WO2013135164A1 - 一种用于便携式数显硬度计的压痕深度测量装置 - Google Patents
一种用于便携式数显硬度计的压痕深度测量装置 Download PDFInfo
- Publication number
- WO2013135164A1 WO2013135164A1 PCT/CN2013/072449 CN2013072449W WO2013135164A1 WO 2013135164 A1 WO2013135164 A1 WO 2013135164A1 CN 2013072449 W CN2013072449 W CN 2013072449W WO 2013135164 A1 WO2013135164 A1 WO 2013135164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- micrometer
- micrometer screw
- rotary encoder
- hand wheel
- sleeve
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
- G01N3/42—Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/067—Parameter measured for estimating the property
- G01N2203/0682—Spatial dimension, e.g. length, area, angle
Definitions
- Indentation depth measuring device for portable digital hardness tester
- the utility model relates to a material hardness detecting instrument, in particular to an indentation depth measuring device for a portable digital hardness tester. Background technique
- hardness testers adopt the principle of applying the specified test force and then measuring the indentation.
- the Rockwell hardness tester measures the difference between the indentation depth and directly displays the hardness value.
- the Brinell hardness tester measures the indentation diameter. The hardness value is calculated from the table.
- the Vickers hardness tester measures the diagonal length of the indentation, and looks up or calculates the hardness value.
- a portable Rockwell hardness tester is described in U.S. Patent No. 2,544,205, the disclosure of which is incorporated herein by reference to U.S. Pat.
- the elastomer, the force indicator, the indenter and the handle It relies on the hand wheel to apply the test force, and uses the micrometer nut and the micrometer screw to cooperate with the drum to realize the indentation depth measurement.
- the U-type elastic body force value indicator is used to measure the test force, and the hardness value is read on the drum. , that is, the difference in indentation depth before and after the main test force is loaded.
- the hand wheel is rotated, and the micro-screw drives the drum to rotate; at the same time, the pressure head is moved up or down, and each time the hand wheel rotates, the micro-screw generates an axial displacement of the pitch, and the drum wheel
- the displacement amount is subdivided and displayed as the hardness value.
- Each of the above patents uses an indentation depth measuring device consisting of a micrometer nut, a micrometer screw and a reading drum.
- the scales on the drum are read by a transparent magnifying glass with a reading line.
- the drum scale represents The hardness value corresponding to the difference in indentation depth. Due to the distance between the magnifying glass and the drum, the operator may read different hardness values depending on the angle of view. All of the above instruments have problems such as low resolution of indentation depth measurement, low precision, inconvenient hardness reading, and human error when reading.
- the micro screw, the reticle indicator cylinder and the reading drum are composed.
- the utility model patent adopts a structure in which the fixed engraved indicator cylinder and the rotary reading engraved drum cooperate in the hardness indication, the reading drum rotates outside the fixed engraving indicating cylinder, and the scale on the reading drum represents Rockwell. Hardness, each Rockwell hardness unit corresponds to a difference in indentation depth of 2 ⁇ ⁇ .
- This micrometer-like drum reading structure improves the accuracy of the indentation depth measurement accuracy and the hardness value reading, and reduces the artificial reading error, but the utility model patent has the following disadvantages:
- the displacement measurement has low resolution and low precision.
- the indentation depth measuring device cannot output an electronic signal, and the intelligent and digital display of the hardness tester cannot be realized.
- the above utility model patents have low efficiency when testing Brinell hardness, and some people have reading errors.
- the instrument can only press an indentation on the sample, then read the indentation diameter with a reading microscope, and then check the table to obtain the Brinell hardness value; It takes a few minutes to complete a Brinell hardness test.
- the Chinese standard GB/T24523-2009 specifies an advanced Brinell hardness test method - rapid indentation (Brinell) hardness test method for metal materials. This is the sounding method for Brinell hardness test. Vickers hardness test can also be used. The same way, the principle is:
- the Brinell hardness value of the material can be obtained by comparing the depth value measured by the hardness tester to the indentation depth and the Brinell hardness.
- This method is an important technological advance compared to the traditional Brinell hardness test method. It can realize the rapid detection of Brinell hardness, direct reading, can eliminate the optical microscope that has been used for hundreds of years, no one is reading error, can solve the problem of rapid detection of Brinell hardness in batch products in production, and even realize the problem in the production workshop. Batch products are automatically tested for online hardness.
- the sounding method Brinell hardness and Vickers hardness testing is a new technology, only appeared on some desktops abroad, and has not been found on portable hardness testers.
- the main technical difficulty is that portable hardness testers require simple structure, light weight, small instrument size, limited internal space, and difficulty in installing ordinary high-precision displacement sensors.
- high-precision displacement sensors are also less economical for portable hardness testers.
- the Brinell hardness measurement range is 8 ⁇ 650HBW
- the portable Brinell hardness tester commonly used ruler is 2.5mm ball
- 187.5kg force the minimum indentation depth is only 0.0365mm.
- the greatest value of the portable Vickers hardness tester is to accurately test the hardness of the nitrided layer on large workpieces such as molds and shafts.
- accurate detection of the hardness of the nitrided layer on the large workpiece body is a problem.
- the nitrogen layer is thin and hard, its thickness is only 0.1 ⁇ 0.4mm, the hardness can exceed 1000HV5, and it is not possible to use large test force.
- the test force of 5kg is used, and the indentation depth is only 0.0143mm.
