WO2013129113A1 - 移動局、及び通信方法 - Google Patents

移動局、及び通信方法 Download PDF

Info

Publication number
WO2013129113A1
WO2013129113A1 PCT/JP2013/053416 JP2013053416W WO2013129113A1 WO 2013129113 A1 WO2013129113 A1 WO 2013129113A1 JP 2013053416 W JP2013053416 W JP 2013053416W WO 2013129113 A1 WO2013129113 A1 WO 2013129113A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
serving cell
cell
frequency
mobile station
Prior art date
Application number
PCT/JP2013/053416
Other languages
English (en)
French (fr)
Inventor
武志 中森
昌 石原
Original Assignee
株式会社 エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 エヌ・ティ・ティ・ドコモ filed Critical 株式会社 エヌ・ティ・ティ・ドコモ
Priority to US14/364,223 priority Critical patent/US9456392B2/en
Priority to EP13755400.2A priority patent/EP2822322A4/en
Publication of WO2013129113A1 publication Critical patent/WO2013129113A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports

Definitions

  • the present invention relates to a wireless communication system.
  • a mobile station In a mobile communication system provided with a plurality of cells, a mobile station (user equipment (UE: User Equipment)) is configured to continue communication by switching cells when moving from one cell to another. It is configured. Such cell switching is called “mobility control”, more specifically, “cell reselection” or “handover”.
  • UE User Equipment
  • the mobile station performs cell reselection or handover to the neighboring cell when the received power or received quality of the signal from the neighboring cell becomes stronger than the received power or received quality of the signal from the serving cell (Serving Cell). Do.
  • Cell reselection is processing in which a mobile station in a standby state (ie, idle state) transitions from a serving cell to a neighboring cell.
  • Handover is a process in which a mobile station in a communication state (that is, a connected state) transitions from a serving cell to a neighboring cell.
  • the mobile station measures the reception power or reception quality of signals from the serving cell and the neighboring cells even when the mobile station is in a standby state and is in a state of transmitting and receiving data to and from the serving cell.
  • the received power of signals from neighboring cells or serving cells is, for example, “downlink reference signal (RS: Reference Signal Received Power) (RSRP: Reference Signal Received Power)” transmitted from neighboring cells or serving cells.
  • the reception quality is, for example, “reception quality (RSRQ: Reference Signal Received Quality) that is a relative ratio between the RSRP and the total received power (RSSI: Received Signal Strength Indicator) of the downlink (for example, non-patent literature). 1).
  • the mobile station cannot accurately measure the reception power and reception quality of the serving cell and neighboring cells. For example, there is a possibility that cell reselection or handover cannot be performed correctly when the mobile station determines the reception power or reception quality of a serving cell or a neighboring cell, which is higher or lower than actual. In this case, there is a possibility that an appropriate mobile communication service cannot be provided to the mobile station in the serving cell that is continuously located or the neighboring cell that moves. For this reason, the service quality for the user deteriorates.
  • the mobile station performs coverage / out-of-range determination based on the reception power and reception quality of the serving cell in addition to the measurement for celery selection. For example, the mobile station compares the reception power and reception quality of the signal from the serving cell with a predetermined threshold value. The mobile station determines that it is out of range when the received power and reception quality of the signal from the serving cell are equal to or less than a predetermined threshold, and otherwise determines that it is within range.
  • the predetermined threshold may be notified by signaling from a network, that is, a radio base station.
  • a network that is, a radio base station.
  • the predetermined threshold is called “Qrxlevmin” or “Qqualmin”.
  • the mobile station determines that the mobile station is out of range but is within range, that is, determines that the mobile station is within range even though the wireless quality is so bad that communication is not established, the user You may not be able to recognize that you are in It is not preferable in terms of service quality to determine that the user is within the service area despite being out of service area.
  • the measurement bandwidth and measurement interval (measurement time) for measuring received power and reception quality are implementation-dependent.
  • the LTE mobile communication system is a mobile communication system that succeeds W-CDMA (Wideband Code Division Multiple Access) and HSDPA (High Speed Downlink Packet Access).
  • W-CDMA Wideband Code Division Multiple Access
  • HSDPA High Speed Downlink Packet Access
  • downlink reference signals measured by a mobile station are distributed in both the frequency axis direction and the time axis direction (for example, see Non-Patent Document 2).
  • the mobile station can arbitrarily set a measurement bandwidth and a measurement interval for measuring received power and reception quality as long as a certain accuracy is satisfied.
  • FIG. 1 shows an example of system bandwidth.
  • a variable system bandwidth from 6 resource blocks (RB) to 100 resource blocks can be used according to the capabilities of the radio base station and the user equipment. For example, a system bandwidth of 6 resource blocks may be used, a system bandwidth of 50 resource blocks may be used, and a system bandwidth of 100 resource blocks may be used.
  • a resource block is one transmission unit in the frequency direction, and the frequency bandwidth of one resource block is 180 kHz (see, for example, Non-Patent Documents 3 and 4).
  • the system bandwidth is also referred to as “Channel Bandwidth”.
  • 3GPP TS36.214 V10.1.0 2011-03 3GPP TS 36.211 V10.3.0 2011-03 3GPP TS36.101 V10.4.0 2011-09 3GPP TS36.104 V10.4.0 2011-09 3GPP TS36.213 V10.3.0 2011-09
  • An object of the present invention is to improve the reliability of measurement results of interference from other cells.
  • the reliability of the measurement result of interference from other cells can be improved.
  • Diagram showing examples of variable system bandwidth The figure which shows the measurement zone with user equipment The figure which shows the frequency relationship (the 1) between the cells of different system bandwidths The figure which shows the frequency relationship (the 2) between the cells of different system bandwidth Diagram showing signal relationship between cells of different system bandwidth It is a figure which shows one Example of a mobile communication system. It is a figure which shows one Example of a mobile station. It is a functional block diagram which shows one Example of a mobile station. It is a flowchart which shows one Example of operation
  • downlink reference signals Reference Signals measured by mobile stations are distributed in both the frequency axis direction and the time axis direction.
  • the frequency band to be measured, the bandwidth to be measured, and the section to be measured can be arbitrarily set.
  • FIG. 2 shows a frequency band in which a synchronization channel and a physical broadcast channel are transmitted.
  • a synchronization channel and a physical broadcast channel are transmitted in six resource blocks at the center of the system band.
  • the central 6 resource blocks are always transmitted in any system bandwidth.
  • a mobile station in an LTE mobile communication system, generally measures 6 resource blocks at the center of the system bandwidth. That is, even if the own cell or the neighboring cell corresponds to the system bandwidth of 100 resource blocks, the central 6 resource blocks are measured.
  • the mobile station measures the radio quality in the serving cell and neighboring cells in the narrowest possible band.
  • the mobile station measures radio quality in the serving cell and neighboring cells in the shortest possible section. This is to obtain a processing load reduction effect and a battery saving effect.
  • the mobile station may be configured to measure radio quality using a signal in a predetermined frequency band centered on the carrier frequency.
  • the predetermined frequency band is narrower than the system bandwidth.
  • the measurement bandwidth is limited to the 6 resource blocks at the center of the system bandwidth, the amount of interference from other cells may not be measured appropriately.
  • the radio quality cannot be properly measured, and the measurement accuracy may be degraded.
  • 3 and 4 show examples of carrier frequencies set in adjacent cells. 3 and 4, the horizontal axis represents frequency.
  • the carrier frequency is different, but at least some system bands may overlap.
  • the system bandwidth of the cell 1 is 20 MHz (100 RBs), the system bandwidth of the cell 2 is 10 MHz (50 RBs), and the system bandwidth of the cell 3 is 10 MHz (50 RBs).
  • the carrier frequency of cell 2 is included in part of the carrier frequency of cell 1.
  • the carrier frequency of cell 3 is included in a part of the carrier frequency of cell 1.
  • the system band of cell 2 and the system band of cell 3 do not overlap.
  • Cell 1 may be a serving cell and cells 2 and 3 may be neighboring cells.
  • the cell 2 may be a serving cell, and the cells 1 and 3 may be neighboring cells.
  • the cell 3 may be a serving cell, and the cells 1 and 2 may be neighboring cells.
  • the system bandwidth of cell 1 is 10 MHz (50 RBs), the system bandwidth of cell 2 is 5 MHz (25 RBs), and the system bandwidth of cell 3 is 5 MHz (25 RBs).
  • the system band of cell 2 is included in a part of the system band of cell 1.
  • the system band of the cell 3 is included in a part of the system band of the cell 1.
  • the system band of the cell 2 and the system band of the cell 3 do not overlap.
  • Cell 1 may be a serving cell and cells 2 and 3 may be neighboring cells.
  • Cell 2 may be a serving cell and cells 1 and 3 may be neighboring cells.
  • the cell 3 may be a serving cell, and the cells 1 and 2 may be neighboring cells.
  • the peripheral band of the carrier frequency of the cell 1 is located between the system bands of the cells 2 and 3, and the radio quality at that position is different from the band where the system bands overlap.
  • FIG. 5 shows an example in which the measurement accuracy is degraded.
  • the bandwidth of the serving cell is 10 MHz, and the bandwidth of the surrounding cells is 5 MHz.
  • the system band of the serving cell includes the system bands of two neighboring cells. The system bands of the two neighboring cells do not overlap.
  • interference from signals from the neighboring cells of 5 MHz appears to be small in a specific band (in this case, near the carrier frequency of the 10 MHz serving cell). End up. This is because at least a part of the measurement band in the serving cell includes a band that is not used for communication by neighboring cells. That is, in a band that is not used for communication, interference from neighboring cells may be measured small.
  • FIG. 6 shows an embodiment of a mobile communication system.
  • One embodiment of the mobile communication system includes a mobile station (UE: User Equipment) 100 and a radio base station (eNB: eNodeB) 200.
  • UE User Equipment
  • eNB radio base station
  • an LTE mobile communication system is described.
  • the present invention is not limited to the LTE mobile communication system, and may be applied to other mobile communication systems.
  • the present invention may be applied to an LTE-Advanced mobile communication system.
  • an OFDM (Orthogonal Frequency Division Multiplexing) method is applied in the downlink
  • an SC-FDMA (Single-Carrier Division Multiple Access) method is used in the uplink.
  • the OFDM scheme is a scheme in which a specific frequency band is divided into a plurality of narrow frequency bands and data is transmitted on each frequency band.
  • the narrow frequency band is also called a subcarrier.
  • According to the OFDM system by arranging subcarriers closely without interfering with each other while partially overlapping on the frequency axis, it is possible to realize high-speed transmission and increase frequency utilization efficiency.
  • the SC-FDMA scheme divides a specific frequency band and transmits using a different frequency band among a plurality of mobile stations 100. By transmitting using a different frequency band between the plurality of mobile stations 100, interference between the plurality of mobile stations 100 can be reduced. According to the SC-FDMA scheme, the variation in transmission power is reduced, so that low power consumption and wide coverage of the mobile station 100 can be realized.
  • the radio base station 200 transmits a downlink control signal via a physical downlink control channel (PDCCH: Physical Downlink Control Channel). Also, the radio base station 200 transmits a downlink data signal via a physical downlink shared channel (PDSCH: Physical Downlink Shared Channel).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the mobile station 100 transmits an uplink data signal via a physical uplink shared channel (PUSCH: Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • FIG. 7 shows an embodiment of the mobile station 100.
  • FIG. 7 mainly shows the hardware configuration.
