WO2013132948A1 - 電磁ノイズ解析方法及び装置 - Google Patents

電磁ノイズ解析方法及び装置 Download PDF

Info

Publication number
WO2013132948A1
WO2013132948A1 PCT/JP2013/052656 JP2013052656W WO2013132948A1 WO 2013132948 A1 WO2013132948 A1 WO 2013132948A1 JP 2013052656 W JP2013052656 W JP 2013052656W WO 2013132948 A1 WO2013132948 A1 WO 2013132948A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
component
noise
wiring
amount
Prior art date
Application number
PCT/JP2013/052656
Other languages
English (en)
French (fr)
Inventor
船戸 裕樹
須賀 卓
慶幸 土江
中村 聡
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US14/370,433 priority Critical patent/US9805147B2/en
Publication of WO2013132948A1 publication Critical patent/WO2013132948A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/10Noise analysis or noise optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Definitions

  • the present invention relates to an electromagnetic noise analysis technique for an electronic device mounting apparatus.
  • Patent Document 1 As background art in this technical field.
  • a specifying unit for specifying a design object a first storage unit that stores EMC-related data related to design precautions indicating contents to be noted with respect to the influence of noise at the time of design
  • the first search means for searching for data related to the design object specified by the specifying means from the EMC related data related to the past defect items stored in the first storage means, and the first search means EMC design support system having display means for displaying retrieved data ”.
  • Patent Document 2 an electromagnetic noise analysis calculation model and system as described in Patent Document 2 as a design method for reducing unnecessary electromagnetic radiation generated by a circuit board.
  • the former relates to the design method
  • the latter relates to the electromagnetic noise calculation model.
  • Analytical prediction of the amount of electromagnetic noise is an essential technology for the development of electronic equipment.
  • Analytical models are generally divided into two methods: an equivalent circuit method and an electromagnetic field analysis method.
  • the object of analysis is a single device such as a power supply device or an amplifier, and it is developed by one manufacturer, the analysis calculation of the noise amount can be realized using any one of the above methods.
  • electromagnetic noise analysis of the entire apparatus is very difficult with a large-scale apparatus in which a large number of electronic apparatuses such as automobiles are mounted and each apparatus is provided by a different manufacturer. The reason is that the definition of the noise model of each electronic device to realize the electromagnetic noise analysis of such a large device, the combination method of each model, and the noise analysis method for the combined device as a whole are unclear. .
  • an object of the present invention is to provide an EMC design technique for an electronic device mounting apparatus that realizes noise amount prediction of a system in which individual electronic devices are combined.
  • the present application includes a plurality of means for solving the above problems.
  • a case model is acquired, each component model is selected and acquired, and the acquired component models are connected by wiring.
  • Each component model is placed in the chassis model, and each component model that is placed and connected with wiring is driven to generate electromagnetic noise from the component model and wiring, and the generated electromagnetic noise is propagated in the chassis model.
  • the output step of calculating the noise amount and outputting the calculated noise amount data is
  • electromagnetic noise analysis of the system can be easily performed and noise reduction design can be supported.
  • FIG. 1 It is a figure showing the components and the development phase relationship of a system concerning one Example of this invention. It is the flow of the noise analysis concerning one Example of this invention. It is a principal part of the electromagnetic noise analysis of FIG. It is a figure showing the database format of the component noise model concerning one Example of this invention. It is a figure showing the wiring route candidate in a vehicle concerning one Example of this invention. It is a figure showing the vehicle-mounted antenna position candidate concerning one Example of this invention. It is a figure showing the component combination analysis result concerning one Example of this invention. It is a figure showing the noise model of the components concerning other examples of the present invention.
  • an electric vehicle will be described as an example of a system (entire device) and parts of an electric vehicle as components (parts).
  • the present invention is not limited to this and can be applied to other devices.
  • FIG. 1 shows the configuration of a computer system that implements the present invention.
  • This computer system has a configuration of processing means 1, storage means 2, input means 3, output means 4, and connection line 5 connecting them.
  • the processing means 1 is a processor such as a CPU
  • the storage means 2 is, for example, an HDD or a semiconductor memory
  • the input means 3 is, for example, a keyboard, a mouse, or a network input
  • the output means 4 is, for example, a display, a printer, or a network output.
  • the connection line 5 is, for example, a wiring on a circuit board, a connection cord or a network.
  • the processing means 1 reads out and executes a program stored in the storage device 2 or the like, whereby a vehicle selection unit 11, a component selection unit 12, a connection impedance determination unit 13, a component placement / wiring path determination unit 14, an electromagnetic noise analysis unit 15 functions.
  • the storage unit 2 stores a vehicle housing model information storage unit 21, a part model information storage unit 22, and a noise analysis result storage unit 23.
  • FIGS. 1 and 2 an automobile and its parts, which are an inverter, a battery, and a motor, are shown as examples.
  • an entire apparatus such as a vehicle
  • an electronic component mounted thereon is referred to as a part or component.
  • Each model is electronic data handled on a computer system.
  • FIG. 2 is an example of an outline of a noise analysis model of the entire vehicle using the noise model.
  • the noise analysis model includes a vehicle body casing model 201 and component models such as an inverter model 202, a battery model 203, and a load model 204 provided therein.
  • the load model 204 represents a motor noise model.
  • Each component model is connected by a wiring 206.
  • the noise current 206 flowing through this wiring also becomes one of the causes of the noise radiation 207.
  • the inverter model 202 has a current source 205
  • the load model 204 and the battery model 203 are treated as passive components and no noise is generated, and there is no description of the current source.
  • the vehicle casing uses a 3D analysis model. Thereby, propagation of unknown electromagnetic noise can be predicted and calculated by analysis.
  • a 3D analysis model Thereby, propagation of unknown electromagnetic noise can be predicted and calculated by analysis.
  • an example of only an inverter, a motor, and a battery is shown, but other devices may be combined into a three-dimensional vehicle model by combining the macro models of the devices.
  • a radio and communication vehicle-mounted antenna 208 is also provided in the three-dimensional analysis model.
  • FIG. 3 shows an example of the vehicle casing model 201.
  • the vehicle housing model 201 is a three-dimensional representation of a car body.
  • only the body and chassis of a metal casing having a large influence of electromagnetic waves can be used, and resin interiors, tires, suspensions, and the like that have a small influence of electromagnetic waves can be omitted as long as they do not affect the propagation of electromagnetic waves.
  • Analytical models such as vehicle housing models are generally divided roughly into methods based on equivalent circuits and methods based on electromagnetic field analysis.
