WO2013131349A1 - 无刷直流电动机 - Google Patents

无刷直流电动机 Download PDF

Info

Publication number
WO2013131349A1
WO2013131349A1 PCT/CN2012/079102 CN2012079102W WO2013131349A1 WO 2013131349 A1 WO2013131349 A1 WO 2013131349A1 CN 2012079102 W CN2012079102 W CN 2012079102W WO 2013131349 A1 WO2013131349 A1 WO 2013131349A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
brushless
tooth
center
Prior art date
Application number
PCT/CN2012/079102
Other languages
English (en)
French (fr)
Inventor
章启忠
张唯
Original Assignee
浙江亿利达风机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SG2013014121A priority Critical patent/SG193223A1/en
Priority to MX2013004717A priority patent/MX2013004717A/es
Priority to CA2806050A priority patent/CA2806050A1/en
Priority to EA201390564A priority patent/EA201390564A1/ru
Priority to JP2014502984A priority patent/JP2014510512A/ja
Priority to AU2012372145A priority patent/AU2012372145B2/en
Priority to AU2013200655A priority patent/AU2013200655A1/en
Priority to EP20120826593 priority patent/EP2660959A4/en
Application filed by 浙江亿利达风机股份有限公司 filed Critical 浙江亿利达风机股份有限公司
Priority to KR1020137006202A priority patent/KR101447264B1/ko
Priority to US13/747,379 priority patent/US20130229085A1/en
Priority to ZA2013/01119A priority patent/ZA201301119B/en
Priority to EG2013050871A priority patent/EG27099A/xx
Publication of WO2013131349A1 publication Critical patent/WO2013131349A1/zh
Priority to US14/504,335 priority patent/US9800123B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Definitions