- the sounding method measures the indentation depth difference, which is smaller.
- the indentation depth measuring device has the advantages of simple structure, light weight, high resolution, high precision, and electronic signal output, which can realize intelligent and digital display of the portable hardness tester, and can enable the portable hardness tester to test both Rockwell hardness and utilization.
- the sounding method realizes on-site rapid detection of Brinell hardness and Vickers hardness and directly displays it.
- the utility model comprises a hand wheel, a rotary encoder, a support base and a micrometer consisting of a micrometer nut and a micrometer screw a thread pair, wherein the micrometer nut is installed in the support seat, the micrometer screw is inserted into the micrometer nut, and is screwed with the micrometer nut, one end of the micrometer screw is connected with the hand wheel, and the other end is connected a rotary end; the rotary encoder is mounted on the support base, the rotary encoder rotating shaft and the micrometer screw are synchronously rotated by the rotation of the rotating hand wheel, and the micrometer screw is moved up and down in the axial direction by the rotation of the hand wheel; The displacement of the micrometer screw is measured by a rotary encoder.
- one end of the micrometer screw is connected to the hand wheel through a sleeve, and one end of the micrometer screw is provided with a keyway, the first key is installed in the keyway, and the micrometer screw rotates synchronously with the sleeve through the first key;
- the rotary encoder rotating shaft is connected to the micrometer screw through a sleeve and rotates synchronously with the micrometer screw; one end of the sleeve is fixed in the inner hole of the hand wheel, and the other end is inserted in the rotary code
- the micrometer screw is located inside the sleeve; the outer surface of the sleeve is axially opened with a first axial groove, and the upper edge of the rotating shaft of the rotary encoder is provided with a second key,
- the rotation axis of the rotary encoder is connected to the sleeve through a second key, and the second key slides in the first axial groove during the movement of the micrometer screw; the inside
- a nut is mounted in the hole of the bearing seat, and one end of the micrometer nut is provided with an outer taper thread, and a plurality of second axial grooves are evenly distributed on the outer taper thread in a circumferential direction, and the outer taper thread is threadedly connected to adjust the Measuring the micro-thread pair to match the tightness of the cone nut;
- the hand wheel, the rotary encoder, the support base, the micrometer nut, the micrometer screw and the sleeve are coaxial.
- the utility model adopts the combination of the micrometer nut, the micrometer screw and the rotary encoder as the indentation depth measuring device for the first time on the portable hardness tester, realizes the high resolution and high precision of the indentation depth detection, and can realize the portable hardness.
- the intelligence of the meter is the combination of the micrometer nut, the micrometer screw and the rotary encoder as the indentation depth measuring device for the first time on the portable hardness tester, realizes the high resolution and high precision of the indentation depth detection, and can realize the portable hardness.
- the intelligence of the meter is the combination of the micrometer nut, the micrometer screw and the rotary encoder as the indentation depth measuring device for the first time on the portable hardness tester, realizes the high resolution and high precision of the indentation depth detection, and can realize the portable hardness.
- the indentation depth measuring device provided by the utility model is used for manufacturing a portable digital hardness tester, and can realize the rapid detection and direct display of Brinell hardness and Vickers hardness by the sounding method, and the hardness of the large workpiece body is on-site. Fast and accurate inspection is possible. It can be used for part-by-piece inspection of large batches of workpieces on the factory floor, and can replace the less accurate Leeb hardness tester.
- the indentation depth measuring device provided by the utility model has the advantages of simple structure, light weight and good economy, and is used for manufacturing a portable digital hardness tester, which contributes to miniaturization, intelligence and low cost of the portable hardness tester.
- Figure 1 is a schematic view of the internal structure of the present invention
- FIG. 2 is a schematic structural view of the utility model applied to a portable digital display hardness tester
- 1 is the locking screw
- 2 is the first key
- 3 is the hand wheel
- 4 is the second key
- 5 is the rotary encoder
- 6 is the support base
- 7 is the micro-nut
- 8 is the micro-screw
- 9 is Rotary encoder rotating shaft
- 10 is cone nut
- 11 is sleeve
- 12 is sample
- 13 is pressure head
- 14 is force sensor
- 15 is sliding sleeve
- 16 is steel ball
- 17 is semi-ring
- 18 is pressure cap 19 is a digital display
- 20 is a third button.
- the utility model comprises a hand wheel 3 , a rotary encoder 5 , a support base 6 , a sleeve 11 and a micrometric thread pair composed of a micrometer nut 7 and a micrometer screw 8 , wherein the support seat 6 is mainly
- the bracket has a circular hole in the axial direction, and the micro-nut 7 is installed in the circular hole of the support base 6.
- the micro-screw 8 is located in the micro-nut 7 and is screwed with the micro-nut 7; One end (upper end) is connected to the sleeve 11, and the sleeve 11 is fixed to the hand wheel
- the micrometer screw 8 has a key groove at one end thereof, and the first key 2 is installed in the key groove, and the micrometer screw 8 is kept rotated synchronously with the sleeve 11 and the hand wheel 3 through the first key 2, and the micro screw is fixed.
- One end of the 8 is fastened with a locking screw 1, and the other end (lower end) of the micrometer screw 8 is a free end, and a force measuring device can be connected.
- One end (upper end) of the micrometer nut 7 is located between the sleeve 11 and the micrometer screw 8, and one end of the micronutrable nut 7 is provided with an outer taper thread, and a plurality of second axial slots are uniformly distributed on the outer taper thread in the circumferential direction.
