WO2014000391A1 - 液晶面板及其制作方法以及液晶显示器 - Google Patents

液晶面板及其制作方法以及液晶显示器 Download PDF

Info

Publication number
WO2014000391A1
WO2014000391A1 PCT/CN2012/086263 CN2012086263W WO2014000391A1 WO 2014000391 A1 WO2014000391 A1 WO 2014000391A1 CN 2012086263 W CN2012086263 W CN 2012086263W WO 2014000391 A1 WO2014000391 A1 WO 2014000391A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
pixel
sub
filter layer
liquid crystal
Prior art date
Application number
PCT/CN2012/086263
Other languages
English (en)
French (fr)
Inventor
齐永莲
惠官宝
赵吉生
薛建设
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2014000391A1 publication Critical patent/WO2014000391A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays

Definitions

  • Liquid crystal panel manufacturing method thereof and liquid crystal display
  • Embodiments of the present invention relate to a liquid crystal panel, a method of fabricating the same, and a liquid crystal display including the same. Background technique
  • the liquid crystal panel is a key component for LCD display.
  • the liquid crystal panel is mainly disposed by the color film substrate and the array substrate, and the color film substrate and the array substrate are filled with liquid crystal.
  • the current liquid crystal panel generally includes a plurality of pixel regions, and each of the pixel regions generally includes three sub-pixel regions for displaying three primary colors, respectively, a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region, and the above three The area of the sub-pixel area is equal. Since the sensitivity of the human eye to the three primary colors of red, green and blue is different, this makes the liquid crystal display prone to color inconsistency when performing color display, especially for a transflective liquid crystal display. The phenomenon of coordination is more prominent.
  • the transmissive liquid crystal display uses a self-contained backlight as a light source, and the light emitted by the backlight directly illuminates the liquid crystal panel.
  • the liquid crystal display has high contrast, good brightness, and relatively high color purity, but the light source transmission rate is less than 10 %, high power consumption, and poor visibility under strong ambient light;
  • reflective liquid crystal display uses ambient light as a light source, and reflects the ambient light through a reflective layer in the liquid crystal panel to illuminate the liquid crystal panel, so the liquid crystal display is extremely Energy saving, low power consumption, good visibility under strong ambient light, but low contrast, poor color saturation, poor visibility at night or low light.
  • a transflective liquid crystal display has emerged, and because of its advantages of both a reflective liquid crystal display and a transmissive liquid crystal display, it has been widely used in electronic devices, particularly in portable electronic devices.
  • the transflective liquid crystal display includes a liquid crystal panel and a backlight.
  • the liquid crystal panel includes an array substrate and a color filter substrate, and the array substrate usually has a plurality of pixel structures, and each pixel structure includes a reflection An electrode (or a reflective layer formed by coating) and a transmissive electrode for reflecting ambient light;
  • the color filter substrate includes a black matrix and a filter layer disposed on the black matrix.
  • the black matrix has a plurality of open areas of equal area. Each of the open areas on the black matrix and the filter layer covered on the open area correspond to one sub-pixel area, and each sub-pixel area is divided into a reflective area and a transmissive area.
  • a reflective electrode in the pixel structure corresponds to the reflective region
  • a transmissive electrode in the pixel structure corresponds to the transmissive region.
  • the working mode of the transflective liquid crystal display is: when the ambient light is dark, the backlight is turned on, the light emitted by the backlight passes through the transmissive electrode, and then the liquid crystal panel is illuminated by the filter layer, thereby entering The human visual field, the liquid crystal display displays the image in the transmissive mode; in the bright ambient light, the backlight is turned off, and the external ambient light is first incident from the outside through the filter layer to the reflective electrode or the reflective layer. After the reflective electrode or the reflective layer reflects the light, the light is illuminated for a second time, and then the liquid crystal panel is illuminated to enter the human field of view, that is, the image is displayed by the reflection of the ambient light, and the liquid crystal display displays the image in a reflective mode. .
  • the external light passes through the reflection region of the sub-pixel region twice, and in the transmissive mode, the light emitted by the backlight passes through the transmission of the sub-pixel region only once. Area.
  • the light emitted by different light sources in the transflective liquid crystal display passes through the same filter layer, the light emitted by different light sources is different in the number of times of filtering the light layer, so that the liquid crystal display operates in different modes.
  • the color gamut difference (color difference) of the reflection area and the color gamut of the transmission area are largely different, resulting in an uncoordinated color of the image displayed on the display.
  • the prior art In order to improve the color misalignment of the image of the transflective liquid crystal display in different working modes, the prior art generally solves the problem by using the following measures.
  • the first measure is to keep the thickness of each filter layer uniform, that is, to make the thickness of the portion corresponding to the reflective region of the sub-pixel region and the portion corresponding to the transmissive region on each filter layer remain the same,
  • the portion of the filter layer corresponding to the reflective region and the portion corresponding to the transmissive region are respectively formed of the same color photoresist material of different color densities. Therefore, the filter layer needs to be replaced with different concentrations of photoresist material during the manufacturing process, and the manufacturing process is complicated.
  • the second measure is to make the portion corresponding to the reflective region of the sub-pixel region and the portion corresponding to the transmissive region of each filter layer use the same color of the same color photoresist material, and the filter layer corresponds to the reflective region.
  • the portion and the portion corresponding to the transmissive region are made of different thicknesses, that is, the thickness of the filter layer The degree is not uniform.
  • Figure 1 is a schematic view of a color filter substrate made by the second measure. As shown in FIG. 1, since the areas of the sub-pixel regions displaying different colors are equal, on the filter layer, a portion corresponding to the reflective region of the sub-pixel region and a portion of the photoresist material corresponding to the transmissive region of the sub-pixel region are formed.
  • the concentration is equal, but the thickness of the two is different.
  • This filter layer needs to be added once in the manufacturing process, and can be formed by two exposure and development processes, wasting the photoresist material, and due to the filter made.
  • the increase of the layer thickness easily causes the overlap between the adjacent two filter layers, thereby causing the difference of the angular segments to be obvious, and finally affecting the display effect of the liquid crystal display.
  • a method for producing a filter layer having a non-uniform thickness for a reflective region and a transmissive region of the same sub-pixel region, respectively, is disclosed in the Chinese Patent Application Publication No. CN 101029946 and CN 1731257 A, which not only adds a process step. The production process is made more complicated, and the utilization rate of the photoresist material is relatively low, which is not conducive to industrialization.
  • the third measure is to open light-transmissive holes of different areas on the filter layers of different colors corresponding to the reflective areas of the sub-pixel regions to improve the light brightness and light transmittance of the reflective areas.
  • the size of the light-transmitting holes formed in the filter layers of different colors is different, it is necessary to design a plurality of masks for different color filter layers in the manufacturing process, which not only makes the process more complicated, but also makes the manufacturing cost. Higher.
  • a liquid crystal panel having good color coordination and a method of fabricating the same, and a liquid crystal display including the liquid crystal panel.
  • An aspect of the present invention provides a liquid crystal panel including a plurality of pixel regions, each of the pixel regions including a plurality of sub-pixel regions for respectively displaying different colors, wherein each of the plurality of pixel regions The area of the sub-pixel regions is set to increase as the light transmittance of each sub-pixel region decreases.
  • red, green, and blue primary colors are determined by different spectra, they each have different light transmittances. For example, the light transmittance of green, red, and blue light decreases in turn, so green is brighter, blue is more dim, and red is between green and blue. This results in different characteristics of the human eye's sensitivity to the three primary colors of red, green and blue, that is, the sensitivity of the human eye to green, red, and blue is sequentially reduced.
  • the filter with low sensitivity of the human eye due to low light transmittance can be correspondingly improved.
  • the light transmissive area of the sub-pixel region corresponding to the light layer (for example, by increasing the area of the blue sub-pixel region, the light transmittance thereof can be increased correspondingly), or the filter with high light transmittance and high sensitivity of the human eye can be correspondingly reduced.
  • the light transmissive area of the sub-pixel region corresponding to the light layer can thereby weaken the visual color mismatch phenomenon of the sub-pixel regions corresponding to the filter layers of the three different colors.
  • each of the pixel regions includes three sub-pixel regions, and the three sub-pixel regions are respectively a green sub-pixel region, a red sub-pixel region, and a blue sub-pixel region, and the green sub-pixel
  • the area relationship of the region, the red sub-pixel region, and the blue sub-pixel region is: the area of the green sub-pixel region ⁇ the area of the red sub-pixel region ⁇ the area of the blue sub-pixel region.
  • the liquid crystal panel includes a color filter substrate including a black matrix and a plurality of filter layers disposed on the black matrix, and an array substrate, the black matrix having a plurality of openings a region, each of the open regions of the black matrix and the filter layer covered thereon correspond to one sub-pixel region, and an area of the plurality of open regions on the black matrix is set as a filter layer corresponding to each of the open regions
  • the light transmittance increases as the transmittance decreases.
  • the array substrate has a plurality of pixel structures respectively corresponding to respective sub-pixel regions in each of the pixel regions, and each of the pixel structures includes a reflective electrode and a transmissive electrode, each of the The sub-pixel region is divided into a reflective region and a transmissive region, the reflective region corresponding to the reflective electrode in the pixel structure, the transmissive region corresponding to the transmissive electrode in the pixel structure, and the reflective region of each sub-pixel region The area increases as the light transmittance of each sub-pixel region decreases.
  • the area of the transmissive area of each sub-pixel region is equal or the area ratio is constant, or the area of the transmissive area of each sub-pixel area is also decreased with the light transmittance of each sub-pixel area. And increasing, and the proportion of the transmissive area of each sub-pixel area is increased by less than the proportion of the area of the reflective area of the sub-pixel area.
  • the light transmittance in the reflection mode can be improved with respect to the transmission mode, thereby being able to reduce the liquid crystal display in The color difference between the two different working modes achieves the effect of color balance.
  • the filter layer includes a green filter layer, a red filter layer, and a blue filter layer, and the green filter layer, the red filter layer, and the blue filter layer have the same thickness. And color The concentration of the photoresist material in the same filter layer is uniform.
  • liquid crystal panel for example, in the green filter layer, the red filter layer, and the blue filter layer, light-transmission holes are formed in portions of the filter layers corresponding to the reflection regions of the sub-pixel regions.
  • the areas of the light transmission holes on the respective filter layers are equal.
  • Another aspect of the present invention provides a liquid crystal display comprising a liquid crystal panel, wherein the liquid crystal panel is any one of the liquid crystal panels described above.
  • a method for fabricating a liquid crystal panel includes the steps of fabricating a color filter substrate and the step of fabricating an array substrate, wherein the step of fabricating the color filter substrate includes the steps of fabricating a black matrix and fabricating a plurality of filters.
  • the filter layer is formed to include a green filter layer, a red filter layer, and a blue filter layer, and an area of the open region corresponding to the green filter layer on the black matrix ⁇ red filter The area of the opening area corresponding to the layer ⁇ the area of the opening area corresponding to the blue filter layer.
  • the thickness of the green filter layer, the red filter layer, and the blue filter layer are equal, and the concentration of the photoresist material in each of the filter layers of the same color is uniform.
  • the liquid crystal panel includes a plurality of pixel regions, each of the pixel regions includes three sub-pixel regions, wherein the three sub-pixel regions are a green sub-pixel region, a red sub-pixel region, and a blue
  • the sub-pixel region, the green filter layer, the red filter layer, and the blue filter layer respectively correspond to the green sub-pixel region, the red sub-pixel region, and the blue sub-pixel region.
  • the step of fabricating the array substrate includes the steps of fabricating a plurality of pixel structures, each pixel structure being formed corresponding to each sub-pixel region, and each pixel structure fabricated includes a reflective electrode and a transmissive electrode.
  • Each of the sub-pixel regions is divided into a reflective region and a transmissive region, and a reflective electrode in the pixel structure corresponds to the reflective region, and a transmissive electrode in the pixel structure corresponds to the transmissive region, and each filter A light-transmitting hole is formed in a portion of the light layer corresponding to the reflective region of each of the sub-pixel regions, and the areas of the light-transmitting holes on the respective filter layers are equal.
  • an area of a reflective electrode in each pixel structure is increased according to a decrease in light transmittance of a corresponding sub-pixel region thereof, in the plurality of pixel structures
  • the area of the transmissive electrode is equal, or the area of the transmissive electrode in each pixel structure is also As the light transmittance of each sub-pixel region decreases, the proportion of the transmissive electrode in each pixel structure increases less than the ratio of the area of the reflective electrode in the pixel structure increases.
  • the liquid crystal display of the liquid crystal panel according to the embodiment of the present invention has good color coordination and a simple manufacturing process. Especially for a transflective liquid crystal display, when different operating modes are used and different light sources are used, different light passes through the reflective and transmissive regions of the sub-pixel region, causing visual color imbalance.
