WO2013135081A1 - 半透半反彩色滤光片、其制作方法及半透半反显示器 - Google Patents

半透半反彩色滤光片、其制作方法及半透半反显示器 Download PDF

Info

Publication number
WO2013135081A1
WO2013135081A1 PCT/CN2012/086393 CN2012086393W WO2013135081A1 WO 2013135081 A1 WO2013135081 A1 WO 2013135081A1 CN 2012086393 W CN2012086393 W CN 2012086393W WO 2013135081 A1 WO2013135081 A1 WO 2013135081A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter film
film
blue
green
color filter
Prior art date
Application number
PCT/CN2012/086393
Other languages
English (en)
French (fr)
Inventor
齐永莲
徐传祥
刘志勇
薛建设
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2013135081A1 publication Critical patent/WO2013135081A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Definitions

  • Embodiments of the present invention relate to a transflective color filter, a method of fabricating the same, and a transflective display. Background technique
  • the same sub-pixel area is divided into a transmissive area and a reflective area, wherein the light emitted by the light source in front of the display panel is reflected to illuminate the panel to enhance the brightness of the panel, and the backlight in the transmissive area
  • Light emitted by the source passes directly through the transmission region.
  • the light emitted by the backlight passes through the color filter (R, G, B) of the transmissive area once, and its optical path is twice the thickness of the color filter, and the light emitted by the external light source passes through the reflection area twice.
  • the color filter therefore, the optical path of the color filter passing through the reflection area is twice the thickness of the color filter.
  • the red filter film 220 and the green filter film 240 on the glass substrate 200 are respectively divided into two regions of different thicknesses, wherein 210 is a black matrix.
  • two regions of different thicknesses are formed, which requires a two-exposure development process, and different photoresists need to be replaced with different photoresist materials. Increased process steps and wasted material.
  • the Chinese patents CN 101029946 and CN 1731257 A disclose methods for fabricating different film thicknesses in the same sub-pixel region, but all require complicated process steps, which is disadvantageous for industrialization.
  • Another way to adjust brightness and color saturation is to make holes in the color filter.
  • the transmission zone performance is prioritized, and transmissive R, G, and B materials with higher color saturation can be used.
  • the color filter of the reflective area and the transmissive area is formed in the same coating process, and the process is simple, wherein the color filter of the reflective area has an opening, so that part of the reflected light is directly reflected by the reflective layer without the color filter. Reflecting electrode reflection, increasing reflection brightness to compensate High color saturation material has the disadvantage of insufficient brightness.
  • Embodiments of the present invention provide a transflective color filter that is simple in process, low in manufacturing cost, and capable of coordinating brightness and color saturation.
  • An embodiment of the present invention provides a transflective color filter, comprising: a substrate; a black matrix formed on the substrate; a red filter film, a green filter film, and a blue filter film, disposed on On the substrate on which the black matrix is formed, the film thicknesses of the red filter film, the green filter film, and the blue filter film are different from each other and are respectively divided into a transmissive region and a reflective region, and the red filter film, The green filter film and the blue filter film have small holes in the reflection region, and the holes have the same size and shape.
  • the flat protective layer has a spacer thereon.
  • the materials of the red filter film, the green filter film, and the blue filter film are different kinds of glues that cause each monochromatic light to reach color coordinates.
  • Embodiments of the present invention provide a method for fabricating a transflective color filter, including the following steps:
  • the difference in film thickness of the red filter film, the green filter film, and the blue filter film in the step S2 is achieved by controlling the gluing process at the time of exposure development.
  • step S2 uses a half-gray exposure process to achieve a difference in film thicknesses of the red filter film, the green filter film, and the blue filter film.
  • step S2 different types of glue are used, and the monochromatic light reaches the color coordinate.
  • the method further includes the step S3 of: coating a flat protective layer on the black matrix, the red filter film, the green filter film, and the blue filter film.
  • step S4 is further included: making a spacer on the flat protective layer.
  • An embodiment of the present invention further provides a transflective display, comprising: a transflective color filter as described above; an array substrate and an array substrate are opposed to each other to form a liquid crystal cell; and a liquid crystal layer is filled in In the liquid crystal cell.
  • FIG. 1 is a cross-sectional view showing a color filter having different film thicknesses in a transmission region and a reflection region of a pixel region in the prior art
  • FIG. 2 is a cross-sectional view of a color filter after forming a black matrix on a glass substrate in an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a color filter after forming color filter films of different film thicknesses in an embodiment of the present invention
  • FIG. 4 is a cross-sectional view of a color filter after applying a flat protective layer in an embodiment of the present invention
  • FIG. 5 is a cross-sectional view of a color filter after forming a column spacer in the embodiment of the present invention
  • the transflective color filter of the present embodiment includes a glass substrate 200, a black matrix 210, a red filter film 220, a green filter film 240, and a blue filter film 260.
  • the black matrix 210, the red filter film 220, the green filter film 240, and the blue filter film 260 are attached to the glass substrate 200.
  • the red filter film 220, the green filter film 240, and the blue filter film 260 are provided with small holes 300 having the same size and shape. To solve the small filter light The color difference caused by the same hole area is different from that of the red filter film 220, the green filter film 240, and the blue filter film 260.
  • the green filter layer thickness is set to the maximum, the red color is second, and the blue color is the smallest (as shown in Figure 3). Shows the difference in film thickness between the red filter film and the green filter film; indicates the difference in film thickness between the green filter film and the blue filter film; R3 indicates the blue filter film and the red filter film The difference in film thickness).