  • the equivalent circuit method expresses a vehicle housing by an equivalent circuit, and since the parasitic elements to be considered are limited to the noise path, accuracy is likely to deteriorate, but the load is light and analysis can be performed at high speed.
  • the electromagnetic field analysis method is a mesh of the actual three-dimensional shape of the vehicle casing, which requires a long analysis time but high accuracy in solving electromagnetic noise propagation. In order to use the noise analysis of the entire vehicle for the design, it is important to use the equivalent circuit method and the electromagnetic field analysis method. In this embodiment, electromagnetic field analysis is performed using a meshed three-dimensional shape as a vehicle housing model.
  • FIG. 4 shows an inverter model 209 as an example of a component model.
  • the component model includes a macro model and an equivalent circuit model.
  • a macro model is adopted.
  • the macro model data includes a casing and circuit elements inside the casing.
  • the device casing 401 of the inverter model 209 is a three-dimensional model based on the shape of the actual inverter casing. In the inverter model 209, it is necessary to consider the connection impedance of the current source 205, the output impedance 402, and the cable GND 403 (which connects the inverter and the chassis 209) as noise sources. These configurations include frequency-dependent data as circuit elements.
  • the three-phase output 403 and the power input 404 are terminals that are functionally different and have different real shapes, but the same description is given as a noise model. Any terminal also has a connection impedance Z CD.
  • FIG. 5 is an example of data for one phase among the three-phase output terminals 403 in the inverter model shown in FIG.
  • the output impedance, noise current source, and connection impedance are each described in complex form for each frequency.
  • the component manufacturer creates such a noise model for the terminals determined by the system manufacturer.
  • Such data is also stored in the component noise model of other current sources 205, output impedance 402, cable GND 403, and power input terminal 405.
  • FIG. 6 shows a procedure
  • FIG. 7 shows a model with only one port extracted.
  • a name is defined for each terminal, and this is used as a port name (S601).
  • the port name may be arbitrary as long as the terminal can be specified, for example, AC (U phase) for the U phase of the motor drive current output terminal.
  • the return path impedance (Z CN ) of the normal mode current is determined (S602).
  • the determination of the value of Z CN, a method of obtaining the actual measurement, the method of obtaining the theoretical formula, but there is a method of determining by simulation of electromagnetic field analysis, may be used any method.
  • the frequency characteristic of the normal mode impedance (Z LD1 ) of the load used as the first condition is obtained by actual measurement or simulation (S603).
  • the frequency characteristic of the common mode impedance (Z CD1 ) of the first condition load is obtained by actual measurement or simulation (S604).
  • the intensity and phase of the common mode noise current (i C1 ) flowing through the load are obtained by actual measurement or simulation (S605).
  • FIG. 8 shows an input screen image of the tool. On the input screen, files of normal mode impedance, common mode impedance, and common mode noise current corresponding to the frequency are specified for each load condition.
  • Fig. 9 shows the timetable for creating and analyzing this noise model in the vehicle development and parts development processes in actual product development. Vehicles are developed by automobile manufacturers, and parts are developed by parts manufacturers.
  • the vehicle specification is first created and the vehicle is designed based on it. At this time, the specifications of the parts used in the vehicle are determined and presented to the parts manufacturer.
  • the parts maker performs design, primary prototyping (design verification prototyping, prototyping can be replaced by simulation), evaluation based on the presented specifications, and presents it to the car maker.
  • a noise model of the part is created, it is verified that the noise generated by the part is below the reference, and the noise model is provided to the automobile manufacturer.
  • the car manufacturer informs the parts manufacturer of the design change, and the parts manufacturer redesigns. Then, the parts manufacturer performs a secondary trial (mass production trial) and evaluation of the designed or redesigned parts, and provides the parts and noise model to the automobile manufacturer. The automobile manufacturer then performs noise analysis, design change (only when necessary), and secondary trial (mass production trial) to evaluate.
  • the first trial production (design verification trial production) and the second trial production (mass production trial production) are performed.
  • Both vehicle development and parts development create models based on primary prototyping, and automakers perform overall analysis. Based on the analysis results, if necessary, the noise requirement specifications and wiring design of the parts are improved, and a mass production trial is performed. In this way, it is possible to avoid the risk of causing a problem such as the noise amount not reaching the target in the final evaluation.
  • noise amount analysis prediction can be performed before the first prototype of vehicle development, and design changes after the first prototype can be avoided. As a result, the system manufacturer can shorten the development period and reduce the cost. Component manufacturers can provide added value such as eliminating unnecessary countermeasure costs and promoting low noise performance through models.
  • Fig. 10 shows a series of flows to achieve the target specifications by performing electromagnetic noise analysis prediction of the entire system.
  • the main noise source is an inverter.
  • FIG. 10 demonstrates along the flow of FIG.
  • the system manufacturer that is, the automobile manufacturer in this example, determines the specifications of the entire vehicle (S1001).
  • the automobile manufacturer determines the part specifications necessary for realizing the determined vehicle specifications (S1002). Parts are typically supplied by a variety of different manufacturers.
  • the component noise model used for electromagnetic noise analysis of the vehicle is divided (S1003). This is basically divided into units of assembled parts.
  • an inverter system for driving a three-phase motor of a hybrid vehicle there are an inverter, a three-phase output cable, a motor, a power cable, and a battery, and a component noise model is required for each. That is, the type of the component to be used is specified, and the format for storing the noise model is designated according to the type.
  • the automobile manufacturer performs initial design of the part placement and the wiring route in the vehicle body, and this information itself or accompanying noise model requirement (format) is given to the part manufacturer. Furthermore, an automobile manufacturer examines an operation mode that requires noise analysis, creates a required specification regarding which operation mode of the part the noise model should represent, and includes it in the noise model requirements. The automobile manufacturer then presents the component requirement specifications to the component manufacturer. The noise model specification is included in that. That is, the automobile manufacturer sends a component specification, a noise model format for performing noise analysis, and an operation mode for performing noise analysis to the component manufacturer.
  • the parts manufacturer designs and prototypes parts based on the specifications required by the automobile manufacturer (S1009) and creates a part noise model (S1010). Then, a parts noise model created in parallel with the trial production, evaluation, and shipping of the actual device by the parts manufacturer is provided to the automobile manufacturer (S1011).
  • the vehicle housing model includes the three-dimensional data of the metal housing of the vehicle body and the arrangement positions (or candidates) of components and wiring.
