutch control system of a hybrid disconnect clutch of a hybrid vehicle according to the preamble of claim 4.
  • DE 10 2010 024 941 A1 discloses a method for controlling a dual-clutch transmission with two partial drive trains, each of which can be coupled by means of a clutch to an internal combustion engine.
  • a touch point of the clutch is determined independently of the engine torque. This touch point is determined during commissioning of the vehicle and then adapted during operation of the vehicle.
  • drivability from two independent sources of energy such as fuel from an internal combustion engine and electrical energy from a traction battery of an electric motor, may be overcome by conversion to mechanical energy.
  • DE 10 2008 030 473 A1 discloses a method for determining the touch point of an automated hybrid disconnect clutch in a hybrid drive train.
  • the touch point of the hybrid disconnect clutch which is arranged between an internal combustion engine and an electric traction drive, is determined with the internal combustion engine stopped by slowly closing the hybrid disconnect clutch and evaluating the influence of the closing hybrid disconnect clutch on an electric machine of the electric traction drive rotating at a predetermined speed.
  • the torque transmitted by the hybrid disconnect clutch directly depends on the position of an electrostatic clutch actuator actuating the hybrid disconnect clutch.
  • To estimate the transmitted clutch torque on the one hand the position of the clutch actuator relative to the possible travel must be known, on the other hand, a clutch characteristic (clutch torque depending on the actuator position) must be referenced on the actuator path.
  • the touch point represents a support point of the clutch characteristic. The contact point must be determined once for operation and adjusted during operation to the changed clutch behavior, which is not constant due to various factors such as wear, adjustment of the clutch and temperature and aging processes ,
  • WO 2008/064633 A1 discloses a method and a device for adapting a hybrid disconnect clutch in a vehicle hybrid powertrain, in which the internal combustion engine is shut down and the hybrid disconnect clutch is opened after the internal combustion engine has been switched off. Subsequently, a time gradient of the speed of the internal combustion engine is detected when the internal combustion engine and open hybrid disconnect clutch. After a partial closure of the hybrid disconnect clutch, as soon as the rotational speed of the internal combustion engine has fallen below a predetermined value, the temporal gradient of the rotational speed of the internal combustion engine is determined in the partially closed clutch. Subsequently, the characteristic curve of the hybrid disconnect clutch is adapted on the basis of the determined, transmitted from the partially closed hybrid disconnect clutch torque.
  • the invention is based on the object, a method for determining a Tastddling selectedung or for adapting a coefficient of friction of a hybrid disconnect clutch Specify hybrid vehicle in which a simple Tastrios- and Reibwert- plausibilmaschine without much adaptation effort is necessary.
  • the object is achieved in that the hybrid disconnect clutch is moved during operation of the internal combustion engine at a constant torque of the internal combustion engine until a predetermined torque is transmitted from the hybrid disconnect clutch and the touch point is corrected in dependence on the speed gradient of the internal combustion engine.
  • the touch point is reduced when the speed gradient of the engine exceeds a predetermined slope and increases when the speed gradient of the engine falls below the predetermined slope.
  • a development of the invention relates to a method for adapting a coefficient of friction of a hybrid disconnect clutch control of a hybrid disconnect clutch of a hybrid vehicle, wherein the hybrid disconnect clutch disconnects or connects an internal combustion engine and an electric drive and that by internal combustion engine and / or
  • the adaptation of the coefficient of friction is started when the clutch torque exceeds a predetermined threshold value. This ensures that offset errors have only a minor influence on the friction coefficient adaptation.
  • the adaptation of the coefficient of friction is started when an engine torque of the internal combustion engine exceeds a predetermined engine torque threshold. This ensures that a reproducible adaptation of the coefficient of friction is ensured at all times.
  • the internal combustion engine has an approximately constant speed.
  • this approximately constant speed eliminates an additional interface to the motor vehicle, so that the adaptation of the coefficient of friction can be made approximately independent of the state of the drive train of the motor vehicle.
  • the adaptation of the coefficient of friction is terminated when the clutch torque of the hybrid disconnect clutch falls below the predetermined threshold value. It is assumed that in this situation, no precise friction value adaptation is possible.
  • a coefficient of friction difference is determined from an abrupt change in the coefficient of friction, which takes place when the hybrid disconnect clutch changes from the slipping state back into the closed state, and added to the actual friction value in accordance with the sign. This ensures that even in the adhesion of the hybrid disconnect clutch, the missing difference to a coefficient of friction calculated from the clutch characteristic can be determined during the hybrid disconnect clutch control.
  • a clutch torque is set resulting in a hybrid override clutch that is over-engaging, ensuring proportionality of friction to a turnaround point at which the hybrid disconnect clutch returns from the slipping position to the closed position. Due to this proportionality to the slippage of the combustion engine is avoided because the coefficient of friction is corrected sufficiently quickly.
  • 1 is a schematic diagram of a hybrid drive
  • Fig. 3 shows an embodiment for the adaptation of the coefficient of friction. Identical features are identified by the same reference numerals.
  • Fig. 1 is a schematic diagram of a drive train of a hybrid vehicle is shown.
  • This drive train 1 comprises an internal combustion engine 2 and an electric motor 3. Between the internal combustion engine 2 and the electric motor 3, a hybrid separating clutch 4 is arranged directly behind the internal combustion engine 2. Combustion engine 2 and hybrid disconnect clutch 4 are connected to one another via a crankshaft 5.
  • the electric motor 3 has a rotatable rotor 6 and a fixed stator 7.
  • the output shaft 8 of the hybrid disconnect clutch 4 is connected to a transmission 9, which contains a coupling element (not further shown), for example a second clutch or a torque converter, which is arranged between the electric motor 3 and the transmission 9.
  • the transmission 9 transmits the torque generated by the internal combustion engine 2 and / or the electric motor 3 to the drive wheels 10 of the hybrid vehicle.
  • the hybrid separation clutch 4 and the transmission 9 thereby form a transmission system 1 1, which is controlled by a hydrostatic clutch actuator 12.
  • the hybrid disconnect clutch 4 disposed between the engine 2 and the electric motor 3 is closed to start the engine 2 during travel of the hybrid vehicle with the torque generated by the motor 3, or to drive the engine 2 and the motor 3 during a boost operation.
  • the hybrid disconnect clutch 4 is actuated by the clutch actuator 12.
  • Hybrid disconnect clutch 4 In order to ensure that when the engine 2 is restarted by the electric motor 3, sufficient torque is provided by the electric motor 3, which both moves the hybrid vehicle via the drive wheels 10 without loss of comfort and at the same time actually starts the engine 2, an accurate knowledge of a clutch characteristic is Hybrid disconnect clutch 4 is required, in which a clutch torque is shown above the Aktorweg. An interface of this clutch characteristic curve is the touch point, by which the position of the hybrid disconnect clutch 4 is to be understood, in which the friction surfaces of the input or output part of the hybrid disconnect clutch 4 are in frictional contact with each other.
  • the clutch torque T is given by
  • FC friction value FC friction value, TP touch point, Tnom nominal clutch characteristic, x travel of the clutch actuator.
  • the adaptation of the touch point TP of the hybrid disconnect clutch 4 will be explained in more detail with reference to FIG.
  • a base test point is learned at the end of the production of the hybrid disconnect clutch 4, so that during the ongoing operation of the hybrid vehicle only touch point changes must be determined.
  • the hybrid disconnect clutch 4 is moved to the closed state (position II) for adapting the touch point TP from a position I in which it has a slipping state.
  • the rotational speed n of the internal combustion engine 2 is constant in the slipping state of the hybrid disconnect clutch 4 and gradually decreases until the hybrid disconnect clutch 4 is closing.
  • Inn closed state of the hybrid disconnect clutch 4 corresponds to the rotational speed n of the internal combustion engine 2 of the output speed n ou t, which is applied to the drive wheels 10 of the hybrid vehicle.
  • the rotational speed difference An has different gradients Ga, Gb, Gc when the hybrid disconnect clutch 4 changes to the closed state (position II).
  • the gradient Ga adapts quickly to the output speed n 0u t of the drive wheels 10 at a rest torque of the internal combustion engine 2. If the engine torque of the internal combustion engine 2 during the transition to the slipping (position I) in the closed state (position II) of the hybrid disconnect clutch 4 but low, the adaptation of the engine torque requires a longer time, which is reflected in a lower gradient Gc.
  • the gradient Gb corresponds to the current touch point TP, which need not be changed.
  • the determined speed gradient Ga, Gb, Gc of the internal combustion engine 2 is compared with a predetermined gradient threshold. If the speed gradient exceeds the predetermined gradient threshold value, the touch point TP is shifted to larger paths of the clutch actuator 12. However, if the comparison with the gradient threshold value shows that the determined difference gradient Gc is smaller than the gradient threshold value, the touch point TP in the clutch characteristic curve T n0 m is shifted to smaller paths of the clutch actuator 12.
  • the adaptation of the coefficient of friction of the hybrid disconnect clutch 4 is to be determined.
  • the course of the rotational speed n of the internal combustion engine 2 and the output rotational speed n ou t of the drive train during the friction value adaptation is in Diagramnn A shown.
  • Diagram B shows a constant course of a clutch torque requirement T reqU est and the engine torque M of the internal combustion engine 2 during the friction value adaptation. At the same time, the behavior of a real clutch torque Treai over time is shown.
  • the coefficient of friction FC which is indirectly proportional to the actual engine torque M rea i, is shown in diagram C. Again, it is assumed that the speed n of the internal combustion engine 2 is constant.
  • the coefficient of friction FC can only be corrected when slip occurs.
  • AFC represent friction value change.
  • the hybrid disconnect clutch 4 is transferred from a closed state (position I) to the slipping state (position II) while the friction coefficient FC is slowly raised, and during the slipping state of the hybrid disconnect clutch 4 the output rotational speed n ou t on the drive train remains constant. If the hybrid separating clutch 4 reaches the slip, which takes place in position II, at which the speed n of the internal combustion engine 2 increases, the coefficient of friction FC is slowly lowered until a friction value detection is possible during the slip. Subsequently, the coefficient of friction FC is further lowered as long as the slip is> 0. If the hybrid disconnect clutch 4 comes into adhesion, which is the case with slip equal to zero, the friction coefficient FC jumps.
  • This jump corresponds to the change value AFC of the friction coefficient FC at the real clutch torque T rea i.
  • This change value AFC is added to the actual friction coefficient FC.
  • the friction coefficient FC is kept constant for a predetermined time with the hybrid disconnect clutch 4 closed. If the clutch torque T has a value of ⁇ 20 Nm, then again transferred to the section I, where the adaptation of the coefficient of friction FC begins again.