  • the difference in thickness of the three color filters can be calculated using the following process:
  • the aperture area of the reflective area on R, G, and B accounts for 12% of the entire sub-pixel area. , that is, the ratio of three openings is 12%: 12%: 12%, the light transmittance of the transmissive area is 30.5%, the light transmittance of the reflective area is 30.4%, and the open area is small, so the transmittance difference Smaller.
  • the color gamut of the transmission zone is 60.5%, and the color gamut of the reflection zone is 27.0%. The gamut is quite different, which causes chromatic aberration.
  • the three colors R, G, and B all correspond to the (X, y) color coordinate values.
  • the vertices corresponding to the three color coordinates are expanded, and the color coordinates are changed ( In addition to the characteristics of the color filter material itself, it is mainly determined by the film thickness. The thicker the film thickness, the larger the color gamut, and the color coordinate values of three different colors determine R, G, The thickness of B respectively.
  • a flat protective layer 270 is coated over 240 and the blue filter film 260.
  • the flat protective layer 270 also protects the chemical properties of the R, G, B color filter and enhances sputtering resistance.
  • a column spacer 280 is provided on the flat protective layer 270.
  • the transflective color filter according to an embodiment of the present invention may also have no column spacers 280.
  • the spacers are disposed on the array substrate opposed to the color filters.
  • the transflective color filter according to an embodiment of the present invention may further include a transparent electrode layer formed over the planar protective layer 270, for example, an ITO layer, such that the column spacers 280 are formed at On the transparent electrode layer.
  • a transparent electrode layer formed over the planar protective layer 270, for example, an ITO layer, such that the column spacers 280 are formed at On the transparent electrode layer.
  • the transflective color filter according to the embodiment of the present invention may also be combined with the array.
  • the column substrate is integrated, wherein the color filter has a black matrix, a red filter film, a green filter film, a blue filter film, a flat protective layer, and the like, and a thin film transistor (TFT), a pixel electrode, and the like of the array substrate.
  • TFT thin film transistor
  • the embodiment of the present invention further provides a method for fabricating the transflective color filter, which specifically includes the following steps:
  • red filter film, green filter film and blue filter film are formed by exposure and development process (as shown in FIG. 3); For: cleaning ⁇ spin coating ⁇ pre-bake ⁇ exposure ⁇ development ⁇ post-baking.
  • the film thickness of the red filter film, the green filter film, and the blue filter film can be controlled by adjusting the rotation speed at the time of spin coating.
  • the rotation speed is in the range of 400 rpm/min to 900 rpm/min. The higher the rotation speed, the smaller the film thickness, and the lower the rotation speed, the larger the film thickness. Since the three color filter films use the same mask, the reflection regions of the prepared red filter film, green filter film and blue filter film form small holes of the same size, for example, square (see FIG. 6). Shown).
  • the size of the small holes is determined by the transmittance requirement.
  • the transmittance of the three color filter films is calculated by the chromaticity and transmittance requirements to determine the size of the small holes. Since the apertures of the sub-pixel reflection areas are the same, the three color filter films need to correspond to different film thickness values, and the difference in film thickness is calculated by the original aperture ratio.
  • the thickness of the flat protective layer may be greater than or equal to the thickness of the thickest color filter film, that is, the film thickness of the green filter film.
  • a column spacer is formed on the flat protective layer by an exposure and development process to form a completed transflective color filter, as shown in FIG.
  • the method of fabricating the transflective color filter of the embodiment of the present invention may not include the step S4 of forming the column spacer.
  • step S3 and before step S4 the patterning process may also be used.
  • a transparent electrode layer for example, an ITO layer, is formed on the glass substrate forming the black matrix, the red filter film, the green filter film, the blue filter film, and the flat protective layer.
  • the black matrix in step S1 may be directly formed on the substrate of the array substrate. And then forming a red filter film, a green filter film, a blue filter film, a flat protective layer, and/or a column spacer in accordance with the above steps S2, S3, and S4, and then on the substrate on which the color filter is formed A thin film transistor, a pixel electrode, or the like is formed.
  • the black matrix in step S1 may be directly formed on the thin film transistor that has been formed.
  • the array substrate such as the pixel electrode, a red filter film, a green filter film, a blue filter film, a flat protective layer, and/or a column spacer are formed in steps S2, S3, and S4 described above.
  • Embodiments of the present invention also provide a transflective display comprising a transflective color filter according to any of the above embodiments.
  • transflective display is a liquid crystal display device in which a transflective color filter and a TFT array substrate are opposed to each other to form a liquid crystal cell in which a liquid crystal material is filled.
  • the pixel electrode of each pixel unit of the TFT array substrate is used to apply an electric field to control the degree of rotation of the liquid crystal material to perform a display operation.
  • the liquid crystal display further includes a backlight that provides backlighting for the array substrate.
  • R, G, and B should use different types of glue, and the color coordinates should be determined by the monochromatic light.
  • Any embodiment of the present invention can use only the same mask opening design on the R, G, and B filter layers, so that only one mask can be used for the exposure and development of the R, G, and B filter films.
  • the cost is large; at the same time, in the same pixel area, the transmissive area and the reflective area have the same film thickness, and only one exposure and development is required, and the same photoresist material can complete a color filter layer, which simplifies the manufacturing process.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