  • the present invention relates to electrical control technology, and more particularly to a brushless DC motor. Background technique
  • a brushless DC motor is a main type of motor, and its basic structure includes a stator having a pair of stator teeth, a rotor having a pair of magnetic poles, and a rotating shaft fixed at a center of the rotor, each of which is wound with a winding.
  • the working principle of the brushless DC motor is to generate a magnetic field between the stator teeth and the rotor poles by applying a drive current that is commutated according to a set period to the windings, thereby generating an electromagnetic moment on the rotor to drive the rotor to rotate.
  • the type of brushless DC motor can be divided into permanent magnet type or excitation type according to the magnetic generation method of the rotor magnetic pole. According to the phase number of the winding and the winding mode and the commutation period of the driving current, it can be divided into single phase and two. Phase or four-phase brushless DC motors have similar basic operating principles.
  • the brushless DC motor has a phase angle of zero between the stator magnetomotive force and the rotor flux during a half commutation period. And 180. The electromagnetic torque at the time is zero. Therefore, these two positions are called “dead points”.
  • the motor starting torque acting on the rotor is small, resulting in unsuccessful starting.
  • the present invention provides a brushless DC motor to improve the starting performance of the motor at the "dead point" of the start.
  • the present invention provides a brushless DC motor comprising a stator having a pair of stator teeth, a rotor having a pair of magnetic poles, and a rotating shaft fixed at a center of the rotor, each of the stator teeth winding, in the stator
  • the intersection of the intersection of the addendum arc line of each stator tooth with the tooth axis and the center of the tooth top arc of the stator tooth has a magnitude greater than 0 degrees with the tooth axis of the stator tooth.
  • an eccentric angle of less than 90 degrees
  • the edge arc line of each pole is axially symmetric with respect to the pole axis; the stator is disposed within the rotor On the side, the edge arc lines of each magnetic pole are concave, and the radius is greater than or equal to the rotor rotation radius, or, when the stator is disposed outside the rotor, the edge arc lines of each magnetic pole are convex, and the radius is less than or equal to the rotor rotation. radius.
  • the center of the arc of the edge of each of the magnetic poles is sequentially arranged in series to form a rotor circle surrounding the outer center of rotation of the rotor.
  • the edge surface of each of the magnetic poles is an edge cylindrical surface composed of arcuate lines of respective edges, and the center axes of the cylindrical surfaces of the edge portions of the respective magnetic poles are parallel to each other.
  • both end points of each stator tooth are axially symmetric with respect to the tooth axis, and both side edge lines and the tip circle of the stator teeth A transition arc is formed between the arcs.
  • a transition arc that is away from a center side of the arc of the tooth top is a first transition arc line, adjacent to a center side of the arc of the tooth top circle
  • the transition arc is a second transition arc line, and the radius of the first transition arc line is greater than the radius of the second transition arc line.
  • the first transition arc line has a radius of 0.1 - 1.0 mm
  • the second transition arc line has a radius of 0.1 - 0.6 mm.
  • the eccentric angles of the stator teeth are equal in magnitude; and/or the radius of the arc of the addendum of each stator tooth is equal.
  • the center of the arc of the addendum teeth of each of the stator teeth is successively arranged in sequence to form a stator circle surrounding the outer center of rotation of the rotor.
  • the tooth tip circular surface of each of the stator teeth is a crest cylindrical surface composed of respective tooth top circular arc lines, and the center axes of the crest cylindrical surfaces of the respective stator teeth are parallel to each other.
  • the radius of the rotor circle is larger than the radius of the stator circle.
  • the brushless DC motor is a single-phase permanent magnetic brushless DC motor, and the number of the stator teeth and the rotor magnetic poles is an even number.
  • the brushless DC motor as described above further includes: a rotor position sensor for detecting a current phase position of the rotor and outputting a rotor phase position signal;
  • a controller coupled to the rotor position sensor, for generating a driving current signal that varies according to the sinusoidal wave according to the received rotor phase position signal to the winding to perform commutation.
  • the brushless DC motor provided by the invention can design the tooth tip circular shape of the stator teeth to be an arc line which is eccentric with respect to the rotation center of the rotor, so that the brushless DC motor can eliminate the starting "dead point" and start smoothly.
  • FIG. 1 is a schematic view showing a gradual air gap structure used in the prior art
  • FIG. 2 is a schematic view showing a stepped air gap structure used in the prior art
  • FIG. 3 is a schematic view showing the structure of an asymmetric tooth used in the prior art
  • FIG. 5 is a schematic cross-sectional structural view of a stator in an embodiment of a brushless DC motor according to the present invention
  • FIG. 6 is an enlarged view of a portion A in FIG. 5;
  • FIG. 7 is a schematic cross-sectional structural view of a stator and a rotor in an embodiment of a brushless DC motor according to the present invention.
  • Figure 8 is a cross-sectional structural view showing the stator of the outer rotor type brushless DC motor of the present invention.
  • FIG. 9 is a cross-sectional structural view showing the rotor and the stator in the embodiment of the outer rotor type brushless DC motor of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 7 is a schematic cross-sectional structural view of a stator and a rotor in an embodiment of a brushless DC motor according to the present invention.
  • the brushless DC motor of the present embodiment includes a stator having a pair of stator teeth and has a pair of magnetic poles.
  • the rotor, and the rotating shaft fixed at the center of the rotor, each of which is wound around the winding, and the shape of the stator teeth is optimized and improved.
  • the basic structure of the brushless DC motor will be briefly introduced.
  • the invention can be applied to an inner rotor type motor in which a rotor is arranged inside a stator, and is also applicable.
  • the inner rotor type motor in the present embodiment will be described as an example.
  • the rotor 7 is disposed inside the stator 5, and the rotating shaft is fixed at the center of the rotor 7, for example, through the center hole of the rotor 7, to output electromagnetic torque by the rotation of the rotor 7.
  • the edge of the outermost end of the rotor necessarily forms a circle, and the radius of the circle formed by the rotation of the rotor is recorded as the radius of rotation of the rotor, and the center of the circle is recorded as the center of rotation of the rotor.
  • the stator 5 includes a stator outer circle and stator teeth 51.
  • Each of the stator teeth 51 is composed of a root portion and a tooth top.
  • the root portion extends from the outer circumference of the stator toward the center of rotation of the rotor.
  • the two sides of the top of the tooth protrude from the sides of the tooth portion to form the notch of the tooth groove 52.