  • the mobile station 100 may be any appropriate terminal with which a user can communicate, and includes, but is not limited to, a user terminal such as a mobile phone, an information terminal, a personal digital assistant, a portable personal computer, and a smartphone. .
  • the mobile station 100 includes a wireless communication circuit 102, a CPU 104, a main storage unit 106, an auxiliary storage unit 108, and an input / output unit 110.
  • the auxiliary storage unit 108 may be included in a USIM (Universal Subscriber Identity Module) card.
  • USIM Universal Subscriber Identity Module
  • the wireless communication circuit 102 performs wireless communication with the wireless base station 200.
  • the CPU 104 controls the wireless communication circuit 102, the main storage unit 106, the auxiliary storage unit 108, and the input / output unit 110.
  • the CPU 104 functions according to a program stored in the main storage unit 106 and performs predetermined processing.
  • the main storage unit 106 includes an application and an operating system (OS Operating System).
  • the application is software having a function of performing a work executed by the user on the mobile station 100.
  • the OS is software that provides application software with an interface that abstracts hardware in the mobile station 100.
  • the input / output unit 110 is composed of, for example, a keyboard and a mouse, and is a device for inputting instructions to the mobile station 100 and data.
  • the input / output unit 110 may be configured with a touch panel.
  • the input / output unit 110 is configured by, for example, a microphone, and inputs sound emitted by the user.
  • the voice may include a message to the called party and an instruction to the mobile station 100.
  • the instruction includes an instruction for the OS and an application.
  • the input / output unit 110 is configured by a display, for example, and displays a processing state and a processing result by the mobile station 100. Further, the input / output unit 110 may be configured by a speaker, for example, and output sound to the user.
  • the processing state and the processing result include those according to the OS and applications.
  • Examples of the display include a liquid crystal display (LCD: Liquid Crystal Display), a CRT (Cathode Ray Tube) display, a plasma display (PDP), an organic EL (Electro-Luminescence) display, and the like.
  • FIG. 8 is a functional block diagram showing an embodiment of the function of the mobile station 100.
  • the functions represented by this functional block diagram are mainly executed by the CPU 104. That is, the functions represented by the functional block diagram of FIG. 8 are executed by the CPU 104 according to the application stored in the main storage unit 106.
  • the functions represented by the functional block diagram of FIG. 8 may be executed by the CPU 104 according to an application (firmware) stored in the internal memory of the CPU 104.
  • the CPU 104 functions as a frequency band setting unit 152, a parameter acquisition unit 154, a measurement unit 156, a filtering unit 158, a determination unit 160, and a notification unit 162.
  • the frequency band setting unit 152 sets the frequency band to be measured based on the carrier frequency notified from the parameter acquisition unit 154. Further, the frequency band setting unit 152 notifies the measurement unit 156 of the changed measurement condition (hereinafter referred to as “change condition”) or the changed threshold value (hereinafter referred to as “change threshold value”) according to the carrier frequency.
  • change condition the changed measurement condition
  • change threshold value the changed threshold value
  • the measurement conditions include, for example, the frequency band to be measured.
  • the change conditions include the carrier frequency of the serving cell and the carrier frequency of the surrounding cells.
  • Neighboring cells include neighboring cells adjacent to the serving cell.
  • the change condition may be a condition whether or not the carrier frequency of the neighboring cell exists within the system band of the serving cell.
  • the change condition may be a condition that the carrier frequency of the neighboring cell exists in a certain frequency range from the system band end of the serving cell and whether the system bands overlap each other.
  • the parameter acquisition unit 154 acquires parameters related to mobility control from the radio base station 200.
  • Parameters related to mobility control include, for example, “EARFCN (E-UTRAN Absolute Radio Channel Number)”, which is a carrier frequency of a neighboring cell, and “Qrxlevmin”, which is a predetermined threshold used for in-range / out-of-range determination. May be.
  • “EARFCN” is an absolute value that uniquely indicates the carrier frequency of each cell.
  • Qrxlevmin is the minimum required reception level [dBm] in the cell.
  • the parameters related to mobility control include “Qhyst”, “Qoffset”, “Trselection” parameters related to celery selection, “Time-to-trigger” parameters related to handover control, hysteresis, offset, filter coefficient, etc. May be included.
  • “Qhyst” is a positive offset given to the radio quality of the serving cell when celery selection is determined.
  • Qoffset is a negative offset given to the radio quality of the serving cell in the determination of celery selection.
  • “Teleselection” is a hysteresis in the time direction used in the determination of celery selection, and is a parameter corresponding to “Time-to-trigger” in handover.
  • the parameter acquisition unit 154 notifies the filtering unit 158 of the filter coefficient.
  • the measuring unit 156 measures the radio quality in the serving cell and the neighboring cells. Specifically, the measurement unit 156 measures the received power of signals from the serving cell and the neighboring cell as the radio quality in the serving cell and the neighboring cell.
  • the signals from the serving cell and the neighboring cells include a reference signal (RS: Reference Signal) and the like.
  • the received power of the reference signal may be referred to as RSRP (Reference Signal Received Power).
  • the measurement unit 156 calculates, as the radio quality in the serving cell and the neighboring cell, the received power of the signal from the serving cell and the neighboring cell (for example, a reference signal) and the total received power in the band of the signal from the serving cell and the neighboring cell.
  • the relative ratio may be measured.
  • the received power of the reference signal may be referred to as RSRP.
  • the total received power may be referred to as RSSI (Received Signal Strength Indicator).
  • the reception quality which is a relative ratio, may be referred to as RSRQ (Reference Signal Received Quality).
  • the measurement period (Measurement period) in the physical layer is 200 ms.
  • the interval actually used for measurement within 200 ms may be 1 ms as long as the measurement accuracy can be maintained.
  • the measurement bandwidth in the frequency axis direction may be the system bandwidth or may be narrower than the system bandwidth as long as a certain measurement accuracy can be satisfied.
  • the measurement unit 156 notifies the filtering unit 158 of the measurement results of the radio quality in the serving cell and the neighboring cells of the mobile station 100.
  • the measurement unit 156 changes the measurement condition, for example, the frequency band to be measured, based on the change condition or the change threshold value notified from the frequency band setting unit 152.
  • the frequency bandwidth in the frequency band to be measured may be defined by, for example, a multiple of an aggregate of subcarriers called RB defined in the LTE mobile communication system.
  • the measurement interval (measurement time) may be defined by, for example, a multiple of consecutive OFDM symbols called a subframe (Subframe).
  • the measurement unit 156 measures the radio quality (for example, RSRP or RSRQ) in the serving cell and neighboring cells of the mobile station 100 for each DRX (Discontinuous Reception) period.
  • RSRP Radio Quality
  • RSRQ Radio Quality
  • the filtering unit 158 receives the measurement result of the radio quality in the serving cell and the neighboring cells of the mobile station 100 from the measuring unit 156.
  • the filter coefficient (predetermined coefficient) is input from the parameter acquisition unit 154 to the filtering unit 158.
  • the filtering unit 158 calculates the filtering result based on the measurement results of radio quality and the filter coefficient in the serving cell and the neighboring cells of the mobile station 100. That is, in the mobile station 100, the upper layer performs a filtering process (L3 Filtering) on the measurement value of the physical layer.
  • L3 Filtering a filtering process
  • the measurement timing index is “m”
  • the measurement result after filtering is “F m ”
  • the filter coefficient is “k”
  • the measurement result after filtering at the previous measurement timing is “F m ⁇ 1”.
  • the measurement result is “M m ”.
  • the value of the filter coefficient “k” may be notified from the radio base station 200 to the mobile station 100 in advance.
  • the filtering unit 158 performs filtering according to the expressions (1) and (2).
  • the filter coefficient “a” when calculating the filtered measurement result “F m ” by adjusting the filter coefficient “a” when calculating the filtered measurement result “F m ”, the latest measurement result “M m ” in the measurement unit 156 and the past filtered measurement result “ The contribution ratio of “F m ⁇ 1 ” may be adjusted.
  • the filtering unit 158 inputs the filtered measurement result to the determination unit 160.
  • the filtering measurement result is input from the filtering unit 158 to the determination unit 160. Further, the measurement result that has not been filtered is input to the determination unit 160 from the measurement unit 156.
  • Determining unit 160 uses the measurement result of the wireless quality from measuring unit 156 to determine whether it is within or out of range. That is to say, the determination unit 160 performs the determination of the in-range / out-of-range. Specifically, in the standby state (Idle state), the determination unit 160 may perform the in-range / out-of-range determination based on the measurement result from the measurement unit 156.
  • the determination unit 160 may determine whether or not to perform celery selection using the measurement result of the wireless quality from the measurement unit 156. Specifically, the determination unit 160 may determine to perform celery selection when a predetermined condition is satisfied for a predetermined period or longer.
  • the determination unit 160 may set the predetermined condition as satisfying Expression (3). Further, the predetermined period may be referred to as “Teleselection”.
  • the determination unit 160 may determine whether to notify the filtered measurement result from the filtering unit 158. Specifically, the determination unit 160 may determine to notify the filtered measurement result from the filtering unit 158 when a predetermined condition is satisfied continuously for a predetermined period or longer.
  • the determination unit 160 may set the predetermined condition as satisfying Expression (4).
  • the predetermined period may be referred to as “Time-to-trigger”.
  • “hysteresis” may be set in advance.
  • the determination unit 160 inputs the determination result to the notification unit 162.
  • the notification unit 162 notifies the radio base station 200 of the measurement result.
  • the notification unit 162 notifies the radio base station 200 of the measurement result via the PUSCH. That is, the notification unit 162 transmits the PUSCH including the measurement result.
  • the measurement result may be referred to as “Measurement Report”.
  • FIG. 9 shows an embodiment of the operation of the mobile communication system. Specifically, an operation when radio quality measurement is performed by the mobile station 100 is shown.
  • the frequency band setting unit 152 determines the frequency positions of the carrier frequencies of the serving cell and the neighboring cells. Specifically, the frequency band setting unit 152 determines the frequency positions of the carrier frequencies of the serving cell and the neighboring cells based on the carrier frequency from the parameter acquisition unit 154. The frequency band setting unit 152 determines whether the carrier frequency of the neighboring cell is within the system band of the serving cell.
  • FIG. 10 shows an example of the relationship between the serving cell and the neighboring cells.
  • the system bandwidth of the serving cell is 20 MHz
  • the system bandwidth of the peripheral cell (1) is 10 MHz
  • the system bandwidth of the peripheral cell (2) is 20 MHz
  • the peripheral cell (3 ) System bandwidth is 10 MHz.
  • the carrier frequency of the neighboring cell (1) is determined to be within the system band of the serving cell. Since the carrier frequencies of neighboring cells (2) and (3) are not included in the system bandwidth of the serving cell, it is determined that they are not within the system band of the serving cell.
  • step S904 when it is determined that the carrier frequency of the neighboring cell is within the system band of the serving cell, the frequency band setting unit 152 notifies the measurement unit 156 of the frequency band of the measurement target, thereby measuring the frequency band of the measurement target.