Abstract

Die Erfindung betrifft ein Verfahren zur Bestimmung einer Tastpunktänderung einer Hybridtrennkupplung eines Hybridfahrzeuges, wobei die Hybridtrennkupplung (4) einen Verbrennungsmotor (2) und einen Elektrotraktionsantrieb (3) trennt oder verbindet und das durch den Verbrennungsmotor (2) und/oder Elektrotraktionsantrieb (3) ausgegebene Moment (M) an Antriebsräder (10) des Hybridfahrzeuges weitergeleitet wird, wobei die Hybridtrennkupplung (4) zur Ermittlung des Tastpunktes (TP) von einem geöffneten in einen geschlossenen Zustand bewegt und dabei ein Drehzahlgradient (Ga, Gb, Gc) des Verbrennungsmotors (2) bestimmt wird. Bei einem Verfahren, bei welchem eine sehr einfache Adaption des Tastpunktes der Hybridtrennkupplung möglich ist, wird die Hybridtrennkupplung (4) während des Betriebes des Verbrennungsmotors (2) bei einem gleichbleibenden Drehmoment (M) des Verbrennungsmotors (2) bewegt, bis ein vorgegebenes Drehmoment von der Hybridtrennkupplung (4) übertragen wird und der Tastpunkt (TP) in Abhängigkeit von dem Drehzahlgradienten (Ga, Gb, Gc) des Verbrennungsmotors (2) korrigiert wird.