  • the axis of symmetry of the root portion is The rotor rotation radius is collinear, and is recorded as the tooth axis of the stator tooth (the tooth axis is also the line between the center of the root portion and the center of rotation of the rotor).
  • the inner rotor type brushless DC motor provided in this embodiment, as shown in FIGS. 5-7, includes a stator 5 having a pair of stator teeth 51, a rotor 7 having a pair of magnetic poles 71, and a rotating shaft fixed at the center of the rotor 7.
  • Each of the stator teeth 51 is wound with a winding (not shown), and the stator 5 is disposed outside the rotor 7.
  • each stator tooth 51 In each cross section of the stator 5, the intersection of the addendum circular arc line 51 1 of each stator tooth 51 with the tooth axis 20 of the stator tooth 51 and the center 512 of the addendum circular arc line 51 1 of the stator tooth 51 The wire has an eccentric angle ⁇ greater than 0 degrees and less than 90 degrees between the tooth axis 20 of the stator tooth 51.
  • an even number of stator teeth 51 projecting toward the center may be fixedly disposed on the inner side surface of the stator 5, and the stator teeth 51 are evenly distributed on the inner side surface of the stator 5, and the number of the magnetic poles 71 on the stator teeth 51 and the rotor 7 are equal.
  • the position is also - corresponding; wherein the magnetic pole 71 on the rotor 7 may be a permanent magnet or may be magnetic due to energization.
  • the gap between the adjacent stator teeth 51 is a tooth groove 52, and the stator 5 is fixed, and the rotor 7 is rotated by a rotating shaft located at the center hole of the rotor 7.
  • the eccentric angles ⁇ of the different pairs of stator teeth 51 may be the same or different, that is, the center 512 of the tooth top arc line 51 1 may be arranged in various manners, for example, the eccentric angle of the stator teeth 51 at the spaced positions may be ⁇ is equal, or is set in such a manner that the eccentric angles corresponding to all the stator teeth 51 are sequentially increased.
  • the center 512 of the addendum circular arc line 51 1 does not coincide with the rotation center of the rotor, and does not fall on the straight line of the tooth axis; when the stator teeth and the magnetic poles The phase is 0. And 180.
  • the eccentric angles ⁇ of the respective stator teeth 51 are equal in magnitude; and/or the radius of the addendum circular arc 511 of each of the stator teeth 51 is equal. From the perspective of any cross section of the stator teeth, when the eccentric angles ⁇ of the stator teeth 51 are equal, and the radii of the tooth top arc lines 511 corresponding to the stator teeth 51 are also equal, each cross section of the stator 5 In the middle, the center 512 of the addendum circular arc 511 of each of the stator teeth 51 is sequentially arranged in series to form a stator circle surrounding the outer center of the rotor.
  • the magnitude of the eccentric angle ⁇ does not change, but the magnetic field vector between the stator tooth 51 and the rotor pole 71 changes; that is, during the constant rotation of the motor after the motor is started, the eccentric angle ⁇
  • the position is constant, the magnetic field vector changes uniformly with the rotation of the rotor, and the resulting reluctance torque gradually becomes a smooth sinusoidal shape, thereby reducing the fluctuation of the electromagnetic torque output by the motor.
  • the crest surface of each of the stator teeth 51 may be a crest cylindrical surface composed of the respective tooth top arc lines 51 1 , and the center axes of the crest cylindrical surfaces of the stator teeth 51 are parallel to each other.
  • the specific application is not limited thereto.
  • the cross-sections of the stator teeth 51 may be offset from each other by a certain angle and arranged in a spiral shape. This does not affect the working principle of the eccentric angle in the embodiment as long as the shape requirement of the stator tooth cross section is satisfied.
  • the asymmetrically-turning stepped air gap structure required for starting is provided by deviating the center 512 corresponding to the addendum circular arc line 511 of the stator 5 from the rotor rotation center 10 to form an eccentric angle ⁇ .
  • the asymmetric air gap is provided only by changing the shape of the crest cylindrical surface 51 1 of the stator tooth 51; please refer to FIG. 1, FIG. 2, FIG. 3 and FIG. 4 for details.
  • the centers of the crests of different stator teeth have the same center but different radii Rl l, R12, R13, R14 and R15; in the stepped air gap structure, the top surface of the same stator teeth is formed.
  • the brushless DC motor provided by the embodiment not only overcomes the problem of starting "dead point", but also solves the fluctuation of the normal running torque of the motor in the prior art. Large and noisy problems, effectively reducing vibration and noise during work.
  • This embodiment can further optimize the structural shape of the rotor based on the first embodiment.
  • the edge circular arc 712 of each magnetic pole 71 is axially symmetrical with respect to the magnetic pole axis; in the case where the stator 5 is disposed outside the rotor 7, the rotor is The edge arc line 712 of each of the magnetic poles 71 on the seventh surface is convex, and the radius of the edge circular arc line 712 is smaller than the rotor rotation radius, that is, the center 713 of the edge circular arc line 712 is located between the edge circular arc line 712 and the rotation center of the rotor. Or the radius of the edge arc line 712 may also be equal to the rotor rotation radius.
  • the shape of the edge arc 712 of the magnetic pole 71 of each rotor need not be identical, but preferably, in each cross section of the rotor 7, the center 713 of the edge circular arc 712 of each magnetic pole 71 is sequentially arranged in series to form a circumference.
  • the rotor circle is outside the center of rotation of the rotor 10.
  • each of the magnetic poles 71 is preferably an edge cylindrical surface composed of arcuate lines of the respective edges, and the central axes of the cylindrical faces of the edge portions of the respective magnetic poles 71 are parallel to each other.
  • the magnetic pole 71 extends in a spiral curve in a direction perpendicular to the cross section, or the surface of the magnetic pole 71 has a tapered surface or the like.
  • the radius of the rotor circle is preferably larger than the radius of the stator circle, or substantially satisfies the law; that is, the center of all the tooth top arc lines 51 1 from the perspective of one cross section
  • the 512 is arranged in a circle centered on the center of rotation of the rotor 10, and the center 713 of the edge circular arc 712 of all the magnetic poles 71 is also arranged in a circle centered on the center of rotation of the rotor 10, and the center 713 of the edge circular arc 712 of the magnetic pole 71 It surrounds the outer side of the center 512 of the addendum circular line 511.
  • the cylindrical surface of the pole surface and the top surface of the stator can be easily fabricated and processed, which is advantageous for cost saving.
  • the shape of the edge surface of the magnetic pole on the rotor is designed to be an arc of an edge which is symmetrical with respect to the magnetic pole axis and whose center is not at the center of rotation of the rotor, so that the air gap magnetic field formed by the rotor and the stator in this embodiment can be changed. It is smoother, so that the fluctuation of the output electromagnetic torque is more effectively reduced, and the vibration during the operation of the motor is further reduced.