  • the liquid crystal display of the liquid crystal panel in the embodiment of the present invention is not only gamut balanced, but also has a simpler and more convenient process than the existing transflective liquid crystal display. It does not cause a large angular difference, and the filter layer of different colors can be formed by using the same mask, which greatly saves the manufacturing cost.
  • the liquid crystal panel of the present invention is particularly suitable for use in a transflective liquid crystal display.
  • FIG. 1 is a schematic view of a color filter substrate in a liquid crystal panel of a prior art transflective liquid crystal display
  • FIG. 2 is a flow chart of a method for fabricating a color film panel according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic view showing a black matrix formed on a substrate in the process of fabricating a color filter substrate according to Embodiment 2 of the present invention
  • Figure 4 is a plan view of Figure 3;
  • FIG. 5 is a schematic view showing a filter layer formed on a substrate in the process of fabricating the color filter substrate in Embodiment 2;
  • Figure 6 is a plan view of Figure 5;
  • Figure 7 is a schematic view showing the formation of a flat protective layer on the filter layer in Embodiment 2;
  • Figure 8 is a schematic view showing the formation of a column spacer on the flat protective layer in Example 2;
  • Fig. 9 is a plan view of the color filter substrate after the fabrication is completed.
  • Embodiments of the present invention provide a liquid crystal panel including a plurality of pixel regions, each of the pixel regions including a plurality of sub-pixel regions for respectively displaying different colors; in each of the pixel regions, The area of the plurality of sub-pixel regions is set to increase as the light transmittance of each sub-pixel region decreases.
  • Another embodiment of the present invention provides a liquid crystal display comprising a liquid crystal panel, wherein the liquid crystal panel uses the liquid crystal panel described above.
  • a method for fabricating a liquid crystal panel includes the steps of fabricating a color filter substrate and the step of fabricating an array substrate, wherein the step of fabricating the color filter substrate includes the steps of fabricating a black matrix and fabricating a plurality of filters.
  • a step of layering the plurality of filter layers are disposed on the black matrix; in the step of fabricating a black matrix, the fabricated black matrix includes a plurality of open regions, and the plurality of open regions are respectively separated from the filter
  • the area of the plurality of opening regions is increased as the light transmittance of the filter layer corresponding to each of the opening regions decreases.
  • the liquid crystal panel is suitable for use in a transmissive liquid crystal display or a reflective liquid crystal display.
  • the liquid crystal panel includes a plurality of pixel regions, each of the pixel regions includes a plurality of sub-pixel regions for respectively displaying different colors, and in each of the pixel regions, an area of the plurality of sub-pixel regions is set to follow The light transmittance of each sub-pixel region is increased by decreasing.
  • each of the pixel regions includes three sub-pixel regions, wherein the three sub-pixel regions are a green sub-pixel region, a red sub-pixel region, and a blue sub-pixel region, and the green sub-pixel region,
  • the red sub-pixel area and the blue sub-pixel area are respectively used to display green, red, and blue;
  • the area relationship of the green sub-pixel area, the red sub-pixel area, and the blue sub-pixel area is: the area of the green sub-pixel area ⁇
  • the liquid crystal panel includes a color film substrate and an array substrate.
  • the array substrate has a pixel structure corresponding to each of the sub-pixel regions in each of the pixel regions.
  • the color filter substrate includes a base substrate, and a black matrix, a plurality of filter layers, and a flat protective layer which are sequentially disposed on the base substrate.
  • the filter layer comprises three different color filter layers, the three different color filter layers being a green filter layer, a red filter layer and a blue filter layer, respectively.
  • the thickness of the green filter layer, the red filter layer and the blue filter layer are equal, and the concentration of the photoresist material in the filter layers of the same color is uniform.
  • the black matrix has a plurality of open areas, each of the open areas of the black matrix and the filter layer covered thereon correspond to one sub-pixel area, and the area of the plurality of open areas on the black matrix is set to follow each open area
  • the corresponding filter layer increases in light transmittance.
  • the portion of the filter layer covering each of the open areas of the black matrix forms a light transmissive area of the filter layer, and the light transmissive area of the filter layer is equal to the area of the open area of the corresponding black matrix.
  • the filter layers covered on the black matrix are respectively a green filter layer, a red filter layer, and a blue filter layer
  • the corresponding sub-pixel regions are respectively a green sub-pixel region and a red sub-pixel.
  • the open area of the black matrix is divided into three types: an open area corresponding to the green sub-pixel area, S R is an open area corresponding to the red sub-pixel area, and S B is a blue sub-pixel area corresponding to Open area.
  • the area of the open area of the black matrix corresponding to the filter layer of the same color is equal, and for the filter layers of different colors, the contrast of the light transmittance of red, green and blue light is:
  • the overshoot ⁇ ⁇ is the smallest, the light transmittance G Y of the green light is the highest, and the light transmittance R Y of the red light is between the blue light and the green color.
  • the area relationship of the three different open areas of the black matrix is thus set to: S G ⁇ S R ⁇ S B .
  • S G : S R : S B 0.5 : 1 : 2.
  • the area of the three open areas of the black matrix can be determined according to the specific requirements of the product.
  • Tristimulus values are usually used to indicate the degree of stimulation of the three primary colors in the color of the human retina.
  • the human eye's perception of color is a combined result of three primary color light stimuli.
  • the sensitivity of the human eye to the three different colors can be calculated according to the stimulation value of each color to the human eye, and therefore, by adjusting the black matrix
  • the area of the three different open areas ie, the light transmissive areas of the three different filter layers
  • can be achieved to achieve the same amount of stimulation of the different colors to the human eye namely:
  • W Y (SR%RY+ S G %GY+ SB%B Y )/3 ( 1 )
  • R Y , G Y , and B Y respectively represent the light transmittance of red light, the light transmittance of green light, and the light transmittance of blue light, and W Y represents the light transmittance of white light, which can be considered as normal after normalization.
  • the light transmittance of the filter layer The light transmittance of the filter layer.
  • the filter layer having a large light transmission area is caused.
  • the overlap width with the black matrix is small, and the overlap width of the filter layer with a small light transmission area and the black matrix is large.
  • the overlapping width relationship between the filter layers of different colors and the black matrix is: the overlap width of the green filter layer and the black matrix AdG > the overlap width of the red filter layer and the black matrix AdR > the overlap width of the blue filter layer and the black matrix AdB.
  • the manufacturing method of the liquid crystal panel includes a step of fabricating a color filter substrate and a step of fabricating an array substrate, wherein the step of fabricating the color filter substrate includes a step of fabricating a black matrix and a step of fabricating a plurality of filter layers, the plurality of a filter layer is disposed on the black matrix.
  • the black matrix is formed to include a plurality of open regions, and the plurality of open regions respectively correspond to the filter layer, the plurality of openings The area of the area increases as the light transmittance of the filter layer corresponding to each open area decreases.
  • the steps of fabricating the color filter substrate are as follows.
  • the fabricated black matrix has a plurality of open regions, and the area of the plurality of open regions on the black matrix increases as the light transmittance of the filter layer corresponding to each open region decreases.
  • the formation of the black matrix can be performed by an exposure development process.
  • Three kinds of openings having different areas are disposed on the mask for fabricating the black matrix, and the three kinds of openings are respectively used to form three kinds of open areas of different areas on the black matrix, and thus the openings on the mask are
  • the area is set according to the difference in light transmittance of the filter layer corresponding to each open area on the black matrix; the area of each open area corresponding to the filter layer of the same color is equal, corresponding to each of the different color filter layers
  • the areas of the open areas are not equal.
  • the area relationship of the three different open areas on the black matrix is: the area of the open area corresponding to the green filter layer ⁇ the area of the open area corresponding to the red filter layer ⁇ the open area corresponding to the blue filter layer Area.
  • the different color filter layers are disposed on the black matrix and overlap the black matrix.
  • the filter layers of different colors include a red filter layer, a green filter layer, and a blue filter layer. Since the areas of the opening regions of the filter layers corresponding to different colors on the black matrix are not equal, the overlapping width between the filter layer having a large light transmission area and the black matrix 2 is small, and the filter layer having a small light transmission area is The overlap width of the black matrix 2 is large.
  • the overlapping width relationship between the filter layer of the different colors and the black matrix is: the overlapping width of the green filter layer and the black matrix AdG > the overlapping width of the red filter layer and the black matrix AdR > the blue filter layer and the black matrix Overlap width AdB.
  • the filter layers of the respective colors overlap with the black matrix to avoid light leakage on both sides of each open area of the black matrix.
  • the filter layers of different colors are formed by using the same mask, that is, the blue filter layer having the largest light transmission area can also have a certain overlapping width with the black matrix.
  • the width of the opening area with the largest area on the black matrix should be less than the width of the blue filter layer, that is, the width of the opening area with the largest area should be smaller than the width of the mask.
  • the widths of the adjacent two filter layers formed by the overlap with the borders of the two adjacent open areas on the black matrix are not equal.
  • the thickness of the green filter layer, the red filter layer, and the blue filter layer are equal, and the concentration of the photoresist material in each of the filter layers of the same color is uniform.
  • step S3) forming a flat protective layer on the substrate on which step S2) is completed, and forming a columnar spacer on the flat protective layer.
  • Flat protective layer 6 eliminates The influence of the angular difference caused by the excessive overlap thickness of each of the filter layers and the black matrix also protects the chemical properties and sputtering resistance of the plurality of filter layers. Then, a columnar spacer 7 is formed on the flat protective layer 6, and the columnar spacer can be formed by exposure development.
  • the embodiment further provides a liquid crystal display comprising a liquid crystal panel, wherein the liquid crystal panel uses the above liquid crystal panel.
  • the image displayed by the liquid crystal display of the liquid crystal panel of the present embodiment has good color coordination and good display quality.
  • the liquid crystal panel in this embodiment is applied to a transflective liquid crystal display.
  • the liquid crystal panel includes a plurality of pixel regions, each of the pixel regions includes a plurality of sub-pixel regions for respectively displaying different colors, and an area of the plurality of sub-pixel regions is set to be transmitted through the sub-pixel regions.
  • the rate is incremented and incremented.
  • the liquid crystal panel includes a color film substrate and an array substrate.
  • the array substrate has a plurality of pixel structures respectively corresponding to respective sub-pixel regions in each of the pixel regions, and each of the pixel structures includes a reflective electrode (or a reflective layer) and a transmissive electrode, each of the sub-pixels
  • the area is divided into a reflective area and a transmissive area, the reflective area corresponding to a reflective electrode or a reflective layer in the pixel structure, the transmissive area corresponding to the transmissive electrode in the pixel structure.
  • the area of the transmissive area of each sub-pixel area is equal or the area ratio remains unchanged, and the area of the reflective area of each sub-pixel area is transparent with the light of each sub-pixel area.
  • the rate of decline increases with decreasing.
  • the area of the transmissive area of each sub-pixel area may be set to increase as the light transmittance of each sub-pixel area decreases, but the proportion of the transmissive area of each sub-pixel area needs to be increased to be smaller than The ratio of the area of the reflective area of the sub-pixel region increases.
  • each pixel region includes three sub-pixel regions, which are a green sub-pixel region, a red sub-pixel region, and a blue sub-pixel region, respectively, the green sub-pixel region, the red sub-pixel region, and The blue sub-pixel areas are used to display green, red, and blue, respectively. Therefore, the area relationship of the green sub-pixel region, the red sub-pixel region, and the blue sub-pixel region is: the area of the green sub-pixel region ⁇ the area of the red sub-pixel region ⁇ the area of the blue sub-pixel region.
  • the color filter substrate includes the substrate 1, and is sequentially disposed on the base.
  • a black matrix 2 on the board 1 a plurality of filter layers, and a flat protective layer 6.
  • the plurality of filter layers may include filter layers of three different colors, and the filter layers of the three different colors are sequentially arranged in parallel.
  • the filter layers of the three different colors are a green filter layer 4, a red filter layer 3, and a blue filter layer 5, respectively.
  • the green filter layer 4, the red filter layer 3, and the blue filter layer 5 correspond to a green sub-pixel region, a red sub-pixel region, and a blue sub-pixel region, respectively.
  • the thicknesses of the green filter layer 4, the red filter layer 3, and the blue filter layer 5 are equal, and the concentration of the photoresist material in each of the filter layers having the same color has a plurality of black matrixes 2
  • An open area, each open area of the black matrix and the filter layer covered thereon correspond to one sub-pixel area, and an area of the plurality of open areas on the black matrix is set to filter corresponding to each open area
  • the light transmission rate of the layer is increased by decreasing.
  • the portion of the filter layer covering each of the open areas of the black matrix forms a light transmissive area of the filter layer, and the light transmissive area is equal to the area of the open area of the corresponding black matrix.
