WO2013135026A1 - 便携式数显硬度测量装置 - Google Patents

便携式数显硬度测量装置 Download PDF

Info

Publication number
WO2013135026A1
WO2013135026A1 PCT/CN2012/078464 CN2012078464W WO2013135026A1 WO 2013135026 A1 WO2013135026 A1 WO 2013135026A1 CN 2012078464 W CN2012078464 W CN 2012078464W WO 2013135026 A1 WO2013135026 A1 WO 2013135026A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
micrometer
micrometer screw
force
hardness
Prior art date
Application number
PCT/CN2012/078464
Other languages
English (en)
French (fr)
Inventor
张凤林
吴丹
刘丽萍
张路明
Original Assignee
沈阳天星试验仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳天星试验仪器有限公司 filed Critical 沈阳天星试验仪器有限公司
Publication of WO2013135026A1 publication Critical patent/WO2013135026A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • G01N2203/0082Indentation characteristics measured during load

Definitions

  • the present invention relates to a material hardness detecting apparatus, and more particularly to a portable digital hardness measuring apparatus. Background technique
  • the Rockwell hardness tester measures the indentation depth and directly displays the hardness value.
  • the Brinell hardness tester measures the indentation diameter and looks up the table or calculates the hardness value.
  • the Vickers hardness tester measures the diagonal length of the indentation, and looks up or calculates Hardness value.
  • the hardness of the workpiece must be tested. Especially in the case of testing the hardness of the welds of key components such as boilers, pressure vessels, pressure pipes, etc., it is generally fast and convenient, but the accuracy is not high and reliable.
  • the poorly tested Leeb hardness tester after the test of the Leeb hardness tester, is converted to Rockwell, Brinell or Vickers hardness value; because it uses the dynamic force of the bounce test method, and Brinell, Rockwell The test principle of Vickers hardness is completely different. Therefore, the hardness value after conversion is large.
  • the instrument should be light, easy to operate, easy to read, high in efficiency and high in precision. It is intelligent, it can automatically correct the zero point and automatically correct the measured value.
  • a portable Rockwell hardness tester is described in U.S. Patent No. 2,544,205, the disclosure of which is incorporated herein by reference to U.S. Pat.
  • the elastomer, the force indicator, the indenter and the handle It relies on the hand wheel to apply the test force, and uses the micrometer nut and the micrometer screw to cooperate with the drum to realize the indentation depth measurement.
  • the u-type elastic body mating force value indicator is used to measure the test force, and the hardness value is read on the drum. .
  • the invention patent uses two magnetic suction cups to fix the hardness tester on the sample table
  • the hardness tester has an indentation depth measuring device consisting of a micrometer nut, a micrometer screw and a reading drum.
  • the U-shaped elastic frame and indicator are used to indicate the magnitude of the test force, and the hardness value is read on the reading drum.
  • the invention patent uses a fixed reticle indicating cylinder and a rotary reading reticle drum on the hardness indicating system, and the micrometer-like drum reading structure improves the indentation depth measurement accuracy compared with the aforementioned US patent.
  • the invention patent still has the following disadvantages: a.
  • the operation is cumbersome and inefficient. All the test steps include: absorbing the workpiece, the force meter, the scale, the zero, the initial test force, the reading, the drum, the zero, the total test force, the test force, the test force, the test force, the initial test force, and the reading of the drum. The hardness value of the first test force is removed.
  • the reading is still inconvenient, the reading accuracy is low, and there is a human error in reading. Care must be taken to operate the drum and carefully read the hardness values represented by the drum scale on the drum.
  • Displacement measurement and force value measurement have low resolution, low precision, and human error.
  • the force value cannot be corrected.
  • the instrument is in use, once the U-shaped elastomer is slightly plastically deformed or the force value indicator is impacted, the force value reading will be deviated, which will cause measurement error. In this case, only the factory correction force value table can be returned. The instrument cannot be calibrated by the user.
  • Test Brinell hardness is inefficient, and there is a reading error.
  • the instrument can only press an indentation on the sample, then read the indentation diameter with a reading microscope, and then look up the table to obtain the Brinell hardness value. It takes a few minutes to complete a test.
  • the invention patent also has the following disadvantages:
  • the structure is complex, cumbersome and not easy to carry.
  • the Chinese standard GB/T24523-2009 specifies an advanced Brinell hardness test method - rapid indentation (Brinell) hardness test method for metal materials. This is the sounding method for Brinell hardness test. Vickers hardness test can also be used. The same method, the principle is - apply a certain test force (including initial test force and working test force) to a certain diameter of the cemented carbide ball, press it into the surface of the sample, after the specified holding time, unload the working test force , measurement under the initial test force, unloading work test The head position difference (depth value) before and after the force test.
  • a certain test force including initial test force and working test force
  • the corresponding depth values were measured, and the Brinell hardness values were correlated with the depth values to obtain a relationship between the indentation depth and the Brinell hardness under certain test conditions.
  • the Brinell hardness value of the material can be obtained by comparing the depth value measured by the hardness tester to the relationship between the indentation depth and the Brinell hardness.
  • This method is an important technological advance compared to the traditional Brinell hardness test method. It can realize the rapid detection of Brinell hardness, direct reading, can eliminate the optical microscope that has been used for hundreds of years, no one is reading error, can solve the problem of rapid detection of Brinell hardness in batch products in production, and even realize the problem in the production workshop. Batch products are automatically tested for online hardness.
  • the sounding method Brinell hardness and Vickers hardness testing is a new technology that has only appeared on some desktops abroad, and has not been found to be used on portable hardness testers.
  • the main technical difficulty is that the portable hardness tester requires a simple structure, is light, the instrument is small, and the internal space is limited. It is difficult to install an ordinary high-precision displacement sensor. In addition, high-precision displacement sensors are also less economical for portable hardness testers.
  • the Brinell hardness measurement range is 8 ⁇ 650HBW.
  • the common Brinell hardness tester is 2.5mm ball, 187.5kg force.
  • the minimum indentation depth is only 0.0365mm.
  • the greatest value of the portable Vickers hardness tester is to accurately test the hardness of the nitrided layer on large workpieces such as molds and shafts.
  • accurate detection of the hardness of the nitrided layer on the large workpiece body is a problem.
  • the nitrogen layer is thin and hard, its thickness is only 0.1 ⁇ 0.4mm, and the hardness can exceed 1000HV5. It is not possible to use large test force.
  • the nitriding layer of 1000HV adopts 5kg test force, and the indentation depth is only 0.0143mm.
  • the sounding method measures the indentation depth difference, which is smaller.