Description

Verfahren zur Bestimmung einer Tastpunktänderung und zur Adaption eines
Reibwertes einer Hybridtrennkupplung eines Hybridfahrzeuges
Die Erfindung betrifft ein Verfahren zur Bestimmung einer Tastpunktänderung einer Hybridtrennkupplung eines Hybridfahrzeuges gemäß dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zur Adaption eines Reibwertes einer Trennkupplungs- steuerung einer Hybridtrennkupplung eines Hybridfahrzeuges gemäß dem Oberbegriff von Anspruch 4.
In automatisierten Kupplungsanwendungen, wie beispielsweise in Doppelkupplungs- oder Mehrfachkupplungsanwendungen, ist eine genaue Kenntnis des Kupplungsmomentes für die Schalt- und Anfahrqualität von besonderer Bedeutung.
Die DE 10 2010 024 941 A1 offenbart ein Verfahren zur Steuerung eines Doppelkupplungsgetriebes mit zwei Teilantriebssträngen, von denen jeder mittels einer Kupplung mit einer Brennkraftmaschine koppelbar ist. Im Fahrbetrieb des, das Doppelkupp- lungsgetriebe umfassenden Fahrzeuges wird ein Tastpunkt der Kupplung unabhängig vom Motormoment ermittelt. Dieser Tastpunkt wird dabei während der Inbetriebnahme des Fahrzeuges bestimmt und dann während des Betriebes des Fahrzeuges adaptiert.
Bei einem Hybridfahrzeug mit hybridischem Antriebsstrang kann der Fahrwiderstand aus zwei unabhängigen Energiequellen, wie Kraftstoff eines Verbrennungsmotors und elektrische Energie aus einer Traktionsbatterie eines Elektromotors, durch Umwandlung in mechanische Energie überwunden werden. Gemäß der
DE 10 2008 030 473 A1 ist ein Verfahren zur Tastpunktermittlung einer automatisierten Hybridtrennkupplung in einem Hybridantriebsstrang bekannt. Der Tastpunkt der Hybridtrennkupplung, welche zwischen einem Verbrennungsmotor und einem Elektrotraktionsantrieb angeordnet ist, wird bei stillgesetztem Verbrennungsmotor bestimmt, indem die Hybridtrennkupplung langsam geschlossen wird und der Einfluss der sich schließenden Hybridtrennkupplung auf eine Elektromaschine des Elektrotraktionsantriebes, die mit einer vorgegebenen Drehzahl rotiert, ausgewertet wird. Das von der Hybridtrennkupplung übertragene Drehmoment ist direkt von der Position eines, die Hybridtrennkupplung betätigenden elektrostatischen Kupplungsaktors abhängig. Zur Abschätzung des übertragenen Kupplungsmomentes muss einerseits die Lage des Kupplungsaktors relativ zum möglichen Verfahrweg bekannt sein, anderer- seits muss eine Kupplungskennlinie (Kupplungsmoment in Abhängigkeit der Aktorposition) auf dem Aktorweg referenziert werden. Der Tastpunkt stellt dabei eine Stützstelle der Kupplungskennlinie dar. Der Tastpunkt muss für den Betrieb einmalig ermittelt werden und während des Betriebes an das veränderte Kupplungsverhalten, welches aufgrund von verschiedenen Einflussfaktoren, wie Verschleiß, Nachstellung der Kupplung und Temperatur sowie Alterungsprozesse nicht konstant ist, angepasst werden.
Aus der WO 2008/064633 A1 sind ein Verfahren und eine Vorrichtung zum Adaptieren einer Hybridtrennkupplung in einem Fahrzeug-Hybridantriebsstrang bekannt, bei welchem die Brennkraftmaschine stillgelegt wird und nach dem Abschalten der Brenn- kraftmaschine die Hybridtrennkupplung geöffnet wird. Anschließend wird bei abgeschalteter Brennkraftmaschine und geöffneter Hybridtrennkupplung ein zeitlicher Gradient der Drehzahl der Brennkraftmaschine erfasst. Nach einem Teilschließen der Hybridtrennkupplung, sobald die Drehzahl der Brennkraftmaschine unter einen vorbestimmten Wert abgefallen ist, wird der zeitliche Gradient der Drehzahl der Brenn- kraftmaschine bei der teilgeschlossenen Kupplung ermittelt. Anschließend wird die Kennlinie der Hybridtrennkupplung anhand des ermittelten, von der teilgeschlossenen Hybridtrennkupplung übertragenen Kupplungsmomentes adaptiert.
Da eine Hybridtrennkupplung lediglich unter kleiner Last schnell geschlossen bzw. geöffnet wird, ergeben sich im normalen Fahrbetrieb keine Situationen, die ein Erler- nen eines Tastpunkts oder eines Reibwerts ermöglichen. Es wären Schnittstellen zur Software des Automobilherstellers und unterlagerte Hybridtrennkupplungssteuerun- gen wie zeitintensive Routinen in gesonderten Fahrsituationen notwendig, um gängige Adaptionen bei der Tastpunkt- und Reibwertermittlung zu erlauben. Während des Betriebes des Kraftfahrzeuges führen aber solche Adaptionsroutinen zwangsläufig immer zu einer Störung im Betriebsablauf.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Bestimmung einer Tastpunktänderung bzw. zur Adaption eines Reibwertes einer Hybridtrennkupplung eines Hybridfahrzeuges anzugeben, bei welchem eine einfache Tastpunkt- und Reibwert- plausibilisierung ohne großen Adaptionsaufwand notwendig ist.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass die Hybridtrennkupplung während des Betriebes des Verbrennungsmotors bei einem gleichbleibenden Dreh- moment des Verbrennungsmotors bewegt wird, bis ein vorgegebenes Drehmoment von der Hybridtrennkupplung übertragen wird und der Tastpunkt in Abhängigkeit von dem Drehzahlgradienten des Verbrennungsmotors korrigiert wird. Ein solches Vorgehen hat den Vorteil, dass auch bei laufendem Verbrennungsmotor eine Tastpunktadaption möglich wird, ohne den Betriebsablauf des Kraftfahrzeuges zu stören. Der somit ermittelte adaptierte Tastpunkt erlaubt ein sicheres Öffnen der Kupplung. Die Software des Automobilherstellers ist von dieser Adaptionsroutine nicht betroffen.
Vorteilhafterweise wird bei der Bewegung der Hybridtrennkupplung ein vorgegebenes Kupplungsmoment durchlaufen, ehe die Hybridtrennkupplung den geschlossenen Zustand erreicht. Dies gewährleistet eine reproduzierbare Bestimmung der Tastpunktän- derung.