  • the open area of the black matrix includes three types: S G is an open area corresponding to the green sub-pixel area, S R is an open area corresponding to the red sub-pixel area, and S B is an open area corresponding to the blue sub-pixel area.
  • S G is an open area corresponding to the green sub-pixel area
  • S R is an open area corresponding to the red sub-pixel area
  • S B is an open area corresponding to the blue sub-pixel area.
  • the areas of the open areas of the black matrix corresponding to the same color filter layer are equal, and for the filter layers of different colors, the light transmittance of red, green, and blue light is compared.
  • blue light has a minimum light transmittance ⁇
  • green light has a highest light transmittance G Y
  • red light has a light transmittance R Y between blue light and green light, thus three different black matrix
  • the area relationship of the open area is set to: S G ⁇ S R ⁇ S B .
  • SG: S : SB 0.5 : 1 : 2 is preferred.
  • the area of the three open areas of the black matrix can be determined according to the specific requirements of the actual product.
  • a light transmission hole 8 (shown in FIG. 6) is disposed on the filter layer, the red filter layer and the blue filter layer, and the positions of the light transmission holes 8 on the respective filter layers are respectively corresponding to the sub-pixel regions.
  • the reflection area corresponds.
  • ⁇ ⁇ ( ⁇ ) (1 * ⁇ /100)+ ⁇ ⁇ ( ⁇ )*(1 -A/100) 2 ( 2 )
  • represents the light transmittance of the reflection region of the sub-pixel region
  • ⁇ ⁇ ( ⁇ ) represents the light transmittance of the transmission region of the sub-pixel region
  • represents the area of the light transmission hole occupies the reflection region of the sub-pixel region. The proportion of the area.
  • the liquid crystal panel in this embodiment is to achieve the same display effect by using a light-transparent hole of different area size on the filter layer to achieve the same display effect, a convenient way is to According to the area of the light-transmitting holes in the different color filter layers in the prior art, the ratio of the light transmittance of the reflective region to the transmissive region of each sub-pixel region is calculated by the formula (2), and then the calculated ⁇ is obtained.
  • the ratio of ⁇ ( ⁇ ) or ⁇ ⁇ ( ⁇ ) determines the area of the reflective and transmissive regions of the sub-pixel region.
  • the ratio of the light transmission area of each filter layer can be calculated according to the ratio of the area ratio of the different light transmission holes on each filter layer in the prior art.
  • the ratio of the light transmission area of each of the filter layers can be calculated in an inverse proportional relationship.
  • each of the filter layers of different colors in the prior art has the same light transmission area, and the portion of each filter layer corresponding to the transmission region of the sub-pixel region and the portion corresponding to the reflection region
  • the ratio of the light transmission holes in the red filter layer, the green filter layer and the blue filter layer is 1: 2: 0.5, and the area of the light transmission holes in the red filter layer is set to be 1 : 1 .
  • the area of the light transmission hole is 10% of the area of the portion of the red filter layer corresponding to the reflection area of the red sub-pixel area
  • the area of the light transmission hole in the green filter layer is the area of the reflection area 20% (the area of the light transmission hole is 20% of the area of the portion of the green filter layer corresponding to the reflection area of the green sub-pixel area)
  • the area of the light transmission hole in the blue filter layer is 5 of the reflection area % (The area of the light transmission hole is 5% of the area of the portion of the blue filter layer corresponding to the reflection region of the blue sub-pixel region).
  • the areas of the light-transmitting holes in the filter layers of different colors can be set to be equal, and the light-transmissive areas of the filter layers of different colors can be adjusted by adjusting the black matrix.
  • the purpose of adjusting the light transmission area of the filter layers of different colors is achieved, so as to ensure that the areas of the light transmission holes in the filter layers of different colors respectively occupy the respective reflection areas.
  • the area ratio can still maintain a 1: 2: 0.5 relationship.
  • the area of the light transmission hole in the red filter layer is still 10% of the area of the reflection area
  • the area of the light transmission hole in the green filter layer is still 20% of the area of the reflection area
  • the light is transmitted through the blue filter layer.
  • the area of the hole is still 5% of the area of the reflective area.
  • the blue filter The light transmission area in the light layer is increased (even if the area of the portion corresponding to the reflection region in the blue filter layer is increased), and by adjusting the light transmission area of each of the filter layers, on the one hand, the color filter layers have the same transparency.
  • the aperture area still ensures that the ratio of the area of the light-transmissive aperture to the light-transmissive area in each of the different color filter layers is 1: 2: 0.5. That is to say, in this embodiment, the area ratio of each sub-pixel region is changed by using the gamut to ensure the gamut equalization in different working modes.
  • an area of the plurality of open regions on the black matrix is set to increase as the light transmittance of the filter layer corresponding to each of the open regions decreases.
  • the area of the reflective area of each sub-pixel region (or the area ratio of the reflective area and the transmissive area) is adjusted to equalize the color gamut of the reflective area and the transmissive area, that is, the problem of chromatic aberration has been considered. Therefore, in this embodiment, the areas of the light-transmitting holes 8 in the filter layers of different colors can be set to be equal.
  • the light-transmitting holes 8 are formed on the respective filter layers through the mask. Since the areas of the light transmission holes 8 on the filter layers of different colors are equal in this embodiment, In the present embodiment, when the light-transmitting holes are formed by the exposure process, the same mask can be used to fabricate the light-transmissive holes 8 on the filter layers of different colors. However, in the prior art, since different color filter holes are provided on the filter layers of different colors, when the filter layer is formed by the exposure process, it is necessary to use the light-transparent holes of different areas accordingly. Different masks require a plurality of masks having different light transmission hole patterns. In this embodiment, the filter layers of different colors can be fabricated by using only one mask.
  • the filter layers of different colors need to be used with different masks, which greatly saves the manufacturing cost. , streamlined the process.
  • the determination of the area of the light-transmitting holes on the filter layer can be appropriately adjusted according to the specific requirements of the reflectivity and the light transmittance of different liquid crystal display products.
  • the filter layer having a large light transmission area is caused.
  • the overlap width with the black matrix is small, and the overlap width of the filter layer with a small light transmission area and the black matrix is large.
  • the overlapping width relationship between the filter layer of the different colors and the black matrix is: the overlapping width of the green filter layer and the black matrix AdG > the overlapping width of the red filter layer and the black matrix ⁇ dR > blue
  • the filter is set.
  • the size of the light transmission area in the layer is different, different light transmittances have been considered, so that the thickness of each of the filter layers can be set to be uniform, that is, the portion corresponding to the reflection region of the filter layer and the sub-pixel region.
  • the thicknesses of the portions corresponding to the transmissive regions of the sub-pixel regions are equal, and the thicknesses of the filter layers of the different colors may also be set equal, so that the complexity in the fabrication process can be greatly reduced.
  • the method of fabricating the liquid crystal panel includes the steps of fabricating a color filter substrate and the steps of fabricating the array substrate.
  • 2 is a flow chart showing a method of fabricating a color filter substrate in the embodiment. As shown in Fig. 2, the steps of fabricating the color filter substrate are as follows.
  • the fabricated black matrix has a plurality of open regions, and the area of the plurality of open regions on the black matrix is set to be the light transmittance of the filter layer corresponding to each open region. The descending and increasing.
  • the formation of the black matrix 2 can be performed by an exposure developing process.
  • the reticle is provided with three kinds of openings having different areas, and the three kinds of openings are respectively used to form three kinds of open areas of different areas on the black matrix.
  • the area of the opening is set according to the difference in light transmittance of the filter layer corresponding to each opening region on the black matrix.
  • the areas of the respective opening regions corresponding to the filter layers of the same color are equal, and the areas of the respective opening regions corresponding to the filter layers of different colors are not equal.
  • the area relationship of the open areas of the three different areas is: the open area corresponding to the green sub-pixel area S G ⁇ the open area corresponding to the red sub-pixel area S R ⁇ the open area corresponding to the blue sub-pixel area S B
  • the area of the opening area corresponding to the green filter layer ⁇ the area of the opening area corresponding to the red filter layer ⁇ the area of the opening area corresponding to the blue filter layer.
  • the mask for fabricating the black matrix in this embodiment is different from the shape of the mask for fabricating the black matrix in the prior art.
  • the different color filter layers are disposed on the black matrix and overlap the black matrix.
  • the filter layers of different colors include a red filter layer 3, a green filter layer 4, and a blue filter layer 5. Since the areas of the opening regions of the filter layers corresponding to different colors on the black matrix are not equal, the overlapping width between the filter layer having a large light transmission area and the black matrix 2 is small, and the filter layer having a small light transmission area is The overlap width of the black matrix 2 is large. As shown in FIG.
  • the overlapping width relationship between the filter layer of the different colors and the black matrix is: the overlapping width of the green filter layer and the black matrix (10> the overlap width of the red filter layer and the black matrix, the blue filter The overlap width AdB of the layer and the black matrix.
  • the filter layers of the respective colors overlap with the black matrix to avoid light leakage on both sides of each open area of the black matrix.
  • the filter layers of different colors are formed by the same mask, that is, the blue filter layer having the largest light transmission area can be overlapped with the black matrix. Therefore, in this embodiment, it should be ensured that the width of the opening area having the largest area of the black matrix should be smaller than the width of the blue filter layer, that is, the width of the opening area having the largest area should be smaller than the width of the mask.
  • the widths of the adjacent two filter layers formed by the adjacent two adjacent filter regions on the black matrix overlap with each other.
  • the light-transmitting holes 8 may be further formed on the filter layers of different colors.
  • the areas of the light-transmitting holes 8 on the respective filter layers may be equal.
  • the thickness of the green filter layer, the red filter layer, and the blue filter layer are equal, and the concentration of the photoresist material in each filter layer of the same color is uniform, thereby greatly reducing the manufacturing process.
  • Medium The complexity.
  • step S3) forming a flat protective layer on the substrate on which step S2) is completed, and forming a columnar spacer on the flat protective layer.
  • This step can be accomplished in a manner known in the art, and is only briefly described herein.
  • a flat protective layer 6 is formed on the substrate on which the step 2) is completed, and the flat protective layer 6 not only eliminates the influence of the angular difference caused by the excessive thickness of the overlapping layers of the respective filter layers and the black matrix, but also The chemical and sputtering resistance of the plurality of filter layers are protected.
  • a columnar spacer 7 is formed on the flat protective layer 6, and as shown in Figs. 8 and 9, the column spacer can be formed by exposure development.
  • the step of fabricating the array substrate includes the step of fabricating a plurality of pixel structures, and each of the fabricated pixel structures corresponds to each of the sub-pixel regions.
  • Each of the fabricated pixel structures includes a reflective electrode and a transmissive electrode, and each of the sub-pixel regions is divided into a reflective region and a transmissive region, and the reflective electrode in the fabricated pixel structure corresponds to the reflective region, and the fabricated pixel structure
  • the transmissive electrode in the middle corresponds to the transmissive area.
  • the embodiment further provides a transflective liquid crystal display comprising a liquid crystal panel, wherein the liquid crystal panel uses the liquid crystal panel described above.
  • the displayed image has good color balance and coordination, and the display quality is good.
  • the shape of the light-transmitting holes 8 in the filter layer is not limited to the square shape in Fig. 6, and other shapes such as a circle, a rhombus, a hexagon, etc. may be used.
  • the difference between this embodiment and the embodiment 2 is that in the liquid crystal panel of the embodiment, the light-transmissive holes are not formed in the reflection regions of the filter layers of the color filter substrate.
  • the areas of the transmissive regions of the sub-pixel regions are equal, and the area of the reflective regions of the sub-pixel regions increases as the light transmittance of each sub-pixel region decreases.
  • the transmissive region of the sub-pixel region be located in the middle of the reflective region.
  • the area ratio of the reflective region to the transmissive region can be changed.
  • the appropriate ratio of the area of the reflective area to the transmissive area can be calculated to ensure different working modes.
  • the gamut is balanced. That is to say, in the embodiment, the method of changing the area ratio of the reflective area to the transmissive area in the light transmissive area of each sub-pixel area is used instead of the prior art to open different areas of the transparent aperture on different filter layers. Measures to ensure gamut equalization in different modes of operation.
  • the embodiment further provides a transflective liquid crystal display comprising a liquid crystal panel, wherein the liquid crystal panel uses the liquid crystal panel described above.
  • Embodiments of the present invention make the display color of the liquid crystal panel more harmonious by designing the light transmission areas of different sub-pixel regions to be different, especially for the transflective liquid crystal panel, the transmissive region and the reflective region can be made.
  • the color gamut is relatively balanced; at the same time, since the filter layers of different colors may have equal thicknesses in the transmissive region and the reflective region, and the filter layers of different colors may have equal thicknesses, thereby avoiding overlapping of adjacent filter layers. It causes a large angular difference, which greatly simplifies the manufacturing process of the liquid crystal panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶面板及其制作方法以及液晶显示器,所述液晶面板具有多个像素区域,所述每个像素区域包括多个分别用于显示不同颜色的次像素区域,所述每个像素区域中,所述多个次像素区域的面积设置为随着各次像素区域的光透过率的递降而递增。