一种半透半反彩色滤光片,包括:基板(200);形成在基板上的黑矩阵(210);形成在基板(200)上的红色滤光膜(220)、绿色滤光膜(240)和蓝色滤光膜(260)。红色滤光膜(220)、绿色滤光膜(240)和蓝色滤光膜(260)的膜厚彼此不同且分别被分成透射区和反射区。红色滤光膜(220)、绿色滤光膜(240)和蓝色滤光膜(260)的反射区中具有大小和形状相同的小孔(300)。

Description

半透半反彩色滤光片、 其制作方法及半透半反显示器 技术领域
本发明的实施例涉及一种半透半反彩色滤光片、 其制作方法及半透半反 显示器。 背景技术
在半透半反显示器中, 将同一次像素区划分成透射区和反射区, 其中反 显示面板前的光源所发射的光反射而照亮面板,以达到增强面板亮度的目的, 而透射区中背光源所发射的光直接透过透射区。 背光源所发射的光透过透射 区彩色滤光片 (R、 G、 B三色)一次, 其光程是彩色滤光片厚度的一倍, 而 外界光源所发射的光两次通过反射区彩色滤光片, 因此其通过反射区彩色滤 光片的光程是彩色滤光片厚度的两倍。 这样, 反射区与透射区所显示图像的 亮度和色彩饱和度难以平衡协调。 为改善上述情形, 目前, 对于应用于半透 半反显示器的半透半反彩色滤光片一般有如下几种设计:
其一是使用不同浓度的同色光阻在同一个次像素区(如 R像素区)中进 行涂布, 来区分出透射区和反射区的不同结构, 不同厚度。 作为示例, 如图 1所示, 玻璃基板 200上的红色滤光膜 220和绿色滤光膜 240分别分为不同 厚度的两个区域, 其中 210为黑矩阵。 但是在同一个次像素区中要形成不同 厚度的两个区域, 需要经过两次曝光显影工艺, 涂布不同光阻需要更换不同 的光阻材料。 增加了工艺步骤, 浪费了材料。 与此有关的中国专利 CN 101029946与 CN 1731257A公开了在同一次像素区域制作不同膜厚的方法, 但都需要复杂的工艺步骤, 不利于实现产业化。
另外一种调整亮度和色彩饱和度的手段是在彩色滤光片中开孔。 在 R、 G、 B 材料的选择和膜厚的确定上优先考虑透射区性能, 可以釆用色彩饱和 度较高的透射型 R、 G、 B材料。 反射区和透射区彩色滤光片是在同一次涂 膜工艺中形成, 工艺简单, 其中反射区的彩色滤光片中具有开孔, 让部分反 射光不经彩色滤光片直接被反射层或反射电极反射, 增加反射亮度, 以弥补 高彩色饱和度材料亮度不足的缺点。 现有技术中, 因 R, G , B三种颜色的 透过率和人眼对其的敏感度不同, 各个次像素区中反射区的小孔面积不同, 在制作工序中需要使用1 、 G、 B三张掩模板, 较大的增加了制造成本。 发明内容
本发明的实施例提供一种工艺简单, 制造成本低并可协调亮度和色彩饱 和度的半透半反式彩色滤光片。
本发明的实施例提供一种半透半反式彩色滤光片, 包括: 基板; 黑矩阵, 形成在所述基板上; 红色滤光膜、 绿色滤光膜和蓝色滤光膜, 设置在形成有 黑矩阵的所述基板上, 所述红色滤光膜、 绿色滤光膜和蓝色滤光膜的膜厚彼 此不同且分别被分成透射区和反射区, 且所述红色滤光膜、 绿色滤光膜和蓝 色滤光膜的反射区中具有小孔, 且所述小孔的大小、 形状相同。
备选地, 黑矩阵、 红色滤光膜、 绿色滤光膜和蓝色滤光膜的上方有平坦 保护层。
备选地, 平坦保护层上有隔垫物。
备选地, 红色滤光膜、 绿色滤光膜和蓝色滤光膜的材料为使各单色光达 到色坐标的不同的种类胶。
本发明的实施例提供一种半透半反式彩色滤光片的制作方法, 包括如下 步骤:
Sl、 在基板上制作黑矩阵;
S2、 使用同一张掩模板通过曝光显影制成不同膜厚红色滤光膜、 绿色滤 光膜和蓝色滤光膜, 红色滤光膜、 绿色滤光膜和蓝色滤光膜的反射区形成相 同大小和形状的小孔。
备选地, 通过控制曝光显影时的涂胶工艺实现步骤 S2 中红色滤光膜、 绿色滤光膜和蓝色滤光膜的膜厚的差异。
备选地, 步骤 S2釆用的是半灰阶式曝光工艺实现红色滤光膜、 绿色滤 光膜和蓝色滤光膜的膜厚的差异。