  • Embodiment 3 5 is a schematic cross-sectional view of a stator of an embodiment of a brushless DC motor according to the present invention.
  • This embodiment can be based on any of the above embodiments, and further, in each cross section of the stator 5, each stator tooth 51 The two end points are axially symmetric with respect to the tooth axis 20, and a transition arc is formed between the side edge lines of the stator teeth 51 and the addendum circular line 511.
  • the two end points of the stator teeth 51 are the points farthest from the tooth axis 20 on both sides of the tooth top; the tooth side surfaces of the tooth top circular surface are smoothly transitioned through the arc surface, respectively, from the cross section angle of the stator Look, these two arc faces are the above-mentioned tooth top arc line 511.
  • the design of the circular arc surface makes the variation of the air gap magnetic field more uniform.
  • the transition arc that is away from the center 512 of the addendum arc line 51 1 is the first transition arc line 513, and the transition arc adjacent to the center side of the tooth top arc line
  • the second transition arc line 514 has a radius larger than the radius of the second transition arc line 514.
  • the radius of the first transitional circular arc 513 preferably ranges from 0.1 to 1.0 mm
  • the radius of the second transitional circular arc 514 preferably ranges from 0.1 to 0.6 mm.
  • the design of the transitional arc surface in this embodiment can cooperate with the rotation of the rotor, so that the air gap magnetic field change between the stator and the rotor is smoother and evener, so that the variation law of the air gap magnetic field is closer to the sinusoidal waveform, and further Reduce the purpose of torque ripple and vibration noise.
  • FIG. 8 is a schematic cross-sectional structural view of a stator in an embodiment of an outer rotor type brushless DC motor according to the present invention
  • FIG. 9 is a cross-sectional structural view showing a rotor and a stator in an embodiment of an outer rotor type brushless DC motor according to the present invention.
  • the present embodiment provides an outer rotor type brushless DC motor, which is different from the first embodiment in that the rotor 7 is disposed on the outer side of the stator 5, so that the rotor 7 can be in a ring shape.
  • the stator 5 is located at the center of the rotor 7.
  • the stator 5 is fixed on the outer side of the stator 5 with an even number of stator teeth 51 extending radially outward.
  • the magnetic pole 71 of the rotor 7 is disposed on the inner ring side of the rotor 7, and the position is also compatible with the stator.
  • the tooth 51 - correspondingly, the rotating shaft fixed at the center hole of the rotor 7 can drive the rotor 7 to rotate; at this time, from the cross-sectional angle of the rotor 7, the edge circular arc 712 of each magnetic pole 71 is concave and the radius is larger than or Equal to the rotor rotation radius; and similar to the first embodiment, in each cross section of the stator 5, the intersection of the addendum circular arc line 51 1 of each stator tooth 51 and the tooth axis 20 of the stator tooth 51 and the stator tooth 51 Circle of the tooth top arc line 511
  • the line of the core 512 has an eccentric angle ⁇ greater than 0 degrees and less than 90 degrees between the tooth axes 20 of the stator teeth 51.
  • the structure of the stator 5 and the rotor 7 and the structural relationship between the two are similar to those of the first embodiment, and will not be described herein.
  • the eccentric angle ⁇ of the stator teeth 51 and the radius of the tooth top arc line 51 1 may be equal, and the center 512 of the tooth top arc line corresponding to each stator tooth 51 may be sequentially arranged in sequence to form a surrounding The stator circle outside the center of rotation of the rotor.
  • the structure of the rotor can be further optimized by the method of the second embodiment. That is, in each cross section of the rotor 7, the edge circular arc 712 of each magnetic pole 71 may be axially symmetrically disposed with respect to the magnetic pole axis, and for the case where the rotor 7 is disposed outside the stator 5, the magnetic poles on the rotor 7
  • the edge circular arc 712 of the 71 is concave, and the radius of the edge circular arc 712 is smaller than the rotor rotation radius; the shape of the edge circular arc 712 of each rotor magnetic pole 71 may be the same or different, and the edge circular arc 712 of each magnetic pole 71
  • the center 713 of the circle may be sequentially arranged to form a rotor circle surrounding the outer center of rotation 10 of the rotor; optimally, when the rotor circle and the stator circle are respectively formed, the radius of the rotor circle may be larger than the radius of the stator circle (as shown in Fig. 9
  • the outer rotor type brushless DC motor provided in this embodiment can also improve the starting performance of the motor near the "dead point" of starting, and reduce the torque fluctuation during normal operation of the motor, thereby achieving the purpose of reducing vibration and noise.
  • the brushless DC motor provided by the embodiment of the invention can be applied to a single-phase, two-phase or four-phase brushless DC motor, and the working principle is similar, and the starting performance can be improved.
  • the embodiment of the present invention is preferably applied to a single-phase permanent magnet brushless DC motor because the single-phase winding can effectively reduce the production cost and can also achieve higher efficiency.
  • the number of stator teeth 51 of the brushless DC motor may be an even number, for example, four, six or eight.
  • the number of magnetic poles on the rotor may also be an even number, for example, four or six or the same.
  • an inner rotor type or an outer rotor type may be used, wherein the structure of the stator, the structure of the rotor, and the structural relationship between the rotor and the stator may adopt the specific embodiment of the first embodiment or the second embodiment, and details are not described herein again. .
  • the single-phase permanent magnet brushless DC motor provided in this embodiment can overcome the startup "dead point" of the single-phase permanent magnet brushless DC motor in the prior art, and can smoothly start, and at the same time, an air gap which changes sinusoidally can be obtained.
  • the magnetic field is used to obtain a torque that is uniformly changed, and the torque ripple is effectively reduced.
  • the single-phase brushless DC motor in any of the above embodiments may further include: a rotor position sensor for detecting a current phase position of the rotor and outputting a rotor phase position Signal
  • the controller is coupled to the rotor position sensor for generating a drive current signal that varies sinusoidally according to the received rotor phase position signal to the winding for commutation.
  • the controller and the windings may be respectively coupled to the drive circuit to input a drive current signal to the windings on the stator, and the direction of the drive current is changed by the controller to perform the commutation.
  • the brushless DC motor can be driven by a sinusoidal change current signal, and the back electromotive force of the winding is changed by a sinusoidal law by the phase compensation function of the controller, so that the air gap magnetic field changes to a more pure sine wave, further Reduced torque ripple and better noise reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Brushless Motors (AREA)