  • the automobile manufacturer combines the component noise models provided by the component manufacturer, and places them in the created vehicle casing model. And it will be in the state where noise analysis is possible.
  • the amount of electromagnetic noise is predicted and calculated using the overall analysis model thus obtained (S1005).
  • FIG. 11 is a diagram detailing the electromagnetic noise analysis step (S1005) of FIG.
  • a vehicle housing model of a vehicle to be analyzed is selected from the vehicle model group stored in the vehicle housing model information storage unit 21 by the vehicle selection unit 11, and the vehicle housing model is selected from the vehicle housing model information storage unit 21.
  • a model is acquired (S1101).
  • the component selection unit 12 selects each component that is mounted on the vehicle and performs noise analysis, and acquires a component model from the component model information storage unit 22.
  • a plurality of component models are prepared for each type of component.
  • components used for noise analysis are selected one by one for the inverter, converter, battery, motor, and cable.
  • connection impedance determination unit 13 S1103
  • the component connection impedance is an intermediate value between components, the management must be performed by the system manufacturer in the case of different component manufacturers. And the connection impedance between these components can be one of the very important parameters for the calculation of electromagnetic noise. As the initial value, the reliability of calculation can be maintained by using measured values of the same type of connection shape.
  • the component placement and wiring route determination unit 14 determines the component placement and wiring route (S1104).
  • the component arrangement and the wiring route are stored in advance in the vehicle housing model. Only one component arrangement and wiring path may be prepared for each component / wiring, or a plurality of component arrangements and wiring paths may be prepared and selected from them. This arrangement determination may be performed before the connection impedance determination.
  • FIG. 13 shows an example in which a plurality of wiring paths are prepared.
  • the wiring path 1301 is actually limited by other parts. If several points where wiring can be routed are set, the best wiring path can be obtained by analysis.
  • the electromagnetic noise propagation is calculated by the electromagnetic noise analysis unit 15 (S1105).
  • electromagnetic noise propagation a general electromagnetic field calculation method may be used.
  • the target value obtained by calculation can be determined by calculation conditions or standards.
  • the components are driven in conjunction with each other, and the noise generated by the components is propagated in a three-dimensional space including the vehicle casing. Then, noise data is output.
  • the noise data may represent the noise distribution in the three-dimensional space as a diagram, or may represent the noise intensity numerically at the position of the in-vehicle antenna 208 or a predetermined measurement point. It may be represented by whether or not it is within the reference value defined in the standard.
  • the best condition can be obtained by parametric analysis if several candidates are set.
  • the amount of noise mixed into the vehicle-mounted antenna is one of the values to be analyzed, but the position of this vehicle-mounted antenna is set according to this analysis procedure by giving the end position and step size from several candidates or start positions.
  • the best vehicle-mounted antenna position can be obtained by analysis.
  • the antennas 209a to 209c in the figure are candidate positions for the in-vehicle antenna, but by calculating the noise amount for all of these, it is possible to determine a position suitable for installation of the in-vehicle antenna.
  • the component placement / wiring paths for noise calculation may be all the component placement / wiring paths included in the vehicle housing model, or only selected ones. If all have been completed, the process proceeds to the next step. If not completed, the process returns to S1104 to change the component arrangement and the wiring route, and calculate the noise amount again.
  • noise calculation is sequentially performed while changing the combination of parts, the position of the parts, and the wiring route.
  • FIG. 15 shows an example of the noise propagation calculation result.
  • the noise amount is calculated for the wiring paths 1 to 3 for the combination of the parts A and B, and whether the result conforms to the standards 1 to 3 (is the noise amount smaller than the threshold)? It is determined. It is possible to confirm by analysis which standard can be adapted when the wiring path is used in any combination of components. If a part model or a vehicle model has already been created in the database, everything from information input to result output may be automated.
  • the standard conformity judgment unit judges whether the amount of noise mixed into the vehicle-mounted antenna or the leakage around the vehicle body satisfies the standard or target value. If the standard is not satisfied, the wiring path, component placement, or component connection impedance needs to be changed by the correction unit. Restrictions related to component placement and wiring paths need to be included in the placement information input first. In this way, it is possible to determine whether or not conformity to the standard while changing the component arrangement, the wiring path, and the component connection impedance, or the standard conformance condition by a series of analyses.
  • the output information is information satisfying the standard, that is, information on a combination of components, arrangement, wiring path, and connection impedance, and these are design conditions.
  • the output noise analysis result preferably has a link to a noise model in a normally used parts management table.
  • the function, cost, weight, size, etc. (referred to as attribute values) of the parts may be output together with the noise analysis result.
  • the total of the costs and the total of the weights of the plurality of parts used may be output.
  • Example 2 will be described with reference to FIG.
  • a macro model is used as the component model, but in this embodiment, an equivalent circuit model is used.
  • the other points are the same as those in the first embodiment.
  • FIG. 16 shows an example of an equivalent circuit model.
  • An equivalent circuit is a description of an actual circuit in a component using circuit symbols such as a capacitor, a coil, and an electric resistance.
  • the component case is a three-dimensional model, similar to the macro model.
  • an inverter 1601, a power module 1602, an anti-GND capacitor 1603, a high voltage battery 1604, a battery cable 1605, a motor 1606, and an output cable 1607 are described with circuit symbols.
  • the current is passed through each element in the equivalent circuit in the model to simulate the actual operating current, and noise is generated, so the computer load becomes heavy, but analysis close to the actual operation mode Can do. Therefore, noise analysis can be performed more accurately, for example, noise analysis can be performed for each operation mode.
  • noise analysis can be performed more accurately, for example, noise analysis can be performed for each operation mode.
  • a macro model it is assumed that the noise value is maximum, and analysis can be performed with a small load. It is also possible to perform noise analysis by mixing a component model of an equivalent circuit model and a component model of a macro model and mounting them on a vehicle housing model.
  • each information line indicates what is considered necessary for explanation, and not all information lines are necessarily shown for application to product development. Actually, it may be considered that almost all the components are connected to each other.
  • DESCRIPTION OF SYMBOLS 1 ... Processing means, 2 ... Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