  • the hardness measuring device is mounted on the sample holding or fixing device to form a portable hardness tester.
  • the hardness tester is characterized by light weight, simple structure, convenient operation, convenient reading and high efficiency, and can realize high precision and intelligent testing. Automatically correct the zero point and automatically correct the measured value. It can test both Rockwell hardness and on-site rapid detection of Brinell hardness and Vickers hardness by using the sounding method instead of the currently used, low precision Leeb hardness tester. .
  • the invention comprises a support base, a force measuring device, an indenter, an electronic circuit board, a digital display and an afterburning and indentation depth measuring device, wherein the afterburning and indentation depth measuring device comprises a hand wheel, a rotary encoder and a micrometer a micrometric thread pair composed of a nut and a micrometer screw, wherein the micrometer nut is installed in the bearing seat, and the micrometer screw is screwed with the micrometer nut, and the micrometer is micrometer One end of the screw is connected to the hand wheel, and the other end is connected to the force measuring device; the rotary encoder is mounted on the support base, and the rotating shaft of the rotary encoder rotates synchronously with the micrometer screw; On the force measuring device, moving together with the force measuring device and the micrometer screw in the axial direction by the rotation of the hand wheel; the electronic circuit board and the digital display are respectively mounted on the support base, the rotary encoder, the digital display and the force measuring device A force sensor in the device is electrically
  • one end of the micrometer screw is connected to the hand wheel through a sleeve, and one end of the micrometer screw is provided with a keyway, and the keyhole is provided with a second key, and the micrometer screw rotates synchronously with the sleeve through the second key;
  • the rotary encoder rotating shaft is connected to the micrometer screw through a sleeve and rotates synchronously with the micrometer screw; one end of the sleeve is fixed in the inner hole of the hand wheel, and the other end is inserted in the rotary code
  • the micrometer screw In the central hole of the rotating shaft of the rotating shaft, the micrometer screw is located inside the sleeve; the outer surface of the sleeve is axially opened with a first axial groove, and the upper edge of the rotary shaft of the rotary encoder is provided with a third key.
  • the rotation shaft of the rotary encoder is connected to the sleeve through a third button, and the third button slides in the first axial groove during the movement of the micrometer screw; the inside of the support seat is bored in the axial direction, and the micrometer is measured.
  • the force measuring device includes a sliding sleeve, a force sensor and a force sensor seat, wherein one end of the sliding sleeve is connected to the other end of the micrometer screw, and the other end of the sliding sleeve is connected to one end of the force sensor, the force sensor
  • the seat is mounted on the bottom of the other end of the force sensor, the pressure head is connected to the lower end of the force sensor seat; the force sensor base is provided with an illumination circuit board, and the illumination circuit board is located above the pressure head, in the illumination An LED lamp is disposed on the circuit board; one end of the sliding sleeve is connected to the other end of the micrometer screw through a pressure cap and two half rings, and
  • the invention adopts the combination of the micrometer nut, the micrometer screw and the rotary encoder as the indentation depth measuring device for the first time in the field of the hardness tester, and realizes the high resolution and high precision of the indentation depth detection, and at the same time takes economic efficiency into consideration.
  • the invention realizes the rapid detection of Brinell hardness and Vickers hardness by using the sounding method for the first time on the portable hardness tester.
  • the direct display makes it possible to quickly and accurately detect the hardness of the large workpiece body, and can be used for a large number of workpieces on the factory site.
  • the piece-by-piece inspection can replace the less accurate Leeb hardness tester.
  • the present invention is simple in structure and light in weight, and can be conveniently mounted on a sample holding or fixing device to constitute a portable hardness meter.
  • test operation of the invention is simple, and the operator can complete the test in a few seconds to ten seconds by simply performing a few simple actions of energizing, maintaining the test force, unloading force and reading.
  • the invention automatically corrects the force value zero point after each power-on, and eliminates errors caused by temperature drift and time drift of the sensor and the electronic circuit.
  • the invention can correct the measured value of the instrument at any time by using the standard hardness block, and the instrument can remain high after long-term use. Precision. DRAWINGS
  • Figure 1 is a schematic view of the internal structure of the present invention
  • FIG. 3 is a schematic view showing an application structure of the present invention installed on a magnetic chuck
  • FIG. 4 is a schematic view showing an application structure of the present invention mounted on a C-shaped frame
  • Figure 5 is a left side view of Figure 4.
  • 1 is the indenter
  • 2 is the LED lamp
  • 3 is the lighting circuit board
  • 4 is the force sensor seat
  • 5 is the force sensor
  • 6 is the sliding sleeve
  • 7 is the first key
  • 8 is the support seat
  • 11 is the hand wheel
  • 12 is the locking screw
  • 13 is the second key
  • 14 is the sleeve
  • 15 is the third key
  • 16 is the cone nut
  • 17 is the micrometer screw
  • 18 is Micrometric nut
  • 19 is a digital display
  • 20 is a pressure cap
  • 21 is a half ring
  • 22 is a steel ball
  • 23 is a measuring circuit
  • 24 is a CPU circuit
  • 25 is a power circuit
  • 26 is an electronic circuit board
  • 27 is a magnetic chuck
  • 28 is a C-shaped frame
  • 29 is a sample.
  • the present invention includes a support base 8, a force measuring device, a ram 1, an electronic circuit board 26, a digital display 19, and an afterburning and indentation depth measuring device, wherein the afterburning and indentation depth measuring device includes a hand.
  • the wheel 11, the rotary encoder 9, the sleeve 14, and the micrometric thread pair composed of the micrometer nut 18 and the micrometer screw 17, the force measuring device comprises a sliding sleeve 6, a force sensor 5 and a force sensor seat 4.
  • the support base 8 is a main support, and the inside thereof has a circular hole in the axial direction.
  • the micrometer nut 18 is mounted in the circular hole of the support base 8.
  • the micrometer screw 17 is located in the micrometer nut 18 and is screwed with the micrometer nut 18.
  • One end (upper end) of the micrometer screw 17 is connected to the sleeve 14, and the sleeve 14 is fixed in the inner hole of the hand wheel 11, and the micrometer screw 17 has a key groove at one end thereof, and the second key 13 is mounted in the key groove, and the micro screw is provided.
  • micrometer screw 17 is maintained in synchronization with the sleeve 14 and the hand wheel 11 by the second key 13, and one end of the micrometer screw 17 is fastened with a locking screw 12, and the other end (lower end) of the micrometer screw 17 is passed through the sliding sleeve 6
  • the force sensor 5 is connected.