备选地, 步骤 S2中釆用不同的种类胶, 以单色光达到色坐标为准。 备选地, 还包括步骤 S3: 在黑矩阵、 红色滤光膜、 绿色滤光膜和蓝色滤 光膜上涂覆平坦保护层。 备选地, 还包括步骤 S4: 在平坦保护层上制作隔垫物。
本发明的实施例还提供一种半透半反显示器, 包括: 如以上所述的半透 半反彩色滤光片; 阵列基板与阵列基板彼此对置以形成液晶盒; 以及液晶层, 填充在所述液晶盒中。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1是现有技术中同一次像素区透射区和反射区膜厚不同的彩色滤光片 剖面图;
图 2 是本发明实施例中在玻璃基板上形成黑矩阵后的彩色滤光片剖面 图;
图 3是本发明实施例中制成不同膜厚的彩色滤光膜后的彩色滤光片剖面 图;
图 4是本发明实施例中涂覆平坦保护层后的彩色滤光片剖面图; 图 5是本发明实施例中制成柱状隔垫物后的彩色滤光片剖面图; 图 6是本发明实施例中彩色滤光片平面示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明的实施例提供半透半反式彩色滤光片。 如图 3所示, 本实施例半 透半反式彩色滤光片包括玻璃基板 200、 黑矩阵 210、 红色滤光膜 220、 绿色 滤光膜 240、蓝色滤光膜 260。黑矩阵 210、红色滤光膜 220、绿色滤光膜 240 和蓝色滤光膜 260附着在玻璃基板 200上。红色滤光膜 220、绿色滤光膜 240 和蓝色滤光膜 260上开有大小、 形状相同的小孔 300。 为解决各滤光膜上小 孔面积相同引起的色差,红色滤光膜 220、绿色滤光膜 240和蓝色滤光膜 260 的膜厚各不相同。 具体地, 因为 R, G, B 三种颜色中绿色透过率最高, 红 色次之, 蓝色最低, 即人眼视觉上的敏感度也是绿色最高, 又因为彩色滤光 片厚度越大, 透光率越小, 所以在小孔大小和形状相同的条件下, 为减小或 消除颜色亮度上的差异, 绿色滤光层厚度设定为最大, 红色次之, 蓝色最小 (如图 3所示, 表示红色滤光膜与绿色滤光膜之间的膜厚差异; 表示绿色滤光膜与蓝色滤光膜之间的膜厚差异; R3表示蓝色滤光膜与红色 滤光膜之间的膜厚差异) 。 举例来说, 三种彩色滤光片的厚度之差可以釆用 如下过程计算:
例如, 在半透半反彩色滤光片中, R, G, B三种颜色的彩色滤光片中, 其中 R, G, B上反射区域的开孔面积都占整个次像素面积的 12%, 即三个 开孔比例为 12%: 12%: 12%, 则透射区的光透过率为 30.5%, 反射区的光 透过率为 30.4%,开孔面积较小故透过率差别较小。但透过区的色域为 60.5%, 反射区的色域为 27.0%, 色域差别较大, 这样就造成了色差。 R, G, B三种 颜色均各自对应 (X, y ) 色坐标值, 在 CIE色度图上, 要扩大色域, 需三个 色坐标对应的顶点都外扩, 而色坐标的变化(外扩) 除了彩色滤光片材料本 身的特性外, 主要由膜厚来决定, 膜厚越厚, 色域会越大, 从而由三个不同 的颜色的色坐标值来确定出 R, G, B分别的厚度。
上述实施例 R、 G、 B彩色滤光膜形成后, 因膜厚各不相同, 所以存在 较大的段差, 为消除段差的影响, 在黑矩阵 210、 红色滤光膜 220、 绿色滤光 膜 240和蓝色滤光膜 260的上方涂覆有平坦保护层 270。 平坦保护层 270同 时也保护了 R、 G、 B彩色滤光膜的化学性能并增强了耐溅射性。 在平坦保 护层 270上有柱状隔垫物 280。
作为备选实施例, 根据本发明实施例的半透半反彩色滤光片也可以不具 有柱状隔垫物 280。 这样, 相应地, 隔垫物会设置在与彩色滤光片对置的阵 列基板上。
作为备选实施例, 根据本发明实施例的半透半反彩色滤光片还可以包括 形成在平坦保护层 270之上的透明电极层,例如, ITO层, 这样, 柱状隔垫物 280形成在透明电极层上。