In einer Ausgestaltung wird der Tastpunkt verkleinert, wenn der Drehzahlgradient des Verbrennungsmotors eine vorgegebene Steilheit überschreitet und vergrößert, wenn der Drehzahlgradient des Verbrennungsmotors die vorgegebene Steilheit unterschreitet. Mittels dieses einfachen Verfahrens kann der Tastpunkt innerhalb der Kupplungs- kennlinie, welche ein Kupplungsmoment über einem Ausrückweg des, die Hybridtrennkupplung antreibenden Kupplungsaktors darstellt, einfach verschoben werden. Bei der Verwendung eines Kupplungsmoments, welches höher ist als ein vorgegebener Schwellwert wird sichergestellt, dass bei der Signalauswertung ein Signalrauschverhältnis in einem vertretbaren Rahmen liegt. Da die Tastpunktadaption nur inkre- mentell erfolgt, wird darüber hinaus das verbleibende Rauschen zusätzlich unterdrückt.
Eine Weiterbildung der Erfindung betrifft ein Verfahren zur Adaption eines Reibwertes einer Hybridtrennkupplungssteuerung einer Hybridtrennkupplung eines Hybridfahrzeuges, wobei die Hybridtrennkupplung einen Verbrennungsmotor und einen Elektrot- raktionsantrieb trennt oder verbindet und das durch Verbrennungsmotor und/oder
Elektrotraktionsantrieb ausgegebene Moment an Antriebsräder des Hybridfahrzeuges weitergeleitet wird. Bei einem Verfahren, bei welchem eine einfache Reibwertadaption ohne Beeinflussung einer Schnittstelle zu einer Fahrzeugsoftware möglich ist, wird ausgehend von einer Position der Hybridtrennkupplung mit schlupffreiem Zustand ein Wert des Reibwertes erhöht, bis ein Schlupf an der Hybridtrennkupplung auftritt, wo- bei in Abhängigkeit von der Position der Hybridtrennkupplung beim Auftreten des Schlupfes der Wert des Reibwertes der Trennkupplungssteuerung korrigiert wird. Durch die Bestimmung eines genauen Reibwertes wird eine genaue Feststellung des Schließens der Hybridtrennkupplung bei vorgegebenem Motormoment gewährleistet.
Vorteilhafterweise wird die Adaption des Reibwertes gestartet, wenn das Kupplungs- moment einen vorgegebenen Schwellwert überschreitet. Dadurch wird gewährleistet, dass Offset-Fehler nur einen geringfügigen Einfluss auf die Reibwertadaption haben.
In einer Alternative wird die Adaption des Reibwertes gestartet, wenn ein Motormoment des Verbrennungsmotors einen vorgegebenen Motormomenten-Schwellwert überschreitet. Damit wird gewährleistet, dass eine reproduzierbare Adaption des Reibwertes jederzeit sichergestellt ist.
In einer Variante weist bei einem Start der Adaption des Reibwertes der Verbrennungsmotor eine annähernd konstante Geschwindigkeit auf. Durch die Einstellung dieser annähernd konstanten Geschwindigkeit entfällt eine zusätzliche Schnittstelle zum Kraftfahrzeug, so dass die Adaption des Reibwertes annähernd unabhängig vom Zustand des Antriebsstranges des Kraftfahrzeuges erfolgen kann.
In einer Ausführungsform wird die Adaption des Reibwertes beendet, wenn das Kupplungsmoment der Hybridtrennkupplung den vorgegebenen Schwellwert unterschreitet. Dabei wird davon ausgegangen, dass in dieser Situation keine genaue Reibwertadaption möglich ist. In einer Ausgestaltung wird eine Reibwertdifferenz aus einer sprunghaften Änderung des Reibwertes, welche stattfindet, wenn die Hybridtrennkupplung vom schlupfenden Zustand wieder in den geschlossenen Zustand übergeht, bestimmt und zu dem aktuellen Reibwert vorzeichengerecht addiert. Dadurch wird gewährleistet, dass noch in der Haftung der Hybridtrennkupplung die fehlende Differenz zu einem, aus der Kupp- lungskennlinie errechneten Reibwert während der Hybridtrennkupplungssteuerung ermittelt werden kann. ln einer weiteren Ausführungsform wird während des Schlupfes der Hybridtrennkupplung ein Kupplungsmoment eingestellt, welches zu einer überanpressenden Hybridtrennkupplung führt, wobei eine Proportionalität des Reibwertes bis zu einem Umkehrpunkt gewährleistet wird, bei welchem die Hybridtrennkupplung aus der schlup- fenden Position wieder in die geschlossene Position übergeht. Durch diese Proportionalität zum Schlupf wird ein Aufbrausen des Verbrennungsmotors vermieden, da der Reibwert hinreichend schnell korrigiert wird.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden. Es zeigen:
Fig. 1 eine Prinzipdarstellung eines Hybridantriebes,
Fig. 2 ein Ausführungsbeispiel zur Adaption des Tastpunktes der Trennkupplung,
Fig. 3 ein Ausführungsbeispiel zur Adaption des Reibwertes. Gleiche Merkmale sind mit gleichen Bezugszeichen gekennzeichnet.
In Fig. 1 ist eine Prinzipdarstellung eines Antriebsstranges eines Hybridfahrzeuges dargestellt. Dieser Antriebsstrang 1 umfasst einen Verbrennungsmotor 2 und einen Elektromotor 3. Zwischen dem Verbrennungsmotor 2 und dem Elektromotor 3 ist direkt hinter dem Verbrennungsmotor 2 eine Hybridtrennkupplung 4 angeordnet. Ver- brennungsmotor 2 und Hybridtrennkupplung 4 sind über eine Kurbelwelle 5 miteinander verbunden. Der Elektromotor 3 weist einen drehbaren Rotor 6 und einen feststehenden Stator 7 auf. Die Abtriebswelle 8 der Hybridtrennkupplung 4 ist mit einem Getriebe 9 verbunden, welches ein nicht weiter dargestelltes Koppelelement, beispielsweise eine zweite Kupplung oder einen Drehmomentwandler enthält, die zwischen dem Elektromotor 3 und dem Getriebe 9 angeordnet ist. Das Getriebe 9 überträgt das von dem Verbrennungsmotor 2 und/oder dem Elektromotor 3 erzeugte Drehmoment auf die Antriebsräder 10 des Hybridfahrzeuges. Die Hybridtrennkupplung 4 und das Getriebe 9 bilden dabei ein Getriebesystem 1 1 , welches von einem hydrostatischen Kupplungsaktor 12 angesteuert wird. Die zwischen dem Verbrennungsmotor 2 und dem Elektromotor 3 angeordnete Hybridtrennkupplung 4 wird geschlossen, um während der Fahrt des Hybridfahrzeuges mit dem, von dem Elektromotor 3 erzeugten Drehmoment den Verbrennungsmotor 2 zu starten oder während eines Boostbetriebes mit antreibenden Verbrennungsmotor 2 und Elektromotor 3 zu fahren. Die Hybridtrennkupplung 4 wird dabei von dem Kupplungsaktor 12 betätigt. Um sicherzustellen, dass bei dem Wiederstart des Verbrennungsmotors 2 durch den Elektromotor 3 ein ausreichendes Drehmoment vom Elektromotor 3 bereitgestellt wird, welches sowohl das Hybridfahrzeug über die Antriebsräder 10 ohne Komfortverlust bewegt und gleichzeitig den Verbrennungsmotor 2 auch tatsächlich startet, ist eine genaue Kenntnis einer Kupplungskennlinie der Hybridtrennkupplung 4 erforderlich, bei welcher ein Kupplungsmoment über dem Aktorweg abgebildet ist. Eine Schnittstelle dieser Kupplungskennlinie ist der Tastpunkt, unter dem die Position der Hybridtrennkupplung 4 zu verstehen ist, bei dem die Reibflächen des Ein- bzw. Ausgangsteils der Hybridtrennkupplung 4 in Reibkontakt zueinander tre- ten. Das Kupplungsmoment T ist gegeben durch