- the outer taper thread is threaded with a cone nut 10, and the taper nut 10 can adjust the tightness of the micrometric thread pair.
- the rotary encoder 5 is mounted on the support base 6, and the rotary encoder rotating shaft 9 is coaxial with the micrometric thread pair; one end of the sleeve 11 is fixed in the inner hole of the hand wheel 3, and the other end is inserted in the rotary encoder.
- the outer surface of the sleeve 11 is axially opened with a first axial groove, the upper edge of the rotary encoder shaft 9 is provided with a second key 4, and the rotary encoder rotating shaft 9 passes through the second key. 4 is coupled to the sleeve 11, which is slidable within the first axial slot during movement of the micrometer screw 8.
- the rotary encoder rotating shaft 9 is connected to the micrometer screw 8 through the sleeve 11, and rotates in synchronization with the micrometer screw 8.
- the rotary encoder rotating shaft 9 When the hand wheel 3 is rotated, the rotary encoder rotating shaft 9, the sleeve 11 and the micrometer screw 8 rotate synchronously, and the micro screw 8 moves up and down in the axial direction. Each time the hand wheel 3 rotates, the micrometer screw 8 moves in the axial direction by a pitch displacement, and the rotary encoder 5 subdivides the displacement amount into several thousand divisions, and transmits the signal to the electronic circuit board, thereby realizing Accurate measurement of indentation depth. In the present embodiment, a pitch is 0.5 mm. When Rockwell hardness is tested, the rotary encoder rotating shaft 9 can output 5000 divisions per revolution. Each division represents a displacement of 0.1 ⁇ m, which is equivalent to 0.05 Rockwell hardness unit.
- the frequency division technique can be used to output 10000 divisions per revolution of the rotary encoder rotating shaft 9, each division representing a displacement of 0.05 ⁇ m for Brinell.
- Hardness HBW2.5 I 187.5 scale equivalent to the minimum indentation depth (hardened steel hardness value 650HBW) 1 I 730, for Vickers hardness HV5 scale, equivalent to the minimum indentation depth (nitriding layer hardness value 1000HV5) 1 I 280. It can meet the requirements of relevant standards GB/T230.2, GB/T231.2 and GB/T4340.
- the hand wheel 3, the rotary encoder 5, the micrometer nut 7, the micrometer screw 8, the sleeve 11 and the circular hole opened in the axial direction of the support seat 6 of the utility model are all coaxial.
- the hand wheel 3 of the present invention can be replaced by a motor, and the motor output shaft is connected to the sleeve 11, and the motor drive sleeve 11, the micrometer screw 8 and the rotary encoder rotating shaft 9 rotate.
- the utility model can be applied to a portable hardness tester, and a force measuring device is mounted on the free end of the micrometer screw 8, and a digital display 19 is mounted on the front surface of the support base 6, the digital display 19 and the support base. 6 inclined arrangement for easy observation during operation; the side of the support base 8 is further provided with an electronic circuit board, and the rotary encoder 5, the digital display 19 and the force sensor 14 in the force measuring device are respectively electrically connected to the electronic circuit board.
- the force measuring device comprises a sliding sleeve 15, a force sensor 14 and a pressing head 13, and one end (upper end) of the sliding sleeve 15 is connected with the free end of the micrometer screw 8 through a pressing cap 18 and two half rings 17, the sliding sleeve
- the other end (lower end) 15 is screwed to one end (upper end) of the force sensor 14, and the indenter 1 is connected to the other end (lower end) of the force sensor 14, and the indenter 1 may be a ball indenter or a diamond indenter.
- a steel ball 16 is disposed between the end face of the free end of the micrometer screw 8 and the sliding sleeve 15.
- the free end surface of the micrometer screw 8 is provided with a spherical recess corresponding to the steel ball 16, and cooperates with the steel ball 16.
- the outer surface of the sliding sleeve 15 has a third axial groove in the circumferential direction, and the third nut 20 is mounted on the micro nut 7.
- the third nut 20 slides in the third axial groove; the sliding sleeve 15 passes through the third
- the guiding action of the key 20 is only axially moved within the micrometer nut 7 to avoid rotation of the entire force measuring device.
- the steel ball 16 can effectively eliminate the lateral force caused by the micrometer screw 8 on the sliding sleeve 15 and the third key 20 when rotating.
- the force sensor 14 and the rotary encoder 5 respectively transmit force and displacement signals to the electronic circuit board, and after processing, display the test force value and the measured hardness value on the digital display 19.
- the portable digital hardness tester adopts the indentation depth measuring device provided by the utility model, and it takes only a few seconds to ten seconds to complete a test.
- the hand wheel 3 driving the sleeve 11, the micrometer screw 8, the rotary encoder rotating shaft 9 rotates synchronously, and the micrometer screw 8 pushes the force sensor 14 and the indenter 13 through the steel ball 16 and the sliding sleeve 15 to move toward the sample. 12; After the indenter 13 contacts the sample 12, as the hand wheel 3 continues to rotate, the tip end of the indenter 13 is pressed into the sample 12, and an indentation is generated on the surface of the sample 12.
- the force sensor 14 monitors the test force received by the indenter 13 in real time and transmits the signal to the electronic circuit board. When the test force reaches the specified initial test force value, the electronic circuit board records the indentation at this time.