  • One end (upper end) of the micrometer nut 18 is located between the sleeve 14 and the micrometer screw 17, and one end of the micrometer nut 18 is provided with an outer taper thread, and a plurality of second axial slots are uniformly distributed on the outer taper thread in the circumferential direction. In the embodiment, three), the outer taper thread is threaded with a taper nut 16, and the taper nut 16 can adjust the tightness of the micrometric thread pair.
  • the rotary encoder 9 is mounted on the support base 8, and the rotary encoder rotating shaft 10 is coaxial with the micrometric thread pair; one end of the sleeve 14 is fixed in the inner hole of the hand wheel 11, and the other end is inserted in the rotary encoder.
  • the outer surface of the sleeve 14 is axially opened with a first axial groove, the upper edge of the rotary encoder rotating shaft 10 is provided with a third key 15, and the rotary encoder rotating shaft 10 passes through the third key.
  • 15 is coupled to the sleeve 14, which is slidable within the first axial slot during movement of the micrometer screw 17.
  • the rotary encoder rotating shaft 10 is connected to the micrometer screw 17 through a sleeve 14 and rotates in synchronization with the micrometer screw 17.
  • the rotary encoder rotating shaft 10 When the hand wheel 11 is rotated, the rotary encoder rotating shaft 10, the sleeve 14 and the micrometer screw 17 are synchronously rotated, and the micro screw is simultaneously measured.
  • the rod 17 moves up and down in the axial direction.
  • the micrometer screw 17 moves axially by a pitch displacement, and the rotary encoder 9 subdivides the displacement amount into thousands of divisions, and transmits the signal to the CPU circuit 24 via the measuring circuit 23. This allows an accurate measurement of the depth of the indentation.
  • a pitch is 0.5 mm.
  • the rotary encoder rotating shaft 10 can output 5000 divisions per revolution.
  • Each division represents a displacement of 0.1 ⁇ ⁇ , which is equivalent to 0.05 Rockwell hardness unit.
  • the frequency division technique can be used to output 10000 divisions per revolution of the rotary encoder rotating shaft 10, and each division represents a displacement of 0.05 ⁇ ⁇ , for Brinell.
  • GB/T230.2, GB/T231.2 and GB/T4340 can meet the requirements of relevant standards GB/T230.2, GB/T231.2 and GB/T4340.
  • One end (upper end) of the sliding sleeve 6 is connected to the other end (lower end) of the micrometer screw 17 through the pressing cap 20 and the two half rings 21, and the other end (lower end) of the sliding sleeve 6 and one end of the force sensor 5 are provided. (upper end) threaded connection, the force sensor holder 4 is mounted at the bottom of the other end (lower end) of the force sensor 5, and the indenter 1 is connected to the lower end of the force sensor holder 4.
  • the indenter 1 may be a ball indenter or a diamond pressure head.
  • a steel ball 22 is disposed between the end surface of the other end of the micrometer screw 17 and the sliding sleeve 6.
  • the other end surface of the micrometer screw 17 is provided with a spherical recess corresponding to the steel ball 22, and cooperates with the steel ball 22. .
  • the outer surface of the sliding sleeve 6 has a third axial groove in the circumferential direction, and the first nut 7 is mounted on the micronut 18, and the first nut 7 slides in the third axial groove; the sliding sleeve 6 passes the first
  • the guiding action of the key 7 is only axially moved within the micrometer nut 18 to prevent the entire force measuring device and the indenter 1 from rotating.
  • the steel ball 22 can effectively eliminate the lateral force acting on the sliding sleeve 6 and the first key 7 when the micrometer screw 17 is rotated.
  • the circular holes opened in the axial direction are all coaxial.
  • the hand wheel 11 of the present invention can be replaced by a motor, and the motor output shaft is connected to the sleeve 14, and is rotated by the motor drive sleeve 14, the micrometer screw 17, and the rotary encoder rotating shaft 10.
  • a digital display 19 is mounted on the front side of the support base 8.
  • the digital display 19 is disposed obliquely with the support base 8 for viewing during operation.
  • the digital display 19 can also be mounted on the sample holding or fixing device; the side of the support base 8
  • An electronic circuit board 26 is provided, and the rotary encoder 9, the digital display 19, the illumination circuit board 3, and the force sensor 5 are electrically connected to the electronic circuit board 26, respectively.
  • the electronic circuit board 26 includes a measurement circuit 23, a CPU circuit 24, and a power supply circuit 25.
  • the input of the measurement circuit 23 is connected to the rotary encoder 9 and the force sensor 5, the output is connected to the CPU circuit 24, and the CPU circuit 24 is also connected to the digital display 19. .
  • the force sensor 5 and the rotary encoder 9 respectively transmit the force and displacement signals to the CPU circuit 24 via the measuring circuit 23, and after being processed by the CPU circuit 24, the test force value and the measured hardness value are displayed on the digital display 19.
  • the electronic circuit board 26 can automatically zero the force value.
  • the CPU circuit 24 After the power is turned on, the CPU circuit 24 automatically collects the zero point output signal of the force sensor 5, and after subtracting the zero point value from the output signal of the force sensor 5 during the afterburning, the real time on the digital display 19 is performed. Show the force value.
  • the electronic circuit board 26 can be mounted on the support base 8 or can be mounted on a sample holder or fixture. According to the requirements of the Brinell hardness test standard GB/T24523-2009, the instrument needs to test a series of standard Brinell hardness blocks before leaving the factory, and input the measured hardness value into the instrument to establish a hardness-indentation depth curve. The same work is required when using the sounding method for the Vickers hardness test.
  • the support base 8 can be mounted on a sample holding or fixing device.
  • the present invention can be mounted on the magnetic chuck 27 to magnetically attract the sample for hardness testing, as shown in FIG. 3; and can also be mounted on the C-shaped frame 28
  • the hardness test is carried out by clamping the sample with a C-shaped opening, as shown in Fig. 4; it can also be mounted on other metal brackets suitable for holding the sample.
  • the working principle of the invention is:
  • the hand wheel 11 After the sample 29 is clamped or fixed, the hand wheel 11 is rotated, the sleeve 14 and the micrometer screw 17 are driven, the rotary encoder rotating shaft 10 is synchronously rotated, and the micrometer screw 17 pushes the force sensor 5 through the steel ball 22 and the sliding sleeve 6.
  • the force sensor base 4 and the indenter 1 descend, and move to the sample 29; after the indenter 1 contacts the sample 29, as the hand wheel 11 continues to rotate, the tip of the indenter 1 is pressed into the sample 29, in the sample 29 surface indentation.
  • the force sensor 5 monitors the test force received by the indenter 1 in real time and transmits the signal to the CPU circuit 24.
  • the CPU circuit 24 When the test force reaches the specified initial test force value, the CPU circuit 24 records the indentation at this time. The depth value, continue to force to the total test force, stop the force and maintain the specified time; turn the hand wheel 11 in the reverse direction, when the test force drops to the specified initial test force value, the CPU circuit 24 records the indentation at this time again. The depth value is then calculated for the difference in indentation depth under the initial test force before and after the application of the main test force, and the hardness value of the sample 29 is displayed on the digital display 19. It takes only a few seconds to a dozen seconds to complete all test operations.