Description

液晶面板及其制作方法以及液晶显示器 技术领域
本发明的实施例涉及一种液晶面板、 该液晶面板的制作方法以及包括该 液晶面板的液晶显示器。 背景技术
目前, 液晶显示器( Liquid Crystal Display, LCD )以其优异的性能与成 熟的技术成为市场上的主流产品, 液晶面板是液晶显示器进行显示的关键部 件。 液晶面板主要由彩膜基板和阵列基板相对设置而成, 所述彩膜基板和阵 列基板之间充满液晶。
现有的液晶显示器根据照明光源的不同,可以分为透射式( transmissive )、 反射式( reflective )和半反半透式( transflective ) 。 目前的液晶面板通常包 括多个像素区域,每个像素区域通常包括三个用于显示三原色的次像素区域, 分别为红色次像素区域、 绿色次像素区域和蓝色次像素区域, 且上述三个次 像素区域的面积相等。 由于人眼对红、 绿、 蓝三原色的敏感度不同, 这就使 得液晶显示器在进行色彩显示时, 容易出现色彩不协调的现象, 特别是对于 半反半透式液晶显示器而言这种色彩不协调的现象更为突出。
透射式液晶显示器是以自带的背光源作为光源, 背光源发出的光线直接 对液晶面板进行照明, 该液晶显示器的对比度高、 亮度好, 色纯度相对较高, 但其光源传送率不到 10%, 功耗大, 且在强环境光下可视性差; 反射式液晶 显示器以环境光作为光源, 通过液晶面板中的反射层对环境光进行反射而对 液晶面板进行照明, 因而该液晶显示器极其节能, 功耗低, 在强环境光下可 视性好, 但对比度低、 色饱和度差, 在夜晚或微光下可视性差。 在上述情况 下, 半反半透式液晶显示器应运而生, 由于其兼具反射式液晶显示器与透射 式液晶显示器的优点, 因而在电子设备特别是在便携式电子设备中得到了广 泛的应用。
半反半透式液晶显示器包括有液晶面板以及背光源。 液晶面板包括阵列 基板和彩膜基板, 阵列基板通常具有多个像素结构, 每个像素结构包括反射 电极(或者为涂布形成的反射层)和透射电极, 反射电极用于反射外界环境 光; 彩膜基板包括黑矩阵和设置在黑矩阵上的滤光层。 所述黑矩阵具有面积 相等的多个开口区域, 黑矩阵上的每一个开口区域以及该开口区域上覆盖的 滤光层对应一个次像素区域, 每个次像素区域划分为反射区和透射区, 像素 结构中的反射电极与所述反射区对应, 像素结构中的透射电极与所述透射区 对应。
半反半透式液晶显示器的工作模式为: 当周围环境光较暗时, 背光源打 开, 背光源发出的光线穿过透射电极, 然后经滤光层后即出光照明所述液晶 面板, 从而进入人的视野, 此时该液晶显示器以透射模式显示图像; 而在明 亮的环境光下, 背光源关闭, 外部的环境光先从外界第一次经过滤光层入射 到反射电极或反射层, 经反射电极或反射层反射后光线第二次经过滤光层后 才出光照明所述液晶面板, 从而进入人的视野, 即利用环境光的反射来显示 图像, 此时该液晶显示器以反射模式显示图像。
从以上半反半透式液晶显示器的工作模式可见, 在反射模式下, 外部光 线两次经过次像素区域的反射区, 而在透射模式下, 背光源发出的光线只有 一次经过次像素区域的透射区。 这样, 虽然半反半透式液晶显示器中不同光 源发出的光均经过同一滤光层后出光, 但不同的光源发出的光由于经过滤光 层的次数不同, 使得液晶显示器在不同模式下工作时, 其反射区的色域差别 (色差)和透射区的色域差别较大, 导致显示器显示的图像出现色彩不协调 的情况。
为改善半反半透式液晶显示器在不同工作模式下出现的图像色彩不协调 的情况, 现有技术一般通过釆用如下措施来解决问题。
第一种措施是, 保持每个滤光层的厚度均一, 也就是说, 使每个滤光层 上与次像素区域的反射区对应的部分以及与透射区对应的部分的厚度保持相 同, 而使该滤光层上与反射区对应的部分以及与透射区对应的部分分别釆用 不同色彩浓度的同色光阻材料形成。 因而, 这种滤光层在制作过程中需要更 换不同浓度的光阻材料, 制作工艺较复杂。
第二种措施是, 使每个滤光层上与次像素区域的反射区对应的部分以及 与透射区对应的部分釆用相同浓度的同色光阻材料, 而该滤光层上与反射区 对应的部分以及与透射区对应的部分釆用不同的厚度制成, 即该滤光层的厚 度不均一。 图 1为釆用所述第二种措施制成的彩膜基板的示意图。 如图 1所 示, 由于显示不同颜色的各次像素区域的面积相等, 在滤光层上, 与次像素 区域的反射区对应的部分以及与次像素区域的透射区对应的部分的光阻材料 浓度相等, 但两者的厚度不同, 这种滤光层在制作过程中需要增加一次涂布 工艺、 并经过两次曝光显影的工艺才能形成, 浪费了光阻材料, 而且由于制 成的滤光层厚度的增加而容易造成相邻两滤光层之间的重叠, 从而导致角段 差明显, 最终影响液晶显示器的显示效果。 公开号为 CN 101029946与 CN 1731257A 的中国专利申请中各公开了一种分别针对同一次像素区域的反射 区和透射区来制作厚度不均一的滤光层的方法, 这些措施不仅增加了工艺步 骤, 使制作工艺变得更复杂, 而且光阻材料的利用率也比较低, 不利于实现 产业化。
第三种措施是, 在不同颜色的滤光层上与次像素区域的反射区对应的位 置分别开设不同面积的透光孔来提高反射区的光线亮度和光透过率。 但是, 由于不同颜色的滤光层上开设的透光孔的面积大小不同, 在制作过程中需要 针对不同颜色的滤光层设计多个掩模板, 不仅使工艺变得更复杂, 而且使得 制作成本较高。 发明内容 且色彩协调性较好的液晶面板及其制作方法、 以及包含该液晶面板的液晶显 示器。
本发明的一方面提供了一种液晶面板, 其包括多个像素区域, 所述每个 像素区域包括多个分别用于显示不同颜色的次像素区域, 所述每个像素区域 中, 所述多个次像素区域的面积设置为随着各次像素区域的光透过率的递降 而递增。
由于不同的颜色 (比如红、 绿、 蓝三原色) 由不同的光谱决定了其分别 具有不同的光透过率。 例如, 绿光、 红光、 蓝光的光透过率依次降低, 那么 绿色显得更加明亮,蓝色显得更加暗淡,红色的亮度则居于绿色和蓝色之间。 这样就造成了人眼对红、绿、蓝三原色的敏感度不同的特点, 即人眼对绿色、 红色、 蓝色的敏感度依次降低。 对于液晶面板来说, 由于各个次像素区域分 别对应不同颜色的滤光层, 通过使液晶面板中不同颜色的滤光层所对应的次 像素区域的面积不相等, 即可相应提高由于光透过率低而使得人眼敏感度低 的滤光层所对应的次像素区域的透光面积(比如通过增加蓝色次像素区域的 面积可相应提高其光透过率) , 或者相应降低光透过率高而使得人眼敏感度 高的滤光层所对应的次像素区域的透光面积, 从而可以削弱三种不同颜色的 滤光层所对应的次像素区域在目视上的色彩不协调现象。
对于该液晶面板, 例如, 所述每个像素区域包括三个次像素区域, 所述 三个次像素区域分别为绿色次像素区域、红色次像素区域和蓝色次像素区域, 所述绿色次像素区域、 红色次像素区域和蓝色次像素区域的面积关系为: 绿 色次像素区域的面积 <红色次像素区域的面积<蓝色次像素区域的面积。
对于该液晶面板, 例如, 所述液晶面板包括彩膜基板和阵列基板, 所述 彩膜基板包括黑矩阵和设置在所述黑矩阵上的多个滤光层, 所述黑矩阵具有 多个开口区域, 黑矩阵的每一个开口区域及其上所覆盖的滤光层对应一个次 像素区域, 所述黑矩阵上的多个开口区域的面积设置为随着每个开口区域所 对应的滤光层的光透过率的递降而递增。
对于该液晶面板, 例如, 所述阵列基板具有与所述每个像素区域中的各 次像素区域分别对应的多个像素结构, 所述每个像素结构包括反射电极和透 射电极, 所述每个次像素区域划分为反射区和透射区, 所述反射区与所述像 素结构中的反射电极对应, 所述透射区与所述像素结构中的透射电极对应, 所述各次像素区域的反射区的面积随着各次像素区域的光透过率的递降而递 增。
对于该液晶面板, 例如, 各次像素区域的透射区的面积相等或面积比例 不变, 或者, 所述各次像素区域的透射区的面积也随着各次像素区域的光透 过率的递降而递增, 且每个次像素区域的透射区增大的比例小于该次像素区 域的反射区的面积增大的比例。
在透射区面积保持不变的情况下, 通过依次增大各次像素区域的反射区 的面积, 相对于透射模式而言, 可以提高反射模式下的光透过率, 从而能够 减小液晶显示器在两种不同工作模式的色差, 达到色彩均衡的效果。
对于该液晶面板, 例如, 所述滤光层包括绿色滤光层、 红色滤光层和蓝 色滤光层, 所述绿色滤光层、 红色滤光层和蓝色滤光层的厚度相等, 且颜色 相同的滤光层中光阻材料的浓度均一。
对于该液晶面板, 例如, 在所述绿色滤光层、 红色滤光层和蓝色滤光层 中, 各滤光层上与各次像素区域的反射区对应的部位上均开设有透光孔, 所 述各滤光层上的透光孔的面积相等。
本发明的另一个方面提供了一种液晶显示器, 包括液晶面板, 所述液晶 面板为上述任一的液晶面板。
本发明的再一个方面提供了一种液晶面板的制作方法, 包括制作彩膜基 板的步骤和制作阵列基板的步骤, 所述制作彩膜基板的步骤中包括制作黑矩 阵的步骤和制作多个滤光层的步骤, 所述多个滤光层设置在所述黑矩阵上, 其中, 在制作黑矩阵的步骤中, 所制作的黑矩阵包括多个开口区域, 所述多 个开口区域分别与所述滤光层对应, 所述多个开口区域的面积随着每个开口 区域所对应的滤光层的光透过率的递降而递增。
对于该方法, 例如, 所制作的滤光层包括绿色滤光层、 红色滤光层和蓝 色滤光层,在所述黑矩阵上,绿色滤光层对应的开口区域的面积 <红色滤光 层对应的开口区域的面积 <蓝色滤光层对应的开口区域的面积。
对于该方法, 例如, 所述绿色滤光层、 红色滤光层和蓝色滤光层的厚度 相等, 且各个相同颜色的滤光层中光阻材料的浓度均一。
对于该方法, 例如, 所述液晶面板包括多个像素区域,所述每个像素区域 包括三个次像素区域, 所述三个次像素区域分别为绿色次像素区域、 红色次 像素区域和蓝色次像素区域, 所述绿色滤光层、 红色滤光层和蓝色滤光层分 别对应绿色次像素区域、 红色次像素区域和蓝色次像素区域。
对于该方法, 例如, 所述制作阵列基板的步骤中包括制作多个像素结构 的步骤, 所制作的各像素结构分别与各次像素区域对应, 所制作的每个像素 结构包括反射电极和透射电极,所述每个次像素区域划分为反射区和透射区, 所述像素结构中的反射电极与所述反射区对应, 所述像素结构中的透射电极 与所述透射区对应, 所述各滤光层上与各次像素区域的反射区对应的部分上 均开设有透光孔, 所述各滤光层上的透光孔的面积相等。