 本発明の目的は、個々の電子機器を組み合わせたシステムのノイズ量解析を実現する電子機器搭載装置のEMC設計技術を提供することにある。 筐体モデルを取得し、各コンポーネントモデルを選択して取得し、取得した各コンポーネントモデル間を配線で接続し、筐体モデル内に各コンポーネントモデルを配置し、配置し配線を接続した各コンポーネントモデルを駆動させコンポーネントモデル及び配線から電磁ノイズを発生させるとともに、発生した電磁ノイズを筐体モデル内で伝播させてノイズ量を算出し、算出したノイズ量のデータを出力する出力工程する。これによって、複数の電子装置を組み合わせたシステムの場合でも、システムの電磁ノイズ解析を容易に行い、ノイズ低減設計を支援することができる。

Description

電磁ノイズ解析方法及び装置
 本発明は,電子機器搭載装置の電磁ノイズ解析技術に関する。
 本技術分野の背景技術として、特許文献1がある。この特許文献1では「設計対象物を特定するための特定手段と、設計に際し、ノイズの影響に対して注意すべき内容を示す設計注意事項に関するEMC関連データを記憶する第1の記憶手段と、第1の記憶手段に記憶される過去の不具合事項に関するEMC関連データの中から、特定手段によって特定された設計対象物と関係するデータを検索する第1の検索手段と、第1の検索手段によって検索されたデータを表示するための表示手段とを有するEMC設計支援システム」とある。
 また、これまで発明者らは、回路基板が発生する不要電磁輻射を低減する為の設計手法として特許文献2に記されるように、電磁ノイズ解析計算モデル及びシステムを開示してきた。このうち、前者は設計手法に関するものであり、後者は電磁ノイズ計算モデルに関するものである。
特開2001-155048号公報 特開2010-198201号公報
 電磁ノイズ量の解析予測は電子機器の開発に必須の技術である。解析モデルは一般的に等価回路による手法と電磁界解析による手法に大別される。解析の対象が電源装置や増幅器などの単体装置であり、一つのメーカによって開発する場合は、上記何れかの手法を用いてノイズ量の解析計算を実現できる。しかし、自動車など膨大な数の電子機器を搭載し、それぞれの機器が異なるメーカによって提供されるような大型装置では装置全体の電磁ノイズ解析は非常に困難である。理由は、このような大型装置の電磁ノイズ解析を実現するための個々の電子機器のノイズモデルの定義、それぞれのモデルの組合せ方法、さらに組み合わせた装置全体でのノイズ解析手法が不明確だからである。
 本発明はこのような問題を解決するためになされたものである。即ち、本発明の目的は、個々の電子機器を組み合わせたシステムのノイズ量予測を実現する電子機器搭載装置のEMC設計技術を提供することにある。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、筐体モデルを取得し、各コンポーネントモデルを選択して取得し、取得した各コンポーネントモデル間を配線で接続し、筐体モデル内に各コンポーネントモデルを配置し、配置し配線を接続した各コンポーネントモデルを駆動させコンポーネントモデル及び配線から電磁ノイズを発生させるとともに、発生した電磁ノイズを前記筐体モデル内で伝播させてノイズ量を算出し、算出したノイズ量のデータを出力する出力工程する。
 本発明によれば、複数の電子装置を組み合わせたシステムの場合でも、システムの電磁ノイズ解析を容易に行い、ノイズ低減設計を支援することができる。
本発明の一実施例にかかるコンピュータシステムの構成図である。 本発明の一実施例にかかるシステムのノイズモデルを表す図である。 本発明の一実施例にかかる車両筐体のノイズモデルを表す図である。 本発明の一実施例にかかる部品のノイズモデルを表す図である。 本発明の一実施例にかかる部品ノイズモデルの1ポート分のデータを表す図である。 本発明の一実施例にかかるEMC設計手法のフローを表す図である。 本発明の一実施例にかかるEMC設計手法の機能ブロックを表す図である。 本発明の一実施例にかかる部品ノイズモデルの作成用ツール入力画面を表す図である。 本発明の一実施例にかかる部品とシステムの開発フェーズ関係を表す図である。 本発明の一実施例にかかるノイズ解析のフローである。 図10の電磁ノイズ解析の要部である。 本発明の一実施例にかかる部品ノイズモデルのデータベース形式を表す図である。 本発明の一実施例にかかる車両内配線経路候補を表す図である。 本発明の一実施例にかかる車載アンテナ位置候補を表す図である。 本発明の一実施例にかかる部品組み合わせ解析結果を表す図である。 本発明の他の実施例にかかる部品のノイズモデルを表す図である。
 以下に本発明の実施の形態を、図を用いて説明する。ここでは、システム(全体装置)として電気自動車を、コンポーネント(部品)として電気自動車の部品を例にとって説明するが、これに限らず他の装置にも適用可能である。
 図1に本発明を実現するコンピュータシステムの構成を示す。本コンピュータシステムは、処理手段1、記憶手段2、入力手段3、出力手段4及びそれらを接続する接続線5の構成を有している。処理手段1は、例えばCPUなどのプロセッサであり、記憶手段2は例えばHDDや半導体メモリであり、入力手段3は例えばキーボードやマウスやネットワーク入力であり、出力手段4は例えばディスプレイやプリンタやネットワーク出力であり、接続線5は例えば回路基板上の配線、接続コードやネットワークである。これらの構成は、同一の場所にある必要は無く、遠隔地に設置してネットワークなどを介して接続してもよい。
 処理手段1は、記憶装置2などに記憶されたプログラムを読み出して実行することによって、車両選択部11、部品選択部12、接続インピーダンス決定部13、部品配置配線経路決定部14、電磁ノイズ解析部15として機能する。記憶手段2は、車両筐体モデル情報記憶部21、部品モデル情報記憶部22、ノイズ解析結果記憶部23を記憶している。
 次に、電磁ノイズ解析の対象となる部品と車両のそれぞれのモデルについて、図2~8を用いて説明する。本実施例では、自動車とその部品であるインバータ、バッテリー、モータを例に示す。以下、車両などの装置全体を全体装置またはシステム、それに搭載される電子部品を部品またはコンポーネントと称する。また、モデルは、いずれもコンピュータシステム上で扱われる電子データである。
 図2は、ノイズモデルを用いた車両全体のノイズ解析モデル概要の例である。ノイズ解析モデルは、車体筐体モデル201と、その内部に備えられた、インバータモデル202、バッテリモデル203、負荷モデル204などのコンポーネントモデルを有する。負荷モデル204は、モータのノイズモデルを表す。各コンポーネントモデルは、配線206によりそれぞれ接続されている。この配線に流れるノイズ電流206も、ノイズ放射207の原因の一つとなる。インバータモデル202は電流源205を有しているが、負荷モデル204、バッテリモデル203は受動部品として扱い、ノイズを発生しないものと考え、電流源の記述は無い。
 車両筐体は3次元解析モデルを用いる。これにより、未知である電磁ノイズの伝播を解析により予測計算できる。ここではインバータ、モータ、バッテリーのみの例を示したが、他の装置も同様に装置のマクロモデルを組み合わせて3次元車両モデル内に組み込めば良い。また、ノイズの影響を特に受けやすいコンポーネントとして、ラジオや通信用の車載アンテナ208も3次元解析モデルに備えられている。
 図3に、車両筐体モデル201の一例を示す。車両筐体モデル201は、自動車の車体を3次元で表したものである。特に電磁波の影響の大きい金属筐体のボディやシャシーのみとし、電磁波の影響が小さい樹脂製の内装やタイヤ、サスペンションなどは電磁波の伝搬に影響が無い範囲で省略可能である。
 車両筐体モデルのような解析モデルは、一般的に等価回路による手法と電磁界解析による手法に大別される。等価回路法は、車両筐体を等価回路によって表したものであり、考慮すべき寄生素子をノイズ経路に限定するため精度が悪化し易いが、負荷が軽く高速に解析できる。対して電磁界解析法は、実際の車両筐体の3次元形状をメッシュ化したものであり、解析時間が長くなるが、電磁ノイズの伝播を解く精度は高い。車両全体のノイズ解析を設計に用いるために行うためには、等価回路法と電磁界解析法の使い分けが重要である。本実施例では、メッシュ化した3次元形状を車両筐体モデルとして用いて電磁界解析を行う。
 図4は、コンポーネントモデルの一例として、インバータモデル209を示す。コンポーネントモデルとしては、マクロモデルと等価回路モデルがあるが、本実施例では、マクロモデルを採用する。