  • the frequency band setting unit 152 sets a predetermined frequency band centered on the carrier frequency of the surrounding cell as the frequency band to be measured for both the serving cell and the surrounding cell of the serving cell. That is, in the example shown in FIG. 10, it is set to a predetermined frequency band centered on the carrier frequency of the neighboring cell (1).
  • step S912 the measurement unit 156 measures the radio quality of the serving cell and the neighboring cells based on the measurement target frequency band adjusted by the frequency band setting unit 152 in step S904.
  • step S906 when it is determined that the carrier frequency of the neighboring cell is not within the system band of the serving cell, the frequency band setting unit 152 has the carrier frequency of the neighboring cell within a certain range from the end of the system band of the serving cell, In addition, it is determined whether or not the system band of the neighboring cell overlaps at least partially with the system band of the serving cell.
  • the carrier frequency of the neighboring cell is within a certain range from the end of the system band of the serving cell, and the system band of the neighboring cell is at least one different from the system band of the serving cell. It is determined that there are duplicates.
  • the neighboring cell (3) it is determined that the carrier frequency of the neighboring cell is within a certain range from the end of the system band of the serving cell, and the system band of the neighboring cell does not overlap with the system band of the serving cell. This is because the carrier frequency of the serving cell and the carrier frequency of the neighboring cell (3) do not overlap.
  • step S908 if it is determined that the carrier frequency of the neighboring cell is within a certain range from the end of the system band of the serving cell and that the system band of the neighboring cell is at least partially overlapped with the system band of the serving cell,
  • the unit 152 sets the frequency band to be measured to a predetermined frequency band centered on the center of the band in which both the serving cell and the neighboring cells exist. That is, the frequency band setting unit 152 sets the frequency band to be measured for both the serving cell and the neighboring cells of the serving cell to the center of the carrier frequency of the serving cell where the band of the serving cell overlaps the band of the neighboring cell. To a predetermined frequency band.
  • step S912 the measurement unit 156 measures the radio quality of the serving cell and the neighboring cells based on the measurement target frequency band set by the frequency band setting unit 152 in step S908.
  • Step S910 when it is determined that the carrier frequency of the neighboring cell is not within a certain range from the end of the system band of the serving cell, or the system band of the neighboring cell does not overlap with the system band of the serving cell, the frequency band setting unit 152 Sets the frequency bands to be measured in the serving cell and the surrounding cells to predetermined frequency bands centered on the respective carrier frequencies.
  • step S912 the measurement unit 156 measures the radio quality of the serving cell and the neighboring cells based on the measurement target frequency band set by the frequency band setting unit 152 in step S910.
  • FIG. 11 shows an embodiment of the operation of the mobile communication system. Specifically, an operation when the mobile station 100 executes the in-range / out-of-range determination is shown.
  • the measurement unit 156 measures at least one of reception power and reception quality of a signal from the serving cell.
  • the measurement unit 156 inputs at least one measurement result of the reception power and reception quality of the signal from the serving cell to the determination unit 160.
  • the measurement unit 156 may input the change threshold to the determination unit 160.
  • step S1104 the determination unit 160 determines whether or not the measurement result from the measurement unit 156 is less than the predetermined threshold value S.
  • the determination unit 160 may determine whether the measurement result from the measurement unit 156 is less than the change threshold.
  • step S1106 when it is determined that the measurement result from the measurement unit 156 is less than the predetermined threshold S, the determination unit 160 counts the number n of times that the measurement result from the measurement unit 156 is less than the predetermined threshold S.
  • the determination unit 160 may count the number n of times that the measurement result from the measurement unit 156 becomes less than a predetermined threshold at a predetermined cycle set in advance.
  • the process returns to step S1102.
  • step S1108 the determination unit 160 determines whether or not the number n of times when the measurement result from the measurement unit 156 is less than the predetermined threshold S is equal to or greater than the predetermined number N.
  • step S1110 when the determination unit 160 determines that the number n of times that the measurement result from the measurement unit 156 is less than the predetermined threshold value S is equal to or greater than the predetermined number N, the measurement unit 156 receives signals from the serving cell and the neighboring cells. Measure at least one of the received power and the received quality for a certain period.
  • the certain period may be set in advance. Specifically, it may be about 10 seconds.
  • step S1112 the determination unit 160 determines whether or not at least one of the reception power and the reception quality of the signal from the serving cell and the neighboring cell measured in the step S1110 is less than a predetermined threshold.
  • step S1114 when it is determined that at least one of the reception power and the reception quality of the signal from the serving cell and the neighboring cells measured for a certain period is less than the predetermined threshold, the determination unit 160 determines that the signal is out of range.
  • step S1116 when it is determined that at least one of the reception power and the reception quality of the signal from the serving cell and the neighboring cells measured for a certain period is equal to or greater than the predetermined threshold, the determination unit 160 determines that the area is within the range.
  • FIG. 12 shows an embodiment of the operation of the mobile communication system. Specifically, an operation when cell reselection is executed by the mobile station 100 is shown.
  • the measurement unit 156 measures at least one of reception power and reception quality of signals from the serving cell and the neighboring cells.
  • the determination unit 160 determines whether or not the above-described formula (3) is satisfied.
  • step S1206 the determination unit 160 determines to execute celery selection when it is determined that the above-described expression (3) is satisfied. That is, the mobile station 100 performs control so that it is located in a neighboring cell that satisfies Equation (3).
  • step S1208 the determination unit 160 determines not to execute celery selection when it is determined that the above-described expression (3) is not satisfied.
  • FIG. 13 shows an embodiment of the operation of the mobile communication system. Specifically, an operation when a handover is executed by the mobile station 100 is shown.
  • the measurement unit 156 measures at least one of reception power and reception quality of signals from the serving cell and the neighboring cells. Further, the received power of the signal may be filtered by the filtering unit 158 using the above-described equations (1) and (2).
  • step S1304 the determination unit 160 determines whether or not the above equation (4) is satisfied based on at least one of the reception power and the reception quality of the signal from the serving cell and the neighboring cell measured in step S1302.
  • step S1306 when the determination unit 160 determines that the above-described expression (4) is satisfied, the notification unit 162 reports an event for reporting the measurement result to the network.
  • the event for reporting the measurement result is called, for example, “event (Event) A3” in the LTE system.
  • step S1308 the mobile station 100 hands over to the cell in which the event A3 is reported.
  • the network that has received the notification of the event A3 determines to hand over the mobile station 100 to the cell related to the event A3.
  • RSRP reception power
  • RSRQ Reference Signal Received Quality Power
  • RS-SIR Receiveived Signal Strength Indicator
  • CQI CidInCritical
  • RSRQ is a value obtained by dividing the received power of the downlink reference signal by the downlink RSSI.
  • the RSSI is a total reception level observed in the mobile station 100 and includes all of thermal noise, interference power from other cells, power of a desired signal from the own cell, etc. Patent Document 1).
  • RS-SIR is a SIR (Signal-to-Interference Ratio) of a downlink reference signal.
  • CQI is downlink radio quality information (for example, see Non-Patent Document 5).
  • the present embodiment it is possible to appropriately measure interference from other cells by changing the frequency band to be measured based on the carrier frequencies of the serving cell and the neighboring cells. Since interference from other cells can be measured appropriately, the processing load and power consumption can be reduced while keeping the measurement accuracy constant. In particular, the processing load and power consumption can be reduced while keeping the measurement accuracy constant in an environment where the wireless quality within the system bandwidth varies depending on the frequency band.
  • the mobile station can perform measurement in an appropriate band even when there is an interference difference from another cell in the system band. For this reason, communication can be continued without causing communication interruption by the mobile station reporting the measurement result to the network at an appropriate timing. Further, it is possible to suppress the load on the network, the current consumption of the mobile station, and improve the user convenience.
  • the mobile station 100 is a mobile station 100 that communicates with the radio base station 200, and includes a measurement unit 156 configured to measure the radio quality of the serving cell and the neighboring cells in the mobile station 100. It has.
  • the measurement unit 156 is configured to perform radio quality measurement in the frequency band to be measured determined by the frequency band setting unit 152 using the carrier frequency acquired from the parameter acquisition unit 154. In this case, the measurement unit 156 and the parameter acquisition unit 154 are connected.
  • the mobile station 100 further includes a determination unit 160 configured to determine whether the mobile station 100 is in the service area or out of the service area using the measurement result of the radio quality measured by the measurement unit 156. May be.
  • the mobile station 100 further includes a determination unit 160 configured to determine whether or not to perform cell reselection using the measurement result of the radio quality measured by the measurement unit 156. Also good.
  • the mobile station 100 should notify the filtering unit 158 configured to filter the measurement result of the radio quality measured by the measuring unit 156 using the predetermined coefficient, and the filtered measurement result. And a determination unit 160 configured to determine whether or not.
  • the mobile communication method includes a step of measuring the radio quality of the serving cell and neighboring cells in the mobile station 100.
  • the frequency band to be measured is determined according to the relationship between the carrier frequency of the serving cell and the carrier frequency of the neighboring cells.
  • the mobile station and the communication method have been described with the embodiments.
  • the present invention is not limited to the above embodiments, and various modifications and improvements can be made within the scope of the present invention.
  • radio base station 200 and the mobile station 100 described above may be implemented by hardware, may be implemented by a software module executed by a processor, or may be implemented by a combination of both. .
  • Software modules include RAM (Random Access Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable, Removable ROM, and Hard Disk). Alternatively, it may be provided in an arbitrary format storage medium such as a CD-ROM.
  • the storage medium is connected to the processor so that the processor can read and write information from and to the storage medium. Further, such a storage medium may be integrated in the processor. Such a storage medium and processor may be provided in the ASIC. Such an ASIC may be provided in the radio base station eNB and the mobile station UE. Further, the storage medium and the processor may be provided in the radio base station eNB and the mobile station UE as discrete components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 移動局は、無線基地局からサービングセル及び周辺セルのキャリア周波数を表す情報を取得するパラメータ取得部と、サービングセル及び周辺セルのキャリア周波数を表す情報に基づいて、サービングセル及び周辺セルの無線品質を測定するための周波数帯域を設定する周波数帯域設定部と、該設定された周波数帯域に基づいて、サービングセル及び周辺セルの無線品質を測定する測定部とを有する。