Abstract

一种无刷直流电动机,包括定子(5)、转子(7)、以及固定在转子(7)中心孔处的转轴,在定子(5)的每个横截面中,每个定子齿(51)的齿顶圆弧线(511)与定子齿(51)的齿轴半径的交点和该定子齿(51)的齿顶圆弧线(511)的圆心(512)的连线,与该定子齿(51)的齿轴半径之间具有大于0度且小于90度的机械偏心角。通过将定子齿(51)的齿顶圆形状设计为相对于转子旋转中心偏心的圆弧线,使得无刷直流电动机能够消除启动"死点",顺利启动。

Description

无屌 直;^ ϋ电动机 技术领域 本发明涉及电气控制技术, 尤其涉及一种无刷直流电动机。 背景技术
无刷直流电动机是电动机的一种主要类型, 其基本结构是包括具有成对 定子齿的定子、 具有成对磁极的转子、 以及固定在转子中心处的转轴, 每 个定子齿绕制有绕组。 无刷直流电动机的工作原理是通过向绕组施加按照 设定周期换相的驱动电流, 在定子齿和转子磁极之间产生变化磁场, 从而 在转子上产生电磁力矩, 驱动转子转动。
无刷直流电动机的类型, 按照转子磁极上磁性的产生方式又可分为永 磁型或励磁型, 按照绕组的相数和绕制方式及驱动电流的换相周期又可分 为单相、 两相或四相无刷直流电动机, 其基本工作原理类似。
但是, 在现有的无刷直流电动机中, 普遍存在一缺陷。 即无刷直流电 动机在半个换相周期内, 当定子磁动势与转子磁通之间的相位夹角在 0。 和 180。 时的电磁转矩分别为零。 因此, 这两个位置被称为 "死点" , 当转子处 于 "死点" 附近时, 作用在转子上的电动机启动转矩很小, 导致启动不顺利。 发明内容 本发明提供一种无刷直流电动机, 以改善电动机在启动 "死点,, 附近 的启动性能。
本发明提供一种无刷直流电动机, 包括具有成对定子齿的定子、 具有 成对磁极的转子、 以及固定在所述转子中心处的转轴, 每个所述定子齿绕 制绕组, 在定子的每个横截面中, 每个定子齿的齿顶圆弧线与齿轴线的交 点和该定子齿的齿顶圆弧线的圆心的连线, 与该定子齿的齿轴线之间具有 大于 0度且小于 90度的偏心角。
如上所述的无刷直流电动机, 优选地: 在转子的每个横截面中, 每个 磁极的边缘圆弧线相对于磁极轴线呈轴对称设置; 在定子设置在转子的内 侧时, 各磁极的边缘圆弧线内凹, 且半径大于或等于转子旋转半径, 或, 在定子设置在转子的外侧时, 各磁极的边缘圆弧线外凸, 且半径小于或等 于转子旋转半径。
如上所述的无刷直流电动机, 优选地: 在转子的每个横截面中, 各磁 极的边缘圆弧线的圆心, 依次连续排列, 形成围绕在转子旋转中心外侧的 转子圆。
如上所述的无刷直流电动机, 优选地: 每个磁极的边缘表面为各边缘 圆弧线组成的边缘圆柱面, 各磁极的边缘圆柱面的圆心轴线相互平行。
如上所述的无刷直流电动机, 优选地: 在定子的每个横截面中, 每个 定子齿的两侧端点相对于齿轴线呈轴对称设置, 且定子齿的两侧边缘线与 齿顶圆弧线之间形成有过渡弧线。
如上所述的无刷直流电动机, 优选地: 在每个定子齿上, 背离齿顶圆 弧线圆心一侧的过渡弧线为第一过渡圆弧线, 邻近齿顶圆弧线圆心一侧的 过渡弧线为第二过渡圆弧线, 且第一过渡圆弧线的半径大于第二过渡圆弧 线的半径。
如上所述的无刷直流电动机, 优选地: 所述第一过渡圆弧线的半径为 0.1 - 1.0mm, 第二过渡圆弧线的半径为 0.1 ~ 0.6mm。
如上所述的无刷直流电动机, 优选地: 各定子齿的偏心角大小相等; 和 /或各定子齿的齿顶圆弧线的半径相等。
如上所述的无刷直流电动机, 优选地: 在定子的每个横截面中, 各定 子齿的齿顶圆弧线的圆心, 依次连续排列, 形成围绕在转子旋转中心外侧 的定子圆。
如上所述的无刷直流电动机, 优选地: 每个定子齿的齿顶圆表面为各 齿顶圆弧线组成的齿顶圆柱面, 各定子齿的齿顶圆柱面的圆心轴线相互平 行。
如上所述的无刷直流电动机, 优选地: 所述转子圆的半径大于所述定 子圆的半径。
如上所述的无刷直流电动机, 优选地: 所述无刷直流电动机为单相永 磁无刷直流电动机, 所述定子齿和转子磁极的数量均为偶数个。
如上所述的无刷直流电动机, 还包括: 转子位置传感器, 用于检测所述转子的当前相位位置并输出转子相位 位置信号;
控制器, 与所述转子位置传感器相连, 用于根据接收到的所述转子相 位位置信号生成一按正弦波规律变化的驱动电流信号给绕组以实行换相。
本发明提供的无刷直流电动机, 通过将定子齿的齿顶圆形状设计为相 对于转子旋转中心偏心的圆弧线, 使得无刷直流电动机能够消除启动 "死 点" , 顺利启动。 附图说明
图 1为现有技术中釆用渐变气隙结构示意图;
图 2为现有技术中釆用阶梯气隙结构示意图;
图 3为现有技术中釆用不对称齿结构示意图;
图 4为现有技术中釆用附加凹槽结构示意图;
图 5为本发明无刷直流电动机实施例中定子的横截面结构示意图; 图 6为图 5中 A处的放大图;
图 7为本发明无刷直流电动机实施例中定子与转子相配合的横截面结 构示意图;
图 8为本发明外转子式无刷直流电动机实施例中定子的横截面结构示 意图;
图 9为本发明外转子式无刷直流电动机实施例中转子与定子相配合的 横截面结构示意图。 具体实施方式 实施例一 图 7为本发明无刷直流电动机实施例中定子与转子相配合的横截面结 构示意图, 本实施例的无刷直流电动机包括具有成对定子齿的定子、 具有 成对磁极的转子、 以及固定在转子中心处的转轴, 每个定子齿绕制绕组, 且对定子齿的形状进行了优化改进。 为清楚介绍本发明实施例的技术方 案, 先简单介绍无刷直流电动机的基本结构。
本发明既可适用于转子设置在定子内侧的内转子式电动机, 也可适用 于转子设置在定子外侧的外转子式电动机, 本实施例以内转子式电动机为 例进行说明。 如图 7所示, 转子 7设置在定子 5的内侧, 转轴固定在转子 7的中心处, 例如可穿过转子 7的中心孔, 以通过转子 7的转动来输出电 磁转矩。 当转子 7旋转时, 转子最外端的边缘必然形成一圆形, 该转子旋 转形成的圆形的半径记为转子旋转半径, 其圆心记为转子旋转中心。
如图 7所示, 定子 5包括定子外圆和定子齿 51 , 每个定子齿 51均由 齿根部和齿顶部构成, 齿根部从定子外圆中朝向转子旋转中心延伸而出, 齿;^部为轴对称的板状, 齿顶部的两侧分别由齿^^部的两侧伸出, 以构成 齿槽 52的槽口; 从定子 5任意横截面的角度来看, 齿根部的对称轴线与 转子旋转半径共线, 记作该定子齿的齿轴线(该齿轴线也为齿根部的中心 与转子旋转中心之间的连线) 。
本实施例提供的内转子式无刷直流电动机, 如图 5-7所示, 包括具有 成对定子齿 51的定子 5、 具有成对磁极 71的转子 7、 以及固定在转子 7 中心处的转轴, 每个定子齿 51绕制有绕组 (图中未示) , 定子 5设置在 转子 7的外侧。 在定子 5的每个横截面中, 每个定子齿 51的齿顶圆弧线 51 1与定子齿 51的齿轴线 20的交点和该定子齿 51的齿顶圆弧线 51 1的圆 心 512的连线, 与该定子齿 51的齿轴线 20之间具有大于 0度且小于 90 度的偏心角 Θ。
具体地, 定子 5的内侧面上可固定设置偶数个向中心伸出的定子齿 51 , 且定子齿 51均布在定子 5的内侧面上, 定子齿 51与转子 7上的磁极 71数目相等, 位置也——对应; 其中, 转子 7上的磁极 71可以为永磁体, 也可以因通电而具有磁性。 相邻的定子齿 51之间的空隙为齿槽 52 , 定子 5固定不动, 通过位于转子 7中心孔的转轴带动转子 7旋转。
不同对的定子齿 51对应的偏心角 Θ可以相同也可以不同, 即齿顶圆 弧线 51 1的圆心 512的排列方式可以为多种, 例如, 可以使处于间隔位置 的定子齿 51的偏心角 Θ相等, 或是按所有定子齿 51对应的偏心角 Θ依次 递增的方式设置。 本实施例无刷直流电动机中, 由于偏心角 Θ的存在, 齿顶圆弧线 51 1 的圆心 512与转子旋转中心不重合、 且不会落在齿轴线所在直线上; 当定 子齿与磁极的相位为 0。 和 180。 时, 启动输入驱动电流, 则由于偏心角 Θ的存在, 可形成磁动势压差, 使得在 "死点" 位置时合成的电磁转矩不 为零, 消除了启动 "死点" , 具有良好的启动性能。