对于该方法, 例如, 所述多个像素结构中, 每个像素结构中的反射电极 的面积随着其所对应的次像素区域的光透过率的递降而递增, 所述多个像素 结构中的透射电极的面积均相等, 或者每个像素结构中的透射电极的面积也 随着各次像素区域的光透过率的递降而递增, 且每个像素结构中透射电极增 大的比例小于该像素结构中的反射电极的面积增大的比例。
釆用本发明实施例的液晶面板的液晶显示器的色彩协调性好, 且制作工 艺简单。 特别是对于半反半透式液晶显示器而言, 由于其工作模式不同而釆 用不同的光源时, 不同的光线分别经过次像素区域的反射区和透射区, 造成 目视上的色彩不均衡现象变得更为明显; 然而, 釆用本发明实施例中的液晶 面板的液晶显示器, 不仅色域均衡, 且制作工艺较现有的半反半透式液晶显 示器而言, 其工艺简单, 方便, 不会引起较大角段差, 通过釆用同一掩模板 即能够形成不同颜色的滤光层, 极大地节约了制作成本。 因而, 本发明液晶 面板特别适用于在半反半透式液晶显示器中使用。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1 是现有技术半反半透式液晶显示器的液晶面板中彩膜基板的示意 图;
图 2是本发明实施例 2中彩膜面板的制作方法流程图;
图 3是本发明实施例 2彩膜基板的制作过程中在基板上形成黑矩阵后的 示意图;
图 4是图 3的俯视图;
图 5是实施例 2中彩膜基板的制作过程中在基板上形成滤光层后的示意 图;
图 6是图 5的俯视图;
图 7是实施例 2中在滤光层上形成平坦保护层后的示意图;
图 8是实施例 2中在平坦保护层上形成柱状隔垫物的示意图;
图 9是制作完成后的彩膜基板的俯视图。
附图标记
1 _基板; 2 -黑矩阵; 3 _红色滤光层; 4 _绿色滤光层; 5 _蓝色滤光层; 6 _平坦保护层; 7 _柱状隔垫物; 8 -透光孔。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一" 、 "第二" 以及类似的词语并不表示任何顺序、 数量或者重要性,而只是用来区分不同的组成部分。同样, "一个 "或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "包括" 或者 "包 含" 等类似的词语意指出现在 "包括" 或者 "包含" 前面的元件或者物件涵 盖出现在 "包括" 或者 "包含" 后面列举的元件或者物件及其等同, 并不排 除其他元件或者物件。 "连接" 或者 "相连" 等类似的词语并非限定于物理 的或者机械的连接, 而是可以包括电性的连接, 不管是直接的还是间接的。 "上" 、 "下" 、 "左" 、 "右" 等仅用于表示相对位置关系, 当被描述对 象的绝对位置改变后, 则该相对位置关系也可能相应地改变。
本发明的实施例提供了一种液晶面板,所述液晶面板包括多个像素区域, 所述每个像素区域包括多个分别用于显示不同颜色的次像素区域; 所述每个 像素区域中, 所述多个次像素区域的面积设置为随着各次像素区域的光透过 率的递降而递增。
本发明的另一个实施例提供了一种液晶显示器, 包括液晶面板, 所述液 晶面板釆用上述的液晶面板。
本发明的再一个实施例一种液晶面板的制作方法, 包括制作彩膜基板的 步骤和制作阵列基板的步骤, 所述制作彩膜基板的步骤中包括制作黑矩阵的 步骤和制作多个滤光层的步骤, 所述多个滤光层设置在所述黑矩阵上; 在制 作黑矩阵的步骤中, 所制作的黑矩阵包括多个开口区域, 所述多个开口区域 分别与所述滤光层对应, 所述多个开口区域的面积随着每个开口区域所对应 的滤光层的光透过率的递降而递增。
实施例 1 本实施例中, 该液晶面板适于在透射式液晶显示器或反射式液晶显示器 中使用。
该液晶面板包括多个像素区域, 所述每个像素区域包括多个分别用于显 示不同颜色的次像素区域, 所述每个像素区域中, 所述多个次像素区域的面 积设置为随着各次像素区域的光透过率的递降而递增。
例如, 本实施例中, 每个像素区域包括三个次像素区域, 所述三个次像 素区域分别为绿色次像素区域、 红色次像素区域和蓝色次像素区域, 所述绿 色次像素区域、 红色次像素区域和蓝色次像素区域分别用于显示绿色、 红色 和蓝色; 所述绿色次像素区域、 红色次像素区域和蓝色次像素区域的面积关 系为: 绿色次像素区域的面积<红色次像素区域的面积<蓝色次像素区域的 面积。
该液晶面板包括彩膜基板和阵列基板。 所述阵列基板具有与所述每个像 素区域中的各个次像素区域分别对应的像素结构。
本实施例中, 所述彩膜基板包括衬底基板、 以及依次设置在衬底基板上 的黑矩阵、 多个滤光层和平坦保护层。 滤光层包括三种不同颜色的滤光层, 所述三种不同颜色的滤光层分别是绿色滤光层、 红色滤光层和蓝色滤光层。 本实施例中, 所述绿色滤光层、 红色滤光层和蓝色滤光层的厚度相等, 且各 颜色相同的滤光层中光阻材料的浓度均一。
黑矩阵具有多个开口区域, 黑矩阵的每一个开口区域及其上所覆盖的滤 光层对应一个次像素区域, 所述黑矩阵上的多个开口区域的面积设置为随着 每个开口区域所对应的滤光层的光透过率的递降而递增。 所述滤光层覆盖在 黑矩阵的每个开口区域上的部分形成了该滤光层的透光面积, 所述滤光层的 透光面积与其对应的黑矩阵的开口区域的面积相等。 例如, 本实施例中, 黑 矩阵上覆盖的滤光层分别为绿色滤光层、 红色滤光层和蓝色滤光层, 则其分 别对应的次像素区域为绿色次像素区域、红色次像素区域和蓝色次像素区域, 则黑矩阵的开口区域分为三种: 为绿色次像素区域对应的开口区域, SR 为红色次像素区域对应的开口区域, SB为蓝色次像素区域对应的开口区域。 颜色相同的滤光层对应的黑矩阵的开口区域的面积相等, 而对于颜色不同的 滤光层而言, 由于红光、 绿光、 蓝光的光透过率的对比关系为: 蓝光的光透 过率 Βγ最小, 绿光的光透过率 GY最高, 红光的光透过率 RY介于蓝光和绿 光之间, 因而将黑矩阵的三种不同的开口区域的面积关系设置为: SG < SR < SB。 优选 SG: SR: SB =0.5 : 1 : 2。
相应地,如图 6所示, 不同颜色的滤光层分别覆盖在黑矩阵 2上, 其中, 蓝色滤光层的透光面积 S'B >红色滤光层的透光面积 S'R >绿色滤光层的透光 面积 S'c}。
例如, 所述黑矩阵的三种开口区域的面积可以根据产品的具体要求来确 定。
通常釆用三刺激值来表示引起人眼视网膜对颜色中三种原色的刺激程 度。 根据三原色理论, 人眼对颜色的感觉是由三种原色光刺激的综合结果。 在本实施例中, 根据红、 绿、 蓝三种不同颜色的光语, 按照各个颜色对人眼 的刺激值可以计算得出人眼对三种不同颜色的敏感度, 因此, 通过调节黑矩 阵的三种不同开口区域的面积(即三种不同滤光层的透光面积) 大小可以达 到使不同颜色对人眼的刺激量相同的效果, 即:
WY=(SR%RY+ SG%GY+ SB%BY)/3 ( 1 )
RY 、 GY、 BY分别表示红光的光透过率、 绿光的光透过率和蓝光的光透 过率, WY表示白光的光透过率, 归一化后可以认为是滤光层的光透过率。
在本实施例中, 由于黑矩阵上对应相同颜色的滤光层的开口区域的面积 相等, 而对应不同颜色的滤光层的开口区域的面积不相等, 导致透光面积较 大的滤光层与黑矩阵的重叠宽度较小, 透光面积较小的滤光层与黑矩阵的重 叠宽度较大。 不同颜色的滤光层与黑矩阵的重叠宽度关系为: 绿色滤光层与 黑矩阵的重叠宽度 AdG >红色滤光层与黑矩阵的重叠宽度 AdR >蓝色滤光 层与黑矩阵的重叠宽度 AdB。
所述液晶面板的制作方法包括制作彩膜基板的步骤和制作阵列基板的步 骤, 所述制作彩膜基板的步骤中包括制作黑矩阵的步骤和制作多个滤光层的 步骤, 所述多个滤光层设置在所述黑矩阵上, 在制作黑矩阵的步骤中, 所制 作的黑矩阵包括多个开口区域, 所述多个开口区域分别与所述滤光层对应, 所述多个开口区域的面积随着每个开口区域所对应的滤光层的光透过率的递 降而递增。
例如, 本实施例中, 制作彩膜基板的步骤如下所述。
S1 )在基板上形成黑矩阵。 所制作的黑矩阵具有多个开口区域, 所述黑矩阵上的多个开口区域的面 积随着每个开口区域所对应的滤光层的光透过率的递降而递增。
在该步骤中, 黑矩阵的形成可釆用曝光显影工艺。 在用于制作黑矩阵的 掩模板上设置有面积不同的三种开口, 所述三种开口分别用于形成黑矩阵上 的不同面积的三种开口区域, 因而所述掩膜板上的开口的面积根据黑矩阵上 的各开口区域所对应的滤光层的光透过率的不同来进行设置; 对应相同颜色 的滤光层的各个开口区域的面积相等, 对应不同颜色的滤光层的各个开口区 域的面积不相等。 本实施例中, 黑矩阵上, 三种不同开口区域的面积关系为: 绿色滤光层对应的开口区域的面积 <红色滤光层对应的开口区域的面积 <蓝 色滤光层对应的开口区域的面积。
S2 )在黑矩阵上形成不同颜色的滤光层。
所述不同颜色的滤光层设置在黑矩阵上并与黑矩阵重叠。 本实施例中, 所述不同颜色的滤光层包括红色滤光层、 绿色滤光层和蓝色滤光层。 由于黑 矩阵上对应不同颜色的滤光层的开口区域的面积不相等, 导致透光面积较大 的滤光层与黑矩阵 2的重叠宽度较小, 而透光面积较小的滤光层与黑矩阵 2 的重叠宽度较大。 所述不同颜色的滤光层与黑矩阵的重叠宽度关系为: 绿色 滤光层与黑矩阵的重叠宽度 AdG >红色滤光层与黑矩阵的重叠宽度 AdR > 蓝色滤光层与黑矩阵的重叠宽度 AdB。
在实际制作工艺中, 要求各个颜色的滤光层与黑矩阵均有重叠, 以避免 黑矩阵的各开口区域的两侧产生漏光现象。 在本实施例中, 各个不同颜色的 滤光层均釆用同一掩模板形成, 即只要保证透光面积最大的蓝色滤光层也能 与黑矩阵有一定的重叠宽度, 因此, 本实施例中应保证黑矩阵上面积最大的 开口区域的宽度应小于蓝色滤光层的宽度, 即应保证该面积最大的开口区域 的宽度小于掩模板的宽度。 制作形成的相邻两个滤光层分别与黑矩阵上两相 邻的开口区域的边框重叠的宽度不相等。
在本实施例中,所述绿色滤光层、红色滤光层和蓝色滤光层的厚度相等, 且各相同颜色的滤光层中光阻材料的浓度均一。
S3 )在完成步骤 S2 )的基板上形成平坦保护层, 在所述平坦保护层上形 成柱状隔垫物。
该步骤可以釆用已知的操作, 这里只做简单介绍。 平坦保护层 6既消除 了各个滤光层与黑矩阵的重叠厚度过大造成的角段差的影响 , 同时也保护了 多个滤光层的化学性和耐溅射性。 然后, 再在平坦保护层 6上形成柱状隔垫 物 7 , 所述柱状隔垫物可釆用曝光显影法形成。
制作阵列基板的步骤与现有技术中相同, 这里不再重复叙述。
本实施例还提供一种液晶显示器, 包括液晶面板, 所述液晶面板釆用上 述的液晶面板。