Description

移動局、及び通信方法
 本発明は、無線通信システムに関する。
 複数のセルが設けられている移動通信システムでは、移動局(ユーザ装置(UE: User Equipment))は、1つのセルから他のセルに移動するときに、セルを切り替えて通信を継続するように構成されている。かかるセルの切り替えは、「Mobility制御」、より具体的には、「セルリセレクション」又は「ハンドオーバ」と呼ばれている。
 移動局は、周辺セルからの信号の受信電力又は受信品質が、サービングセル(Serving Cell)からの信号の受信電力又は受信品質よりも強くなった場合に、周辺セルに対して、セルリセレクション又はハンドオーバを行う。
 セルリセレクションは、待ち受け状態(すなわち、Idle状態)の移動局がサービングセルから周辺セルに遷移する処理である。ハンドオーバは、通信状態(すなわち、Connected状態)の移動局がサービングセルから周辺セルに遷移する処理である。
 すなわち、移動局は、待ち受け状態であっても、また、サービングセルとの間でデータの送受信を行っている状態であっても、サービングセル及び周辺セルからの信号の受信電力又は受信品質を測定する。
 なお、周辺セル又はサービングセルからの信号の受信電力は、例えば、周辺セル又はサービングセルから送信される「下りリンクの参照信号(RS: Reference Signal)の受信電力(RSRP: Reference Signal Received Power)」である。また、受信品質は、例えば、「RSRPと、下りリンクの全受信電力(RSSI: Received Signal Strength Indicator)との相対比である受信品質(RSRQ: Reference Signal Received Quality)である(例えば、非特許文献1参照)。
 ここで、移動局が、サービングセルや周辺セルの受信電力や受信品質を正確に測定できない場合について説明する。例えば、実際よりも高く、又は、低く、移動局がサービングセルや周辺セルの受信電力や受信品質を判定した場合セルリセレクション又はハンドオーバを正しく行うことができなくなる可能性がある。この場合、引き続き在圏するサービングセルや、移動する周辺セルにおいて、移動局に対して、適切な移動通信サービスを提供することができなくなる可能性がある。このため、ユーザにとってのサービス品質が劣化する。
 すなわち、セルリセレクション又はハンドオーバにおいては、より正確な測定が必要であると言える。
 また、移動局は、待ち受け状態においては、セルリセレクションのための測定に加えて、サービングセルの受信電力や受信品質に基づき、圏内/圏外判定を行う。例えば、移動局は、サービングセルからの信号の受信電力や受信品質と、所定閾値とを比較する。移動局は、サービングセルからの信号の受信電力や受信品質が所定閾値以下である場合に、圏外であると判定し、それ以外の場合に、圏内であると判定する。
 所定閾値は、ネットワーク、すなわち、無線基地局からシグナリングによって通知されてもよい。例えば、LTE(Long Term Evolution)方式では、所定閾値は、「Qrxlevmin」や「Qqualmin」と呼ばれる。
 ここで、移動局が、圏内であるにも関わらず圏外であると判定した場合、移動通信サービスを提供可能なエリアにおいて、移動局に対して、移動通信サービスを提供することができなくなる可能性がある。このため、ユーザにとってのサービス品質が劣化する。
 一方、移動局が、圏外であるにも関わらず圏内であると判定した場合、すなわち、通信が成立しないほど無線品質が悪いにも関わらず圏内であると判定した場合、ユーザは、自分が圏外にいることを認識できない可能性がある。圏外であるにも関わらず圏内であると判定することは、サービス品質上好ましくない。
 すなわち、圏内/圏外判定においても、正確に、受信電力や受信品質を測定することが必要である。言い換えれば、受信電力や受信品質の測定結果が不正確である場合には、サービス品質の劣化を引き起こす。
 ここで、移動局における受信電力や受信品質の測定については、特に規定されていない。つまり、受信電力や受信品質の測定のための測定帯域幅や測定区間(測定時間)は、実装依存となっている。
 LTE方式の移動通信システムについて説明する。LTE方式の移動通信システムは、W-CDMA(Wideband Code Division Multiple Access)やHSDPA(High Speed Downlink Packet Access)の後継となる移動通信システムである。
 LTEでは、移動局が測定する下りリンクの参照信号は、周波数軸方向にも時間軸方向にも分散して配置されている(例えば、非特許文献2参照)。移動局は、ある一定の精度を満たす範囲であれば、受信電力や受信品質の測定のための測定帯域幅や測定区間を任意に設定できる。
 次に、LTE方式の移動通信システムについて説明する。
 図1は、システム帯域幅の一例を示す。
 LTE方式の移動通信システムでは、無線基地局及びユーザ装置の能力に応じて6リソースブロック(RB: Resource Block)~100リソースブロックまでの可変システム帯域幅を用いることができる。例えば、6リソースブロックのシステム帯域幅が用いられてもよく、50リソースブロックのシステム帯域幅が用いられてもよく、100リソースブロックのシステム帯域幅が用いられてもよい。リソースブロックとは、周波数方向の1送信単位であり、1リソースブロックの周波数帯域幅は180kHzである(例えば、非特許文献3、4参照)。尚、LTEでは、システム帯域幅は、「ChannelBandwidth」とも呼ばれる。
3GPP TS36.214 V10.1.0 2011-03 3GPP TS36.211 V10.3.0 2011-03 3GPP TS36.101 V10.4.0 2011-09 3GPP TS36.104 V10.4.0 2011-09 3GPP TS36.213 V10.3.0 2011-09
 本発明は、他セルからの干渉の測定結果の信頼性を向上させることを目的とする。
 本発明の一実施例によれば、
 無線基地局からサービングセルの第1キャリア周波数及び周辺セルの第2キャリア周波数を表す情報を取得するパラメータ取得部と、
 前記取得された情報に基づいて、前記サービングセル及び周辺セルの無線品質を測定するための周波数帯域を設定する周波数帯域設定部と、
 前記設定された周波数帯域に基づいて、前記サービングセル及び周辺セルの無線品質を測定する測定部と
 を有する、移動局が提供される。
 本発明の別の実施形態によれば、
 無線基地局からサービングセル及び周辺セルのキャリア周波数を表す情報を取得するパラメータ取得ステップと、
 前記取得された情報に基づいて、前記サービングセル及び周辺セルの無線品質を測定するための周波数帯域を設定する周波数帯域設定ステップと、
 前記設定された周波数帯域に基づいて、前記サービングセル及び周辺セルの無線品質を測定する測定ステップと
 を有する、移動局における通信方法が提供される。
 開示された実施例によれば、他セルからの干渉の測定結果の信頼性を向上させることができる。
可変システム帯域幅の例を示す図 ユーザ装置による測定帯域を示す図 異なるシステム帯域幅のセル間の周波数関係(その1)を示す図 異なるシステム帯域幅のセル間の周波数関係(その2)を示す図 異なるシステム帯域幅のセル間の信号関係を示す図 移動通信システムの一実施例を示す図である。 移動局の一実施例を示す図である。 移動局の一実施例を示す機能ブロック図である。 移動局の動作の一実施例を示すフローチャートである。 サービングセルの帯域と、周辺セルの帯域との関係を示す図である。 移動局の動作の一実施例を示すフローチャートである。 移動局の動作の一実施例を示すフローチャートである。 移動局の動作の一実施例を示すフローチャートである。
 LTE方式の移動通信システムにおいては、移動局が測定する下りリンクの参照信号(Reference Signal)は、周波数軸方向にも時間軸方向にも分散して配置されている。LTE方式の移動通信システムでは、ある一定の測定精度さえ満たせば、その測定する周波数帯域、測定する帯域幅や測定する区間について任意に設定できる。
 図2は、同期チャネルや物理報知チャネルが送信される周波数帯域を示す。
 1.4MHzから20MHzまでの可変のシステム帯域幅を有するLTEでは、そのシステム帯域の中心の6リソースブロックで、同期チャネル(Synchronization Channel)や物理報知チャネル(Physical Broadcast Channel)が送信される。換言すれば、どのようなシステム帯域幅においても、中心の6リソースブロックは必ず送信されることになる。
 よって、LTE方式の移動通信システムにおいては一般的に、移動局は、システム帯域幅の中心の6リソースブロックを測定する。すなわち、自セルや隣接セルが100リソースブロックのシステム帯域幅に対応する場合であっても、中心の6リソースブロックを測定する。
 移動局は、できるだけ狭帯域にて、サービングセル及び周辺セルにおける無線品質の測定を行う。移動局は、できるだけ短区間において、サービングセル及び周辺セルにおける無線品質の測定を行う。処理負荷の低減効果やバッテリーセービング効果を得るためである。
 また、一般に、測定する帯域幅が広ければ広いほど、測定精度は、向上する。また、一般に、測定する区間が長ければ長いほど、測定精度は、向上する。しかし、測定精度の向上にも限界がある。このため、例えば、移動局は、キャリア周波数を中心とする所定周波数帯域の信号を用いて、無線品質の測定を行うようにされてもよい。該所定周波数帯域は、システム帯域幅より狭い。
 しかし、例えば、システム帯域幅の中心の6リソースブロックに、測定帯域幅を限定すると、適切に他セルからの干渉量を測定できない場合がある。特に、システム帯域幅内の無線品質が、周波数帯域により異なる環境においては、顕著である。適切に他セルからの干渉量を測定できない結果、適切に無線品質を測定できず、測定精度が劣化する可能性がある。
 図3、図4は、隣接するセルで設定されるキャリア周波数の一例を示す。図3、図4において、横軸は周波数である。
 サービングセルと周辺セルとの間の関係において、キャリア周波数は異なるが、すくなくとも一部のシステム帯域が重複する場合がある。