 マクロモデルのデータには、筐体とその内部の回路素子とが含まれている。インバータモデル209の装置筐体401は、実際のインバータの筐体の形状に基づく3次元モデルである。インバータモデル209の内部は、ノイズ源として電流源205、出力インピーダンス402、ケーブルGND403(インバータとシャシー209を接続している)の接続インピーダンスを考慮する必要がある。これらの構成には、回路素子としての周波数依存性のデータが含まれている。三相出力403と電源入力404は、機能的には異なり実物の形状も異なる端子であるが、ノイズモデルとしては同様の記述をする。いずれの端子も、接続インピーダンスZCDを有している。装置内部をこのようにマクロ化することで、全体解析において問題となり易い解析時間の膨大化を回避できる。また、電磁ノイズの経路または電磁ノイズのアンテナとなり易い装置筐体401を3次元モデルとすることで、ノイズ計算精度の低下も回避できる。
 図5は、図4に示したインバータモデルにおける三相出力端子403のうち、一相分のデータ例である。出力インピーダンス、ノイズ電流源、接続インピーダンスをそれぞれ複素形式で周波数毎に記述されている。部品メーカはシステムメーカが定める端子に対してこのようなノイズモデルを作成する。このようなデータは、他の電流源205、出力インピーダンス402、ケーブルGND403、電源入力端子405のデータも、部品ノイズモデル内に記憶されている。
 次に上記で示した部品のマクロモデルの作成方法について説明する。図6に手順を、図7に1ポートだけ抜き出したモデルを示す。
 まず、ノイズモデルがもつ各端子を識別するため、各端子毎に名称を定義し、これをポート名とする(S601)。ポート名は、例えばモータ駆動用電流出力端子のU相であればAC(U相)など、端子を特定できれば任意でよい。次にノーマルモード電流のリターン路インピーダンス(ZCN)を決定する(S602)。ZCNの値の決定には、実測により求める方法と、理論式により求める方法と、電磁界解析などのシミュレーションにより求める方法などがあるが、いずれの方法を用いても良い。次に第一の条件として用いる負荷のノーマルモードインピーダンス(ZLD1)の周波数特性を実測またはシミュレーションにより求める(S603)。次に第一条件負荷のコモンモードインピーダンス(ZCD1)の周波数特性を実測またはシミュレーションにより求める(S604)。次に負荷に流れるコモンモードノイズ電流(iC1)の強度と位相を実測またはシミュレーションにより求める(S605)。次に負荷のインピーダンスを変え、これを第二条件として同様にノーマルモードインピーダンス(ZLD2)とコモンモードインピーダンス(ZCD2)、ノイズ電流(iC2)の強度と位相を実測またはシミュレーションなどにより求める(S606)。これらからノイズ電流源(IS)と出力インピーダンス(ZS)はそれぞれ数1、数2、数3を用いて求めることが出来き、マクロモデルを算出することができる(S607)。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 これら部品のノイズモデルを作成する処理は、上記インピーダンス等の情報を入力すれば、自動計算によりモデル情報を出力することができる。これをWebなどのプラットフォームで共有することもできる。図8にツールの入力画面イメージを示す。入力画面では、負荷条件ごとに、周波数に対応するノーマルモードインピーダンス、コモンモードインピーダンス、コモンモードノイズ電流のファイルが指定されている。
 図9に、実際の製品開発において車両開発と部品開発の工程の中で本ノイズモデルの作成と解析を実施するタイムテーブルを示す。車両開発は自動車メーカが行い、部品開発は部品メーカが行う。
 車両開発では、まず車両の仕様を作成し、それを基いて車両を設計する。このときに、車両に用いる部品の仕様を決定し、部品メーカに提示する。
 部品メーカでは、提示された仕様に基き、設計、一次試作(設計検証試作、試作はシミュレーションで代用でも可能)、評価を行い、自動車メーカに提示する。このときに、部品のノイズモデルを作成し、部品が発生するノイズが基準以下であることを検証するとともに、ノイズモデルを自動車メーカに提供する。
 自動車メーカは、一次試作(設計検証試作)をするとともに、車両のノイズモデルを作成し、ここに部品メーカから提供された部品のノイズモデルを適用し、全体装置でのノイズ解析を行い、評価する。
 評価が基準を満足しない場合、自動車メーカは部品メーカに設計変更を伝え、部品メーカは再設計する。そして、部品メーカは、設計または再設計した部品の二次試作(量産試作)、評価を行い、部品及びノイズモデルを自動車メーカに提供する。そして、自動車メーカは、再びノイズ解析、設計変更(必要な場合のみ)、二次試作(量産試作)を行い、評価する。
 特に車載機器では、多くの場合、一次試作(設計検証試作)と、二次試作(量産試作)とを行う。車両開発と部品開発共に一次試作に基づきモデルをそれぞれ作成し、自動車メーカは全体解析を行う。そして解析結果に基づき、必要であれば部品のノイズ要求仕様や配線設計を改善し、量産試作を行う。このようにすることで最終評価でノイズ量が目標未達などの不具合を起こすリスクを回避できる。また、部品が新規開発品でない場合は車両開発の一次試作前にノイズ量解析予測を行うことが出来、一次試作後の設計変更を回避できる。これによりシステムメーカは開発期間の短期化、コストの低減を実現できる。部品メーカは不要な対策コストの削除、低ノイズ性能をモデルにより訴求できるなどの付加価値を提供できるようになる。
 図10に、システム全体の電磁ノイズ解析予測を行い目標仕様を達成するための一連のフローを示す。本実施例では自動車の電磁ノイズ設計開発を対象に説明する。主要ノイズ源は、インバータとする。以下、図1のフローに沿って説明する。
 まず、システムメーカ、即ちこの例では自動車メーカは車両全体の仕様を決定する(S1001)。
 次に、自動車メーカは、決定した車両仕様を実現するため必要となる部品仕様を決定する(S1002)。部品は一般的に種々の異なるメーカによって供給される。
 次に、車両の電磁ノイズ解析に用いる部品ノイズモデルの区画分けを行う(S1003)。
これは基本的に組み立てられた部品単位で区画分けをする。例えばハイブリッド自動車の三相モータ駆動用インバータシステムの場合、部品構成はインバータ、三相出力用ケーブル、モータ、電源ケーブル、バッテリがあり、それぞれについて部品ノイズモデルが必要となる。すなわち、用いる部品の種別を特定し、その種別に応じて、ノイズモデルを記憶するフォーマットを指定する。
 すなわち、これまでのステップでは、車体内での部品配置や配線経路を自動車メーカが初期設計を行い、この情報そのものまたは付随して必要となるノイズモデルの要件(フォーマット)を部品メーカへ与える。さらに自動車メーカはノイズ解析が必要となる動作モードを検討し、ノイズモデルが部品のどの動作モード時を表すべきかその動作モードに関する要求仕様を作成し、ノイズモデルの要件に含ませる。そして、自動車メーカは、部品メーカに部品要求仕様を提示する。その中にノイズモデルの仕様も含まれる。すなわち、自動車メーカは、部品メーカに、部品仕様と、ノイズ解析を行うためのノイズモデルのフォーマット及びノイズ解析を行う動作モードを送付する。
 部品メーカは、自動車メーカからの要求仕様に基づき、部品を設計・試作すると共に(S1009)、部品ノイズモデルを作成する(S1010)。そして、部品メーカが実際の装置を試作・評価・出荷などを行なうのと並行に作成した部品ノイズモデルを、自動車メーカへ提供する(S1011)。
 これら部品メーカがモデルを作成している間に、自動車メーカは、車両筐体ノイズモデルを作成する(S1004)。車両筐体モデルには、車体の金属筐体の3次元データと、部品や配線の配置位置(またはその候補)が含まれている。
 次に自動車メーカは、部品メーカが提供する部品ノイズモデルをそれぞれ結合し、作成した車両筐体モデルに配置する。そして、ノイズ解析が可能な状態にする。これにより得られた全体解析モデルを用いて電磁ノイズ量を予測計算する(S1005)。
 得られたノイズ量が規制値を超過する場合、車両内部の部位品配置や配線経路、または部品同士の結合を改善するなどし規制に適合する条件を見出す。または、規制に適合するために必要な部品の入出力特性を出力とし、これを部品メーカに更新された仕様として提示し部品の性能改善により規制適合を図る方法がある(S1006)。