作为备选实施例, 根据本发明实施例的半透半反彩色滤光片还可以与阵 列基板集成在一起, 其中彩色滤光片的黑矩阵、 红色滤光膜、 绿色滤光膜、 蓝色滤光膜和平坦保护层等与阵列基板的薄膜晶体管 (TFT ) 、 像素电极等
不需要柱状隔垫物。
本发明的实施例还提出该半透半反式彩色滤光片的制作方法, 具体包括 如下步骤:
Sl、 制作黑矩阵。 首先准备好玻璃基板, 然后涂敷黑色矩阵层, 然后釆 用曝光显影工艺在玻璃基板上制作黑矩阵, 如图 2所示。
S2、 使用同一张掩模板釆用曝光显影工艺分三次制成不同厚度的红色滤 光膜、 绿色滤光膜和蓝色滤光膜(如图 3所示) ; 每次制作的工艺顺序可分 为: 清洗→旋转涂布→预烤→曝光→显影→后烘。 通过调节旋转涂布时的转 速, 可控制红色滤光膜、 绿色滤光膜和蓝色滤光膜的膜厚。 转速在 400rpm/min~900rpm/min 的范围内, 转速越高, 膜厚越小, 转速越低, 膜厚 越大。 由于三种彩色滤光膜使用了相同的掩模板, 所以制成的红色滤光膜、 绿色滤光膜和蓝色滤光膜的反射区形成相同大小的小孔, 例如为方形 (如图 6所示 ) 。
小孔的大小具体视透过率的要求确定, 通过色度和透过率要求算出三种 彩色滤光膜的透过率, 以确定小孔的大小。 由于各次像素反射区的小孔相同, 则三种彩色滤光膜需对应不同的膜厚值, 其膜厚的差异通过原有开孔比例计 算得出。
53、 在黑矩阵、 红色滤光膜、 绿色滤光膜和蓝色滤光膜上涂覆平坦保护 层, 如图 4所示。 其制作工序为: 清洗→旋转涂布→预烤→硬烤。 为保证覆 盖平坦保护层后彩色滤光膜厚表面的平坦度, 平坦保护层的厚度可大于或者 等于最厚的彩色滤光膜, 即绿色滤光膜的膜厚。
54、 在平坦保护层上通过曝光显影工艺制作柱状隔垫物, 形成完成的半 透半反式彩色滤光片, 如图 5所示。
作为备选, 本发明实施例的半透半反式彩色滤光片的制作方法中还可以 不包括形成柱状隔垫物的步骤 S4。
作为备选, 在步骤 S3之后且步骤 S4之前, 还可以釆用构图工艺在已经 形成黑矩阵、 红色滤光膜、 绿色滤光膜、 蓝色滤光膜和平坦保护层的玻璃基 板上形成透明电极层, 例如, ITO层。
作为备选实施例, 根据本发明实施例的半透半反式彩色滤光片的制作方 法中, 对于彩色滤光片上阵列结构, 步骤 S1 中的黑矩阵可以直接形成在阵 列基板的基板上, 然后在按照上述步骤 S2、 S3和 S4形成红色滤光膜、 绿色 滤光膜、 蓝色滤光膜、 平坦保护层和 /或柱状隔垫物, 然后在形成有彩色滤光 片的基板上形成薄膜晶体管、 像素电极等。
作为备选实施例, 根据本发明实施例的半透半反式彩色滤光片的制作方 法中, 对于阵列上彩色滤光片结构, 步骤 S1 中的黑矩阵可以直接形成在已 经形成有薄膜晶体管和像素电极等的阵列基板上, 然后在按照上述步骤 S2、 S3和 S4形成红色滤光膜、 绿色滤光膜、 蓝色滤光膜、 平坦保护层和 /或柱状 隔垫物。
本发明的实施例还提供了半透半反显示器, 包括根据上述任意实施例的 半透半反彩色滤光片。
该半透半反显示器的一个示例为液晶显示装置, 其中, 半透半反彩色滤 光片与 TFT阵列基板彼此对置以形成液晶盒, 在液晶盒中填充有液晶材料。
TFT阵列基板的每个像素单元的像素电极用于施加电场对液晶材料的旋转的 程度进行控制从而进行显示操作。 在一些示例中, 该液晶显示器还包括为阵 列基板提供背光的背光源。
为了消除膜厚差异造成的色坐标影响, R、 G、 B要釆用不同的种类胶, 以单色光达到色坐标为准。
本发明的任意实施例通过在 R、 G、 B三种滤光层上釆用相同面积的开 孔设计, 可以使制作 R、 G、 B滤光膜曝光显影时只使用一张掩模板, 极大 的节约了成本; 同时在同一次像素区, 透射区和反射区具有相同的膜厚, 只 需一次曝光显影, 同一光阻材料即可完成一种滤色层, 简化了制作工艺。
以上所述仅是本发明的实施例, 应当指出, 对于本技术领域的普通技术 人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换, 这些改进和替换也应视为本发明的保护范围。