T = FC * Tnom (x-TP), wobei
FC Reibwert, TP Tastpunkt, Tnom nominelle Kupplungskennlinie, x Weg des Kupplungaktors.
Die Adaption des Tastpunktes TP der Hybridtrennkupplung 4 soll anhand von Fig. 2 näher erläutert werden. Ein Basistastpunkt wird am Ende der Produktion der Hybrid- trennkupplung 4 gelernt, so dass im laufenden Betrieb des Hybridfahrzeuges nur Tastpunktänderungen ermittelt werden müssen. Die Hybridtrennkupplung 4 wird zur Adaption des Tastpunktes TP von einer Position I, in welcher diese einen schlupfenden Zustand aufweist, in den geschlossenen Zustand (Position II) bewegt. Die Drehzahl n des Verbrennungsmotors 2 ist dabei im schlupfenden Zustand der Hybridtrenn- kupplung 4 konstant und nimmt allmählich ab, bis die Hybridtrennkupplung 4 ge- schlössen ist. Inn geschlossenen Zustand der Hybridtrennkupplung 4 entspricht die Drehzahl n des Verbrennungsmotors 2 der Ausgangsdrehzahl nout, welche an den Antriebsrädern 10 des Hybridfahrzeuges anliegt. Je nachdem, wie groß die Drehzahl n des Verbrennungsmotors 2 ist, weist die Drehzahldifferenz An beim Übergang der Hybridtrennkupplung 4 in den geschlossenen Zustand (Position II) unterschiedliche Gradienten Ga, Gb, Gc auf. Der Gradient Ga passt sich bei einem Ruhemoment des Verbrennungsmotors 2 schnell an die Ausgangsdrehzahl n0ut der Antriebsräder 10 an. Ist das Motormoment des Verbrennungsmotors 2 beim Übergang zum schlupfenden (Position I) in den geschlossenen Zustand (Position II) der Hybridtrennkupplung 4 aber gering, so benötigt die Anpassung des Motormomentes eine längere Zeit, was sich in einem geringeren Gradienten Gc niederschlägt. Der Gradient Gb entspricht den aktuellen Tastpunkt TP, welcher nicht verändert werden muss.
Mittels dieser Gradienten Ga und Gc wird die Tastpunktänderung ΔΤΡ bestimmt. Dabei wird davon ausgegangen, dass das Kupplungsmoment T, welches vor dem
Schließen der Hybridtrennkupplung 4 übertragen wird, einen vorgegebenen Schwellwert, wie beispielsweise 20 Nm überschreitet, um bei den gegebenen dynamischen Situationen das Signalrauschverhältnis so klein wie möglich zu halten, um eine genaue Tastpunktänderung ΔΤΡ zu ermitteln. Es muss sichergestellt werden, dass die Ermittlung der Drehzahlgradienten Ga, Gb, Gc bei hinreichend konstantem Motormo- ment M des Verbrennungsmotors 2 erfolgt. Ebenfalls darf der Tastpunkt TP nur in- krementell verschoben werden, so dass das verbleibende Rauschen weiterhin unterdrückt wird.
Der ermittelte Drehzahlgradient Ga, Gb, Gc des Verbrennungsmotors 2 wird mit einem vorgegebenen Gradientenschwellwert verglichen. Überschreitet der Drehzahl- gradient den vorgegebenen Gradientenschwellwert, so wird der Tastpunkt TP zu größeren Wegen des Kupplungsaktors 12 verschoben. Ergibt der Vergleich mit dem Gradientenschwellwert aber, dass der ermittelte Differenzgradient Gc kleiner ist als der Gradientenschwellwert, so wird der Tastpunkt TP in der Kupplungskennlinie Tn0m zu kleineren Wegen des Kupplungsaktors 12 verschoben. Im Zusammenhang mit Fig. 3 soll die Adaption des Reibwertes der Hybridtrennkupplung 4 bestimmt werden. Der Verlauf der Drehzahl n des Verbrennungsmotor 2 und der Ausgangsdrehzahl nout des Antriebsstranges während der Reibwertadaption ist in Diagramnn A dargestellt. Diagramm B zeigt einen konstanten Verlauf einer Kupplung- smomentenanforderung TreqUest und des Motormomentes M des Verbrennungsmotors 2 während der Reibwertadaption. Gleichzeitig ist das Verhalten eines realen Kupplungsmomentes Treai über der Zeit dargestellt. Der Reibwert FC, welcher indirekt pro- portional zum realen Motormoment Mreai verläuft, ist in Diagramm C dargestellt. Auch hier wird davon ausgegangen, dass die Drehzahl n des Verbrennungsmotors 2 konstant ist.
Der Reibwert FC kann nur bei auftretendem Schlupf korrigiert werden. Die Hybridtrennkupplung 4 fährt entsprechend einer Reibwertänderung AFC auf: T = FC * Tnom (x-TP) = (FC + AFC) * Tnom(x-Ax -TP), wobei
Ax Wegänderung des Kupplungsaktors,
AFC Reibwertänderung darstellen.
Zur Bestimmung der Reibwertänderung wird die Hybridtrennkupplung 4 aus einem geschlossenen Zustand (Position I) unter einem langsamen Anheben des Reibwertes FC in den schlupfenden Zustand (Position II) überführt, wobei während des schlupfenden Zustandes der Hybridtrennkupplung 4 die Ausgangsdrehzahl nout am Antriebs- sträng konstant bleibt. Erreicht die Hybridtrennkupplung 4 den Schlupf, was in Position II erfolgt, bei welcher die Drehzahl n des Verbrennungsmotors 2 ansteigt, wird der Reibwert FC langsam abgesenkt bis während des Schlupfes eine Reibwerterfassung möglich ist. Anschließend wird der Reibwert FC weiter abgesenkt, solange der Schlupf >0 ist. Tritt die Hybridtrennkupplung 4 in Haftung, was bei Schlupf gleich Null der Fall ist, erfolgt ein Sprung des Reibwertes FC. Dieser Sprung entspricht dem Änderungswert AFC des Reibwertes FC bei dem realen Kupplungsmoment Treai. Dieser Änderungswert AFC wird zum aktuellen Reibwert FC dazu addiert. Anschließend wird der Reibwert FC bei geschlossener Hybridtrennkupplung 4 eine vorgegebene Zeit konstant gehalten. Weist das Kupplungsmoment T einen Wert von <20 Nm auf, so wird wieder in den Abschnitt I übergegangen, wo die Adaption des Reibwertes FC von neuem beginnt.
Bezuqszeichenliste
1 Antriebsstrang
2 Verbrennungsmotor
3 Elektromotor
4 Hybridtrennkupplung
5 Kurbelwelle
6 Rotor
7 Stator
8 Abtriebswelle
9 Getriebe
10 Antriebsräder
1 1 Getriebesystem
12 Kupplungsaktor
TP Tastpunkt
ΔΤΡ Tastpunktänderung
RC Reibwert
ARC Reibwertänderung
Tnom nominelle Kupplungskennlinie
n Drehzahl des Verbrennungsmotors
nout Ausgangsdrehzahl
Ga, Gb, Gc Drehzahlgradienten