 図3に示される例では、セル1のシステム帯域幅は20MHz(100RBs)であり、セル2のシステム帯域幅は10MHz(50RBs)であり、セル3のシステム帯域幅は10MHz(50RBs)である。セル1のキャリア周波数の一部に、セル2のキャリア周波数が含まれる。また、セル1のキャリア周波数の一部に、セル3のキャリア周波数が含まれる。図3に示される例では、セル2のシステム帯域と、セル3のシステム帯域とは重複しない。セル1がサービングセルで、セル2及び3が周辺セルであってもよい。また、セル2がサービングセルで、セル1及び3が周辺セルであってもよい。また、セル3がサービングセルで、セル1及び2が周辺セルであってもよい。
 図4に示される例では、セル1のシステム帯域幅は10MHz(50RBs)であり、セル2のシステム帯域幅は5MHz(25RBs)であり、セル3のシステム帯域幅は5MHz(25RBs)である。セル1のシステム帯域の一部に、セル2のシステム帯域が含まれる。また、セル1のシステム帯域の一部に、セル3のシステム帯域が含まれる。図4に示される例では、セル2のシステム帯域と、セル3のシステム帯域とは重複しない。セル1がサービングセルで、セル2及び3が周辺セルであってもよい。セル2がサービングセルで、セル1及び3が周辺セルであってもよい。また、セル3がサービングセルで、セル1及び2が周辺セルであってもよい。
 図3、図4に示される例では、ともにセル1のキャリア周波数の周辺帯域がセル2及び3のシステム帯域の間に位置し、該位置の無線品質はシステム帯域が重複する帯域と異なる。
 このような場合、システム帯域幅の中心の特定帯域幅(例えば、6リソースブロック)にて測定を実施すると、特に、RSRQ測定など、周辺セルからの電力(サービングセルから見ると干渉)測定が必要な場合、その測定精度の劣化が起きる場合がある。つまり、適切な測定が実施できない。
 具体例について説明する。
 図5は測定精度の劣化が生じる場合の例を示す。
 図5に示される例では、サービングセルの帯域幅が10MHzであり、周辺セルの帯域幅が5MHzである。サービングセルのシステム帯域に、2つの周辺セルのシステム帯域が含まれる。2つの周辺セルのシステム帯域は重複しない。
 サービングセルのキャリア周波数と、周辺セルのキャリア周波数と、各セルの信号の配置関係により、特定帯域(この場合、10MHzのサービングセルのキャリア周波数付近)において、5MHzの周辺セルからの信号による干渉が小さく見えてしまう。サービングセルにおける測定帯域の少なくとも一部に、周辺セルによる通信に利用されていない帯域が存在するためである。つまり、通信に利用されていない帯域では、周辺セルからの干渉が小さく測定される場合がある。
 図面に基づいて、実施例を説明する。
なお、実施例を説明するための全図において、同一機能を有するものは同一符号を用い、繰り返しの説明は省略する。
 <実施例>
 <移動通信システム>
 図6は、移動通信システムの一実施例を示す。
 移動通信システムの一実施例には、移動局(UE: User Equipment)100と、無線基地局(eNB: eNodeB)200が含まれる。
 移動通信システムの一実施例では、LTE方式の移動通信システムについて説明される。LTE方式の移動通信システムに限らず、他の移動通信システムに適用されてもよい。例えば、LTE-Advanced方式の移動通信システムに適用されてもよい。
 移動通信システムの一実施例では、無線アクセス方式として、下りリンクでは「OFDM(Orthogonal Frequency Division Multiplexing)方式」が適用され、上りリンクでは「SC-FDMA(Single-Carrier Frequency Division Multiple Access)方式」が適用される。
 OFDM方式は、特定の周波数帯域を複数の狭い周波数帯域に分割し、各周波数帯域上にデータを載せて伝送を行う方式である。該狭い周波数帯域は、サブキャリアとも呼ばれる。OFDM方式によれば、サブキャリアを周波数軸上で一部重なりあいながらも互いに干渉することなく密に並べることで、高速伝送を実現し、周波数の利用効率を上げることができる。
 SC-FDMA方式は、特定の周波数帯域を分割し、複数の移動局100の間で異なる周波数帯域を用いて伝送する。複数の移動局100の間で異なる周波数帯域を用いて伝送することにより、複数の移動局100の間における干渉を低減することができる。SC-FDMA方式によれば、送信電力の変動が小さくなる特徴を有することから、移動局100の低消費電力化及び広いカバレッジを実現することができる。
 無線基地局200は、物理下りリンク制御チャネル(PDCCH: Physical Downlink Control Channel)を介して下りリンク制御信号を送信する。また、無線基地局200は、物理下りリンク共有チャネル(PDSCH: Physical Downlink Shared Channel)を介して下りリンクデータ信号を送信する。
 移動局100は、物理上りリンク共有チャネル(PUSCH: Physical Uplink Shared Channel)を介して上りリンクデータ信号を送信する。
 <移動局100>
 図7は、移動局100の一実施例を示す。図7には、主にハードウェア構成が示される。
 移動局100は、ユーザが通信することができる適切な如何なる端末でもよく、例えば、携帯電話、情報端末、パーソナルディジタルアシスタント、携帯用パーソナルコンピュータ、スマートフォン等のユーザ端末が含まれるが、これらに限定されない。
 移動局100は、無線通信回路102と、CPU104と、主記憶部106と、補助記憶部108と、入出力部110とを有する。補助記憶部108は、USIM(Universal Subscriber Identity Module)カードに含まれてもよい。
 無線通信回路102は、無線基地局200との間で無線通信を行う。
 CPU104は、無線通信回路102、主記憶部106、補助記憶部108、及び入出力部110の制御を行う。CPU104は、主記憶部106に記憶されたプログラムに従って機能し、所定の処理を行う。
 主記憶部106は、アプリケーションと、オペレーティングシステム(OS Operating System)とを有する。アプリケーションは、ユーザが移動局100上で実行する作業を実施する機能を有するソフトウェアである。OSは、移動局100において、ハードウェアを抽象化したインターフェースをアプリケーションソフトウェアに提供するソフトウェアである。
 入出力部110は、例えば、キーボードやマウスにより構成され、移動局100への指示や、データの入力を行うための装置である。また、入出力部110は、タッチパネルにより構成されてもよい。また、入出力部110は、例えば、マイクにより構成され、ユーザにより発せられた音声を入力する。音声には、着信者へのメッセージや、移動局100への指示が含まれてもよい。指示には、OSに対するものや、アプリケーションに対するものが含まれる。
 また、入出力部110は、例えば、ディスプレイにより構成され、移動局100による処理状態や処理結果を表示する。また、入出力部110は、例えば、スピーカにより構成され、ユーザに対して、音を出力するようにしてもよい。処理状態や処理結果には、OSやアプリケーションによるものが含まれる。ディスプレイには、液晶ディスプレイ(LCD: Liquid Crystal Display)、CRT(Cathod Ray Tube)ディスプレイ、プラズマディスプレイ(PDP: Plasma Display Panel)、有機EL(Electro-Luminescence)ディスプレイ等が含まれる。
 <移動局100の機能>
 移動局100の機能の一実施例について説明する。
 図8は、移動局100の機能の一実施例を示す機能ブロック図である。この機能ブロック図により表される機能は、主に、CPU104により実行される。つまり、図8の機能ブロック図により表される機能は、主記憶部106に記憶されたアプリケーションに従ってCPU104により実行される。図8の機能ブロック図により表される機能は、CPU104の内部メモリに記憶されたアプリケーション(ファームウェア)に従ってCPU104により実行されてもよい。
 CPU104は、周波数帯域設定部152と、パラメータ取得部154と、測定部156と、フィルタリング部158と、判定部160と、通知部162として機能する。
 周波数帯域設定部152は、パラメータ取得部154から通知されたキャリア周波数に基づいて、測定対象の周波数帯域を設定する。また、周波数帯域設定部152は、キャリア周波数に応じて、測定部156に、変更した測定条件(以下、「変更条件」という)又は変更した閾値(以下、「変更閾値」という)を通知する。
 測定条件には、例えば、測定対象の周波数帯域が含まれる。
 変更条件には、サービングセルのキャリア周波数、周辺セルのキャリア周波数が含まれる。周辺セルには、サービングセルに隣接する隣接セルが含まれる。具体的には、変更条件は、周辺セルのキャリア周波数がサービングセルのシステム帯域内に存在するか否かという条件であってもよい。また、変更条件は、周辺セルのキャリア周波数がサービングセルのシステム帯域端から一定の周波数範囲に存在し、且つシステム帯域同士が重複するか否かという条件であってもよい。
 パラメータ取得部154は、無線基地局200から、Mobility制御に関するパラメータを取得する。Mobility制御に関するパラメータには、例えば、周辺セルのキャリア周波数である「EARFCN(E-UTRAN Absolute Radio Frequency Channel Number)」や、圏内/圏外判定に用いられる所定の閾値である「Qrxlevmin」が含まれていてもよい。「EARFCN」は、各セルのキャリア周波数を一意に示す絶対値である。「Qrxlevmin」は、セルにおける最低要求受信レベル[dBm]である。
 また、Mobility制御に関するパラメータには、セルリセレクションに関わるパラメータである「Qhyst」、「Qoffset」、「Treselection」、ハンドオーバ制御に関わるパラメータである「Time-to-trigger」、ヒステリシス、オフセット、フィルタ係数等が含まれていてもよい。
 「Qhyst」は、セルリセレクションの判定の際に、サービングセルの無線品質に与えるプラスのオフセットである。「Qoffset」は、セルリセレクションの判定の際に、サービングセルの無線品質に与えるマイナスのオフセットである。「Treselection」は、セルリセレクションの判定の際に用いられる時間方向のヒステリシスであり、ハンドオーバにおける「Time-to-trigger」に相当するパラメータである。
 パラメータ取得部154は、フィルタリング部158に、フィルタ係数を通知する。