优选地, 上述各定子齿 51的偏心角 Θ大小相等; 和 /或各定子齿 51 的齿顶圆弧线 511的半径相等。 从定子齿任意横截面的角度来看, 当各定 子齿 51的偏心角 Θ相等, 且各定子齿 51所对应的齿顶圆弧线 511的半径 也相等时, 在定子 5的每个横截面中, 各定子齿 51的齿顶圆弧线 511的 圆心 512, 依次连续排列, 形成围绕在转子旋转中心外侧的定子圆。 当转 子 7转动时, 该偏心角 Θ的大小不变, 但是该定子齿 51与该转子磁极 71 之间的磁场矢量变化;也就是说, 当电动机启动后恒定的转速旋转过程中, 偏心角 Θ位置不变, 磁场矢量随转子转动呈均匀变化, 得到的磁阻转矩逐 渐为平滑的正弦波形状, 从而减少了电动机输出的电磁转矩的波动。
本实施例中, 每个定子齿 51的齿顶圆表面可以为各齿顶圆弧线 51 1 组成的齿顶圆柱面, 各定子齿 51的齿顶圆柱面的圆心轴线相互平行。 但 具体应用中并不限于此, 例如各定子齿 51的横截面可以相互偏差一定角 度, 螺旋状排列。 这并不影响本实施例中偏心角的工作原理, 只要满足定 子齿横截面的形状要求即可。
在本实施例中, 通过将定子 5的齿顶圆弧线 511对应的圆心 512偏离 转子旋转中心 10、 以形成偏心角 Θ的方式来提供启动时所需的不对称转 阶梯气隙结构、 不对称齿结构和附加凹槽结构) 中, 都是仅通过改变定子 齿 51的齿顶圆柱面 51 1的形状来提供不对称气隙的; 具体请参照图 1、 图 2、 图 3和图 4, 渐变气隙结构中, 不同的定子齿的齿顶圆柱面的圆心相同 但半径 Rl l、 R12、 R13、 R14和 R15不同; 阶梯气隙结构中, 在同一定子 齿的齿顶圆表面形成突变的阶梯 t; 不对称齿结构中, 每个定子齿的齿顶 圆柱面的对称轴 k2偏离该定子齿的对称轴 kl ; 附加凹槽结构则是指在位 于定子齿的对称轴的一侧的齿顶圆柱面上开设凹槽 h。
由于现有技术中这四种形式的定子结构中定子齿的齿顶圆柱面的中 心轴都位于转子旋转中心轴上, 从而使不同定子齿与转子形成的气隙间存 在突变, 导致在一个极距内, 磁阻转矩存在一个正峰值和一个负峰值, 即 表现出很高的转矩波动。 因此, 与上述现有技术中的四种定子结构相比, 本实施例提供的无刷 直流电动机不但克服启动 "死点" 问题, 而且, 还能解决现有技术中电动 机正常运行转矩波动过大、 噪声过大的问题, 有效减少工作中的振动和噪 音。
实施例二
本实施例可以以实施例一为基础, 进一步优化转子的结构形状。 本实 施例中, 在转子 7的每个横截面中, 每个磁极 71的边缘圆弧线 712可相 对于磁极轴线呈轴对称设置; 本实施例对于定子 5设置在转子 7外侧的情 况, 转子 7上的各磁极 71的边缘圆弧线 712外凸, 且边缘圆弧线 712的 半径小于转子旋转半径,即边缘圆弧线 712的圆心 713位于边缘圆弧线 712 与转子旋转中心之间。或边缘圆弧线 712的半径也可以等于转子旋转半径。
每个转子的磁极 71边缘圆弧线 712的形状不必完全相同, 但优选地, 在转子 7的每个横截面中, 各磁极 71的边缘圆弧线 712的圆心 713 ,依次 连续排列, 形成围绕在转子旋转中心 10外侧的转子圆。
每个磁极 71的边缘表面优选为各边缘圆弧线组成的边缘圆柱面, 各 磁极 71的边缘圆柱面的圆心轴线相互平行。 但并不限制于此, 例如, 磁 极 71在垂直于横截面的方向上沿螺旋曲线延伸, 或者, 磁极 71表面呈锥 形表面等。
其中, 当分别形成转子圆和定子圆的情况时, 转子圆的半径优选大于 定子圆的半径, 或大致满足此规律; 即从一个横截面的角度看, 所有齿顶 圆弧线 51 1的圆心 512排列成一以转子旋转中心 10为圆心的圆, 所有磁 极 71的边缘圆弧线 712的圆心 713也排列成以转子旋转中心 10为圆心的 圆, 且磁极 71的边缘圆弧线 712的圆心 713围绕在齿顶圆弧线 511的圆 心 512的外侧。 磁极表面和定子的齿顶圆表面釆用圆柱面可以便于加工制 造, 有利于节约成本。
本实施例釆用将转子上磁极的边缘表面形状设计为以磁极轴线对称 的、 圆心不在转子旋转中心上的边缘圆弧线, 可以使本实施例中的转子与 定子形成的气隙磁场的变化更为平滑, 从而更有效地减少输出电磁转矩的 波动, 进一步减小电动机工作过程中的振动。
实施例三 图 5为本发明无刷直流电动机实施例中定子的横截面结构示意图, 本 实施例可以上述任意实施例为基础, 更进一步地, 在定子 5的每个横截面 中, 每个定子齿 51的两侧端点相对于齿轴线 20呈轴对称设置, 且定子齿 51的两侧边缘线与齿顶圆弧线 511之间形成有过渡弧线。
在这里, 定子齿 51的两侧端点即为齿顶部两侧距离齿轴线 20距离最 远的点; 齿顶圆表面向两侧的齿侧面分别通过圆弧面平滑过渡, 从定子的 横截面角度看, 这两个圆弧面则为上述齿顶圆弧线 511。 在转子 7旋转时, 圆弧面的设计可使气隙磁场的变化更为均匀。
优选地, 在每个定子齿 51上, 背离齿顶圆弧线 51 1的圆心 512—侧 的过渡弧线为第一过渡圆弧线 513 , 邻近齿顶圆弧线圆心一侧的过渡弧线 为第二过渡圆弧线 514, 且第一过渡圆弧线 513的半径大于第二过渡圆弧 线 514的半径。 这样设置的好处在于, 能够配合定子圆弧线的偏心设计, 进一步降低转子在转动过程中气隙磁场的突变。
进一步地, 第一过渡圆弧线 513的半径取值范围优选是 0.1 ~ 1.0mm, 第二过渡圆弧线 514的半径取值范围优选是 0.1 ~ 0.6mm。
本实施例中的过渡圆弧面的设计可以配合转子的转动, 使定子与转子 之间的气隙磁场变化更加平滑均勾, 从而使气隙磁场的变化规律更趋近于 正弦波形, 达到进一步减小转矩波动和振动噪音的目的。
实施例四
图 8为本发明外转子式无刷直流电动机实施例中定子的横截面结构示 意图; 图 9为本发明外转子式无刷直流电动机实施例中转子与定子相配合 的横截面结构示意图。 请参照图 8和图 9, 本实施例提供一种外转子式的 无刷直流电动机,与实施例一不同之处在于,转子 7设置于定子 5的外侧, 这样, 转子 7可以呈环状, 定子 5位于转子 7的中心, 定子 5的外侧面上 固定设置偶数个沿径向向外延伸的定子齿 51 , 转子 7的磁极 71设置在转 子 7的内环侧面上, 且位置也可与定子齿 51——对应, 固定于转子 7中 心孔处的转轴可带动转子 7旋转; 此时, 从转子 7的横截面角度来看, 各 磁极 71的边缘圆弧线 712内凹, 且半径大于或等于转子旋转半径; 且同 实施例一类似, 在定子 5的每个横截面中, 每个定子齿 51的齿顶圆弧线 51 1与定子齿 51的齿轴线 20的交点和该定子齿 51的齿顶圆弧线 511的圆 心 512的连线, 与该定子齿 51的齿轴线 20之间具有大于 0度且小于 90 度的偏心角 θ。 定子 5和转子 7的结构以及两者之间的结构关系也与实施 例一类似, 在此不再赘述。
优选地, 各定子齿 51所对应的偏心角 Θ以及齿顶圆弧线 51 1的半径 大小可以相等, 且各定子齿 51所对应的齿顶圆弧线的圆心 512可依次连 续排列, 形成围绕在转子旋转中心外侧的定子圆。
更进一步地, 可以釆用实施例二的方式进一步优化转子的结构。 即, 在转子 7的每个横截面中, 每个磁极 71的边缘圆弧线 712可相对于磁极 轴线呈轴对称设置, 且针对转子 7设置在定子 5的外侧的情况, 转子 7上 各磁极 71的边缘圆弧线 712内凹, 且边缘圆弧线 712的半径小于转子旋 转半径; 每个转子磁极 71的边缘圆弧线 712形状可以相同或不同, 且各 磁极 71的边缘圆弧线 712的圆心 713可以依次排列形成围绕在转子旋转 中心 10外侧的转子圆; 最优地, 当分别形成转子圆和定子圆的情况时, 转子圆半径可大于定子圆半径 (如图 9所示) 。
本实施例提供的外转子式的无刷直流电动机, 同样可在改善电动机在 启动 "死点"附近的启动性能的同时, 减少电动机正常运转时的转矩波动, 达到降低振动和噪声的目的。