Claims

Patentansprüche
Verfahren zur Bestinnnnung einer Tastpunktänderung einer Hybridtrennkupplung eines Hybridfahrzeuges, wobei die Hybridtrennkupplung (4) einen Verbrennungsmotor (2) und einen Elektrotraktionsantrieb (3) trennt oder verbindet und das durch den Verbrennungsmotor(2) und/oder Elektrotraktionsantrieb (3) ausgegebene Moment (M) an Antriebsräder (10) des Hybridfahrzeuges weitergeleitet wird, wobei die Hybridtrennkupplung (4) zur Ermittlung des Tastpunktes (TP) von einem geöffneten in einen geschlossenen Zustand bewegt und dabei ein Drehzahlgradient (Ga, Gb, Gc) des Verbrennungsmotors (2) bestimmt wird, dadurch gekennzeichnet, dass die Hybridtrennkupplung (4) während des Betriebes des Verbrennungsmotors (2) bei einem gleichbleibenden Drehmoment (M) des Verbrennungsmotors (2) bewegt wird, bis ein vorgegebenes Drehmoment von der Hybridtrennkupplung (4) übertragen wird und der Tastpunkt (TP) in Abhängigkeit von dem Drehzahlgradienten (Ga, Gb, Gc) des Verbrennungsmotors (2) korrigiert wird.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei der Bewegung der Hybridtrennkupplung (4) ein vorgegebenes Kupplungsmoment (T) durchlaufen wird, ehe die Hybridtrennkupplung (4) den geschlossenen Zustand erreicht.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Tastpunkt (TP) verkleinert wird, wenn der Drehzahlgradient (Ga) des Verbrennungsmotors (2) eine vorgegebene Steilheit überschreitet und vergrößert wird, wenn der Drehzahlgradient (Gc) des Verbrennungsmotors (2) die vorgegebene Steilheit unterschreitet.
Verfahren zur Adaption eines Reibwertes einer Trennkupplungssteuerung einer Hybridtrennkupplung eines Hybridfahrzeuges, wobei die Hybridtrennkupplung (4) einen Verbrennungsmotor (2) und einen Elektrotraktionsantrieb (3) trennt oder verbindet und das durch den Verbrennungsmotor (2) und/oder Elektrotraktionsantrieb (3) ausgegebene Moment an Antriebsräder (10) des Hybridfahrzeuges weitergeleitet wird, dadurch gekennzeichnet, dass ausgehend von einer Position (I) der Hybridtrennkupplung (4) mit schlupffreiem Zustand ein Wert des Reibwertes (FC) erhöht wird, bis Schlupf an der Hybridtrennkupplung (4) auftritt, wobei in Abhängigkeit von der Position (II) der Hybridtrennkupplung (4) beim Auftreten des Schlupfes der Wert des Reibwertes (FC) der Trennkupp- lungssteuerung korrigiert wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Adaption des Reibwertes (FC) gestartet wird, wenn das Kupplungsmoment (T) einen vorgegebenen Schwellwert überschreitet.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Adaption des Reibwertes (FC) gestartet wird, wenn ein Motormoment (M) des Verbren- nungsmotors (2) einen vorgegebenen Motormomenten-Schwellwert überschreitet.
7. Verfahren nach Anspruch 4, 5 oder 6, dadurch gekennzeichnet, dass bei einem Start der Adaption des Reibwertes (FC) der Verbrennungsmotor (2) eine annähernd konstante Drehzahl (n) aufweist.
8. Verfahren nach mindestens einem der vorhergehenden Ansprüche 4 bis 7, dadurch gekennzeichnet, dass die Adaption des Reibwertes (FC) beendet wird, wenn das Kupplungsmoment (T) der Hybridtrennkupplung (4) den vorgegebenen Schwellwert unterschreitet.
9. Verfahren nach mindestens einem der vorhergehenden Ansprüche 4 bis 8, da- durch gekennzeichnet, dass eine Reibwertdifferenz (AFC) aus einer sprunghaften Änderung des Reibwertes (FC), wenn die Hybridtrennkupplung (4) vom schlupfenden Zustand wieder in den geschlossenen Zustand übergeht, bestimmt wird und zu dem aktuellen Reibwert (FC) vorzeichengerecht addiert wird.
10. Verfahren nach einem der vorhergehenden Ansprüche 4 bis 9, dadurch gekennzeichnet, dass während des Schlupfes der Hybridtrennkupplung (4) ein Kupplungsmoment (T) eingestellt wird, welches zu einem Überanpressen der Hybridtrennkupplung (4) führt, wobei eine Proportionalität des Reibwertes (FC) bis zu einem Umkehrpunkt gewährleistet wird, bei welchem die Hybridtrenn- kupplung (4) aus der schlupfenden Position (II) wieder in die geschlossene Position (III) übergeht.
PCT/DE2014/200619 2014-07-18 2014-11-05 Verfahren zur bestimmung einer tastpunktänderung und zur adaption eines reibwertes einer hybridtrennkupplung eines hybridfahrzeuges WO2016008463A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480080613.9A CN106662176B (zh) 2014-07-18 2014-11-05 用于确定混合动力车辆的混合分离离合器的触点变化的且用于适配其摩擦系数的方法
DE112014006821.7T DE112014006821A5 (de) 2014-07-18 2014-11-05 Verfahren zur Bestimmung einer Tastpunktänderung und zur Adaption eines Reibwertes einer Hybridtrennkupplung eines Hybridfahrzeuges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014214054.4 2014-07-18
DE102014214054 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016008463A1 true WO2016008463A1 (de) 2016-01-21

Family

ID=52302031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/200619 WO2016008463A1 (de) 2014-07-18 2014-11-05 Verfahren zur bestimmung einer tastpunktänderung und zur adaption eines reibwertes einer hybridtrennkupplung eines hybridfahrzeuges

Country Status (3)