Abstract

一种便携式数显硬度测量装置,包括支承座(8)、测力装置、压头(1)、电子线路板(26)、数字显示器(19)和加力与压痕深度测量装置。其中,加力与压痕深度测量装置包括手轮(11)、旋转编码器(9)、套筒(14)及由测微螺母(18)和测微螺杆(17)组成的测微螺纹副;支承座(8)上有旋转编码器(9),孔内有测微螺母(18),正面有数字显示器(19),侧面有电子电路板(26);测微螺母(18)内有测微螺杆(17),旋转编码器(9)的转动轴(10)与测微螺杆(17)连接,并随测微螺杆(17)转动,测微螺杆(17)上端连接手轮(11),下端连接测力装置;测力装置下端连接压头(1);手轮(11)、测微螺杆(17)、测力装置和压头(1)相连接并同轴,可随手轮(11)的转动做轴向移动。该便携式数显硬度测量装置结构简单、读数方便、易于操作、精度高,可以通过一个固定装置固定到金属零件上,用于在现场快速检测大型零件硬度。

Description

便携式数显硬度测量装置 技术领域
本发明涉及材料硬度检测仪器, 具体地说是一种便携式数显硬度测量装置。 背景技术
目前大多数常规硬度计都是采用静态加力然后测量压痕的原理。其中洛氏硬度计是测量 压痕深度, 直接显示硬度值; 布氏硬度计是测量压痕直径, 査表或计算出硬度值; 维氏硬度 计是测量压痕对角线长度, 査表或计算出硬度值。 这些硬度计一般都是台式机, 只能在实验 室里使用, 只能测试中小型零件, 对于生产现场大量存在的大型零件, 需要制作样品或取样 后拿到实验室检测硬度; 因此, 这些硬度计工作效率较低, 并且不能在生产现场实时监控零 件硬度。 对于那些不允许取样, 必须测试工件本体硬度的情况, 特别是在要求测试锅炉、 压 力容器、 压力管道等关键构件焊缝硬度的场合, 目前普遍采用的是快速、 方便, 但是精度不 高、可靠性较差的里氏硬度计,里氏硬度计检测后要经过换算得到洛氏、布氏或维氏硬度值; 由于其采用的是动态加力的弹跳式试验方法,与布氏、洛氏、维氏硬度的试验原理完全不同, 因此, 换算后的硬度值误差较大。
工厂现场迫切需要一种可以直接采用洛氏、布氏、维氏试验原理进行硬度测试的便携式 数显仪器, 这种仪器应该具有轻便、 操作简单、 读数方便、 效率高、 精度高的特点, 最好是 智能化、 可自动校正零点、 自动校正测量值的。
于 1951年 3月 6日公开的、 公开号为 US2,544,205的美国专利中描述了一种便携式洛 氏硬度计, 这种硬度计由手轮、 测微螺母、 测微螺杆、 鼓轮、 U型弹性体、 力值指示表、 压 头和手柄组成。 它依靠手轮施加试验力, 利用测微螺母和测微螺杆配合鼓轮实现压痕深度测 量, 利用一个 u型弹性体配合力值指示表实现试验力的测量, 在鼓轮上读出硬度值。
于 1949年 4月 5日公开的、 公开号为 US2,466,567的美国专利、 于 1968年 6月 25日 公开的、 公开号为 US3,389,597 的美国专利以及于 1948 年 9 月 7 日公开的、 公开号为 US2,448,645的美国专利中分别描述了相似原理的便携式洛氏硬度计。
上述专利主要用于测量中小型零件, 尽管 US3,389,597的附图 4描述的链式硬度计可以 测试钢管、 轴类等大型圆柱状零件, 但是操作十分不便, 通常需要两个人配合操作, 一人扶 持仪器, 一人负责挂链条。 在读数方面, 都是通过一个带有读数线的透明放大镜读取鼓轮上 的硬度刻度, 每一个洛氏硬度单位对应的刻度线代表了 2 μ ηι的压痕深度增量值。 由于放大 镜与鼓轮间有一定距离, 造成操作者因视角不同可能会读到不同硬度数值。 上述仪器都存在 操作不便、 效率低、 读数时易产生误差、 不能或不便测试大型工件的问题。
于 2009年 10月 7日公告的、公告号为 CN201322709Y、 申请号为 200820231921.9的中 国发明专利描述了一种便携式硬度计。该发明专利利用两个磁力吸盘将硬度计固定在试样表 面, 硬度计有一个由测微螺母、测微螺杆和读数鼓轮组成的压痕深度测量装置, 利用 U型弹 性架和指示表指示试验力的大小, 硬度值在读数鼓轮上读出。该发明专利在硬度指示系统上 采用了固定的刻线指示筒和旋转读数刻线鼓轮配合的结构,这种类似千分尺的鼓轮读数结构 与前述美国专利相比, 提高了压痕深度测量精度和硬度值的读数精度, 减小了人为的读数误 差, 但是该发明专利仍有如下缺点- a.操作较繁琐, 效率低。 其全部测试步骤包括: 吸住工件一力值表刻度对零一加初试验 力一读数鼓轮对零一加总试验力一保持试验力一试验力卸载至初试验力一读取鼓轮上的硬 度值一卸除全部试验力。
b.读数仍然不便, 读数精度低, 存在人为的读数误差。 需要小心操作鼓轮并在鼓轮上仔 细读出鼓轮刻度所代表的硬度值。
c.位移测量和力值测量分辨率低, 精度低, 存在人为的读数误差。
d.力值不能校正。仪器使用中, 一旦 U型弹性体发生微小塑性变形或力值指示表受到冲 击, 力值读数就会发生偏差, 由此会造成测量误差, 这种情况下, 只能返厂校正力值表, 不 能由用户对仪器进行校正。
e.测试布氏硬度效率低, 有人为读数误差。 仪器只能在试样上压出一个压痕, 然后用读 数显微镜读出压痕直径, 再査表得到布氏硬度值, 完成一次测试需要几分钟时间。
于 2004年 12月 22日公开的、 公开号为 CN1556387A, 申请号为 200410012621.8的中 国发明专利描述了一种便携式数显磁力硬度计, 该发明专利采用了箱体结构, 主要部件都在 一个箱体内; 它采用蜗轮蜗杆结构施加试验力; 在加力主轴上安装了位移传感器用于测量压 痕深度; 采用了三个力传感器, 以三个力传感器的输出之和代表试验力; 电子电路和计算机 系统接收传感器信号后, 计算出硬度值并显示出来。 该发明专利也存在如下缺点:
a.结构复杂, 较笨重, 不易携带。
b.操作不便, 缺乏实用性。 该发明专利所涉及的仪器, 每次测试都需要松开两侧的锁紧 手轮, 将箱式机架落下, 然后锁紧手轮, 测试时需要双手操作两侧的手轮加力, 测试完成后 需要再一次松开锁紧手轮, 托起机架, 再分别用两侧的锁紧手轮将机架固定好, 这种繁琐的 工作方式很难被操作者接受。
c.采用了三个力传感器, 成本较高。
d.关于布氏硬度及维氏硬度检测, 缺乏具体的技术方案。 事实上检测布氏硬度及维氏硬 度, 对仪器要求更高, 不仅对力的测量精度要求较高, 对于压痕深度的测量, 也要求具有更 高的分辨率、 测量精度以及重复精度。 一般常用的位移传感器都难于达到相应要求。
中国标准 GB/T24523— 2009 规定了一种先进的布氏硬度试验方法一金属材料快速压痕 (布氏) 硬度试验方法, 这就是布氏硬度检测的测深法, 维氏硬度检测也可以用同样方法, 其原理是- 对一定直径的硬质合金球施加一定的试验力 (包括初始试验力和工作试验力), 将其压 入试样表面, 经规定的保持时间后, 卸载工作试验力, 测量在初始试验力下加、 卸载工作试 验力前后压头位置差值 (深度值)。 利用多个标准布氏硬度块, 测量相应的深度值, 将布氏 硬度值与深度值相对应, 获得在一定的试验条件下压痕深度与布氏硬度的关系曲线。在进行 硬度测量时, 将硬度计所测量到的深度值对应压痕深度与布氏硬度关系曲线, 就可以得到这 种材料的布氏硬度值。