 このようにして部品メーカーとシステムメーカがそれぞれのノイズ解析用モデルを作成することで従来困難だった大型装置の電磁ノイズ解析を予測計算することが出来る。
 図11は、図10の電磁ノイズ解析工程(S1005)を詳述する図である。
 まず、車両筐体モデル情報記憶部21に記憶された車両モデル群の中から解析を行う車両の車両筐体モデルを車両選択部11で選択し、車両筐体モデル情報記憶部21から車両筐体モデルを取得する(S1101)。そして、この車両に搭載してノイズ解析を行う各部品を部品選択部12が選択し、部品モデル情報記憶部22から部品モデルを取得する。部品モデルは、図12に示すように、部品の種別ごとに複数のものが用意されている。本実施例では、インバータ、コンバータ、バッテリー、モータ、ケーブルについて、ノイズ解析に用いる部品を一つずつ選択する。
 次に、接続インピーダンス決定部13で部品接続インピーダンスを決定する(S1103)。部品接続インピーダンスは部品と部品の中間値であるため、異なる部品メーカの場合、その管理はシステムメーカによって行われなければならない。そして電磁ノイズの計算にはこの部品同士の接続インピーダンスが非常に重要なパラメータの一つになり得る。初期値は同種の接続形状の実測値などを用いることで計算の信頼性を保てる。
 次に、部品配置と配線経路とを部品配置配線経路決定部14で決定する(S1104)。部品配置及び配線経路は、予め車両筐体モデルに記憶されている。部品配置及び配線経路は、一つの部品・配線につき一つだけ用意しても、複数用意してその中から選択するようにしてもよい。なお、この配置決定は、接続インピーダンス決定の前に行ってもよい。
 配線経路を複数用意した例を、図13に表す。配線経路1301は実際には他の部品などにより制約がある。配線の引き回しが可能な点を幾つか設定しておけば、その中から最良の配線経路を解析により求めることが出来る。
 次に電磁ノイズ解析部15で電磁ノイズ伝播を計算をする(S1105)。電磁ノイズ伝播は、一般的な電磁界計算手法を用いれば良い。計算によって求める対象値は計算条件または規格によって定めることができる。各モードごとに、各コンポーネントを連動させて駆動させ、各コンポーネントが発生させたノイズを、車両筐体を含む3次元空間内で伝播させる。そして、ノイズデータを出力する。
 ノイズデータは、3次元空間のノイズ分布を図で表してもよいし、車載アンテナ208の位置や予め定めた測定点でノイズ強さを数値で表してもよいし、測定点等におけるノイズ量が、規格に定めた基準値内であるかどうかによって表してもよい。
 測定点について、図14を用いて説明する。部品配置も上記配線経路と同様に幾つかの候補を設定すればパラメトリック解析により最良の条件を求めることができる。例として車両開発では車載アンテナに混入するノイズ量が解析対象値の一つであるが、この車載アンテナの位置を幾つかの候補または開始位置から終了位置と刻み幅を与えることによって本解析手順に従って最良の車載アンテナ位置を解析により求めることができる。図中のアンテナ209a~cは、車載アンテナの候補位置であるが、これらの全てについてノイズ量を算出しておくことで、車載アンテナの設置に適した位置を判断する事ができる。
 ノイズ量計算が完了したら、全ての部品配置・配線経路についてノイズ量算出が終ったか判断する(S1106)。ノイズ算出にかかる部品配置・配線経路は、車両筐体モデルに含まれる全ての部品配置・配線経路でもよいし、そのうち選択したもののみでもよい。全部終了していれば次に進み、終了していなければ、S1104に戻り、部品配置、配線経路を変更し、再びノイズ量算出を行う。
 続いて、全ての部品の組み合わせについてノイズ量算出が終ったか判断する(S1107)。ノイズ量は、各部品の発生するノイズの単純な合計ではなく、各部品の相性によりノイズ量が変化するからである。例えば、接続するモータによって、インバータの発生するノイズ量が大きく変化することがある。そのため、部品の組み合わせについて、全部ノイズ量算出を行ったか判断する。全部終了していれば次に進み、終了していなければ、S1102に戻り、部品の組み合わせを、まだノイズ量算出を行っていないものに再選択し、再びノイズ量算出を行う。
 このようにして、部品の組み合わせ及び部品位置や配線経路を変更しながら、ノイズ計算を順次行っていく。
 図15に、ノイズ伝播計算結果の例を示す。この例では、部品A、部品Bの組み合わせに対して、配線経路1~3についてノイズ量算出を行い、その結果が規格1~3にそれぞれ適合しているか(閾値よりもノイズ量が小さいか)判定したものである。どの部品の組み合わせで配線経路とした場合にどの規格に適合できるかを解析により確認することができる。部品モデルや車両モデルが既にデータベースに作成済みの場合は情報入力から結果出力までを全て自動化しても良い。
 一般的に車両での電磁ノイズ解析では車載アンテナへ混入するノイズ量、または車両周辺へ漏れ出る電磁ノイズ量、のどちらかである。この解析によって得られた結果は規格適合判断部で車載アンテナへの混入ノイズ量または車体周辺への漏洩が規格または目標値を満足しているかを判断する。もし規格を満たしていない場合は配線経路、部品配置または部品接続インピーダンスを修正部で変更する必要が生じる。部品の配置や配線経路に係る制限は最初に入力される配置情報に包含されている必要がある。このようにして部品配置、配線経路、部品接続インピーダンスを変化させながら規格に適合するか否か、または規格適合の条件を一連の解析によって求めることが出来る。出力情報は規格を満たす条件即ち部品の組合せ、配置、配線経路、接続インピーダンスの情報でありこれらが設計条件となる。
 上述したモデル情報をデータベースに記録する際の例を示す。実際の製品開発では電磁ノイズの観点だけではなく、部品のコスト、重量、サイズ等も重要なパラメータである。出力されるノイズ解析結果には、通常用いられる部品管理表にノイズモデルへのリンクを持たせる事が好ましい。例えば、ノイズ解析結果とともに、部品の機能、コスト、重量、サイズなど(属性値と称する。)を出力してもよい。また、コストや重量である場合には、図15に示すように、用いた複数の部品のコストの合計や重量の合計を出力してもよい。
 また、規格を満たした条件(部品の組み合わせ、配線経路など)のみを集めて出力してもよい。さらにそれらを、重量やコストの合計の大小の順に並び替えて表示してもよい。
 図16を用いて、実施例2を説明する。実施例1では、コンポーネントモデルとしては、マクロモデルを用いているが、本実施例では、等価回路モデルを用いている。他の点は、実施例1と同じである。
 図16に、等価回路モデルの一例を示す。等価回路とは、コンポーネント内の実際の回路を、コンデンサ、コイル、電気抵抗などの回路記号を用いて記述したものである。部品筐体は、3次元モデルであることは、マクロモデルと同様である。図16の等価回路モデルは、インバータ1601、パワーモジュール1602、対GNDキャパシタ1603、高圧バッテリ1604、バッテリケーブル1605、モータ1606、出力ケーブル1607を、回路記号で記述している。
 等価回路モデルの場合、実際の稼動の電流を模して、モデル内で電流を等価回路内の各素子に流しノイズを発生させるので、コンピュータの負荷が重くなるものの、実際の動作モードに近い解析ができる。そのため、動作モードごとにノイズ解析を行うことができるなど、より正確にノイズ解析をすることができる。マクロモデルの場合には、ノイズ値が最大の場合を想定しており、小さな負荷で解析を行うことができる。等価回路モデルの部品モデルと、マクロモデルの部品モデルを混合して車両筐体モデルに搭載し、ノイズ解析を行うことも可能である。
 以上、二つの実施例を説明した。なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、各情報線は説明上必要と考えられるものを示しており、製品開発への適用上必ずしも全ての情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 1・・・処理手段、2・・・記憶手段、3・・・入力手段、4・・・出力手段、5・・・接続線、11・・・車両選択部、12・・・部品選択部、13・・・接続インピーダンス決定部、14・・・部品配置配線経路決定部、15・・・電磁ノイズ解析部、21・・・車両筐体モデル情報記憶部、22・・・部品モデル情報記憶部、23・・・ノイズ解析結果記憶部、201・・・車両筐体モデル、202・・・インバータモデル、203・・・バッテリモデル、204・・・負荷モデル、207・・・ノイズ放射、208・・・車載アンテナ。