- Depth value continue to force to the total test force, stop the force and keep the specified time; Turn the handwheel 3 in the opposite direction, when the test force drops to the specified initial test force value, the electronic circuit board records the indentation at this time again. The depth value is then calculated for the difference in indentation depth under the initial test force before and after the application of the main test force, and the hardness value of the sample 12 is displayed on the digital display 19. It takes only a few seconds to a dozen seconds to complete all test operations.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- A Measuring Device Byusing Mechanical Method (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
一种材料硬度检测仪器,具体为一种用于便携式数显硬度计的压痕深度测量装置,包括手轮(3)、旋转编码器(5)、支承座(6)及由测微螺母(7)和测微螺杆(8)组成的测微螺纹副,其中测微螺母(7)安装在支承座(6)内,测微螺杆(8)插设在测微螺母(7)内、并与测微螺母(7)螺纹连接,测微螺杆(8)的一端与手轮(3)连接,另一端为自由端;旋转编码器(5)安装在支承座(6)上,旋转编码器(5)的转动轴与测微螺杆(8)通过旋转手轮(3)的带动同步转动,并且测微螺杆(8)通过手轮(3)的转动沿轴向上下移动;测微螺杆(8)的位移通过旋转编码器(5)测量。该装置结构简单、轻便、分辨率高、精度高、有电子信号输出,便于实现便携式硬度计的智能化和数字化。
Description
一种用于便携式数显硬度计的压痕深度测量装置 技术领域
本实用新型涉及材料硬度检测仪器,具体地说是一种用于便携式数显硬度计的压 痕深度测量装置。 背景技术
目前大多数常规硬度计都是采用施加规定的试验力然后测量压痕的原理,其中洛 氏硬度计是测量压痕深度差值, 直接显示硬度值, 布氏硬度计是测量压痕直径, 查表 或计算出硬度值, 维氏硬度计是测量压痕对角线长度, 查表或计算出硬度值。
于 1951年 3月 6日公开的、 公开号为 US2, 544,205的美国专利中描述了一种便 携式洛氏硬度计, 这种硬度计由手轮、 测微螺母、 测微螺杆、 鼓轮、 U型弹性体、 力 值指示表、压头和手柄组成。 它依靠手轮施加试验力, 利用测微螺母和测微螺杆配合 鼓轮实现压痕深度测量, 利用一个 U型弹性体配合力值指示表实现试验力的测量, 在鼓轮上读出硬度值, 也就是主试验力加载前后的压痕深度差值。测试操作时转动手 轮, 测微螺杆带动鼓轮随之转动; 同时, 使压头向上或向下移动, 手轮每旋转一周, 测微螺杆会产生一个螺距的轴向位移, 鼓轮将此位移量细分, 显示为硬度值。
于 1949年 4月 5日公开的、 公开号为 US2, 466,567的美国专利、 于 1968年 6月 25日公开的、 公开号为 US3, 389,597的美国专利以及于 1948年 9月 7日公开的、 公 开号为 US2, 448,645的美国专利中分别描述了相似原理的便携式洛氏硬度计。
上述专利都采用了一个由测微螺母、测微螺杆和读数鼓轮组成的压痕深度测量装 置, 都是通过一个带有读数线的透明放大镜读取鼓轮上的刻度,鼓轮刻度代表与压痕 深度差值所对应的硬度值。 由于放大镜与鼓轮间有一定距离,造成操作者因视角不同 可能会读到不同硬度数值。 上述仪器都存在压痕深度测量分辨率低、精度不高、硬度 值读数不便、 读数时易产生人为误差等问题。
于 2009年 10月 7日公告的、公告号为 CN201322709Y、申请号为 200820231921.9 的中国实用新型专利描述了一种与美国专利结构比较接近的压痕深度测量装置,该测 量装置由测微螺母、测微螺杆、刻线指示筒和读数鼓轮组成。 该实用新型专利在硬度 指示上采用了固定的刻线指示筒和旋转读数刻线鼓轮相配合的结构,读数鼓轮在固定 的刻线指示筒外侧转动,读数鼓轮上的刻度代表洛氏硬度,每个洛氏硬度单位对应于 2 μ ηι的压痕深度差值。 这种类似千分尺的鼓轮读数结构与前述美国专利相比, 提高 了压痕深度测量精度和硬度值的读数精度,减小了人为的读数误差,但是该实用新型 专利仍有如下缺点:
a. 读数仍然不便, 需要小心操作鼓轮并在鼓轮上仔细读出鼓轮刻度所代表的硬 度值。
b. 位移测量分辨率低, 精度低。
c 该压痕深度测量装置不能输出电子信号, 无法实现硬度计的智能化和数字显 示。
d. 上述实用新型专利在测试布氏硬度时, 效率低, 有人为读数误差。 仪器只能 在试样上压出一个压痕, 然后用读数显微镜读出压痕直径, 再查表得到布氏硬度值;
完成一次布氏硬度测试需要几分钟时间。
中国标准 GB/T24523— 2009规定了一种先进的布氏硬度试验方法一金属材料快 速压痕(布氏)硬度试验方法, 这就是布氏硬度检测的测深法, 维氏硬度检测也可以 用同样方法, 其原理是:
对一定直径的硬质合金球施加一定的试验力 (包括初始试验力和工作试验力), 将其压入试样表面,经规定的保持时间后,卸载工作试验力,测量在初始试验力下加、 卸载工作试验力前后压头位置差值 (深度值)。 利用多个标准布氏硬度块, 测量相应 的深度值,将布氏硬度值与深度值相对应, 获得在一定的试验条件下压痕深度与布氏 硬度的关系曲线。在进行硬度测量时,将硬度计所测量到的深度值对应压痕深度与布 氏硬度关系曲线, 就可以得到这种材料的布氏硬度值。
与传统布氏硬度试验方法相比, 这种方法是一个重要的技术进步。它可以实现布 氏硬度的快速检测, 直接读数, 可淘汰沿用百年的光学显微镜, 无人为读数误差, 可 以解决生产中大量存在的批量产品布氏硬度现场快速检测难题,甚至可以实现在生产 车间对批量产品进行在线硬度自动检测。
测深法布氏硬度及维氏硬度检测是一门新技术, 只出现在国外的部分台式机上, 迄今没有发现在便携式硬度计上采用。其主要技术难点是,便携式硬度计要求结构简 单、轻便、仪器体积小、 内部空间有限, 安装普通的高精度位移传感器有困难。此外, 高精度位移传感器用于便携式硬度计也缺乏经济性。
按照相关标准的规定, 布氏硬度测量范围是 8〜650HBW, 便携式布氏硬度计常 用标尺是 2.5mm球, 187.5kg力, 对于硬度值 650HBW的试样, 最小压痕深度只有 0.0365mm。
便携式维氏硬度计的最大价值在于精确测试模具、轴类等大型工件上的渗氮层硬 度,在现有技术中对大型工件本体上渗氮层硬度的精确检测是一个难题,其原因在于 渗氮层薄且硬, 其厚度只有 0.1〜0.4mm, 硬度可超过 1000HV5, 不可以用大的试验 力, 对于硬度为 1000HV的渗氮层, 采用 5kg试验力, 压痕深度只有 0.0143mm。 加 之测深法测量的是压痕深度差值, 这一数值要更小。
如何能在便携式硬度计上实现高精度、高分辨率的位移测量是实现测深法布氏硬 度及维氏硬度检测的关键。在硬度计领域通常采用的电感式位移传感器和光栅式位移 传感器, 都难于满足上述要求。 因此, 测深法布氏硬度及维氏硬度检测一直未见在便 携式硬度计上采用。
如果上述方法能在便携式硬度计上实现,则许多关键大型工业零件本体硬度的精 确检测就成为可能, 这将为相关产品带来质量管理方面的进步。 实用新型内容
本实用新型的目的在于提供一种用于便携式数显硬度计的压痕深度测量装置。该 压痕深度测量装置结构简单、 轻便、 分辨率高、 精度高、 有电子信号输出, 可以实现 便携式硬度计的智能化及数字显示, 可使便携式硬度计既能测试洛氏硬度, 也能利用 测深法实现布氏硬度和维氏硬度的现场快速检测, 直接显示。
本实用新型的目的是通过以下技术方案来实现的:
本实用新型包括手轮、旋转编码器、支承座及由测微螺母和测微螺杆组成的测微
螺纹副, 其中测微螺母安装在所述支承座内, 所述测微螺杆插设在测微螺母内、 并与 测微螺母螺纹连接, 测微螺杆的一端与所述手轮连接, 另一端为自由端; 所述旋转编 码器安装在支承座上,旋转编码器转动轴与所述测微螺杆通过旋转手轮的带动同步转 动, 并且测微螺杆通过手轮的转动沿轴向上下移动; 所述测微螺杆的位移通过旋转编 码器测量。
其中: 所述测微螺杆的一端通过套筒与手轮连接, 测微螺杆的一端开有键槽, 该 键槽内装有第一键,所述测微螺杆通过第一键与套筒同步旋转; 所述旋转编码器转动 轴通过套筒与测微螺杆相连, 并与所述测微螺杆同步转动; 所述套筒的一端固接在手 轮的内孔中, 另一端插设在所述旋转编码器转动轴的中心孔内,测微螺杆位于套筒内 部; 所述套筒的外表面沿轴向开有第一轴向槽,所述旋转编码器转动轴的上沿设有第 二键, 旋转编码器转动轴通过第二键与套筒连接, 该第二键在测微螺杆移动过程中在 所述第一轴向槽内滑动; 所述支承座内部沿轴向开有孔,测微螺母安装在支承座的孔 内,所述测微螺母的一端设有外锥螺纹,在外锥螺纹上沿周向均布有多个第二轴向槽, 所述外锥螺纹上螺纹连接有调节所述测微螺纹副配合紧密程度的锥螺母; 所述手轮、 旋转编码器、 支承座、 测微螺母、 测微螺杆以及套筒同轴。
本实用新型的优点与积极效果为:
1 . 本实用新型在便携式硬度计上首次采用测微螺母、 测微螺杆、 旋转编码器的 组合作为压痕深度测量装置, 实现了压痕深度检测的高分辨率和高精度, 可实现便携 式硬度计的智能化。
2. 本实用新型所提供的压痕深度测量装置用于制造便携式数显硬度计, 可以实 现利用测深法进行布氏硬度和维氏硬度的快速检测、直接显示,使大型工件本体硬度 的现场快速、精确检测成为可能, 可用于工厂现场大批工件的逐件检测, 可代替精度 不高的里氏硬度计。
3. 本实用新型所提供的压痕深度测量装置结构简单、 轻便、 经济性好, 用于制 造便携式数显硬度计, 有助于实现便携式硬度计的小型化、 智能化、 低成本。 附图说明
图 1为本实用新型的内部结构示意图;
图 2为本实用新型应用于便携式数显硬度计的结构示意图;
其中: 1为锁紧螺丝, 2为第一键, 3为手轮, 4为第二键, 5为旋转编码器, 6 为支承座, 7为测微螺母, 8为测微螺杆, 9为旋转编码器转动轴, 10为锥螺母, 11 为套筒, 12为试样, 13为压头, 14为力传感器, 15为滑套, 16为钢球, 17为半环, 18为压帽, 19为数字显示器, 20为第三键。 具体实施方式
下面结合附图对本实用新型作进一步详述。
如图 1所示, 本实用新型包括手轮 3、 旋转编码器 5、 支承座 6、 套筒 11及由测 微螺母 7和测微螺杆 8组成的测微螺纹副,其中支承座 6为主支架,其内部沿轴向开 有圆孔, 测微螺母 7安装在支承座 6的圆孔内, 测微螺杆 8位于测微螺母 7内、 与测 微螺母 7螺纹连接; 测微螺杆 8的一端 (上端) 连接套筒 11, 该套筒 11固定在手轮
