WO2013128845A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2013128845A1
WO2013128845A1 PCT/JP2013/000926 JP2013000926W WO2013128845A1 WO 2013128845 A1 WO2013128845 A1 WO 2013128845A1 JP 2013000926 W JP2013000926 W JP 2013000926W WO 2013128845 A1 WO2013128845 A1 WO 2013128845A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
cooling mode
evaporator
temperature
damper
Prior art date
Application number
PCT/JP2013/000926
Other languages
French (fr)
Japanese (ja)
Inventor
境 寿和
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380011532.9A priority Critical patent/CN104160224A/en
Publication of WO2013128845A1 publication Critical patent/WO2013128845A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser

Abstract

A refrigerator comprises a refrigeration cycle having at least a compressor (19), an evaporator (20), and a condenser (21); and the refrigerator has the condenser (21) as the main component of a forced air cooling system, a flow channel switching valve (40) connected to the downstream side of the main component condenser (21), and a plurality of anti-moisture pipes (44, 41) downstream of the flow channel switching valve (40). When the refrigeration cycle is operating under normal conditions, refrigerant is channeled alternately to the plurality of anti-moisture pipes (44, 41), and when the refrigeration cycle is operating under overload conditions, refrigerant is channeled to the plurality of anti-moisture pipes (44, 41) in parallel.