Country Link
CN (2) CN106662176B (de)
DE (1) DE112014006821A5 (de)
WO (1) WO2016008463A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017211862A1 (de) * 2016-06-07 2017-12-14 Audi Ag Fahrzeug sowie verfahren zum betreiben einer kupplung als anfahrelement
WO2018033181A1 (de) * 2016-08-19 2018-02-22 Schaeffler Technologies AG & Co. KG Verfahren zur ermittlung eines sicherheitsrelevanten kupplungszustands einer trennkupplung eines hybridischen antriebsstrangs
DE102016220456A1 (de) * 2016-10-19 2018-04-19 Zf Friedrichshafen Ag Bestimmung eines Greifpunkts einer Kupplung
DE102017119105A1 (de) 2017-08-22 2019-02-28 Schaeffler Technologies AG & Co. KG Verfahren zur Anpassung einer Momentenkennlinie eines Kupplungsbetätigungssystems, vorzugsweise eines Fahrzeuges
CN110043650A (zh) * 2019-04-09 2019-07-23 东风商用车有限公司 一种重卡整车下线amt离合器咬合点自学习系统及方法
DE102018106167A1 (de) 2018-03-16 2019-09-19 Schaeffler Technologies AG & Co. KG Verfahren zur Ansteuerung eines Hybridantriebsstranges eines Fahrzeugs
WO2020015774A1 (de) * 2018-07-18 2020-01-23 Schaeffler Technologies AG & Co. KG Verfahren zur verbesserung der genauigkeit bei einer tastpunktermittlung einer automatisierten kupplung in einem kraftfahrzeug mit einem verbrennungsmotor
DE102019128070A1 (de) 2018-10-30 2020-04-30 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung einer Kupplungskenngröße durch einen Elektromotor
DE102018128961A1 (de) 2018-11-19 2020-05-20 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung einer Kupplungskenngröße im Generatorbetrieb
DE102018130679A1 (de) 2018-12-03 2020-06-04 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung eines Tastpunktes einer Hybridtrennkupplung eines Hybridfahrzeuges
EP3978774A1 (de) * 2020-10-02 2022-04-06 Robert Bosch GmbH Verfahren zur steuerung eines kupplungssystems eines mechanischen getriebes
DE102021212842A1 (de) 2021-11-16 2023-05-17 Zf Friedrichshafen Ag Verfahren zur Bestimmung eines Betriebspunkts einer Kupplungseinrichtung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108240463B (zh) * 2016-12-23 2020-10-30 上海汽车集团股份有限公司 离合器传递小扭矩点的位置调整方法及装置
CN108240466B (zh) * 2016-12-23 2020-07-28 上海汽车集团股份有限公司 双离合变速器升档自适应调整方法及装置
DE102018107979A1 (de) * 2018-02-01 2019-08-01 Schaeffler Technologies AG & Co. KG Verfahren zur Vermeidung einer zu hohen Schlupfdrehzahl in einer Reibkupplung in einem Antriebsstrang eines Fahrzeuges
DE102019105604B3 (de) * 2019-03-06 2020-07-02 Schaeffler Technologies AG & Co. KG Verfahren zur aktiven Reibwertänderung einer in einem Antriebsstrang eines Fahrzeuges verbauten Hybridtrennkupplung
DE102019112406A1 (de) * 2019-05-13 2020-11-19 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung eines Übertragungsdrehmoments einer Kupplung
DE102019214942A1 (de) * 2019-09-27 2021-04-01 Volkswagen Aktiengesellschaft Verfahren zur Steuerung einer Trennkupplung eines Antriebsaggregats eines Fahrzeugs und/oder einer Maschine, insbesondere eines Hybrid-Antriebsstranges eines Kraftfahrzeuges

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064633A1 (de) 2006-11-27 2008-06-05 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren und vorrichtung zum adaptieren einer trennkupplung in einem fahrzeughybridantriebsstrang
DE102008030473A1 (de) 2007-07-12 2009-01-15 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zur Tastpunktermittlung einer automatisierten Kupplung
DE102010024941A1 (de) 2009-07-16 2011-01-20 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungstastpunkte
US20130317683A1 (en) * 2011-03-25 2013-11-28 Aisin Seiki Kabushiki Kaisha Transmission control device for hybrid vehicle
DE102012224278A1 (de) * 2012-09-06 2014-03-06 Hyundai Motor Company Verfahren und System zum Lernen und Steuern eines Drehmomentübertragungs-Berührungspunktes einer Kraftmaschinenkupplung für ein Hybridelektrofahrzeug
DE102013103878A1 (de) * 2013-04-17 2014-10-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Steuereinrichtung zur Adaption einer Kennlinie einer zwischen einem Verbrennungsmotor und einem Elektromotor vorgesehenen Trennkupplung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2896951B2 (ja) * 1992-07-02 1999-05-31 株式会社エクォス・リサーチ ハイブリッド型車両
DE19504935A1 (de) * 1994-02-23 1995-08-24 Luk Getriebe Systeme Gmbh Verfahren zum Steuern eines Drehmomenten-Übertragungssystems
DE10291374D2 (de) * 2001-04-02 2004-04-29 Luk Lamellen & Kupplungsbau Verfahren zur Steuerung einer automatisierten Kupplung
DE102005051145A1 (de) * 2005-10-26 2007-05-03 Daimlerchrysler Ag Verfahren zum Betrieb eines Antriebsstrangs eines Kraftfahrzeugs
EP2008899B1 (de) * 2007-06-25 2015-08-12 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Reibwertadaption einer in einem Hybridantriebsstrang angeordneten Reibungskupplung
KR100906905B1 (ko) * 2008-03-21 2009-07-08 현대자동차주식회사 하이브리드 차량의 클러치 학습 제어 방법
DE102012019036A1 (de) * 2012-09-27 2014-03-27 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zur Regelung eines elektromechanischen Kupplungssystems in einem Kraftfahrzeug
CN103453039B (zh) * 2013-08-19 2016-03-30 浙江吉利汽车研究院有限公司 一种amt车辆离合器摩擦片摩擦系数损失补偿的控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064633A1 (de) 2006-11-27 2008-06-05 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren und vorrichtung zum adaptieren einer trennkupplung in einem fahrzeughybridantriebsstrang
DE102008030473A1 (de) 2007-07-12 2009-01-15 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zur Tastpunktermittlung einer automatisierten Kupplung
DE102010024941A1 (de) 2009-07-16 2011-01-20 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungstastpunkte
US20130317683A1 (en) * 2011-03-25 2013-11-28 Aisin Seiki Kabushiki Kaisha Transmission control device for hybrid vehicle
DE102012224278A1 (de) * 2012-09-06 2014-03-06 Hyundai Motor Company Verfahren und System zum Lernen und Steuern eines Drehmomentübertragungs-Berührungspunktes einer Kraftmaschinenkupplung für ein Hybridelektrofahrzeug
DE102013103878A1 (de) * 2013-04-17 2014-10-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Steuereinrichtung zur Adaption einer Kennlinie einer zwischen einem Verbrennungsmotor und einem Elektromotor vorgesehenen Trennkupplung