Claims (20)

  1.  筐体モデル選択部が、筐体モデルを取得する筐体モデル選択工程と、
     コンポーネントモデル選択部が、各コンポーネントモデルを選択して取得するコンポーネントモデル選択工程と、
     接続決定部が、前記取得した各コンポーネントモデル間を、配線で接続する接続工程と、
     配置部が、前記取得した筐体モデル内に前記取得した各コンポーネントモデルを配置するコンポーネント配置工程と、
     電磁ノイズ解析部が、前記配置し配線を接続した各コンポーネントモデルを駆動させ前記コンポーネントモデル及び配線から電磁ノイズを発生させるとともに、前記発生した電磁ノイズを前記筐体モデル内で伝播させてノイズ量を算出するノイズ解析工程と、
     出力部が、前記算出したノイズ量のデータを出力する出力工程と、
     を含むことを特徴とする電磁ノイズ解析方法。
  2.  請求項1において、
     前記筐体モデルは、3次元モデルであり、
     前記コンポーネントモデルは、外周は3次元モデルであり、内部はマクロモデルまたは等価回路モデルであることを特徴とする電磁ノイズ解析方法。
  3.  請求項2において、
     前記筐体モデルは、前記コンポーネント及び配線を配置する位置またはその候補の情報を含んでいることを特徴とする電磁ノイズ解析方法。
  4.  請求項1乃至3のいずれかにおいて、
     前記コンポーネントモデルの端子は、電流源または電圧源と、並列または直列インピーダンスと、コネクタの接続インピーダンスの情報を有し、
     前記接続工程では、前記配線を前記コンポーネントの端子に接続し、前記電流源または電圧源と、並列または直列インピーダンスと、コネクタの接続インピーダンスの値を決定することを特徴とする電磁ノイズ解析方法。
  5.  請求項1乃至4のいずれかにおいて、
     前記筐体モデルには、複数の種別のコンポーネントモデルが配置され、
     前記コンポーネントモデル選択工程では、1の種別のコンポーネントにつき複数のコンポーネントモデルを取得し、
     前記ノイズ解析工程では、前記コンポーネントモデルを変えながら複数回ノイズ量算出を行い、前記コンポーネントの組み合わせについてそれぞれノイズ量を算出することを特徴とする電磁ノイズ解析方法。
  6.  請求項1乃至5のいずれかにおいて、
     前記筐体モデルは、1のコンポーネントモデルまたは配線につき複数の配置位置を有しており、
     前記ノイズ解析工程では、前記コンポーネントモデルまたは配線の配置位置を変えながら複数回ノイズ量算出を行い、前記配置位置についてそれぞれの複数回ノイズ量算出を行うことを特徴とする電磁ノイズ解析方法。
  7.  請求項1乃至6のいずれかにおいて、
     前記コンポーネントモデルには、前記コンポーネントモデルの属性値が含まれており、
     前記出力工程では、ノイズ算出に用いたコンポーネントモデルの属性値を、前記ノイズ量とともに出力することを特徴とする電磁ノイズ解析方法。
  8.  請求項1乃至7のいずれかにおいて、
     前記コンポーネントモデルには、コンポーネントのコストまたは重量が含まれており、
     前記出力工程では、ノイズ算出に用いたコンポーネントのコストの合計または重量の合計を、前記ノイズ量とともに出力することを特徴とする電磁ノイズ解析方法。
  9.  請求項5または請求項6において、
     前記複数回ノイズ量算出した中で、当該ノイズ量が所定の条件を満たすコンポーネントモデルの組み合わせまたは配置位置を選択してリストにして出力することを特徴とする電磁ノイズ解析方法。
  10.  請求項1乃至9のいずれかにおいて、
     前記筐体は、自動車の筐体であり、前記コンポーネントは、自動車の電気部品であることを特徴とする電磁ノイズ解析方法。
  11.  筐体モデルを取得する筐体モデル選択部と、
     各コンポーネントモデルを選択して取得するコンポーネントモデル選択部と、
     前記取得した各コンポーネントモデル間を、配線で接続する接続決定部と、
     前記取得した筐体モデル内に前記取得した各コンポーネントモデルを配置する配置部と、
     前記配置し配線を接続した各コンポーネントモデルを駆動させ前記コンポーネントモデル及び配線から電磁ノイズを発生させるとともに、前記発生した電磁ノイズを前記筐体モデル内で伝播させてノイズ量を算出する電磁ノイズ解析部と、
     前記算出したノイズ量のデータを出力する出力部と、
     を含むことを特徴とする電磁ノイズ解析装置。
  12.  請求項11において、
     前記筐体モデルは、3次元モデルであり、
     前記コンポーネントモデルは、外周は3次元モデルであり、内部はマクロモデルまたは等価回路モデルであることを特徴とする電磁ノイズ解析装置。
  13.  請求項12において、
     前記筐体モデルは、前記コンポーネント及び配線を配置する位置またはその候補の情報を含んでいることを特徴とする電磁ノイズ解析装置。
  14.  請求項11乃至13のいずれかにおいて、
     前記コンポーネントモデルの端子は、電流源または電圧源と、並列または直列インピーダンスと、コネクタの接続インピーダンスの情報を有し、
     前記接続決定部は、前記配線を前記コンポーネントの端子に接続し、前記電流源または電圧源と、並列または直列インピーダンスと、コネクタの接続インピーダンスの値を決定することを特徴とする電磁ノイズ解析装置。
  15.  請求項11乃至14のいずれかにおいて、
     前記筐体モデルには、複数の種別のコンポーネントモデルが配置され、
     前記コンポーネントモデル選択部は、1の種別のコンポーネントにつき複数のコンポーネントモデルを取得し、
     前記ノイズ解析部は、前記コンポーネントモデルを変えながら複数回ノイズ量算出を行い、前記コンポーネントの組み合わせについてそれぞれノイズ量を算出することを特徴とする電磁ノイズ解析装置。
  16.  請求項11乃至15のいずれかにおいて、
     前記筐体モデルは、1のコンポーネントモデルまたは配線につき複数の配置位置を有しており、
     前記ノイズ解析部では、前記コンポーネントモデルまたは配線の配置位置を変えながら複数回ノイズ量算出を行い、前記配置位置についてそれぞれの複数回ノイズ量算出を行うことを特徴とする電磁ノイズ解析装置。
  17.  請求項11乃至16のいずれかにおいて、
     前記コンポーネントモデルには、前記コンポーネントモデルの属性値が含まれており、
     前記出力部は、ノイズ算出に用いたコンポーネントモデルの属性値を、前記ノイズ量とともに出力することを特徴とする電磁ノイズ解析装置。
  18.  請求項11乃至17のいずれかにおいて、
     前記コンポーネントモデルには、コンポーネントのコストまたは重量が含まれており、
     前記出力部は、ノイズ算出に用いたコンポーネントのコストの合計または重量の合計を、前記ノイズ量とともに出力することを特徴とする電磁ノイズ解析装置。
  19.  請求項15または請求項16において、
     前記複数回ノイズ量算出した中で、当該ノイズ量が所定の条件を満たすコンポーネントモデルの組み合わせまたは配置位置を選択してリストにして出力することを特徴とする電磁ノイズ解析装置。
  20.  請求項11乃至19のいずれかにおいて、
     前記筐体は、自動車の筐体であり、前記コンポーネントは、自動車の電気部品であることを特徴とする電磁ノイズ解析装置。
PCT/JP2013/052656 2012-03-08 2013-02-06 電磁ノイズ解析方法及び装置 WO2013132948A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/370,433 US9805147B2 (en) 2012-03-08 2013-02-06 Electromagnetic noise analysis method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-051146 2012-03-08
JP2012051146A JP5977962B2 (ja) 2012-03-08 2012-03-08 電磁ノイズ解析方法及び装置

Publications (1)