Claims

权利要求书
1、 一种半透半反式彩色滤光片, 包括:
基板;
黑矩阵, 形成在所述基板上;
红色滤光膜、 绿色滤光膜和蓝色滤光膜, 设置在形成有黑矩阵的所述基 板上,
所述红色滤光膜、 绿色滤光膜和蓝色滤光膜的膜厚彼此不同且分别被分 成透射区和反射区, 且所述红色滤光膜、 绿色滤光膜和蓝色滤光膜的反射区 中具有小孔, 且所述小孔的大小、 形状相同。
2、如权利要求 1所述的半透半反式彩色滤光片, 其中所述黑矩阵、 红色 滤光膜、 绿色滤光膜和蓝色滤光膜的上方形成有平坦保护层。
3、如权利要求 2所述的半透半反式彩色滤光片,其中所述平坦保护层上 有隔垫物。
4、 如权利要求 1所述的半透半反式彩色滤光片, 其中所述红色滤光膜、 绿色滤光膜和蓝色滤光膜的材料为使各单色光达到色坐标的不同种类的胶。
5、如权利要求 2所述的半透半反式彩色滤光片,其中所述平坦保护层上 形成有透明电极层。
6、如权利要求 1所述的半透半反式彩色滤光片, 其中所述黑矩阵、 红色 滤光膜、 绿色滤光膜和蓝色滤光膜的上方形成有薄膜晶体管、 栅线、 数据线 和像素电极。
7、一种如权利要求 1所述的半透半反式彩色滤光片的制作方法, 包括如 下步骤:
Sl、 在基板上制作黑矩阵;
S2、 使用同一张掩模板通过曝光显影工艺制成不同膜厚的红色滤光膜、 绿色滤光膜和蓝色滤光膜, 红色滤光膜、 绿色滤光膜和蓝色滤光膜的反射区 形成相同大小和形状的小孔。
8、如权利要求 7所述的半透半反式彩色滤光片的制作方法,其中通过调 节曝光显影时的涂胶工艺实现所述步骤 S2 中红色滤光膜、 绿色滤光膜和蓝 色滤光膜的膜厚的差异。
9、如权利要求 7所述的半透半反式彩色滤光片的制作方法,其中所述步 骤 S2中釆用不同的种类胶, 以单色光达到色坐标为准。
10、 如权利要求 7所述的半透半反式彩色滤光片的制作方法, 其中所述 步骤 S2釆用的是半灰阶式曝光工艺实现红色滤光膜、 绿色滤光膜和蓝色滤 光膜的膜厚的差异。
11、 如权利要求 7所述的半透半反式彩色滤光片的制作方法, 还包括步 骤 S3:在黑矩阵、红色滤光膜、绿色滤光膜和蓝色滤光膜上涂覆平坦保护层。
12、如权利要求 11所述的半透半反式彩色滤光片的制作方法,还包括步 骤 S4: 在平坦保护层上制作隔垫物。
13、 如权利要求 7所述的半透半反式彩色滤光片的制作方法, 还包括在 形成有黑矩阵、 红色滤光膜、 绿色滤光膜和蓝色滤光膜的基板上形成薄膜晶 体管、 栅线、 数据线和像素电极。
14、如权利要求 11所述的半透半反式彩色滤光片的制作方法,还包括在 平坦保护层上制作透明电极层。
15、 一种半透半反显示器, 包括:
如权利要求 1所述的半透半反彩色滤光片;
阵列基板与阵列基板彼此对置以形成液晶盒; 以及
液晶层, 填充在所述液晶盒中。
PCT/CN2012/086393 2012-03-16 2012-12-12 半透半反彩色滤光片、其制作方法及半透半反显示器 WO2013135081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210071431.8 2012-03-16
CN201210071431.8A CN102654594B (zh) 2012-03-16 2012-03-16 一种半透半反式彩色滤光片及其制作方法