釆用本实施例液晶面板的液晶显示器所显示的图像色彩协调性好, 显示 品质好。
实施例 2
本实施例中的液晶面板应用于半反半透式液晶显示器中。
该液晶面板包括多个像素区域, 所述每个像素区域包括多个分别用于显 示不同颜色的次像素区域, 所述多个次像素区域的面积设置为随着各次像素 区域的光透过率的递降而递增。
本实施例中, 该液晶面板包括彩膜基板和阵列基板。 所述阵列基板具有 与所述每个像素区域中的各次像素区域分别对应的多个像素结构, 所述每个 像素结构包括反射电极(或者反射层)和透射电极, 所述每个次像素区域划 分为反射区和透射区, 所述反射区与像素结构中的反射电极或反射层对应, 所述透射区与所述像素结构中的透射电极对应。
例如, 本实施例中, 所述多个次像素区域中, 各次像素区域的透射区面 积相等或者面积比例保持不变, 各次像素区域的反射区的面积随着各次像素 区域的光透过率的递降而递增。
当然, 也可以将所述各次像素区域的透射区的面积设置为随着各次像素 区域的光透过率的递降而递增, 但需要保证每个次像素区域的透射区增大的 比例小于该次像素区域的反射区的面积增大的比例。
例如, 每个像素区域包括三个次像素区域, 所述三个次像素区域分别为 绿色次像素区域、红色次像素区域和蓝色次像素区域,所述绿色次像素区域、 红色次像素区域和蓝色次像素区域分别用于显示绿色、 红色和蓝色。 因此, 所述绿色次像素区域、 红色次像素区域和蓝色次像素区域的面积关系为: 绿 色次像素区域的面积 <红色次像素区域的面积 <蓝色次像素区域的面积。
如图 4-6所示, 本实施例中, 彩膜基板包括基板 1、 以及依次设置在基 板 1上的黑矩阵 2、多个滤光层和平坦保护层 6。多个滤光层可以包括三种不 同颜色的滤光层, 所述三种不同颜色的滤光层依次平行排列。 所述三种不同 颜色的滤光层分别是绿色滤光层 4、红色滤光层 3和蓝色滤光层 5。所述绿色 滤光层 4、 红色滤光层 3和蓝色滤光层 5分别对应绿色次像素区域、 红色次 像素区域和蓝色次像素区域。本实施例中, 所述绿色滤光层 4、 红色滤光层 3 和蓝色滤光层 5的厚度相等, 且各个颜色相同的滤光层中光阻材料的浓度均 黑矩阵 2具有多个开口区域, 黑矩阵的每一个开口区域及其上所覆盖的 滤光层对应一个次像素区域, 所述黑矩阵上的多个开口区域的面积设置为随 着每个开口区域所对应的滤光层的光透过率的递降而递增。 所述滤光层覆盖 在黑矩阵的每个开口区域上的部分形成了该滤光层的透光面积, 所述透光面 积与其对应的黑矩阵的开口区域的面积相等。 例如, 黑矩阵的开口区域包括 三种: SG为绿色次像素区域对应的开口区域, SR为红色次像素区域对应的开 口区域, SB为蓝色次像素区域对应的开口区域。 如图 4所示, 颜色相同的滤 光层对应的黑矩阵的开口区域的面积相等, 而对于颜色不同的滤光层而言, 由于红光、 绿光、 蓝光的光透过率的对比关系为: 蓝光的光透过率 ΒΓ最小, 绿光的光透过率 GY最高, 红光的光透过率 RY介于蓝光和绿光之间, 因而将 黑矩阵的三种不同的开口区域的面积关系设置为: SG < SR < SB。 其中, 优 选 SG: S : SB =0.5 : 1 : 2。
相应地, 如图 6所示, 不同颜色的滤光层分别覆盖在黑矩阵 2上, 蓝色 滤光层的透光面积 S'B >红色滤光层的透光面积 S'R >绿色滤光层的透光面积
S,G
所述黑矩阵的三种开口区域的面积可以根据实际产品的具体要求来确 定。
由于该液晶面板用于半反半透式液晶显示器中, 为了减小液晶显示器在 不同工作模式下的色差, 需要提高各次像素区域的反射区的光线亮度和光透 过率, 因此在所述绿色滤光层、 红色滤光层和蓝色滤光层上均开设有透光孔 8 (如图 6所示), 所述透光孔 8在各滤光层上的位置分别与次像素区域的反 射区对应。 本实施例中, 优选所述不同颜色的滤光层上的透光孔 8的面积均 相等。 在滤光层上具有透光孔的情况下,如果各次像素区域的透射区面积相等, 只要保证各次像素区域的反射区的面积随着各次像素区域的光透过率的降低 而增大, 就能够达到减小液晶显示器在不同工作模式下的色差。 然而, 为了 达到使液晶显示器在不同工作模式下的基本无色差的效果, 也就是说, 需要 保证次像素区域的反射区和透射区的光透过率基本相等, 则需要对各次像素 区域的面积比例进行精确计算。
透光孔的面积与次像素区域的反射区和透射区的光透过率的关系如下式 所示:
Τκ(λ)=(1 * Α/100)+Ττ(λ)*(1 -A/100)2 ( 2 )
(λ)表示次像素区域的反射区的光透过率, Ττ (λ)表示次像素区域的透 射区的光透过率, Α表示透光孔的面积占所述次像素区域的反射区面积的比 例。
当滤光层上无透光孔 8 (即透光孔 8的面积为 0 )时,反射区与透射区的 光透过率的关系为:
Τκ(λ) = Ττ(λ) ( 3 )
从公式( 3 )可知,通过在滤光层上对应次像素区域的反射区的位置设置 透光孔 8, 可以调节反射区与透射区的光透过率的比值。 也就是说, 如果要 保证反射区与透射区的色域均衡, 即保证 (λ) = Ττ(λ), 则只要根据不同产 品中反射区与透射区的具体的光透过率来相应调整透光孔 8 的面积大小即 可。
如果要使本实施例中的液晶面板与现有技术中通过在滤光层上设置不同 面积大小的透光孔来达到色域均衡的液晶面板达到相同的显示效果, 一个比 较便捷的方式是, 根据现有技术中不同颜色滤光层中的透光孔的面积利用公 式( 2 )计算出各次像素区域的反射区与透射区的光透过率的比值关系, 然后 再通过计算得到的 Τκ (λ)或 Ττ(λ)的比值来确定次像素区域的反射区和透射区 的面积。 实际操作过程中, 各滤光层的透光面积比例可根据现有技术中各滤 光层上不同透光孔的面积比例关系算出。 例如, 根据现有技术中各滤光层上 透光孔面积比率, 按照相反比例关系可以算出各滤光层的透光面积的比例。 一个具体的例子是, 现有技术中各个不同颜色的滤光层均具有相同的透光面 积, 而各滤光层上与次像素区域的透射区对应的部分和与反射区对应的部分 的比例为 1 : 1 , 其中红色滤光层、 绿色滤光层和蓝色滤光层中透光孔的面积 比率为 1 : 2: 0.5, 设定红色滤光层中透光孔的面积为反射区面积的 10% (透 光孔的面积为该红色滤光层中对应红色次像素区域的反射区的部分的面积的 10% ) , 绿色滤光层中透光孔的面积为反射区面积的 20% (透光孔的面积为 该绿色滤光层中对应绿色次像素区域的反射区的部分的面积的 20% ) , 蓝色 滤光层中透光孔的面积为反射区面积的 5% (透光孔的面积为该蓝色滤光层 中对应蓝色次像素区域的反射区的部分的面积的 5% ) 。 则, 对于本实施例 而言, 可将各种不同颜色的滤光层中的透光孔的面积设置为相等, 而调整各 不同颜色的滤光层的透光面积, 可以通过调整黑矩阵上分别对应不同颜色滤 光层的各开口区域的大小来达到调整各不同颜色的滤光层的透光面积的目 的, 以保证不同颜色的滤光层中各透光孔的面积分别占各反射区面积的比率 仍然能保持 1 : 2: 0.5的关系。 也即, 使得红色滤光层中透光孔的面积仍然 为反射区面积的 10%,绿色滤光层中透光孔的面积仍然为反射区面积的 20%, 蓝色滤光层中透光孔的面积仍然为反射区面积的 5%。 此时, 釆用的方式可 如下所述。 保持红色滤光层中透光孔以及透光面积不变, 而将绿色滤光层中 的透光面积减小 (使绿色滤光层中对应反射区的部分的面积减小) , 蓝色滤 光层中透光面积增大(即使蓝色滤光层中对应反射区的部分的面积增大) , 通过调整各滤光层的透光面积, 一方面使各色滤光层均具有相同的透光孔面 积, 另一方面仍然还能保证各不同颜色滤光层中透光孔与透光面积的面积比 率为 1 : 2: 0.5。 也就是说, 本实施例中通过釆用改变各次像素区域的面积比 保证不同工作模式下的色域均衡。
本实施例中, 所述黑矩阵上的多个开口区域的面积设置为随着每个开口 区域所对应的滤光层的光透过率的递降而递增。
由于本实施例中通过对各次像素区域的反射区的面积(或者反射区和透 射区的面积比值)进行调整已经使反射区与透射区的色域达到均衡, 即已经 考虑了色差的问题, 因此本实施例中可将不同颜色的滤光层中的透光孔 8的 面积设置为相等。
本实施例中, 在各滤光层制成完成后, 通过掩模板在各滤光层上形成透 光孔 8。 由于本实施例不同颜色的滤光层上各透光孔 8的面积相等, 因此, 在本实施例中釆用曝光工艺制作透光孔时, 可以釆用同一块掩模板来制作不 同颜色的滤光层上的透光孔 8。 但是在现有技术中, 由于不同颜色的滤光层 上开设有不同面积的透光孔, 因此在釆用曝光工艺制作滤光层时, 需要才艮据 不同面积的透光孔相应地釆用不同的掩模板, 因而需要制作多个具有不同透 光孔图案的掩模板。 本实施例只釆用一个掩模板就可以完成不同颜色的滤光 层的制作, 因此相对于现有技术中制作不同颜色的滤光层需要釆用不同的掩 模板而言, 大大节约了制作成本, 简化了工艺流程。 当然, 本实施例中, 滤 光层上的透光孔的面积的确定可以视不同的液晶显示器产品的反射率和光透 过率的具体要求进行适当调整。
在本实施例中, 由于黑矩阵上对应相同颜色的滤光层的开口区域的面积 相等, 而对应不同颜色的滤光层的开口区域的面积不相等, 导致透光面积较 大的滤光层与黑矩阵的重叠宽度较小, 透光面积较小的滤光层与黑矩阵的重 叠宽度较大。 如图 5所示, 所述不同颜色的滤光层与黑矩阵的重叠宽度关系 为: 绿色滤光层与黑矩阵的重叠宽度 AdG >红色滤光层与黑矩阵的重叠宽度 \dR >蓝色滤光层与黑矩阵的重叠宽度 AdB。
同时, 在本实施例中, 通过对各次像素区域的反射区的面积(或者反射 区和透射区的面积比值)进行调整已经使反射区与透射区的色域达到均衡, 即在设置滤光层中的透光面积大小时, 已经考虑了不同的光透过率, 因此可 将所述每个滤光层的厚度设置为均一, 即滤光层与次像素区域的反射区对应 的部分和与次像素区域的透射区对应的部分的厚度相等, 而且, 所述不同颜 色的滤光层的厚度也可以设置为相等, 从而能够大大减小制作工艺中的复杂 度。
该液晶面板的制作方法包括制作彩膜基板的步骤和制作阵列基板的步 骤。 图 2是本实施例中彩膜基板的制作方法流程图。 如图 2所示, 所述制作 彩膜基板的步骤如下所述。
S1 )在基板上形成黑矩阵。
如图 3、 4所示, 所制作的黑矩阵具有多个开口区域, 所述黑矩阵上的多 个开口区域的面积设置为随着每个开口区域所对应的滤光层的光透过率的递 降而递增。