3的内孔中, 测微螺杆 8的一端开有键槽, 该键槽内装有第一键 2, 测微螺杆 8通过 第一键 2保持与套筒 11和手轮 3的同步旋转, 测微螺杆 8的一端端部用锁紧螺丝 1 紧固, 测微螺杆 8的另一端(下端)为自由端, 可连接测力装置。 测微螺母 7的一端 (上端) 位于套筒 11与测微螺杆 8之间, 测微螺母 7的一端设有外锥螺纹, 在外锥 螺纹上沿周向均布有多个第二轴向槽 (本实施例为三个), 外锥螺纹上螺纹连接有锥 螺母 10, 通过锥螺母 10可调节测微螺纹副配合的紧密程度。
旋转编码器 5安装在支承座 6上, 旋转编码器转动轴 9与测微螺纹副同轴; 套筒 11的一端固接在手轮 3的内孔中, 另一端插设在旋转编码器转动轴 9的中心孔内, 套筒 11的外表面沿轴向开有第一轴向槽, 旋转编码器转动轴 9的上沿设有第二键 4, 旋转编码器转动轴 9通过第二键 4与套筒 11连接, 该第二键 4在测微螺杆 8移动过 程中可在第一轴向槽内滑动。 所述旋转编码器转动轴 9通过套筒 11与测微螺杆 8相 连, 并与所述测微螺杆 8同步转动。
转动手轮 3时, 旋转编码器转动轴 9、 套筒 11及测微螺杆 8同步转动, 同时测 微螺杆 8沿轴向上下移动。手轮 3每旋转一周,测微螺杆 8沿轴向移动一个螺距的位 移, 旋转编码器 5将此位移量细分为几千个分度, 并将信号传输给电子电路板, 以此 实现对压痕深度的精确测量。本实施例一个螺距是 0.5mm, 在测试洛氏硬度时, 旋转 编码器转动轴 9每旋转一周可输出 5000个分度,每分度代表 0.1 μ m的位移,相当于 0.05个洛氏硬度单位; 在采用测深法测试布氏硬度及维氏硬度时,利用分频技术可使 旋转编码器转动轴 9每旋转一周输出 10000个分度,每分度代表 0.05 μ m的位移,对 于布氏硬度 HBW2.5 I 187.5标尺, 相当于最小压痕深度 (淬火钢硬度值 650HBW) 的 1 I 730,对于维氏硬度 HV5标尺,相当于最小压痕深度(渗氮层硬度值 1000HV5 ) 的 1 I 280。 可以符合相关标准 GB/T230.2、 GB/T231.2及 GB/T4340的要求。
本实用新型的手轮 3、 旋转编码器 5、 测微螺母 7、 测微螺杆 8、 套筒 11以及支 承座 6内部沿轴向开设的圆孔均同轴。本实用新型的手轮 3可用电机替代, 电机输出 轴与套筒 11相连, 由电机驱动套筒 11、 测微螺杆 8及旋转编码器转动轴 9转动。
如图 2所示,本实用新型可应用于便携式硬度计,在测微螺杆 8的自由端上安装 测力装置, 并在支承座 6正面安装有一个数字显示器 19, 该数字显示器 19与支承座 6倾斜设置, 便于在操作时观察; 支承座 8的侧面还设有电子电路板, 旋转编码器 5、 数字显示器 19以及测力装置中的力传感器 14分别与电子电路板电连接。
测力装置包括滑套 15、 力传感器 14及压头 13, 滑套 15的一端 (上端) 通过压 帽 18及两个半环 17与所述测微螺杆 8的自由端连接在一起, 滑套 15的另一端 (下 端)与力传感器 14的一端(上端)螺纹连接,压头 1连接在力传感器 14的另一端(下 端), 压头 1可以是球压头, 也可以是金刚石压头。 在测微螺杆 8自由端的端面与滑 套 15之间设有钢球 16, 测微螺杆 8的自由端端面上设有一个与钢球 16相适应的球 型凹坑、 与钢球 16配合。滑套 15的外表面沿周向开有第三轴向槽, 测微螺母 7上安 装有第三键 20, 该第三健 20在所述第三轴向槽内滑动; 滑套 15通过该第三键 20的 导向作用, 在测微螺母 7内仅做轴向移动, 避免整个测力装置发生转动。 钢球 16可 有效消除测微螺杆 8在转动时对滑套 15和第三键 20所造成的横向作用力。
力传感器 14和旋转编码器 5分别将力和位移信号传送至电子电路板,经处理后, 在数字显示器 19上显示出试验力力值和测得的硬度值。
便携式数显硬度计采用本实用新型提供的压痕深度测量装置,完成一次测试只需 几秒到十几秒的时间。
根据测深法布氏硬度测试标准 GB/T24523-2009的要求, 仪器出厂前需要测试一 系列标准布氏硬度块, 将测得的硬度值输入仪器中, 建立硬度一压痕深度曲线。采用 测深法进行维氏硬度测试时也需要做同样的工作。
本实用新型应用于便携式硬度计的工作原理为:
转动手轮 3, 带动套筒 11、 测微螺杆 8, 旋转编码器转动轴 9同步转动, 测微螺 杆 8通过钢球 16和滑套 15推动力传感器 14和压头 13下行, 移向试样 12; 当压头 13接触到试样 12后, 随着手轮 3的继续转动, 压头 13顶端会压入试样 12, 在试样 12表面产生压痕。 在测试过程中, 力传感器 14实时监测压头 13所受到的试验力, 并将信号传送到电子电路板, 当试验力达到规定的初试验力值时, 电子电路板会记录 此时的压痕深度值, 继续加力至总试验力, 停止加力并保持规定的时间; 反向转动手 轮 3, 当试验力降至规定的初试验力值时, 电子电路板再次记录此时的压痕深度值, 然后对施加主试验力前后在初试验力作用下的压痕深度差值进行计算处理,在数字显 示器 19上显示出试样 12的硬度值。 完成全部测试操作只需要几秒到十几秒时间。
Claims
1.一种用于便携式数显硬度计的压痕深度测量装置,其特征在于:包括手轮(3 )、 旋转编码器 (5 )、 支承座 (6) 及由测微螺母 (7) 和测微螺杆 (8 ) 组成的测微螺纹 副, 其中测微螺母 (7) 安装在所述支承座 (6) 内, 所述测微螺杆 (8) 插设在测微 螺母 (7) 内、 并与测微螺母 (7) 螺纹连接, 测微螺杆 (8) 的一端与所述手轮 (3 ) 连接, 另一端为自由端; 所述旋转编码器(5 ) 安装在支承座 (6)上, 旋转编码器转 动轴 (9) 与所述测微螺杆 (8) 通过旋转手轮 (3 ) 的带动同步转动, 并且测微螺杆 ( 8) 通过手轮 (3 ) 的转动沿轴向上下移动; 所述测微螺杆 (8) 的位移通过旋转编 码器 (5 ) 测量。