本发明实施例提供的无刷直流电动机可以适用于单相、 两相或四相无 刷直流电动机, 其工作原理类似, 都可以改善启动性能。 但本发明实施例 优选适用于单相永磁无刷直流电动机, 因为, 釆用单相绕组可以有效降低 生产成本, 且同样能获得较高的效率。 无刷直流电动机的定子齿 51的数 量可以为偶数个, 例如, 四个、 六个或八个, 对应地, 转子上磁极的数量 也可以为偶数个, 例如, 同样为四个、 六个或八个; 可以釆用内转子式或 外转子式, 其中定子的结构、 转子的结构以及转子与定子之间的结构关系 可以釆用实施例一或实施例二的具体方案, 在此不再赘述。
本实施例提供的单相永磁无刷直流电动机能够克服现有技术中的单 相永磁无刷直流电动机的启动 "死点" 、 顺利启动, 同时, 还可得到呈正 弦规律变化的气隙磁场, 从而得到均勾变化的转矩, 有效减小转矩波动。
更进一步地,上述任一实施例中的单相无刷直流电动机,还可以包括: 转子位置传感器, 用于检测转子的当前相位位置并输出转子相位位置 信号;
控制器, 与转子位置传感器相连, 用于根据接收到的转子相位位置信 号生成一按正弦波规律变化的驱动电流信号给绕组以实行换向。
具体地, 控制器和绕组可分别与驱动电路相连, 以将驱动电流信号输 入至定子上的绕组, 并通过控制器改变驱动电流的方向来实行换向。
即, 本无刷直流电动机可釆用正弦变化的电流信号驱动, 通过控制器 的相位补偿作用使绕组的反电动势按正弦规律变化, 从而使气隙磁场的变 化规律为更纯正的正弦波, 进一步降低了转矩波动, 降噪效果更好。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种无刷直流电动机, 包括具有成对定子齿的定子、 具有成对磁 极的转子、以及固定在所述转子中心处的转轴,每个所述定子齿绕制绕组, 其特征在于:
在定子的每个横截面中, 每个定子齿的齿顶圆弧线与齿轴线的交点和 该定子齿的齿顶圆弧线的圆心的连线, 与该定子齿的齿轴线之间具有大于 0度且小于 90度的偏心角。
2、 根据权利要求 1所述的无刷直流电动机, 其特征在于:
在转子的每个横截面中, 每个磁极的边缘圆弧线相对于磁极轴线呈轴 对称设置;
在定子设置在转子的内侧时, 各磁极的边缘圆弧线内凹, 且半径大于 转子旋转半径, 或, 在定子设置在转子的外侧时, 各磁极的边缘圆弧线外 凸, 且半径小于转子旋转半径。
3、 根据权利要求 2所述的无刷直流电动机, 其特征在于:
在转子的每个横截面中,各磁极的边缘圆弧线的圆心,依次连续排列, 形成围绕在转子旋转中心外侧的转子圆。
4、 根据权利要求 3所述的无刷直流电动机, 其特征在于:
每个磁极的边缘表面为各边缘圆弧线组成的边缘圆柱面, 各磁极的边 缘圆柱面的圆心轴线相互平行。
5、 根据权利要求 1所述的无刷直流电动机, 其特征在于:
在定子的每个横截面中, 每个定子齿的两侧端点相对于齿轴线呈轴对 称设置, 且定子齿的两侧边缘线与齿顶圆弧线之间形成有过渡弧线。
6、 根据权利要求 5所述的无刷直流电动机, 其特征在于:
在每个定子齿上, 背离齿顶圆弧线圆心一侧的过渡弧线为第一过渡圆 弧线, 邻近齿顶圆弧线圆心一侧的过渡弧线为第二过渡圆弧线, 且第一过 渡圆弧线的半径大于第二过渡圆弧线的半径。
7、 根据权利要求 6所述的无刷直流电动机, 其特征在于:
所述第一过渡圆弧线的半径为 0.1 ~ 1.0mm,第二过渡圆弧线的半径为 0.1 ~ 0.6mm。
8、 根据权利要求 1-7任一所述的无刷直流电动机, 其特征在于: 各定子齿的偏心角大小相等; 和 /或
各定子齿的齿顶圆弧线的半径相等。
9、 根据权利要求 1-7任一所述的无刷直流电动机, 其特征在于: 在定子的每个横截面中, 各定子齿的齿顶圆弧线的圆心, 依次连续排 列, 形成围绕在转子旋转中心外侧的定子圆。
10、 根据权利要求 9所述的无刷直流电动机, 其特征在于:
每个定子齿的齿顶圆表面为各齿顶圆弧线组成的齿顶圆柱面, 各定子 齿的齿顶圆柱面的圆心轴线相互平行。
11、 根据权利要求 10所述的无刷直流电动机, 其特征在于: 所述转 子圆的半径大于所述定子圆的半径。
12、 根据权利要求 1-7任一所述的无刷直流电动机, 其特征在于: 所 述无刷直流电动机为单相永磁无刷直流电动机, 所述定子齿和转子磁极的 数量均为偶数个。
13、 根据权利要求 1-7任一所述的无刷直流电动机, 其特征在于, 还 包括:
转子位置传感器, 用于检测所述转子的当前相位位置并输出转子相位 位置信号;
控制器, 与所述转子位置传感器相连, 用于根据接收到的所述转子相 位位置信号生成一按正弦波规律变化的驱动电流信号给绕组以实行换相。
PCT/CN2012/079102 2012-03-05 2012-07-24 无刷直流电动机 WO2013131349A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
AU2013200655A AU2013200655A1 (en) 2012-03-05 2012-07-24 Refer to Application No. 2012372145
CA2806050A CA2806050A1 (en) 2012-03-05 2012-07-24 Brushless dc motor
EA201390564A EA201390564A1 (ru) 2012-03-05 2012-07-24 Бесщеточный электродвигатель постоянного тока
JP2014502984A JP2014510512A (ja) 2012-03-05 2012-07-24 ブラシレス直流モータ
AU2012372145A AU2012372145B2 (en) 2012-03-05 2012-07-24 Brushless DC motor
SG2013014121A SG193223A1 (en) 2012-03-05 2012-07-24 Brushless dc motor
EP20120826593 EP2660959A4 (en) 2012-03-05 2012-07-24 DIRECT CURRENT MOTOR WITHOUT BRUSH
MX2013004717A MX2013004717A (es) 2012-03-05 2012-07-24 Motor dc sin escobillas.
KR1020137006202A KR101447264B1 (ko) 2012-03-05 2012-07-24 브러시리스 직류 모터
US13/747,379 US20130229085A1 (en) 2012-03-05 2013-01-22 Brushless dc motor
ZA2013/01119A ZA201301119B (en) 2012-03-05 2013-02-12 Brushless dc motor
EG2013050871A EG27099A (en) 2012-03-05 2013-05-22 Brushless dc motor
US14/504,335 US9800123B2 (en) 2012-03-05 2014-10-01 Method for modifying stator tooth top arc of brushless DC motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201210055354 CN102629811B (zh) 2012-03-05 2012-03-05 无刷直流电动机
CN201210055354.7 2012-03-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/747,379 Continuation US20130229085A1 (en) 2012-03-05 2013-01-22 Brushless dc motor