与传统布氏硬度试验方法相比, 这种方法是一个重要的技术进步。 它可以实现布氏硬度 的快速检测, 直接读数, 可淘汰沿用百年的光学显微镜, 无人为读数误差, 可以解决生产中 大量存在的批量产品布氏硬度现场快速检测难题,甚至可以实现在生产车间对批量产品进行 在线硬度自动检测。
测深法布氏硬度及维氏硬度检测是一门新技术, 只出现在国外的部分台式机上, 迄今没 有发现在便携式硬度计上采用。 其主要技术难点是, 便携式硬度计要求结构简单、 轻便、 仪 器体积小、 内部空间有限, 安装普通的高精度位移传感器有困难。 此外, 高精度位移传感器 用于便携式硬度计也缺乏经济性。
按照相关标准的规定, 布氏硬度测量范围是 8〜650HBW, 便携式布氏硬度计常用标尺 是 2.5mm球, 187.5kg力, 对于硬度值 650HBW的试样, 最小压痕深度只有 0.0365mm。
便携式维氏硬度计的最大价值在于精确测试模具、轴类等大型工件上的渗氮层硬度, 在 现有技术中对大型工件本体上渗氮层硬度的精确检测是一个难题, 其原因在于渗氮层薄且 硬, 其厚度只有 0.1〜0.4mm, 硬度可超过 1000HV5 , 不可以用大的试验力, 对于硬度为
1000HV的渗氮层, 采用 5kg试验力, 压痕深度只有 0.0143mm。加之测深法测量的是压痕深 度差值, 这一数值要更小。
如何能在便携式硬度计上实现高精度、高分辨率的位移测量是实现测深法布氏硬度及维 氏硬度检测的关键。在硬度计领域通常采用的电感式位移传感器和光栅式位移传感器, 都难 于满足上述要求。 因此, 测深法布氏硬度及维氏硬度检测一直未见在便携式硬度计上采用。
如果上述方法能在便携式硬度计上实现,则许多关键大型工业零件本体硬度的精确检测 就成为可能, 这将为相关产品带来质量管理方面的进步。 发明内容
本发明的目的在于提供一种便携式数显硬度测量装置。该硬度测量装置安装到试样夹持 或固定装置上就可构成便携式硬度计, 构成的硬度计具有轻便、 结构简单、 操作方便、 便于 读数、 效率高的特点, 可以实现高精度、 智能化测试、 自动校正零点、 自动校正测量值, 既 能测试洛氏硬度, 也能利用测深法实现布氏硬度和维氏硬度的现场快速检测, 代替目前普遍 使用的, 精度不高的里氏硬度计。
本发明的目的是通过以下技术方案来实现的:
本发明包括支承座、 测力装置、 压头、 电子电路板、 数字显示器及加力与压痕深度测量 装置, 所述加力与压痕深度测量装置包括手轮、旋转编码器及由测微螺母和测微螺杆组成的 测微螺纹副, 其中测微螺母安装在所述支承座内, 所述测微螺杆与测微螺母螺纹连接, 测微 螺杆的一端与所述手轮连接,另一端与所述测力装置相连;所述旋转编码器安装在支承座上, 旋转编码器转动轴与所述测微螺杆同步转动; 所述压头安装在测力装置上, 与测力装置、 测 微螺杆一起通过手轮的转动沿轴向上下移动;所述电子电路板及数字显示器分别安装在支承 座上, 旋转编码器、 数字显示器以及测力装置中的力传感器分别与所述电子电路板电连接; 所述测微螺杆的位移通过旋转编码器测量。
其中: 所述测微螺杆的一端通过套筒与手轮连接, 测微螺杆的一端开有键槽, 该键槽内 装有第二键, 所述测微螺杆通过第二键与套筒同步旋转; 所述旋转编码器转动轴通过套筒与 测微螺杆相连, 并与所述测微螺杆同步转动; 所述套筒的一端固接在手轮的内孔中, 另一端 插设在所述旋转编码器转动轴的中心孔内, 测微螺杆位于套筒内部; 所述套筒的外表面沿轴 向开有第一轴向槽, 所述旋转编码器转动轴的上沿设有第三键, 旋转编码器转动轴通过第三 键与套筒连接, 该第三键在测微螺杆移动过程中在所述第一轴向槽内滑动; 所述支承座内部 沿轴向开有孔, 测微螺母安装在支承座的孔内, 所述测微螺母的一端设有外锥螺纹, 在外锥 螺纹上沿周向均布有多个第二轴向槽,所述外锥螺纹上螺纹连接有调节所述测微螺纹副配合 紧密程度的锥螺母; 所述测力装置包括滑套、 力传感器及力传感器座, 其中滑套的一端与所 述测微螺杆的另一端相连, 滑套的另一端与力传感器的一端连接, 所述力传感器座安装在力 传感器的另一端的底部, 所述压头连接在力传感器座的下端; 所述力传感器座上加设有照明 电路板, 该照明电路板位于所述压头的上方, 在照明电路板上设有 LED灯; 所述滑套的一 端通过压帽及两个半环与测微螺杆的另一端相连接,在测微螺杆另一端的端面与滑套之间设 有钢球; 所述滑套的外表面沿周向开有第三轴向槽, 所述测微螺母上安装有第一键, 该第一 键在所述第三轴向槽内滑动; 所述滑套、 力传感器、 力传感器座、 压头、 测微螺杆、 测微螺 母、 旋转编码器转动轴、 手轮以及支承座内部沿轴向开设的孔同轴; 所述数字显示器安装在 支承座上, 数字显示器的显示屏与支承座倾斜设置。
本发明的优点与积极效果为-
1 . 本发明在硬度计领域首次采用测微螺母、 测微螺杆、 旋转编码器的组合作为压痕深 度测量装置, 实现了压痕深度检测的高分辨率和高精度, 同时兼顾了经济性。
2. 本发明首次在便携式硬度计上利用测深法实现了布氏硬度和维氏硬度的快速检测, 直接显示, 使大型工件本体硬度的现场快速、 精确检测成为可能, 可用于工厂现场大批工件 的逐件检测, 可代替精度不高的里氏硬度计。
3. 本发明结构简单、 轻便, 可以方便地安装在试样夹持或固定装置上构成便携式硬度 计。
4. 本发明测试操作简单, 操作者只要完成加力、 保持试验力、 卸力、 读数这几个简单 动作, 只用几秒至十几秒时间即可完成测试。
5. 本发明每次开机后自动校正力值零点, 排除了因传感器及电子电路温漂、 时漂造成 的误差。
6. 本发明可随时利用标准硬度块对仪器测量值进行校正, 仪器长期使用后仍可保持高 精度。 附图说明
图 1为本发明的内部结构示意图;
图 2为本发明的电路框图;
图 3为本发明安装在磁力吸盘上的应用结构示意图;
图 4为本发明安装在 C形架上的应用结构示意图;
图 5为图 4的左视图;
其中: 1为压头, 2为 LED灯, 3为照明电路板, 4为力传感器座, 5为力传感器, 6为 滑套, 7为第一键, 8为支承座, 9为旋转编码器, 10为旋转编码器转动轴, 11为手轮, 12 为锁紧螺丝, 13为第二键, 14为套筒, 15为第三键, 16为锥螺母, 17为测微螺杆, 18为 测微螺母, 19为数字显示器, 20为压帽, 21为半环, 22为钢球, 23为测量电路, 24为 CPU 电路, 25为电源电路, 26为电子电路板, 27为磁力吸盘, 28为 C形架, 29为试样。 具体实施方式
下面结合附图对本发明作进一步详述。
如图 1所示, 本发明包括支承座 8、 测力装置、 压头 1、 电子电路板 26、 数字显示器 19 及加力与压痕深度测量装置, 其中加力与压痕深度测量装置包括手轮 11、 旋转编码器 9、 套 筒 14及由测微螺母 18和测微螺杆 17组成的测微螺纹副, 测力装置包括滑套 6、力传感器 5 及力传感器座 4。