2. 按权利要求 1所述用于便携式数显硬度计的压痕深度测量装置,其特征在于: 所述测微螺杆 (8) 的一端通过套筒 (11 ) 与手轮 (3 ) 连接, 测微螺杆 (8) 的一端 开有键槽,该键槽内装有第一键(2),所述测微螺杆(8)通过第一键(2)与套筒(11 ) 同步旋转; 所述旋转编码器转动轴 (9)通过套筒 (11 ) 与测微螺杆 (8)相连, 并与 所述测微螺杆 (8) 同步转动。
3. 按权利要求 2所述用于便携式数显硬度计的压痕深度测量装置,其特征在于: 所述套筒 (11 ) 的一端固接在手轮 (3 ) 的内孔中, 另一端插设在所述旋转编码器转 动轴 (9) 的中心孔内, 测微螺杆 (8)位于套筒 (11 ) 内部; 所述套筒 (11 ) 的外表 面沿轴向开有第一轴向槽, 所述旋转编码器转动轴 (9) 的上沿设有第二键 (4), 旋 转编码器转动轴 (9) 通过第二键 (4) 与套筒 (11 ) 连接, 该第二键 (4) 在测微螺 杆 (8) 移动过程中在所述第一轴向槽内滑动。
4. 按权利要求 1或 2所述用于便携式数显硬度计的压痕深度测量装置, 其特征 在于: 所述支承座 (6) 内部沿轴向开有孔, 测微螺母 (7) 安装在支承座 (6) 的孔 内, 所述测微螺母 (7) 的一端设有外锥螺纹, 在外锥螺纹上沿周向均布有多个第二 轴向槽, 所述外锥螺纹上螺纹连接有调节所述测微螺纹副配合紧密程度的锥螺母 ( 10)。
5. 按权利要求 2所述用于便携式数显硬度计的压痕深度测量装置,其特征在于: 所述手轮 (3 )、 旋转编码器 (5 )、 支承座 (6)、 测微螺母 (7)、 测微螺杆 (8) 以及 套筒 (11 ) 同轴。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201220093159.9 | 2012-03-13 | ||
CN 201220093159 CN202471533U (zh) | 2012-03-13 | 2012-03-13 | 一种用于便携式数显硬度计的压痕深度测量装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013135164A1 true WO2013135164A1 (zh) | 2013-09-19 |
Family
ID=46919685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/072449 WO2013135164A1 (zh) | 2012-03-13 | 2013-03-12 | 一种用于便携式数显硬度计的压痕深度测量装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN202471533U (zh) |
WO (1) | WO2013135164A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202471533U (zh) * | 2012-03-13 | 2012-10-03 | 沈阳天星试验仪器有限公司 | 一种用于便携式数显硬度计的压痕深度测量装置 |
CN108562506A (zh) * | 2018-03-08 | 2018-09-21 | 西南交通大学 | 高频原位成像疲劳试验机 |
CN110823734A (zh) * | 2019-11-18 | 2020-02-21 | 中国航发贵州黎阳航空动力有限公司 | 一种布氏硬度的测量方法及装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2448645A (en) * | 1945-07-30 | 1948-09-07 | American Pulley Co | Hardness tester |
US2466567A (en) * | 1947-02-05 | 1949-04-05 | American Pulley Co | Hardness tester |
US2544205A (en) * | 1947-08-07 | 1951-03-06 | American Pulley Co | Hardness tester |
US3389597A (en) * | 1964-07-15 | 1968-06-25 | William A. Williams | Hardness tester |
JPS5872031A (ja) * | 1981-10-26 | 1983-04-28 | Shimadzu Corp | デジタルゴム緩和硬度計 |
JP2000292333A (ja) * | 1999-04-12 | 2000-10-20 | Akashi Corp | 硬さ試験機 |
JP2007078594A (ja) * | 2005-09-15 | 2007-03-29 | National Institute Of Advanced Industrial & Technology | 微小平面の角度測定装置 |
CN201322709Y (zh) * | 2008-12-22 | 2009-10-07 | 沈阳天星试验仪器有限公司 | 便携式硬度计 |
CN202141656U (zh) * | 2011-07-05 | 2012-02-08 | 上海尚材试验机有限公司 | 数显小负荷布氏硬度计 |