Publication Number Publication Date
WO2013132948A1 true WO2013132948A1 (ja) 2013-09-12

Family

ID=49116432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052656 WO2013132948A1 (ja) 2012-03-08 2013-02-06 電磁ノイズ解析方法及び装置

Country Status (3)

Country Link
US (1) US9805147B2 (ja)
JP (1) JP5977962B2 (ja)
WO (1) WO2013132948A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196132A (zh) * 2017-11-21 2018-06-22 中国船舶重工集团公司第七0研究所 系统内电磁兼容性评估方法
CN109214125A (zh) * 2018-10-22 2019-01-15 华中科技大学 一种电机电磁振动噪声的计算方法
WO2023218752A1 (ja) * 2022-05-10 2023-11-16 株式会社日立製作所 電磁ノイズ解析装置及びその方法並びにそれを備えたリスク判定装置及び制御装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195379A1 (en) * 2016-05-13 2017-11-16 Hitachi, Ltd. Electromagnetic noise path detecting system, rolling stock with an electromagnetic noise path detecting system, and method to determine an electromagnetic noise path
JP6620072B2 (ja) * 2016-06-28 2019-12-11 株式会社日立製作所 ノイズ監視システム及びそれを備えた鉄道車両並びにノイズ監視方法
JP6778536B2 (ja) * 2016-07-28 2020-11-04 株式会社日立製作所 電磁ノイズ解析装置、制御装置および制御方法
JP6580011B2 (ja) * 2016-09-12 2019-09-25 株式会社日立製作所 信号線ノイズ耐性評価方法及びその装置
JP6831746B2 (ja) * 2017-04-21 2021-02-17 株式会社日立製作所 電磁ノイズ計測システム
CN108387802B (zh) * 2018-03-30 2020-08-28 北京经纬恒润科技有限公司 一种整车接地系统的电磁兼容评估方法及装置
JP7485571B2 (ja) 2020-08-25 2024-05-16 Tdk株式会社 妨害波データベース入力装置、妨害波測定装置、及びプログラム
CN113030592B (zh) * 2021-02-25 2022-11-22 中车青岛四方机车车辆股份有限公司 一种动车组对外辐射分析方法、系统及装置
JP2023183428A (ja) * 2022-06-16 2023-12-28 株式会社日立製作所 電磁ノイズ解析装置および電磁ノイズ解析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003006260A (ja) * 2001-04-20 2003-01-10 Nec Informatec Systems Ltd 回路基板部品配置設計支援装置、システム、サーバ、クライアント及び支援方法、該装置実現プログラム
JP2005339003A (ja) * 2004-05-25 2005-12-08 Matsushita Electric Ind Co Ltd 回路解析方法および回路解析装置
JP2010198201A (ja) * 2009-02-24 2010-09-09 Hitachi Ltd ノイズ解析設計方法
JP2011013833A (ja) * 2009-06-30 2011-01-20 Toshiba Corp 設計支援装置および設計支援方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100299783B1 (ko) * 1997-05-12 2001-09-06 오우라 히로시 반도체디바이스시험장치
US6161030A (en) * 1999-02-05 2000-12-12 Advanced Brain Monitoring, Inc. Portable EEG electrode locator headgear
JP2001155048A (ja) 1999-11-26 2001-06-08 Fujitsu Ten Ltd Emc設計支援システム
US7114132B2 (en) 2001-04-20 2006-09-26 Nec Corporation Device, system, server, client, and method for supporting component layout design on circuit board, and program for implementing the device
WO2004086837A1 (ja) * 2003-03-25 2004-10-07 Shin-Etsu Polymer Co., Ltd. 電磁波ノイズ抑制体、電磁波ノイズ抑制機能付物品、およびそれらの製造方法
US8341837B2 (en) * 2007-05-25 2013-01-01 Braunstein Zachary L Modular power distribution and control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003006260A (ja) * 2001-04-20 2003-01-10 Nec Informatec Systems Ltd 回路基板部品配置設計支援装置、システム、サーバ、クライアント及び支援方法、該装置実現プログラム
JP2005339003A (ja) * 2004-05-25 2005-12-08 Matsushita Electric Ind Co Ltd 回路解析方法および回路解析装置
JP2010198201A (ja) * 2009-02-24 2010-09-09 Hitachi Ltd ノイズ解析設計方法
JP2011013833A (ja) * 2009-06-30 2011-01-20 Toshiba Corp 設計支援装置および設計支援方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196132A (zh) * 2017-11-21 2018-06-22 中国船舶重工集团公司第七0研究所 系统内电磁兼容性评估方法
CN108196132B (zh) * 2017-11-21 2020-03-17 中国船舶重工集团公司第七一0研究所 系统内电磁兼容性评估方法
CN109214125A (zh) * 2018-10-22 2019-01-15 华中科技大学 一种电机电磁振动噪声的计算方法
WO2023218752A1 (ja) * 2022-05-10 2023-11-16 株式会社日立製作所 電磁ノイズ解析装置及びその方法並びにそれを備えたリスク判定装置及び制御装置

Also Published As

Publication number Publication date
US20140372092A1 (en) 2014-12-18
JP2013186683A (ja) 2013-09-19
US9805147B2 (en) 2017-10-31
JP5977962B2 (ja) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5977962B2 (ja) 電磁ノイズ解析方法及び装置
US10706197B2 (en) Automated electromagnetic interference filter design
EP2402875A1 (en) Noise analysis design method
JP5825197B2 (ja) ノイズ解析装置、ノイズ解析方法、およびノイズ解析プログラム
US9500689B2 (en) Noise equivalent circuit
CN113311802A (zh) 车辆电子维修和诊断系统及方法
CN106599351A (zh) 一种电驱动移动设备低频辐射发射特性预测方法
JP2016522460A (ja) 電気システムの電気図をグラフィックス生成するために後に使用されるデータのセットを処理する方法
JP5705349B2 (ja) ノイズ解析設計方法およびノイズ解析設計装置
Gao et al. Improvement of Low‐Frequency Radiated Emission in Electric Vehicle by Numerical Analysis
JP2009205400A (ja) 平面製造図作成支援装置、平面製造図作成支援方法、及び、平面製造図作成支援プログラム
Gao et al. Vehicle-level electromagnetic compatibility prediction based on multi-port network theory
Gao et al. A topological approach to model and improve vehicle‐level electromagnetic radiation
JP5537627B2 (ja) ノイズ解析設計方法およびノイズ解析設計装置
Ruddle Electromagnetic modelling for EMC
Ozbolat et al. A model based enterprise approach in electronics manufacturing
US9973289B2 (en) Signal line noise resistance evaluating method and its device
Schoerle et al. System simulation of automotive high voltage grids: Modelling of power converters and connecting cables
CN117669319A (zh) 一种车辆支架随机振动分析方法、装置、介质、电子设备
CN113742836A (zh) 一种变流器柜体的振动优化方法及装置
CN115408966A (zh) 用于电机逆变器的仿真测试装置及测试方法
Ding Experimental and simulation approaches for improving integrated circuit impedance characterisation under electrostatic discharge condition
Troscher et al. Combined PEEC/MoM solution technique for efficient electromagnetic emission calculations of PCBs in metallic enclosures
CN116502583A (zh) 逆变器的仿真测试方法、系统、装置和处理器
CN117290944A (zh) 电气模块的布置方法、装置、设备、车辆底盘及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757574

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14370433

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757574

Country of ref document: EP

Kind code of ref document: A1