支承座 8为主支架, 其内部沿轴向开有圆孔, 测微螺母 18安装在支承座 8的圆孔内, 测微螺杆 17位于测微螺母 18内、 与测微螺母 18螺纹连接; 测微螺杆 17的一端 (上端)连 接套筒 14, 该套筒 14固定在手轮 11的内孔中, 测微螺杆 17的一端开有键槽, 该键槽内装 有第二键 13, 测微螺杆 17通过第二键 13保持与套筒 14和手轮 11的同步旋转, 测微螺杆 17的一端端部用锁紧螺丝 12紧固, 测微螺杆 17的另一端(下端)通过滑套 6与力传感器 5 连接。 测微螺母 18的一端 (上端)位于套筒 14与测微螺杆 17之间, 测微螺母 18的一端设 有外锥螺纹, 在外锥螺纹上沿周向均布有多个第二轴向槽 (本实施例为三个), 外锥螺纹上 螺纹连接有锥螺母 16, 通过锥螺母 16可调节测微螺纹副配合的紧密程度。
旋转编码器 9安装在支承座 8上, 旋转编码器转动轴 10与测微螺纹副同轴; 套筒 14的 一端固接在手轮 11的内孔中, 另一端插设在旋转编码器转动轴 10的中心孔内, 套筒 14的 外表面沿轴向开有第一轴向槽, 旋转编码器转动轴 10的上沿设有第三键 15, 旋转编码器转 动轴 10通过第三键 15与套筒 14连接, 该第三键 15在测微螺杆 17移动过程中可在第一轴 向槽内滑动。 所述旋转编码器转动轴 10通过套筒 14与测微螺杆 17相连, 并与所述测微螺 杆 17同步转动。
转动手轮 11时, 旋转编码器转动轴 10、 套筒 14及测微螺杆 17同步转动, 同时测微螺 杆 17沿轴向上下移动。 手轮 11每旋转一周, 测微螺杆 17沿轴向移动一个螺距的位移, 旋 转编码器 9将此位移量细分为几千个分度,并将信号经测量电路 23传送给 CPU电路 24, 以 此实现对压痕深度的精确测量。 本实施例一个螺距是 0.5mm, 在测试洛氏硬度时, 旋转编码 器转动轴 10每旋转一周可输出 5000个分度, 每分度代表 0.1 μ ηι的位移, 相当于 0.05个洛 氏硬度单位; 在采用测深法测试布氏硬度及维氏硬度时, 利用分频技术可使旋转编码器转动 轴 10每旋转一周输出 10000个分度, 每分度代表 0.05 μ ηι的位移, 对于布氏硬度 HBW2.5 / 187.5 标尺, 相当于最小压痕深度 (淬火钢硬度值 650HBW) 的 1 / 730, 对于维氏硬度 HV5标尺, 相当于最小压痕深度 (渗氮层硬度值 1000HV5 ) 的 1 / 280。 可以符合相关标准 GB/T230.2、 GB/T231.2及 GB/T4340的要求。
滑套 6的一端(上端)通过压帽 20及两个半环 21与所述测微螺杆 17的另一端(下端) 连接在一起, 滑套 6的另一端 (下端) 与力传感器 5的一端 (上端) 螺纹连接, 力传感器座 4安装在力传感器 5的另一端 (下端) 的底部, 压头 1连接在力传感器座 4的下端, 压头 1 可以是球压头, 也可以是金刚石压头。 在测微螺杆 17另一端的端面与滑套 6之间设有钢球 22, 测微螺杆 17的另一端端面上设有一个与钢球 22相适应的球型凹坑、 与钢球 22配合。 滑套 6的外表面沿周向开有第三轴向槽,测微螺母 18上安装有第一键 7,该第一健 7在所述 第三轴向槽内滑动; 滑套 6通过该第一键 7的导向作用, 在测微螺母 18内仅做轴向移动, 避免整个测力装置及压头 1发生转动。钢球 22可有效消除测微螺杆 17在转动时对滑套 6和 第一键 7所造成的横向作用力。 力传感器座 4下方还装有一个照明电路板 3, 该照明电路板 3上设有 LED灯 2; 测试时 LED灯 2可照亮测试区域, 便于操作者选择测试点并观察测试 过程。
本发明的滑套 6、 力传感器 5、 力传感器座 4、 压头 1、 测微螺杆 17、 测微螺母 18、 旋 转编码器转动轴 10、 手轮 11、 套筒 14以及支承座 8内部沿轴向开设的圆孔均同轴。 本发明 的手轮 11可用电机替代, 电机输出轴与套筒 14相连, 由电机驱动套筒 14、 测微螺杆 17及 旋转编码器转动轴 10转动。
支承座 8的正面安装有一个数字显示器 19, 该数字显示器 19与支承座 8倾斜设置, 便 于在操作时观察, 数字显示器 19还可以安装在试样夹持或固定装置上; 支承座 8的侧面设 有电子电路板 26, 旋转编码器 9、数字显示器 19、照明电路板 3以及力传感器 5分别与电子 电路板 26电连接。
电子电路板 26包括测量电路 23、 CPU电路 24和电源电路 25,测量电路 23的输入连接 到旋转编码器 9和力传感器 5, 输出连接到 CPU电路 24, CPU电路 24还与数字显示器 19 相连接。力传感器 5和旋转编码器 9分别将力和位移信号经测量电路 23传送给 CPU电路 24, 经 CPU电路 24处理后, 在数字显示器 19上显示出试验力力值和测得的硬度值。 电子电路 板 26可对力值自动校零, 开机后, CPU电路 24自动采集力传感器 5的零点输出信号, 在加 力时将力传感器 5输出信号减去零点值之后, 在数字显示器 19上实时显示力值。 电子电路 板 26可以安装在支承座 8上, 也可以安装在试样夹持或固定装置上。 根据测深法布氏硬度测试标准 GB/T24523-2009的要求, 仪器出厂前需要测试一系列标 准布氏硬度块, 将测得的硬度值输入仪器中, 建立硬度一压痕深度曲线。 采用测深法进行维 氏硬度测试时也需要做同样的工作。
支承座 8可以安装在一个试样夹持或固定装置上, 本发明可以安装在磁力吸盘 27上, 以磁力吸住试样进行硬度测试, 如图 3所示; 还可以安装在 C形架 28上, 利用 C形开口夹 住试样进行硬度测试, 如图 4所示; 也可以安装在其他适于夹持试样的金属支架上。
本发明的工作原理为:
将试样 29夹持或固定后, 转动手轮 11, 带动套筒 14、测微螺杆 17, 旋转编码器转动轴 10同步转动, 测微螺杆 17通过钢球 22和滑套 6推动力传感器 5、力传感器座 4和压头 1下 行, 移向试样 29; 当压头 1接触到试样 29后, 随着手轮 11的继续转动, 压头 1顶端会压入 试样 29, 在试样 29表面产生压痕。 在测试过程中, 力传感器 5实时监测压头 1所受到的试 验力, 并将信号传送到 CPU电路 24, 当试验力达到规定的初试验力值时, CPU电路 24会 记录此时的压痕深度值, 继续加力至总试验力, 停止加力并保持规定的时间; 反向转动手轮 11, 当试验力降至规定的初试验力值时, CPU电路 24再次记录此时的压痕深度值, 然后对 施加主试验力前后在初试验力作用下的压痕深度差值进行计算处理, 在数字显示器 19上显 示出试样 29的硬度值。 完成全部测试操作只需要几秒到十几秒时间。
本实施例的测试操作过程简单到只有如下步骤:
固定试样一施加总试验力一保持试验力一卸除总试验力一读取硬度值一释放试样。