Description

冷蔵庫refrigerator
 本発明は、冷凍室と冷蔵室にそれぞれ冷気を遮断するダンパーを有し、1個の蒸発器を用いて冷凍室と冷蔵室それぞれを単独で冷却することにより、冷凍サイクルの効率を高めた冷蔵庫に関するものである。 The present invention has a damper that has a damper that blocks cold air in a freezing room and a refrigerating room, respectively, and uses a single evaporator to individually cool the freezing room and the refrigerating room, thereby improving the efficiency of the refrigerating cycle. It is about.
 省エネルギーの観点から、家庭用冷蔵庫においては、1個の蒸発器を用いて冷凍室と冷蔵室それぞれを単独で冷却することにより、冷凍サイクルの効率を高めた冷蔵庫がある。これは、比較的空気温度の高い冷蔵室を冷却する際に冷凍室よりも高い蒸発温度で冷却することで、冷凍サイクルの効率を高めるものである。 From the viewpoint of energy saving, there are refrigerators for homes that have improved the efficiency of the refrigeration cycle by cooling each of the freezer compartment and the refrigerator compartment using a single evaporator. This enhances the efficiency of the refrigeration cycle by cooling the refrigerator compartment having a relatively high air temperature at an evaporation temperature higher than that of the freezer compartment.
 さらに、冷凍室と冷蔵室それぞれに設けられた冷気を遮断するダンパーを用いて、圧縮機停止中に低温である蒸発器の冷熱を利用して冷蔵室を冷却することが提案されている(例えば、特許文献1参照)。これは、蒸発器に付着した霜の昇華熱あるいは融解熱を再利用することで、除霜時のヒータ電力を削減しながら冷蔵室の冷却に必要な冷凍サイクルの運転率を低下させることにより省エネルギー化を図るものである。 Furthermore, it has been proposed to cool the refrigerating chamber using a cooler of the evaporator, which is at a low temperature while the compressor is stopped, using dampers provided in each of the freezing chamber and the refrigerating chamber to block cold air (for example, , See Patent Document 1). This saves energy by reducing the operating rate of the refrigeration cycle necessary for cooling the refrigerator compartment while reducing the heater power during defrosting by reusing the heat of sublimation or melting of frost adhering to the evaporator. It aims to make it easier.
 以下、図面を参照しながら従来の冷蔵庫を説明する。 Hereinafter, a conventional refrigerator will be described with reference to the drawings.
 図5は従来の冷蔵庫の縦断面図、図6は従来の冷蔵庫の冷凍サイクル構成図、図7は従来の冷蔵庫の正面の模式図、図8は従来の冷蔵庫の冷却制御における状態遷移とその切換条件を示した図である。 5 is a longitudinal sectional view of a conventional refrigerator, FIG. 6 is a configuration diagram of a refrigeration cycle of the conventional refrigerator, FIG. 7 is a schematic diagram of the front of the conventional refrigerator, and FIG. 8 is a state transition and switching in the cooling control of the conventional refrigerator. It is a figure showing conditions.
 図5~7において、冷蔵庫11は、筐体12と、扉13と、筐体12を支える脚14と、筐体12の下部に設けられた下部機械室15と、筐体12の上部に配置された冷蔵室17と、筐体12の下部に配置された冷凍室18を有している。また、冷蔵庫11は、冷凍サイクルを構成する部品として、下部機械室15に納められた圧縮機56と、冷凍室18の背面側に収められた蒸発器20と、下部機械室15内に納められた主凝縮器21を有している。また、冷蔵庫11は、下部機械室15を仕切る隔壁22と、隔壁22に取り付けられ主凝縮器21を空冷するファン23と、圧縮機56の上部に設置された蒸発皿57と、下部機械室15の底板25を有している。 5 to 7, the refrigerator 11 is disposed on the housing 12, the door 13, the legs 14 that support the housing 12, the lower machine room 15 provided in the lower portion of the housing 12, and the upper portion of the housing 12. The refrigerating room 17 and the freezing room 18 disposed in the lower part of the housing 12 are provided. The refrigerator 11 is housed in the lower machine room 15 as a component constituting the refrigeration cycle, the compressor 56 housed in the lower machine room 15, the evaporator 20 housed on the back side of the freezer room 18, and the lower machine room 15. The main condenser 21 is provided. The refrigerator 11 includes a partition wall 22 that partitions the lower machine room 15, a fan 23 that is attached to the partition wall 22 to air-cool the main condenser 21, an evaporating dish 57 installed on the upper part of the compressor 56, and the lower machine room 15. The bottom plate 25 is provided.
 また、冷蔵庫11は、底板25に設けられた複数の吸気口26と、下部機械室15の背面側に設けられた排出口27と、下部機械室15の排出口27と筐体12の上部を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に圧縮機56と蒸発皿57を収めている。 The refrigerator 11 includes a plurality of air intakes 26 provided on the bottom plate 25, an exhaust port 27 provided on the back side of the lower machine room 15, an exhaust port 27 of the lower machine room 15, and an upper part of the housing 12. The communication air passage 28 is connected. Here, the lower machine chamber 15 is divided into two chambers by the partition wall 22, and the main condenser 21 is housed on the windward side of the fan 23, and the compressor 56 and the evaporating dish 57 are housed on the leeward side.
 また、冷蔵庫11は、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ37と、防露パイプ37の下流側に位置し、循環する冷媒を乾燥するドライヤ38と、ドライヤ38と蒸発器20を結合し、循環する冷媒を減圧する絞り39を有している。 In addition, the refrigerator 11 is located on the downstream side of the main condenser 21 as a component constituting the refrigeration cycle, and a dew-proof pipe 37 that is thermally coupled to the outer surface of the housing 12 around the opening of the freezer compartment 18; It has a dryer 38 for drying the circulating refrigerant, and a throttle 39 for connecting the dryer 38 and the evaporator 20 and depressurizing the circulating refrigerant.
 また、冷蔵庫11は、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン50と、冷凍室18に供給される冷気を遮断する冷凍室ダンパー51と、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー52を有する。さらに、冷蔵庫11は、冷蔵室17に冷気を供給するダクト53と、冷凍室18の温度を検知するFCC温度センサ54と、冷蔵室17の温度を検知するPCC温度センサ55と、蒸発器20の温度を検知するDEF温度センサ58を有している。 The refrigerator 11 also includes an evaporator fan 50 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer compartment damper 51 that blocks the cold air supplied to the freezer compartment 18, and the refrigerator compartment 17. A cold room damper 52 for shutting off cool air supplied to the vehicle is provided. Further, the refrigerator 11 includes a duct 53 that supplies cold air to the refrigerator compartment 17, an FCC temperature sensor 54 that detects the temperature of the freezer compartment 18, a PCC temperature sensor 55 that detects the temperature of the refrigerator compartment 17, and the evaporator 20. A DEF temperature sensor 58 for detecting temperature is included.
 以上のように構成された従来の冷蔵庫について以下にその動作を説明する。 The operation of the conventional refrigerator configured as described above will be described below.
 図8において、条件M1~M11は従来の冷蔵庫の冷却制御におけるモード切換を示す。 In FIG. 8, conditions M1 to M11 indicate mode switching in the conventional cooling control of the refrigerator.
 ファン23、圧縮機56、蒸発器ファン50をともに停止している冷却停止状態(以下、この動作を「OFFモード」という)から始める。「OFFモード」において、FCC温度センサ54の検知する温度が所定値のFCC_ON温度まで上昇するか、あるいは、PCC温度センサ55の検知する温度が所定値のPCC_ON温度まで上昇する(すなわち、条件M1を満足する)。すると、冷凍室ダンパー51を閉とし、冷蔵室ダンパー52を開として、圧縮機56とファン23、蒸発器ファン50を駆動する(以下、この動作を「PC冷却モード」という)。 Starting from a cooling stop state in which the fan 23, the compressor 56, and the evaporator fan 50 are all stopped (hereinafter, this operation is referred to as “OFF mode”). In the “OFF mode”, the temperature detected by the FCC temperature sensor 54 rises to a predetermined FCC_ON temperature, or the temperature detected by the PCC temperature sensor 55 rises to a predetermined PCC_ON temperature (that is, the condition M1 is set). Satisfied). Then, the freezer compartment damper 51 is closed, the refrigerator compartment damper 52 is opened, and the compressor 56, the fan 23, and the evaporator fan 50 are driven (hereinafter, this operation is referred to as “PC cooling mode”).
 「PC冷却モード」においては、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、圧縮機56と蒸発皿57側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。 In the “PC cooling mode”, when the fan 23 is driven, the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 has a negative pressure, and external air is sucked from the plurality of intake ports 26, The evaporating dish 57 side becomes positive pressure, and the air in the lower machine chamber 15 is discharged to the outside from the plurality of discharge ports 27.
 一方、圧縮機56から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、防露パイプ37へ供給される。防露パイプ37を通過した冷媒は冷凍室18の開口部を暖めながら、筐体12を介して外部に放熱して凝縮する。防露パイプ37を通過した液冷媒は、ドライヤ38で水分除去され、絞り39で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機56に還流する。 On the other hand, the refrigerant discharged from the compressor 56 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21 and then supplied to the dewproof pipe 37. The refrigerant that has passed through the dew-proof pipe 37 radiates heat through the housing 12 and condenses while warming the opening of the freezer compartment 18. The liquid refrigerant that has passed through the dew-proof pipe 37 is dehydrated by the dryer 38, depressurized by the throttle 39, and is evaporated by the evaporator 20, while exchanging heat with the air in the refrigerator compartment 17 and cooling the refrigerator compartment 17. Then, it returns to the compressor 56 as a gaseous refrigerant.
 「PC冷却モード」中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度まで下降上昇するとともに、PCC温度センサ55の検知する温度が所定値のPCC_OFF温度まで下降する(すなわち、条件M2を満足する)と、「OFFモード」に遷移する。 During the “PC cooling mode”, the temperature detected by the FCC temperature sensor 54 decreases to a predetermined FCC_OFF temperature, and the temperature detected by the PCC temperature sensor 55 decreases to a predetermined PCC_OFF temperature (that is, the condition M2 ), Transition to the “OFF mode”.
 また、「PC冷却モード」中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度より高い温度を示すとともに、PCC温度センサ55の検知する温度が所定値のPCC_OFF温度まで下降する(すなわち、条件M5を満足する)。すると、冷凍室ダンパー51を開とし、冷蔵室ダンパー52を閉として、圧縮機56とファン23、蒸発器ファン50を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却モード」という)。 Further, during the “PC cooling mode”, the temperature detected by the FCC temperature sensor 54 is higher than a predetermined FCC_OFF temperature, and the temperature detected by the PCC temperature sensor 55 is lowered to the predetermined PCC_OFF temperature (ie, And satisfies the condition M5). Then, the freezer compartment damper 51 is opened, the refrigerator compartment damper 52 is closed, and the compressor 56, the fan 23, and the evaporator fan 50 are driven. Thereafter, by operating the refrigeration cycle in the same manner as PC cooling, the freezer compartment 18 is heat-exchanged with the inside air of the freezer compartment 18 and the evaporator 20 to cool the freezer compartment 18 (this operation is hereinafter referred to as “FC cooling mode”). .
 「FC冷却モード」中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ55の検知する温度が所定値のPCC_ON温度以上を示す(すなわち、条件M6を満足する)と、PC冷却モードに遷移する。 During the “FC cooling mode”, the temperature detected by the FCC temperature sensor 54 falls to a predetermined FCC_OFF temperature, and the temperature detected by the PCC temperature sensor 55 is equal to or higher than the predetermined PCC_ON temperature (that is, the condition M6 is satisfied). If satisfied, the PC cooling mode is entered.
 また、「FC冷却モード」中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ55の検知する温度が所定値のPCC_ON温度より低い温度を示す(すなわち、条件M4を満足する)と、OFFモードに遷移する。 Further, during the “FC cooling mode”, the temperature detected by the FCC temperature sensor 54 decreases to a predetermined FCC_OFF temperature, and the temperature detected by the PCC temperature sensor 55 is lower than the predetermined PCC_ON temperature (ie, , The condition M4 is satisfied), and a transition is made to the OFF mode.
 次に、蒸発器20に付着した霜を利用した冷却動作について説明する。 Next, a cooling operation using frost attached to the evaporator 20 will be described.
 蒸発器20の近傍に設置された除霜ヒータ(図示せず)に通電するとともに、圧縮機56を停止、冷凍室ダンパー51を閉とし、冷蔵室ダンパー52を開として蒸発器ファン50を駆動する(以下、この動作を「デフロストモード」という)ことによって、蒸発器20に付着した霜を融解除去するとともに、除去されつつある霜の昇華熱あるいは融解熱を利用して冷蔵室17を冷却する。 The defrost heater (not shown) installed in the vicinity of the evaporator 20 is energized, the compressor 56 is stopped, the freezer damper 51 is closed, the refrigerator compartment damper 52 is opened, and the evaporator fan 50 is driven. (Hereinafter, this operation is referred to as “defrost mode”), the frost adhering to the evaporator 20 is melted and removed, and the refrigerator compartment 17 is cooled using the sublimation heat or heat of fusion of the frost being removed.
 また、蒸発器20の近傍に設置された除霜ヒータ(図示せず)に通電せずに、圧縮機56を停止、冷凍室ダンパー51を閉とし、冷蔵室ダンパー52を開として蒸発器ファン50を駆動する(以下、この動作を「オフサイクル冷却モード」という)ことによって、蒸発器20とこれに付着している霜の低温の顕熱と霜の昇華熱あるいは融解熱を利用して冷蔵室17を冷却する。このとき、蒸発器20に付着した霜は完全に融解除去されることはないが、蒸発器20に付着した霜を再利用することで、「デフロストモード」時のヒータ(図示せず)の電力を削減しながら冷蔵室17を冷却することができる。 Further, without supplying power to a defrosting heater (not shown) installed in the vicinity of the evaporator 20, the compressor 56 is stopped, the freezer compartment damper 51 is closed, the refrigerator compartment damper 52 is opened, and the evaporator fan 50 is opened. (Hereinafter, this operation is referred to as “off-cycle cooling mode”), and the refrigerator 20 uses the low-temperature sensible heat of the frost and the sublimation heat or melting heat of the frost adhering to the evaporator 20. 17 is cooled. At this time, the frost attached to the evaporator 20 is not completely thawed and removed. However, by reusing the frost attached to the evaporator 20, the power of the heater (not shown) in the “defrost mode” is used. Thus, the refrigerator compartment 17 can be cooled.
 「FC冷却モード」中に、電源投入時、あるいは、前回のデフロスト終了時から所定時間Tx2を経過する(すなわち、条件M7を満足する)と、冷凍室18を通常より低い温度まで冷却するためにFC冷却を所定時間継続する(以下、この動作を「プリクールモード」という)。次に、プリクール開始からが所定時間Tx3経過する(すなわち、条件M8を満足する)と、デフロスト動作に遷移する。そして、デフロスト中に、蒸発器20に取り付けられたDEF温度センサ58の検知する温度が所定値のDEF_OFF温度より高い温度を示すか、あるいは、デフロスト開始から所定時間Tx4経過する(すなわち、条件M9を満足する)と、「オフサイクル冷却モード」に遷移する。 In order to cool the freezer compartment 18 to a temperature lower than usual when the power is turned on or when a predetermined time Tx2 has elapsed from the end of the previous defrost (that is, the condition M7 is satisfied) during the “FC cooling mode”. FC cooling is continued for a predetermined time (hereinafter, this operation is referred to as “precool mode”). Next, when the predetermined time Tx3 has elapsed from the start of the precool (that is, the condition M8 is satisfied), the operation shifts to the defrost operation. Then, during defrosting, the temperature detected by the DEF temperature sensor 58 attached to the evaporator 20 indicates a temperature higher than a predetermined value of DEF_OFF temperature, or a predetermined time Tx4 has elapsed from the start of defrosting (that is, the condition M9 is satisfied). Satisfied), transition to “off-cycle cooling mode”.
 また、「OFFモード」中に、OFF開始から所定時間Tm経過する(すなわち、条件M10を満足する)と、「オフサイクル冷却モード」に遷移する。 Also, during the “OFF mode”, when a predetermined time Tm has elapsed from the start of OFF (that is, the condition M10 is satisfied), the state transits to the “off cycle cooling mode”.
 「オフサイクル冷却モード」中に、オフサイクル冷却の開始から所定時間Td経過する(すなわち、条件M11を満足する)と、「OFFモード」に遷移する。 In the “off cycle cooling mode”, when the predetermined time Td elapses from the start of the off cycle cooling (that is, the condition M11 is satisfied), the state transits to the “OFF mode”.
 ここで、過負荷条件における冷却動作について説明する。 Here, the cooling operation under an overload condition will be described.
 従来の冷蔵庫においては、冷蔵室17を単独で冷却するPC冷却と、冷凍室18を単独で冷却するFC冷却を切り換えて冷却制御を行うため、冷蔵室17あるいは冷凍室18に高温の食材などが投入されるような過大な負荷が発生した場合、冷蔵室17あるいは冷凍室18のどちらか一方が長時間冷却されないことが懸念される。 In the conventional refrigerator, since cooling control is performed by switching between PC cooling for cooling the refrigerator compartment 17 alone and FC cooling for cooling the freezer compartment 18 alone, high-temperature foods or the like are stored in the refrigerator compartment 17 or the refrigerator compartment 18. When an excessive load that is thrown in is generated, there is a concern that either the refrigerator compartment 17 or the freezer compartment 18 is not cooled for a long time.
 そこで、条件M5に付記されたように、「PC冷却モード」中にFCC温度センサ54の検知する温度が所定値のFCC_ON温度を越えた場合、あるいは、条件M6に付記されたように、「FC冷却モード」中にPCC温度センサ55の検知する温度が所定値のPCC_ON温度を越えた場合を説明する。この場合、PCC温度センサ55の検知する温度が所定値のPCC_OFF温度に到達するか、あるいは、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度に到達するまでの間、所定時間TxrのPC冷却と所定時間TxfのFC冷却を交互に繰り返す(以下、この動作を「交互冷却」という)。これによって、冷蔵室17あるいは冷凍室18のどちらか一方が長時間冷却されない状態を回避することができる。 Therefore, as described in the condition M5, when the temperature detected by the FCC temperature sensor 54 exceeds the predetermined FCC_ON temperature during the “PC cooling mode”, or as described in the condition M6, “FC A case will be described in which the temperature detected by the PCC temperature sensor 55 exceeds the PCC_ON temperature of a predetermined value during the “cooling mode”. In this case, until the temperature detected by the PCC temperature sensor 55 reaches a predetermined PCC_OFF temperature, or until the temperature detected by the FCC temperature sensor 54 reaches the predetermined FCC_OFF temperature, the PC for a predetermined time Txr. Cooling and FC cooling for a predetermined time Txf are alternately repeated (hereinafter, this operation is referred to as “alternate cooling”). As a result, it is possible to avoid a state in which one of the refrigerator compartment 17 and the freezer compartment 18 is not cooled for a long time.
 以上のように説明した動作によって、「PC冷却モード」の蒸発器20の温度を「FC冷却モード」よりも高く保つことで、冷凍サイクルの効率を高めることができる。さらに、「オフサイクル冷却モード」によって蒸発器20に付着した霜の融解潜熱を再利用することで、除霜時のヒータ電力(図示せず)を削減しながら冷蔵室17の冷却に必要な冷凍サイクルの運転率を低下させることにより省エネルギー化を図ることができる。 By the operation described above, the efficiency of the refrigeration cycle can be increased by keeping the temperature of the evaporator 20 in the “PC cooling mode” higher than that in the “FC cooling mode”. Furthermore, by reusing the melting latent heat of frost adhering to the evaporator 20 in the “off cycle cooling mode”, the refrigeration necessary for cooling the refrigerator compartment 17 while reducing heater power (not shown) at the time of defrosting. Energy saving can be achieved by reducing the cycle operating rate.
 しかしながら、従来の冷蔵庫の構成では、冷蔵庫の設置環境や運転状態によらず常に防露パイプ37に冷媒を流すために、防露パイプ37から冷凍室18に侵入する熱負荷に起因して冷蔵庫の消費電力量が増大する原因となる。 However, in the conventional refrigerator configuration, since the refrigerant always flows through the dew prevention pipe 37 regardless of the installation environment and the operating state of the refrigerator, the refrigerator is caused by the heat load entering the freezer compartment 18 from the dew prevention pipe 37. This causes an increase in power consumption.
 また、長い細径管で構成される防露パイプ37は圧力損失が大きく、特に冷媒循環量が増大する過負荷条件における凝縮温度上昇の要因となり、冷蔵庫の消費電力量が増大する原因となる。 Also, the dew-proof pipe 37 composed of long thin pipes has a large pressure loss, which causes a rise in the condensation temperature especially in an overload condition in which the amount of refrigerant circulation increases, leading to an increase in power consumption of the refrigerator.
 従って、冷蔵庫の設置環境や運転状態によって防露パイプに起因する圧力損失や熱負荷を抑制することが課題であった。 Therefore, it has been a problem to suppress the pressure loss and heat load caused by the dew-proof pipe depending on the installation environment and operation state of the refrigerator.
特開平9-236369号公報JP-A-9-236369
 本発明の冷蔵庫は、主凝縮器の下流側に流路切換バルブを介して複数の防露パイプを並列接続する。 The refrigerator of the present invention has a plurality of dew prevention pipes connected in parallel via a flow path switching valve on the downstream side of the main condenser.
 これによって、特に冷媒循環量が大きい過負荷時に複数の防露パイプを同時に並列使用して防露パイプに起因する圧力損失を抑制することができる。ここで、過負荷時とは、例えば比較的外気の温度や湿度が高い夏場に頻繁に扉開閉を行った場合や、温度の高い食品を収納した場合を想定したものである。このような場合、冷凍サイクルの運転率が増大して冷媒循環量が増大するとともに、防露パイプが配設された冷蔵庫筐体の周囲の結露防止が必要となる。このとき、防露パイプを同時に並列使用して1本当りの冷媒循環量を低減することで、防露パイプに起因する圧力損失を抑制することができる。 This makes it possible to suppress a pressure loss caused by the dew prevention pipe by using a plurality of dew prevention pipes in parallel at the time of an overload particularly when the refrigerant circulation amount is large. Here, the time of overload is assumed, for example, when the door is frequently opened and closed in summer when the temperature and humidity of the outside air are relatively high, or when food with a high temperature is stored. In such a case, the operating rate of the refrigeration cycle increases and the amount of refrigerant circulation increases, and it is necessary to prevent condensation around the refrigerator casing in which the dew-proof pipe is provided. At this time, the pressure loss resulting from the dew-proof pipe can be suppressed by simultaneously using the dew-proof pipe in parallel to reduce the amount of refrigerant circulation per bottle.
図1は、本発明の第1の実施の形態における冷蔵庫の縦断面図である。FIG. 1 is a longitudinal sectional view of a refrigerator in the first embodiment of the present invention. 図2は、本発明の第1の実施の形態における冷蔵庫のサイクル構成図である。FIG. 2 is a cycle configuration diagram of the refrigerator in the first embodiment of the present invention. 図3は、本発明の第1の実施の形態における冷蔵庫の背面の模式図である。FIG. 3 is a schematic view of the back surface of the refrigerator in the first embodiment of the present invention. 図4は、本発明の第1の実施の形態における冷蔵庫の冷却制御における状態遷移とその切換条件を示した図である。FIG. 4 is a diagram showing state transitions and switching conditions in cooling control of the refrigerator in the first embodiment of the present invention. 図5は、従来の冷蔵庫の縦断面図である。FIG. 5 is a longitudinal sectional view of a conventional refrigerator. 図6は、従来の冷蔵庫のサイクル構成図である。FIG. 6 is a cycle configuration diagram of a conventional refrigerator. 図7は、従来の冷蔵庫の正面の模式図である。FIG. 7 is a schematic front view of a conventional refrigerator. 図8は、従来の冷蔵庫の冷却制御における状態遷移とその切換条件を示した図である。FIG. 8 is a diagram showing state transition and switching conditions in the conventional refrigerator cooling control.
 以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same components as those in the conventional example are denoted by the same reference numerals, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.
 (第1の実施の形態)
 図1は本発明の第1の実施の形態における冷蔵庫の縦断面図、図2は本発明の第1の実施の形態における冷蔵庫のサイクル構成図、図3は本発明の第1の実施の形態における冷蔵庫の背面の模式図、図4は本発明の第1の実施の形態における冷蔵庫の冷却制御における状態遷移とその切換条件を示した図である。
(First embodiment)
1 is a longitudinal sectional view of a refrigerator according to the first embodiment of the present invention, FIG. 2 is a cycle configuration diagram of the refrigerator according to the first embodiment of the present invention, and FIG. 3 is a first embodiment of the present invention. FIG. 4 is a diagram showing the state transition and the switching conditions in the cooling control of the refrigerator in the first embodiment of the present invention.
 図1~3において、冷蔵庫11は、筐体12と、扉13と、筐体12を支える脚14と、筐体12の下部に設けられた下部機械室15と、筐体12の上部に設けられた上部機械室16と、筐体12の上部に配置された冷蔵室17と、筐体12の下部に配置された冷凍室18を有する。また、冷蔵庫11は、冷凍サイクルを構成する部品として、上部機械室16に納められた圧縮機19と、冷凍室18の背面側に収められた蒸発器20と、下部機械室15内に納められた主凝縮器21を有している。また、冷蔵庫11は、下部機械室15を仕切る隔壁22と、隔壁22に取り付けられ主凝縮器21を空冷するファン23と、隔壁22の風下側に設置された蒸発皿24と、下部機械室15の底板25を有している。 1 to 3, the refrigerator 11 is provided with a housing 12, a door 13, legs 14 that support the housing 12, a lower machine room 15 provided at the lower portion of the housing 12, and an upper portion of the housing 12. The upper machine room 16 is provided, the refrigerator room 17 is disposed at the upper part of the housing 12, and the freezer room 18 is disposed at the lower part of the housing 12. The refrigerator 11 is housed in a compressor 19 housed in the upper machine room 16, an evaporator 20 housed on the back side of the freezer room 18, and a lower machine room 15 as components constituting the refrigeration cycle. The main condenser 21 is provided. The refrigerator 11 includes a partition wall 22 that partitions the lower machine room 15, a fan 23 that is attached to the partition wall 22 to air-cool the main condenser 21, an evaporating dish 24 installed on the leeward side of the partition wall 22, and the lower machine room 15. The bottom plate 25 is provided.
 ここで、圧縮機19は可変速圧縮機であり、20~80rpsから選択された6段階の回転数を使用する。これは、配管などの共振を避けながら、圧縮機19の回転数を低速~高速の6段階に切り換えて冷凍能力を調整するためである。圧縮機19は、起動時には低速で運転し、冷蔵室17あるいは冷凍室18を冷却するための運転時間が長くなるに従って増速する。これは、最も高効率な低速を主として使用するとともに、高外気温や扉開閉などによる冷蔵室17あるいは冷凍室18の負荷の増大に対して、適切な比較的高い回転数を使用するためである。このとき、冷蔵庫11の冷却運転モードとは独立に、圧縮機19の回転数を制御するが、蒸発温度が高く比較的冷凍能力が大きい「PC冷却モード」の起動時の回転数を「FC冷却モード」よりも低く設定してもよい。また、冷蔵室17あるいは冷凍室18の温度低下に伴って、圧縮機19を減速しながら冷凍能力を調整してもよい。 Here, the compressor 19 is a variable speed compressor and uses six stages of rotation speed selected from 20 to 80 rps. This is because the refrigerating capacity is adjusted by switching the rotational speed of the compressor 19 to six stages from low speed to high speed while avoiding resonance of piping and the like. The compressor 19 operates at a low speed at the time of startup, and increases as the operation time for cooling the refrigerator compartment 17 or the freezer compartment 18 becomes longer. This is because the most efficient low speed is mainly used, and an appropriate relatively high rotational speed is used against an increase in load of the refrigerator compartment 17 or the freezer compartment 18 due to high outside air temperature, door opening / closing, or the like. . At this time, the rotation speed of the compressor 19 is controlled independently of the cooling operation mode of the refrigerator 11, but the rotation speed at the start of the “PC cooling mode” with a high evaporation temperature and a relatively large refrigerating capacity is set to “FC cooling”. It may be set lower than “mode”. Further, the refrigeration capacity may be adjusted while decelerating the compressor 19 as the temperature of the refrigerator compartment 17 or the freezer compartment 18 decreases.
 また、冷蔵庫11は、底板25に設けられた複数の吸気口26と、下部機械室15の背面側に設けられた排出口27と、下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に蒸発皿24を収めている。 The refrigerator 11 connects the plurality of air intakes 26 provided on the bottom plate 25, the exhaust port 27 provided on the back side of the lower machine room 15, and the exhaust port 27 of the lower machine room 15 and the upper machine room 16. A communication air passage 28 is provided. Here, the lower machine chamber 15 is divided into two chambers by a partition wall 22, and a main condenser 21 is housed on the windward side of the fan 23 and an evaporating dish 24 is housed on the leeward side.
 また、冷蔵庫11は、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された第1の防露パイプ44と、第1の防露パイプ44の下流側に位置し、循環する冷媒を乾燥するドライヤ38と、ドライヤ38と蒸発器20を結合し、循環する冷媒を減圧する絞り39を有している。 The refrigerator 11 is a first dew-proof pipe that is located on the downstream side of the main condenser 21 as a component constituting the refrigeration cycle and is thermally coupled to the outer surface of the housing 12 around the opening of the freezer compartment 18. 44, a dryer 38 for drying the circulating refrigerant, and a throttle 39 for connecting the dryer 38 and the evaporator 20 to depressurize the circulating refrigerant. .
 ここで、第1の防露パイプ44の冷媒流路を分岐するために、流路切換バルブ40と、第2の防露パイプ41と、合流点42を有している。第1の防露パイプ44と第2の防露パイプ41は、流路切換バルブ40と合流点42を並列に結ぶとともに、流路切換バルブ40は、第1の防露パイプ44と第2の防露パイプ41それぞれ単独の冷媒の流れを開閉制御することができる。また、第2の防露パイプ41は第1の防露パイプ44と略同等の内容積と放熱能力を有し筐体12の背面に接して放熱するとともに、真空断熱材43と重複して配置することで筐体12内部への伝熱を抑制している。 Here, in order to branch the refrigerant flow path of the first dew-proof pipe 44, a flow path switching valve 40, a second dew-proof pipe 41, and a junction 42 are provided. The first dew proof pipe 44 and the second dew proof pipe 41 connect the flow path switching valve 40 and the junction 42 in parallel, and the flow path switching valve 40 includes the first dew proof pipe 44 and the second dew proof pipe 44. It is possible to control the opening and closing of the single refrigerant flow of each of the dew prevention pipes 41. Further, the second dew-proof pipe 41 has substantially the same internal volume and heat-dissipation capacity as the first dew-proof pipe 44 and radiates heat in contact with the back surface of the housing 12, and overlaps with the vacuum heat insulating material 43. By doing so, heat transfer to the inside of the housing 12 is suppressed.
 また、冷蔵庫11は、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン30と、冷凍室18に供給される冷気を遮断する冷凍室ダンパー31と、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー32を有している。さらに、冷蔵庫11は、冷蔵室17に冷気を供給するダクト33と、冷凍室18の温度を検知するFCC温度センサ34と、冷蔵室17の温度を検知するPCC温度センサ35と、蒸発器20の温度を検知するDEF温度センサ36を有している。ここで、ダクト33は冷蔵室17と上部機械室16が隣接する壁面に沿って形成され、ダクト33を通過する冷気の一部を冷蔵室の中央付近から排出するとともに、冷気の多くは上部機械室16が隣接する壁面を冷却しながら通過した後に冷蔵室17の上部から排出する。 In addition, the refrigerator 11 includes an evaporator fan 30 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer damper 31 that blocks cold air supplied to the freezer compartment 18, and the refrigerator compartment 17. The refrigerator has a refrigerator compartment damper 32 for shutting off the cold air supplied thereto. Further, the refrigerator 11 includes a duct 33 that supplies cold air to the refrigerator compartment 17, an FCC temperature sensor 34 that detects the temperature of the freezer compartment 18, a PCC temperature sensor 35 that detects the temperature of the refrigerator compartment 17, and the evaporator 20. It has a DEF temperature sensor 36 for detecting temperature. Here, the duct 33 is formed along a wall surface where the refrigerator compartment 17 and the upper machine room 16 are adjacent to each other, and a part of the cold air passing through the duct 33 is discharged from the vicinity of the center of the refrigerator compartment, and most of the cold air is in the upper machine. After passing through the wall 16 while cooling the adjacent wall surface, it is discharged from the upper part of the refrigerator compartment 17.
 以上のように構成された本発明の第1の実施の形態における冷蔵庫について、以下その動作を説明する。 The operation of the refrigerator according to the first embodiment of the present invention configured as described above will be described below.
 図4において、条件L1~L15は本発明の第1の実施の形態における冷蔵庫の冷却制御におけるモード切換を示す。ここで、従来の冷蔵庫と同一の冷却運転モード及びモード切換条件については、詳細な説明を省略する。 In FIG. 4, conditions L1 to L15 indicate mode switching in the cooling control of the refrigerator in the first embodiment of the present invention. Here, detailed description of the same cooling operation mode and mode switching condition as those of the conventional refrigerator is omitted.
 先ず、「オフサイクル冷却モード」について説明する。 First, the “off-cycle cooling mode” will be described.
 「OFFモード」中に、条件L10(すなわち、条件M10)を満足すると、「オフサイクル冷却モード」に遷移する。 When the condition L10 (that is, the condition M10) is satisfied during the “OFF mode”, the state transits to the “off cycle cooling mode”.
 そして、「オフサイクル冷却モード」中に、条件L1(すなわち、条件M1)を満足するか、あるいはDEF温度センサ36の検知する温度が所定値のOSR_OFF温度まで上昇する(すなわち、条件L11を満足する)と、「OFFモード」に遷移する。 Then, during the “off cycle cooling mode”, the condition L1 (that is, the condition M1) is satisfied, or the temperature detected by the DEF temperature sensor 36 rises to a predetermined OSR_OFF temperature (that is, the condition L11 is satisfied). ) And transition to the “OFF mode”.
 これによって、蒸発器20に設置されたDEF温度センサ36を用いて、「オフサイクル冷却モード」の時間を適正に調整することができる。従来の冷蔵庫では常に一定時間Tdのオフサイクル冷却を行っていたため、蒸発器20の温度が必要以上に上昇して近接する冷凍室18に伝熱して熱負荷を増大する懸念があった。「オフサイクル冷却モード」を終了する基準温度であるOSR_OFF温度は、-15~-5℃程度に設定することが望ましい。-15℃未満ではオフサイクル冷却の効果が十分得られず、-5℃超では冷凍室18の熱負荷が増大する可能性がある。 Thereby, using the DEF temperature sensor 36 installed in the evaporator 20, the time of the “off cycle cooling mode” can be adjusted appropriately. Since the conventional refrigerator always performs off-cycle cooling for a certain time Td, there is a concern that the temperature of the evaporator 20 rises more than necessary and heat is transferred to the adjacent freezer compartment 18 to increase the heat load. The OSR_OFF temperature, which is the reference temperature for ending the “off cycle cooling mode”, is desirably set to about −15 to −5 ° C. If it is less than −15 ° C., the effect of off-cycle cooling cannot be obtained sufficiently, and if it exceeds −5 ° C., the heat load of the freezer compartment 18 may increase.
 次に、通常条件における冷却動作について説明する。 Next, the cooling operation under normal conditions will be described.
 「PC冷却モード」中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度より高い温度を示すとともに、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降する(すなわち、条件L5を満足する)と、FC冷却モードに遷移する。加えて、条件L5に付記したように、PC冷却モード中に、所定時間Tx1経過後、FCC温度センサ34の検知する温度と所定値のFCC_OFF温度との差が、PCC温度センサ35の検知する温度と所定値のPCC_OFF温度との差と同等以上になると、「FC冷却モード」に遷移する。 During the “PC cooling mode”, the temperature detected by the FCC temperature sensor 34 is higher than a predetermined FCC_OFF temperature, and the temperature detected by the PCC temperature sensor 35 falls to the predetermined PCC_OFF temperature (that is, the condition) When L5 is satisfied), the mode is changed to the FC cooling mode. In addition, as described in the condition L5, the difference between the temperature detected by the FCC temperature sensor 34 and the FCC_OFF temperature of the predetermined value is the temperature detected by the PCC temperature sensor 35 after the predetermined time Tx1 has elapsed during the PC cooling mode. Transition to the “FC cooling mode”.
 「FC冷却モード」において、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、流路切換バルブ40を介して第1の防露パイプ44あるいは第2の防露パイプ41へ供給される。このとき、流路切換バルブ40を制御して第1の防露パイプ44あるいは第2の防露パイプ41のどちらか一方に交互に冷媒を供給する。この結果、冷凍室18の開口部を介して第1の防露パイプ44から冷凍室18に侵入する熱負荷量を低減することができる。 In the “FC cooling mode”, the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21, and then the first refrigerant via the flow path switching valve 40. The dew-proof pipe 44 or the second dew-proof pipe 41 is supplied. At this time, the flow path switching valve 40 is controlled to supply the refrigerant alternately to either the first dew-proof pipe 44 or the second dew-proof pipe 41. As a result, the amount of heat load that enters the freezer compartment 18 from the first dewproof pipe 44 through the opening of the freezer compartment 18 can be reduced.
 その後、合流点42を通過した液冷媒は、従来と同様にドライヤ38で水分除去され、絞り39で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機19に還流する。 Thereafter, the liquid refrigerant that has passed through the junction 42 is subjected to moisture removal by the dryer 38 as in the prior art, reduced in pressure by the throttle 39 and heat-exchanged with the air in the refrigerator compartment 17 while evaporating in the evaporator 20. While cooling 17, the refrigerant is returned to the compressor 19 as a gaseous refrigerant.
 なお、第1の防露パイプ44と第2の防露パイプ41は略同等の内容積と放熱能力を有しているため、不使用状態における液冷媒の保持量や使用状態における放熱量が同等であり、切換えに伴う冷却状態の大きな変化はなく効率よく冷却することができる。 In addition, since the 1st dew-proof pipe 44 and the 2nd dew-proof pipe 41 have substantially the same internal volume and heat dissipation capability, the amount of liquid refrigerant held in the unused state and the amount of heat released in the used state are the same. Thus, there is no significant change in the cooling state accompanying switching, and cooling can be performed efficiently.
 「FC冷却モード」中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35の検知する温度が所定値のPCC_ON温度以上を示す(すなわち、条件L6を満足する)と、「PC冷却モード」に遷移する。加えて、条件L6に付記したように、「FC冷却モード」中に、所定時間Tx1経過後、FCC温度センサ34の検知する温度と所定値のFCC_OFF温度との差が、PCC温度センサ35の検知する温度と所定値のPCC_OFF温度との差と同等以下になると、「PC冷却モード」に遷移する。 During the “FC cooling mode”, the temperature detected by the FCC temperature sensor 34 falls to a predetermined FCC_OFF temperature, and the temperature detected by the PCC temperature sensor 35 is equal to or higher than the predetermined PCC_ON temperature (that is, the condition L6 is satisfied). Satisfied), transition to “PC cooling mode”. In addition, as described in the condition L6, the difference between the temperature detected by the FCC temperature sensor 34 and the FCC_OFF temperature of the predetermined value is detected by the PCC temperature sensor 35 after the predetermined time Tx1 has elapsed during the “FC cooling mode”. When the temperature becomes equal to or less than the difference between the temperature to be measured and the PCC_OFF temperature of a predetermined value, the mode is changed to “PC cooling mode”.
 「PC冷却モード」において、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、流路切換バルブ40を介して第1の防露パイプ44あるいは第2の防露パイプ41へ供給される。このとき、流路切換バルブ40を制御して第1の防露パイプ44あるいは第2の防露パイプ41のどちらか一方に交互に冷媒を供給する。この結果、冷凍室18の開口部を介して第1の防露パイプ44から冷凍室18に侵入する熱負荷量を低減することができる。 In the “PC cooling mode”, the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21, and then the first refrigerant via the flow path switching valve 40. The dew-proof pipe 44 or the second dew-proof pipe 41 is supplied. At this time, the flow path switching valve 40 is controlled to supply the refrigerant alternately to either the first dew-proof pipe 44 or the second dew-proof pipe 41. As a result, the amount of heat load that enters the freezer compartment 18 from the first dewproof pipe 44 through the opening of the freezer compartment 18 can be reduced.
 その後、合流点42を通過した液冷媒は、従来と同様にドライヤ38で水分除去され、絞り39で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機19に還流する。 Thereafter, the liquid refrigerant that has passed through the junction 42 is subjected to moisture removal by the dryer 38 as in the prior art, reduced in pressure by the throttle 39 and heat-exchanged with the air in the refrigerator compartment 17 while evaporating in the evaporator 20. While cooling 17, the refrigerant is returned to the compressor 19 as a gaseous refrigerant.
 なお、第1の防露パイプ44と第2の防露パイプ41は略同等の内容積と放熱能力を有しているため、不使用状態における液冷媒の保持量や使用状態における放熱量が同等であり、切換えに伴う冷却状態の大きな変化はなく効率よく冷却することができる。また、「PC冷却モード」においては、冷凍室18内に冷気が流入せず冷凍室18内の温度が「FC冷却モード」中よりも比較的高くなるため、第1の防露パイプ44の使用比率を「FC冷却モード」中よりも低く抑えてもよい。 In addition, since the 1st dew-proof pipe 44 and the 2nd dew-proof pipe 41 have substantially the same internal volume and heat dissipation capability, the amount of liquid refrigerant held in the unused state and the amount of heat released in the used state are the same. Thus, there is no significant change in the cooling state accompanying switching, and cooling can be performed efficiently. In the “PC cooling mode”, the cold air does not flow into the freezer compartment 18 and the temperature in the freezer compartment 18 is relatively higher than in the “FC cooling mode”. The ratio may be kept lower than in the “FC cooling mode”.
 次に、過負荷条件における冷却動作について説明する。 Next, the cooling operation under overload conditions will be described.
 以上に述べた通常条件の制御によって、冷蔵室17と冷凍室18がともに高温となる電源投入時などの過負荷条件において、所定時間Tx1毎に「PC冷却モード」と「FC冷却モード」を交互に切り換えるとともに、冷却を終了する目安となるOFF温度との乖離がより大きい方を優先的に冷却することができる。この結果、従来の冷蔵庫で実施していた時間固定の交互冷却に比べて、より柔軟に冷却運転時間を振り分けることができる。 Under the overload conditions, such as when the power is turned on, where both the refrigerator compartment 17 and the freezer compartment 18 are hot due to the control of the normal conditions described above, the “PC cooling mode” and the “FC cooling mode” are alternated every predetermined time Tx1. In addition, it is possible to preferentially cool the one having a larger divergence from the OFF temperature, which is a guide for ending the cooling. As a result, the cooling operation time can be distributed more flexibly than the time-fixed alternating cooling performed in the conventional refrigerator.
 しかしながら、冷却運転時間に自由度を持たせた交互冷却を行っても、冷凍室18の冷却が断続的に行われるため、アイスクリームなど冷凍食品の保存温度の上限を越える懸念があった。そこで、過負荷条件においてのみ、冷蔵室17と冷凍室18を同時に冷却する動作(以下、この動作を「同時冷却モード」という)を加えた。 However, even if alternate cooling is performed with a degree of freedom in the cooling operation time, the freezer compartment 18 is intermittently cooled, and there is a concern that the upper limit of the storage temperature of frozen food such as ice cream may be exceeded. Therefore, an operation of cooling the refrigerator compartment 17 and the freezer compartment 18 at the same time (hereinafter, this operation is referred to as “simultaneous cooling mode”) is added only under an overload condition.
 「同時冷却モード」とは、冷凍室ダンパー31を開、冷蔵室ダンパー32を開として、圧縮機19とファン23、蒸発器ファン30を駆動するものである。「同時冷却モード」においては、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、圧縮機19と蒸発皿57側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。 In the “simultaneous cooling mode”, the freezer damper 31 is opened and the refrigerator compartment damper 32 is opened to drive the compressor 19, the fan 23, and the evaporator fan 30. In the “simultaneous cooling mode”, when the fan 23 is driven, the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 has a negative pressure, and external air is sucked from the plurality of intake ports 26, The evaporating dish 57 side becomes positive pressure, and the air in the lower machine chamber 15 is discharged to the outside from the plurality of discharge ports 27.
 一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、流路切換バルブ40を介して第1の防露パイプ44あるいは第2の防露パイプ41へ供給される。このとき、流路切換バルブ40を制御して第1の防露パイプ44と第2の防露パイプ41の両方同時に冷媒を供給する。この結果、1本当りの冷媒循環量を低減することで、第1の防露パイプ44と第2の防露パイプ41に起因する圧力損失を抑制することができる。 On the other hand, the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21, and then the first dew-proof pipe 44 or the like via the flow path switching valve 40. Supplied to the second dewproof pipe 41. At this time, the flow path switching valve 40 is controlled to supply the refrigerant to both the first dew-proof pipe 44 and the second dew-proof pipe 41 simultaneously. As a result, the pressure loss caused by the first dew-proof pipe 44 and the second dew-proof pipe 41 can be suppressed by reducing the refrigerant circulation amount per bottle.
 その後、合流点42を通過した液冷媒は、ドライヤ38で水分除去され、絞り39で減圧されて蒸発器20で蒸発しながら冷蔵室17および冷凍室18の庫内空気と熱交換して冷蔵室17および冷凍室18を冷却しながら、気体冷媒として圧縮機19に還流する。 Thereafter, the liquid refrigerant that has passed through the confluence 42 is dehydrated by the dryer 38, depressurized by the throttle 39 and evaporated by the evaporator 20, and exchanges heat with the air in the refrigerator compartment 17 and the freezer compartment 18 to store the refrigerator. While cooling 17 and the freezer compartment 18, the refrigerant is returned to the compressor 19 as a gaseous refrigerant.
 このとき、蒸発器ファン30を高速回転して、冷蔵室17および冷凍室18を並列に冷却するために必要な風量を確保する。この結果、「FC冷却モード」に比べて、高温で高風速となる空気が蒸発器20に流入することで、蒸発器20の吹き出し空気温度が上昇傾向となるため、比較的高い回転数で圧縮機19を運転して適正な冷凍能力を確保することが望ましい。「同時冷却モード」で圧縮機19を低速で運転すると、蒸発器20の吹き出し空気温度が上昇して冷凍室18を低温まで冷却できないことが懸念される。 At this time, the evaporator fan 30 is rotated at a high speed to secure an air volume necessary for cooling the refrigerator compartment 17 and the freezer compartment 18 in parallel. As a result, as compared with the “FC cooling mode”, air that has a high wind speed at a high temperature flows into the evaporator 20 and the temperature of the blown air from the evaporator 20 tends to rise. It is desirable to operate the machine 19 to ensure proper refrigeration capacity. When the compressor 19 is operated at a low speed in the “simultaneous cooling mode”, there is a concern that the temperature of the air blown from the evaporator 20 increases and the freezer compartment 18 cannot be cooled to a low temperature.
 そこで、「PC冷却モード」中に、圧縮機19の回転数が所定回転数以上である(すなわち、条件L12を満足する)場合、「同時冷却モード」に遷移するとともに、「同時冷却モード」中に、圧縮機19の回転数が所定回転数未満である(すなわち、条件L13を満足する)場合、「PC冷却モード」に遷移する。また、条件L12と条件L13のモード切換は他の状態遷移に優先して行われる。これは、圧縮機19の回転数が所定回転数以上まで増速していることで、冷蔵庫11が過負荷条件であることを検知して「同時冷却モード」に遷移するとともに、圧縮機19の回転数が所定回転数未満において、蒸発器20の吹き出し空気温度が上昇して冷凍室18を低温まで冷却できないことが回避するためである。 Therefore, when the rotation speed of the compressor 19 is equal to or higher than the predetermined rotation speed during the “PC cooling mode” (that is, the condition L12 is satisfied), the mode is changed to the “simultaneous cooling mode” and the “simultaneous cooling mode” is being performed. On the other hand, when the rotation speed of the compressor 19 is less than the predetermined rotation speed (that is, the condition L13 is satisfied), the state transits to the “PC cooling mode”. The mode switching between the conditions L12 and L13 is performed with priority over other state transitions. This is because the rotation speed of the compressor 19 is increased to a predetermined rotation speed or more, and it is detected that the refrigerator 11 is in an overload condition and transitions to the “simultaneous cooling mode”. This is to avoid that the temperature of the blown air from the evaporator 20 rises and the freezer compartment 18 cannot be cooled to a low temperature when the rotational speed is less than the predetermined rotational speed.
 また、「同時冷却モード」中に、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度以下まで低下するか、あるいは、所定時間Tx5経過後、FCC温度センサ34の検知する温度がFCC_ON温度よりも高い所定値のFCC_LIM温度以上を示す(すなわち、条件L14を満足する)と、「FC冷却モード」に遷移する。これは、「FC冷却モード」中に非冷却となる冷蔵室17の温度上昇を抑制するために、冷凍室18が許容される温度上限まで同時冷却モードを継続するものである。従って、FCC温度センサ34の検知するFCC_LIM温度は、通常冷却中の上限温度であるFCC_ON温度よりも2~5℃高い、弱冷に相当する所定値とすることが望ましい。 Further, during the “simultaneous cooling mode”, the temperature detected by the PCC temperature sensor 35 falls below a predetermined value of the PCC_OFF temperature, or the temperature detected by the FCC temperature sensor 34 exceeds the FCC_ON temperature after a predetermined time Tx5 has elapsed. Transition to the “FC cooling mode” when the FCC_LIM temperature is higher than the predetermined value (that is, the condition L14 is satisfied). This is to continue the simultaneous cooling mode up to the upper temperature limit at which the freezer compartment 18 is allowed in order to suppress the temperature rise of the refrigerator compartment 17 that is not cooled during the “FC cooling mode”. Therefore, it is desirable that the FCC_LIM temperature detected by the FCC temperature sensor 34 is a predetermined value corresponding to weak cooling that is 2 to 5 ° C. higher than the FCC_ON temperature that is the upper limit temperature during normal cooling.
 なお、本実施の形態においては、過負荷条件に対応する「同時冷却モード」に遷移する条件L12を圧縮機19の回転数で規定したが、高外気温での電源投入時や頻繁な扉開閉などを検知して「同時冷却モード」に遷移してもよい。圧縮機19が増速するまでもなく、冷蔵庫11が過負荷条件にあることが明確であれば、より早く「同時冷却モード」に遷移することができる。また、この場合、冷蔵室17や冷凍室18の温度がある程度低下することを検知して同時冷却モードを解除するように、条件L13を変更してもよい。これによって、本実施の形態と同様に、最も効率の高いPC冷却モードをより長時間使用することができる。 In the present embodiment, the condition L12 for transitioning to the “simultaneous cooling mode” corresponding to the overload condition is defined by the number of revolutions of the compressor 19. However, when the power is turned on at high outside air temperature and the door is frequently opened and closed. May be detected and a transition to the “simultaneous cooling mode” may be made. If it is clear that the refrigerator 19 is in an overload condition without increasing the speed of the compressor 19, it is possible to shift to the “simultaneous cooling mode” earlier. In this case, the condition L13 may be changed so that the simultaneous cooling mode is canceled by detecting that the temperature of the refrigerator compartment 17 or the freezer compartment 18 is lowered to some extent. As a result, like the present embodiment, the most efficient PC cooling mode can be used for a longer time.
 次に、「同時冷却モード」中に蒸発器20が着霜した場合のデフロストについて説明する。 Next, defrosting when the evaporator 20 is frosted during the “simultaneous cooling mode” will be described.
 「同時冷却モード」中に、FCC温度センサ34の検知する温度がFCC_LIM温度よりも下回った時点で、冷凍室ダンパー31の開度を下げる。これは、冷凍室18が弱冷レベルに達した時点で冷蔵室17の冷却を優先するために、冷凍室18への風量分配量を抑制するものである。そして、「同時冷却モード」の開始から所定時間Tx6経過後、PCC温度センサ35の検知する温度がPCC_OFF温度を越える(すなわち、条件L15を満足する)と、デフロストモードに遷移する。 When the temperature detected by the FCC temperature sensor 34 is lower than the FCC_LIM temperature during the “simultaneous cooling mode”, the opening degree of the freezer damper 31 is lowered. This prioritizes cooling of the refrigerating room 17 when the freezing room 18 reaches a weak cooling level, and therefore suppresses the air volume distribution to the freezing room 18. Then, after the elapse of a predetermined time Tx6 from the start of the “simultaneous cooling mode”, when the temperature detected by the PCC temperature sensor 35 exceeds the PCC_OFF temperature (that is, the condition L15 is satisfied), the mode is changed to the defrost mode.
 これは、「同時冷却モード」中に蒸発器20が着霜して冷蔵室17が鈍冷傾向となった時に、所定時間Tx2毎に行われる通常のデフロストを早めて実施するものであり、蒸発器20の除霜間隔を縮めることで冷蔵室17の冷却能力を早期に回復することができる。「同時冷却モード」においては、蒸発器ファン30を高速回転して、冷蔵室17と冷凍室18の両方に並行して送る風量を確保しているが、蒸発器20に大量の着霜が生じた場合、十分な風量が確保できなくなる。この時、蒸発器20の直ぐ前に形成された冷凍室18に比べて、蒸発器20から送風する経路が比較的長い冷蔵室17の風量が大きく低下する。そこで、冷凍室18が弱冷レベルに達した時点で冷蔵室17の冷却を優先するために、冷凍室18への風量分配量を抑制するとともに、それでも所定時間Tx6経過後に冷蔵室17の冷却が不十分と判断した時点で、蒸発器20の除霜間隔を縮めることで冷蔵室17の冷却能力を早期に回復することができる。 When the evaporator 20 is frosted during the “simultaneous cooling mode” and the refrigerating chamber 17 tends to be slowly cooled, normal defrosting performed every predetermined time Tx2 is carried out earlier. The cooling capacity of the refrigerator compartment 17 can be recovered early by shortening the defrosting interval of the container 20. In the “simultaneous cooling mode”, the evaporator fan 30 is rotated at a high speed to secure the amount of air sent in parallel to both the refrigerator compartment 17 and the freezer compartment 18, but a large amount of frost is generated in the evaporator 20. In such a case, a sufficient air volume cannot be secured. At this time, compared with the freezer compartment 18 formed just before the evaporator 20, the air volume of the refrigerator compartment 17 with the comparatively long path | route which ventilates from the evaporator 20 falls significantly. Therefore, in order to give priority to the cooling of the refrigerator compartment 17 when the freezer compartment 18 reaches a weak cooling level, the air volume distribution amount to the refrigerator compartment 18 is suppressed, and the refrigerator compartment 17 is still cooled after the predetermined time Tx6 has elapsed. When it is determined as insufficient, the cooling capacity of the refrigerator compartment 17 can be recovered early by shortening the defrosting interval of the evaporator 20.
 以上のように、本発明の冷蔵庫は、「FC冷却モード」および「PC冷却モード」に加えて、過負荷条件においてのみ「同時冷却モード」を有する冷蔵庫において、主凝縮器21の下流側に流路切換バルブ40を介して第1の防露パイプ44と第2の防露パイプ41を並列接続して任意に選択する。このことで、通常運転時は第1の防露パイプ44と第2の防露パイプ41を任意に交互に切り換えて使用して第1の防露パイプ44に起因する熱負荷を抑制するとともに、過負荷運転時は第1の防露パイプ44と第2の防露パイプ41を同時に並列使用して冷媒循環量を低減して圧力損失を抑制することができる。 As described above, the refrigerator of the present invention flows in the downstream side of the main condenser 21 in the refrigerator having the “simultaneous cooling mode” only in the overload condition in addition to the “FC cooling mode” and the “PC cooling mode”. The first dew-proof pipe 44 and the second dew-proof pipe 41 are connected in parallel via the path switching valve 40 and arbitrarily selected. Thus, during normal operation, the first dew proof pipe 44 and the second dew proof pipe 41 are switched alternately and used to suppress the thermal load caused by the first dew proof pipe 44, and During an overload operation, the first dew proof pipe 44 and the second dew proof pipe 41 can be used simultaneously in parallel to reduce the refrigerant circulation rate and suppress the pressure loss.
 なお、本実施の形態における冷蔵庫では、流路切換バルブ40を全閉する動作を実施していないが、「OFFモード」中に流路切換バルブ40を全閉して主凝縮器21内の液冷媒を下流側に流さないようにすれば、「OFFモード」中に蒸発器20内に流入する高温の液冷媒の量を抑制することができ、冷蔵庫の熱負荷量を低減することができる。 In the refrigerator in the present embodiment, the operation of fully closing the flow path switching valve 40 is not performed, but the flow path switching valve 40 is fully closed during the “OFF mode” and the liquid in the main condenser 21 is If the refrigerant is not allowed to flow downstream, the amount of the high-temperature liquid refrigerant flowing into the evaporator 20 during the “OFF mode” can be suppressed, and the heat load of the refrigerator can be reduced.
 以上のように、本発明は、少なくとも圧縮機、蒸発器、凝縮器を有する冷凍サイクルを備え、凝縮器は強制空冷方式の主凝縮器と、主凝縮器の下流側に接続した流路切換バルブと、流路切換バルブの下流側に接続した副凝縮器とを有し、副凝縮器は並列に接続した複数の防露パイプを構成に含む。冷凍サイクルが通常条件で運転する場合は複数の防露パイプに交互に冷媒を流すとともに、過負荷条件で運転する場合は複数の防露パイプに並列に冷媒を流す。 As described above, the present invention includes a refrigeration cycle having at least a compressor, an evaporator, and a condenser, and the condenser is a forced air-cooled main condenser and a flow path switching valve connected to the downstream side of the main condenser. And a sub-condenser connected to the downstream side of the flow path switching valve, and the sub-condenser includes a plurality of dew-proof pipes connected in parallel. When the refrigeration cycle is operated under normal conditions, the refrigerant is alternately supplied to the plurality of dew prevention pipes, and when operated under an overload condition, the refrigerant is supplied in parallel to the plurality of dew prevention pipes.
 これによって、通常時は防露パイプに起因する熱負荷を抑制するとともに、冷媒循環量が大きい過負荷時に複数の防露パイプを同時に並列使用して防露パイプに起因する圧力損失を抑制することができる。ここで、過負荷時とは、例えば比較的外気の温度や湿度が高い夏場に頻繁に扉開閉を行った場合や、温度の高い食品を収納した場合を想定したものである。このような場合、冷凍サイクルの運転率が増大して冷媒循環量が増大するとともに、防露パイプが配設された冷蔵庫筐体の周囲の結露防止が必要となる。このとき、防露パイプを同時に並列使用して1本当りの冷媒循環量を低減することで、防露パイプに起因する圧力損失を抑制することができる。 As a result, the heat load caused by the dew proof pipe is normally suppressed, and the pressure loss caused by the dew proof pipe is simultaneously reduced by using a plurality of dew proof pipes in parallel at the time of overload with a large amount of refrigerant circulation. Can do. Here, the time of overload is assumed, for example, when the door is frequently opened and closed in summer when the temperature and humidity of the outside air are relatively high, or when food with a high temperature is stored. In such a case, the operating rate of the refrigeration cycle increases and the amount of refrigerant circulation increases, and it is necessary to prevent condensation around the refrigerator casing in which the dew-proof pipe is provided. At this time, the pressure loss resulting from the dew-proof pipe can be suppressed by simultaneously using the dew-proof pipe in parallel to reduce the amount of refrigerant circulation per bottle.
 また、本発明は、冷蔵室と冷凍室とを備え、冷蔵室と冷凍室とがともに所定温度よりも高い場合を過負荷条件として、複数の防露パイプに並列に冷媒を流す。 In addition, the present invention includes a refrigerator compartment and a freezer compartment, and allows the refrigerant to flow in parallel to the plurality of dew-proof pipes when the refrigerator compartment and the freezer compartment are both higher than a predetermined temperature.
 これによって、通常条件で運転する場合と過負荷条件時に運転する場合とに場合分けを行い、各条件にあった運転することで省エネルギー化を図ることができる。さらに冷媒循環量が大きい過負荷時を的確に把握した上で、複数の防露パイプを同時に並列使用して防露パイプに起因する圧力損失を抑制することができるとともに、冷蔵室及び冷凍室の温度上昇を抑制することができる。 This makes it possible to perform energy saving by performing the operation according to each condition by dividing the case into operation under normal conditions and operation under overload conditions. Furthermore, after accurately grasping the overload when the refrigerant circulation amount is large, it is possible to suppress the pressure loss caused by the dew prevention pipe by using multiple dew prevention pipes in parallel at the same time. Temperature rise can be suppressed.
 また、本発明は、冷蔵室と、冷凍室と、冷凍サイクルと、冷凍サイクルの構成要素である蒸発器と、蒸発器で発生した冷気を冷蔵室および冷凍室へ供給する蒸発器ファンと、蒸発器から冷蔵室へ供給される冷気を遮断する冷蔵室ダンパーと、蒸発器から冷凍室へ供給される冷気を遮断する冷凍室ダンパーとを有する。さらに、冷凍室の温度を検知するFCC温度センサと、冷蔵室の温度を検知するPCC温度センサとを有する。そして、冷凍室ダンパーを開放し、冷蔵室ダンパーを閉塞して、冷凍サイクルを稼動しながら蒸発器で発生した冷気を供給して冷凍室を冷却するFC冷却モードと、冷凍室ダンパーを閉塞し、冷蔵室ダンパーを開放して、冷凍サイクルを稼動しながら蒸発器で発生した冷気を供給して冷蔵室を冷却するPC冷却モードを有する。さらに、冷凍室ダンパーを開放し、冷蔵室ダンパーを開放して、冷凍サイクルを稼動しながら蒸発器で発生した冷気を供給して冷凍室と冷蔵室を同時に冷却する同時冷却モードと、冷凍室ダンパーを閉塞し、冷蔵室ダンパーを開放して、冷凍サイクルを停止しながら蒸発器ファンを運転することで、蒸発器と冷蔵室内の空気を熱交換するオフサイクル冷却モードとを有する。通常条件ではFC冷却モードとPC冷却モード、オフサイクル冷却モードを組み合わせて冷却するとともに、過負荷条件では同時冷却モードとFC冷却モードを組み合わせて冷却するものである。 The present invention also includes a refrigerator compartment, a freezer compartment, a refrigeration cycle, an evaporator that is a component of the refrigeration cycle, an evaporator fan that supplies cold air generated in the evaporator to the refrigerator compartment and the freezer compartment, A refrigerator compartment damper for shutting off cool air supplied from the evaporator to the refrigerator compartment, and a freezer compartment damper for shutting off cool air supplied from the evaporator to the freezer compartment. Furthermore, it has the FCC temperature sensor which detects the temperature of a freezer compartment, and the PCC temperature sensor which detects the temperature of a refrigerator compartment. And, opening the freezer damper, closing the refrigerator compartment damper, supplying the cool air generated in the evaporator while operating the refrigeration cycle to cool the freezer compartment, and closing the freezer damper, It has a PC cooling mode in which the cold room damper is opened and cold air generated in the evaporator is supplied while the refrigeration cycle is operated to cool the cold room. In addition, the freezing room damper is opened, the freezing room damper is opened, and the freezing room damper is operated to supply the cold air generated in the evaporator while operating the refrigerating cycle to simultaneously cool the freezing room and the refrigerating room, and the freezing room damper Is closed, the refrigerator compartment damper is opened, and the evaporator fan is operated while stopping the refrigeration cycle, thereby having an off-cycle cooling mode for exchanging heat between the evaporator and the air in the refrigerator compartment. Under normal conditions, the cooling is performed by combining the FC cooling mode, the PC cooling mode, and the off-cycle cooling mode, and under the overload condition, the simultaneous cooling mode and the FC cooling mode are combined.
 これによって、通常条件では高効率なPC冷却モードをできるだけ維持するとともに、過負荷条件では冷凍室の冷却を継続しながら、冷凍室と冷蔵室の冷却量を自動的に適正に調整することができ、冷蔵室及び冷凍室の温度上昇を抑制することができる。 As a result, the PC cooling mode with high efficiency can be maintained as much as possible under normal conditions, and the cooling amount of the freezer compartment and the refrigerator compartment can be automatically adjusted appropriately while continuing to cool the freezer compartment under overload conditions. Moreover, the temperature rise of a refrigerator compartment and a freezer compartment can be suppressed.
 また、本発明は、圧縮機を可変速圧縮機とし、通常運転時は圧縮機を所定回転数未満で運転しながらFC冷却モードとPC冷却モード、オフサイクル冷却モードを組み合わせて冷却するとともに、過負荷条件では圧縮機を所定回転数以上で運転しながら同時冷却モードとFC冷却モードを組み合わせて冷却する。 In the present invention, the compressor is a variable speed compressor, and during normal operation, the compressor is operated at less than a predetermined number of rotations while cooling by combining the FC cooling mode, the PC cooling mode, and the off-cycle cooling mode. Under the load condition, the compressor is cooled at a predetermined rotational speed or more by combining the simultaneous cooling mode and the FC cooling mode.
 これによって、同時冷却モードにおける蒸発器の温度上昇を抑制して、冷凍室の冷却能力不足を抑制することができる。 This makes it possible to suppress an increase in the temperature of the evaporator in the simultaneous cooling mode and to suppress a cooling capacity shortage in the freezer compartment.
 また、本発明は、上部機械室と下部機械室とを備え、上部機械室に圧縮機を配置するとともに、下部機械室に流路切換バルブを配置する。 Further, the present invention includes an upper machine room and a lower machine room, and a compressor is arranged in the upper machine room and a flow path switching valve is arranged in the lower machine room.
 これによって、流路切換バルブの接続配管と圧縮機の共振を抑制することにより、冷蔵庫の騒音を低減することができる。 This can reduce the noise of the refrigerator by suppressing the resonance between the connecting pipe of the flow path switching valve and the compressor.
 以上のように、本発明にかかる冷蔵庫は、主凝縮器の下流側に流路切換バルブを介して複数の防露パイプを並列接続することで、冷蔵庫の設置環境や運転状態によって防露パイプに起因する圧力損失や熱負荷を任意に調整して抑制することができるので、業務用冷蔵庫など他の冷凍冷蔵応用商品にも適用できる。 As described above, the refrigerator according to the present invention has a plurality of dew-proof pipes connected in parallel to the downstream side of the main condenser via the flow path switching valve, so that the dew-proof pipes can be used depending on the installation environment and operation state of the refrigerator. Since the resulting pressure loss and thermal load can be adjusted arbitrarily, it can be applied to other refrigeration application products such as commercial refrigerators.
 11 冷蔵庫
 12 筐体
 15 下部機械室
 16 上部機械室
 19 圧縮機
 20 蒸発器
 24 蒸発皿
 30 蒸発器ファン
 31 冷凍室ダンパー
 32 冷蔵室ダンパー
 33 ダクト
 34 FCC温度センサ
 35 PCC温度センサ
 36 DEF温度センサ
 37 防露パイプ
 38 ドライヤ
 39 絞り
 40 流路切換バルブ
 41 第2の防露パイプ(副凝縮器)
 42 合流点
 43 真空断熱材
 44 第1の防露パイプ(副凝縮器)
 50 蒸発器ファン
 51 冷凍室ダンパー
 52 冷蔵室ダンパー
 53 ダクト
 54 FCC温度センサ
 55 PCC温度センサ
 56 圧縮機
 57 蒸発皿
 58 DEF温度センサ
DESCRIPTION OF SYMBOLS 11 Refrigerator 12 Case 15 Lower machine room 16 Upper machine room 19 Compressor 20 Evaporator 24 Evaporator 30 Evaporator fan 31 Freezer damper 32 Refrigerator damper 33 Duct 34 FCC temperature sensor 35 PCC temperature sensor 36 DEF temperature sensor 37 Prevention Dew pipe 38 Dryer 39 Restriction 40 Flow path switching valve 41 Second dew pipe (sub-condenser)
42 Junction point 43 Vacuum insulation 44 First dew-proof pipe (sub-condenser)
50 Evaporator Fan 51 Freezer Damper 52 Refrigerator Damper 53 Duct 54 FCC Temperature Sensor 55 PCC Temperature Sensor 56 Compressor 57 Evaporating Dish 58 DEF Temperature Sensor

Claims (5)

  1. 少なくとも圧縮機、蒸発器、凝縮器を有する冷凍サイクルを備え、前記凝縮器は強制空冷方式の主凝縮器と、前記主凝縮器の下流側に接続した流路切換バルブと、前記流路切換バルブの下流側に接続した副凝縮器とを有し、前記副凝縮器は並列に接続した複数の防露パイプを構成に含み、前記冷凍サイクルが通常条件で運転する場合は複数の前記防露パイプに交互に冷媒を流すとともに、過負荷条件で運転する場合は複数の前記防露パイプに並列に冷媒を流す冷蔵庫。 A refrigeration cycle having at least a compressor, an evaporator, and a condenser, wherein the condenser is a forced air-cooled main condenser, a flow path switching valve connected to a downstream side of the main condenser, and the flow path switching valve A sub-condenser connected to the downstream side of the sub-condenser, and the sub-condenser includes a plurality of dew-proof pipes connected in parallel, and when the refrigeration cycle is operated under normal conditions, the plurality of dew-proof pipes In the refrigerator, the refrigerant is allowed to flow alternately, and the refrigerant is allowed to flow in parallel to the plurality of dew-proof pipes when operating under an overload condition.
  2. 冷蔵室と冷凍室とを備え、前記冷蔵室と前記冷凍室とがともに所定温度よりも高い場合を過負荷条件として、複数の前記防露パイプに並列に冷媒を流す請求項1に記載の冷蔵庫。 2. The refrigerator according to claim 1, further comprising a refrigerator compartment and a freezer compartment, wherein the refrigerant flows in parallel to the plurality of dew-proof pipes when the refrigerator compartment and the freezer compartment are both higher than a predetermined temperature as an overload condition. .
  3. 冷蔵室と、冷凍室と、前記冷凍サイクルと、前記蒸発器で発生した冷気を前記冷蔵室および前記冷凍室へ供給する蒸発器ファンと、前記蒸発器から前記冷蔵室へ供給される冷気を遮断する冷蔵室ダンパーと、前記蒸発器から前記冷凍室へ供給される冷気を遮断する冷凍室ダンパーと、前記冷凍室の温度を検知するFCC温度センサと、前記冷蔵室の温度を検知するPCC温度センサとを有する冷蔵庫において、前記冷凍室ダンパーを開放し、前記冷蔵室ダンパーを閉塞して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷凍室を冷却するFC冷却モードと、前記冷凍室ダンパーを閉塞し、前記冷蔵室ダンパーを開放して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷蔵室を冷却するPC冷却モードと、前記冷凍室ダンパーを開放し、前記冷蔵室ダンパーを開放して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷凍室と冷蔵室を同時に冷却する同時冷却モードと、前記冷凍室ダンパーを閉塞し、前記冷蔵室ダンパーを開放して、前記冷凍サイクルを停止しながら前記蒸発器ファンを運転することで、前記蒸発器と前記冷蔵室内の空気を熱交換するオフサイクル冷却モードとを有し、通常条件ではFC冷却モードとPC冷却モード、オフサイクル冷却モードを組み合わせて冷却するとともに、過負荷条件では同時冷却モードとFC冷却モードを組み合わせて冷却する請求項1に記載の冷蔵庫。 Refrigeration room, freezing room, the refrigeration cycle, an evaporator fan that supplies cold air generated in the evaporator to the refrigerating room and the freezing room, and cold air supplied from the evaporator to the refrigerating room is shut off A refrigerating room damper, a freezing room damper for blocking cool air supplied from the evaporator to the freezing room, an FCC temperature sensor for detecting the temperature of the freezing room, and a PCC temperature sensor for detecting the temperature of the refrigerating room FC cooling mode in which the freezer compartment damper is opened, the refrigerator compartment damper is closed, and cold air generated in the evaporator is supplied while operating the refrigerating cycle to cool the freezer compartment And closing the freezer damper, opening the refrigerating chamber damper, and supplying the cool air generated by the evaporator while operating the refrigerating cycle to cool the refrigerating chamber PC cooling mode, open the freezer damper, open the refrigerator damper, supply the cool air generated by the evaporator while operating the refrigeration cycle, and cool the refrigerator and refrigerator at the same time Simultaneous cooling mode, and closing the freezer compartment damper, opening the refrigerator compartment damper, and operating the evaporator fan while stopping the refrigeration cycle, the air in the evaporator and the refrigerator compartment It has an off-cycle cooling mode for heat exchange. In normal conditions, it cools by combining FC cooling mode, PC cooling mode, and off-cycle cooling mode, and in overload conditions, it cools by combining simultaneous cooling mode and FC cooling mode. The refrigerator according to claim 1.
  4. 前記圧縮機は可変速圧縮機とし、通常運転時は前記圧縮機を所定回転数未満で運転しながらFC冷却モードとPC冷却モード、オフサイクル冷却モードを組み合わせて冷却するとともに、過負荷条件では前記圧縮機を所定回転数以上で運転しながら同時冷却モードとFC冷却モードを組み合わせて冷却する請求項3に記載の冷蔵庫。 The compressor is a variable speed compressor, and during normal operation, the compressor is cooled at a combination of an FC cooling mode, a PC cooling mode, and an off-cycle cooling mode while operating at less than a predetermined number of revolutions. The refrigerator according to claim 3, wherein the refrigerator is cooled by combining the simultaneous cooling mode and the FC cooling mode while operating the compressor at a predetermined rotation speed or higher.
  5. 上部機械室と下部機械室とを備え、前記上部機械室に前記圧縮機を配置するとともに、前記下部機械室に前記流路切換バルブを配置する請求項1または2のいずれかに記載の冷蔵庫。 The refrigerator according to claim 1, further comprising an upper machine room and a lower machine room, wherein the compressor is disposed in the upper machine room, and the flow path switching valve is disposed in the lower machine room.
PCT/JP2013/000926 2012-02-29 2013-02-20 Refrigerator WO2013128845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380011532.9A CN104160224A (en) 2012-02-29 2013-02-20 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012042938 2012-02-29
JP2012-042938 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013128845A1 true WO2013128845A1 (en) 2013-09-06

Family

ID=49082061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000926 WO2013128845A1 (en) 2012-02-29 2013-02-20 Refrigerator

Country Status (3)

Country Link
JP (1) JP6074596B2 (en)
CN (1) CN104160224A (en)
WO (1) WO2013128845A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2711654A4 (en) * 2011-05-18 2015-08-12 Panasonic Corp Refrigerator
JPWO2021070758A1 (en) * 2019-10-08 2021-04-15

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6197176B2 (en) * 2013-06-18 2017-09-20 パナソニックIpマネジメント株式会社 refrigerator
JP2015094536A (en) * 2013-11-13 2015-05-18 パナソニックIpマネジメント株式会社 Refrigerator
JP6340586B2 (en) * 2014-04-18 2018-06-13 パナソニックIpマネジメント株式会社 refrigerator
JP6469966B2 (en) * 2014-05-16 2019-02-13 日立アプライアンス株式会社 refrigerator
JP2015222131A (en) * 2014-05-22 2015-12-10 ハイアールアジア株式会社 refrigerator
CN106766479B (en) * 2016-12-09 2019-11-26 青岛海尔股份有限公司 A kind of the simple gate refrigerator and its control method of temperature-changeable
CN107461986A (en) * 2017-07-14 2017-12-12 青岛海尔电冰箱有限公司 Refrigerating device
CN111417827B (en) * 2017-12-06 2021-09-28 三菱电机株式会社 Refrigerator, heater driving device, heater driving method, and recording medium
CN108168168B (en) * 2017-12-29 2021-07-23 海尔智家股份有限公司 Refrigerator with a door

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230768A (en) * 1999-02-09 2000-08-22 Matsushita Refrig Co Ltd Refrigerator
JP2005156111A (en) * 2003-11-28 2005-06-16 Matsushita Electric Ind Co Ltd Refrigerator
JP2007139276A (en) * 2005-11-16 2007-06-07 Sanden Corp Cooling system
JP2010169353A (en) * 2009-01-26 2010-08-05 Panasonic Corp Refrigerator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285426A (en) * 1995-04-13 1996-11-01 Matsushita Refrig Co Ltd Refrigerator
JPH09236369A (en) * 1996-02-26 1997-09-09 Matsushita Refrig Co Ltd Refrigerator
JPH09264650A (en) * 1996-03-28 1997-10-07 Toshiba Corp Refrigerator
JP2004324902A (en) * 2003-04-21 2004-11-18 Matsushita Electric Ind Co Ltd Freezing refrigerator
JP4364098B2 (en) * 2004-09-24 2009-11-11 株式会社東芝 refrigerator
CN1800757A (en) * 2004-12-31 2006-07-12 边雁 Refrigerator
JP5135045B2 (en) * 2008-04-23 2013-01-30 株式会社東芝 refrigerator
CN201355168Y (en) * 2008-12-19 2009-12-02 康佳集团股份有限公司 Anti-dew tube of refrigerator
CN101655302A (en) * 2009-07-16 2010-02-24 上海理工大学 Photoelectric sensing hot gas bypass defrosting refrigerator and working method
CN102121780A (en) * 2011-02-16 2011-07-13 合肥美的荣事达电冰箱有限公司 Refrigeration system and refrigerator with same
JP2012241949A (en) * 2011-05-18 2012-12-10 Panasonic Corp Refrigerator
EP2711654A4 (en) * 2011-05-18 2015-08-12 Panasonic Corp Refrigerator
JP5927409B2 (en) * 2011-09-08 2016-06-01 パナソニックIpマネジメント株式会社 refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230768A (en) * 1999-02-09 2000-08-22 Matsushita Refrig Co Ltd Refrigerator
JP2005156111A (en) * 2003-11-28 2005-06-16 Matsushita Electric Ind Co Ltd Refrigerator
JP2007139276A (en) * 2005-11-16 2007-06-07 Sanden Corp Cooling system
JP2010169353A (en) * 2009-01-26 2010-08-05 Panasonic Corp Refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2711654A4 (en) * 2011-05-18 2015-08-12 Panasonic Corp Refrigerator
JPWO2021070758A1 (en) * 2019-10-08 2021-04-15
WO2021070758A1 (en) * 2019-10-08 2021-04-15 三菱電機株式会社 Refrigerator, cooling control method, and program
JP7154435B2 (en) 2019-10-08 2022-10-17 三菱電機株式会社 Refrigerator, cooling control method and program

Also Published As

Publication number Publication date
JP6074596B2 (en) 2017-02-08
JP2013210180A (en) 2013-10-10
CN104160224A (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP6074596B2 (en) refrigerator
CN202393126U (en) Refrigerator
WO2012157263A1 (en) Refrigerator
JP5530852B2 (en) refrigerator
WO2017179500A1 (en) Refrigerator and cooling system
WO2018032607A1 (en) Air-cooled refrigerator and control method therefor
WO2015176581A1 (en) Refrigerator
JP2013221719A (en) Refrigerator
JP2011099645A (en) Refrigerator
WO2019107066A1 (en) Refrigerator
JPH11173729A (en) Refrigerator
JP2014044025A (en) Refrigerator
JP5927409B2 (en) refrigerator
JP2013068388A (en) Refrigerator
JP2005076922A (en) Refrigerator
JP2018096646A (en) Refrigerator
JP2012241949A (en) Refrigerator
JP6846599B2 (en) refrigerator
JP6197176B2 (en) refrigerator
JP5877301B2 (en) refrigerator
WO2018147113A1 (en) Refrigerator
JP5870237B2 (en) refrigerator
JP2004092939A (en) Refrigerator-freezer
JP2017040398A (en) refrigerator
JP6543811B2 (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755129

Country of ref document: EP

Kind code of ref document: A1