CN202471533U (zh) * | 2012-03-13 | 2012-10-03 | 沈阳天星试验仪器有限公司 | 一种用于便携式数显硬度计的压痕深度测量装置 |
-
2012
- 2012-03-13 CN CN 201220093159 patent/CN202471533U/zh not_active Expired - Fee Related
-
2013
- 2013-03-12 WO PCT/CN2013/072449 patent/WO2013135164A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2448645A (en) * | 1945-07-30 | 1948-09-07 | American Pulley Co | Hardness tester |
US2466567A (en) * | 1947-02-05 | 1949-04-05 | American Pulley Co | Hardness tester |
US2544205A (en) * | 1947-08-07 | 1951-03-06 | American Pulley Co | Hardness tester |
US3389597A (en) * | 1964-07-15 | 1968-06-25 | William A. Williams | Hardness tester |
JPS5872031A (ja) * | 1981-10-26 | 1983-04-28 | Shimadzu Corp | デジタルゴム緩和硬度計 |
JP2000292333A (ja) * | 1999-04-12 | 2000-10-20 | Akashi Corp | 硬さ試験機 |
JP2007078594A (ja) * | 2005-09-15 | 2007-03-29 | National Institute Of Advanced Industrial & Technology | 微小平面の角度測定装置 |
CN201322709Y (zh) * | 2008-12-22 | 2009-10-07 | 沈阳天星试验仪器有限公司 | 便携式硬度计 |
CN202141656U (zh) * | 2011-07-05 | 2012-02-08 | 上海尚材试验机有限公司 | 数显小负荷布氏硬度计 |
CN202471533U (zh) * | 2012-03-13 | 2012-10-03 | 沈阳天星试验仪器有限公司 | 一种用于便携式数显硬度计的压痕深度测量装置 |
Also Published As
Publication number | Publication date |
---|---|
CN202471533U (zh) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202471531U (zh) | 一种便携式数显硬度计 | |
WO2013135026A1 (zh) | 便携式数显硬度测量装置 | |
US9581533B2 (en) | Modular hardness testing machine | |
CN202486006U (zh) | 一种便携式数显硬度测量装置 | |
CN106767259A (zh) | 一种多功能测量仪 | |
CN207936891U (zh) | 一种内螺纹中径测量仪 | |
WO2013135164A1 (zh) | 一种用于便携式数显硬度计的压痕深度测量装置 | |
CN101398282A (zh) | 工程机械液压零部件制造综合测量方法及装置 | |
CN103868441A (zh) | 一种用于检测工件平面度的检具 | |
CN202853533U (zh) | 主动锥齿轮齿圈跳动检测仪 | |
CN204085362U (zh) | 飞轮总成跳动综合检具 | |
CN202133349U (zh) | 一种非接触式位移传感器校准装置 | |
CN102213663B (zh) | 金属洛氏硬度计测深装置检定仪 | |
CN202255340U (zh) | 一种测量深内孔直径尺寸的高精度量具 | |
CN112393971B (zh) | 断裂试样裂纹倾角测量装置及测量方法 | |
CN110608656B (zh) | 一种检测中心孔锥度的方法及所用装置 | |
CN204679357U (zh) | 一种物理实验用金属硬度测量仪 | |
CN203928948U (zh) | 蜗轮蜗杆啮合径向跳动量检测仪 | |
CN201059938Y (zh) | 活动测砧可换的小尺架千分尺 | |
CN210923364U (zh) | 一种建筑检测用多功能综合硬度测量仪 | |
CN109655030A (zh) | 一种轴承厚度复检设备 | |
TW200810858A (en) | Method for erecting mold for use in initial thread forming stages | |
CN201087820Y (zh) | 工程机械液压零部件制造综合测量装置 | |
CN218545481U (zh) | 一种测量大型设备的卡尺 | |
CN216869367U (zh) | 一种丝杠跳动检测支撑装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13760446 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13760446 Country of ref document: EP Kind code of ref document: A1 |