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017211862A1 (de) * 2016-06-07 2017-12-14 Audi Ag Fahrzeug sowie verfahren zum betreiben einer kupplung als anfahrelement
CN109312793A (zh) * 2016-06-07 2019-02-05 奥迪股份公司 车辆以及用于运行作为起动元件的离合器的方法
US10974712B2 (en) 2016-06-07 2021-04-13 Audi Ag Vehicle and method for operating a clutch as a starter element
WO2018033181A1 (de) * 2016-08-19 2018-02-22 Schaeffler Technologies AG & Co. KG Verfahren zur ermittlung eines sicherheitsrelevanten kupplungszustands einer trennkupplung eines hybridischen antriebsstrangs
DE102016220456A1 (de) * 2016-10-19 2018-04-19 Zf Friedrichshafen Ag Bestimmung eines Greifpunkts einer Kupplung
DE102017119105A1 (de) 2017-08-22 2019-02-28 Schaeffler Technologies AG & Co. KG Verfahren zur Anpassung einer Momentenkennlinie eines Kupplungsbetätigungssystems, vorzugsweise eines Fahrzeuges
DE102018106167A1 (de) 2018-03-16 2019-09-19 Schaeffler Technologies AG & Co. KG Verfahren zur Ansteuerung eines Hybridantriebsstranges eines Fahrzeugs
DE102018106167B4 (de) 2018-03-16 2021-10-21 Schaeffler Technologies AG & Co. KG Verfahren zur Ansteuerung eines Hybridantriebsstranges eines Fahrzeugs
WO2020015774A1 (de) * 2018-07-18 2020-01-23 Schaeffler Technologies AG & Co. KG Verfahren zur verbesserung der genauigkeit bei einer tastpunktermittlung einer automatisierten kupplung in einem kraftfahrzeug mit einem verbrennungsmotor
DE102019128070A1 (de) 2018-10-30 2020-04-30 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung einer Kupplungskenngröße durch einen Elektromotor
WO2020088713A1 (de) 2018-10-30 2020-05-07 Schaeffler Technologies AG & Co. KG VERFAHREN ZUR ERMITTLUNG EINER KUPPLUNGSKENNGRÖßE DURCH EINEN ELEKTROMOTOR
US11396916B2 (en) 2018-10-30 2022-07-26 Schaeffler Technologies AG & Co. KG Method for ascertaining a clutch characteristic variable by means of an electric motor
US11536328B2 (en) 2018-10-30 2022-12-27 Schaeffler Technologies AG & Co. KG Method for ascertaining a clutch characteristic variable by means of an electric motor
DE102018128961A1 (de) 2018-11-19 2020-05-20 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung einer Kupplungskenngröße im Generatorbetrieb
WO2020103973A1 (de) 2018-11-19 2020-05-28 Schaeffler Technologies AG & Co. KG VERFAHREN ZUR ERMITTLUNG EINER KUPPLUNGSKENNGRÖßE IM GENERATORBETRIEB
DE102018130679A1 (de) 2018-12-03 2020-06-04 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung eines Tastpunktes einer Hybridtrennkupplung eines Hybridfahrzeuges
US11377092B2 (en) 2018-12-03 2022-07-05 Schaeffler Technologies AG & Co. KG Method for determining the biting point of a hybrid disconnect clutch of a hybrid vehicle
WO2020114544A1 (de) 2018-12-03 2020-06-11 Schaeffler Technologies AG & Co. KG Verfahren zur bestimmung eines tastpunktes einer hybridtrennkupplung eines hybrid-fahrzeuges
US11572058B2 (en) 2018-12-03 2023-02-07 Schaeffler Technologies AG & Co. KG Method for determining the biting point of a hybrid disconnect clutch of a hybrid vehicle
CN110043650A (zh) * 2019-04-09 2019-07-23 东风商用车有限公司 一种重卡整车下线amt离合器咬合点自学习系统及方法
CN110043650B (zh) * 2019-04-09 2023-06-23 东风商用车有限公司 一种重卡整车下线amt离合器咬合点自学习系统及方法
EP3978774A1 (de) * 2020-10-02 2022-04-06 Robert Bosch GmbH Verfahren zur steuerung eines kupplungssystems eines mechanischen getriebes
WO2022069429A1 (en) * 2020-10-02 2022-04-07 Robert Bosch Gmbh Method for controlling a coupling system of a mechanical transmission
DE102021212842A1 (de) 2021-11-16 2023-05-17 Zf Friedrichshafen Ag Verfahren zur Bestimmung eines Betriebspunkts einer Kupplungseinrichtung

Also Published As

Publication number Publication date
CN106662176A (zh) 2017-05-10
CN110056583A (zh) 2019-07-26
DE112014006821A5 (de) 2017-03-30
CN106662176B (zh) 2019-03-08
CN110056583B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2016008463A1 (de) Verfahren zur bestimmung einer tastpunktänderung und zur adaption eines reibwertes einer hybridtrennkupplung eines hybridfahrzeuges
EP3243009B1 (de) Verfahren zur ermittlung eines tastpunktes einer hybridtrennkupplung eines hybridfahrzeuges
DE102008030473A1 (de) Verfahren zur Tastpunktermittlung einer automatisierten Kupplung
DE102007015679A1 (de) Verfahren zur Steuerung einer automatisierten Reibungskupplung
EP3155281A2 (de) Verfahren und vorrichtung zur ermittlung eines tastpunktes einer hybridtrennkupplung eines hybridfahrzeuges
DE102009055246B4 (de) Verfahren und Vorrichtung zur Bestimmung eines Solldrehmomentes zur Ansteuerung einer elektrischen Maschine eines Kraftfahrzeuges
DE102016208035A1 (de) Verfahren zur Steuerung einer Trennkupplung in einem hybridischen Antriebsstrang
DE102016201104A1 (de) Verfahren zur prüfstandsfreien Bestimmung einer Kennlinie einer Hybridtrennkupplung eines Hybridfahrzeuges
DE10316436A1 (de) Getriebesteuerung und Verfahren zum Kompensieren von Streckenveränderungen bei einer Getriebesteuerung eines automatisierten Getriebes eines Fahrzeuges
DE102016215855B4 (de) Verfahren zur Bestimmung eines Tastpunktes einer Hybridtrennkupplung eines Hybridfahrzeuges
DE102018107979A1 (de) Verfahren zur Vermeidung einer zu hohen Schlupfdrehzahl in einer Reibkupplung in einem Antriebsstrang eines Fahrzeuges
EP3221608B1 (de) Verfahren zur anpassung eines reibwertes einer automatisierten kupplung
DE102007027702A1 (de) Verfahren und Vorrichtung zur Steuerung einer Kupplung
DE10316442A1 (de) Verfahren zum Erkennen eines Fehlers während des Wählens und/oder des Schaltens der Getriebeaktorik
WO2017206980A1 (de) Verfahren zur bestimmung einer leckage in einem hydraulischen kupplungssystem eines fahrzeuges
WO2016127982A1 (de) Verfahren zur ermittlung eines tastpunktes einer hybridtrennkupplung eines hybridfahrzeuges
WO2016141940A1 (de) Verfahren zur adaption eines kupplungsmodells einer automatisierten kupplung durch anpassung eines reibwertes der kupplung
DE10232490A1 (de) Verfahren zum Bestimmen der momentanen nominellen Leerlaufdrehzahl
DE102016203434A1 (de) Verfahren zur Adaption eines Greifpunkts einer Trennkupplung für ein Fahrzeug
DE102018117310A1 (de) Verfahren zur Verbesserung der Genauigkeit bei einer Tastpunktermittlung einer automatisierten Kupplung in einem Kraftfahrzeug mit einem Verbrennungsmotor
WO2007128260A1 (de) Verfahren zum betreiben eines kraftfahrzeugantriebsstrangs
DE102015225215B4 (de) Verfahren zur initialen Bestimmung eines Reibwertes einer Hybridtrennkupplung eines Hybridfahrzeuges
DE102012100978B4 (de) Kraftfahrzeugmontiertes Verbrennungsmotor-Steuerungssystem und Kraftfahrzeugmontiertes Verbrennungsmotor-Steuerungsverfahren
DE102011010511A1 (de) Verfahren zur Steuerung einer Reibungskupplung
DE10316438B4 (de) Verfahren und Getriebesteuerung zum Bestimmen eines Zielganges bei einem automatisiertem Getriebe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14824773

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014006821

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112014006821

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14824773

Country of ref document: EP

Kind code of ref document: A1