Claims

^ ^
1 . 一种便携式数显硬度测量装置, 包括支承座、 测力装置、 压头、 电子电路板、 数字 显示器及加力与压痕深度测量装置, 其特征在于: 所述加力与压痕深度测量装置包括手轮 ( 11 )、 旋转编码器 (9) 及由测微螺母 (18) 和测微螺杆 (17) 组成的测微螺纹副, 其中测 微螺母 (18) 安装在所述支承座 (8) 内, 所述测微螺杆 (17) 与测微螺母 (18) 螺纹连接, 测微螺杆 (17) 的一端与所述手轮 (11 )连接, 另一端与所述测力装置相连; 所述旋转编码 器 (9) 安装在支承座 (8) 上, 旋转编码器转动轴 (10) 与所述测微螺杆 (17) 同步转动; 所述压头 (1 ) 安装在测力装置上, 与测力装置、 测微螺杆 (17) —起通过手轮 (11 ) 的转 动沿轴向上下移动; 所述电子电路板 (26)及数字显示器 (19) 分别安装在支承座 (8) 上, 旋转编码器(9)、数字显示器(19) 以及测力装置中的力传感器分别与所述电子电路板(26) 电连接; 所述测微螺杆 (17) 的位移通过旋转编码器 (9) 测量。
2. 按权利要求 1所述的便携式数显硬度测量装置, 其特征在于: 所述测微螺杆 (17) 的一端通过套筒 (14) 与手轮 (11 )连接, 测微螺杆 (17) 的一端开有键槽, 该键槽内装有 第二键 (13 ), 所述测微螺杆 (17) 通过第二键 (13 ) 与套筒 (14) 同步旋转; 所述旋转编 码器转动轴 (10)通过套筒 (14) 与测微螺杆 (17) 相连, 并与所述测微螺杆 (17) 同步转 动。
3. 按权利要求 2所述的便携式数显硬度测量装置, 其特征在于: 所述套筒 (14) 的一 端固接在手轮 (11 ) 的内孔中, 另一端插设在所述旋转编码器转动轴 (10) 的中心孔内, 测 微螺杆 (17)位于套筒 (14) 内部; 所述套筒 (14) 的外表面沿轴向开有第一轴向槽, 所述 旋转编码器转动轴(10)的上沿设有第三键(15 ), 旋转编码器转动轴(10)通过第三键(15 ) 与套筒(14)连接, 该第三键(15 )在测微螺杆(17)移动过程中在所述第一轴向槽内滑动。
4. 按权利要求 1或 2所述的便携式数显硬度测量装置, 其特征在于: 所述支承座 (8) 内部沿轴向开有孔, 测微螺母 (18 ) 安装在支承座 (8) 的孔内, 所述测微螺母 (18) 的一 端设有外锥螺纹, 在外锥螺纹上沿周向均布有多个第二轴向槽, 所述外锥螺纹上螺纹连接有 调节所述测微螺纹副配合紧密程度的锥螺母 (16)。
5. 按权利要求 1所述的便携式数显硬度测量装置, 其特征在于: 所述测力装置包括滑 套 (6)、 力传感器 (5 )及力传感器座 (4), 其中滑套 (6) 的一端与所述测微螺杆 (17) 的 另一端相连, 滑套 (6) 的另一端与力传感器 (5 ) 的一端连接, 所述力传感器座 (4) 安装 在力传感器 (5 ) 的另一端的底部, 所述压头 (1 ) 连接在力传感器座 (4) 的下端。
6. 按权利要求 5所述的便携式数显硬度测量装置, 其特征在于: 所述力传感器座 (4) 上加设有照明电路板(3 ), 该照明电路板(3 )位于所述压头(1 )的上方, 在照明电路板(3 ) 上设有 LED灯 (2)。
7. 按权利要求 5或 6所述的便携式数显硬度测量装置, 其特征在于: 所述滑套 (6) 的 一端通过压帽 (20)及两个半环(21 )与测微螺杆(17) 的另一端相连接, 在测微螺杆(17) 另一端的端面与滑套 (6) 之间设有钢球 (22)。
8. 按权利要求 5或 6所述的便携式数显硬度测量装置, 其特征在于: 所述滑套 (6) 的 外表面沿周向开有第三轴向槽, 所述测微螺母 (18 ) 上安装有第一键 (7), 该第一键 (7) 在所述第三轴向槽内滑动。
9. 按权利要求 5或 6所述的便携式数显硬度测量装置, 其特征在于: 所述滑套 (6)、 力传感器 (5 )、 力传感器座 (4)、 压头 (1 )、 测微螺杆 (17)、 测微螺母 (18)、 旋转编码器 转动轴 (10)、 手轮 (11 ) 以及支承座 (8) 内部沿轴向开设的孔同轴。
10. 按权利要求 1所述的便携式数显硬度测量装置, 其特征在于: 所述数字显示器(19) 安装在支承座 (8) 上, 数字显示器 (19) 的显示屏与支承座 (8) 倾斜设置。
PCT/CN2012/078464 2012-03-13 2012-07-11 便携式数显硬度测量装置 WO2013135026A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210065120.0 2012-03-13
CN201210065120.0A CN103308405B (zh) 2012-03-13 2012-03-13 便携式数显硬度测量装置

Publications (1)

Publication Number Publication Date
WO2013135026A1 true WO2013135026A1 (zh) 2013-09-19