Publications (1)

Publication Number Publication Date
WO2013135081A1 true WO2013135081A1 (zh) 2013-09-19

Family

ID=46730244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086393 WO2013135081A1 (zh) 2012-03-16 2012-12-12 半透半反彩色滤光片、其制作方法及半透半反显示器

Country Status (2)

Country Link
CN (1) CN102654594B (zh)
WO (1) WO2013135081A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110148A (zh) * 2017-12-14 2018-06-01 安徽熙泰智能科技有限公司 顶发射微显示器件彩色过滤层及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654594B (zh) * 2012-03-16 2015-02-25 京东方科技集团股份有限公司 一种半透半反式彩色滤光片及其制作方法
CN102819057B (zh) 2012-08-24 2014-09-03 京东方科技集团股份有限公司 一种显示装置、彩色滤光片及其制作方法
CN102879947B (zh) * 2012-09-27 2015-10-14 京东方科技集团股份有限公司 彩色滤光片及其制造方法,半透半反式液晶显示装置
TWI642170B (zh) * 2013-10-18 2018-11-21 半導體能源研究所股份有限公司 顯示裝置及電子裝置
CN104696887B (zh) 2015-03-26 2018-06-15 合肥鑫晟光电科技有限公司 一种导光板、背光模组、显示装置及显示控制系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098826A (ja) * 2000-09-26 2002-04-05 Casio Comput Co Ltd カラーフィルタの製造方法
CN1395135A (zh) * 2001-06-29 2003-02-05 精工爱普生株式会社 滤色片基板及其制造方法、液晶显示装置及电光装置
JP2003107231A (ja) * 2001-09-27 2003-04-09 Seiko Epson Corp カラーフィルタの製造方法とカラーフィルタ及びそれを備えた液晶装置と電子機器
CN1534354A (zh) * 2003-04-01 2004-10-06 ����ŷ�������ʽ���� 半透射反射型彩色液晶显示装置
JP2005141145A (ja) * 2003-11-10 2005-06-02 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置およびカラーフィルタ基板の製造方法
JP2008139761A (ja) * 2006-12-05 2008-06-19 Nsk Ltd 露光方法および露光装置
CN101861533A (zh) * 2007-11-29 2010-10-13 夏普株式会社 彩色滤光片基板、液晶显示面板、液晶显示装置和彩色滤光片基板的制造方法
JP2010250120A (ja) * 2009-04-16 2010-11-04 Dainippon Printing Co Ltd カラーフィルタの製造方法、およびカラーフィルタを備える液晶表示装置
CN102165338A (zh) * 2008-09-30 2011-08-24 大日本印刷株式会社 滤色片用喷墨墨液组合物、滤色片、滤色片的制造方法以及液晶显示装置
CN102654594A (zh) * 2012-03-16 2012-09-05 京东方科技集团股份有限公司 一种半透半反式彩色滤光片及其制作方法
CN102736314A (zh) * 2012-06-29 2012-10-17 京东方科技集团股份有限公司 一种液晶面板及其制作方法以及液晶显示器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100498477C (zh) * 2007-10-15 2009-06-10 友达光电股份有限公司 液晶显示器
CN201159810Y (zh) * 2008-02-29 2008-12-03 深圳市瑞福达液晶显示技术有限公司 半透反射膜彩色滤光片
WO2010106704A1 (ja) * 2009-03-19 2010-09-23 シャープ株式会社 表示パネルおよび表示装置
CN101785725B (zh) * 2010-02-09 2013-07-03 北京极光安防护科技有限公司 自动设置遮光号的自动变光焊接滤光镜
TWI399585B (zh) * 2010-08-10 2013-06-21 Au Optronics Corp 液晶顯示面板及彩色濾光基板
CN102331595B (zh) * 2011-06-17 2013-09-04 深圳市华星光电技术有限公司 液晶显示面板、彩色滤光片及其制造方法
CN102338900A (zh) * 2011-10-11 2012-02-01 鸿富锦精密工业(深圳)有限公司 彩色滤光片及具有该彩色滤光片的反射式显示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098826A (ja) * 2000-09-26 2002-04-05 Casio Comput Co Ltd カラーフィルタの製造方法
CN1395135A (zh) * 2001-06-29 2003-02-05 精工爱普生株式会社 滤色片基板及其制造方法、液晶显示装置及电光装置
JP2003107231A (ja) * 2001-09-27 2003-04-09 Seiko Epson Corp カラーフィルタの製造方法とカラーフィルタ及びそれを備えた液晶装置と電子機器
CN1534354A (zh) * 2003-04-01 2004-10-06 ����ŷ�������ʽ���� 半透射反射型彩色液晶显示装置
JP2005141145A (ja) * 2003-11-10 2005-06-02 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置およびカラーフィルタ基板の製造方法
JP2008139761A (ja) * 2006-12-05 2008-06-19 Nsk Ltd 露光方法および露光装置
CN101861533A (zh) * 2007-11-29 2010-10-13 夏普株式会社 彩色滤光片基板、液晶显示面板、液晶显示装置和彩色滤光片基板的制造方法
CN102165338A (zh) * 2008-09-30 2011-08-24 大日本印刷株式会社 滤色片用喷墨墨液组合物、滤色片、滤色片的制造方法以及液晶显示装置
JP2010250120A (ja) * 2009-04-16 2010-11-04 Dainippon Printing Co Ltd カラーフィルタの製造方法、およびカラーフィルタを備える液晶表示装置
CN102654594A (zh) * 2012-03-16 2012-09-05 京东方科技集团股份有限公司 一种半透半反式彩色滤光片及其制作方法
CN102736314A (zh) * 2012-06-29 2012-10-17 京东方科技集团股份有限公司 一种液晶面板及其制作方法以及液晶显示器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110148A (zh) * 2017-12-14 2018-06-01 安徽熙泰智能科技有限公司 顶发射微显示器件彩色过滤层及其制备方法