 測定部156は、サービングセル及び周辺セルにおける無線品質を測定する。具体的には、測定部156は、サービングセル及び周辺セルにおける無線品質として、サービングセル及び周辺セルからの信号の受信電力を測定する。サービングセル及び周辺セルからの信号には、参照信号(RS: Reference Signal)等が含まれる。また、参照信号の受信電力は、RSRP(Reference Signal Received Power)と呼ばれてもよい。
 また、測定部156は、サービングセル及び周辺セルにおける無線品質として、サービングセル及び周辺セルからの信号(例えば、参照信号等)の受信電力と、サービングセル及び周辺セルからの信号の帯域における全受信電力との間の相対比を測定するようにしてもよい。なお、参照信号の受信電力はRSRPと呼ばれてもよい。また、全受信電力は、RSSI(RSSI: Received Signal Strength Indicator)と呼ばれてもよい。また、相対比である受信品質はRSRQ(Reference Signal Received Quality)と呼ばれてもよい。
 例えば、物理レイヤでの測定区間(Measurement period)は、200msである。ただし、200msの間で実際に測定に用いる区間は、測定精度を保つことができるのであれば、1msでもいい。
 また、周波数軸方向の測定帯域幅(Measurement bandwidth)もまた、ある一定の測定精度を満たすことができるのであれば、システム帯域幅でもいいし、システム帯域幅よりも狭くてもいい。
 測定部156は、フィルタリング部158に、移動局100のサービングセル及び周辺セルにおける無線品質の測定結果を通知する。
 測定部156は、周波数帯域設定部152から通知された変更条件又は変更閾値に基づいて、測定条件、例えば、測定対象の周波数帯域を変更する。ここで、測定対象の周波数帯域における周波数帯域幅は、例えば、LTE方式の移動通信システムで定義されているRBと呼ばれるサブキャリアの集合体の倍数によって定義されていてもよい。また、測定区間(測定時間)は、例えば、サブフレーム(Subframe)と呼ばれる連続するOFDMシンボルの倍数によって定義されていてもよい。
 さらに、測定部156は、DRX(Discontinuous Reception、間欠受信)周期ごとに、移動局100のサービングセル及び周辺セルにおける無線品質(例えば、RSRPやRSRQ)を測定する。
 フィルタリング部158には、測定部156から、移動局100のサービングセル及び周辺セルにおける無線品質の測定結果が入力される。
 また、フィルタリング部158には、パラメータ取得部154から、フィルタ係数(所定係数)が入力される。フィルタリング部158は、移動局100のサービングセル及び周辺セルにおける無線品質の測定結果、フィルタ係数に基づいて、フィルタリング結果を算出する。つまり、移動局100において、上位レイヤが、物理レイヤによる測定値に対して、フィルタリング処理(L3 Filtering)を行う。
 具体的には、測定タイミングに関するインデックスを「m」、フィルタリング後の測定結果を「F」、フィルタ係数を「k」、1つ前の測定タイミングにおけるフィルタリング後の測定結果を「Fm-1」とし、測定結果を「M」とする。フィルタ係数「k」の値は、無線基地局200から移動局100に対して事前に通知されていてもよい。
 フィルタリング部158は、式(1)、式(2)によりフィルタリングを行う。
 F=(1-a)・Fm-1+a・M   (1)
 a=1/2(k/4)   (2)
 ここで、フィルタ係数を「a」としてもよい。
 フィルタリングでは、フィルタリング後の測定結果「F」を算出する際に、フィルタ係数「a」を調整することによって、最新の測定部156における測定結果「M」及び過去のフィルタリング後の測定結果「Fm-1」の寄与率を調整するようしてもよい。
 フィルタリング部158は、判定部160に、フィルタリングされた測定結果を入力する。
 判定部160には、フィルタリング部158から、フィルタリングされた測定結果が入力される。また、判定部160には、測定部156から、フィルタリングされていない測定結果が入力される。
 判定部160は、測定部156からの無線品質の測定結果を用いて、圏内であるか或いは圏外であるかを判定する。つまり、判定部160は、圏内/圏外判定を行う。具体的には、待ち受け状態(Idle状態)において、判定部160は、測定部156からの測定結果に基づいて、圏内/圏外判定を行ってもよい。
 また、判定部160は、測定部156からの無線品質の測定結果を用いて、セルリセレクションを行うか否かを判定するようにしてもよい。具体的には、判定部160は、所定期間以上継続して所定条件が満たされている場合に、セルリセレクションを行うと判定するようにしてもよい。
 ここで、判定部160は、所定条件を、式(3)を満たす場合としてもよい。また、所定期間は「Treselection」と呼ばれてもよい。
 (周辺セルからの信号の受信電力)+(Qhyst(キューヒスト))>(サービングセルからの信号の受信電力)   (3)
 判定部160は、フィルタリング部158からのフィルタリングされた測定結果を通知するか否かを判定するようにしてもよい。具体的には、判定部160は、所定期間以上継続して所定条件が満たされている場合に、フィルタリング部158からのフィルタリングされた測定結果を通知すると判定するようにしてもよい。
 ここで、判定部160は、所定条件を、式(4)を満たす場合としてもよい。また、所定期間は、「Time-to-trigger」と呼ばれてもよい。式(4)において、「ヒステリシス」は予め設定されてもよい。
 (周辺セルからの信号の受信電力)+(ヒステリシス)>(サービングセルからの信号の受信電力)   (4)
 判定部160は、通知部162へ、判定結果を入力する。通知部162は、判定部160からの判定結果が測定結果を通知することを表す場合、無線基地局200へ、測定結果を通知する。具体的には、通知部162は、無線基地局200へ、PUSCHを介して、測定結果を通知する。つまり、通知部162は、測定結果を含むPUSCHを送信する。測定結果は、「Measurement Report」と呼ばれてもよい。
 <移動通信システムの動作(その1)>
 図9は、移動通信システムの動作の一実施例を示す。具体的には、移動局100により無線品質の測定が実行される際の動作が示される。
 ステップS902では、周波数帯域設定部152は、サービングセル及び周辺セルのキャリア周波数の周波数位置について判定する。具体的には、周波数帯域設定部152は、パラメータ取得部154からのキャリア周波数に基づいて、サービングセル及び周辺セルのキャリア周波数の周波数位置について判定する。周波数帯域設定部152は、周辺セルのキャリア周波数がサービングセルのシステム帯域内であるか否かを判定する。
 図10は、サービングセルと、周辺セルとの間の関係の例を示す。
 図10に示される例では、サービングセルのシステム帯域幅は20MHzであり、周辺セル(1)のシステム帯域幅は10MHzであり、周辺セル(2)のシステム帯域幅は20MHzであり、周辺セル(3)のシステム帯域幅は10MHzである。周辺セル(1)のキャリア周波数は、サービングセルのシステム帯域内であると判定される。周辺セル(2)、(3)のキャリア周波数は、サービングセルのシステム帯域幅に含まれないため、サービングセルのシステム帯域内でないと判定される。
 ステップS904では、周辺セルのキャリア周波数がサービングセルのシステム帯域内にあると判定された場合、周波数帯域設定部152は、測定部156に測定対象の周波数帯域を通知することにより、測定対象の周波数帯域を設定する。具体的には、周波数帯域設定部152は、サービングセル、該サービングセルの周辺セルともに、測定対象の周波数帯域として、周辺セルのキャリア周波数を中心とする所定の周波数帯域を設定する。つまり、図10に示される例では、周辺セル(1)のキャリア周波数を中心とする所定の周波数帯域に設定する。
 ステップS912では、測定部156は、ステップS904において周波数帯域設定部152により調整された測定対象の周波数帯域に基づいて、サービングセル及び周辺セルの無線品質を測定する。
 ステップS906では、周辺セルのキャリア周波数がサービングセルのシステム帯域内にないと判定された場合、周波数帯域設定部152は、周辺セルのキャリア周波数がサービングセルのシステム帯域の端から一定の範囲内であり、且つ該周辺セルのシステム帯域がサービングセルのシステム帯域と少なくとも一部重複するか否かを判定する。
 図10に示される例では、周辺セル(2)は、周辺セルのキャリア周波数がサービングセルのシステム帯域の端から一定の範囲内であり、且つ該周辺セルのシステム帯域がサービングセルのシステム帯域と少なくとも一部重複すると判定される。また、周辺セル(3)は、周辺セルのキャリア周波数がサービングセルのシステム帯域の端から一定の範囲内であり、且つ該周辺セルのシステム帯域がサービングセルのシステム帯域と重複しないと判定される。サービングセルのキャリア周波数と、周辺セル(3)のキャリア周波数とは重複しないためである。
 ステップS908では、周辺セルのキャリア周波数がサービングセルのシステム帯域の端から一定の範囲内であり、且つ該周辺セルのシステム帯域がサービングセルのシステム帯域と少なくとも一部重複すると判定された場合、周波数帯域設定部152は、測定対象の周波数帯域を、サービングセル、周辺セルの双方の帯域が存在する帯域の中心を中心とする所定周波数帯域に設定する。つまり、周波数帯域設定部152は、サービングセル、該サービングセルの周辺セルの両方の測定対象の周波数帯域を、該サービングセルの帯域と、該周辺セルの帯域とが重複するサービングセルのキャリア周波数の中心を中心とする所定周波数帯域に設定する。
 ステップS912では、測定部156は、ステップS908において周波数帯域設定部152により設定された測定対象の周波数帯域に基づいて、サービングセル及び周辺セルの無線品質を測定する。
 ステップS910では、周辺セルのキャリア周波数がサービングセルのシステム帯域の端から一定の範囲内でなく、又は該周辺セルのシステム帯域がサービングセルのシステム帯域と重複しないと判定された場合、周波数帯域設定部152は、サービングセル及び周辺セルの測定対象の周波数帯域をそれぞれのキャリア周波数を中心とする所定の周波数帯域に設定する。
 ステップS912では、測定部156は、ステップS910において周波数帯域設定部152により設定された測定対象の周波数帯域に基づいて、サービングセル及び周辺セルの無線品質を測定する。
 <移動通信システムの動作(その2)>