在该步骤中, 黑矩阵 2的形成可釆用曝光显影工艺。 在用于制作黑矩阵 的掩模板上设置有面积不同的三种开口, 所述三种开口分别用于形成黑矩阵 上的不同面积的三种开口区域。 所述开口的面积根据黑矩阵上的各开口区域 所对应的滤光层的光透过率的不同来进行设置。 对应相同颜色的滤光层的各 个开口区域的面积相等, 对应不同颜色的滤光层的各个开口区域的面积不相 等。 本实施例中, 三种不同面积的开口区域的面积关系为: 绿色次像素区域 对应的开口区域 SG <红色次像素区域对应的开口区域 SR <蓝色次像素区域 对应的开口区域 SB, 换言之, 绿色滤光层对应的开口区域的面积 <红色滤光 层对应的开口区域的面积 <蓝色滤光层对应的开口区域的面积。
由于本实施例中的黑矩阵上的多个开口区域的开口面积大小不相等, 因 此本实施例中的制作黑矩阵的掩模板与现有技术中制作黑矩阵的掩模板的形 状不同。
S2 )在黑矩阵上形成不同颜色的滤光层。
所述不同颜色的滤光层设置在黑矩阵上并与黑矩阵重叠。如图 5、 6所示, 本实施例中, 所述不同颜色的滤光层包括红色滤光层 3、 绿色滤光层 4和蓝 色滤光层 5。 由于黑矩阵上对应不同颜色的滤光层的开口区域的面积不相等, 导致透光面积较大的滤光层与黑矩阵 2的重叠宽度较小, 而透光面积较小的 滤光层与黑矩阵 2的重叠宽度较大。 如图 5所示, 所述不同颜色的滤光层与 黑矩阵的重叠宽度关系为:绿色滤光层与黑矩阵的重叠宽度 (10 >红色滤光 层与黑矩阵的重叠宽度 蓝色滤光层与黑矩阵的重叠宽度 AdB。
在实际制作工艺中, 要求各个颜色的滤光层与黑矩阵均有重叠, 以避免 黑矩阵的各开口区域的两侧产生漏光现象。 在本实施例中, 由于各个不同颜 色的滤光层均釆用同一掩模板形成, 即只要保证透光面积最大的蓝色滤光层 也能与黑矩阵有一定的重叠宽度即可。 因此, 本实施例中应保证黑矩阵上面 积最大的开口区域的宽度应小于蓝色滤光层的宽度, 即应保证该面积最大的 开口区域的宽度小于掩模板的宽度。 如图 5所示, 制作形成的相邻两个滤光 层分别与黑矩阵上两相邻的开口区域的边框重叠的宽度不相等。
如图 6所示,在所述不同颜色的滤光层上还进一步可以开设有透光孔 8。 所述各个滤光层上的透光孔 8的面积可以相等。
在本实施例中,所述绿色滤光层、红色滤光层和蓝色滤光层的厚度相等, 且各相同颜色的滤光层中光阻材料的浓度均一, 这样大大减小了制作工艺中 的复杂度。
S3 )在完成步骤 S2 )的基板上形成平坦保护层, 在所述平坦保护层上形 成柱状隔垫物。
该步骤可以釆用现有技术中已知的方式完成, 这里只做简单介绍。 如图 7所示, 在完成步骤 2 )的基板上形成平坦保护层 6 , 所述平坦保护层 6既消 除了各个滤光层与黑矩阵的重叠厚度过大造成的角段差的影响, 同时也保护 了多个滤光层的化学性和耐溅射性。 然后, 再在平坦保护层 6上形成柱状隔 垫物 7 , 如图 8和图 9所示, 所述柱状隔垫物可釆用曝光显影法形成。
所述制作阵列基板的步骤中包括制作多个像素结构的步骤, 所制作的各 像素结构分别与各次像素区域对应。 所制作的每个像素结构包括反射电极和 透射电极, 所述每个次像素区域划分为反射区和透射区, 所制作的像素结构 中的反射电极与所述反射区对应, 所制作的像素结构中的透射电极与所述透 射区对应。
由于制作阵列基板的步骤可以釆用现有技术中已知的方式完成, 这里不 再多述。
本实施例还提供了一种半反半透式液晶显示器, 包括液晶面板, 所述液 晶面板釆用上述的液晶面板。
釆用本实施例中液晶面板的液晶显示器, 其显示的图像色彩均衡性以及 协调性均较好, 显示品质好。
这里应该理解的是,所述滤光层上的透光孔 8的形状并不限于图 6中的 方形, 也可以釆用其他形状, 例如圓形、 菱形、 六边形等。
实施例 3
本实施例与实施例 2的区别在于, 本实施例中的液晶面板中, 彩膜基板 的各滤光层的反射区中不开设透光孔。
本实施例中, 各次像素区域的透射区的面积相等, 所述各次像素区域的 反射区的面积随着各次像素区域的光透过率的递降而递增。
为了调整各次像素区域的反射区的面积比例, 一种比较便利的方式是, 使次像素区域的透射区位于反射区的中部。 这样, 只需要增大或缩小次像素 区域外围部分的面积, 就能改变反射区与透射区的面积比例。 可根据产品要 求, 通过计算得到合适的反射区与透射区的面积比例, 来保证不同工作模式 下的色域均衡。 也就是说, 本实施例中仅通过釆用改变各次像素区域的透光 面积中反射区与透射区的面积比例的措施来代替现有技术在不同滤光层上开 设不同面积的透光孔的措施, 来保证不同工作模式下的色域均衡。
本实施例由于在滤色层上不开设透光孔, 因此能节省相应的制作工艺, 使得工艺流程更简化。 本实施例中液晶面板的制作步骤与实施例 2相似, 这 里不再多述。
本实施例还提供了一种半反半透式液晶显示器, 包括液晶面板, 所述液 晶面板釆用上述的液晶面板。
本发明的实施例通过将不同次像素区域的透光面积设计成不同, 使得液 晶面板的显示色彩更为协调, 特别是对于半透半反式液晶面板而言, 能够使 得透射区与反射区的色域较为均衡; 同时, 由于不同颜色的滤光层在透射区 和反射区可以具有相等的厚度,且不同颜色的滤光层也可以具有相等的厚度, 从而避免了相邻滤光层重叠而引起较大的角段差, 大大简化了液晶面板的制 作工艺。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1. 一种液晶面板, 其包括多个像素区域, 所述每个像素区域包括多个分 别用于显示不同颜色的次像素区域,
其中, 所述每个像素区域中, 所述多个次像素区域的面积设置为随着各 次像素区域的光透过率的递降而递增。
2. 根据权利要求 1所述的液晶面板, 其中, 所述每个像素区域包括三个 次像素区域, 所述三个次像素区域分别为绿色次像素区域、 红色次像素区域 和蓝色次像素区域,
所述绿色次像素区域、红色次像素区域和蓝色次像素区域的面积关系为: 绿色次像素区域的面积 <红色次像素区域的面积 <蓝色次像素区域的面积。
3. 根据权利要求 1或 2所述的液晶面板, 其中, 所述液晶面板包括彩膜 基板和阵列基板, 所述彩膜基板包括黑矩阵和设置在所述黑矩阵上的多个滤 光层, 所述黑矩阵具有多个开口区域, 且所述黑矩阵的每一个开口区域及其 上覆盖的滤光层对应一个次像素区域, 所述黑矩阵上的多个开口区域的面积 设置为随着每个开口区域所对应的滤光层的光透过率的递降而递增。
4. 根据权利要求 3所述的液晶面板, 其中, 所述阵列基板具有与所述每 个像素区域中的各次像素区域分别对应的多个像素结构, 所述每个像素结构 包括反射电极和透射电极, 所述每个次像素区域划分为反射区和透射区, 所 述反射区与所述像素结构中的反射电极对应, 所述透射区与所述像素结构中 的透射电极对应, 所述各次像素区域的反射区的面积随着各次像素区域的光 透过率的递降而递增。
5. 根据权利要求 4所述的液晶面板, 其中, 所述各次像素区域的透射区 的面积相等或面积比例不变, 或者,
所述各次像素区域的透射区的面积也随着各次像素区域的光透过率的递 降而递增, 且每个次像素区域的透射区增大的比例小于该次像素区域的反射 区的面积增大的比例。
6. 根据权利要求 4或 5所述的液晶面板, 其中, 所述滤光层包括绿色滤 光层、 红色滤光层和蓝色滤光层, 所述绿色滤光层、 红色滤光层和蓝色滤光 层的厚度相等, 且各个颜色相同的滤光层中光阻材料的浓度均一。
7. 根据权利要求 6所述的液晶面板, 其中, 在所述绿色滤光层、 红色滤 光层和蓝色滤光层中, 各滤光层上与各次像素区域的反射区对应的部分上开 设有透光孔, 所述各滤光层上的透光孔的面积相等。
8. 一种液晶显示器, 包括液晶面板,其中,所述液晶面板为权利要求 1-7 任一项所述的液晶面板。
9. 一种液晶面板的制作方法, 包括制作彩膜基板的步骤和制作阵列基板 的步骤, 所述制作彩膜基板的步骤中包括制作黑矩阵的步骤和制作多个滤光 层的步骤, 所述多个滤光层设置在所述黑矩阵上,
其中,在所述制作黑矩阵的步骤中,所制作的黑矩阵包括多个开口区域, 所述多个开口区域的面积随着每个开口区域所对应的滤光层的光透过率的递 降而递增。
10. 根据权利要求 9所述的制作方法, 其中, 所制作的滤光层包括绿色 滤光层、 红色滤光层和蓝色滤光层, 在所述黑矩阵上, 绿色滤光层对应的开 口区域的面积 <红色滤光层对应的开口区域的面积 <蓝色滤光层对应的开 口区域的面积。
11. 根据权利要求 10所述的制作方法, 其中, 所述绿色滤光层、 红色滤 光层和蓝色滤光层的厚度相等, 且各个相同颜色的滤光层中光阻材料的浓度 均一。
12. 根据权利要求 11所述的制作方法, 其中, 所述液晶面板包括多个像 素区域,所述每个像素区域包括三个次像素区域,所述三个次像素区域分别为 绿色次像素区域、 红色次像素区域和蓝色次像素区域, 所述绿色滤光层、 红 色滤光层和蓝色滤光层分别对应绿色次像素区域、 红色次像素区域和蓝色次 像素区域。
13. 根据权利要求 12所述的制作方法, 其中, 所述制作阵列基板的步骤 中包括制作多个像素结构的步骤, 所制作的各像素结构分别与各次像素区域 对应, 所制作的每个像素结构包括反射电极和透射电极, 所述每个次像素区 域划分为反射区和透射区, 所述像素结构中的反射电极与所述反射区对应, 所述像素结构中的透射电极与所述透射区对应, 所述各滤光层上与各次像素 区域的反射区对应的部分上均开设有透光孔, 所述各滤光层上的透光孔的面 积相等。
14. 根据权利要求 13所述的制作方法, 其中, 所述多个像素结构中, 每 个像素结构中的反射电极的面积随着其所对应的次像素区域的光透过率的递 降而递增, 所述多个像素结构中的透射电极的面积均相等, 或者每个像素结 构中的透射电极的面积也随着各次像素区域的光透过率的递降而递增, 且每 个像素结构中透射电极增大的比例小于该像素结构中的反射电极的面积增大 的比例。
PCT/CN2012/086263 2012-06-29 2012-12-10 液晶面板及其制作方法以及液晶显示器 WO2014000391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210225266.7A CN102736314B (zh) 2012-06-29 2012-06-29 一种液晶面板及其制作方法以及液晶显示器
CN201210225266.7 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014000391A1 true WO2014000391A1 (zh) 2014-01-03