Family

ID=49133867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078464 WO2013135026A1 (zh) 2012-03-13 2012-07-11 便携式数显硬度测量装置

Country Status (2)

Country Link
CN (1) CN103308405B (zh)
WO (1) WO2013135026A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016206655A1 (en) 2015-06-23 2016-12-29 Ceské vysoké učení technické v Praze, Fakulta strojni An indentation device, instrumented measurement system, and a method for determining the mechanical properties of materials by the indentation method
CN111272593A (zh) * 2020-03-31 2020-06-12 国网福建省电力有限公司电力科学研究院 一种应用于便携式洛氏硬度计的c形加载装置
RU207250U1 (ru) * 2021-06-28 2021-10-20 Акционерное общество "Лыткаринский завод оптического стекла" Портативный микроскоп

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729939B (zh) * 2015-04-14 2017-07-11 贵州大学 简便检测金属材料布氏硬度的装置
DE102016123010A1 (de) * 2016-11-29 2018-05-30 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Messvorrichtung, Messanordnung und Verfahren zur Ermittlung von Messsignalen während einer Eindringbewegung eines Eindringkörpers in eine Oberfläche eines Prüfkörpers
CN106644792A (zh) * 2017-01-04 2017-05-10 东莞市中旺精密仪器有限公司 一种金刚石测头以及适用该金刚石测头的检测装置
CN107247004B (zh) * 2017-06-12 2019-06-28 浙江农林大学 木材硬度测量仪
CN111323321A (zh) * 2020-03-24 2020-06-23 武汉大学 一种可测力-位移曲线的全自动显微硬度装置
CN112485141A (zh) * 2020-11-13 2021-03-12 钱徐耀 金属工件的表面硬度测试装置中的测试头组件
CN112730121B (zh) * 2020-12-24 2024-04-02 江苏徐工工程机械研究院有限公司 销轴加工和质量检测装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144338A (ja) * 1984-08-09 1986-03-04 Yokohama Rubber Co Ltd:The 定荷重デジタル式硬さ計
JP2000292333A (ja) * 1999-04-12 2000-10-20 Akashi Corp 硬さ試験機
CN2453428Y (zh) * 2000-11-30 2001-10-10 武汉大学 数字式通用硬度计
CN201199215Y (zh) * 2008-04-16 2009-02-25 深圳市宝利根精密自动设备有限公司 一种布氏硬度计用数显读数显微镜
CN201322709Y (zh) * 2008-12-22 2009-10-07 沈阳天星试验仪器有限公司 便携式硬度计
CN201892644U (zh) * 2010-12-01 2011-07-06 洛阳中创重型机械有限公司 大型铸锻件的洛氏硬度测量仪
CN202141656U (zh) * 2011-07-05 2012-02-08 上海尚材试验机有限公司 数显小负荷布氏硬度计

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872031A (ja) * 1981-10-26 1983-04-28 Shimadzu Corp デジタルゴム緩和硬度計
JP2007078594A (ja) * 2005-09-15 2007-03-29 National Institute Of Advanced Industrial & Technology 微小平面の角度測定装置
CN201637643U (zh) * 2010-04-13 2010-11-17 上海尚材试验机有限公司 数显维氏硬度计
CN202486006U (zh) * 2012-03-13 2012-10-10 沈阳天星试验仪器有限公司 一种便携式数显硬度测量装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144338A (ja) * 1984-08-09 1986-03-04 Yokohama Rubber Co Ltd:The 定荷重デジタル式硬さ計
JP2000292333A (ja) * 1999-04-12 2000-10-20 Akashi Corp 硬さ試験機
CN2453428Y (zh) * 2000-11-30 2001-10-10 武汉大学 数字式通用硬度计
CN201199215Y (zh) * 2008-04-16 2009-02-25 深圳市宝利根精密自动设备有限公司 一种布氏硬度计用数显读数显微镜
CN201322709Y (zh) * 2008-12-22 2009-10-07 沈阳天星试验仪器有限公司 便携式硬度计
CN201892644U (zh) * 2010-12-01 2011-07-06 洛阳中创重型机械有限公司 大型铸锻件的洛氏硬度测量仪
CN202141656U (zh) * 2011-07-05 2012-02-08 上海尚材试验机有限公司 数显小负荷布氏硬度计

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016206655A1 (en) 2015-06-23 2016-12-29 Ceské vysoké učení technické v Praze, Fakulta strojni An indentation device, instrumented measurement system, and a method for determining the mechanical properties of materials by the indentation method
US10139327B2 (en) 2015-06-23 2018-11-27 Ceske Vysoke Uceni Technicke V Praze, Fakulta Strojni Indentation device, instrumented measurement system, and a method for determining the mechanical properties of materials by the indentation method
CN111272593A (zh) * 2020-03-31 2020-06-12 国网福建省电力有限公司电力科学研究院 一种应用于便携式洛氏硬度计的c形加载装置
CN111272593B (zh) * 2020-03-31 2023-09-19 国网福建省电力有限公司电力科学研究院 一种应用于便携式洛氏硬度计的c形加载装置
RU207250U1 (ru) * 2021-06-28 2021-10-20 Акционерное общество "Лыткаринский завод оптического стекла" Портативный микроскоп

Also Published As

Publication number Publication date
CN103308405A (zh) 2013-09-18
CN103308405B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
WO2013135162A1 (zh) 一种便携式数显硬度计
WO2013135026A1 (zh) 便携式数显硬度测量装置
US9581533B2 (en) Modular hardness testing machine
CN101373173A (zh) 一种用于测试脆性材料强度的方法及装置
CN202486006U (zh) 一种便携式数显硬度测量装置
CN101398282B (zh) 工程机械液压零部件制造综合测量方法及装置
CN207936891U (zh) 一种内螺纹中径测量仪
WO2013135164A1 (zh) 一种用于便携式数显硬度计的压痕深度测量装置
KR20030055082A (ko) 직각도 검사 시스템
CN217424966U (zh) 一种热轧钢带扭转试验装置
CN114509339A (zh) 一种双轴残余应力压入标定装置
CN210981108U (zh) 内花键齿顶圆直径检验夹具
KR19980036204A (ko) 기어의 이뿌리 검사 장치
CN201087820Y (zh) 工程机械液压零部件制造综合测量装置
CN2141554Y (zh) 两级测量立式位移检测仪
TW200810858A (en) Method for erecting mold for use in initial thread forming stages
CN115265339B (zh) 棱圆度测量仪及棱圆度测量方法
CN205505939U (zh) 高精度直径测具
US3279082A (en) Radial and axial clearance gage for ball bearings
CN215639126U (zh) 一种异形弹簧尺寸检具
CN220454474U (zh) 一种浅孔检具
JPH0422801A (ja) 底付きチューブの底厚測定装置
CN213481964U (zh) 一种电动便携式布氏硬度计
CN216694794U (zh) 一种采用密珠定心结构的两孔同轴度专用检具
CN212843316U (zh) 长台阶高度量具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871082

Country of ref document: EP

Kind code of ref document: A1