 図11は、移動通信システムの動作の一実施例を示す。具体的には、移動局100により圏内/圏外判定が実行される際の動作が示される。
 ステップS1102では、測定部156は、サービングセルからの信号の受信電力及び受信品質の少なくとも一方を測定する。測定部156は、判定部160へ、サービングセルからの信号の受信電力及び受信品質の少なくとも一方の測定結果を入力する。ここで、測定部156は、判定部160へ、変更閾値を入力するようにしてもよい。
 ステップS1104では、判定部160は、測定部156からの測定結果が所定閾値S未満であるか否かを判定する。判定部160は、測定部156から変更閾値が入力された場合、測定部156からの測定結果が変更閾値未満であるか否かを判定するようにしてもよい。
 ステップS1106では、測定部156からの測定結果が所定閾値S未満であると判定した場合、判定部160は、測定部156からの測定結果が所定閾値S未満となった回数nをカウントする。判定部160は、予め設定される所定の周期で、測定部156からの測定結果が所定閾値未満となった回数nをカウントするようにしてもよい。
 一方、判定部160により、測定部156からの測定結果が所定閾値S以上であると判定された場合、ステップS1102に戻る。
 ステップS1108では、判定部160は、測定部156からの測定結果が所定閾値S未満となった回数nが、所定の回数N以上であるか否かを判定する。
 ステップS1110では、判定部160により測定部156からの測定結果が所定閾値S未満となった回数nが所定の回数N以上であると判定された場合、測定部156はサービングセル及び周辺セルからの信号の受信電力及び受信品質の少なくとも一方を一定期間測定する。ここで、一定期間は、予め設定されてもよい。具体的には、10秒程度であってもよい。
 一方、測定部156からの測定結果が所定閾値S未満となった回数nが所定の回数N未満であると判定された場合、ステップS1102に戻る。
 ステップS1112では、判定部160は、ステップS1110において一定期間測定されたサービングセル及び周辺セルからの信号の受信電力及び受信品質の少なくとも一方が、所定の閾値未満となっているか否かを判定する。
 ステップS1114では、一定期間測定されたサービングセル及び周辺セルからの信号の受信電力及び受信品質の少なくとも一方が所定の閾値未満であると判定された場合、判定部160は、圏外と判定する。
 ステップS1116では、一定期間測定されたサービングセル及び周辺セルからの信号の受信電力及び受信品質の少なくとも一方が所定の閾値を以上であると判定された場合、判定部160は、圏内と判定する。
 <移動通信システムの動作(その3)>
 図12は、移動通信システムの動作の一実施例を示す。具体的には、移動局100によりセルリセレクションが実行される際の動作が示される。
 S1202では、測定部156は、サービングセル及び周辺セルからの信号の受信電力及び受信品質の少なくとも一方を測定する。
 S1204では、測定部156によりステップS1202において測定されたサービングセル及び周辺セルの少なくとも一方に基づいて、判定部160は、上述した式(3)を満たすか否かを判定する。
 ステップS1206では、判定部160は、上述した式(3)を満たすと判定した場合、セルリセレクションを実行すると判定する。つまり、移動局100は、式(3)を満たす周辺セルへ在圏するように制御する。
 ステップS1208では、判定部160は、上述した式(3)を満たさないと判定した場合、セルリセレクションを実行しないと判定する。
 <移動通信システムの動作(その4)>
 図13は、移動通信システムの動作の一実施例を示す。具体的には、移動局100によりハンドオーバが実行される際の動作が示される。
 ステップS1302では、測定部156は、サービングセル及び周辺セルからの信号の受信電力及び受信品質の少なくとも一方を測定する。さらに、フィルタリング部158により、上述した式(1)、式(2)を利用して、信号の受信電力をフィルタリングしてもよい。
 ステップS1304では、判定部160は、ステップS1302において測定されたサービングセル及び周辺セルからの信号の受信電力及び受信品質の少なくとも一方に基づいて、上述した式(4)を満たすか否かを判定する。
 ステップS1306では、判定部160により上述した式(4)を満たすと判定された場合、通知部162は、ネットワークへ、測定結果を報告するためのイベントを報告する。測定結果を報告するためのイベントは、例えば、LTE方式では、「イベント(Event)A3」と呼ばれる。
 一方、判定部160により上述した式(4)を満たすと判定されない場合、ステップS1302へ戻る。
 ステップS1308では、移動局100は、イベントA3が報告されたセルへハンドオーバする。イベントA3の通知を受信したネットワークは、該イベントA3に係るセルへ、移動局100をハンドオーバさせることを決定する。
 上述した実施例では、1種類の無線品質に対する判定基準を用いる例について説明したが、複数種類の無線品質に対する判定基準が用いられてもよい。
 また、サービングセル及び周辺セルにおける無線品質として、参照信号の受信電力(RSRP)を用いる例について説明したが、RSRQ(Reference Signal Received QualityPower)、RS-SIR(Received Signal Strength Indicator)、CQI(Channel Quality Indicator)が用いられてもよい。或いは、サービングセル及び周辺セルにおける無線品質として、RSRP、RSRQ、RS-SIR、及びCQIの少なくとも1つが用いられてもよい。
 ここで、RSRQは、下りリンクの参照信号の受信電力を、下りリンクのRSSIで割った値である。
 また、RSSIは、移動局100において観測されるトータルの受信レベルであり、熱雑音や他セルからの干渉電力や自セルからの希望信号の電力等の全てを含む受信レベルである(例えば、非特許文献1参照)。
 また、RS-SIRは、下りリンクの参照信号のSIR(Signal-to-Interference Ratio)である。
 また、CQIは、下りリンクの無線品質情報である(例えば、非特許文献5参照)。
 本実施例によれば、サービングセル及び周辺セルのキャリア周波数に基づいて測定対象の周波数帯域を変更することにより、他セルからの干渉を適切に測定できる。他セルからの干渉を適切に測定できるため、測定精度を一定に保ちつつ、処理負荷や消費電力を低減できる。特に、システム帯域幅内の無線品質が、周波数帯域により異なる環境において、測定精度を一定に保ちつつ、処理負荷や消費電力を低減できる。
 移動局は、システム帯域内に、他セルからの干渉差分がある場合であっても、適切な帯域において、測定を実施することが可能となる。このため、移動局が適切なタイミングでネットワークに対して測定結果を報告することによって、通信断を起こすことなく通信を継続することができる。また、ネットワークにおける負荷や、移動局の消費電流の抑制、更にはユーザ利便性を向上させることができる。
 本実施形態によれば、移動局100は、無線基地局200と通信する移動局100であって、移動局100におけるサービングセル及び周辺セルの無線品質を測定するように構成されている測定部156を具備する。測定部156は、パラメータ取得部154から取得したキャリア周波数を用いて、周波数帯域設定部152によって決定された測定対象の周波数帯域にて、無線品質の測定を実施するように構成される。この場合、測定部156と、パラメータ取得部154とは接続される。
 本実施形態において、移動局100は、測定部156により測定された無線品質の測定結果を用いて、圏内であるか或いは圏外であるかについて判定するように構成される判定部160を更に具備してもよい。
 本実施形態において、移動局100は、測定部156により測定された無線品質の測定結果を用いて、セルリセレクションを行うべきか否かについて判定するように構成される判定部160を更に具備してもよい。
 本実施形態において、移動局100は、所定係数を用いて、測定部156により測定された無線品質の測定結果をフィルタリングするように構成されるフィルタリング部158と、フィルタリングされた測定結果を通知すべきであるか否かについて判定するように構成される判定部160とを更に具備してもよい。
 本実施形態によれば、移動通信方法は、移動局100におけるサービングセル及び周辺セルの無線品質を測定する工程を有する。該無線品質を測定する工程は、サービングセルのキャリア周波数と、周辺セルのキャリア周波数との間の関係に応じて、測定対象の周波数帯域を決定する。
 以上、移動局及び通信方法を実施例により説明したが、本発明は上記実施例に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。
 なお、上述の無線基地局200及び移動局100の動作は、ハードウェアによって実施されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実施されてもよいし、両者の組み合わせによって実施されてもよい。
 ソフトウェアモジュールは、RAM(Random Access Memory)や、フラッシュメモリや、ROM(Read Only Memory)や、EPROM(Erasable Programmable ROM)や、EEPROM(Electronically Erasable and Programmable ROM)や、レジスタや、ハードディスクや、リムーバブルディスクや、CD-ROMといった任意形式の記憶媒体内に設けられていてもよい。
 かかる記憶媒体は、プロセッサが当該記憶媒体に情報を読み書きできるように、当該プロセッサに接続されている。また、かかる記憶媒体は、プロセッサに集積されていてもよい。また、かかる記憶媒体及びプロセッサは、ASIC内に設けられていてもよい。かかるASICは、無線基地局eNB及び移動局UE内に設けられていてもよい。また、かかる記憶媒体及びプロセッサは、ディスクリートコンポーネントとして無線基地局eNB及び移動局UE内に設けられていてもよい。
 本国際特許出願は2012年3月1日に出願した日本国特許出願第2012-045166号に基づきその優先権を主張するものであり、日本国特許出願第2012-045166号の全内容を本願に援用する。
 100 移動局
 102 無線通信回路
 104 CPU
 106 主記憶部
 108 補助記憶部
 110 入出力部
 152 測定帯域管理部
 154 パラメータ取得部
 156 測定部
 158 フィルタリング部
 160 判定部
 162 通知部
 200 無線基地局

Claims (9)

  1.  無線基地局からサービングセルの第1キャリア周波数及び周辺セルの第2キャリア周波数を表す情報を取得するパラメータ取得部と、
     前記取得された情報に基づいて、前記サービングセル及び周辺セルの無線品質を測定するための周波数帯域を設定する周波数帯域設定部と、
     前記設定された周波数帯域に基づいて、前記サービングセル及び周辺セルの無線品質を測定する測定部と
     を有する、移動局。
  2.  前記サービングセルの第1周波数帯域内に、前記周辺セルの第2キャリア周波数が含まれる場合、前記周波数帯域設定部は、前記周波数帯域を、前記周辺セルの第2キャリア周波数の第2中心周波数を含む第2周波数帯域に設定する、請求項1に記載の移動局。
  3.  前記サービングセルの第1周波数帯域内に、前記周辺セルの第2キャリア周波数が含まれず、且つ前記サービングセルの第1周波数帯域の端から、前記周辺セルの第2キャリア周波数が一定の周波数範囲内であり、且つ前記サービングセルの第1周波数帯域と、前記周辺セルの第3周波数帯域が重複する場合、前記周波数帯域設定部は、前記周波数帯域を、該重複する周波数帯域の中心を含む第4周波数帯域に設定する、請求項1に記載の移動局。
  4.  前記サービングセルの第1周波数帯域内に、前記周辺セルの第2キャリア周波数が含まれず、且つ前記サービングセルの第1周波数帯域の端から、前記周辺セルの第2キャリア周波数が前記一定の周波数範囲内でない場合、前記周波数帯域設定部は、前記サービングセルの第1キャリア周波数の第1中心周波数を含む第5周波数帯域、及び、前記周辺セルの第2キャリア周波数の第2中心周波数を含む第6周波数帯域を、前記周波数帯域として設定する、請求項1に記載の移動局。
  5.  前記サービングセルの第1周波数帯域内に、前記周辺セルの第2キャリア周波数が含まれず、且つ前記サービングセルの第1周波数帯域と、前記周辺セルの第3周波数帯域が重複しない場合、前記周波数帯域設定部は、前記周波数帯域を、前記サービングセルの第1キャリア周波数の第1中心周波数を含む第5周波数帯域、及び、前記周辺セルの第2キャリア周波数の第2中心周波数を含む第6周波数帯域を、前記周波数帯域として設定する、請求項1に記載の移動局。
  6.  前記測定部により測定されたサービングセルの無線品質の測定結果に基づいて、圏内であるか或いは圏外であるかを判定する判定部
     を有する、請求項1に記載の移動局。
  7.  前記測定部により測定されたサービングセル及び周辺セルの無線品質の測定結果に基づいて、セルリセレクションを行うか否かを判定する判定部
     を有する、請求項1に記載の移動局。
  8.  所定のフィルタ係数を用いて、前記測定部により測定されたサービングセル及び周辺セルの無線品質の測定結果をフィルタリングするフィルタリング部と、
     前記無線基地局へ、前記フィルタリングされた無線品質の測定結果を通知するか否かを判定する判定部と
     を有する、請求項1に記載の移動局。
  9.  無線基地局からサービングセル及び周辺セルのキャリア周波数を表す情報を取得するパラメータ取得ステップと、
     前記取得された情報に基づいて、前記サービングセル及び周辺セルの無線品質を測定するための周波数帯域を設定する周波数帯域設定ステップと、
     前記設定された周波数帯域に基づいて、前記サービングセル及び周辺セルの無線品質を測定する測定ステップと
     を有する、移動局における通信方法。
PCT/JP2013/053416 2012-03-01 2013-02-13 移動局、及び通信方法 WO2013129113A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/364,223 US9456392B2 (en) 2012-03-01 2013-02-13 Mobile station and communication method
EP13755400.2A EP2822322A4 (en) 2012-03-01 2013-02-13 MOBILE STATION AND COMMUNICATION PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012045166A JP6034574B2 (ja) 2012-03-01 2012-03-01 移動局、及び通信方法
JP2012-045166 2012-03-01

Publications (1)

Publication Number Publication Date
WO2013129113A1 true WO2013129113A1 (ja) 2013-09-06

Family

ID=49082315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053416 WO2013129113A1 (ja) 2012-03-01 2013-02-13 移動局、及び通信方法

Country Status (4)

Country Link
US (1) US9456392B2 (ja)
EP (1) EP2822322A4 (ja)
JP (1) JP6034574B2 (ja)
WO (1) WO2013129113A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9510273B2 (en) * 2013-09-18 2016-11-29 Samsung Electronics Co., Ltd. Communication system with cell selection mechanism and method of operation thereof
US9503986B2 (en) * 2013-10-03 2016-11-22 Futurewei Technologies, Inc. System and method to reduce power consumption associated with cell reselection operations
JP6376745B2 (ja) * 2013-10-25 2018-08-22 株式会社Nttドコモ 通信端末、及び測定方法
US10506455B2 (en) * 2014-01-16 2019-12-10 Nokia Solutions And Networks Oy Obtaining additional supported bands of neighbor cells via automatic neighbor relation (ANR)
EP3360371B1 (en) * 2015-10-09 2021-05-26 Sony Corporation Signal quality measurement in different frequency bands of cellular networks
WO2018166231A1 (en) * 2017-03-17 2018-09-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for mobility management
JP7074134B2 (ja) * 2017-06-26 2022-05-24 ソニーグループ株式会社 制御装置、基地局、端末装置、方法及び記録媒体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057520A1 (ja) * 2007-11-02 2009-05-07 Ntt Docomo, Inc. ユーザ装置及び信号電力測定方法
WO2009057481A1 (ja) * 2007-10-30 2009-05-07 Ntt Docomo, Inc. ユーザ装置及び信号電力測定方法
WO2010073830A1 (ja) * 2008-12-26 2010-07-01 シャープ株式会社 通信システム及び移動局装置
WO2011093453A1 (ja) * 2010-01-28 2011-08-04 株式会社エヌ・ティ・ティ・ドコモ 移動局及び移動通信方法
JP2011259194A (ja) * 2010-06-09 2011-12-22 Softbank Mobile Corp フェムトセルサーチ方法および移動機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1829405A1 (en) * 2004-12-21 2007-09-05 Telefonaktiebolaget LM Ericsson (publ) Blind handover using load compensated measurements
US8107950B2 (en) * 2008-01-25 2012-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Inter-RAT/ frequency automatic neighbor relation list management
US8780688B2 (en) 2009-04-27 2014-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus in a wireless communication system
US8331936B2 (en) * 2009-04-28 2012-12-11 Telefonaktiebolaget Lm Ericsson (Publ) Automatic handover oscillation control
US8565154B2 (en) * 2009-11-09 2013-10-22 Qualcomm Incorporated Cell reselection enhancement
US8942205B2 (en) * 2012-01-24 2015-01-27 Blackberry Limited Performing idle mode mobility measurements in a mobile communication network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057481A1 (ja) * 2007-10-30 2009-05-07 Ntt Docomo, Inc. ユーザ装置及び信号電力測定方法
WO2009057520A1 (ja) * 2007-11-02 2009-05-07 Ntt Docomo, Inc. ユーザ装置及び信号電力測定方法
WO2010073830A1 (ja) * 2008-12-26 2010-07-01 シャープ株式会社 通信システム及び移動局装置
WO2011093453A1 (ja) * 2010-01-28 2011-08-04 株式会社エヌ・ティ・ティ・ドコモ 移動局及び移動通信方法
JP2011259194A (ja) * 2010-06-09 2011-12-22 Softbank Mobile Corp フェムトセルサーチ方法および移動機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2822322A4 *

Also Published As

Publication number Publication date
EP2822322A1 (en) 2015-01-07
US20140378134A1 (en) 2014-12-25
US9456392B2 (en) 2016-09-27
JP6034574B2 (ja) 2016-11-30
EP2822322A4 (en) 2015-11-18
JP2013183254A (ja) 2013-09-12

Similar Documents

Publication Publication Date Title
JP6034574B2 (ja) 移動局、及び通信方法
JP5205093B2 (ja) ユーザ装置及び基地局装置
US11496935B2 (en) Cell measurement method and terminal device
JP5135117B2 (ja) 移動局、無線基地局及び移動通信方法
JP5174580B2 (ja) 移動局及び移動通信方法
JP4620157B2 (ja) 移動局及び移動通信方法
US20120252432A1 (en) Method, apparatus and computer program product for obtaining deactivated secondary cell measurements while a mobile terminal is in motion
US20150208296A1 (en) Indication Method and Device for Measurement Parameter
JPWO2012096296A1 (ja) ユーザ装置及び測定方法
KR20140005321A (ko) 모바일 통신 디바이스 및 시스템
EP3937541A1 (en) Measurement method, device, and apparatus
JP5468387B2 (ja) 移動通信システム、基地局装置、ユーザ装置及び方法
CN117879778A (zh) 终端、系统及测量方法
CN115552951A (zh) 用于无线电链路测量的电子设备、方法和存储介质
WO2011093453A1 (ja) 移動局及び移動通信方法
JP5227923B2 (ja) 移動局、無線基地局、移動通信システム及び移動通信方法
JP6073569B2 (ja) 通信端末及び測定方法
JP2011019287A (ja) 移動局及び移動通信方法
JP2013085304A (ja) 移動局、無線基地局、移動通信システム及び移動通信方法
JP2014183407A (ja) 移動端末、制御方法および通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14364223

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013755400

Country of ref document: EP