Family

ID=46992083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086263 WO2014000391A1 (zh) 2012-06-29 2012-12-10 液晶面板及其制作方法以及液晶显示器

Country Status (2)

Country Link
CN (1) CN102736314B (zh)
WO (1) WO2014000391A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017118024A1 (en) 2016-01-05 2017-07-13 Boe Technology Group Co., Ltd. Curved display panel and display device containing the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654594B (zh) * 2012-03-16 2015-02-25 京东方科技集团股份有限公司 一种半透半反式彩色滤光片及其制作方法
CN102736314B (zh) * 2012-06-29 2015-03-25 京东方科技集团股份有限公司 一种液晶面板及其制作方法以及液晶显示器
CN103021941B (zh) * 2012-12-13 2015-05-20 京东方科技集团股份有限公司 一种制造阵列基板的方法、阵列基板及液晶显示设备
US9921426B2 (en) 2013-06-17 2018-03-20 Lg Display Co., Ltd. Display with blue pigment layer under black matrix
CN103823317A (zh) * 2013-11-27 2014-05-28 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
CN104516145A (zh) * 2014-12-31 2015-04-15 深圳市华星光电技术有限公司 一种触控式液晶面板及其制作方法
CN104730760B (zh) * 2015-04-08 2018-04-27 武汉华星光电技术有限公司 彩膜基板、液晶屏及彩色液晶显示装置
EP3144032A1 (en) * 2015-09-15 2017-03-22 Pixium Vision SA Photosensitive pixel structure with front side coating
KR102501111B1 (ko) * 2015-12-28 2023-02-16 엘지디스플레이 주식회사 카메라 모듈 일체형 액정 표시 장치 및 그 제조 방법
CN106773216A (zh) * 2017-01-13 2017-05-31 深圳市华星光电技术有限公司 一种液晶显示器及其制备方法
CN110161741A (zh) * 2018-08-24 2019-08-23 京东方科技集团股份有限公司 彩膜基板及其制造方法、显示装置
CN109343263B (zh) * 2018-10-29 2020-09-01 深圳市华星光电技术有限公司 Coa型液晶显示器
CN111354118A (zh) * 2018-12-21 2020-06-30 广州市天汇计算机科技有限公司 具有掌静脉识别功能的门把手及应用方法
CN111638606B (zh) * 2020-06-11 2021-12-03 武汉华星光电技术有限公司 显示面板
CN111694189A (zh) * 2020-07-09 2020-09-22 京东方科技集团股份有限公司 滤光单元、彩膜结构、显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100861A (en) * 1998-02-17 2000-08-08 Rainbow Displays, Inc. Tiled flat panel display with improved color gamut
CN1387074A (zh) * 2001-05-18 2002-12-25 株式会社日立制作所 液晶显示装置
JP2004271676A (ja) * 2003-03-06 2004-09-30 Seiko Epson Corp 液晶表示装置及び電子機器
CN1979287A (zh) * 2005-12-08 2007-06-13 群康科技(深圳)有限公司 半穿透半反射式液晶显示面板和其液晶显示装置
CN1982953A (zh) * 2005-12-16 2007-06-20 比亚迪股份有限公司 一种调节显示器白平衡的方法及一种液晶显示器
CN101556347A (zh) * 2009-05-19 2009-10-14 华映光电股份有限公司 彩色滤光片
CN102736314A (zh) * 2012-06-29 2012-10-17 京东方科技集团股份有限公司 一种液晶面板及其制作方法以及液晶显示器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100861A (en) * 1998-02-17 2000-08-08 Rainbow Displays, Inc. Tiled flat panel display with improved color gamut
CN1387074A (zh) * 2001-05-18 2002-12-25 株式会社日立制作所 液晶显示装置
JP2004271676A (ja) * 2003-03-06 2004-09-30 Seiko Epson Corp 液晶表示装置及び電子機器
CN1979287A (zh) * 2005-12-08 2007-06-13 群康科技(深圳)有限公司 半穿透半反射式液晶显示面板和其液晶显示装置
CN1982953A (zh) * 2005-12-16 2007-06-20 比亚迪股份有限公司 一种调节显示器白平衡的方法及一种液晶显示器
CN101556347A (zh) * 2009-05-19 2009-10-14 华映光电股份有限公司 彩色滤光片
CN102736314A (zh) * 2012-06-29 2012-10-17 京东方科技集团股份有限公司 一种液晶面板及其制作方法以及液晶显示器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017118024A1 (en) 2016-01-05 2017-07-13 Boe Technology Group Co., Ltd. Curved display panel and display device containing the same
EP3400483A4 (en) * 2016-01-05 2019-06-26 Boe Technology Group Co. Ltd. CURVED DISPLAY PANEL AND DISPLAY DEVICE THEREFOR

Also Published As

Publication number Publication date
CN102736314B (zh) 2015-03-25
CN102736314A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
WO2014000391A1 (zh) 液晶面板及其制作方法以及液晶显示器
CN101916004B (zh) 显示装置
US6501521B2 (en) Transmission/reflection type color liquid crystal display device
CN101390001B (zh) 显示装置
TWI235269B (en) Liquid crystal display
JP3109889U (ja) 液晶ディスプレイの構造
WO2013159508A1 (zh) 半透半反彩色像素结构、彩膜基板、液晶面板及显示装置
CN211786494U (zh) 一种背光模组及液晶显示器
WO2018040144A1 (zh) 显示装置及其滤光片
CN105929589B (zh) 液晶显示面板及其色度匹配调控方法
WO2019033593A1 (zh) 透反式液晶显示装置及其制作方法
WO2019085288A1 (zh) 显示面板及其制造方法
WO2013135081A1 (zh) 半透半反彩色滤光片、其制作方法及半透半反显示器
WO2018120022A1 (zh) 彩色滤光片、显示装置及制备彩色滤光片的方法
CN111668274B (zh) 显示面板、显示装置及制备方法
JP2003233063A (ja) 液晶表示装置
WO2018176580A1 (zh) 一种彩色滤光基板
TW201322215A (zh) 彩色濾光片基板及應用其之液晶顯示面板
JP4332341B2 (ja) 表示装置
WO2021036487A1 (zh) 显示面板及显示装置
WO2019006853A1 (zh) 一种显示面板及其制作方法
CN114545674B (zh) 反射式显示面板、显示装置和彩膜基板及其制备方法
CN217113742U (zh) 显示面板以及显示装置
JP2001305524A (ja) 半透過半反射型液晶表示装置
KR100523763B1 (ko) 콜레스테릭 액정 컬러 필터를 포함한 액정 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.06.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12879711

Country of ref document: EP

Kind code of ref document: A1