Also Published As

Publication number Publication date
CN102654594A (zh) 2012-09-05
CN102654594B (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
WO2013135081A1 (zh) 半透半反彩色滤光片、其制作方法及半透半反显示器
WO2014000391A1 (zh) 液晶面板及其制作方法以及液晶显示器
US20140078452A1 (en) Transreflective color filter and method for manufacturing the same and method for manufacturing the same and liquid crystal display device
JP2003090998A (ja) カラーフィルタ基板及び電気光学装置、カラーフィルタ基板の製造方法及び電気光学装置の製造方法並びに電子機器
WO2019128959A1 (zh) 液晶显示面板及其制作方法
JP2003090997A (ja) カラーフィルタ基板及び電気光学装置、カラーフィルタ基板の製造方法及び電気光学装置の製造方法並びに電子機器
WO2019085288A1 (zh) 显示面板及其制造方法
WO2018120022A1 (zh) 彩色滤光片、显示装置及制备彩色滤光片的方法
US20070139587A1 (en) Transflective liquid crystal display panel, color filter and fabricating method thereof
JP3723511B2 (ja) 反射透過両用型カラー液晶表示装置
TW200815854A (en) Trans-reflective type LCD panel and electronic device using the same
JP2005115315A (ja) 液晶表示装置およびその製造方法
WO2018205650A1 (zh) 彩膜基板及其制作方法、显示装置及其制作方法
WO2007077644A1 (ja) 液晶表示装置
JP3931199B2 (ja) 反射透過両用型カラー液晶表示装置
JP3897809B2 (ja) カラー液晶表示装置
JP3931201B2 (ja) 反射透過両用型カラー液晶表示装置
JP4618274B2 (ja) 液晶表示パネル用カラーフィルタ基板及び液晶表示装置、並びに電子機器
JP3897810B2 (ja) カラー液晶表示装置
JP2008256803A (ja) 液晶表示パネル及び液晶表示装置
JP4335067B2 (ja) 電気光学装置
KR20070031036A (ko) 광 투과 영역 조절 방법 및 이를 이용한 반투과형 액정표시 장치
JP2003330008A (ja) 半透過半反射型液晶表示装置用カラーフィルタ
JP2003202419A (ja) 液晶表示装置用カラーフィルターとその搭載機器
JP3931200B2 (ja) 反射透過両用型カラー液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/01/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12871120

Country of ref document: EP

Kind code of ref document: A1