Publications (1)

Publication Number Publication Date
WO2013131349A1 true WO2013131349A1 (zh) 2013-09-12

Family

ID=46587995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079102 WO2013131349A1 (zh) 2012-03-05 2012-07-24 无刷直流电动机

Country Status (12)

Country Link
EP (1) EP2660959A4 (zh)
JP (1) JP2014510512A (zh)
KR (1) KR101447264B1 (zh)
CN (1) CN102629811B (zh)
AR (1) AR090236A1 (zh)
AU (2) AU2012372145B2 (zh)
EA (1) EA201390564A1 (zh)
EG (1) EG27099A (zh)
MX (1) MX2013004717A (zh)
SG (1) SG193223A1 (zh)
WO (1) WO2013131349A1 (zh)
ZA (1) ZA201301119B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293799A (zh) * 2020-02-27 2020-06-16 南京奥特佳新能源科技有限公司 一种反电动势正弦波形优化的永磁电机及其定子

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9800123B2 (en) 2012-03-05 2017-10-24 Zhejiang Yilida Ventilator Co., Ltd. Method for modifying stator tooth top arc of brushless DC motor
CN102882292A (zh) * 2012-09-27 2013-01-16 宁波狮球通风机电有限公司 定子冲片
CN102938626B (zh) * 2012-10-16 2015-03-25 江门市地尔汉宇电器股份有限公司 一种微型单相永磁同步电动机
CN102931799A (zh) * 2012-12-04 2013-02-13 周撼宇 一种单相无刷直流电动机
CN103259351A (zh) * 2013-05-13 2013-08-21 广东威灵电机制造有限公司 永磁电机
CN106230145A (zh) * 2016-07-26 2016-12-14 南通市润泽磁业有限公司 铝木电锯
CN106208589A (zh) * 2016-07-26 2016-12-07 南通市润泽磁业有限公司 用于铝木电锯的无刷电机
CN106253531A (zh) * 2016-08-15 2016-12-21 南通市润泽磁业有限公司 铝木电锯用无刷电机
CN111279594B (zh) * 2017-11-13 2023-09-05 皮尔伯格泵技术有限责任公司 单相电子换向电机
CN108599406B (zh) * 2018-01-26 2024-04-09 捷和电机制品(深圳)有限公司 单相无刷直流电机
CN109713814B (zh) * 2019-02-19 2020-05-19 珠海格力电器股份有限公司 电机结构及电机
CN112583190B (zh) * 2020-11-03 2022-04-19 超音速智能技术(杭州)有限公司 一种单相单绕组同步电机
CN112583155A (zh) * 2020-11-03 2021-03-30 超音速智能技术(杭州)有限公司 一种单相无刷直流电机
CN116979759B (zh) * 2023-09-14 2024-04-23 常州大牛汽车技术有限公司 一种具有气隙可调的定子转子组件低损耗电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183958A (ja) * 1984-02-28 1985-09-19 Sanyo Electric Co Ltd 直流ブラシレス電動機
US5744893A (en) * 1996-11-25 1998-04-28 Industrial Technology Research Institute Brushless motor stator design
US7242160B2 (en) * 2005-03-29 2007-07-10 Delta Electronics Inc. Starting method for Hall-less single-phase BLDCM
CN201319527Y (zh) * 2008-12-16 2009-09-30 珠海格力电器股份有限公司 一种电机转子结构

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222069U (zh) * 1988-07-27 1990-02-14
SI8912097B (sl) * 1989-10-30 1999-04-30 Iskra-Elektromotorji, P.O., Enofazni enosmerni motor brez krtačk z veliko hitrostjo in veliko močjo
JP3524138B2 (ja) * 1994-02-07 2004-05-10 日本電産株式会社 ブラシレスモータ
TW382160B (en) * 1997-04-02 2000-02-11 Ind Tech Res Inst Brush-less motor stator and arc modification method thereof
KR20010057863A (ko) * 1999-12-23 2001-07-05 이형도 단상의 무정류자 전동기
JP2002252952A (ja) * 2001-02-23 2002-09-06 Alps Electric Co Ltd インナーロータモータおよびディスク装置
US6744171B1 (en) * 2001-10-09 2004-06-01 Valeo Electrical Systems, Inc. Rotating electric machine with sloped tooth surfaces for cogging torque reduction
JP2004208341A (ja) * 2002-11-05 2004-07-22 Hitachi Ltd 永久磁石式回転電機
JP4738759B2 (ja) * 2004-05-26 2011-08-03 オリエンタルモーター株式会社 永久磁石モータ
JP4289253B2 (ja) * 2004-08-04 2009-07-01 株式会社日立製作所 記録再生装置
DE202005002828U1 (de) * 2005-02-22 2006-02-23 Minebea Co., Ltd., Oaza Miyota Elektrische Maschine mit einfacher Drehrichtung
JP4715305B2 (ja) * 2005-05-24 2011-07-06 ミツミ電機株式会社 単相ブラシレスモータ
JP2006352961A (ja) * 2005-06-14 2006-12-28 Meidensha Corp Pmモータ
JP2007166880A (ja) * 2005-12-16 2007-06-28 Shinano Kenshi Co Ltd Dcブラシレスモータ
JP2008178258A (ja) * 2007-01-19 2008-07-31 Sumitomo Electric Ind Ltd ステータコア
CN201057630Y (zh) * 2007-06-06 2008-05-07 上海特波电机有限公司 不等宽结构的低波动永磁无刷电机
JP5326326B2 (ja) * 2008-04-02 2013-10-30 パナソニック株式会社 モータ、電気機器
FR2945388B1 (fr) * 2009-05-11 2013-04-12 Moving Magnet Technologies M M T Moteur electrique triphase a faible couple de detente

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183958A (ja) * 1984-02-28 1985-09-19 Sanyo Electric Co Ltd 直流ブラシレス電動機
US5744893A (en) * 1996-11-25 1998-04-28 Industrial Technology Research Institute Brushless motor stator design
US7242160B2 (en) * 2005-03-29 2007-07-10 Delta Electronics Inc. Starting method for Hall-less single-phase BLDCM
CN201319527Y (zh) * 2008-12-16 2009-09-30 珠海格力电器股份有限公司 一种电机转子结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293799A (zh) * 2020-02-27 2020-06-16 南京奥特佳新能源科技有限公司 一种反电动势正弦波形优化的永磁电机及其定子

Also Published As

Publication number Publication date
KR20130112032A (ko) 2013-10-11
AR090236A1 (es) 2014-10-29
ZA201301119B (en) 2014-08-27
EA201390564A1 (ru) 2013-12-30
KR101447264B1 (ko) 2014-10-07
AU2013200655A1 (en) 2013-09-19
AU2012372145B2 (en) 2015-04-09
EP2660959A4 (en) 2014-05-07
EG27099A (en) 2015-06-08
AU2012372145A1 (en) 2013-09-26
EP2660959A1 (en) 2013-11-06
CN102629811A (zh) 2012-08-08
SG193223A1 (en) 2013-10-30
MX2013004717A (es) 2014-03-06
CN102629811B (zh) 2013-01-23
JP2014510512A (ja) 2014-04-24

Similar Documents

Publication Publication Date Title
WO2013131349A1 (zh) 无刷直流电动机
CN1881747B (zh) 永磁电机
JP3899885B2 (ja) 永久磁石式回転電機
US20160344271A1 (en) Single Phase Brushless Motor and Electric Apparatus Having the Same
JP2001037133A (ja) ステータ及び電動機
JP2008061485A (ja) 交流電源で自起動可能な永久磁石型モータ
US20130229085A1 (en) Brushless dc motor
US9800123B2 (en) Method for modifying stator tooth top arc of brushless DC motor
WO2005046022A1 (ja) 永久磁石式同期電動機及びこれを用いた圧縮機
CN104795952B (zh) 开关磁阻电机
US20060049710A1 (en) Single phase induction motor
WO2013020314A1 (zh) 永磁同步电机
JPH11113228A (ja) リラクタンスモータ
US8786161B2 (en) Sensorless motor and pump having a consequent rotor
CN108292865A (zh) 无刷直流电机
JP2006238679A (ja) 永久磁石型単相モータ
JP5619522B2 (ja) 3相交流回転機
JP2005033845A (ja) 回転電機及びこの回転電機を用いた滑車装置
Zhang et al. Comparison and analysis of dual stator permanent magnet vernier machines with different pole/slot combinations for low speed direct drive applications
JP5460807B1 (ja) 同期電動機
JP2006060951A (ja) 電動機
CN112821701B (zh) 一种单相电机
JP3239073B2 (ja) 永久磁石界磁形ブラシ付モータ
CN209948815U (zh) 一种优化的电机转子以及电机
CN107086685B (zh) 一种电机磁体的设计方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012372145

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2806050

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012826593

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137006202

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014502984

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/004717

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 201390564

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2013001796

Country of ref document: CL

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE